Title: CYCLIC STEAM STIMULATION METHOD WITH MULTIPLE FRACtURES

Abstract: A cyclic steam soak (CSS) stimulation method for producing heated hydrocarbons from a viscous hydrocarbon-containing formation comprises the steps of: a) drilling a well (1) having a substantially horizontal or inclined lower section (3) into the viscous hydrocarbon-containing formation (4) substantially along the trajectory of the minimum compressive horizontal stress Sh; b) cutting at selected intervals along the length of the lower well section (3) substantially disk-shaped cavities (5A-5D) into the viscous hydrocarbon-containing formation (4) by a rotating hydraulic jet cutting device (6); c) completing the well (1); d) injecting steam into the well (1) and disk-shaped cavities (5A-5D) at such an elevated pressure that the hydraulic pressure in at least one disk-shaped cavity 5A is above the formation fracturing pressure, thereby fracturing the formation (4) and permitting the steam to invade the formation surrounding the fracture and to heat hydrocarbons in the steam invaded zone; e) interrupting steam injection and producing heated hydrocarbons via the well (1); and f) repeating steps (d) and (e) a number of times.

Published:
— with international search report

Declaration under Rule 4.17:
— as to applicant’s entitlement to apply for and be granted a patent (Rule 4.17(U))

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
BACKGROUND OF THE INVENTION

The invention relates to a cyclic steam stimulation (CSS) method for producing heated hydrocarbons from a viscous hydrocarbon-containing formation.

Canadian patent 2219513 discloses a cyclic steam stimulation (CSS) process wherein during an initial heating step steam is injected into a viscous hydrocarbon-containing formation through steam injection nozzles that are located at several locations along the length of a substantially horizontal lower section of a well and wherein during a subsequent production step heated hydrocarbons are produced back via the nozzles to the wellhead. The steps of steam injection and subsequently producing hydrocarbon are cyclically repeated until a substantial fraction of hydrocarbons has been produced from the formation.

A common disadvantage of the known CSS methods is that the depth of steam penetration into the formation is limited and that, if fractures are formed, their locations are difficult to control, thereby resulting in an uncontrollable and inefficient heating of the hydrocarbon formation. Field experiences also indicate that, at most, only a couple of fractures can be created by the known method, leaving large parts of the formation unheated for an extended period.

The method described in Canadian patent 2219513 proposes using nozzles to regulate and distribute steam injection more uniformly along the well. However, the disadvantage of this method is that the oil production rate from the same well will be significantly lowered by
the restricted flow through the nozzles because of the lower mobility of oil relative to the injected steam.

US patent application US2005/0263284 discloses a method for perforating and fracturing a formation using fluid jets that are located at various longitudinally and circumferentially spaced locations in a liner to initiate microfractures that are oriented in different directions relative to the wellbore.

It is an object of the present invention to provide a novel cyclic steam stimulation (CSS) method that not only heats the formation much faster and in a more uniform manner but also produces oil much faster than the known CSS methods including the method described in Canadian patent 2219513.

It is a further object of the present invention to provide a novel cyclic steam stimulation (CSS) method, which yields a reservoir heating pattern that is suitable for implementing a follow-up steam-drive process.

SUMMARY OF THE INVENTION

In accordance with the invention there is provided a cyclic steam stimulation method for producing heated hydrocarbons from a viscous hydrocarbon-containing formation, comprising the following steps:

a) drilling a well having a substantially horizontal or inclined lower section into the viscous hydrocarbon-containing formation substantially along the trajectory of the minimum compressive horizontal stress S_h;

b) cutting at selected intervals along the length of the lower well section substantially disk-shaped cavities into the viscous hydrocarbon-containing formation by a rotating hydraulic jet cutting device;

c) completing the well;

d) injecting steam into the well and disk-shaped cavities
at such an elevated pressure that the hydraulic pressure in at least one disk-shaped cavity is above the formation fracturing pressure, thereby fracturing the formation and permitting the steam to invade the formation surrounding the fracture and to heat hydrocarbons in the steam invaded zone;
e) interrupting steam injection and producing heated hydrocarbons via the well; and
f) repeating steps (d) and (e) a number of times.

Optionally, after step (f) the well is placed on continuous production whilst steam is injected continuously to a new well drilled near an upper portion of the viscous hydrocarbon-containing formation. The rotating hydraulic jet cutting device may comprise at least one jet nozzle which is induced to cut a disk-shaped cavity by ejecting fluid in a substantially orthogonal direction relative to a longitudinal axis of the lower well section whilst rotating the nozzle relative to said longitudinal axis and maintaining the nozzle at a fixed position along the length of said longitudinal axis.

During a first cycle of steam injection in accordance with step (d) initial fractures may be created predominantly in the formation surrounding the disk-shaped cavity, where the stress concentration is relatively high due to the irregular geometry of the intersection of the substantially cylindrical well and the substantially disk-shaped cavity and wherein after sufficient steam injection into the initial fractures, the initial fractures cease to open due to the increased horizontal stress resulting from the temperature rises in the adjacent formation, such that during subsequent cycles of steam injection in accordance with step (d),
new fractures are created in the formation surrounding the remaining disk-shaped cavities along the well section.

After a number of cycles of steam injection in accordance with step (d) the average temperature of the formation may be sufficiently high such that both the minimum (SH) and maximum (SH) compressive horizontal stresses are greater than the vertical compressive stress (SV) and additional fractures are created in substantially low-angle or horizontal orientations.

The viscous hydrocarbon formation, at its initial state, may have a minimum compressive in-situ principal stress that is oriented in a substantially horizontal direction but may with sufficient temperature rise be reoriented to a substantially vertical direction.

The viscous hydrocarbon formation may be a heavy-oil reservoir situated from 200 to 3500 meters from the surface with the oil viscosity ranging from 2000 up to 1000000 cp at the reservoir condition and the method according to the invention may be used to create a root shaped pattern of fractures for accelerating steam injection into and oil production from the viscous hydrocarbon-containing formation.

These and other features, embodiments and advantages of the method according to the invention are described in the accompanying claims, abstract and the following detailed description of preferred embodiments in which reference is made to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a steam injection and oil production well around which disk-shaped cavities are cut in accordance with the method according to the invention;
Figure 2 shows how during an initial steam soak injection cycle a fracture is created in the formation surrounding a disk-shaped cavity, which is located closest to the wellhead;

Figure 3 shows how during a subsequent steam injection cycle a fracture is created in the formation surrounding a disk-shaped cavity, which is located further away from the wellhead;

Figure 4 shows how a network of fractures is created in the formation surrounding a plurality of disk-shaped cavities after a plurality of steam soaking cycles;

Figure 5 shows the results of a computer simulation that calculates oil production from a cyclic steam soaked (CSS) well provided with disk-shaped cavities according to the invention and oil production from a prior art CSS well, which is not provided with disk-shaped cavities; and

Figure 6 shows the results of a computer simulation that calculates steam injection rate into a formation surrounding a cyclic steam soaked (CSS) well provided with disk-shaped cavities according to the invention and the steam injection rate into a formation surrounding a prior art CSS well, which is not provided with disk-shaped cavities.

DESCRIPTION OF A PREFERRED EMBODIMENT

Figure 1 shows a well 1 with a substantially vertical upper section in which a well casing 2 is arranged and a substantially horizontal lower section 3 which penetrates a viscous oil containing formation 4 in which a series of five disk-shaped cavities 5A-D are being cut by a rotating jet cutting device 6.

The jet cutting device 6 is supported and rotated by a coiled tubing or drill string assembly 7, such that the
rotating jet cutting device 6 is rotated about a longitudinal axis of the wellbore over at least 360 degrees to cut the disk-shaped cavity 5A in the formation surrounding the wellbore.

Figure 1 also shows that the formation is subject to a three dimensional combination of minimum and maximum horizontal and vertical compressive stresses Sh, SH and Sv and that the trajectory of the lower well section 3 is oriented substantially along the trajectory of minimum compressive horizontal stress Sh.

Figure 2 shows how steam is injected through a production tubing 7, which is optionally provided with a sandscreen 8 that extends through the horizontal lower section 3 of the well shown in Figure 1, around which a series of six disk-shaped cavities 5A-E have been cut at regular intervals along the length of the horizontal lower section 3. The steam is injected at such a high pressure that the formation surrounding the uppermost disk-shaped cavity 5A is fractured such that a first fracture 9 extends substantially radially outward from the uppermost disk-shaped cavity 5A.

Figure 3 shows how during a subsequent steam injection cycle the first fracture 9 is closed due to increased horizontal stresses Sh and SH resulting from the heating and expansion of the formation surrounding the first fracture 9, whereas a second fracture is created around an intermediate fracture 5C, where the horizontal stresses Sh and SH are not significantly increased as a result of the expansion of the heated formation surrounding the first fracture 5A because of the very low mobility of the viscous crude oil and the low heat transfer through the viscous crude oil containing formation.
Figure 4 shows how a root-shaped network of principal fractures and branch fractures is created after a series of five or more steam injection and subsequent heated crude oil production cycles, such that five or more cyclic steam soaks (CSS) have been carried out.

Figure 5 shows a calculation of oil production calculated by a reservoir simulation computer program, wherein the upper, solid, curve 50 shows the calculated crude oil production from a CSS well which penetrates a formation in which a series of disk-shaped cavities according to the invention are cut in the manner illustrated in Figures 1 - 4 and the lower, dashed, curve 51 shows the calculated crude oil production from a prior art CSS well, which is not surrounded by disk-shaped cavities. The calculated curves illustrate that the crude oil production from a viscous crude oil containing formation is significantly higher by providing disk-shaped cavities around the well in accordance with the invention. The points 52 and 53 illustrate that after a series of CSS steam soaking cycles a conventional steam drive may be started where the well is put on continuous production whilst steam is injected continuously via a dedicated steam injection well (not shown) which may be drilled near an upper portion of the viscous oil containing formation, and that crude oil production from the well surrounded by disk-shaped fractures according to the invention is significantly higher than from the conventional prior art well.

Figure 6 shows a calculation of steam injection rates calculated by a reservoir simulation computer program, wherein the upper, solid, curve 60 shows the calculated
steam injection rate into a formation surrounding a CSS well 1 which penetrates a formation in which a series of disk-shaped cavities 5A-5E according to the invention are cut in the manner illustrated in Figures 1 - 4; and the lower, dashed, curve 61 shows the calculated steam injection rate from a prior art CSS well, which is not surrounded by disk-shaped cavities. The calculated curves illustrate that the steam injection rate into a viscous crude oil containing formation is significantly higher by providing disk-shaped cavities 5A-5E around the well 1 in accordance with the invention. The points 62 and 63 illustrate that after a series of CSS steam soaking cycles a conventional steam drive may be started where the well 1 is put on continuous production whilst steam is injected continuously via a dedicated steam injection well (not shown) which may be drilled near an upper portion of the viscous oil containing formation, and that steam injection into the formation surrounding the well 1 surrounded by disk-shaped fractures 5A-5E according to the invention is significantly higher than from the conventional prior art well.
CL A I M S

1. A cyclic steam stimulation method for producing heated hydrocarbons from a viscous hydrocarbon-containing formation, comprising the following steps:
 a) drilling a well having a substantially horizontal or inclined lower section into the viscous hydrocarbon-containing formation substantially along the trajectory of the minimum compressive horizontal stress S_h;
 b) cutting at selected intervals along the length of the lower well section substantially disk-shaped cavities into the viscous hydrocarbon-containing formation by a rotating hydraulic jet cutting device;
 c) completing the well;
 d) injecting steam into the well and disk-shaped cavities at such an elevated pressure that the hydraulic pressure in at least one disk-shaped cavity is above the formation fracturing pressure, thereby fracturing the formation and permitting the steam to invade the formation surrounding the fracture and to heat hydrocarbons in the steam invaded zone;
 e) interrupting steam injection and producing heated hydrocarbons via the well; and
 f) repeating steps (d) and (e) a number of times.

2. The method of claim 1, wherein after step (f) the well is placed on continuous production whilst steam is injected continuously to a new well drilled near an upper portion of the viscous hydrocarbon-containing formation.

3. The method of claim 1, wherein the rotating hydraulic jet cutting device comprises at least one jet nozzle which is induced to cut a disk-shaped cavity by ejecting fluid in a substantially orthogonal direction relative to
a longitudinal axis of the lower well section whilst rotating the nozzle relative to said longitudinal axis and maintaining the nozzle at a fixed position along the length of said longitudinal axis.

4. The method of claim 1, wherein during a first cycle of steam injection in accordance with step (a) initial fractures are created predominantly in the formation surrounding the disk-shaped cavity, where the stress concentration is relatively higher due to the irregular geometry of the intersection of the substantially cylindrical well and the substantially disk-shaped cavity and wherein after sufficient steam injection into the initial fractures, the initial fractures cease to open due to the increased horizontal stress resulting from the temperature rises in the adjacent formation, such that during subsequent cycles of steam injection in accordance with step (d), new fractures are created in the formation surrounding the remaining disk-shaped cavities along the well section.

5. The method of claim 1, wherein after a number of cycles of steam injection in accordance with step (d) the average temperature of the formation is sufficiently high that both the minimum (Sh) and maximum (SH) compressive horizontal stresses are greater than the vertical compressive stress (SV) and additional fractures are created in substantially low-angle or horizontal orientations.

6. The method of claim 1, wherein a viscous hydrocarbon formation, at its initial state, has a minimum compressive in-situ principal stress that is oriented in a substantially horizontal direction but will with sufficient temperature rise be reoriented to a substantially vertical direction.
7. The method of claim 1, wherein the viscous hydrocarbon formation is a heavy-oil reservoir situated from 200 to 3500 meters from the surface with the oil viscosity ranging from 2000 up to 1000000 cp at the reservoir condition.

8. The method of claim 1, wherein the method creates a root shaped pattern of fractures for accelerating steam injection into and oil production from the viscous hydrocarbon-containing formation.

9. The method of claim 2, wherein the method is used to create a reservoir heating pattern suitable for implementing a follow-up steam-drive process after cyclic steam stimulation and multiple heated channels are created, which provide connecting paths for the oil production by a steam-drive process.
Fig. 5.

Cumulative Oil SC (m³)

Time (Date)

Fig. 6.

Cumulative Water SC (m³)

Time (Date)
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. E21B43/24

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

E21B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document with Indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 2005/263284 A1 (JUSTUS DONALD M [US]) 1 December 2005 (2005-12-01) paragraphs [0018], [0040]; claims 10,11; figure 4</td>
<td>1-9</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 644 316 A (HALLIBURTON CO [US]) 22 March 1995 (1995-03-22) the whole document</td>
<td>1,3</td>
</tr>
<tr>
<td>A</td>
<td>US 3 421 583 A (KOONS DAVID S) 14 January 1969 (1969-01-14) column 5, lines 5-23</td>
<td>2,9</td>
</tr>
</tbody>
</table>

D. Further documents are listed in the continuation of Box C

X. See patent family annex

* Special categories of cited documents:

A: document defining the general state of the art which is not considered to be of particular relevance

E: earlier document but published on or after the international filing date

L: document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O: document referng to an oral disclosure, use exhibition or other means

P: document published prior to the international filing date but later than the priority date claimed

T: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X: document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y: document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents such combination being obvious to a person skilled in the art

A: document member of the same patent family

Date of the actual completion of the international search: 24 July 2007

Date of mailing of the international search report: 01/08/2007

Name and mailing address of the ISA/

European Patent Office

P B 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel (+31-70) 340-2040, Tx 31651 epl.nl,
Fax (+31-70) 340-3016

Authorized officer: van Berlo, Andre

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 5085276 A</td>
<td>04-02-1992</td>
<td>NONE</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2005263284 A1</td>
<td>01-12-2005</td>
<td>NONE</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 943316 A</td>
<td>10-03-1995</td>
</tr>
<tr>
<td>US 5305829 A</td>
<td>26-04-1994</td>
<td>NONE</td>
<td>NONE</td>
</tr>
<tr>
<td>US 3421583 A</td>
<td>14-01-1969</td>
<td>NONE</td>
<td>NONE</td>
</tr>
</tbody>
</table>