AIR STERILIZER AND CONTROL MEANS

Inventor: Oscar Malmin, 127 E. Wayne Ave., Akron, Ohio 44301

Filed: Dec. 22, 1971

Appl. No.: 210,767

U.S. Cl. 21/74 R, 21/53, 55/279
Int. Cl. A61J 9/00, F24F 3/16
Field of Search 21/53, 74 R; 55/279, 55/420, 424, 425, 426, 427, 98/DIG. 1; 137/527; 15/414

References Cited

UNITED STATES PATENTS

1,832,565 11/1931 Lawrence et al. 55/279 X
2,209,054 7/1940 Doud et al. 21/74 R X
2,941,265 6/1960 Isenberg et al. 21/53 X
3,094,400 6/1963 Blanton 55/279 X
2,630,920 3/1953 Kerr 55/420 X
3,113,853 12/1963 Verhagen 55/420 X

ABSTRACT

Means for sterilizing and controlling aerosol clouds generated during either dental or medical operations. A vacuum intake is provided which is disposed in the vicinity of the cloud and may be either fixed or movable as desired. The intake is connected to a sterilizing chamber which contains filter means and ultraviolet or infrared light sources that are intended to sterilize the cloud, which is drawn into the chamber through the intake means. Exhaust means are also provided and may either lead to an entirely external environment or may be used to recirculate the air following its purification and sterilization back into the operating room. Disposable liners may be provided on the intake means to avoid further contamination of the operating environment.

6 Claims, 6 Drawing Figures
AIR STERILIZER AND CONTROL MEANS

BACKGROUND OF THE INVENTION

This invention relates in general to a means for sterilizing and controlling aerosol clouds formed in the immediate vicinity of either a dental or medical operation.

In performing dental operations, for example, when high speed hand pieces, drills, or ultrasonic tooth-scaling devices are employed, it has been discovered that extremely dangerous aerosol clouds are produced. The cloud will contain all forms of bacteria indigenous to the respiratory tract, the oral cavity, and the upper reaches of the gastro-intestinal tract.

The clouds so formed in a dental operation would also contain oil, particles of tooth material such as enamel, and infected decayed tooth structure, all of which would be atomized to such an extent that they are capable of reaching the terminal cells of the lungs. The threat of contamination or infection exists with regard to the dental operator, the dental assistant, and the patient as well.

Similarly, in a medical application where, for example, curtain and laminar air flow techniques are utilized, eddies and air turbulence are created which conceivably can create a similar hazard by circulating air from the floor, which would contain bacteria, up into a vortex created around any object in the path of the air flow, such as for example the equipment and the personnel involved, and thence into the surgical field of the operation. This can easily lead to post-operative infections.

Actually, the desired objectives in dental and medical operations are reversed in that in the medical usage, the idea is to prevent bacteria from the surrounding air or environment from reaching and contaminating the operating zone, while in dentistry the idea is to prevent bacteria in the operating zone, namely the mouth, from spreading into the surrounding air and contaminating it.

As will be pointed out, however, both of these objectives, while seemingly at cross purposes to each other, can be achieved with Applicant's novel sterilizing and controlled means.

DESCRIPTION OF THE PRIOR ART

The following prior art is known to Applicant:

Doud
U.S. Pat. No. 2,209,054

Scaffold
U.S. Pat. No. 2,935,156

Berly
U.S. Pat. No. 2,945,354

Stein
U.S. Pat. No. 2,885,641

Blanton
U.S. Pat. No. 3,094,400

Chamberlain
U.S. Pat. No. 3,422,600

While most of the above-noted art discloses various air purification or sterilization devices, all of them are believed incapable of accomplishing the specific objectives of Applicant. Thus, it is believed that Doud U.S. Pat. No. 2,209,054 would blow the contaminated air across the operating area, while Chamberlain U.S. Pat. No. 3,422,600 would actually disperse the aerosol cloud more widely. Most of these references also require the mechanism to be located at some distance from the operating zone and involve moving air currents, which would be uncomfortable to both the dentist or surgeon and the patient, as well as having the effect of dispersing the cloud which is contrary to the objectives of the invention.

2

SUMMARY OF THE INVENTION

It has been found that the above-noted contamination problems can be obviated by providing a vacuum intake which can be disposed in proximity to the operating area and which is connected to a sterilizing means which are, in turn, connected to an exhaust means.

The intake will preferably include the utilization of a tube which can either be entirely disposable or which can utilize a disposable liner, and which is capable of being located as close as possible to the operating area. The tube and/or liner can be either fixed, as would probably be the case in a medical operation, or movable, which would probably be preferable in a dental application.

A suction or vacuum-creating means is provided to draw the cloud into the tube and thus into a sterilizing means which would utilize commonly available devices, such as filters, precipitators, and ultraviolet or infrared light for air sterilization purposes.

The exhaust means, which are also connected to the sterilizing means, can either lead back into the environment of the operating room so that the air is recirculated following its purification or can lead to an entirely external, remote environment.

Accordingly, production of an air sterilizing and control means of the character above-described becomes the principal object of this invention, with other objects thereof becoming more apparent upon a reading of the following brief specification considered and interpreted in view of the accompanying drawings.

OF THE DRAWINGS

FIG. 1 is a perspective view partially broken away showing a possible form of the overall sterilizing and control means.

FIG. 2 is a sectional view taken on the line 2—2 of FIG. 1 showing a disposable liner.

FIG. 3 is a view similar to FIG. 1 showing a modified version of the disposable liner.

FIG. 4 is a perspective view showing application of the overall sterilizing and control means in a medical environment.

FIG. 5 is a perspective view showing the overall sterilizing and control means in a dental environment.

FIG. 6 is a partial sectional view showing means for closing off the vacuum tube when not in use.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring first to FIG. 1, it will be noted that the overall device includes a cabinet 10, intake means 20, switching means 50, air purification means 40 and 60, and exhaust means 70 and 80.

Considering again FIG. 1 for a detailed description of the cabinet 10, it will be noted that the cabinet includes a top 11, four side pieces 12, 13, 14, and 15, and a bottom 16. These are joined together in conventional fashion and form a substantially enclosed chamber. Also mounted on the bottom 16 of the cabinet 10 are a plurality of casters 17, 17 which enable the cabinet to be easily moved as desired.

Considering next then the intake means 20, it will be noted that a mounting 21 is disposed on the top 11 of cabinet 10. A flexible tube 23 is secured to the mounting 21 by a collar 22. Also mounted on the collar 22 is a brace 24 which has a pair of handles 25, 25a threaded
tho therein for adjustment purposes. Top handle 25a also is secured to a second brace 26 which is, in turn, secured by welding or other means to a plurality of support bands 27, 27 which encircle tube 23 for support purposes. In this fashion by loosening knob 25a, for example, the brace 26 and the extension of the handle 25a can be moved within the slot 24a of brace 24 to thus adjust the angular condition of the projecting portion of the tube 23.

Secured to the outboard end of the tube 23 is an extension 30 which has a body 31 and a mouthpiece 32 and a through opening therein 33. This mouthpiece may be secured to the end of the tube 23 by an elastic band 35 which snaps over a grooved end 34 of the body 31, as clearly shown in FIG. 2. Alternatively, a separate ring 36 can be provided and again an elastic band 35 snaps over a grooved area on ring 36, as shown in FIG. 3. Furthermore, a threaded connection could be provided or a simple friction fit could be provided, with any of these alternatives being within the scope of the intended invention.

Additionally, the tube 23 has been described as being flexible, and it could also be disposable so that the entire tube could be discarded following use. Alternatively only the nozzle or mouthpiece 30 would be disposable so that only this portion of the intake means, which is the portion in closest proximity to the operating area, would be discarded following use.

Considering next the interior chamber of the cabinet 10, it will be noted that a filter 40 is provided, with this filter being any one of a number of commonly available filters, such as the electrostatic precipitators for example. Also mounted internally of the cabinet 10 is a motor 42 which is supported on supports 41, 41 and has a belt drive 43, 44 to operate a suction or intake fan 45 or other suitable means for creating a negative pressure. This fan will draw the aerosol cloud from the operating area through the tube 23 and into the interior of the cabinet 10.

Also mounted on wall 14 of the cabinet are ultraviolet lights 60, 60 which could also be infrared lights if desired.

An exhaust 70 is provided on the wall 12, and the exhaust 70 illustrates the form which would exhaust the purified air back into the operating room environment.

An alternative form is also shown in FIG. 1, and this is exhaust tube 80 which would lead completely outside of the operating environment.

All of the electrical components, such as the filter, the motor, the fan, and the lights, are operated by switch 50 which is connected to a suitable source of electric power by the cord 51.

No detail has been shown with regard to wiring as this is believed to be well within the skill of anyone normally skilled in this art.

In order to establish the environment in which the invention is utilized, attention is called to FIGS. 4 and 5 which show utilization in both a medical and dental environment.

Considering first FIG. 4, it will be noted that there are a plurality of portable sterilizing means 110, 110 illustrated as being scattered around the operating room and having the tubes 130, 130 secured to the sterilizing means as at 121 and extended into and surrounding the operating area.

The exhaust 180, of course, leads out of the immediate operating environment, as described above. The precise manner of positioning the tubes 130, 130 is somewhat of a matter of choice, but the principle is to surround the operating zone of the patient with a multiplicity of vacuum tubes or hoses of large diameter. These tubes can come in from any direction and, in fact, could be suspended from directly overhead although this is not illustrated. Furthermore, while portable sterilizing units 110, 110 are illustrated, it is to be understood that the tubes could lead completely out of the room to an externally located sterilizing unit.

Considering FIG. 5, much the same can be said here in that the tube 230 leads from the sterilizing unit 210 to a position in proximity with the operating area of the patient which, of course, in the dental application would be the head or face. Again a portable unit is illustrated, but it is possible to have the unit 210 permanently installed beyond the confines of the operating room and in that fashion accomplish the objectives of the invention.

In use or operation of the device shown in FIG. 1, it is simply necessary to position the mouthpiece or funnel 30 in close proximity to the operating area. In the case of a dental operation, probably only one tube would be required. In the case of a medical operation, it is preferred that a plurality of tubes be utilized so as to, in effect, surround the operating area. Once the mouthpiece or funnel 30 has been placed in the above-mentioned position, the switch 50 is actuated. This will start the motor 42 and the intake fan 45. It will also activate the filter 40 if it is of the electrostatic type. Furthermore, the ultraviolet lights 60, 60 would also be activated.

Thus, as the cloud is formed during the operation, the same is drawn in through the opening 33 of the mouthpiece 30, through the tube 23, and into the interior of the cabinet 10 where it is acted upon by the filter 40 and the lights 60, 60 before being exhausted from the interior of the cabinet either through the exhaust 70 back into the atmosphere or through the exhaust 80 into a completely separate environment, such as outdoors for example.

It will also be noted that FIG. 6 illustrates a means for controlling the vacuum in the tube 23. Thus, in FIG. 6 tube 23, which is broken away in section, shows an inner rigid band 90 to which is pinned a door or closure member 91. This member 91 is pinned at 90a for pivoting movement relative of the rib member 90 and is attached to that member also by spring 92. In this fashion when the vacuum, which would normally pull in the direction of the arrow 94, is activated, it will pull the door or closure member 91 to the open position. This, of course, permits the overall apparatus to function as described above. When the vacuum is shut off, however, the spring 92 will pull the closure member 91 down into closed position, thereby closing off the tube and preventing inadvertent contamination.

It should be noted that while the switch 50 is shown located on the cabinet 10 per se, it would be possible in a dental application, for example, to have the device actuated by the dental handpiece holder or by a foot-operated controller in proximity to the patient's chair. Similarly in a medical application it would be activated by foot or knee-operated switch to provide even greater convenience to the surgeon.

While a full and complete description of the invention has been set forth in accordance with the dictates of the Patent Statutes, it should be noted that modifica-
3,768,970

5

tions can be resorted to without departing from the spirit hereof or the scope of the appended claims.

What is claimed is:
1. Means for sterilizing and controlling an aerosol cloud or ambient room air from an operating area, comprising:
 A. means for creating a vacuum;
 B. at least one flexible and adjustable intake tube having one end operatively associated with said means for creating a vacuum and its opposed end disposed adjacent said operating area;
 C. sterilizing means associated with said intake tube and including
 1. at least one filter and
 2. at least one ultraviolet light source;
 D. means disposed internally of said intake tube for automatically closing off said tube upon inactivation of said means for creating a vacuum; and
 E. exhaust means disposed at a point remote from said operating area;
 F. said means for creating a vacuum drawing air from said operating area through said intake tube and said sterilizing means to said exhaust means.
2. The means of claim 1 wherein said exhaust means communicate with an external environment.
3. The means of claim 1 further characterized by the presence of a disposable mouthpiece releasably received on the end of said tube that is disposed adjacent said operating area.

4. Means for sterilizing and controlling an aerosol cloud or ambient room air in an operating area, comprising:
 A. a portable housing;
 B. means carried by said housing for creating a vacuum;
 C. at least one flexible and adjustable intake tube having one end secured to said housing and its opposed end disposed adjacent said operating area;
 D. sterilizing means carried by said housing and including
 1. at least one filter and
 2. at least one ultraviolet light source;
 E. means disposed internally of said tube for automatically closing off said tube upon inactivation of said means for creating a vacuum; and
 F. exhaust means carried by said housing disposed at a point remote from said operating area;
 G. said means for creating a vacuum drawing air from said operating area through said intake tube and said sterilizing means to said exhaust means.
5. The means of claim 4 wherein said exhaust means communicate with an external environment.
6. The means of claim 4 further characterized by the presence of a disposable mouthpiece releasably received on the end of said tube that is disposed adjacent said operating area.