US 20160006714A1

a2y Patent Application Publication (o) Pub. No.: US 2016/0006714 A1l

a9 United States

Grigorovitch et al.

43) Pub. Date: Jan. 7, 2016

(54)

(71)

PROTECTED MEDIA PIPELINE

Applicant: MICROSOFT TECHNOLOGY
LICENSING, LLC, Redmond, WA
us)

(72) Inventors: Alexandre Grigorovitch, Redmond, WA

(US); Chadd Knowlton, Bellevue, WA

(US); Kirt Debique, Seattle, WA (US);

James Alkove, Woodinville, WA (US);

Geoffrey T. Dunbar, Kirkland, WA

(US); Sumedh N. Barde, Redmond, WA

us)

14/852,520

(21) Appl. No.:

(22) Filed: Sep. 12, 2015

Related U.S. Application Data

Continuation of application No. 11/116,689, filed on
Apr. 27, 2005.

(63)

(60) Provisional application No. 60/673,979, filed on Apr.

22, 2005.
Publication Classification

(51) Int.ClL

HO04L 29/06 (2006.01)

GO6F 21/10 (2006.01)
(52) US.CL

CPC .o HO4L 63/08 (2013.01); HO4L 63/10

(2013.01); GO6F 21/10 (2013.01)

57 ABSTRACT

A system for processing a media content comprising an appli-
cation space, a media control mechanism operating in the
application space, the media control mechanism controlling
the operation of the system, a user interface adapted to pro-
vide input to the media control mechanism, a protected space
distinct from the application space, and a protected media
pipeline operating in the protected space, the protected media
pipeline coupled to the media control mechanism, the pro-
tected media pipeline adapted to access the media content,
process the media content, and output the media content.

Trusted Media System
600

Protected Media Space
809

Application Space 602

Liser Interface
804

| Protected Media !
Souwrce
510 ek

?Content?‘\{_* Media Sourcs | : ‘v,."
110 -0 el a
Stub ’
620

dMedia Control 606

Proxy
840

Fa)t
421

Fib)2

g 422

F2)n Media Media |
~~~~~ PN Sink » Output |
480 130




US 2016/0006714 A1

Jan. 7,2016 Sheet 1 of 22

Patent Application Publication

/

HY Jold

P01 -

801
Buissaanid RIPSIA

901
[04U0D BIDBI

1441
aoeUBU] 18sn

001 uonesiddy eipep

Z01 eoedg uonesyddy

g

.

sy

N
L L USIUO] Bipoiy

L JUBIIOD |

_opny S

1



US 2016/0006714 A1

Jan. 7,2016 Sheet 2 of 22

Patent Application Publication

oct
nding
BUYO

Pel
nding
QBPIA

&el
ndingo
Gipny

Qmm mum‘a‘mvmw‘oﬁo.ﬁ
. zee
suljadid
BIDSIN [O108104d

907

14874
el 18SN

Z07 8oedg uonesiddy

00Z WaisAs eipapy pajsni |

: 911 ,
/ueoD)|
;o sego




US 2016/0006714 A1

Jan. 7,2016 Sheet 3 of 22

Patent Application Publication

208

“ndno 0EL IdINQ BIpepy
[ pepsioid o @B

.,

Nl LA »
N

™

L2y 00v

D8pO7) Ai 80UN0G
Weld | ewpap

S 7 ndug

¢ ps
008 D SN

il

<o 708

-

~

\

y0E

108101




US 2016/0006714 A1

Jan. 7,2016 Sheet 4 of 22

Patent Application Publication

0ct

opz soeds po1aI0Id

. OCy swisiuBlOsiy WioisuRl |

ndng <
BIpO

B0

............................. R
osy izy L ooy
IS % twmm O Nmmwm el=Telalg) Am.., aoUNOG =
gipopy Weld © epap
e
oLy
907 SuisLeg
BIUOD) BIPOYY 081081044 RUIO
007 WosAg
eIpepy pelsniy
Y07

US| Josn

207 eoedg uopenddy

- ejpspy




US 2016/0006714 A1

Jan. 7,2016 Sheet 5 of 22

Patent Application Publication

055 aoedg PSINSICIH

08y
UG
Bipapyy

zzy Lz

szy ,
24 € ey

uzyy T

2S5 auadid BIpaly peroejold

804 1DAUOT BIPSIA

028
qms

90INCY BIPSN

L 015 80unog
EIPBY POIXOId

P0G
BoRLBIY] Jasn

Z0G soedg uogeajddy

Oam Emww\ﬂmmﬁmﬁ ﬁmwmzhh

BLG g

WBueny
_Bipep



US 2016/0006714 A1

Jan. 7,2016 Sheet 6 of 22

Patent Application Publication

059 eoedg peoelodd

ost 08Y W
| m STA oy Ley ] 0yS
ilei i Tg M S NUIS e L o
epon | eIDOIN u(z)d gl Weld | Axoid
76a suyadid BIPSY po199101d
0Z9
aqnis
. . g9
o | B9unog sy |
019
aoNOG ;
909 [04UOD) BIPSIY PO pRI0BI0N
20edg EIpayy PeIBtId |
09 m
BoBLBIUL JOS) 000
 WBISAg BIpopy palsni

mo@, aoedg uoneosddy




US 2016/0006714 A1

Jan. 7,2016 Sheet 7 of 22

Patent Application Publication

L9140 oL eveds pewsiold
““““““““““““““““ ' @@N, mN\N, : ““““““ Q
unding . 64 6y. |, BEL . usued
| e HUS ) S DREEEE ) % A U BDUINAG
BIPSIA ooy ¥ w(z)4 ALGIE L u(e)d epo | - wwgsn
R " 5 : ] c—
. BBL A 68G/. . : .
. : 654-15. : :
: . sauljadid eipspy pealold U ybnosy | . )
: 261 . 2L~ . )
z waxﬂa ¢8/ 211 vl zes cel Emmou
¢ RUS T ST ROSOEEE" = 4 7 8904N0S #-
BIpay E1poy welz)d AASIE Lz(e)d Epopy o Eeen
““““““““““““““““““ AV
L ndino 182 ) ) 162 bel Emwcau
L AUS - : “« 0% - | 80IN0G
2IPoj eIpapy ur 1{z)4 ANOE Li(e)d eipa .,,,,m%mﬁ
..................... R . LbL
kel LGL




US 2016/0006714 A1

Jan. 7,2016 Sheet 8 of 22

Patent Application Publication

00< 1
HEIRTLS
BIPSIY
pEISNY

mwww €08 008
jessydiiagd ARG O/
rARY
e . sionesds

WO

[ som ) e A— —
§§§§§§§§§§ Hun weibosd

v Buissa00id - sainpoy

21e0i ) 4 wﬁs 1 o1g welbold
| wesboid ] HMIJ C—— W8I —< F SLIBIBOIT™y
Smpon )|\ pieyy | | uopesyddy [y 002
weiboid 2ouyi0 — 208 ;wﬁwf/ M.mem\nm 2SI
r\\ ..................... m DAL R RS TIS 29 - ) maMmhmaO -U § ﬁ W nlwl
sileiboid 1 S e
11 uoneoddy £iIR . C .
UsTeRe § MWM%MM isydepy OspIA

| Bugesedp | | [ oo vEL
;;;;;;;;;; [ o— 55 O | fedsiq

AloLiapy We)sAs N gog 7

sng woshg  FF8TT J
508




US 2016/0006714 A1

Jan. 7,2016 Sheet 9 of 22

Patent Application Publication

6 Old

14V

d0ldd

206 wasAg Bunessdo

06
|BUIBY

£06
BPOW 13SN

%/

i
A4

011 IO EipBN

B, 001

uonedjjddy eipap

G

{06
DAV SOIUCIIDDT SBLUNSUOD 10 Jd

£06
NIV
o~
\\\
\\\\\
\\\\.
¥ 3
(006
WBWUOIAUY
Bunndwon

[EUOIILBALOT



US 2016/0006714 A1

Jan. 7,2016 Sheet 10 of 22

Patent Application Publication

0L "Old

002
uopedyddy paisni

L Y AL R R R

Qg2
ILEBLIUOIIAUT

Na138104d

oo o0 oo s s

L]
P paowo ¢

& 3 ¥,

o mmmd © } e mmmmone

3 )

© 9000 90 00 3 Xn KX L 00 90 90 00
B0 o 0 00 00 0 %0 0 B W O

| DLl 43I0 PIPSpy

0 %0 % % 1 o 60 6 6 00 of oo 00 300 200 ot 00 00 00 00 00

L

]

o

P00 L
uswiabeuepy

s1bry Rubig

RN N PR N N A T R Y
oo w W e o o 00 o5 sji w off

106
INAB( SIUOLIIB[T JRUNSUOD 10 d

e

L e

0001
JUBUILCHALY

gunndwon
BANIDG

5001

Ny



US 2016/0006714 A1

Jan. 7,2016 Sheet 11 of 22

Patent Application Publication

Ll "Old

Go o ® oo

10 50 00 30 30 90 30 3030 30 30 20 0 3610 30 10 WA W YN W WL I W B W W W W W W W WU TP P W 0P U0 0P 0 9D GO ID I W W WX

002

uonesjddy paisndy

44

suiadid eipsi

o8y
quis

" Lot

ooy wauodwio?)

AZUNOY uonesddy
A0

Qed
BUWIUD HAUY

P2139104d

C N oy T T 22

a0 O 0 Gr 0 0 00 o e O 0y

ge 06 0t 0t 00 00 00 00 00

3

- s
Boc 00 o0 G0 00 00 G¢ G¢ G8 O G¢ O¢ 0 GO 0O 90 06 GO 96 06 G6 G¢ 00 00 G0 00 oF

-
1]
L]
L]
L]
]
L]
1]

-

$n an an an an a8 an

L RN

]
8
8
8
8
&

B om0 1 0 o 0 99 90 90 90 90 0 0 0 T 0 T 00 S o

LLEL

R IREY!
33IA8Q

O Ot O O X Gt O O O Ot G0 OC B¢ O80T GC Gt O OC OL GO 90 O GO 00 GO GO

Buw o v o v e v i e e e v e e I W B O O P Y O O OF W 0D B0 N G0 GP 4P G5 GD A0 45 G0 65 AP OG5 G5 &5 &5 85 45 &5 65 GD 65 85 60 6 &

o~ R

\\ 60LL N\

( JUBILCD )

.
//mm_“m\cuﬁ,\\

#0001 —
swabeuepy 8011 esusan

s3ybry feubig

0001
JWUBLUUBHALY

Bunndwon
34Nn3IBG



¢l Ol o 0z B

|
! USUOIALT PR108104] u
|

US 2016/0006714 A1

$ B

S - —

- 1BPIAQIG BIAISS m 002 i ! $1474 ]

@ L0021 b wogesyddy | m ucuedddy |

2 ) 907 1 5021 m paIsniy | polsnil |

Z T pOZL | m ,

) et ,»/// :

> 1L

(g\] )/, N

= RPNy e

=

= paidAnug B asuasry |

=

om

3 I

= [ otz T T
= \EBIPBR eubig [ 0oL :
g T P uswefieuepy F |
g [ s3yBry enbig S :
> - ~.

= m /7 60LL |
= m { WSO |
Z | ey N\ padAnug o _
g ! ABQ I —— :
M b crer v v v v v e s v vevw rvvs ovvrs rvem v wee mvvws vevvs veen vvs evwvs v wwvms oovww owvws oevvs v ovven rvwes | evees



=

= :

2 el Old

S

=]

3

- 06 J8Al( POEL

Q {28 SNOoIien

3 i

: . N/

=

2 Z0€ 1

i : .

& luoneoddy - T e |

) » p

S | snopiepn | 60€ 1 00€

a g =

B 3poD - 1383044
$SR20Ad t0El — P 0} 2je(g

S SNODYeR m

=

5 uonesidd /,IHI\\

m émgoﬂm%wém %owmw%: muvws_,m Y S0t oot

= Bunndwod : m

2 feicA L ,

3]

£ ~—

2 I

= m

E Wia1sA LOEL

£ 1SAS 34l 9pIsSINO $H{Ie11V g0l

S

[~ ™



US 2016/0006714 A1

Jan. 7,2016 Sheet 14 of 22

Patent Application Publication

1 "Dl

00b 1
uonesyddy paisniy
104 JUIWIUCHAUT P3133104d
10 IDUBUSIUIBIY PUB UOIIESLD

80V 1
Bejd 21n23g (UL
SHIBYD
AfedIpOLIR
JUBILOHALTY
PY133104d

3

20¥% 1
TURLO ALY

pIIIVIDIG O
uonesyddy peat

&

POFL
Beyd ainoes (BuUIa)y
18§ pue
sjusuodwon
19U PEDT

A

0¥
el




US 2016/0006714 A1

Jan. 7,2016 Sheet 15 of 22

Patent Application Publication

1Dl

g

- -~

,,,,,,, e 8ESt . -
0651 TeTuieyy A1EdRIMRD) puR §851
fiei4 34n23S jaUID)Y -7 aanyeufiig aundag UOIIBWIIO U] UGISIBA
J -~ 1517 UBIIBIOARY
; 0561 {UI ,_ W\
r S £ VA°0 DR . 5° 'R | i zosi @i 098t - Ax I8A
s k2 c# # L# P551 scc {861
_\ ch:oa_.:ou Jusuodwao usuwodw o] usuoduwio) 1S1) wﬁ\mﬁ 4 Japeot N,
~_ BN 1IE) R 10N [SUIDY EBIEY UOIIEI0AIY EPEEN kN
t 40} eoedg | 404 adeds papeot pepeoT papeoT
0001 yOf 1 Buipeot puisy
A ILRLLIUOHALUT
s Bunndwo: bist
J BESL 24N335 sjenuspasy Bngag
g | & \
! | Zist .
, gegy  WRuodwod  FESL g quing jausey ;
wruodwon P D %\ ,,,,,, . Dist /
EUREY i AT v 136Bngaq L
~ o PEsl .
= A L
. jusuodwory ~ Wauodwon pisl
N N EXFEN 15
fuazy . LUOIIEDO0ASY

. -




US 2016/0006714 A1

Jan. 7,2016 Sheet 16 of 22

Patent Application Publication

91 "Dld

1204

| ued--Buipeo jpulsy

8081
451v4 C1

beid4
2INDBE BSUIDY 195

Zi9t
[BLIDY O1UL 15T
UCHEDOASY PBOT

e

N
N ™S pusay 7
N ~
~_

fepd duwing

#9091\
2 ussaig

S sjenuepaly

AN Bngs
onaag

paussald >

N N\JeBBngag,”
.

//ﬁ\\
2091

3ndL o1 Beyy
NIBS |BLUIY 198

A&

1081
uelsg




US 2016/0006714 A1

Jan. 7,2016 Sheet 17 of 22

Patent Application Publication

L1 "Dl

0Lt
tm R :ommuo\;&

2141

NN wuﬁ,mcmmm\
/ \

A ﬂ

1204

7 ued--Hbu

IPBOT 3L

wom L

& asr] onpsonsy
/: Emwm;,‘,mu\\\\r

vidl

e
<%

& PHEA UIRYD
2///%u§ﬁwU\.\\

wcm L

gLl

Nmmsév_o \\
RN m_:ycgmmm\\ N
// 7

0
//v_c &mua;mmq\
S woom b

/

A

ASTv4 03
beid
2AN33C [BLISN X

024
{Bulay 01
WBUodwon) peo

£ ipeA
N mhspmcmmm\
™~
//\\
&

& 2041
............... & muwm_ O}m

/S Emcoaﬁcw\
/@5@:@\

A

'

&

1041 /

MBS 7 Lied J



o -~

81 "Dl T

3333333 ”

-
«
ey
ﬂ S
m 0651 “sTureys ;DR pue 5561
S Bej4 s4n39s [puIs 7 3inpRubIS 34n39¢ UOIIRLWIOLU] UCISIBA
= 7 1517 LUOIEIOARY
@ 0551 [BUI9Y
0451 y9S1  We 795t 0051 - AX 84
N , L i £# CH | L# 43R sccy 19561
s ; usuodwiony wsuodwio) wauodwio] uruodwo) 1817 b 1apeo
€ N_ IRUIRY  [SUID)Y EIEEE) N E PN LOIIE30A3Y W 3d EHPE
g ' 104 3oeds | 10j adedg n3peo papeo’ PopecT
%u Voo e
=] f
e
> . 0001
= 2 HalueliAlg Ewpccotwwi 2305104
g / bunnduuos .mo .cm %mmh ‘
S / SIS PEaT P ,, 2
{
3
£ \ 0€z P 001
g R JURLUOSIAY w 3810l < uoneslddy
_.M T ERY d I CIOBIN
= >
A AR, !
= 3
2 AN
m // \\/, \;.., ,
lm f/lii!is.\\\\& // \\\ /// \s.\V
A /l/ \\\.\ .lllfliiﬁ.\..\\\.
m l./!.f’ \-\‘\to\
QD e e
=
[~ ™



US 2016/0006714 A1

Jan. 7,2016 Sheet 19 of 22

Patent Application Publication

61 "Dl

#2161 |

S a8 UOIeI0ADY >
TR R TR L

& Ry A

vict

0161

#1517 UOHEIOAY

S
St &Smcmwm e

N

~3

\L

\

\\

&

&

2

90% 1

JUBUIUGIAUT PBIYBI0I

DEOT pUR 3183470

AN e

wom L
iPHEA UBYD
N S@Breaynge o

3061

816l

RS AL O \\

w\_nﬁém,m
/// \\

/./\.

Fasn 1oy
S ISR e S 2

S ooy \\
S

dl

peoty
jusuoduwio)) e

026l
UBUIUCHALT

PIIIBI0LE O

ucwtoaﬂtou peot

é? N
aucgy

A

RA

. e
N /Eﬁmcm@\

// \,\

f

2061
jusuodwion

J0 buiprol
40} HBUUOHAUT
PI1IFI0L DIBID

A

1061
ERL:2EN




US 2016/0006714 A1

Jan. 7,2016 Sheet 20 of 22

Patent Application Publication

0c

Ol

Bel4 2in39S [SUIDY

0661

s
4

o= . o

-
-

/

-

gehl

< Twieyny s1e311190) pue

o7 2unyeubls 8unosg

; 4

~
.

5561

UOIBLICIU] UOISISA
1SI7 UOIBI0ADY

A

002

e buizinn

UDWUDHAUT PRIDD104d

yonesyddy paisnig

-~

Bl s

0SS 1 [BuIay .
€ e % : %
0451 pOSL W 295t @ 0951 | Axaen
| U c# CH# L# PGs1 scc| 1551
Lcmcoaﬁou yusuodwony auauodwony  wsucsdwiory 1817 Wb 1d BETal:lon
EDEERY ENSEY EIEREEYY ERSEY UDIIED0ARY ERIEY!
404 33eds 104 30€dS papeo pepeo papeot
0001 80P 1
3 IUSWUOHAUT T 21RIS RUNOVS [RUIDY
bunndwon N334 AlR3POoLIad
2AN29G

o e o



US 2016/0006714 A1

Jan. 7,2016 Sheet 21 of 22

Patent Application Publication

LZ "Dld

80P 1L
BIBAS DINDIBG [PUIDY MDIYD

e Il T I T T Ty YT »
TTHSUL BATHUIN > JIBATY PePEC] | 88[F ¢ TGP ST S BE s se S Uifieyy T T y 2
ruay) I8V == brld einoeg puiey i 951 v7ir (G Tva S Belaainaeg)wney T T S o
TUBL BIN0SS <> 88800id Bugjea i + SE ESTYT S Begsinsea ey T T T ko

o

0Z12 (BATHUN)eIN0BSBUISYS|

ceé
E\w%m m\ WUSWUOMIAUT
W 3d P8108)0]d



US 2016/0006714 A1

Jan. 7,2016 Sheet 22 of 22

Patent Application Publication

oLl
WaeD 4

Pipaly

Do¢
LBIEAS -
RIPSIN pRIsTIY
194
IUBLUUGHAUT A
31321044

P08
o8 £08
Loma 331AB3 O]
Zet
sipeadg
f
SI2BLIRIUY O] 08

WO
T som w g e
- w_\g.,h,,..wm EEEEEEE 3 welboiy
T eonBon ™
mcmmwwuo& SOINPOW 7 wowﬂ»m WHa
i gie(] Mrs= BRI wielbosd
| wesbold n%y#? ysig —< SwigiBoIg™ mw_wﬁa%
H H HEA
R T _K» pieH uonesddy eIpay
wesboi oo 08 ~wmsAe ] | ossovs:
P p - -1 Sidauodwon
1 gessssmmmmmmnnnssssassonosmmmnsnnmnnsassoononn 1" bupyetradQ JUa
SUeIbOi4 s \m\\\.\l!..fi.// o ﬁ...lw..._........ll.....n...,m..nu
- uonediddy | ) N s
WESTYS jo1depy ijandepy OSpIA
- bupeldp pel
!!!!!!!!!! Aejdsi
AJOLIDI WSISAS q08 — ] 75
S . g sng waishg  HLET
~— 608




US 2016/0006714 Al

PROTECTED MEDIA PIPELINE

CROSS-REFERENCE TO RELATED
APPLICATION(S)

[0001] This application is a Continuation of and claims
benefit from U.S. patent application Ser. No. 11/116,689 that
was filed on Apr. 27, 2005, and that is a Non-Provisional of
U.S. Provisional Patent Application No. 60/673,979 that was
filed on Apr. 22, 2005, each of which is incorporated herein by
reference in its entirety.

DESCRIPTION OF THE DRAWINGS

[0002] The present description will be better understood
from the following detailed description read in light of the
accompanying drawings, wherein:

[0003] FIG. 1 is a block diagram showing an example of a
typical prior art media player or application designed to oper-
ate on an exemplary personal computer.

[0004] FIG. 2 is a block diagram showing an example of a
trusted media system comprising an application space and a
distinct protected space.

[0005] FIG. 3 is a block diagram showing exemplary com-
ponents comprising an end-to-end system for protecting
media content and other data from initial input to final output
of'a computing environment.

[0006] FIG. 4 is a block diagram showing exemplary com-
ponents comprising a protected media pipeline operating in a
protected space as part of a trusted media system.

[0007] FIG. 5 is a block diagram showing an alternate
example of a protected media pipeline having a proxied
media source as part of a trusted media system.

[0008] FIG. 6 is a block diagram showing an example of a
further alternative example of a trusted media system.
[0009] FIG. 7 is a block diagram showing a plurality of
protected media pipelines.

[0010] FIG. 8 is a block diagram showing an exemplary
computing environment in which the software applications,
systems and methods described in this application may be
implemented.

[0011] FIG. 9 is a block diagram showing a conventional
media application processing media content operating in a
conventional computing environment with an indication ofan
attack against the system.

[0012] FIG. 10 is a block diagram showing a trusted appli-
cation processing media content and utilizing a protected
environment or protected space that tends to be resistant to
attack.

[0013] FIG.11is ablock diagram showing exemplary com-
ponents of a trusted application that may be included in the
protected environment.

[0014] FIG. 12 is a block diagram showing a system for
downloading digital media content from a service provider
that utilizes an exemplary trusted application utilizing a pro-
tected environment.

[0015] FIG. 13 is a block diagram showing exemplary
attack vectors that may be exploited by a user or mechanism
attempting to access media content or other data typically
present in a computing environment in an unauthorized man-
ner.

[0016] FIG. 14 is a flow diagram showing the process for
creating and maintaining a protected environment that tends
to limit unauthorized access to media content and other data.

Jan. 7, 2016

[0017] FIG. 15 is a block diagram showing exemplary ker-
nel components and other components utilized in creating an
exemplary secure computing environment.

[0018] FIG. 16 and FIG. 17 are flow diagrams showing an
exemplary process for loading kernel components to create an
exemplary secure computing environment.

[0019] FIG. 18 is a block diagram showing a secure com-
puting environment loading an application into an exemplary
protected environment to form a trusted application that may
be resistant to attack.

[0020] FIG. 19 is a flow diagram showing an exemplary
process for creating a protected environment and loading an
application into the protected environment.

[0021] FIG. 20 is a block diagram showing an exemplary
trusted application utilizing an exemplary protected environ-
ment periodically checking the security state of the secure
computing environment.

[0022] FIG. 21 is a flow diagram showing an exemplary
process for periodically checking the security state of the
secure computing environment.

[0023] FIG. 22 is a block diagram showing an exemplary
computing environment including a representation of a pro-
tected environment, a trusted media system, and other related
elements.

[0024] Like reference numerals are used to designate like
elements in the accompanying drawings.

DETAILED DESCRIPTION

[0025] The detailed description provided below in connec-
tion with the appended drawings is intended as a description
of the present examples and is not intended to represent the
only forms in which the present examples may be constructed
or utilized. The description sets forth the functions of the
examples and the sequence of steps for constructing and
operating the examples. However, the same or equivalent
functions and sequences may be accomplished by different
examples.

[0026] Although the present examples are described and
illustrated herein as being implemented in a computer system,
the system described is provided as an example and not a
limitation. As those skilled in the art will appreciate, the
present examples are suitable for application in a variety of
different types of electronic systems.

Introduction

[0027] Digital media content is widely used in the form of
CDs, DVDs and downloadable files. Various devices are able
to process this media content including personal computers
running various media player applications and the like, CD
and DVD players, MP3 players and other general-purpose
and/or dedicated electronic devices designed to process digi-
tal media content.

[0028] Because media content often comes in the form ofa
for-sale consumer products and the like, producers and pro-
viders may be anxious to protect their media content from
unauthorized access, duplication, use, etc. Therefore, media
content is often encrypted and/or otherwise secured. Some
form of encryption key and/or other access mechanism may
be provided for use with the media so that it can be accessed
when and how appropriate. This key or mechanism may be
used by a media application or the like to gain access to the
protected media for processing, playing, rendering, etc.



US 2016/0006714 Al

[0029] Once the key or other mechanism has been used to
decrypt or otherwise access media content within a system
the media content may be vulnerable in its unprotected form.
It may be possible to attack the system and/or media applica-
tion so as to gain access to the unprotected media content.
This may lead to the unauthorized access, use, duplication,
distribution, etc. of the media content.

[0030] To avoid unauthorized access, a system that right-
fully accesses the media content should be capable of pro-
tecting the media content. This protection should extend from
the time the key or the like is obtained, used to access the
media content, throughout any processing performed on the
content, until the content is appropriately rendered in its
authorized form. For example, a particular meeting may be
recorded and encrypted using an access key with the intent of
making the recording available to authorized personnel.
Later, the recording is made available to an authorized indi-
vidual via a media application on a PC. The media application
uses the key to decrypt and access the media content, process
it and play it for the listener. But if the media application itself
has been compromised, or the application and/or content is
attacked, the unencrypted media may no longer be protected.
[0031] One approach may be to construct a system for
accessing, processing and rendering the media content within
a protected environment that is designed to prevent unautho-
rized access to the media content. The example provided here
describes a process and system for protecting media content
from unauthorized access. Protection may be afforded by a
protected media pipeline, among other mechanisms, which
processes some, or all, of a media within a protected environ-
ment or protected space. A protected media pipeline may be
composed of several elements.

[0032] A media source that may be part of the protected
media pipeline accesses the media content, passes it through
a set of transform functions or processes (decoders, effects,
etc.) and then to a media sink which renders the processed
media to a media output(s) (video rendering process, audio
rendering process, etc). As an example, rendering may be as
simple as sending audio signals to a set of headphones or it
may be sending protected content in a secure manner to yet
another process, system or mechanism external to the pro-
tected media pipeline.

[0033] A protected media pipeline may be constructed as a
set or chain of media processing mechanisms operating in a
secure or protected environment. In a PC, a protected media
pipeline can be thought of as a software process that operates
in a secure environment which protects the media content
from unauthorized access while the content is being accessed,
played and/or otherwise processed by the media system.
When media content is being processed by an electronic
device, a protected media pipeline can be thought of as a set
of media processing mechanisms operating within a secure
environment such that the media being processed is resistant
to unauthorized access. The mechanism for providing this
resistance may be purely physical in nature, such as a sealed
case or lack of access points to the media content.

[0034] There may be two major aspects to constructing a
trusted media system with a protected media pipeline. First, a
trusted media system may be designed and constructed in
such a way that it acknowledges and adheres to any access
rules of the media content by ensuring that no actions are
taken with the content above and beyond those allowed. Vari-
ous mechanisms known to those skilled in this technology
area may be used to address this first point. These mecha-

Jan. 7, 2016

nisms may include using encryption/decryption, key
exchanges, passwords, licenses, interaction with a digital
rights management system, and the like. Further, this may be
as simple as storing the media content on/in a device such that
it is resistant to physical, electronic or other methods of
accessing and using the media content, except as intended.

[0035] Second, the trusted media system may be designed
and constructed such that the media content being processed
is secure from malicious attacks and/or unauthorized access
and use. Processing the media content via a protected media
pipeline operating in a protected environment or protected
space addresses this second point. So in short, a protected
media pipeline operating in a protected space refers to a
media processing environment that resists unauthorized
access to the media content being processed.

[0036] FIG. 11is a block diagram showing an example of a
typical prior art media player or application 100 designed to
operate on an exemplary personal computer (FIG. 8, 800).
Equivalently, media players may operate on other devices
with similar processing capabilities such as consumer elec-
tronic devices and the like. Other media applications may
include, but are not limited to, media processors, media
manipulators, media analyzers, or media formatters. A media
application may be a software application program that pro-
vides a way of playing media such as audio and video by a
digital processor such as a CPU (FIG. 8, 807) or the like. A
media application may include a user interface or graphic 101
that may indicate the media being played and provides vari-
ous user controls. Controls may be accessed through activa-
tion with a computer pointing device such as a mouse or by
conventional buttons or the like. Such a media application
may be thought of as a software application program operat-
ing in an application space 102 that is provided by the PC’s
computing environment (FIG. 8, 801) or operating system.

[0037] Another example of a media player may be a hard-
ware device comprising a memory capable of storing media
content and various button, switches, displays and controls
and the like to allow a user to control the device, select the
media to be played, control volume, download media content,
etc.

[0038] The media player 100 may be comprised of mecha-
nisms 104, 106 and 108. These mechanisms may operate in
the application space 102. For a software media player, an
application space 102 may be a space created in system
memory (FIG. 8, 809) on a PC (FIG. 8, 800) where various
software components or processes can be loaded and
executed. For a hardware media player an application space
102 may be a printed circuit board and an electronic module
containing the electronic elements that perform the process-
ing and functions of the media player 100. The media player
application 100 may include other spaces and mechanisms
which may provide additional capabilities or features that
may or may not be directly related to the processing of media.
Forexample, a second media player playing a music selection
may operate in a media application at the same time as a
media player playing a newscast.

[0039] The application space 102 may include a user inter-
face process 104 coupled to a media control process 106
which in turn is coupled to a media processing process 108.
Typically these processes enable the media application 100 to
couple to a source of media content 110, process the media
content 110 and render it via media output 130. The media



US 2016/0006714 Al

content 110 may or may not be encrypted or otherwise pro-
tected as part of an overall security and access control
scheme.

[0040] For example, when activated the media application
100 may access audio content 112 and video content 114
typically available on a DVD ROM, an on-line source, or the
like. The media content 110 may be played via media pro-
cessing 108 which renders the content as audio output 132
and/or video output 134. Audio and video may typically be
rendered on the speakers and/or display of a PC (FIG. 8, 800).
This system is only one example of common media applica-
tions and environments that enable audio and video and the
like to be processed, played and/or provided to other pro-
cesses or systems. Another example of a media application
would be a consumer electronic device such as an electronic
jukebox or the like. Yet another example would be a dedicated
electronic device, with or without software and/or firmware.
[0041] Application space 102 may contain various pro-
cesses and, in this example, includes the user interface pro-
cess 104, the media control process 106, the media processing
process 108, or their equivalents, used to coordinate and
control the overall operation of the media application 100 and
its processes. Typically, to prepare the media content 110, the
user interface process 104 may provide an interface 101 for
interaction between the user and the application. The media
control process 106 or its equivalents may provide the overall
management and control of the internal operations of the
media application 100. The media processing process 108
may perform the processing of the media content 110 making
it possible to render the media content via the media output
130, or perform whatever other media processing it may have
been designed to perform.

[0042] The processes described above may not be secure
against unauthorized access to the media content 110. Pro-
cessing the media content 110 via such a system may expose
it to unauthorized access. Such an unprotected application
may enable users and/or attackers, with varying degrees of
effort, to access and make use of the media content 110 in an
unauthorized manner. For example, unauthorized access may
enable the unauthorized sharing, copying, modifying, and/or
distributing of media content 110.

Exemplary Trusted Media System

[0043] FIG. 2 is a block diagram showing an example of a
trusted media system 200 comprising an application space
202 and a distinct protected space 230. In this exemplary
embodiment of a media player the system comprises a pro-
tected media pipeline 232 operating within a protected space
230 in addition to user interface 204 and media control 206
mechanisms operating in the application space 202.

[0044] The protected space 230 typically provides a pro-
tected environment for media content 110 processing, the
protected space 230 resisting unauthorized access to the
media content 110 during processing. Media content 110 is
typically protected by various built-in security schemes to
deliver it un-tampered—with to a user, such as encryption and
the like. However, once the media content 110 is decrypted or
the like for processing, additional mechanisms to protect it
from unauthorized access are required. A protected media
pipeline 232 operating in a protected space 230.

[0045] Application space 202 may be contain various
mechanisms including, but not limited to, a user interface
mechanism 204 and a media control mechanism 206, or their
equivalents, which are coupled to the protected media pipe-

Jan. 7, 2016

line 232 operating within the protected space 230. Typically
the user interface process 204 may provide an interface 201 or
set of controls for interaction between the user and the sys-
tem. The media control process 206 may provide the overall
management and control of the internal operations of the
trusted media system 200. The protected media pipeline 232
operating in the protected space 230 may perform the pro-
cessing of the media content 110 and render the content via
the media output 130, or perform whatever other media pro-
cessing the media system 200 is designed to perform.

[0046] One or more protected spaces 230 may be provided
as an extension of a computing environment (FIG. 8, 801) and
typically possess a heightened level of security and access
control. A protected space 230 may also include mechanisms
to ensure that any mechanism operating inside it, such as a
protected media pipeline 232, along with any media content
being processed within the protected space 230, are used and
accessed appropriately. In some embodiments the access and
use privileges may be indicated by a media content license
and/or a digital rights management system. Alternatively,
mechanisms such as password protection, encryption and the
like may provide access control.

[0047] FIG. 3 is a block diagram showing exemplary com-
ponents comprising an end-to-end system for protecting
media content 110 and other data from initial input 302 to
final output 308 of a computing environment 800. Such a
system tends to protect media 110 or other data from the point
of entry into a computing environment 800 to its final output
130 in addition to providing protection during processing
within a protected media pipeline 232 and/or other processing
components. Such end-to-end protection may be provided via
three major components-protected input 302, a protected
space 230 for processing and protected output 308.

[0048] Protected input 302 may be implement in hardware
and/or software and may limit unauthorized access to media
content 110 and/or other data as it is initially received onto the
system 800 from some source such as a storage device, net-
work connection, physical memory device and the like. The
protected input 302 may be coupled to a protected media
pipeline 232 via a secure connection 304. The secure connec-
tion 304 allows transfer of the media content 110 between the
protected input 302 and the protected media pipeline 232
and/or other processing components and may be imple-
mented using mechanisms such that it is tamper resistant.

[0049] Protected output 306 may be implemented in hard-
ware and/or software and may limit unauthorized access to
media content 110 as it is transferred from a protected media
pipeline 232 or other processing to the output of the comput-
ing environment 800 which may be speakers, video displays,
storage media, network connections and the like. The pro-
tected output 308 may be coupled to a protected media pipe-
line 232 via a secure connection 306. The secure connection
306 allows transfer of the media content 110, which may be in
a processed form, between the protected media pipeline 232
and the protected output 308 and may be implemented using
mechanisms such that it is tamper resistant.

[0050] Tamper resistance as used here includes limiting
unauthorized access, resisting attack and otherwise protect-
ing media content and/or other data from being compromised.

[0051] A protected space may also be referred to as a pro-
tected environment. Protected spaces or environments and
their creation and maintenance are described beginning with
the description of FIG. 9 below.



US 2016/0006714 Al

Protected Media Pipeline

[0052] FIG. 4 is a block diagram showing exemplary com-
ponents comprising a protected media pipeline 232 operating
in a protected space 230 as part of a trusted media system 200.
The components 400, 421, 422, 425, and 480 form a protected
media pipeline 232 operating in a protected space 230. Of
these components, the transforms mechanisms 420 process
the media content to prepare it for output. The protected space
230 may also contain other protected elements 410 of the
trusted media system 200.

[0053] The protected media pipeline 232 typically per-
forms the function of accessing and processing protected
media content 110 and producing a protected output in the
format determined by the trusted media system 200. Unpro-
tected media content may also be processed in a protected
media pipeline 232. Further, unprotected media pipelines
may be constructed and operate in the application space 202
or other spaces. However, an unprotected media pipeline
operating in the application space 202 would not benefit from
a protected environment 230 which limits unauthorized
access to the media content. For processing some types of
media content, such as unprotected or unencrypted media
content, an unprotected pipeline may be acceptable. In some
embodiments there may be a plurality of media content hav-
ing different security levels (some protected and some unpro-
tected), processed through one or more pipelines each
adapted to provide the desired level of protection.

[0054] In the protected media pipeline 232 a media source
400 may be coupled to a series of transform functions or
mechanisms 420. A first transform function F(a)1 421 may be
coupled to a second transform function F(b)2 422 which in
turn may be coupled to any number of additional transform
functions represented by F(z)n 425. The output of the set of
transform functions 420 may be coupled to a media sink 480.
There are typically one or more transform functions in a
protected media pipeline 232, the specific function of each
transform depending on the media content 110 and the pro-
cessing that the trusted media system 200 is designed to
perform.

[0055] The example shown illustrates transform mecha-
nisms that may be connected in series forming a transform
chain. In alternative embodiments of a protected media pipe-
line 232, two or more of the transform mechanisms may be
coupled in parallel and/or two or more media pipelines may
be coupled at some point in each pipeline’s transform chain
forming a single pipeline from that point forward. Further,
each transform may have a single input or a plurality of inputs
and they may have a single output or a plurality of outputs.

[0056] The media source 400 may access media content
110 via hardware and/or appropriate driver software or the
like. For example, using a PC for processing music stored on
a CD, the media source 400 couples to CD ROM driver
software which controls the CD ROM drive hardware (FIG. 8,
804) to read audio data from a CD ROM disk (FIG. 8, 806).
The media source 400 is a mechanism used in the construc-
tion of a media pipeline to access and receive the media
content 110 and make it available to the remaining mecha-
nisms of the media pipeline. Alternatively, a media source
400 may couple with a semiconductor memory in a consumer
electronic device to access music stored on the device.
Equivalent media sources may provide access to one or more
types of media content, including video, digital recordings,
and the like.

Jan. 7, 2016

[0057] The media transforms 420, represented by F(a)l,
F(b)2 and F(z)n, (421, 422 and 425 respectively) perform
specific operations on the media content provided by the
media source 400 and may each perform different operations.
There are typically at least one media transform in a media
pipeline. The media transforms 421, 422 and 425 prepare
and/or process the media content 110 for rendering via the
media output 130 and/or for further processing. The specific
transformations performed may include operations such as
encryption and/or decryption of media content, image
enhancement of video content, silence detection in audio
content, decompression, compression, volume normaliza-
tion, and the like. Transforms may process media content 110
automatically or be controlled by auser via virtual or physical
handles provided through a user interface 204. The specific
transforms provided in a pipeline depend on the media con-
tent 110 to be processed and the function the trusted media
system 200 has constructed the pipeline to perform. In a
simple media system or application the processing may be as
minimal as decoding an audio media and controlling the
volume of'the media accessed from a semiconductor memory
and played on a headset. In a more complex media system or
application a wide variety of processing and media manipu-
lation are possible.

[0058] In a trusted media system 200 designed to process
encrypted media content one of the transform mechanisms,
typically the first transform F(a)1 421, may be a codec which
decodes the media content such that it may be further pro-
cessed. In alternative examples, decryption and/or decom-
pression operations may be performed by distinct mecha-
nisms and one or both operations may be eliminated
depending on the format of media content being processed.
[0059] When operating on a PC, the media sink 480 may
couple the processed or transformed media content 110 to the
media output 130 via the media I/O hardware (FIG. 8, 812)
controlled by appropriate driver programs. For example, in
the case of audio data, the media sink 480 may couple to an
available sound driver program which couples audio data that
has been transformed to audio output hardware such as an
amplifier and/or speakers (FIG. 2, 132). When operating on a
consumer electronic device, the media sink 480 may be
coupled, for example, to an audio amplifier which in turn
couples to speakers or a headset through a connector on the
device’s case.

[0060] By constructing a pipeline that performs the sourc-
ing, transform and sinking functions within a protected space
230, unauthorized access to the media content 110 may be
restricted in a manner that conforms to the wishes of the
media content provider/owner. Thus, this approach tends to
provide a secure processing environment such that a media
content provider may trust that their media content 110 will
not be compromised while being processed.

[0061] The output of the protected media pipeline 232 may
be coupled to the input of a media output 130. Alternatively
the output of a protected media pipeline 232 may couple to the
input of another protected media pipeline or some other pro-
cess. This coupling may be implemented such that it is tamper
resistant and restricts unauthorized access to any data or
media content flowing from one pipeline to another or to
some other process. The remainder of the elements illustrated
in FIG. 4 operate as previously described for FIG. 2.

[0062] FIG. 5 is a block diagram showing an alternate
example of a protected media pipeline 552 having a proxied
media source 510 as part of a trusted media system 500. The



US 2016/0006714 Al

proxied media source 510 includes a media source portion
518 and a stub portion 520 that may operate in an unprotected
application space 502, and a proxy portion 540 that may
operate in a protected space 550. The proxied media source
510 may allow media content 110 to be transferred from the
application space 502 via the media source 518 and the stub
520 to the protected space 550 via the proxy 540 by using
remote procedure calls or the like.

[0063] When used in a PC environment (FIG. 8, 800), the
proxied media source 510 architecture described here may
simplify the creation of the media source modules by third-
party software makers or content providers. Such a simplifi-
cation may be provided by splitting the proxied media source
510 such that media application writers may only need to
implement the media source portion 518. The stub portion
520 and proxy portion 540 may be provided as an element of
the protected environment 550.

[0064] Further, the use of a proxied media source 510 may
support mixing protected and unprotected media content 110
by allowing protected media content to be directed from a
media source 518 to a first stub operating as part of a protected
media pipeline while the unprotected media content may be
directed from the media source 518 to processing modules
operating within the unprotected application space 502 or
other unprotected space via a second stub portion also oper-
ating within the unprotected application space 502 or some
other unprotected space.

[0065] Similar to the proxied media source 510, the media
sink 480 may also be proxied and split into stub and proxy
portions. The stub portion may operate in the protected space
650 and may encrypt data prior to forwarding it to the proxy
portion operating in an application space 202 or some other
space. The remainder of the elements in FIG. 5 operate as
previously described for FIG. 4.

[0066] FIG. 6 is a block diagram showing an example of a
further alternative example of a trusted media system 600. In
this embodiment the trusted media system 600 includes a
protected media source 610 constructed to include a media
source portion 618 and a stub portion 620 which operate in a
protected media space 609, and a proxy portion 640 which
operates in a protected space 650. The two protected regions
609 and 650 are coupled by the protected media source 610
with data being passed from the media source portion 618 via
the stub portion 620 operating in the protected media space
609 to the proxy portion 640 operating in the protected space
650. The protected media source 610 may allow media con-
tent 110 to be transferred from the protected media space 609
to the protected pipeline space 650 using remote procedure
calls or the like. The protected media source 610 architecture
described here may simplify the creation of the media source
by third-parties or content providers and result in more stable
and secure protected media applications 600. The remaining
elements of FIG. 6 operate as previously described for FIG. 4
and FIG. 5.

[0067] FIG. 7 is a block diagram showing a plurality of
protected media pipelines 751-759. The protected media
pipelines 751, 752, 759 operate in a protected space 700.
Alternatively each protected media pipeline may operate in
its own protected space or various numbers of pipelines may
be grouped into one or more protected spaces in any combi-
nation. A trusted media system may provide several such
protected media pipelines.

[0068] Anexample of such asystem may be atrusted media
system playing a DVD with its audio content in Dolby digital

Jan. 7, 2016

5.1 format. In this example there may be six different audio
pipelines, one for each of the audio channels, in addition to a
video pipeline for the video portion of the DVD. All of the
protected media pipelines may operate in the same protected
space as shown or, alternatively, the protected media pipe-
lines may be grouped in groups of one or more with each
group operating in its own distinct protected space.

[0069] In alternative embodiments of a protected media
pipeline 232, two or more of the sources, transform mecha-
nisms and/or sinks may be coupled in parallel and/or two or
more media pipelines may be coupled at some point in each
pipeline forming a single pipeline from that point forward.
Alternatively a single pipeline may split into two pipelines.
Further, sources, transforms and/or sinks may have a single
input or a plurality of inputs and/or they may have a single
output or a plurality of outputs. The remaining elements of
FIG. 7 operate as previously described for FIG. 4.

[0070] FIG. 8 is a block diagram showing an exemplary
computing environment 800 in which the software applica-
tions, systems and methods described in this application may
be implemented. Exemplary personal computer 800 is only
one example of a computing system or device that may pro-
cess media content (FIG. 4, 110) and is not intended to limit
the examples described in this application to this particular
computing environment or device type.

[0071] The computing environment can be implemented
with numerous other general purpose or special purpose com-
puting system configurations. Examples of well known com-
puting systems may include, but are not limited to, personal
computers 800, hand-held or laptop devices, microprocessor-
based systems, multiprocessor systems, set top boxes, pro-
grammable consumer electronics, gaming consoles, con-
sumer electronic devices, cellular telephones, PDAs, and the
like.

[0072] The PC 800 includes a general-purpose computing
system in the form of a computing device 801. The compo-
nents of computing device 801 may include one or more
processors (including CPUs, GPUs, microprocessors and the
like) 807, a system memory 809, and a system bus 808 that
couples the various system components. Processor 807 pro-
cesses various computer executable instructions to control the
operation of computing device 801 and to communicate with
other electronic and computing devices (not shown) via vari-
ous communications connections such as a network connec-
tion 814 an the like. The system bus 808 represents any
number of several types of bus structures, including a
memory bus or memory controller, a peripheral bus, an accel-
erated graphics port, and a processor or local bus using any of
a variety of bus architectures.

[0073] The system memory 809 includes computer read-
able media in the form of volatile memory, such as random
access memory (RAM), and/or non-volatile memory, such as
read only memory (ROM). A basic input/output system
(BIOS) may be stored in ROM. RAM typically contains data
and/or program modules that are immediately accessible to
and/or presently operated on by one or more of the processors
807. A trusted media system 200 may be contained in system
memory 809.

[0074] Mass storage devices 804 and 810 may be coupled
to the computing device 801 or incorporated into the comput-
ing device by coupling to the system bus. Such mass storage
devices 804 and 810 may include a magnetic disk drive which
reads from and/or writes to a removable, non volatile mag-
netic disk (e.g., a “floppy disk™) 805, or an optical disk drive



US 2016/0006714 Al

that reads from and/or writes to a removable, non-volatile
optical disk such as a CD ROM, DVD ROM or the like 806.
Computer readable media 805 and 806 typically embody
computer readable instructions, data structures, program
modules and the like supplied on floppy disks, CDs, DVDs,
portable memory sticks and the like.

[0075] Any number of program modules may be stored on
the hard disk 810, other mass storage devices 804, and system
memory 809 (limited by available space), including by way of
example, an operating system(s), one or more application
programs, other program modules, and program data. Each of
such operating system, application program, other program
modules and program data (or some combination thereof)
may include an embodiment of the systems and methods
described herein. For example, a trusted media system 200
may be stored on mass storage devices 804 and 810 and/or in
system memory 809.

[0076] A display device 134 may be coupled to the system
bus 808 via an interface, such as a video adapter 811. A user
can interface with computing device 800 via any number of
different input devices 803 such as a keyboard, pointing
device, joystick, game pad, serial port, and/or the like. These
and other input devices may be coupled to the processors 807
via input/output interfaces 812 that may be coupled to the
system bus 808, and may be coupled by other interface and
bus structures, such as a parallel port, game port, and/or a
universal serial bus (USB).

[0077] Computing device 800 may operate in a networked
environment using communications connections to one or
more remote computers and/or devices through one or more
local area networks (LANs), wide area networks (WANs), the
Internet, optical links and/or the like. The computing device
800 may be coupled to one or more networks via network
adapter 813 or alternatively by a modem, DSL, ISDN inter-
face and/or the like.

[0078] Communications connection 814 is an example of
communications media. Communications media typically
embody computer readable instructions, data structures, pro-
gram modules or other data in a modulated data signal such as
a carrier wave or other transport mechanism and includes any
information delivery media. The term “modulated data sig-
nal” means a signal that has one or more of its characteristics
set or changed in such a manner as to encode information in
the signal. By way of example, and not limitation, communi-
cations media include wired media such as a wired network or
direct-wired connection, and wireless media such as acoustic,
radio frequency, infrared, and other wireless media.

[0079] Those skilled in the art will realize that storage
devices utilized to store computer-readable program instruc-
tions can be distributed across a network. For example a
remote computer or device may store an example of the
system described as software. A local or terminal computer or
device may access the remote computer or device and down-
load a part or all of the software to run the program. Alterna-
tively the local computer may download pieces of the soft-
ware as needed, or distributively process the software by
executing some of the software instructions at the local ter-
minal and some at remote computers or devices.

[0080] Those skilled in the art will also realize that by
utilizing conventional techniques known to those skilled in
the art that all, or a portion, of the software instructions may
be carried out by a dedicated electronic circuit such as a
digital signal processor (“DSP”), programmable logic array
(“PLA”), or the like. The term electronic apparatus as used

Jan. 7, 2016

herein includes computing devices, consumer electronic
devices including any software and/or firmware and the like,
and electronic devices or circuits containing no software and/
or firmware and the like.

[0081] The term computer readable medium may include
system memory, hard disks, mass storage devices and their
associated media, communications media, and the like.

Protected Environment

[0082] FIG. 9 is a block diagram showing a conventional
media application 100 processing media content 110 operat-
ing in a conventional computing environment 900 with an
indication of an attack 907 against the system 901. A conven-
tional computing environment 900 may be provided by a
personal computer (“PC”) or consumer electronics (“CE”)
device 901 that may include operating system (“OS”) 902.
Typical operating systems often partition their operation into
a user mode 903, and a kernel mode 904. User mode 903 and
kernel mode 904 may be used by one or more application
programs 100. An application program 100 may be used to
process media content 110 that may be transferred to the
device 901 via some mechanism, such as a CD ROM drive,
Internet connection or the like. An example of content 110
would be media files that may be used to reproduce audio and
video information.

[0083] The computing environment 900 may typically
include an operating system (“OS”’) 902 that facilitates opera-
tion of the application 100, in conjunction with the one or
more central processing units (“CPU”’). Many operating sys-
tems 902 may allow multiple users to have access to the
operation of the CPU. Multiple users may have ranges of
access privileges typically ranging from those of a typical
user to those of an administrator. Administrators typically
have a range of access privileges to applications 100 running
on the system, the user mode 903 and the kernel 904. Such a
computing environment 900 may be susceptible to various
types of attacks 907. Attacks may include not only outsiders
seeking to gain access to the device 901 and the content 110
on it, but also attackers having administrative rights to the
device 901 or other types of users having whatever access
rights granted them.

[0084] FIG. 10 is a block diagram showing a trusted appli-
cation 200 processing media content 110 and utilizing a pro-
tected environment or protected space 230 that tends to be
resistant to attack 1005. The term “trusted application™, as
used here, may be defined as an application that utilizes
processes operating in a protected environment such that they
tend to be resistant to attack 1005 and limit unauthorized
access to any media content 110 or other data being pro-
cessed. Thus, components or elements of an application oper-
ating in a protected environment are typically considered
“trusted” as they tend to limit unauthorized access and tend to
be resistant to attack. Such an application 200 may be con-
sidered a trusted application itself or it may utilize another
trusted application to protect a portion of its processes and/or
data.

[0085] For example, a trusted media player 200 may be
designed to play media content 110 that is typically licensed
only for use such that the media content 110 cannot be
accessed in an unauthorized manner. Such a trusted applica-
tion 200 may not operate and/or process the media content
110 unless the computing environment 1000 can provide the
required level of security, such as by providing a protected
environment 230 resistant to attack 1005.



US 2016/0006714 Al

[0086] As used herein, the term “process” may be defined
as an instance of a program (including executable code,
machine instructions, variables, data, state information, etc.),
residing and/or operating in a kernel space, user space and/or
any other space of an operating system and/or computing
environment.

[0087] A digital rights management system 1004 or the like
may be utilized with the protected environment 230. The use
of a digital rights management system 1004 is merely pro-
vided as an example and may not be utilized with a protected
environment or a secure computing environment. Typically a
digital rights management system utilizes tamper-resistant
software (““TRS”) which tends to be expensive to produce and
may negatively impact computing performance. Utilizing a
trusted application 200 may minimize the amount of TRS
functionality required to provide enhanced protection.
[0088] Various mechanisms known to those skilled in this
technology area may be utilized in place of, in addition to, or
in conjunction with a typical digital rights management sys-
tem. These mechanisms may include, but are not limited to,
encryption/decryption, key exchanges, passwords, licenses,
and the like. Thus, digital right management as used herein
may be a mechanism as simple as decrypting an encrypted
media, utilizing a password to access data, or other tamper-
resistant mechanisms. The mechanisms to perform these
tasks may be very simple and entirely contained within the
trusted application 200 or may be accessed via interfaces that
communicate with complex systems otherwise distinct from
the trusted application 200.

[0089] FIG.11is ablock diagram showing exemplary com-
ponents of a trusted application 200 that may be included in
the protected environment 230. A trusted application 200 will
typically utilize a protected environment 230 for at least a
portion of its subcomponents 232, 400, 480. Other compo-
nents 1101 of the trusted application may not utilize a pro-
tected environment. Components 232, 400 and 480 involved
in the processing of media content or data that may call for an
enhanced level of protection from attack or unauthorized
access may operate within a protected environment 230. A
protected environment 230 may be utilized by a single trusted
application 200 or, possibly, by a plurality of trusted applica-
tions. Alternatively, a trusted application 200 may utilize a
plurality of protected environments. A trusted application 200
may also couple to and/or utilize a digital rights management
system 1004.

[0090] In the example shown, source 400 and sink 480 are
shown as part of a media pipeline 232 operating in the pro-
tected environment 230. A protected environment 230 tends
to ensure that, once protected and/or encrypted content 1109
has been received and decrypted, the trusted application 200
and its components prevent unauthorized access to the con-
tent 1109.

[0091] Digital rights management 1004 may provide a fur-
ther avenue of protection for the trusted application 200 and
the content 1109 it processes. Through a system of licenses
1108, device certificates 1111, and other security mecha-
nisms a content provider is typically able to have confidence
that encrypted content 1109 has been delivered to the prop-
erly authorized device and that the content 1109 is used as
intended.

[0092] FIG. 12 is a block diagram showing a system for
downloading digital media content 1210 from a service pro-
vider 1207 to an exemplary trusted application 200 utilizing a
protected environment 230. In the example shown the trusted

Jan. 7, 2016

application 200 is shown being employed in two places 1201,
1203. The trusted application 200 may be used in a CE device
1201 or a PC 1203. Digital media 1210 may be downloaded
via a service provider 1207 and the Internet 1205 for use by
the trusted application 200. Alternatively, digital media may
be made available to the trusted application via other mecha-
nisms such as a network, a CD or DVD disk, or other storage
media. Further, the digital media 1210 may be provided in an
encrypted form 1109 requiring a system of decryption keys,
licenses, certificates and/or the like which may take the form
of a digital rights management system 1004. The data or
media content 1210 provided to the trusted application may or
may not be protected, i.e., encrypted or the like.

[0093] In one example, a trusted application 200 may uti-
lize a digital rights management (“DRM”) system 1004 or the
like along with a protected environment 230. In this case, the
trusted application 200 is typically designed to acknowledge,
and adhere to, the content’s usage policies by limiting usage
of the content to that authorized by the content provider via
the policies. Implementing this may involve executing code
which typically interrogates content licenses and subse-
quently makes decisions about whether or not a requested
action can be taken on a piece of content. This functionality
may be provided, at least in part, by a digital rights manage-
ment system 1004. An example of a Digital Rights Manage-
ment system is provided in U.S. patent application Ser. No.
09/290,363, filed Apr. 12, 1999, U.S. patent application Ser.
Nos. 10/185,527,10/185,278, and 10/185,511, each of which
filed on Jun. 28,2002, and incorporated herein by reference in
its entirety.

[0094] Building a trusted application 200 that may be uti-
lized in the CE device 1201 or the PC 1203 may include
making sure the trusted application 200 which decrypts and
processes the content 1109 may be “secure” from malicious
attacks. Thus, a protected environment 230 typically refers to
an environment that may not be easy to attack.

[0095] As shown, the trusted applications 200 operate in a
consumer electronics device 1201, which can be periodically
synced to a PC 1203 that also provides a trusted application.
The PC 1203 is in turn coupled 1204 to the internet 1205. The
internet connection allows digital media 1210 to be provided
by a service provider 1207. The service provider 1207 may
transmit licenses and encrypted media 1206 over the internet
1205 to trusted application 200. Once encrypted media is
delivered and decrypted it may be susceptible to various
forms of attack.

[0096] A protected computing environment tends to pro-
vide an environment that limit hackers from gaining access to
unauthorized content. A hacker may include hackers acting as
a systems administrator. A systems administrator typically
has full control of virtually all of the processes being executed
on a computer, but this access may not be desirable. For
example, if a system user has been granted a license to use a
media file it should not be acceptable for a system adminis-
trator different from the user to be able to access the media
file. A protected environment tends to contribute to the cre-
ation of a process in which code that decrypts and processes
content can operate without giving hackers access to the
decrypted content. A protected environment may also limit
unauthorized access to users of privilege, such as administra-
tors, and/or any other user, who may otherwise gain unautho-
rized access to protected content. Protection may include



US 2016/0006714 Al

securing typical user mode (FIG. 9, 903) processes and kernel
mode (FIG. 9, 904) processes and any data they may be
processing.

[0097] Processes operating in the kernel may be susceptible
to attack. For example, in the kernel of a typical operating
system objects are created, including processes, which may
allow unlimited access by an administrator. Thus, an admin-
istrator, typically with full access privileges, may access vir-
tually all processes.

[0098] Protected content may include policy or similar
information indicating the authorized use of the content. Such
policy may be enforced via a DRM system or other mecha-
nism. Typically, access to the protected content is granted
through the DRM system or other security mechanism, which
may enforce policy. However, a system administrator, with
full access to the system, may alter the state of the DRM
system or mechanism to disregard the content policy.

[0099] A protected environment tends to provide a pro-
tected space that restricts unauthorized access to media con-
tent being processed therein, even for high-privilege users
such as an administrator. When a protected environment is
used in conjunction with a system of digital rights manage-
ment or the like, a trusted application may be created in which
a content provider may feel that adequate security is provided
to protect digital media from unauthorized access and may
also protect the content’s policy from be tampered with along
with any other data, keys or protection mechanisms that may
be associated with the media content.

[0100] Current operating system (“OS”) architectures typi-
cally present numerous possible attack vectors that could
compromise a media application and any digital media con-
tent being processed. For purposes of this example, attacks
that may occur in an OS are grouped into two types of attacks,
which are kernel mode attacks and user mode attacks.

[0101] The first type of attack is the kernel mode attack.
Kernel mode is typically considered to be the trusted base of
the operating system. The core of the operating system, most
system and peripheral drivers operate in kernel mode. Typi-
cally any piece of code running in the kernel is susceptible to
intrusion by any other piece of code running in the kernel,
which tends not to be the case for user mode. Also, code
running in kernel mode typically has access to substantially
all user mode processes. A CPU may also provide privilege
levels for various code types. Kernel mode code is typically
assigned the highest level of privilege by such a CPU, typi-
cally giving it full access to the system.

[0102] The second type of attack is the user mode attack.
Code that runs in user mode may or may not be considered
trusted code by the system depending on the level of privilege
it has been assigned. This level of privilege may be deter-
mined by the user context or account in which it is operating.
User mode code running in the context of an administrator
account may have full access to the other code running on the
system. In addition, code that runs in user mode may be
partitioned to prevent one user from accessing another’s pro-
cesses.

[0103] These attacks may be further broken down into spe-
cific attack vectors. The protected environment is typically
designed to protect against unauthorized access that may
otherwise be obtained via one or more of these attack vectors.
The protected environment may protect against attack vectors
that may include: process creation, malicious user mode

Jan. 7, 2016

applications, loading malicious code into a process, mali-
cious kernel code, invalid trust authorities, and external attack
vectors.

[0104] Process creation is a possible attack vector. An oper-
ating system typically includes a “create process” mechanism
that allows a parent process to create a child process being
created. A malicious parent process may, by modifying the
create process code or by altering the data it creates, make
unauthorized modifications to the child process. This could
result in compromising digital media that may be processed
by a child process created by a malicious parent process.
[0105] Malicious user mode applications are a possible
attack vector. An operating system typically includes admin-
istrator level privileges. Processes running with administrator
privileges may have unlimited access to many operating sys-
tem mechanisms and to nearly all processes running on the
computer. Thus, in Windows for example, a malicious user
mode application running with administrator privileges may
gain access to many other processes running on the computer
and may thus compromise digital media. Similarly, processes
operating in the context of any user may be attacked by any
malicious process operating in the same context.

[0106] Loading malicious code into a secure process is a
possible attack vector. It may be possible to append or add
malicious code to a process. Such a compromised process
cannot be trusted and may obtain unauthorized access to any
media content or other data being processed by the modified
process.

[0107] Malicious kernel mode code is a possible attack
vector. An operating system typically includes a “system
level” of privilege. In Windows, for example, all code running
in kernel mode is typically running as system and therefore
may have maximum privileges. The usual result is that all
drivers running in kernel mode have maximum opportunity to
attack any user mode application, for example. Such an attack
by malicious kernel mode code may compromise digital
media.

[0108] Invalid trust authorities (TAs) are a possible attack
vector. TAs may participate in the validation of media licenses
and may subsequently “unlock” the content of a digital
media. TAs may be specific to a media type or format and may
be implemented by media providers or their partners. As such,
TAs may be pluggable and/or may be provided as dynamic
link libraries (“DLL”). A DLL or the like may be loaded by
executable code, including malicious code. In order for a TA
to ensure that the media is properly utilized it needs to be able
to ensure that the process in which it is running is secure.
Otherwise the digital media may be compromised.

[0109] External attacks are another possible attack vector.
There are a set of attacks that don’t require malicious code
running in a system in order to attack it. For instance, attach-
ing a debugger to a process or a kernel debugger to the
machine, looking for sensitive data in a binary file on a disk,
etc., are all possible mechanisms for finding and compromis-
ing digital media or the processes that can access digital
media.

[0110] FIG. 13 is a block diagram showing exemplary
attack vectors 1307-1310 that may be exploited by a user or
mechanism attempting to access media content or other data
1300 typically present in a computing environment 900 in an
unauthorized manner. A protected environment may protect
against these attack vectors such that unauthorized access to
trusted applications and the data they process is limited and
resistance to attack is provided. Such attacks may be made by



US 2016/0006714 Al

users of the system or mechanisms that may include execut-
able code. The media application 100 is shown at the center of
the diagram and the attack vectors 1307-1310 tend to focus on
accessing sensitive data 1300 being stored and/or processed
by the application 100.

[0111] A possible attack vector 1309 may be initiated via a
malicious user mode application 1302. In the exemplary
operating system architecture both the parent of a process,
and any process with administrative privileges, typically have
unlimited access to other processes, such as one processing
media content, and the data they process. Such access to
media content may be unauthorized. Thus a protected envi-
ronment may ensure that a trusted application and the media
content it processes are resistant to attacks by other user mode
applications and/or processes.

[0112] A possible attack vector 1308 is the loading of mali-
cious code 1303 into a process 1301. Having a secure process
that is resistant to attacks from the outside is typically only as
secure as the code running on the inside forming the process.
Given that DLLs and other code are typically loaded into
processes for execution, a mechanism that may ensure that
the code being loaded is trusted to run inside a process before
loading it into the process may be provided in a protected
environment.

[0113] A possible vector of attack 1310 is through mali-
cious kernel mode code 1304. Code running in kernel mode
904 typically has maximum privileges. The result may be that
drivers running in kernel mode may have a number of oppor-
tunities to attack other applications. For instance, a driver
may be able to access memory directly in another process.
The result of this is that a driver could, once running, get
access to a processes memory which may contain decrypted
“encrypted media content” (FIG. 11, 1109). Kernel Mode
attacks may be prevented by ensuring that the code running in
the kernel is non-malicious code, as provided by this
example.

[0114] A possible attack vector 1307 is by external attacks
1306 to the system 900. This group represents the set of
attacks that typically do not require malicious code to be
running on the system 900. For instance, attaching a debugger
to an application and/or a process on the system, searching a
machine 900 for sensitive data, etc. A protected environment
may be created to resist these types of attacks.

[0115] FIG. 14 is a flow diagram showing the process 1400
for creating and maintaining a protected environment that
tends to limit unauthorized access to media content and other
data. The sequence 1400 begins when a computer system is
started 1402 and the kernel of the operating system is loaded
and a kernel secure flag is set 1404 to an initial value. The
process continues through the time that a protected environ-
ment is typically created and an application is typically
loaded into it 1406. The process includes periodic checking
1408 via the protected environment that seeks to ensure the
system remains secure through the time the secure process is
needed.

[0116] The term “kernel”, as used here, is defined as the
central module of an operating system for a computing envi-
ronment, system or device. The kernel module may be imple-
mented in the form of computer-executable instructions and/
or electronic logic circuits. Typically, the kernel is
responsible for memory management, process and task man-
agement, and storage media management of a computing
environment. The term “kernel component”, as used here, is
defined to be a basic controlling mechanism, module, com-

Jan. 7, 2016

puter-executable instructions and/or electronic logic circuit
that forms a portion of the kernel. For example, a kernel
component may be a “loader”, which may be responsible for
loading other kernel components in order to establish a fully
operational kernel.

[0117] To summarize the process of creating and maintain-
ing a protected environment:

[0118] 1. Block 1402 represents the start-up of a computer
system. This typically begins what is commonly known as the
boot process and includes loading an operating system from
disk or some other storage media.

[0119] 2. Typically one of the first operations during the
boot process is the loading of the kernel and its components.
This example provides the validation of kernel components
and, if all are successfully validated as secure, the setting of a
flag indicating the kernel is secure. This is shown in block
1404.

[0120] 3. After the computer system is considered fully
operational a user may start an application such as a trusted
media player which may call for a protected environment.
This example provides a secure kernel with an application
operating in a protected environment, as shown in block 1406.
[0121] 4. Once the protected environment has been created
and one or more of the processes of the application have been
loaded into it and are operating, the trusted environment may
periodically check the kernel secure flag to ensure the kernel
remains secure, as shown in block 1408. That is, from the
point in time that the trusted application begins operation, a
check may be made periodically to determine whether any
unauthorized kernel components have been loaded. Such
unauthorized kernel components could attack the trusted
application or the data it may be processing. Therefore, if any
such components are loaded, the kernel secure flag may be set
appropriately.

[0122] FIG. 15 is a block diagram showing exemplary ker-
nel components 1520-1530 and other components 1510-1514
utilized in creating an exemplary secure computing environ-
ment 1000. This figure shows a computer system containing
several components 1510-1530 typically stored on a disk or
the like, several of which are used to form the kernel of an
operating system when a computer is started. Arrow 1404
indicates the process of loading the kernel components into
memory forming the operational kernel of the system. The
loaded kernel 1550 is shown containing its various compo-
nents 1551-1562 and a kernel secure flag 1590 indicating
whether or not the kernel is considered secure for a protected
environment. The kernel secure flag 1590 being described as
a “flag” is not meant to be limiting; it may be implemented as
a boolean variable or as a more complex data structure or
mechanism.

[0123] Kernel components 1520-1530 are typically
“signed” and may include certificate data 1538 that may
enable the kernel to validate that they are the components they
claim to be, that they have not been modified and/or are not
malicious. A signature block and/or certificate data 1538 may
be present in each kernel component 1520-1530 and/or each
loaded kernel component 1560, 1562. The signature and/or
certificate data 1538 may be unique to each component. The
signature and/or certificate data 1538 may be used in the
creation and maintenance of protected environments as indi-
cated below. Typically a component is “signed” by its pro-
vider in such as way as to securely identify the source of the
component and/or indicate whether it may have been tam-
pered with. A signature may be implemented as a hash of the



US 2016/0006714 Al

component’s header or by using other techniques. A conven-
tional certificate or certificate chain may also be included
with a component that may be used to determine if the com-
ponent can be trusted. The signature and/or certificate data
1538 are typically added to a component before it is distrib-
uted for public use. Those skilled in the art will be familiar
with these technologies and their use.

[0124] When a typical computer system is started or
“booted” the operating system’s loading process or “kernel
loader” 1551 will typically load the components of the kernel
from disk or the like into a portion of system memory to form
the kernel of the operating system. Once all of the kernel
components are loaded and operational the computer and
operating system are considered “booted” and ready for nor-
mal operation.

[0125] Kernel component #1 1520 thru kernel component
#n 1530, in the computing environment, may be stored on a
disk or other storage media, along with a revocation list 1514,
a kernel dump flag 1512 and a debugger 1510 along with a
debug credential 1511. Arrow 1404 indicates the kernel load-
ing process which reads the various components 1514-1530
from their storage location and loads them into system
memory forming a functional operating system kernel 1550.
The kernel dump flag 1512 being described as a “flag” is not
meant to be limiting; it may be implemented as a boolean
variable or as a more complex data structure or mechanism.

[0126] The kernel loader 1551 along with the PE manage-
ment portion of the kernel 1552, the revocation list 1554 and
two of the kernel components 1520 and 1522 are shown
loaded into the kernel, the latter as blocks 1560 and 1562,
along with an indication of space for additional kernel com-
ponents yet to be loaded into the kernel, 1564 and 1570.
Finally, the kernel 1550 includes a kernel secure flag 1590
which may be used to indicate whether or not the kernel 1550
is currently considered secure or not. This illustration is pro-
vided as an example and is not intended to be limiting or
complete. The kernel loader 1551, the PE management por-
tion of the kernel 1552 and/or the other components of the
kernel are shown as distinct kernel components for clarity of
explanation but, in actual practice, may or may not be distin-
guishable from other portions of the kernel.

[0127] Included in the computing environment 1000 may
be a revocation list 1514 that may be used in conjunction with
the signature and certificate data 1538 associated with the
kernel components 1560 and 1562. This object 1514 may
retain a list of signatures, certificates and/or certificate chains
that are no longer considered valid as of the creation date of
the list 1514. The revocation list 1514 is shown loaded into the
kernel as object 1554. Such lists are maintained because a
validly-signed and certified component, for example compo-
nents 1560 and 1562, may later be discovered to have some
problem. The system may use such a list 1554 to check kernel
components 1520-1530 as they are loaded, which may be
properly signed and/or have trusted certificate data 1538, but
that may have subsequently been deemed untrustworthy.
Such a revocation list 1554 will typically include version
information 1555 so that it can more easily be identified,
managed and updated as required.

[0128] Another component of the system that may impact
kernel security is a debugger 1510. Debuggers may not typi-
cally be considered a part of the kernel but may be present in
a computing environment 1000. Debuggers, including those
known as kernel debuggers, system analyzers, and the like,
may have broad access to the system and the processes run-

Jan. 7, 2016

ning on the system along with any data present. A debugger
1510 may be able access any data in a computing environment
1000, including media content that should not be accessed in
a manner other than that authorized. On the other hand,
debugging is typically a part of developing new functionality
and it should be possible to debug within protected environ-
ments the code intended to process protected media content.
A debugger 1510 may thus include debug credentials 1511
which may indicate that the presence of the debugger 1510 on
a system is authorized. Thus detection of the presence of a
debugger 1510 along with any accompanying credentials
1511 may be a part of the creation and maintenance of pro-
tected environments (FIG. 14, 1400).

[0129] The computing environment 1000 may include a
kernel dump flag 1512. This flag 1512 may be used to indicate
how much of kernel memory is available for inspection in
case of a catastrophic system failure. Such kernel dumps may
be used for postmortem debugging after such as failure. If
such a flag 1512 indicates that system memory is available for
inspection upon a dump then the kernel 1550 may be consid-
ered insecure as hacker could run an application which
exposes protected media in system memory and then force a
catastrophic failure condition which may result in the system
memory being available for inspection, including that con-
taining the exposed media content. Thus a kernel dump flag
1512 may be used in the creation and maintenance of a pro-
tected environments (FIG. 14, 1400).

[0130] FIG. 16 and FIG. 17 are flow diagrams showing an
exemplary process 1404 for loading kernel components to
create an exemplary secure computing environment. This
process 1404 begins after the kernel loader has been started
and the PE management portion of the kernel has been loaded
and made operational. Not shown in these figures, the PE
management portion of the kernel may validate the kernel
loader itself and/or any other kernel elements that may have
been previously loaded. Validation is usually defined as deter-
mining whether or not a given component is considered
secure and trustworthy as illustrated in part 2 of this process
1404.

[0131] The term “authorized for secure use” and the like as
used below with respect to kernel components has the follow-
ing specific meaning. A kernel containing any components
that are not authorized for secure use does not provide a
secure computing environment within which protected envi-
ronments may operate. The opposite may not be true as it
depends on other factors such as attack vectors.

[0132] 1.Block 1601 shows the start of the loading process
1404 after the PE management portion of the kernel has been
loaded and made operational. Any component loaded in the
kernel prior to this may be validated as described above.
[0133] 2. Block 1602 shows the kernel secure flag initially
set to TRUE unless any component loaded prior to the PE
management portion of the kernel, or that component itself, is
found to be insecure at which point the kernel secure flag may
be set to FALSE. In practice the indication of TRUE or
FALSE may take various forms; the use of TRUE or FALSE
here is only an example and is not meant to be limiting.
[0134] 3. Block 1604 indicates a check for the presence of
a debugger in the computing environment. Alternatively a
debugger could reside remotely and be attached to the com-
puting environment via a network or other communications
media to a process in the computing environment. If no
debugger is detected the loading process 1404 continues at
block 1610. Otherwise it continues at block 1609. Not shown



US 2016/0006714 Al

in the diagram, this check may be performed periodically and
the state of the kernel secure flag updated accordingly.
[0135] 4. If a debugger is detected, block 1606 shows a
check for debug credentials which may indicate that debug-
ging is authorized on the system in the presence of a protected
environment. If such credentials are not present, the kernel
secure flag may be set to FALSE as shown in block 1608.
Otherwise the loading process 1404 continues at block 1610.
[0136] 5. Block 1610 shows a check of the kernel dump
flag. If this flag indicates that a full kernel memory dump or
the like is possible then the kernel secure flag may be set to
FALSE as shown in block 1608. Otherwise the loading pro-
cess 1404 continues at block 1612. Not shown in the diagram,
this check may be performed periodically and the state of the
kernel secure flag updated accordingly.

[0137] 6. Block 1612 shows the loading of the revocation
list into the kernel. In cases where the revocation list may be
used to check debug credentials, or other previously loaded
credentials, signatures, certificate data, or the like, this step
may take place earlier in the sequence (prior to the loading of
credentials and the like to be checked) than shown. Not shown
in the diagram is that, once this component is loaded, any and
all previously loaded kernel components may be checked to
see if their signature and/or certificate data has been revoked
per the revocation list. If any have been revoked, the kernel
secure flag may be set to FALSE and the loading process 1404
continues at block 1614. Note that a revocation list may or
may not be loaded into the kernel to be used in the creation
and maintenance of a protected environments.

[0138] 7. Block 1614 shows the transition to part 2 of this
diagram shown in FIG. 17 and continuing at block 1701.
[0139] 8. Block 1702 shows a check for any additional
kernel components to be loaded. If all components have been
loaded then the load process 1404 is usually complete and the
kernel secure flag remains in whatever state it was last set to,
either TRUE or FALSE. If there are additional kernel com-
ponents to be loaded the load process 1404 continues at block
1706.

[0140] 9.Block 1706 shows a check for a valid signature of
the next component to be loaded. If the signature is invalid
then the kernel secure flag may be set to FALSE as shown in
block 1718. Otherwise the loading process 1404 continues at
block 1708. If no component signature is available the com-
ponent may be considered insecure and the kernel secure flag
may be set to FALSE as shown in block 1718. Signature
validity may be determined by checking for a match on a list
of valid signatures and/or by checking whether the signer’s
identity is a trusted identity. As familiar to those skilled in the
security technology area, other methods could also be used to
validate component signatures.

[0141] 10. Block 1708 shows a check of the component’s
certificate data. If the certificate data is invalid then the kernel
secure flag may be set to FALSE as shown in block 1718.
Otherwise the loading process 1404 continues at block 1710.
If no component certificate data is available the component
may be considered insecure and the kernel secure flag may be
setto FALSE as shown in block 1718. Certificate data validity
may be determined by checking the component’s certificate
data to see if the component is authorized for secure use. As
familiar to those skilled in the art, other methods could also be
used to validate component certificate data.

[0142] 11. Block 1710 shows a check of the component’s
signature against a revocation list. If the signature is present
on the list, indicating that it has been revoked, then the kernel

Jan. 7, 2016

secure flag may be set to FALSE as shown in block 1718.
Otherwise the loading process 1404 continues at block 1712.
[0143] 12. Block 1712 shows a check of the component’s
certificate data against a revocation. If the certificate data is
present on the list, indicating that it has been revoked, then the
kernel secure flag may be set to FALSE as shown in block
1718. Otherwise the loading process 1404 continues at block
1714.

[0144] 13. Block 1714 shows a check of the component’s
signature to determine if it is OK for use. This check may be
made by inspecting the component’s leaf certificate data to
see if the component is authorized for secure use. Certain
attributes in the certificate data may indicate if the component
is approved for protected environment usage. If not the com-
ponent may not be appropriately signed and the kernel secure
flag may be set to FALSE as shown in block 1718. Otherwise
the loading process 1404 continues at block 1716.

[0145] 14. Block 1716 shows a check of the component’s
root certificate data. This check may be made by inspecting
the component’s root certificate data to see if it is listed on a
list of trusted root certificates. If not the component may be
considered insecure and the kernel secure flag may be set to
FALSE as shown in block 1718. Otherwise the loading pro-
cess 1404 continues at block 1720.

[0146] 15.Block 1720 shows the loading of the component
into the kernel where it is now considered operational. Then
the loading process 1404 returns to block 1702 to check for
any further components to be loaded.

[0147] FIG. 18 is a block diagram showing a secure com-
puting environment 1000 loading an application 100 into an
exemplary protected environment 230 to form a trusted appli-
cation that may be resistant to attack. In this example the
kernel may be the same as that described in FIG. 15, has
already been loaded and the system 1000 is considered fully
operational. At this point, as an example, a user starts media
application 100. The media application 100 may call for the
creation of a protected environment 230 for one or more of'its
processes and/or components to operate within. The pro-
tected environment creation process 1406 creates the pro-
tected environment 230 and loads the application 100 and/or
its components as described below.

[0148] FIG. 19 is a flow diagram showing an exemplary
process 1406 for creating a protected environment and load-
ing an application into the protected environment. This pro-
cess 1406 includes the initial step of creating a secure process
followed by validating the software component to be loaded
into it and then loading the software component into the new
secure process and making it operational. Upon success, the
result may be a software component operating in a protected
environment supported by a secure kernel. Such a software
component, along with any digital media content or other data
it processes, may be protected from various attacks, including
those described above.

[0149] 1. Block 1901 shows the start of the protected envi-
ronment creation process 1406. This point is usually reached
when some application or code calls for a protected environ-
ment to operate.

[0150] 2. Block 1902 shows the establishment of a pro-
tected environment. While not shown in the diagram, this may
be accomplished by requesting the operating system to create
anew secure process. Code later loaded and operating in this
secure process may be considered to be operating in a pro-
tected environment. If the kernel secure flag is set to FALSE
then the “create new secure process” request may fail. This



US 2016/0006714 Al

may be because the system as a whole is considered insecure
and unsuitable for a protected environment and any applica-
tion or data requiring a protected environment. Alternatively,
the “create new secure process” request may succeed and the
component loaded into the new process may be informed that
the system is considered insecure so that it can modify its
operations accordingly. Otherwise the process 1406 contin-
ues at block 1906.

[0151] 3. Block 1906 shows a check for a valid signature of
the software component to be loaded into the new secure
process or protected environment. If the signature is invalid
then the process 1406 may fail as shown in block 1918.
Otherwise the process 1406 continues at block 1908. Not
shown in the process is that the program, or its equivalent,
creating the new secure process may also be checked for a
valid signature and the like. Thus, for either the component
itself and/or the program creating the new secure process, if
no signature is available the component may be considered
insecure and the process 1406 may fail as shown in block
1918. Signature validity may be determined by checking for
a match on a list of valid signatures and/or by checking
whether the signer’s identity is a trusted identity. As familiar
to those skilled in the security technology area, other methods
could also be used to validate component signatures.

[0152] 4. Block 1908 shows a check of the software com-
ponent’s certificate data. If the certificate data is invalid then
the process 1406 may fail as shown in block 1918. Otherwise
the process 1406 continues at block 1910. If no component
certificate data is available the component may be considered
insecure and the process 1406 may fail as shown in block
1918. Certificate data validity may be determined by check-
ing the component’s certificate data to see if the component is
authorized for secure use. As familiar to those skilled in the
art, other methods could also be used to validate component
certificate data.

[0153] Block 1910 shows a check of the component’s sig-
nature against a revocation list. If the signature is present on
the list, indicating that it has been revoked, then the process
1406 may fail as shown in block 1918. Otherwise the process
1406 continues at block 1912.

[0154] 12. Block 1912 shows a check of the component’s
certificate data against the revocation list. If the certificate
data is present on the list, indicating that it has been revoked,
then the process 1406 may fail as shown in block 1918.
Otherwise the process 1406 continues at block 1914.

[0155] 13. Block 1914 shows a check of the component’s
signature to determine if it is acceptable for use. This check
may be made by inspecting the component’s leaf certificate
data to see if the component is authorized for secure use.
Certain attributes in the certificate data may indicate if the
component is approved for protected environment usage. If
not the component may be considered to not be appropriately
signed and the process 1406 may fail as shown in block 1918.
Otherwise the process 1406 continues at block 1916.

[0156] 14. Block 1916 shows a check of the component’s
root certificate data. This check may be made by inspecting
the component’s root certificate data to see if it is listed on a
list of trusted root certificates. If not the component may be
considered insecure and the process 1406 may fail as shown
in block 1918. Otherwise the process 1406 continues at block
1920.

[0157] 15. Block 1918 shows the failure of the software
component to load followed by block 1930, the end of the
protected environment creation process 1406.

Jan. 7, 2016

[0158] 16. Block 1920 shows the software component
being loaded into the protected environment, where it is con-
sidered operational, followed by block 1930, the end of the
protected environment creation process 1406.

[0159] FIG. 20 is a block diagram showing an exemplary
trusted application utilizing an exemplary protected environ-
ment 230 periodically checking 1408 the security state 1590
of the secure computing environment 1000. In this example,
the computing environment 1000 and the kernel 1550 may be
the same as those described in FIG. 15 and FIG. 16. The
kernel 1550 has already been loaded and the computer 1000
is considered fully operational. Further, a protected environ-
ment has been created and the appropriate components of the
trusted application have been loaded into it and made opera-
tional, establishing a trusted application utilizing a protected
environment 230, hereafter referred to simply as the “pro-
tected environment™.

[0160] The protected environment 230 may periodically
check with the PE management portion of the kernel 1552 to
determine whether the kernel 1550 remains secure over time.
This periodic check may be performed because it is possible
for a new component to be loaded into the kernel 1550 at any
time, including a component that may be considered insecure.
If this were to occur, the state of the kernel secure flag 1590
may change to FALSE and the code operating in the protected
environment 230 has the opportunity to respond appropri-
ately.

[0161] For example, consider a media player application
that was started on a PC 1000 with a secure kernel 1550 and
a portion of the media player application operating in a pro-
tected environment 230 processing digital media content that
is licensed only for secure use. In this example, if a new kernel
component that is considered insecure is loaded while the
media player application is processing the media content,
then the check kernel secure state process 1040 would note
the kernel secure flag 1590 has changed to FALSE indicating
the kernel 1550 may no longer be secure.

[0162] Alternatively, the revocation list 1545 may be
updated and a kernel component previously considered
secure may no longer be considered secure, resulting in the
kernel secure flag 1590 being set to FALSE. At this point the
application may receive notification that the system 1000 is
no longer considered secure and can terminate operation, or
take other appropriate action to protect itself and/or the media
content it is processing.

[0163] FIG. 21 is a flow diagram showing an exemplary
process 1408 for periodically checking the security state of
the secure computing environment. This process 1408 may be
used by a protected environment 230 to determine if the
kernel remains secure over time. The protected environment
230 may periodically use this process 1408 to check the
current security status of the kernel. The protected environ-
ment 230 and/or the software component operating within it
may use the current security status information to modify its
operation appropriately. Periodic activation of the process
may be implemented using conventional techniques.

[0164] The diagram in FIG. 21 shows a sequence of com-
munications 1408, illustrated with exemplary pseudo code,
between the protected environment 230 and the PE manage-
ment portion of the kernel 1552. This communication may
include a check of the version of a revocation list which may
give an application the ability to specify a revocation list of at
least a certain version. This communications sequence may
be cryptographically secured using conventional techniques.



US 2016/0006714 Al

[0165] 1. The protected environment 230 makes a IsKer-
nelSecure(MinRLVer) call 2120 to the PE management por-
tion of the kernel to query the current security state of the
kernel. Included in this call 2120 may be the minimum ver-
sion (MinR[.Ver) ofthe revocation list expected to be utilized.
[0166] 2. The PE management portion of the kernel checks
to see if the protected environment, which is the calling pro-
cess, is secure. If not, then it may provide a Return
(SecureFlag=FALSE) indication 2122 to the protected envi-
ronment and the communications sequence 1408 is complete.
This security check may be done by the PE management
portion of the kernel checking the protected environment for
a valid signature and/or certificate data as described above.
[0167] 3. Otherwise, the PE management portion of the
kernel checks the kernel secure flag in response to the call
2120. If the state of the flag is FALSE then it may provide a
Return(SecureFlag=FALSE) indication 2124 to the protected
environment and the communications sequence 1408 is com-
plete.

[0168] 4. Otherwise, the PE management portion of the
kernel checks the revocation list version information for the
revocation list. If the revocation list has version information
that is older than that requested in the IsKernelSecure(MinR-
LVer) call 2120 then several options are possible. First, as
indicated in the diagram, the PE management portion of the
kernel may provide a Return(SecureFlag=FALSE) indication
2126 to the protected environment and the communications
sequence 1408 is complete.

[0169] Alternatively, and not shown in the diagram, an
appropriate version revocation list may be located and uti-
lized, all kernel components may be re-validated using this
new or updated list, the kernel secure flag updated as appro-
priate and the previous step #3 of this communications
sequence 1408 repeated.

[0170] 5. Otherwise, the PE management portion of the
kernel may provide a Return(SecureFlag=TRUE) indication
2128 to the protected environment and the communications
sequence 1408 is complete.

[0171] FIG. 22 is a block diagram showing an exemplary
computing environment 800 including a representation of a
protected environment 230, a trusted media system 200, and
other related elements. Exemplary personal computer 800 is
similar to that shown in FIG. 8 with the addition of kernel
components 1520-1530 that may be stored on the disk 810
along with the other operating system code and the like.
Media application 100 and/or a digital rights management
system 1004 may be stored on the disk 810 along with other
application programs. These components 1520-1530 and
applications 100, 1004 may be loaded into system memory
809 and considered operational. Shown loaded in system
memory 809 is a trusted application 200 utilizing a protected
environment 230 and media content 110.

1. A computing device comprising:

a processor;

memory coupled to the processor;

a protected media pipeline implemented at least in part by
the processor and the memory, the protected media pipe-
line configured to process digital media, the protected
media pipeline comprising:

a media source coupled to a first secure connection over
which the digital media is received via the media
source into the protected media pipeline; and

Jan. 7, 2016

amedia sink coupled to a second secure connection over
which processed digital media is transferred via the
media sink out of the protected media pipeline.

2. The computing device of claim 1 coupled to a protected
input via the first secure connection and via which the digital
media is initially received into the computing device, where
the protected input is configured to limit unauthorized access
to the digital media.

3. The computing device of claim 1 coupled to a protected
output via the second secure connection and via which the
processed digital media is transferred from the computing
device, where the protected output is configured to limit
unauthorized access to the processed digital media.

4. The computing device of claim 1 where the first secure
connection is configured to limit unauthorized access to the
digital media.

5. The computing device of claim 1 where the second
secure connection is configured to limit unauthorized access
to the processed digital media.

6. The computing device of claim 1, the protected media
pipeline further comprising a protected space that includes at
least one transform mechanism that is configured to trans-
form the digital media, where the protected space is config-
ured to limit unauthorized access to the digital media and the
processed digital media.

7. The computing device of claim 1, where the protected
media pipeline is configured to limit unauthorized access to
the digital media and the processed digital media.

8. A method performed on a computing device that com-
prises a processor, memory, and a protected media pipeline
that is configured to process digital media, the method com-
prising:

receiving, by a media source over a first secure connection

into the protected media pipeline, the digital media,
where the media source is a component of the protected
media pipeline;

transferring, by a media sink over a second secure connec-

tion out of the protected media pipeline, processed digi-
tal media, where the media sink is a component of the
protected media pipeline.

9. The method of claim 9, the receiving based on the
computing device being coupled to a protected input via the
first secure connection and via which the digital media is
initially received into the computing device, where the pro-
tected input is configured to limit unauthorized access to the
digital media.

10. The method of claim 9, the transferring based on the
computing device being coupled to a protected output via the
second secure connection and via which the processed digital
media is transferred from the computing device, where the
protected output is configured to limit unauthorized access to
the processed digital media.

11. The method of claim 9 where the first secure connection
is configured to limit unauthorized access to the digital media.

12. The method of claim 9 where the second secure con-
nection is configured to limit unauthorized access to the pro-
cessed digital media.

13. The method of claim 9 further comprising transform-
ing, by at least one transform mechanism, the digital media,
where the at least one transform mechanism is a component of
a protected space of the protected media pipeline, where the
protected space is configured to limit unauthorized access to
the digital media and the processed digital media.



US 2016/0006714 Al

14. The method of claim 9, where the protected media
pipeline is configured to limit unauthorized access to the
digital media and the processed digital media.

15. At least on computer-readable media that comprises:

memory that includes computer-executable instructions

that, based on execution by a computing device that

comprises a protected media pipeline that is configured

to process digital media, configure the computing device

to perform actions comprising:

receiving, via a media source over a first secure connec-
tion into the protected media pipeline, the digital
media, where the media source is a component of the
protected media pipeline;

transferring, via a media sink over a second secure con-
nection out of the protected media pipeline, processed
digital media, where the media sink is a component of
the protected media pipeline.

16. The at least on computer-readable media of claim 15,
the receiving based on the computing device being coupled to
aprotected input via the first secure connection and via which
the digital media is initially received into the computing
device, where the protected input is configured to limit unau-
thorized access to the digital media.

Jan. 7, 2016

17. The at least on computer-readable media of claim 15,
the transferring based on the computing device being coupled
to a protected output via the second secure connection and via
which the processed digital media is transferred from the
computing device, where the protected output is configured to
limit unauthorized access to the processed digital media.

18. The at least on computer-readable media of claim 15
where the first secure connection is configured to limit unau-
thorized access to the digital media, or where the second
secure connection is configured to limit unauthorized access
to the processed digital media.

19. The at least on computer-readable media of claim 15,
the actions further comprising transforming, by at least one
transform mechanism, the digital media, where the at least
one transform mechanism is a component of a protected
space of the protected media pipeline, where the protected
space is configured to limit unauthorized access to the digital
media and the processed digital media.

20. The at least on computer-readable media of claim 15,
where the protected media pipeline is configured to limit
unauthorized access to the digital media and the processed
digital media.



