发明名称
从西兰花籽中分离制备葡萄糖醛酸子苷的方法
摘要
本发明公开了一种从西兰花籽中分离制备葡萄糖醛酸子苷的方法。采用甲醇浸提西兰花籽中的硫苷；用萃取法对浸提得到提取物进行初步纯化，得到西兰花籽硫苷粗提物；以逆流色谱仪为分离设备，分离纯化西兰花籽花色苷粗提物中的葡萄糖醛酸子苷，其溶剂系统由常温常压下处于液态的正丁醇、乙腈、和10%硫酸铵水溶液组成，乙腈、正丁醇和10%硫酸铵溶液的体积比为0.5：2～4：1，本发明的方案成本较低、经济适用，分离所得葡萄糖醛酸子苷纯度在85%以上。
1. 从西兰花籽中分离制备葡萄糖耐敏子苷的方法，其特征在于以下步骤：
 (1) 采用甲醇溶剂浸提西兰花籽中的葡萄糖耐敏子苷，得到葡萄糖耐敏子苷提取液。
 (2) 将葡萄糖耐敏子苷提取液真空浓缩至含固形物。
 (3) 在上述浓缩液中加入适量的水，用乙酸乙酯萃取两次，脱脂为水相葡萄糖耐敏子苷；
 (4) 将葡萄糖耐敏子苷水相真空浓缩至糊状，再冷冻干燥，获西兰花籽葡萄糖耐敏子苷粗提物；
 (5) 采用逆流色谱方法分离纯化葡萄糖耐敏子苷粗提物；
 (6) 收集逆流色谱分离的葡萄糖耐敏子苷组分进行真空浓缩，直至固形物浓度达到 40% 以上，再采用冷冻干燥，得到纯化的葡萄糖耐敏子苷粉末。

2. 根据权利要求 1 所述从西兰花籽中分离制备葡萄糖耐敏子苷的方法，其特征在于步骤（1）所述的浸提过程是：采用甲醇浸提溶剂与西兰花籽的液料体积比为 5～10：1，条件为水浴加热，浸提时间 1 小时，浸提次数 2～3 次。

3. 根据权利要求 1 所述从西兰花籽中分离制备葡萄糖耐敏子苷的方法，其特征在于：步骤（2）、步骤（4）和步骤（6）所述真空浓缩的真空度低于 0.09Mpa，温度为 35～40℃。

4. 根据权利要求 1 所述从西兰花籽中分离制备葡萄糖耐敏子苷的方法，其特征在于：步骤（4）和步骤（6）所述冷冻干燥的真空度低于 50Pa，温度低于-35℃。

5. 根据权利要求 1 所述从西兰花籽中分离制备葡萄糖耐敏子苷的方法，其特征在于步骤（5）所述逆流色谱方法为：采用逆流色谱仪为分离设备，溶剂系统由常温常压下处于液态的正丁醇、乙腈、和 10%硫酸铵水溶液组成，乙腈、正丁醇和 10%硫酸铵的体积比为 0.5：2～4：1，硫酸铵水溶液的浓度为 10%，下相做固定相，上相做流动相；用泵将上述溶剂系统的上相注入逆流色谱仪的色谱柱，并取上述溶剂系统的部分下相溶解待粗提物制备逆流色谱样品溶液；开启逆流色谱仪和流动相输液泵，将样品溶液和流动相输入逆流色谱分离柱；用紫外-可见检测器检测逆流色谱流出液，根据所得的色谱图收集葡萄糖耐敏子苷组分。

6. 根据权利要求 1 所述从西兰花籽中分离制备葡萄糖耐敏子苷的方法，其特征在于：步骤（5）所述逆流色谱方法所用的逆流色谱仪为高速逆流色谱仪（HSCCC）或低速逆流色谱仪（SRCCC）。
说明书

从西兰花籽中分离制备葡萄糖菜菔子苷的方法

技术领域

本发明属于食品加工技术领域，涉及西兰花籽深加工技术，特别是从西兰花籽中分离制备葡萄糖菜菔子苷的方法。

技术背景

西兰花籽是我国的传统特产蔬菜，其风味独特，且具有很高的营养保健价值，含有丰富的营养物质和活性物质，硫代葡萄糖苷类化合物是其中最主要的一类活性成分。西兰花籽硫苷主要成分为葡萄糖菜菔子苷。国内外研究表明葡萄糖菜菔子苷具有抗氧化、抗癌、抗突变等生物活性，并对 DNA 分裂有保护作用和减轻眼睛的疲劳、提高夜间视力和改善视觉瞬间改变适应性。从西兰花籽分离制备葡萄糖菜菔子苷未有文献报道。

现有关于硫代葡萄糖苷的分离主要采用制备型高效液相色谱，其局限性是分离量少。其次，高效液相色谱柱价格昂贵、再生使用相对困难，分离得到硫代葡萄糖苷成本较高，难以发展成为制备量大的分离技术。

发明内容

本发明的目的是提供一种成本较低、经济适用的从西兰花籽中分离制备葡萄糖菜菔子苷的方法。

为实现上述目的，本发明采用以下技术方案：采用甲醇浸提西兰花籽中的硫苷；用蒸馏法对浸提出得到提取物进行初步纯化，得到西兰花籽硫苷原液；以逆流色谱仪为分离设备分离纯化西兰花籽色苷粗提物中的葡萄糖菜菔子苷，其溶剂系统由常温常压下处于液态的乙腈、正丁醇和 10%硫酸铵水溶液组成，乙腈、正丁醇和 10%硫酸铵的体积比为 0.5:2~4:1，水的用量应至少保证使溶剂系统上下相分层，硫酸铵水溶液的浓度为 10%。下相做固定相，上相做流动相。

以上方案按步骤叙述如下：
1. 采用甲醇溶剂浸提西兰花籽中的葡萄糖菜菔子苷，得到葡萄糖菜菔子苷提取液。
2. 将葡萄糖菜菔子苷提取液真空浓缩至含固形物；
3. 在上述浓缩液中加入适量的水，用乙酸乙酯萃取两次，脱脂为水相葡萄糖菜菔子苷；
4. 将葡萄糖菜菔子苷水相真空浓缩至糊状，再冷冻干燥，获西兰花籽葡萄糖菜菔子苷粗提物；
5. 采用逆流色谱方法分离纯化葡萄糖菜菔子苷粗提物；
6. 收集逆流色谱分离的葡萄糖蛋白子苷组分进行真空浓缩，直至固形物浓度达到 40%以上，再采用冷冻干燥，得到纯化的葡萄糖蛋白子苷粉末，纯度达 95%以上。

步骤（1）所述的浸提过程是：采用甲醇溶剂，浸提溶剂与西兰花籽的体积比为 5:10:1，条件为沸水浴，浸提时间为 1 小时，浸提次数 2~3 次。

步骤（2）、步骤（4）和步骤（6）所述真空浓缩的真空度低于 0.09Mpa，温度为 35~40℃。

步骤（4）和步骤（6）所述冷冻干燥的真空度低于 50Pa，温度低于-35℃。

步骤（5）所述逆流色谱方法为：采用逆流色谱仪为分离设备，溶剂系统由常温常压下处于液态的正丁醇、乙腈和 10%硫酸铵水溶液组成，乙腈、正丁醇和 10%硫酸铵的体积比为 0.5:2~4:1，水的用量应至少保证使溶剂系统上下相分层，硫酸铵水溶液的浓度为 10%，下相做固定相，上相做流动相；用泵将上述溶剂系统的下相注入逆流色谱仪的色谱柱，并取上述溶剂系统的部分上相溶解花色苷粗提物制备逆流色谱样品溶液；开启逆流色谱仪和流动相输液泵，将样品溶液和流动相输入逆流色谱分离柱；用紫外-可见检测器检测逆流色谱流出液，根据所得的色谱图收集葡萄糖蛋白子苷组分。

步骤（5）所述逆流色谱方法中的逆流色谱仪为高速逆流色谱仪（HSCCC）或低速逆流色谱仪（SRCCC）。

附图说明

图 1 为本发明的工艺流程图。
图 2 为实施例 1 的 HSCCC 分离图谱。
图 3 为实施例 1 分离所得的葡萄糖蛋白子苷的 HPLC 图谱。
图 4 为实施例 2 的 HSCCC 分离图谱。
图 5 为实施例 3 的 SRCCC 分离图谱。

具体实施方式

实施例 1

本实施例的溶剂系统采用乙腈:正丁醇:10%硫酸铵水溶液=0.5:3:1，硫酸铵水溶液浓度为 10%；逆流色谱仪为 HSCCC-D1000 高速逆流色谱仪，葡萄糖蛋白子苷粗提物中葡萄糖蛋白子苷约占 3.6%。

量取乙腈 500 ml、正丁醇 3000 ml 和 10%硫酸铵 1000 ml，置于 5000 ml 分液漏斗，充分摇匀，静置分层后，将上下两相分别装入试剂瓶。将下相以 40 ml/min 的流速注入高速逆流色
谱的色谱柱。称取葡萄糖类糖苷子苷粗提物 2.0 g 溶于 50 ml 下相中制备逆流色谱样品溶液，开启逆流色谱仪至 800 转/min，然后以 1.0 ml/min 的流速输入样品溶液，待进样结束后，再以 2.0 ml/min 的流速输入流动相以洗脱柱内的组分，用紫外可见检测器在 253nm 下检测逆流色谱流出液，根据检测器采集的图谱收集葡萄糖类糖苷子苷组分。分离得到葡萄糖类糖苷子苷组分 131 mg，纯度达 86%以上。

实施例 2

本实施例的溶剂系统采用乙腈:正丁醇:10%硫酸铵水溶液=0.5:2:1，硫酸铵水溶液浓度为 10%，逆流色谱仪为 HSCCC-D1000 高速逆流色谱仪，西兰花籽花色苷提取物中葡萄糖类糖苷子苷约占 6.6%。

量取乙腈 500 ml，正丁醇 2000 ml 和 10%硫酸铵 1000 ml，置于 5000 ml 分液漏斗，充分摇匀，静置分层后，将上下两相分别装入试剂瓶。将下相以 40 ml/min 的流速注入高速逆流色谱的色谱柱。葡萄糖类糖苷子苷粗提物 2.0 g 溶于 50 ml 下相中制备逆流色谱样品溶液，开启逆流色谱仪至 800 转/min，然后以 1.0 ml/min 的流速输入样品溶液，待进样结束后，再以 2.0 ml/min 的流速输入流动相洗脱柱内的组分，用紫外可见检测器在 253nm 下检测逆流色谱流出液，根据检测器采集的图谱收集葡萄糖类糖苷子苷组分。分离得到葡萄糖类糖苷子苷组分 130 mg，纯度达 88%以上。

实施例 3

本实施例的溶剂系统采用乙腈:正丁醇:10%硫酸铵水溶液=0.5:4:1，硫酸铵水溶液浓度为 10%，逆流色谱仪为 SRCCC-D40L 高速逆流色谱仪，西兰花籽花色苷提取物中葡萄糖类糖苷子苷约占 6.6%。

量取乙腈 20L，正丁醇 160 L 和水 40L，置于不锈钢桶中，充分搅拌匀，静置分层后，将上下两相分别装入试剂桶。将上相以 600 ml/min 的流速注入高速逆流色谱的色谱柱。称取葡萄糖类糖苷子苷粗提物 500g 溶于 18L 下相中制备逆流色谱样品溶液，开启逆流色谱仪至 80 转/min，然后以 5.0 ml/min 的流速输入样品溶液，待进样结束后，再以 15.0 ml/min 的流速输入流动相洗脱柱内的花色苷组分，用紫外可见检测器在 235nm 下检测逆流色谱流出液，根据检测器采集的图谱收集葡萄糖类糖苷子苷组分。分离得到葡萄糖类糖苷子苷组分 35.0g，纯度在 85%以上。
图 1

西兰花籽

甲醇浸提

浸提液

浸提液减压浓缩

浸提浓缩液

浓缩液脱脂

逆流色谱分离

葡萄糖菜菔子苷组分溶液

减压浓缩

葡萄糖菜菔子苷

真空干燥

葡萄糖菜菔子苷
图 2

图 3