[11] 3,764,569

[45] Oct. 9, 1973

[54]	DETERGE	ENT COMPOSITION	3,393,154 7/1968 Treitler
[75]	Inventors:	Wahid R. Ali; William R. Bryan, both of Pointe-a-Pierre, Trinidad	3,496,224 2/1970 Ayers 252/554 X
[73]	Assignee:	Texaco Trinidad, Inc., Pointe-a-Pierre, Trinidad And	Primary Examiner—Leon D. Rosdol Assistant Examiner—Bruce H. Hess Attorney—Thomas H. Whaley et al.
[22]	Filed:	Aug. 5, 1971	
[21]	Appl. No.:	169,505	[57] ABSTRACT
[52] [51] [58]	Int. Cl		Primary and secondary alkylsulfonates with carbon numbers lower than those which afford optimum de- tergency are used as hydrotropes in detergent formu- lations. These alkylsulfonates are linear, and have a
[56]	UNIT	References Cited TED STATES PATENTS	carbon content ranging from C ₇ to C ₈ inclusive.
3,011,	977 12/190	51 Raecke 252/554 X	5 Claims, No Drawings

This invention relates to novel hydrotropes suitable for incorporation in detergent compositions.

Hydrotropes are salts which effect substantially 5 greater solubility of slightly soluble substances than does water at the same temperature. This behavior is the opposite of the common salting - out effect following the addition of many electrolytes to aqueous solutions of numerous solutes.

Typical of hydrotropes salts are the alkali or alkaline earth salts of the sulfonates of toluene, xylene. The most generally used hydrotrope in detergents is sodium xylenesulfonate because it is inexpensive and effective sulfonate is shown in as a solvating agent. In the manufacture of heavy duty letergent powders they reduce the viscosity of the slurry before spray - drying. In heavy duty liquid detergents they may act as solubilizers and coupling agents or even as cloud point depressants.

determining the solution so that only little solid bon number distribut sulfonate is shown in optimum detergency.

Sulfonate Sample Hyor even as cloud point depressants.

In accordance with the present invention it has been 20 discovered that heptyl and octyl sulfonates can act as hydrotropes in detergent compositions when from 3 to 9 weight percent thereof are incorporated in such compositions.

The subject secondary alkyl sulfonates can be pre-2: pared by a sulfoxidation reaction disclosed and claimed in commonly assigned copending patent application Serial No. 40,740 filed on May 26, 1970.

In this reaction the C_T – C_8 n-paraffins alone or admixed are reacted with oxygen and sulfur dioxide under 30 substantially anhydrous conditions in the presence of acetic anhydride or of a low molecular weight acyloxide at temperature of about 25 oc to about 55 oc under pressures of 0 to 100 psig.

The primary alkylsulfonates can be prepared by a bisulfite reaction involving reacting the 1-olefin or 1-olefins with aqueous bisulfite in a mutual solvent under basic conditions at relatively low temperatures in the presence of an oxygen-containing initiator. This reaction is disclosed and claimed in commonly assigned copending application Serial No. 47,485 filed June 18, 1970

For optimum results, reaction conditions, falling within the scope of the above mentioned applications, have been ascertained.

Surprisingly for the same set of conditions, the short chain olefins require longer reaction periods (15-20 hours) than the longer chain olefins (n8 hours). The analysis of the paraffin feedstocks used to prepare the secondary sulphonates is shown in Table II. The sul- 50 phoxidation reaction was carried out in a stirred tank reactor at atmospheric pressure. Reaction Conditions are summarised in Table III, and it should be noted that considerable difference exists between the reaction rates of the C₇ and C₈ paraffins. This is probably due to 55 the large amount of impurities (mainly naphthenes) in the former sample (see Table II). Both the primary and secondary sulfonates have been analysed; the results are given in Table IV. Finally various surface active and detergent properties are summarised in Table V together with those of a linear alkylate sulfonate (Nacconol NF), included for comparison.

Viscosity measurements given below show that by incorporating 5 percent C₇ and C₈ alkylsulfonates, the viscosity of a 25 percent dodecylbenzene sulfonate solution (Nacconol NRSF) is reduced.

2

Sample				SSU at 100°F.
Naco	conol	NRSF (25%)		40
	44	+O-Xylene sulfon	ate (5%)	33
	"	+C, Primary	ii ii	34
	**	+C _e Primary	** **	33
	**	+C ₇ Secondary	** **	34
	**	+C ₈ Secondary	"	33

The solubilizing properties were determined by (Table A) measuring the solubility of a given C_{11} – C_{19} primary alkylsulfonate sample, as well as on blends of this sample and the hydrotrope under investigation. In determining the solubility, sufficient water was added so that only little solids remained un dissolved. The carbon number distribution of the C_{11} – C_{19} primary alkylsulfonate is shown in Table B. These compounds have optimum detergency.

TABLE A

	Sulfonate Sample	Hydrotrope (Sulfonate)	%Hydro- trope in blend	Solubility of blend at 30°
0	Mixture of C_{11} – C_{19} and C_{15} – C_{18}		oiciia	30
	Primary Sulfonate	Nil	Nil	4.3 g./100 ml
		O-Xylene	19	4.7 g./100 ml
	**	C ₇ -Primary	22	12.8 g./100 ml
	**	C ₈ -Primary	27	13.2 g./100 ml
_	**	C ₇ -Secondary	26	17.2 g./100 ml
.5	**	C _n -Secondary	23	16.8 g./100 ml

TABLE B

Carbon Number Distribution of C₁₁-C₁₉ Primary Alkylsulfonate

Gas Liquid Chromatography	
Identification	%
C ₁₁	3.5
C ₁₂	5.0
C ₁₃	5.5
C14	5.6
C ₁₅	13.7
C ₁₆	22.4
C ₁₇	21.6
C ₁₈	13.4
C ₁₉	6.3
C ₂₀	2.5
C ₂₁	0.5

TABLE I 1-OLEFIN BISULPHITE REACTION CONDITIONS

;	Reaction Temperature pH of Ammonium Sul Initiator:	60°C 8.3 t-butyl			
	D N	500(g)	C 1 (0)	500(0)	perbenzoate
	Run No.	520 ^(a)	517 ^(a)	522(6)	523
	Charge				
	Olefins, C No.	C_7	C _e	C_{12}	C ₇
	moles	1.0	1.0	0.5	0.5
	Sulphite, moles	1.0	1.0	0.5	0.5
•	volume, ml	620	620	310	310
	iso-Propanol, ml	620	620	310	310
	Reaction Time Hr	20	20	Q.	15

(a) — In order to prepare large samples, it was necessary to do several runs and combine the products. The runs shown here are typical ones. (b) — This run using \mathbf{C}_{12} olefins is included for comparison to illustrate the difference in reactivity due to carbon chain lengths.

TABLE II — ANALYSIS OF C₇ AND C₈ PARAFFINS USED IN SULPHOXIDATION

Gas Liquid Chromatography Identification	C ₇ Sample	C _n Sample
C _a	0.01	
i-C₄	0.01	
n-C ₄	0.06	
i-C ₅	0.06	
n-C ₅	0.08	
2-Methylpentane	0.09	
3-Methylpentane	0.04	
n-C ₆	0.22	
Methylcyclopentane	0.09	
Cyclohexane	0.07	
	Identification C ₃ i-C ₄ n-C ₄ i-C ₅ n-C ₅ 2-Methylpentane 3-Methylpentane	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

	3	
2-Methylhexane	1.67	
Unid	0.35	
3-Methylhexane	2.24	
Dimethylcyclopentanes	1.00	
i-C ₇	0	0.15
n-C ₇	91.98	0.42
Methylcyclohexane	0.55	
Unid	0.19	
i-C _s		1.16
n-C _s	0.30	93.46
i-C _o	_ '	3.02
n-C _e	. · 	1.79
Optical Density at 270 mu	0.06	0.1

TABLE III — N-PARAFFIN/SULPHOXIDATION REACTION CONDITIONS

Sulphoxidation Run No.	STR-77	STR-78
Paraffin Charge, C No.	n-C.	n-C ₇
Volume, mi	1000	1000
Reaction Temperature	35	35
SO_2/O_2 , 1/hr.	20/10	20/10
Recycle Rate, 1/hr.	2	- 2
Product Formation, g./hr.	100-110	45-50

TABLE IV — ANALYSIS OF C₇ AND C₈ **ALKYLSULPHONATES**

Sample Description:

Source n-Paraffi	n/Sulphoxida	ation	1-Olefii	n/Bisulphite
Carbon No. RS No.	C, 1122/70	C ₈ 1123/70	C ₇ 917/70	C _s 918/70
Sulphonate Content, %-wt.	81	79	79	85
Sulphate Content,	19	21	21	15
%-wt. Monosulphonate				
Content, %-mole				
(Sulphate-free basis)	76	63	90 .	93

A suitable range of detergent constituents employing the hydrotropes of this invention comprises.

Hydrotropes - 20 to 30 weight percent, based on the total active matter content

Detergent - 15 to 30 g. per 100 wt. solution (Na alkyl sulfonate)

Foam stabilizer (fatty acid alkylolamide) - 0 to 5 g. per 100 wt. solution used (as required)

Water - balance.

More specific detergent formulations are the following (Na salts): (in parts by weight)

5	Active Matter (eg L C ₇ Primary alkylsulp	AS)	A 25 5	B 25	C 25	D 25
	C _B Primary	**		5		
	C ₇ Secondary	**			5	
	C ₈ Secondary	**			3	. 5

A suitable method for determining whether the described hydrotropes are biodegradable is not available. The Soap and Detergent Association method of analysis is insensitive to C7-C8 and other short chain alkylsulfonate. However, as the alkyl chains are linear, the 15 compounds are probably biodegradable.

What is claimed is:

1. A detergent composition consisting of about 3 to 9 weight percent of a C₇ or C₈ linear alkylsulfonate as a hydrotrope, from 15 to 30 weight percent of linear 20 alkylsulfonate detergent having 11 to 19 carbon atoms in the alkyl moiety, up to 5 wt. percent of a fatty acid alkylolamide foam stabilizer and the balance water.

2. A composition according to claim 1 containing about 5 parts by weight of a C₇ primary alkylsulfonate and about 25 parts by weight of a linear alkylsulfonate having a carbon content in the C_{11} - C_{19} range.

3. A composition according to claim 1, containing about 5 parts by weight of a C₇ secondary alkylsulfonate and about 25 parts by weight of a linear alkylsulfonate having a carbon content in the C11-C19 range.

4. A composition according to claim 1 containing about 5 parts by weight of a C₈ secondary alkylsulfonate and about 25 parts by weight of a linear alkylsulfonate having a carbon content in the C₁₁-C₁₉ range.

5. A composition according to claim 1 containing about 5 parts by weight of a C₈ primary alkylsulfonate and about 25 parts by weight of a linear alkylsulfonate having a carbon content in the C₁₁-C₁₉ range.

45

40

50

55

60