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RESONANT MICROCAVITIES EMPLOYING ONE-
DIMENSIONAL PERIODIC DIELECTRIC WAVEGUIDES
BACKGROUND OF THE INVENTION

In the past decades, the semiconductor laser has come
to play a critical role in numerous applications including
optical information storage and retrieval (e.g. CD players),
lightwave communication (e.g. optical fibers), and computer
input/output. Typical semiconductor lasers are nearly 200um
in length and the lateral mode area is approximately a
square micron. This results in nearly 100 longitudinal
modes within the spectral bandwidth of the laser gain
medium. As a result, many modes can reach lasing threshold,
leading to multimode oscillations. 1In order to increase the
relative gain differences between the various modes, a
frequency-selective loss can be introduced by building a
corrugated structure inside the laser cavity. The modes
closest to the Bragg wavelength of the grating will have the
lowest losses and will build up. This is known as a
distributed feedback (DFB) laser.

Single-frequency lasing can be obtained by
incorporating a phase shift (or defect) in the grating of
the DFB laser, as shown in Fig. 1lA. Fig. 1A shows a cross-
sectional view of a DFB laser 100 with a single phase slip

102 at the center. The DFB laser is configured with a
substrate 104 and a grating layer 106 made with two
dielectric materials. The grating pattern includes the

aforementioned single phase slip or defect. A gain region
108 with impurity atoms and a cladding layer 110 for
isolation are also provided. Although the phase shift has
the effect of confining the field around the defect, the
confinement is very weak, as shown in Fig. 1B. Fig. 1B
shows a plot of the intensity as a function of the axial
position in the DFB laser. The parameter xL is known as the
coupling parameter and increases as a function of the depth
of the corrugation. The intensity is in arbitrary units.
Mirrors of a DFB laser (or any semiconductor laser) are
normally formed simply by cleaving the end faces of the
crystal. The two faces are cleaved along the same
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crystallographic planes which results in a parallel-plane
resonator which is at the limit of the geometric stability
conditions of lasers. This partly accounts for the typical
lack of stability of the output mode in semiconductor
lasers. Furthermore, each interface between the
semiconductor and air has roughly a 30% reflectivity. These
high losses, in conjunction with the large dimensions of the
laser, result in very large input thresholds required to
operate semiconductor lasers. In order to increase the
reflectivity at each interface, multilayer dielectric films
can be deposited on the end faces. However, this process
involves laborious and expensive manipulations since each
jaser must be separated from the others and direct
integration on a substrate becomes impossible.

In order to solve most of these problems, researchers
have developed laser cavities whose dimensions are on the
order of the wavelength of the emitted light. These
microcavities have dimensions of microns or fractions of
microns. The first such device was introduced in the late
1980‘'s. It is called the vertical cavity surface emitting
laser (VCSEL) 200 and is shown in Fig. 2A. It is made of
two multilayer dielectric quarterwave mirrors 202, 204
separated by a material 206 of index n and thickness A/n.
The gain medium is often made of one or several quantum
wells 207 placed in the layer of index n at the peak of the
resonant mode electric field. For wavelengths around 1 and
1.5um, typical dimensions are 5-10um in diameter and several
microns in height. Although there is only one longitudinal
mode within the gain spectral bandwidth, there are other
modes in the plane of the gain region transverse to the axis
of the VCSEL. Furthermore, the overlap of the resonant mode
and the gain quantum layer is very low since the field
extends deeply into the multilayer mirrors. In spite of the
advantages of the VCSEL over typical semiconductor lasers,
the most significant drawback of these devices is their
vertical position and vertical emission 208 on the substrate
which limits significantly their usefulness in
optoelectronic integrated circuits (OEICs).
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Another microlaser design was introduced in the early
1990’s and is known as the microdisk laser 210 as shown in
Fig. 2B. As its name indicates, it is made of a small high-
index disk 212 supported by a post 214. The disk diameter
is typically between 2 and 10um and its thickness is around
0.25um. The gain medium is made of one or several guantum
layers 217 placed in the center of the disk. Since the
resonant mode 216 can be strongly confined in the disk, its
overlap with the gain material can be much larger than that
of the VCSEL. The dominant resonant mode is called a
whispering-gallery mode since it propagates around the edge
of the disk with 1low 1losses due to total internal
reflection. However, the resonant mode can "leak out"
anywhere along the edge of the disk. This limits
significantly the coupling efficiency of the microdisk since
only a small fraction of the output light can be coupled
into a wavegquide.

Although the fabrication of the microdisk does not
require the growth of several dielectric layers, which
should make its fabrication easier than that of the VCSEL,
the resonant imperfections can significantly affect the
whispering-gallery mode and reduce the lasing efficiency of
the microdisk. The lasing efficiency is further reduced by:
the presence of two counter-propagating modes at the disk
edge which competes for spontaneous emission, by the
presence of external modes propagating orthogonally through
the disk which may overlap the emission spectrum and compete
with the lasing mode for spontaneous emission, and by the
emission from the central region of the disk.

SUMMARY OF THE INVENTION

The present invention provides a resonant microcavity
which includes a periodic dielectric waveguide, and a local
defect in the periodic dielectric waveguide which
accommodates spacial confinement of radiation around the
defect.

In an alternative embodiment, the present invention
provides a method of enhancing radiation confinement within




WO 96/11516 PCT/US95/12303

10

15

20

25

30

35

- 4 -

a resonant microcavity and minimizing radiation losses into
an associated substrate, the microcavity configured within
a periodic dielectric waveguide as a local defect which
exhibits spacial radiation confinement, the method including
the step of increasing the refractive index contrast between
the microcavity and the substrate.

This present invention provides a new class of resonant.
microcavities which combine the best features of all the
state-of-the-art integrated resonant cavities into one.
These new microcavities contain an electromagnetic mode
whose field is very strongly confined within the cavity.
They are integrated in the plane of the substrate which
allows for direct coupling into optoelectronic integrated
circuits without the need of any additional device. The
microcavities will allow for the fabrication of high density
and high speed optical interconnects, ultra-low threshold
microlasers and LED’s, and will also allow for the
enhancement of spontaneous emission. They employ one-
dimensional periodic dielectric waveguides to confine light
along all three dimensions in space.

The microcavities of the present invention contain an
electromagnetic mode which can lead to very high gquantum
efficiencies since all the spontaneous emission will be
funneled into just one mode. These new microcavities also
give rise to strong field confinement within the cavities.
The overlap of the resonant mode and the gain medium should
be very large and should lead to the enhancement of
spontaneous emission. By concentrating the electric field
fluctuations into a small volume, the recombination rate of
carriers is increased allowing the microcavities to be
modulated at very high speeds.

Furthermore, the microcavity design of the present
invention is very small, hence a large number of them can be
integrated onto a single optical chip. Their small size
combined with their high efficiency will allow them to be
operated at very low thresholds. Yet one of the most
significant advantages of the microcavities of the present
invention is their ability to be integrated directly into
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OEICs. The devices allow light to be coupled directly in
and out of a waveguide with very high degrees of efficiency.
In addition, deviations arising in the fabrication process
should not affect significantly their efficiency. Finally,
even without the presence of gain in these devices, they
would still behave as single mode thresholdless light-
emitting diodes. Either with or without gain, the devices
could be pumped optically or electrically.

BRIEF DESCRIPTION OF THE DRAWINGS
Figs. 1A and 1B respectively show a cross-sectional
view of a conventional DFB laser with a single phase defect
at the center, and a plot of the intensity as a function of
the axial position in the DFB laser;
Figs. 2A and 2B respectively show a conventional

vertical cavity surface emitting laser, and a conventional
microdisk laser construction;

Fig. 3A shows a conventional rib waveguide on a
substrate; Fig. 3B shows a one-dimensional periodic
dielectric microcavity in accordance with the present
invention; Fig. 3C shows the waveguide microcavity of Fig.
3B in a bridge configuration in accordance with the present
invention;

Figs. 4A and 4B respectively show an alternative
embodiment of a waveguide microcavity positioned on a
substrate and in a bridge configuration in accordance with
the present invention; Figs. 4C and 4D show two steps of
fabrication process of the bridge configuration of Fig. 4B;
Figs. 4C and 4D show computed power graphs as a function of
position;

Figs. 5A and 5B respectively show a wavegquide
microcavity and substrate configured with a dielectric layer
therebetween, the layer having a width which is greater than
that of the microcavity, and a width which is smaller than
that of the microcavity; Fig. 5C shows a microcavity
fabricated by etching away part of the dielectric layer; and

Figs. 6A and 6B respectively show a waveguide
microcavity configured from a periodic array of dielectric
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rods with an oversized intermediate rod, and a waveguide
microcavity configured with a dielectric rib with holes
disposed through the sides thereof.

DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS
The resonant microcavities of the present invention are
formed by using a conventional planar optical waveguide
geometry with a strong periodic variation of the dielectric

constant along the axial direction of the waveguide. As
described above, the microcavities have dimensions of
microns or fractions of microns. The planar resonant

microcavities allow for in-plane coupling along the surface
of a substrate on which it is constructed.

For simplicity of illustration, a conventional rib
waveguide 300 is shown in Fig. 3A. The waveguide is made of
one or more layers of a high-index of refraction material,
which lies on a substrate 302 with a lower refractive index.
The waveguide confines the radiation along both the y and z
directions. Radiation can be further confined along the x
direction by adding a periodic variation of the dielectric
constant along that axis. The microcavity is formed by
breaking the perfect periodicity along the x-axis hence
forming a local defect which can lead to strong spacial
confinement of the radiation around the defect in order to
generate a single electromagnetic mode. It will Dbe
appreciated that multimode operations are possible with the
same device configuration. The electromagnetic mode is
localized around the defect within a few periodic distances.
Local defects can be made, for example, by putting a phase
shift in the periodic structure along the x-axis or by
adding a different material locally in the waveguide.

The waveguide microcavity 304 in accordance with the
present invention is shown in Fig. 3B. The one-dimensional
periodic structure is depicted by the alternating dielectric
regions 306, 308 along the x-axis and the defect 310 is
shown in a central location. In order to get good radiation
confinement into the microcavity (i.e. minimum leakage into
the surrounding medium) it is essential that the index
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contrast between the waveguide 304 and the substrate 302 be
as large as possible. Si waveguides on a SiO, substrate
would offer excellent index contrasts. Other materials such
as GaAs and AlGaAs can be used in the fabrication of the
waveguides but they would need to be grown on a substrate
with a low dielectric constant. Ge waveguides on a GaAs
substrate could also be used but the index contrast would be
smaller.

One particularly advantageous technique of increasing
the index contrast is to suspend a waveguide 312 with
alternating dielectric index materials in air in such a
manner that the microcavity is completely surrounded by air
as shown in Fig. 3C. The "air bridge" suspension can be
achieved by the use of fabricated support members 314, 316
described in more detail hereinafter. This suspension has
the effect of minimizing the radiation losses into the
substrate.

More specific embodiments of the waveguide
microcavities of the present invention are now described.
An exemplary embodiment of a microcavity 400 is shown in
Fig. 4A. The microcavity is fabricated by creating a
periodic array of holes 404 into the top surface of a rib
waveguide 402. The rib waveguide can be made of one or more
layers of different materials. A local defect 406 is added
by separating two of the holes by a distance larger than
that which separates the other holes.

In this exemplary embodiment, the cross-section of the
holes is circular, however, other coﬁ%igurations are
possible. The different parameters of this microcavity are:
the width w and height h of the rib waveguide, the radius r
of the holes, the distance a from center to center of each
hole, the size d of the defect, and the number of holes on
each side of the defect. Since the microcavity can be
scaled to any wavelength simply by scaling these parameters,
it is convenient to choose one of the parameters and scale
every other with respect to it. In the exemplary embodiment
illustrated, every parameter is chosen to be scaled with

respect to a.
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The waveguide of the present invention is grown
directly onto a substrate, but the radiation leakage into
this substrate will reduce the confinement efficiency of the
microcavity. In order to minimize these losses, it is
desirable to reduce the contact area and increase the index
contrast between the microcavity and the substrate. As
mentioned above, one way of increasing the index contrast is
to suspend the microcavity in air. A specific exemplary
embodiment of a microcavity 408 is shown in Fig. 4B using
fabricated layers of GaAs and AlGaAs. A layer 410 of
Al, (Ga, ,As is grown on a GaAs substrate 412, and thereafter
a waveguide 414 is then grown over this layer wusing
Al, ,Ga, ,As. By selectively etching away the Al, ,Ga, ,As from
under the microcavity leaving space 416, the microcavity
itself is suspended in air. One exemplary method of
fabricating space 416 is shown in Figs. 4C and 4D. Layers
410 and 414 are grown on the substrate 412 and both layers
are etched as shown in Fig. 4C where the ends are wider than
the center. Layer 410 is selectively etched away until the
central part is entirely removed, leaving space 416 as shown
in Fig. 4D. The ends of waveguide 414 can then be tapered
down to any shape with an additional etching step. Although
the illustrated example utilizes GaAs and AlGaAs in Fig. 4B,
it will be appreciated by those of skill in the art that the
bridge configuration can alternatively be made with any
material strong enough to support itself. For example, a Si
waveguide on Si0, is another alternative material
construction.

The bridge configuration accommodates very high degrees
of confinement within the microcavity along every direction.
Figs. 4E and 4F respectively show exemplary graphs of the
computed power of the resonant mode in the suspended
microcavity as a function of position in the xy-plane (at z
= 0) and the yz-plane (at x = 0). The coordinate system is
centered in the defect. The exemplary waveguide microcavity
was assumed to be made of a material with a dielectric
constant of 12.096 with the following parameters: w = l.la,
h = 0.4a, r = 0.3a and d = 1.9a, where d is the distance
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from center to center of the holes on either side of the
defect. Furthermore, three and a half holes on either side
of the defect were used in the illustrated computations. 1In
the specific case where the microcavity is operated at a
wavelength of 1.5um, the lattice constant a would be equal
to 0.5um.

Another technique of the present invention to reduce.
the losses into the substrate is to grow an extra dielectric
layer between the substrate and the microcavity. Several
exemplary embodiments of this design are shown in Figs. 5A-
5C. The thickness H and the width W of the additional layer
can be adjusted in order to minimize radiation leakage into
the substrate. In Fig. 5A, a dielectric layer 500 is
positioned between a waveguide microcavity 502 and substrate
504. The width of the layer 500 is greater than that of the
waveguide, whereas the width of the layer 500’ is smaller in
the configuration of Fig. 5B.

One technique of fabricating the microcavity shown in
Fig. 5B is to grow the dielectric layer 500’ onto the
substrate 504’ and then grow the waveguide microcavity 502’

onto the layer 500’. By selectively etching part of the
dielectric 1layer from underneath the waveguide, the
resulting device is shown in Fig. 5C. Although the

dielectric layer 500" is preferably made out of a different
material (with a smaller dielectric constant) than that of
the substrate 504", it can also be made of the same
material. Since materials like Si and GaAs are often used
as substrates and since these materials have high dielectric
constants, it becomes necessary to separate the microcavity
from the substrate with a material of smaller dielectric
constant.

Another alternative technique of increasing the
radiation confinement into the microcavity is to increase
the depth of each hole 506 through the waveguide 502 and
into the dielectric layer 500 as shown in Fig. 5A. The
holes can further be extended into the substrate 504. This
approach can be applied to any embodiment, including the

ones shown in Figs. 5B and 5C.
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Although the radiation confinement in the microcavity
increases with the number of holes, the coupling efficiency
into the waveguide decreases. When a large number of holes
are used on either side of the defect, there is barely any
radiation leaking out into the waveguide. In order to
couple light in and out of the microcavity, the number of
holes on one side of the defect can be reduced without
affecting significantly the confinement efficiency of the
device. As a result, microcavities with both excellent
field confinement and excellent coupling into the waveguide
are fabricated.

Fig. 6A shows another exemplary embodiment of a
waveguide microcavity 600 which includes an array of long
dielectric rods 602 fabricated on a substrate 604. The
array of rods behaves 1like a one-dimensional periodic
waveguide. Although the rods are illustrated with a square
cross-section, it will be appreciated by those of skill in
the art that the rods can be of any shape. The local defect
is made of a single oversized rod 606, shown positioned in
the center of the array. Radiation is strongly confined
around this defect. However, stronger confinement can be
achieved in the structure shown in Fig. 6B. The waveguide
microcavity 608 of Fig. 6B is similar in structure to the
embodiments shown in Figs. 4 and 5 with a substrate 610 and
dielectric layer 612, except that the waveguide dielectric
rib 614 rests on its side at a 90° angle, with holes 616
going through parallel to the surface of the substrate.
This structure is grown in stages by etching square grooves
and by backfiling them with a material which is eventually
removed after having grown the top part of the structure.
Therefore, instead of ending up with circular holes, the
holes 616 are square.

Lasing is achieved in all of the described embodiments
simply by adding a gain medium in or in the vicinity of the
defect. Since the field is very strongly confined around
that area, the overlap of the resonant mode and the gain

medium would be very large.
The waveguide microcavities described herein combine
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the best properties of microlasers while having the ability
of being coupled directly into planar waveguides. The
devices are interesting candidates for high-density high-
speed planar integrated optical interconnects and could play
a very significant role in systems such as optical
computers.

The foregoing description has been set forth to
illustrate the invention and is not intended to be limiting.
Since modifications of the described embodiments
incorporating the spirit and substance of the invention may
occur to persons skilled in the art, the scope of the
invention should be limited solely with reference to the
appended claims and equivalents thereof.

What is claimed is:
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CLAIMS

1. A resonant microcavity comprising:

a planar periodic dielectric waveguide; and

a defect in said periodic dielectric waveguide which
accommodates spacial confinement of radiation generated
within said waveguide around said defect.

2. The microcavity of claim 1, wherein said waveguide

2 is supported by a substrate, said substrate providing a
3 refractive index contrast with said waveguide.

3. The microcavity of claim 2, wherein a dielectric

2 layer is disposed between said waveguide and said substrate

w

BoWw NN

in order to minimize radiation losses into said substrate.

4. The microcavity of claim 1, wherein said waveguide
is suspended in air in a bridge configuration between
substrate supports such that said defect is surrounded by

air.

5. The microcavity of claim 2, wherein said waveguide

2 comprises an array of holes provided therein for

w

B W N

oW N -

-

periodicity.

6. The microcavity of claim 5, wherein said local
defect comprises a separation of two of said holes by a
distance larger than that which separates the remaining

holes in said array.

7. The microcavity of claim 6, wherein said holes are
disposed perpendicular with respect to the surface of said
substrate so as to produce an electromagnetic mode localized

around said defect.

8. The microcavity of claim 7, wherein a dielectric

2 layer is disposed between said waveqguide and said substrate,
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3 said holes extending through said waveguide and into said
4 dielectric layer in order to minimize radiation losses into
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-

said substrate.

9. The microcavity of claim 5, wherein said holes are
disposed parallel with respect to the surface of said
substrate so as to produce an electromagnetic mode localized

around said defect.

10. The microcavity of claim 2, wherein said waveguide

2 comprises an array of rods extending therefrom for

[ VS I S B

O W 0 N & U bW N =

=

—t

periodicity.

11. The microcavity of claim 10, wherein said local
defect comprises a rod of a different size or dielectric
constant in said array which produces an electromagnetic
mode localized around said defect.

12. A resonant microcavity which exhibits an
electromagnetic mode for use in a microlaser, comprising:

a planar one-dimensional periodic dielectric waveguide
which confines radiation generated therewithin along all
three dimensions in space, said waveguide having a periodic
variation of dielectric constant along its axial direction;
and

a local defect disposed in said periodic dielectric
waveguide which accommodates spacial confinement of
radiation around said defect.

13. The microcavity of claim 12, wherein said

2 waveguide is supported by a substrate, said substrate

providing a refractive index contrast with said waveguide.

14. The microcavity of claim 13, wherein a dielectric

2 layer is disposed between said waveguide and said substrate
3 in order to minimize radiation losses into said substrate.

15. The microcavity of claim 12, wherein said
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waveguide is suspended in air in a bridge configuration
between substrate supports such that said local defect is

surrounded by air.

16. The microcavity of claim 13, wherein said
waveguide comprises an array of holes provided therein for

periodicity.

17. The microcavity of claim 16, wherein said local
defect comprises a separation of two of said holes by a
distance larger than that which separates the remaining

holes in said array.

18. The microcavity of claim 17, wherein said holes
are disposed perpendicular with respect to the surface of
said substrate so as to produce said electromagnetic mode
localized around said local defect.

19. The microcavity of claim 18, wherein a dielectric
layer is disposed between said waveguide and said substrate,
said holes extending through said waveguide and into said
dielectric layer in order to minimize radiation losses into

said substrate.

20. The microcavity of claim 16, wherein said holes
are disposed parallel with respect to the surface of said
substrate so as to produce said electromagnetic mode
localized around said local defect.

21. The microcavity of claim 13, wherein said

2 waveguide comprises an array of rods extending therefrom for

3 periodicity.

B W N

22. The microcavity of claim 21, wherein said local
defect comprises a rod of different size or dielectric
constant in said array which produces said electromagnetic
mode localized around said local defect.
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23. A method of enhancing radiation confinement within
a resonant microcavity and minimizing radiation losses into
an associated substrate, said microcavity configured within
a planar periodic dielectric waveguide including a 1local
defect which exhibits spacial radiation confinement, said
method comprising:

increasing the refractive index contrast between said

microcavity and said substrate.

24. The method of claim 23, wherein said step of
increasing comprises suspending said microcavity in air in
a bridge configuration so that said microcavity is

surrounded by air.

25. The method of claim 23, wherein said step of

2 increasing comprises providing a dielectric layer between

said waveguide and said substrate.

26. The method of claim 23, wherein said waveguide

2 comprises an array of holes therein for periodicity.

27. The method of claim 26, wherein said step of

2 increasing comprises increasing the number of holes in said

w

B W N =

0 N o bW N

array.

28. The method of claim 23, wherein said step of
increasing comprises increasing the depth of each hole of an
array of holes provided in said substrate for periodicity

into said dielectric layer.

29. A method of producing a resonant microcavity with
enhanced radiation confinement, comprising:

providing a substrate;
forming a periodic waveguide on and parallel to the

plane of said substrate;
forming a local defect in said periodic waveguide which

accommodates spacial confinement of radiation generated
within said waveguide around said defect;
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9 removing said substrate from beneath said local defect
10 so as to produce a bridge configuration in which said defect

11 is surrounded by air.
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