PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau -

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5.

(11) International Publication Number:

WO 92/16905

Al
(G;gng; 115973% 15746, 15/5 {43) International Publication Date: 1 October 1992 (01.10.92)
(21) International Application Number: PCT/US92/02179 | (81) Designated States: AT, AT (European patent), AU, BB, BE

(22) International Filing Date: 17 March 1992 (17.03.92)

(30) Priority data:

671,117 us

18 March 1991 (18.03.91)

(71) Applicant: ECHELON CORPORATION [US/US]; 4015
Miranda Avenue, Palo Alto, CA 94304 (US).

(72) Inventors: DOLIN, Robert, A., Jr. ; 700 Wallea Drive,
Menlo Park, CA 94025 (US). EINKAUF, Robert, L. ;
636 Pinot Blanc Way, Fremont, CA 94539 (US). RILEY,
Glen, M. ; 918 Bicknell Road, Los Gatos, CA 95030
(US).

(74) Agents: TAYLOR, Edwin, H. et al.; Blakely, Sokoloff,
Taylor & Zafman, 12400 Wilshire Boulevard, 7th Floor,
Los Angeles, CA 90025 (US).

(European patent), BF (OAPI patent), BG, BJ (OAPI
patent), BR, CA, CF (OAPI patent), CG (OAPI patent),
CH, CH (European patent), CI (OAPI patent), CM
(OAPI patent), DE, DE (European patent), DK, DK
(European patent), ES, ES (European patent), FI, FR
(European patent), GA (OAPI patent), GB, GB (Euro-
pean patent), GN (OAPI patent), GR (European pa-
tent), HU, IT (European patent), JP, KP, KR, LK, LU,
LU (European patent), MC (European patent), MG, ML
(OAPI patent), MR (OAPI patent), MW, NL, NL (Euro-
pean patent), NO, RO, RU, SD, SE, SE (European pa-
tent), SN (OAPI patent), TD (OAPI patent), TG (OAPI
patent).

Published
With international search report.

(54) Title: PROGRAMMING LANGUAGE STRUCTURES FOR USE IN A NETWORK FOR COMMUNICATING, SEN-

SING AND CONTROLLING INFORMATION

(57) Abstract

An improved programming interface (501, 502, 503, 504,
505, 506) which provides for event scheduling improved variable
declarations allowing for configuration of declaration parame-
ters (1101, 1102, 1103, 1104) and improved handling of 170 ob-
jects (1201, 1202, 1203, 1204, 1205). Known computing devices
allow for event scheduling based on the occurrence of a prede-
fined event. However, such a system presents shortfalls in that
flexibility is not provided to allow scheduling based on any ar-
bitrary condition. Programs which run on such computing de-
vices typically declare one or more variables; such variables hav-
ing one or more parameters associated therewith. The present
invention provides flexibility in allowing the states of the par-
ameters to be changed, for example at the time a network imple-
menting the computing device is configured. Additionally, it is
disclosed to have improved declaration and control of 1/0 de-
vices (115, 116, 117, 131, 132) providing for ease of use anf flex-
ibility. ,

applications under the PCT.

AT
Al
BB
BE
BF
BG
BJ

BR
CA
CF
cG
CH
(]

CM
Cs

DE
DK

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the fiont pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina baso
Bulgaria

Benin

Brazil

Canada
Centeal African Republic
Congo
Switzetland
Cote d’lvoire
Cameroon
Crechostovakia
Germany
Denmark
Spain

Fl

FR
GA
GB

GR
HU
IE

JP
KP

KR
LI
LK
LU
MC
MG

Fialand

France

Gabon

United Kingdom
Guinca

Greeee

Hungary

Ireland

ltaly

Japan

Democratic People’s Republic
of Kourea

Republic of Korea
Licchtenstein

Sri Lanka
Luaembourg
Monaco
Madagascar

ML
MN
MR
MW
NL
NO
PL
RO
RU
SD
SE
SN
suU
TD
TG
us

Mali

Mongolia
Mauritania

Malawi
Netherlands
Norway

Poland

Romania

Russian Federation
Sudan

Sweden

Scuegal

Soviet Union

Chad

Togo

United States of America

&

WO 92/16905 ' PCT/US92/02179

© WOV 0 I A N DA W N -

MNNN.—IHHH.—-HH‘HHH
W N = O WV 0N A W AW N e

1
PROGRAMMING LANGUAGE STRUCTURES FOR USE IN A NETWORK
FOR COMMUNICATING, SENSING AND CONTROLLING INFORMATION

BACKGROUND OF THE INVENTION

1. FIELD OF THE INVENTION
The present invention relates to the field of systems for distributed computing,
communication and control and, more specifically, communication of information between

devices in a distributed computing environment.

2. DESCRIPTION OF THE RELATED ART

In distributed computer systems it is necessary to provide for communication of
information between nodes in the system. A number of methods for providing such
communication are known in the art.

These methods include message passing techniques in which messages are passed,
over a medium, from one node to another in a network. In message passing techniques,
messages are built by a sender node and sent to one or more receiver nodes. The mcssagc.
is then parsed by the receiver node in order to correctly interpret the data. Message passing
allows the advantage of passing large amounts of data in an exbected format. Of course,
over time the format of the message may be required to change to support new applications
or features. This typically leads to compatibility issues between nodes on the network.

A second technique involves remote procedure calls in which a first node, requiring
data which exists on a second node, calls a procedure executing on the second node where
the data exists and requests the procedure to manipulate the data and provide a result to the
first node. Remote procedure calls are typically suited to passing small amounts of data;
however, a separate procedure cali 1s typically required for each interchange. Therefore, it

WO 92/16905) PCT/US92/02179

2

is likely in any networking system that over time additional procedure calls will be required
in the network as new functions are carried out by the network. The addition of new
procedure calls to certain nodes of the network leads to incompatibility between nodes,
because the existing nodes do not know of and cannot execute the new remote procedure
calls.

A third technique for communication of data in a network involves data sharing.
Bal, Henri E,, Steiner, Jennifer G., and Tanenbaum, Andrew S., Programming Languages
for Distributed Computing Systems, ACM Computing Surveys, Vol. 21, No. 3,
September, 1989, pp. 261-322 (hereinafter Bal et al.) describes certain data sharing
techniques. A discussion of data sharing may be found in the Bal et al. article at pages
280, et seq. (It should also be noted that a discussion of messaging may be found in the
Bal et al, article at pages 276, et seq. along with a general overview of interprocess
communication and synchronization.)

Bal et al. describes how parts of a distributed program can communicate and

synchronize through use of shared data. Bal et al. states that, if two processes have access

to the same variable, communication can take place by one processor setting the variable
and the other processor reading the variable. This communication is described as being
allowed to take place whether the two processors are both running on a host where the
shared data is stored and thus can manipulate the shared data directly, or if the processes
are running on different hosts and access to the shared data is accomplished by sending a
message to the host on which the shared data resides.

Two types of shared data are described: (1) shared logical variables; and (2)
distributed data structures. Briefly, shared logical variables are described as facilitating a

WO 92/16905 ' PCT/US92/02179

00 N O A W N e

10
11
12
13
14
15
16
17
18
19
20
21
22
23

3

communication channel between processes through a "single-assignment” property.
Initially, a shared logical variable is unbound, but once a value is assigned to the variable
the variable is considered to be bound. An example is provided in which the three goals of
conjunction: |

goal_1(X,Y), goal 2(X,Y), andgoal_3(X)

are assumed and solved in parallel by processes P1, P2 and P3. The variable X is
initially unbound and represents a communication channel between the three processes. If
any of the processes binds X to a value, the other processes can use this value. Likewise,
Y is a channel between P1 and P2. Processes synchronize by suspending on unbound
variables. For example, if Y is to be used to communicate information from P1 to P2, then
P2 may suspend until Y is bound by P1.

It should be emphasized that in the described concept of shared logical variables,
the term binding is used to describe a process of assigning a value to a variable. As will be
seen below, the term binding is also used to describe the present invention, however, the
meaning of the term is significantly different and the reader is cautioned to avoid confusion
between the concepts represented by these two uses of this term. Generally, in the present
invention, the term binding is used to indicate a process of associating a variable of one
node with a variable of at least one other node. It is not necessary that the variable of either
node has yet been assigned a data value.

Distributed data structures are data structures which may be manipulated
simultaneously by several processes. In concept, all processes share one global memory
termed "tuple space” or TS. The elements of TS are ordered sequences of values, similar
to records in a language such as Pascal. Three operations may take place on TS: (1)

PCT/US92/02179

WO 92/16905
4
1 "OUT" adds a tuple to TS; (2) "READ" reads a tuple from TS; and (3) "IN" reads a tuple
2 from TS and deletes it from TS. Thus, in order to change the value of a tuple in TS it is
' 3 necessary to first perform an IN operation, then to manipulate the data, and then perform an

4 OUT operation. The requirement that a tuple must first be removed by the IN operation

5 makes it possible to build distributed systems without conflict between accesses by the

6 various processes.

7 Bal et al. contrasts distributed data structures with interprocess communication

8 techniques noting that communication accomplished by distributed data structures is

9 anonymous. A process reading a tuple from TS does not know or care which other
10 process inserted the tuple. Further, a process executing an OUT does not specify which
11 process the tuple is intended to be read by.
12 Bal et al, states that in concept distributed data structures utilizing the tuple space
13 implement conceptually a shared memory, although in implementation a physical shared
14 memory is not required. However, as can be seen, in a system utilizing such distributed
15 data structures a single copy of the data is stored in tuple space whether or not such tple
16 space is implemented as a single physical shared memory. Separate copies of the data are
17 not maintained for the various processes or on the various hosts. In fact, maintaining
18 separate copies would lead to data conflict possibilities as the various nodes attermpted to
19 coordinate updates of the variable between the various process and hosts. Thus, the reason
20 forrequiring use of the IN command to delete a tuple before allowing manipulation of the
21 datarepresented by the tuple.
22 The present invention discloses a networked communication system which is
23 perhaps closestin certain concepts to the described distributed data structures. However, it

WO 92/16905 PCT/US92/02179

5

can, of course, be appreciated that certain advantages may be gained from development of a
system which utilizes certain features of distributed data structures while retaining
flexibility in allowing multiple copies of a data value to be stored on the various nodes.

The present invention discloses certain improved programming language and data
structure support for communication, sensing and control as may be used by nodes of the
present invention. It is known in the art to allow for scheduling of tasks throu ghuseofa

programming statement such as a "when" clause or the like. However, in known systems

00 1 A W B W N e

such tasks may only be scheduled to be executed on the occurrence of a predefined event
9 such as may be defined by the compiler writer. Examples of such events typically include
10 expiration of a timer or input pin state changes. Such known systems do not allow for
11 definitions of events, other than such predefined events. It has been discovered that itis
12 useful to provide for definition of events as any valid programming language statement
13 which may be evaluated to a true or false condition.
14 Of course, any number of known systems allow for declaration of variables and
15 whendeclaring such variables certain parameters may be specified which may be set to a
16 suate indicative of a desired characteristic of the variable. For example, a variable may be
17 declared as input or output, as a given variable type (e.g., boolean, numeric, etc.).
18 However, once declared such characteristics are static and may only be changed by
19 changing the source program which declares the variables. It has been discovered that it
20 would be useful to provide for a system in which the state of at least certain parameters may
21 bechanged during system configuration allowing for greater flexibility in optimizing the
22 system of the preferred embodiment,

PCT/US92/02179

WO 92/16905
6

1 Finally, in known systems it is necessary to call certain I/O library procedures to

2 declare and use I/O devices. Such calls to I/O procedures may be quite complex and

'3 require significant skill on the part of the programmer to properly code and utilize the

4 routines. The present invention discloses a system having improved methods for

5 declaration and use of J/O devices.

6

7 OBJECTS OF THE PRESENT INVENTION

8 It is a primary object of the present invention to provide for improved

9 communication of information between nodes of a distributed network.
10 It is more specifically an object of the present invention to provide for improved
11 communication of information in a highly distributed computer system in which a problem
12 may be broken down into small units in which each node accomplishes a small part of the
13 entire application. In such a system, data communication may be typically accomplished in
14 relatively small units of data—however, significant communication of data between nodes
15 of the network is required.
16 It is further an object of the present invention to provide for improved
17 communication of information in a distributed computing system by allowing for standard
18 communication techniques between nodes.
19 It is still further an object of the present invention to provide for improved
20 communication of information by providing certain facilities, structures and tools for such

21

communication.

WO 92/16905 PCT/US92/02179

00 2 O W B W N e

10
11
12
13
14
15
16
17
18
19
20
21
22

7

It is also an object of the present invention to provide improved data structures and
programming language support for communication and other aspects of the present
invention.

As one aspect of providing such improved data structures and programming
language support, it is one aspect of the present invention to provide for declaration of
variables having configurable parameters leading to improved ability to maintain and
optimize networks of the present invention.

As another aspect of providing such improved data structures and programming
language support, it is desired to provide for increased ease in declaring and
communicating with I/O devices of the present invention.

As still another aspect of providing such improved data structures and programming
language support, it is desired to provide for improved scheduling functions allowing for
use of programmer-defined or predefined events in scheduling of tasks to be executed.

It is also an object of the present invention to provide simplified ihstallau'on and
network maintenance. Such an objective may be accomplished by storing in each node the
node's application interface such that nodes may identify themselves and their application
requirements to a network management node at installation time and when it is necessary to
recover the complete network database.

To accomplish such a simplified installation and maintenance objective, itis a
further objective of the present invention to define an interface file format which may
efficiently store and allow retrieval of such identification and application requirement

information.

WO 92/16905 PCT/US92/02179

8
1 These and other objects of the present invention will be better understood with
2 reference to the Detailed Description of the Preferred Embodiment, the accompanying
3 drawings, and the claims.

WO 92/16905 PCT/US92/02179

00 ~J O\ Wi A WO e

N N N e ke el e e ed b e e e
N = O W 00 NN N W AW N RO O

9

SUMMARY OF THE INVENTION

A network for communicating information having at least a first and second node is
described in which each node includes data storage for storing data representing a variable
V and further includes a processor coupled with the data storage. In the case of the first
node, the processor may manipulate and write to new values to the variable V. After
having updated the variable V with a new value, the processor then assembles and
communicates a packet for transmission on the network. The packet includes the new data
value for the variable V. The second node then receives the packet and stores the new value
for the variable V in its data storage.

In particular, during programming of the first node, it is declared as a writer of the
variable V and likewise during programming of the second node, it is declared as a reader
of the variable V. During configuration of the network, a communication connection
between the first node and the second node is defined and during later communication of
message packets, addressing of message packets between the various nodes is
accomplished through use of address tables based on the definition of such connections.

Further, it is disclosed to utilize a standardized set of variable types in
accomplishing such communication. Use of a standardized set of variable types leads to
increased compatibility between nodes of different manufacture as well as increased ease in
configuring networks.

Finally, certain extensions are provided to standard programming languages to
provide for increased ease of use of the data communication features of the present

invention.

WO 92/16905 PCT/US92/02179

10

1 These and other aspects of the present invention will be apparent to one of ordinary
2 skillin the art with further reference to the below Detailed Description of the Preferred
3 Embodiment and the accompanying drawings.

WO 92/16905 A PCT/US92/02179

00 N O W A WO e

BN DN N D) et et et bt pmd ek ed ek peed e
W NN = O WV 0 N N W AW N - O O

11

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a logical view of a configuration of devices as may be networked using

methods and apparatus of the present invention.

Figure 2 is a diagram illustrating an embodiment of the network of Figure 1 as may

be accomplished by the present invention.

Figure 3(a) is a diagram illustrating a second embodiment of the network of Figure

1 as may be accomplished by the present invention.

Figure 3(b) is a second diagram illustrating the second embodiment of Figure 3(a)

and including a logical view of certain connections of nodes of the network.

Figure 4 is an overall block diagram of a single node of the present invention

coupled with a communication medinm.

Figure 5 is an overall flow diagram illustrating a method of programming and

configuring a network as may be accomplished by the present invention.

Figure 6 is a flow diagram illustrating a method for defining hardware requirements
of a node as may be utilized by the present invention.

PCT/US92/02179

WO 92/16905
12
1 Figure 7 is a flow diagram illustrating a method for defining network and logical
2 parameters of a node as may be utilized by the present invention.
"3
4 Figure 8(a) is a flow diagram illustrating a method for defining connections among
5 network variables as may be utilized by the present invention.
6
7 Figure 8(b) is a flow diagram illustrating a method for binding network variables as
8 may be utilized by the present invention.
9
10 Figure 9 s an illustration of certain data structures which may be utilized by the
11 present invention.
12
13 Figure 10 is a flow diagram illustrating a method of configuring a network using
14 standard network variable types, as may be utilized by the present invention.
15
16 Figure 11 is a flow diagram illustrating a method of declaring and configuring a
17 network variable as may be used by the present invention.
18
19 Figure 12 is a flow diagram illustrating a method of declaring and accessing I/O
20 devices as may be utilized by the present invention.

WO 92/16905 ’ PCT/US92/02179

13

For ease of reference, it might be pointed out that reference numerals in all of the
accompanying drawings typically are in the form "drawing number" followed by two
digits, xx; for example, reference numerals on Figure 1 may be numbered 1xx; on Figure
9, reference numerals may be numbered 9xx. In certain cases, a reference numeral may be
introduced on one drawing, e.g., reference numeral 201 illustrating a communication
medium, and the same reference numeral may be utilized on other drawings to refer to the

same item.

W &0 3 O W dp W N e

WO 92/16905 ' PCT/US92/02179

OO\lO\lJ\-hYU) [R

11
12
13
14
15
16
17
18
19
20
21
22
23

14

DETAILED DESCRIPTION OF
THE PREFERRED EMBODIMENT

An improved computer network including facility for communication of information
between nodes in the network is described. In the following description, numerous
specific details are set forth in order to provide a thorough understanding of the present
invention. It will be obvious, however, to one skilled in the art that the present invention
may be practiced without these specific details. In other instances, well-known circuits,
structures and techniques have not been shown in detail in order not to unnecessarily

obscure the present invention.
OVERVIEW OF THE NETWORK
JOF THE PRESENT INVENTION

The network of the preferred embodiment is of the type which provides for
sensing, control and communication. The network of the present invention and nodes
utilized within the network of the present invention are described in greater detail with
reference to United States Patent No. 4,918,690 Markkula et al. titled "Network and
intelligent cell for providing sensing, bi-directional communications and control”, which
patent is assigned to the assignee of the present invention (referred to herein as the ‘690
patent).

In an exemplary network, the network of the present invention may provide for
sensing of current environmental factors and control of apparatus affecting the
environmental factors. Further, the network may allow for communication of information
packets providing information on the environmental factors between nodes in the network.

The present application will utilize, as an example, a network for control of fans based on

WO 92/16905 PCT/US92/02179

15
sensing and communicating information regarding temperature in different zones in a
controlled environment.

It might be worthwhile noting that in an expected scenario, varions manufacturers
will include a node of the type defined by the present invention in their products. For
example, a thermostat manufacturer may include such a node in its thermostats. A fan
manufacturer may include such a node in its fans. The various nodes may be programmed

for specific applications by their respective manufacturers and, when configured in an

00 N O W AW e

environmental control system, are useful for communication, sensing and control between
9 various components of the system. A node of the preferred embodiment is illustrated in

10 block diagram form with reference to Figure 4. Such nodes may be programmed, for

11 example, using the "C" computer programming language. As one aspect of the present -

12 invention, certain extensions have been provided to the "C" language to facilitate network

13 communications.

14 As a further and important aspect of the present invention, network variables are

15 described which provide for communication of information between nodes of the network.

16 A network variable may be thought of as a data object shared by multiple nodes where

17 some nodes are "readers" and some nodes are "writers" of the object. This will be

18 discussed in greater detail below.

19

20 Referring now to Figure 1, a logical view of a network as may utilize the present

21 invention is shown. The network may, for example, include three separate temperature
22 sensors 115-117 located in three separate zones of a building for sensing and

23 communicating temperature information. ‘The network may further include two control

PCT/US92/02179

WO 92/16905
16

1 cells 101 and 121 coupled to receive temperature information from the sensors 115-117 and

2w control two fans 131-132 (by turning the fans 131-132 on and off).
.3 In the exemplary network, network variable temp_out 151 is coupled to a first

4 network variable temperature input 102 of control cell 101. Network variable temp_out

5 152is coupled with a second network variable temperature input 104 of control cell 101.

6 Intheillustrated embodiment, a third network variable temperature input 103 is not utilized.

7 On/Off control network variable 105 of control cell 101 is coupled to control an input

8 network variable, On/Off, of a fan 131. Thus, in this embodiment, sensing a temperature

9 abovea given level in the zone of the building sensed by temperature sensor 115 or by
10 temperature sensor 116 will cause fan 131 to be turned on. Likewise, when the
11 temperature in these zones is again lowered below a given level, the fan 131 may be turned
12 off.
13 Network variable temp_out 152 is also coupled to a first temperature input network
14 variable 122 of control cell 121. In addition, network variable temp_out 153 is coupled to
15 asecond temperature input network variable 123 of control cell 121. A third temperature
16 input 124 of control cell 121 is not utilized in this embodiment. Control cell 121 is coupled
17 through an On/Off control output network variable 125 to control fan 132. Thus, sensing a
18 temperature above a given level in the zone of the building sensed by temperature sensor
19 116 or by temperature sensor 117 will cause fan 132 to be turned on. Likewise, when the
20 temperature in these zones is again lowered below a given level, the fan 132 may be turned
21 off. Asisappreciated, in the described configuration, when temperature sensor 116
22 detects a high temperature, both fan 131 and fan 132 are turned on.

WO 92/16905 ' © PCT/US92/02179

17
Figure 1 has been labeled to illustrate logical connections between the various
components. Connection 141 is illustrated as the connection between temperature sensor
115 and control cell 101. Connection 142 is illustrated as the connection including
temperature sensor 116, control cell 101 and control cell 121. Connection 143 is illustrated
as the connection between control cell 101 and fan 131. Connection 144 is illustrated as
the connection between sensor 117 and control cell 121. Connection 145 is illustrated as

the connection between control cell 121 and fan 132, The connection of network variables

0 2 O W BAWON e

will be discussed in greater detail below. However, it may now be useful to introduce

9 three new terms: network variables, readers, and writers. In addition, general definitions
10 for certain other terms used in this specification may be found with reference to Table XV.
11 As one important aspect of the present invention, the present invention provides for
12 allocation and use of network variables by processes running on nodes in a network. As
13 stated above, network variables may be thouvght of as a data object shared by multiple
14 nodes where some nodes are "readers” of the object and other nodes are "writers” of the
15 object. Additionally, a node may be both a reader and a writer with "turnaround”. Writing
16 with turnaround is discussed in greater detail below. Although the data object may be
17 thought of as being shared by multiple nodes, as will be understood from the discussion
18 below, the network variable of the preferred embodiment is not stored in shared memory
19 but rather separate memory is provided in each of the multiple nodes to store a copy of the
20 dataobject. A writer node may modify the value of the data object and all reader nodes of
21 that network variable have their memories updated to reflect the change. Thus, for
22 example, each of the temperature sensors 115-117 may run a process which declares a data

23 object as follows:

PCT/US92/02179

WO 92/16905
18

1 network output boolean temp_high.

2 Each of the controller cells 101 and 121 may declare data objects as follows:
‘ 3 network input boolean temp_high

4 network output boolean fan_on.

5 Each of the fans 131-132 may declare a data object as follows:

6 network input boolean fan_on.

7 The complete syntax for declaration of network variables in the system of the

8 preferred embodiment is given in Table VI The keyword "network” indicates the data

9 objectis a network variable. A network variable declared as output will result in
10 wansmission of the new value of the network variable on the network when the program
11 stores the variable—thus, nodes having declared an output network variable are considered
12 writer nodes for that variable. For example, each time a process running on temperature
13 sensor 115 stores the variable temp_high, a network message is generated communicating
14 the new value of temp_high. The message is communicated to all reader nodes connected
15 inconnection_1 141, i.c., to control cell 101. In the case of temperature sensor 116
16 changing the value of its temp_high variable, a message is generated and transmitted to all
17 nodes connected in connection_2 142, i.e., to both control cell 101 and to control cell 121.
18 The process for configuring connections as disclosed by the present invention will be
19 discussed in greater detail below.
20 Although the preferred embodiment declares nodes as either writers or readers of
21 petwork variables, it should be noted that in an alternative embodiment a node may be
22 declared as a both a reader and writer of a particular variable. Such an embodiment may be
23 envisioned without departure from the spirit and scope of the present invention.

WO 92/16905 PCT/US92/02179

00 3 O W hHh W N e

10.

11
12
713
14
15
16
17
18
19
20
21
22
23

19
It might be that the present invention in its preferred embodiment allows an output
network variable to be initialized using an initialization command without causing a

message to be transmitted on the network. Using this command, a node may be initially

_configured or reset without affecting other nodes on the network.

Network variables declared as input may change values asynchronously with
program execution—this declaration is used for "reader" nodes. In the preferred
embodiment, input network variables may also change values at program initialization or at
other points under program control; however, the changed value will not be transmitted on
the network.

At anytime, a reader node may force an update of its input network variables
utilizing a polling function of the present invention. When this function is called, the
specified network variables are updated by requesting over the network the current value
from the writer node or nodes. This facility may be useful, for example, after a node reset
to allow the node to determine the current value of network variables without need to wait
until the next time the writer nodes update the value of those variables,

Thus, temperature sensors 115-117 are writer nodes of the variable temp_high.
Control cells 101 and 121 are reader nodes of the variable temp_high and also are writer
nodes of the variable fan_on. Fans 131-132 are reader nodes of the variable fan_on.

Of course, many 6ther applicaﬁons and configurations are within the scope of the
teachings of the present invention and the network described with reference to Figure 1 is
merely exemplary. ,

It should be noted that multiple readers and multiple writers may be provided within

a single connection without departure from the spirit and scope of the present invention.

PCT/US92/02179

WO 92/16905
20
1 Multdple readers are illustrated with reference to connection_2 142. Multiple writers have
2 not been illustrated by Figure 1. However, variation in which multiple writers are
'3 employed will bcreadiiy apparent to one of ordinary skill in the art.

4 Turning to Figure 2, an embodiment of the network of Figure 1 is illustrated in

5 which each of cell 101, cell 121, temperature sensor 115, temperature sensor 116,

6 temperature sensor 117, fan 131 and fan 132 are each coupled to communicate over

7 common communication medium 201. The communication medium 201 may be, for

8 example, twisted pair wiring, radio frequency, power lines, or other communication

9 channels or multiple physical channels connected together with bridges and/or routers. In
10 this embodiment, and in order to accomplish the connections illustrated by Figure 1,
11 temperature sensor 115 must be configured to address and communicate with cell 101;
12 temperature sensor 116 must be configured to address and communicate with cell 101 and
13 cell 121; temperature sensor 117 must be configured to address and communicate with cell
14 121; control cell 101 must be configured to address and communicate with fan 131; and
15 control cell 121 must be configured to address and communicate with fan 132.
16 Of course, providing for such addressing may be and typically is a significant task.
17 Irtisappreciated that each of control cells 101 and 121, temperature seasors 115-117 and
18 fans 131-132 may be engineered, programmed and/or manufactured by different sources.
19 Further, although the exemplary network is, in itself, complicated having 5 separate
20 connections, 141-145, it can of course be imagined that other networks may be
21 substanﬁaliy more complicated having even hundreds or more connections. Therefore, the
22 present invention implements methods and apparatus which allow for straightforward and
23 efficient configuration of nodes in a network.

WO 92/16905 PCT/US92/02179

00 3 O W AW

10
11
12
13
14
15
16
17
18
19
20
21
22
23

21

Turning now to Figure 3(a), a modified embodiment of the configuration of Figure
2 is illustrated. In this embodiment, controller cells 101 and 121 have been removed from
the configuration and each of temperature sensors 115-117 and fans 131-132 are illustrated
as comprising nodes 301-305, respectively. These nodes are preferably of the type which
are capable of sensing, communicating and controlling as have been described in the ‘690
patent and which are shown in greater detail with reference to Figure 4. Thus, these nodes
301-305 are capable of replacing certain control functions of the control cells 101 and 121,
eliminating the need for separate control cells in the described embodiment. In the
embodiment of Figure 3(a), and in order to accomplish the logical connections illustrated
by Figure 1, node 301 must be configured to communicate with node 304; node 302 must
be configured to communicate with nodes 304 and 305; and node 303 must be configured
to communicate with node 305. Again it is important to note that the temperature sensors
115-117 and fans 131-132 may be manufactured by different sources. It is preferable that
the manufacturing sources are not required to have prior knowledge as to what devices their
products will communicate with in a network. Thus, the manufacturer of temperature
sensor 115 is preferably not required to be aware, during programming and manufacture of
temperature sensor 115, whether temperature sensor 115 will be configured in a network to
communicate with a controller cell, such as controller cell 101 (as shown in Figure 2), or to
communicate directly with a fan, such as fan 131 (as shown in Figure 3(a)), or even with
some other device (perhaps a heater, air conditioner, fire extinguishing equipment, etc.).
Likewise, it is preferable that the manufacturer of fans 131-132 are similarly allowed to
manufacture devices without requirement of prior knowledge as to the eventual uses of

those devices in a network.

WO 92/16905

0 2 A N A W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23

PCT/US92/02179

22

In order to allow for such flexibility in configuring networks and to allow for
efficient communication between nodes in a network, the present invention provides
network variables which may be used to facilitate standards of communication between
nodes in the network.

Table I illustrates a temperature sensor control program as may be used to program
nodes 301-303 coupled with temperature sensors 115-117. As can be seen, the program of
Table 1 is written to communicate onto the medium 201 a network variable indicative of the
state of temp_in. The value of this variable may be, for example, used by a control
program running on a control cell, such as control cell 101 or 121, or used directly by a
contro] program running on a fan, such as fans 131-132.

Table II illustrates a fan control program which may be used for controlling a fan
such as fans 131-132 by turning the fan on and off responsive to receiving changes in state
of a network variable on_off. As can be seen, the program of Table II is written to allow
receiving from the medium 201 the network variable on_off as a binary network variable
regardless of the source (e.g., whether from a control cell such as control cell 101 or 121,
or directly from a temperature sensor, such as temperature sensor 115-117).

Table Il illustrates a binding set which connects temperature sensors 115-117 with
fans 131-132 as illustrated by Figure 3(a). Figure 3(b) is provided to further an
understanding of the binding set. As can be seen, the binding set provides for three
connections illustrated as temp1_controls 321, temp2_controls 322, and temp3_controls
323 of Figure 3(b). The connection temp]_controls connects the output variable
temp_high of temperature sensor 115 with the input variable fan_on of fan_1 131. The

connection temp2_controls connects the output variable temp_high of temperature sensor

WO 92/16905 ' PCT/US92/02179

0 N O WL BA W ON e

BN N N N e e pmd et ek ek el et el et
W N w= O WV 00 NN W A WD = O O

23
116 with the input variable fan_on of both fan_1 131 and fan_2 132. Finally, the
connection temp3_controls connects the output variable temp_high of temperature sensor
117 with the input variable fan_on of fan_2 132.

It should be noted that although tables I, IT and III illustrate programs which are
unseful for illustrative concepts of the present invention; an attempt has not been made to
ensure these programs are syntactically correct. Rather, these programs are provided for
the exemplary teaching of concepts of the present invention. It is understood from an
examination of the programs of tables I and II that the program of Table I may write the
variable temp_high without regard to the eventual recipient of the variable and likewise the
program of Table IT may read the variable fan_on without regard to the writer node of the
variable. Thus, these programs work equally well in a network such as illustrated by
Figure 2 including separate control cells 101 and 121 or in a network such as illustrated by
Figure 3(a) which does not include such control cells. The binding set illustrated by Table
HI determines the relationship between the various nodes of the network. Table IV
illustrates a binding set which may be used to establish connections in a network such as
llustrated by Figure 2.

' A node of the present invention

Figure 4 illustrates a block diagram of a node such as nodes 301-305 as may be
utilized by the present invention. The node 421 is couﬁled in communication with medium
201 through control 411, clock and timer circuitry 412, and communication port 408. In
addition, the node provides a general purpose I/O port 407 allowing for communication
with various external devices. The node further comprises three separate processors

404-406, a read only memory (ROM) 403, a random access memory 402, and an

PCT/US92/02179

WO 92/16905
24

1 EEPROM 401. The processors 404-406 are useful for executing programs such as the

2 programs illustrated in Tables I and II, as well as other communication, control and
"3 operating programs. The ROM 403 may be useful for storing such programs. As will be

4 seen, the EEPROM 401 may be useful for storing certain data values which, although

5 configurable, are not subject to frequent changes in value. Each of the processors

6 404-406, ROM 403, RAM 402, EEPROM 401, control 411, clock 412, /O port 407, and

7 communication port 408 are coupled in communication through internal address bus 410,

8 internal data bus 420 and timing and control lines 430.

9 PROGRAMMING AND CONFIGURING
10 ANETWORK OF THE PRESENT INVENTION
11 Turning now to Figure 5, steps for programming and configuring a network of the
12 present invention are illustrated. It should be noted that steps illustrated by Figure 5 are
13 implemented in a development system which allows for development and management of
14 networks such as may be implemented by the present invention. However, certain of these
15 steps may also take place outside of the development environment (e.g., connection of
16 network variables and binding). The development system is an integrated hardware and
17 software environment that operates in conjunction with a host computer, an IBM PC/AT
18 compatible in the currently preferred embodiment, allowing a manufacturer or other party to
19 design and build components compatible for communication with a network of the present
20 invention.
21 The development system includes an IBM PC/AT-compatible computer having an
22 interface adapter card for coupling with a control processor located in a separate card cage.
23 In addition to the control processor, the card cage may hold other cards designed to emulate

WO 92/16905 PCT/US92/02179

00 1 O W HWN e

10
11
12
13
14
15
16
17
18
19
20
21
22
23

25

routing functions in a network and transceiver evaluation boards allowing evaluation of the
physical interface with various media, e.g., twisted pair, power line, or radio frequency.

Initially certain hardware parameters are defined for each node in the network,
block 501. This step includes naming or otherwise identifying the node, block 601. A
node type is specified, block 602. In the development environment, the node type may be
specified as the control processor, an emulator board, or a custom node type. The location
of the node is then specified—the location specifies whether or not the node resides in a
card cage and, if the node resides in a card cage, the card cage number and slot number,
block 603. Next, the channel to which the node is connected is specified, block 604, and
the channel's priority is specified, block 605. If the node has been assigned the priority
privilege, then the node's priority is set at this time. Finally, certain hardware properties
may be specified, block 605. Hardware properties may include model numbers for the
node, clock rates, operating system revision levels, ROM size, RAM size, EEPROM size,
RAM start address, and EEPROM start address. Finally, the hardware definitions are
downloaded to the node, block 606 '

Next, network and certain logical parameters are specified for each node, block
502. Currently, this step involves specifying a node name, block 701, and then specifying
a program file, block 702, and hardware device name, block 703 associated with the node.
Hardware names were specified above in step 601. Program files will be discussed in
greater detail below in connection with block 503. The definition of the node is then saved,
block 704.

The development environment provides an editor for developing and editing

program code, block 503, such as the code illustrated in tables I and II. The preferred 7

WO 92/16905

0 3 O L B WD

10
11
12
13
14
15
16
17
18
19
20
21
22

PCT/US92/02179

26
embodiment allows programming in the "C" language and, further, provides certain
extensions to the "C" language which will be discussed in greater detail below. After
developing program code, the programs are compiled, linked and loaded as executable
programs, block 504, onto the nodes specified in definition of network and logical
parameters, block 502.

Connections are then specified for the network, block 505. This step is better
illustrated with reference to Figure 8(a). Initially, a connection name is entered (for
example, the connection names specified in the binder script of Table III are
temp1_controls, temp2_controls and temp3_controls), block 801. In the preferred
embodiment, the connection name is entered as a unique name having from one to 16
characters consisting of letters, numbers and underscores; no spaces are allowed.

Next, a node name is selected, block 802. In the preferred embodiment, a list of
defined nodes (i.c., nodes which have been previously defined as described in connection
with block 502) is displayed and a valid node name may be selected from the displayed list.
For example, the node temp_sensor_1 may be selected. After selecting a node name, block
802, a network variable name is selected, block 803. Again, a list of network variable
names for the selected node are preferably displayed and a network variable name is
selected from the displayed list. For example, the network variable temp_high may be
selected.

After completing this process for a first node, a second node may be selected, block
804. Again, a node list is preferably displayed and the second node is selected from the
displayed node list. For example, the node fan_1 may be selected. A network variable

WO 92/16905) PCT/US92/02179

00 N O W A W

N NN e et i bed bk el el ek ped e
N = O VW 00 N O Wt AW N =D O

27

associated with the second node 1s then selected, block 805, again preferably from a
displayed list. Comihuing the example, the selected network variable may be fan_on.

Finally, certain parameters may be set, block 806. In the preferred embodiment,
settable parameters include the retry count set to the maximum number of times the message
will be sent, the retry timer for acknowledged services, and the repeat timer for
unacknowledged/repeated messages. This aspect of the present invention will be discussed
in greater detail below.

The connection is then added to a connection list using an add fuhction, block 807.
It is noted that if additional nodes are to be connected in the connection, they are specified
in a similar manner to the first and second nodes after having specified the first and second
nodes. An example of such a connection is illustrated in Table III as temp2_controls which
includes three nodes: temp_sensor_2, fan_1 and fan_2.

The process of Figure 8(a) is repeated for each desired connection. In the case of
the binding set of Table III, the process is repeated three times: (1) once for the connection
named temp1_controls; (2) once for the connection named temp2_controls; and (3) once for |
the connection named temp3;conu'ols. In the case of the binding set of Table IV, the
process is repeated five times, once for each of connection_1, connection_2, connection_3,
connection_4, and connection_5.

In the preferred embodiment, the output of the connection process is a binary script
file that provides commands to drive the subsequent binding process. In order to pfovidc #
textual version of what this binary file looks like, Table Il and Table IV have been
provided.

WO 92/16905 PCT/US92/02179

28

It is also within the power of one of ordinary skill in the art to develop a graphical
user interface for drawing the connections between iconic representations of the nodes and
creating a binder script based on such drawings.

Finally, the network variables are bound, block 506, to their respective nodes in
order to allow communication within the connections defined during execution of the steps
of Figure 8(a). The preferred method of binding network variables is described in greater
detail with reference to Figure 8(b).

0 N N W AW e

Initially, the list of connections developed during execution of the steps of Figure
9 8(a)isread, block 821. Then, certain type checking and message constraint checking is
10 performed for each connection, block 822. The type and message constraint checking

11 includes the following checks:

12 (1) Ensure that there are at least two members in each connection;

13 (2) Ensure that there is at least one output member and one input member for each
14 connection;

15 (3) In the preferred embodiment, no more than one input and one output network
16 variable from the same node may appear in the same connection;

17 (4) A wamning is given if polled output variables are not attached to at least one

18 polled input;

19 (5) An estimate for message rates may be declared for network variables; a warning
20 is given if the estimated message rates do not match for all members of a

21 connection;

WO 92/16905 PCT/US92/02179

00 N O W D W N e

11
12
13
14
15
16
17
18
19
20
21
22
23

29

(6) Network variables may be synchronized or non-synchronized—a wamning
message is provided if synchronized variables are bound to non-synchronized
variables;

(7) Network variables may be sent as authenticated—a warning is provided if
some, but not all, members of a connection are declared as authenticated; and

(8) Variable types are checked field-by-field for size and sign type matching and for
type definition matching. The currently preferred list of type definitions are
provided in Table V.

After completing type and message rate constraint checking, the addressing mode

for the network variable is determined, block 824. If there is only one destination (e.g.,
temp]_controls), subnet-node addressing is used using the subnetnode structure given
below to create an entry in address table 901. Address table 901 will be discussed in
greater detail below. The address entered in the address table 901 is the address of the
destination node (e.g., in the case of temp1_controls, the address of fan_1 is entered in the
address table of temp_sensor_1; conversely, the address of temp_sensor_1 is entered in the
address table of fan_1 to allow for such functions as polling of the current status of the
network variable). The address table index entry 912 is set to correspond to the location in
the address table 901 corresponding with the address entered in the address table 901. For
example, in the case of the bind set of Table III, if the address of FAN_1 is entered as a
network address 913 in the address table 901 at entry 001, the address table index entry
912 of the network variable table 903 corresponding to the network variable id assigned to
the connection temp1_controls is written with the address 001. In this way, whenever

messages are sent on the network by temp_sensor_1 indicating the value of temp_high has

WO 92/16905 PCT/US92/02179

00 N O W A W W

10
11
12
13
14
15
16
17
18
19
20
21
22
23

30

been updated, the address table index is used to lookup the address of the destination node
of such a message. A message is then sent, addressed to the destination node, including
the network variable id and the new value. The destination node then receives the message
and is able to update the value of its corresponding network variable “fan_on".

If there is more than one destination node (e.g., temp2_controls), group addressing
is used using the above group address structure to create an entry in the address table 901.
In the case of group addressing, a set of sender and destinations for the network variable is
constructed. For example, in the case of the connection temp2_controls, the set of sender
and destinations includes temp_sensor_2, fan_1 and fan_2.

Other optimization steps are also provided by the binder of the preferred
embodiment and are described in further detail below.

After determining an addressing mode, for each unique set of sender and
destinations (unique without respect to which nodes are senders and which nodes are
receivers), a group address is assigned to the set, block 825. The group address is
propagated to the address table of each of the nodes in the set and stored in their respective
address tables 901. The address table index value 912 for the entry corresponding to the
group address is updated to index the address table 901 at the new entry. For example,
groupl is defined to include temp_sensor_2, fan_1 and fan_2 and the group address is
stored at entry 002 of the address table 901. Then, the address table index 912 for each of
the three nodes temp_sensor._2, fan_1 and fan_2 is updated to point to the new address
tai:lc emry.'

For group address table entries, as described above, only the output network
variable nodes actually set their network variable table entries to index the address table.

WO 92/16905 PCT/US92/02179

31
1 The nodes with input network variables will not index the address table. This allows the
2 same network variable to reside in several network variable connections, and many
3 network variable groups. When an incoming message arrives for one of these input
4 network variables, the correct network variable table entry is found using the network
5 variable ID (the software matches the network variable ID in the message to one in the
6 table).
7 This "intersecting connection” ability makes the network variable concept more
8 powerful by allowing the same variable to be updated by several groups, thus reducing
9 both the overall network traffic and reducing network variable table space by sharing the
10 same table entry among several connections.
11 Finally, a single network variable identification number (netvar_ID) is assigned to

each network variable in the connection, block 823. This may be better understood with
reference to Figure 9 which illustrates a network vaﬁable table 902 having a network
variable identification field 911 and an address table index field 912. Further, an address
table 901 s illustrated having a network address field 913. It should be noted that these _
tables preferably reside in each individual node's EEPROM 401 and have additional fields
in the preferred embodiment. However, for simplicity only the above-mentioned fields are

illustrated in Figure 9. The network variable table is preferably of a structure as follows:

unsigned auth:1; *authenticated: 1=authenticated*/
unsigned addr:4 /*address table index*/

h— —t T e T e T S
O~JANPLWO=O\WO o0 N N AW

1

2 struct nv_table

2 unsigned priority:1; /*1=priority network variable, O=non-priority nv¥/
2 unsigned dir:1; [*direction O=input, 1=output*/ -

2 unsigned idhi:6; [*network variable id, most significant bits*/

2 unsigned idlo; /*network variable id, least significant bits*/

2 unsigned ta:1; /*turnaround: 1= turnaround*/

% unsigned st:2: [*service*/

2

WO 92/16905 PCT/US92/02179

32

k

where the priority field indicates whether messages to update the network variable
are to be sent as priority or non-priority messages; direction indicates the direction of the
target ID, for example, a network variable update going from an output variable to an input
variable would have the direction bit set to a 0; the network variable id is a 14 bit
identification number allowing for a maximum of 16,384 unique network variables per
domain in the network and corresponds to the network variable id 911 of Figure 9; 7
turnaround indicates an output network variable may be connected to an input network
variable of the same node; service indicates whether acknowledged or unacknowledged
services is utilized; auth indicates whether message are authenticated prior to being accepted
and processed by identifying the sender node through an authentication process; priority
indicates whether messages are transmitted as priority or normal messages; and the address
table index corresponds to address table index 912 and is an index into the address table
901.

The Address Table preferably follows one of two formats given below; the first
format is for group address table entries and the second format is for single destination
node address table entries:

struct group
{ unsigned type:1; [¥indicates whether the structure is for a group or

single node*/
unsigned size:7; [*group size (0 for groups > 128 members*/
unsigned domain:1; /*domain reference*/
unsigned member:7; /*node's member # (0 for groups > 128 members*/
unsigned rptimer:4; M*unacknowledged message service repeat timer¥/
unsigned retry:4; [*retry count*/
unsigned revtimer:4; f*receive timer index*/
unsigned tx_timer:4; /*transmit timer index */
int group; [*group id¥/

boed poued ek ek ek bk deed jeed pmd e '
O\OOO\IO\UIAUJNH\OOO\)O\M-PMNHQ\OOOQO\MA'.»N»—-

WD
o

WO 92/16905 - PCT/US92/02179

W N O \D 00~ O\ U LR =t

[y [Ty

L B T e T W Y
© WV 00 NN N A

NN N DYDY N NN
O 00 ~I O v & W N e

33
struct subnetnode
unsigned type; [*indicates whether the structure is for a group or
single node*/

unsigned domain:1; /*domain reference*/
unsigned node:7; [*node's #*/
unsigned rpttimer:4; *unacknowledged message service repeat timer*/
unsigned retry:4; [¥retry count¥/
unsigned rsvd:4; [*reserved*/
unsigned tx_timer:4; /*transmit timer index */
} int subnet; [*subnet*/

It should be noted here that many of the present invention's concepts of groups,
domains, subnets, acknowledged messages, etc. are described in greater detail with
reference to United States Patent Application Serial Number 07/621,737 filed December 3,
1990 titled Network Communication Protocol (the *737 application) which is assigned to
the assignee of the present invention and which is incorporated herein by reference.

Continuing with the description of assigning a network variable id to a connection,
block 823, the first unassigned network id is assigned to the connection and the network
variable id is written to the network variable table 902 for each node using the network.
Thus, in the above example, the network variable id 00000000000000, may be assigned to
the connection temp1_controls of Table I; the network variable id 00000000000001,
may be assigned to the connection temp2_controls of Table IIT; and the network variable id
00000000000010, may be assigned to the connection temp3_controls of Table III. It
should be noted that network variable ids need not be unique domain wide, but only need
be unambiguous within the nodes involved.

Certain advantages gained through use of network variables have now been
described such as the ability to automatically generate network addressing schemes from

application level connections. In addition to allowing for such ease of use, network

WO 92/16905 PCT/US92/02179

0 N A U A WO e

10
11
12
13
14
15
16
17
18
19
20
21
22
23

34

variables lead to generally smaller and less complicated application programs over other
forms of network communication, such as prior art messaging techniques. Tables V and
VI better illustrate differences between and certain advantages of use of the present
invention's techniques over, for example, prior messaging techniques. Table Visa
program written using network variables of the present invention. Table VIisa
functionally equivalent program written using prior art messaging techniques. It is useful
to note the comparative program statistics at the end of each program listing in which itis
shown that the message program requires 626 bytes of ROM; 177 bytes of EEPROM,; and
1314 bytes of RAM. By way of comparison, the network variables program requires only
335 bytes of ROM while using 231 bytes of EEPROM and only 1126 bytes of RAM.
SELF-IDENTIFYING STANDARD NETWORK VARIABLE TYPES

It is desirable to provide for interoperability between nodes in a network. To
provide for such interoperability, it is necessary to assure compatibility between network
variables in the various nodes of a network. To facilitate such compatibility, as one feature
of the present invention, a list of standard network variable types is provided by the
assignee of the present invention. The currently preferred list of standard network variable
types is provided as Table VII. By utilizing the list of standard network variable types,
nodes in the network may be interrogated for information on the network variables
employed by the node and the network may then be configured based on this information.
This process is better illustrated with reference to Figure 10.

Initially, a node which must be configured is coupled to the network medium, block
1001. After the node is coupled to the medium, an address of the node may be determined
through any number of methods. At least one of such methods is described with reference

WO 92/16905 ‘ PCT/US92/02179

35

to the 737 application. After having determined an address for the node, messages may be
communicated to the node over the medium. In the preferred embodiment, a network
management node is coupled to the medium which is useful for configuring the network.
The network management node may communicate a command to the new node requesting
its information on the network variables employed by the node, block 1002, or may
alternatively read such information from a file which has already been placed in the network

management node’s memory.

OO\IO\UIAUJNH

In the preferred embodiment, in order to allow for the information to be stored in
9 the network management node's memory, such information is made available for

10 importation into the network management node via a binder interface file (BIF). The BIF

11 fileisabyproduct of the compilation process for each node, and contains all the

12 information necessary to install the node on the network. This information is also referred

13 toasthe exposed interface of the node.

14 The BIF file for a new node may by provided to the network management node

15 prior to installation of the new node on the network in order to allow a complete network

16 database to be constructed in advance of, and separate from, the physical installation of the

17 new node on the network. For example, the BIF file may be supplied to the network

18 management node on diskette, over phone lines, or on through other computer readable

1 9 media.

20 Information equivalent to the information stored in the BIF file is also preferably

21 stored in the memory of the node. In this case the preferred embodiment confines the

22 application writer to use of a list of standard network variable types when developing an

23 application program designed to run on the node, The list of standard network variable |

PCT/US92/02179

WO 92/16905
36
1 types used by the system of the preferred embodiment is enumerated in Table VII. Use of
2 the list of standard network variables minimizes the required space for storing the exposed
3 interface in the node's memory. Storing the exposed interface in the node's memory
4 offers the advantage of allowing the information to be retrieved without need for the
5 mnetwork management node to include a floppy disk drive or other device for receiving
6 externally communicated computer readable information. However, absent the option of
7 providing the BIF file over such an external interface, the node must be physically
8 connected on the same network with the network management node prior to construction of
9 the network database. In the preferred embodiment, both options are available and the
10 choice of how the exported interface is imported into the network management node is left
11 up tothe node designer.
12 The file layout for the BIF file of the preferred embodiment is given in Table IX.
13 Anexample of a BIF file is given in Table X. This exemplary BIF file has been generated
14 for the program given in Table V.
15 As was mentioned, in the preferred embodiment nodes may utilize the standard
16 network variable types in declaration of network variables. The information describing its
17 network variables is communicated (or exposed) by the node to the network management
18 node, block 1003, using standard messaging features of the network. It will be understood
19 thatinalternative embodiments, information describing other, non-standard variable types
20 may also be communicated in a manner similar to communicating the information on
21 standard network variables.
22 The network management node receives the exposed network variable information,
23 block 1004, and may then use information, including the network variable type, in

WO 92/16905 - PCT/US92/02179

CEIES B Y. T Y IC S SN

10
11
12
13
14
15
16
17
18
19
20
21
22
23

37

verifying valid connections and in the binding process. Only network variables of identical
types may be bound together in a single connection—thus, use of standard network
variable types facilitates interoperability of nodes in the network as well as facilitating
identification of network variables when a command is issued to expose the network
variables of a node.

As one extension to the concept of self-identifying standard network types as just
described, it is possible to include in the information transmitted responsive to receiving the
command to expose network variable's text strings and even graphical icons to the network
management node. Such information would make the nodes largely self-documenting.

I -

The present invention has implemented certain extensions and features to the "C"
programming languages to support use of network variables—these extensions include (1)
the already disclosed declarations of variables as network variables and the ability to declare
such variables as standard network variable types; (2) declaration and use of /O objects;
and (3) scheduling clauses. Each of these extensions will be discussed in greater detail
below. It should be noted that although the extensions have been preferably implemented
in the "C" programming language, the idea and concepts of these extensions are not limited
to use in this programming language and, in fact, these ideas and concepts may readily be
extended to other programming languages.

N ¢ varigble declarasi

As has been discussed, the present invention provides for declaration of network
variables in C programs. Importantly, the declaration of network variables allows for
declaring certain information for use by the above-described binding process. This process

PCT/US92/02179

WO 92/16905
38
1 isbetterunderstood with reference to Figure 11. Initially, a network variable is declared in
2 acomputer program intended to run on a node of the network of the present invention,
"3 block 1101. The preferred format for the declaration may be found with reference to Table
4 VI, below. As can be seen with reference to Table VIII, the declaration format preferably
5 includes a set of parameters called bind_info. These parameters allow the network variable
6 o be declared with an initial specification of protocol services. When the program is
7 compiled, this initial information is output as part of the BIF file. The format of the BIF
8 file may be found with reference to Table IX. As one option in declaring network
9 variables, these parameters may be declared as configurable or non-configurable, block
10 1102. Inthis way, a programmer programming a node may make an initial determination
11 astothe state the parameter should normally be set to. For example, the programmer may
12 determine in a typical configuration, a particular network variable should use acknowledged
13 message services. However, the programmer may also allow a network administrator
14 flexibility in configuring and optimizing the network by declaring the acknowledged
15 parameter as configurabie. The program is then compiled and a compiled output is
16 produced in the conventional manner. In addition to producing the conventional outputs of
17 acompiler, e.g., object code, the compiler of the present invention produces the
18 above-mentioned BIF file which includes information on the declared network variables
19 such as the state of parameters and whether or not such parameters are configurable, block
20 1103.
21 During configuration of the network of the present invention, the state of these
22 configurable parameters may be modified by the network administrator, block 1104. In the
23 above-discussed example, the network administrator may determine the network will be

WO 92/16905 ' PCT/US92/02179

0 NN O N A W N e

10
11
12
13
14
15
16
17
18
19
20
21
22
23

39

optimally configured if the variable declared as acknowledged is actually configured as
unacknowledged and repeated. It is worthwhile to again refer to Figure 8(a) which
illustrates, in addition to other steps in the connection process, the step of setting
parameters for the connection, block 806. The parameters which are settable in this step of
the configuration process are those parameters declared as configurable in the network
variable declarations. These parameters are displayed on a display screen during the
configuration process and may be modified by changing the state of the parameters on the
display screen. For example, one of three states may be set to tell the network the type of
service to be used for a network variable—unacknowledged, unacknowledged and
repeated, and acknowledged. The authentication feature may be set to an on state in which
message authentication is used or to an off state in which message authentication is not
used. Also, network variable may be set to a priority state or a non-priority state indicating
whether messages associated with the variable are to be sent as priority messages or as
normal messages.

Declaration and use of Objects

Each node of the present invention comprises its own scheduler, timers, and logical |
/O devices. The "C" programming language employed by the present invention provides
access to these devices through use of predefined objects; namely, an event scheduler
which handles task scheduling for the node, timer objects which provide both millisecond
and second timers, and I/O objects which provide for declaration of a number of logical I/O
devices. Importantly, once declared a logical link is created between the object name and
the physical device and references may be made to the object name to gain access to the

physical device.

PCT/US92/02179

WO 92/16905
40

1 Declaration and use of objects will be discussed in greater detail by referring to

2 declaration of I/O objects. Each node of the network of the present invention has a number
"3 of built-in electrical interface options for performing input and output. Prior to performing

4 input or output, a program must declare an I/O object which interfaces with one of eleven

5 YO pins on the node; three serial pins 441 and eight parallel pins 445. The eleven pins are

6 referred to with the reserved pin names: I0_0, 10_1, I0_2,10_3,10_4,10_5,10_6,

7 10_7,10_8,10_9, and I0_10. The declaration syntax for an I/O object and use of the

8 eleven pins in the present invention is discussed further with reference to Table XL

9 It is worthwhile to turn to Figure 12 to discuss this concept in somewhat greater
10 detail. Initially, a program statement is coded to declare an I/O device giving a pin
11 designation, a device type and a device name; when the program is compiled the declaration
12 statement causes declaration of the I/O device, block 1201. Other parameters and the
13 format of the declaration for an I/O device in the preferred embodiment may be found with
14 reference to Table XL Responsive to declaring the I/O device, the pins are configured to
15 perform the function specified by the device type, block 1202. The device types of the
16 preferred embodiment may be found with reference to Table XI.
17 This process is further illustrated with reference to the exemplary network variable
18 program of Table V and the associated assembly language code resulting from a compile of
19 the program given in Table XIV. As can be seen with reference to the program source code
20 inTable V, two I/O devices are declared, IO_Q as a bit output namcd_MotorCu'l and I0_5
21 asapulsecount input named pulseamps.
22 The specified device name is logically associated with the specified device to
23 perform the designated I/O, block 1204. In this way, a reference may be simply made to

WO 92/16905 PCT/US92/02179

© OV 0 U A UL OB W R

[S —y
[S

bmd et ek ek peed ek ek e
O 00 N & i A W N

NN
— O

NN
W N

41

the device name to accomplish the designated J/O with necessity of continued reference to
specific pins and without need for special coding to implement the desired device types. As
can be seen with reference to Table XII, built-in functions are provided to allow
communication with the I/O devices. One of the built-in functions may be used to perform
the built-in function referring to the desired device name to specify a hardware device,
block 1204. The desired I/O is then performed in accordance with the device type specified
in the device declaration, block 1205,

Scheduling

Scheduling .on anode in the present invention is event driven. When a given
condition becomes true, a body of code termed a task associated with that condition is
executed. In the preferred embodiment, scheduling is accomplished through "when"
statements. The syntax of a when statement of the preferred embodiment is given in Table
XIH.V An example of a when statement is given below: '

when (timer_expires (led_timer)) ~ /* This line is the when clause */

{

io_out (led, OFF); /* This is the task - turn the led off */

)

In the above example, when the application timer led_timer expires, the body of
code following the when statement is executed (and the LED is turned off). When
statements provide for execution of a task (the bracketed code) when the condition specified
(c.g., the led_timer expires) evaluates to true. It is known in the art to provide structures in
programming languages which allow for conditional execution of a task when a statement

evaluates to true. However, in known systems which include a scheduling statement (a

PCT/US92/02179

WO 92/16905
42
1 when statement or the equivalent), the event which is evaluated is a predefined event. Asis
2 noted in Table X111, the present invention provides for use of predetermined events in
"3 scheduling statements. However, as one important aspect of the present invention, events
4 may also be any valid C expression. For example, the following statement may be coded
5 inasystem of the present invention:
6 when (x ==3) /* This line is the when clause ¥/
7 {
8 io_out (led, OFF); /* This is the task - turn the led off ¥/
9 }
10 In this case, whenever the event x==3 occurs, the LED is turned off. Of course,
11 significantly more complicated C programming statements may be envisioned to define an
12 event. As will be understood by one of ordinary skill in the art, allowing evaluation of any
13 valid language expression to define an event offers significant flexibility over known
14 systems. The present invention further allows for use of multiple when statements to be
15 associated with a single task. For example:

WO 92/16905 ' ' PCT/US92/02179

,_ .
O WV 0 I A W B WO

[w—y
DN

Pk ek ped e
N W A W

DN bt it pem
© WV o

[\5 B]
I

N
w

43
when (powerup) /* This line is one when clanse ¥/
when (reset) /* This line is another when clause */
when (io_changes(io_switch)) /* This line is another when clause */
when (x =3) /* This line is another when clause */
{
io_out (led, OFF); /* This is the task - turn the led off ¥/

}

In this case, when any of the above events evaluates to true, the task is executed—
¢.g., the LED is turned off.

Importantly, as one aspect of the present invention, I/O objects may be referred to
in an event clause allowing improved ease of programming of the system of the present
invention. For example, two methods may be used to determine if an input value is new:
(1) the io_update_occurs event may be used, referring to the desired device in a when
statement or the io_in function may be used. The below two programs accomplish the

same goal.

ROGRAM 1
10_5 input pulsecount dev;
when (io_update_occurs (dev))
{ :
* [* perform the desired function */

}%7

WO 92/16905
44

1 PROGRAM 2

2 |stimert;
"~ 3 {IO_S input pulsecount dev;

4 Jwhen (timer_expires(t))

5 { io_in (dev);

6 if (input_is_new)

7 {

8 [* perform the desired function */

9)
10 }
11 The particular method chosen will depend on the individual case; however, the
12 aboveis exemplary of the flexibility and ease of use of the system of the present invention.
13 Further, as an additional feature of the present invention and as is described with
14 reference to Table VIIL, the present invention provides for two levels of when clauses,
15 priority when clauses and normal when clauses. Using this feature, it is possible to handle
16 events which must be dealt with on a priority basis.
17 PERFORMANCE OPTIMIZATIONS PERFORMED
18 RRED
19 As was discussed above, when more than two nodes are used in a connection, the
20 nodes may be recognized as a group and a group address may be assigned to the group of
21 nodes.
22 The preferred embodiment also carries out other performance optimization routines
23 o achieve minimal network traffic with resulting optimized response time. For example,

PCT/US92/02179

WO 92/16905 PCT/US92/02179

0 N AN WL A W N

10
11
12
13
14
15
16
17
18
19
20
21
22

45

the binder determines optimal protocol service class and addressing allocation at the time of
binding variables in order. Hlustrative of this, with reference to Figure 3(b), three separate
connections are shown, 321-323. Although this represents a typical optimal configuration,
these three connections could be combined by the binder into a single group resulting in
nodes sometimes receiving messages about network variable updates which are not used by
those nodes. In such a configuration, although there are additional messages received by
the nodes, no effect is seen by the application running on the node because the network
variable messages include a 14-bit network variable identification. Therefore, nodes which
have no need for a variable sent to them simply discard and, in the case of acknowled ged
service, acknowledge the message.

An advantage of grouping many nodes in a single group in the system of the
préferred embodiment is that such grouping simplifies tasks for the binder process and
further uses only one group address (the preferred embodiment is limited to 255 group
addresses per domain).

Further, the binder of the present invention dynamically selects an optimal protocol
class of semce at the time of binding. This is done by first computing the number of
messages it would take to complete a transaction on the first using acknowledged service
(including the original message and the acknowledgements). (Note that this number is the
group size which is known by the network variable binder process at the beginning of the
connection process). Second, this number is compared with the repeat count for repeating
message. If the repeat count is less than the group size, and none of the programs require

acknowledged services (each program allows the config option for its network variables),

WO 92/16905 PCT/US92/02179

46

then the binder dynamically converts the service from acknowledged to unacknowledged

repeat. This reduces network traffic, thus improving response time.

Thus, an improved communication network having capability for communication of

1
2
3
4
5
6 information between nodes in the network is described.
7

WO 92/16905 PCT/US92/02179

Tk sk 2ke sk sk sk s ke 2 2 e e o e abe oo oo ok . ode ol ke 5 L obe ke e b e o b ok sde s

J* * ook sk sk ek ok ok ok deok ok ok ok Kok ok * kkk
f o *k/
/** Temperature sensor control program writes an output network variable = *¥/
/** temp_high responsive to changes in temperature sensed by a thermostat ~ **/
/** **/
/**/

/** J/O Declarations **/

IO_1 input bit temp_in;

[** Network variables declaration **/

network output boolean temp_high;

/** working variables declarations and initializations **/

int on_threshold = 72;
int off_threshold = 68;

/**i*¥¢ *%k%k '****/
/** **/
/** Event driven code; update temp_high responsive to changes in temperature **/
I p_N1gh respo. g pera
/** input to the by temp_in *x/
p program Dy temp,

/** **/
[k Aok koo Rk R dok kK Kok sk Rk kR ko ok Rk ok
when (powerup)

when (reset)

io_change_init (temp_in);
}

whe{n (io_changes(temp_in))

if (temp_in > on_threshold)
- temp_high = true;
if (temp_in < off_threshold)
temp_high = false;
}

m

#WNHO\OOO\IO\M-hwwwowoo\lo\tn.p.wto»—-o\oooqo\u..(;ww._-o\ooo\)om-hmw o

R et LI T I I ATATR TR T U Y O U TR T U T C T U YU

ll

WO 92/16905 PCT/US92/02179

48
1 TABLE II
2 2 ol o
3 P PPN PPR—

4 /*# **/
5 /¥* Fan control program reads an input network variable fan_on to control ~ *¥/
6 /*¥* turning a fan on and off using output bit fan_active. **/
7 /** **/
8 I’* """" ek sk ks sk sk ok e ok ke dke e ke ak ok ***********************************/
9

10 [¥* J/O Declarations **/

11

% % 10_1 output bit fan_active;

% g /** Network variables declaration *¥/

i g network input boolean fan_on;

l 8 /**/

l 9 /* * k¥ /

20 /** Event driven code; updates fan_active each time a change in state occurs ~ **/

21 ** for the network variable fan_on xx/

22 [dokf

23 yS——— e R Sk ok

24

% g Whefl (nv_update_occurs(fan_on))

27 io_out(fan_active, fan_on);

28 }

29

WO 92/16905 PCT/US92/02179

49

TABLE IIT

_
This connection associates the temperature sensor control output variables
(temp_high) to a fan control input variable (fan_on). Specifically, temperature
sensor 1 is connected to fan 1; temperature sensor 2 is connected to fan 1 and

1

2

3
4

5

6

7

§8> # and fan 2; and temperature sensor 3 is connected to fan 2. #

:

10
11
12 @N (temp1_controls)
13 temp_sensor_1.temp_high [¥* writer **/
i 451 fan_1.fan_on [¥* reader **/
16 @N (temp2_controls)
17 temp_sensor_2.temp_high J¥* writer **/
18 fan_1.fan_on [** reader **/
é 8 fan_2.fan_on /** reader *¥/
21 @N (temp3_controls)
22 temp_sensor_3.temp_high [¥* writer **/
23 fan_2.fan_on [¥* reader **/
24
25

WO 92/16905 PCT/US92/02179

50

TABLEIV

#

This connection associates the temperature sensor control output variables
(temp_high) to a control cell; the control cell is connected to fan control

input variable (fan_on). Specifically, temperature sensor 1 is connected to
control cell 1; temperature sensor 2 is connected to control cell 1 and control
cell 2; temperature sensor 3 is connected to control cell 2; control cell 1 is

connected to fan 1; and control cell 2 is connected to fan 2

#

B o kg g WA

@N (connection_1)

NALWN OOV A LN C\0 00 ~J O\ A P LI N it O D GO\ U O 1=t

1

1

1

1

1

1 temp_sensor_l.temp_high [¥* writer *¥/
1 cell_1.temp_high /** reader **/
1

1 @N (connection_2)

1 temp_sensor_2.temp_high [¥* writer **/
2 cell_1l.temp_high [** reader *¥/
% cell_2.temp_high [*¥* reader **/
2 @N (connection_3)

2 temp_sensor_3.temp_high [¥* writer *¥/
% cell_2.temp_high [** reader *¥/
2 @N (connection_4)

2 cell_l.fan_on [¥* writer **/
% fan_1.fan_on [*¥* reader **/
3 @N (connection_5)

3 cell_2.fan_on [** writer *¥/
g fan_2.fan_on [*¥ reader **/
3

WO 92/16905 PCT/US92/02179

51
TABLEV
NETWORK VARIABLE PROGRAM EXAMPLE
#pragma receive_trans_count 8
/* This example has all the setpoint configuration local to this node. *
/* In this way, generic temperature and pressure sensors can be used ¥/

/* which have no knowledge of the setpoints. They only report new temp */

1

2

3

4

5

6

7

9
10 }/* values when the old one changes by a threshold value. Additionally, */
11 }/* the temperature value can be reported to many nodes which can each */
12 |/* use the temperature for their specific function -- even applying */
13 }/* different set points to the temperature value. In the old study, */
14 {/* actual temperature values were not sent on the network. Messages ¥/
15 [I/* were sent for above high setpoint, at setpoint & below low setpoint. */
16 [I/* Since no temperature values were sent, the messages sent couldonly ~ */
17 i/* be used by this node - defeating the value of a networked approach *
18 |I/* This division of function in the old study was done to save EEPROM ¥/
% (9) /* in this node since storing the setpoints takes EEPROM. */
21 [#define true 1
22 [#define false 0
23 f#defineon true
% g #define off false
26 [ftypedef signed int fahrenheit;, -
% Z typedef signed int PoundsPerSqln;
29
g (1) struct teinpSctpmn' ts
32 fahrenheit LowSet,
33 HighSet;
34 ;
35
g g struct pressureSetpoints
38 PoundsPerSqln LowSet,
39 HighSet;
0] o
42 §/* EEPROM nodal configuration parameters: Minimum time the motor must */
4 2 /* remain on, minimum time the motor must remain off. Temperature & */
4 ' *

/* pressure setpoints. Location and device type, too!!

PCT/US92/02179

WO 92/16905
52
config network input
signedlongint - MinOffTime,
MinOnTime;
config network input
struct tempSetpoints OutletWater,
CndnsrHead,
CoolAir;
config network input

struct pressureSetpoints CmprssrinltGas;
#pragma set_id_string "HVAComp"

¥ Network variable declarations for temperature & pressure inputs */
/¥ used to decide when the motor should be turned on and off *f

network input fahrenheit OutletWaterTemp,
CndnsrHeadTemp,
CoolAirTemp;

network input PoundsPerSqln CmprssrGasPrssr;
network input boolean BuildingCooling;

¥ Network variable declarations used to report status to the HVAC *
[* system controller. Reported conditions are: node offline/online, ¥/
/* motor on/off, and motor overloaded/O.K. These conditions are only ¥/
[* reported when they change. */

network output boolean MotorOn,
MotorOverload,
AmOnline;

/* Definitions of the Neuron® I/O pins. The previous study used an ¥/
[* onchip AtoD to measure the current that the motor used. This version ¥/
[* uses a $.50 external AtoD to convert current to a number of pulses ¥/
J¥ overa 1 second interval. These pulses are accumulated via the on */
[* chip timer/counter block to determine the current the motor uses */

10_0 output bit MotorCurl;
I0_S input pulsecount PulseAmps;

/¥ Timer declarations take no EEPROM space — they are in RAM ¥/
W

b P P 0D 00 L) L 0D LD LD LI U LI DI D BN 1N NN DN DD DD B 1D bt bt ok ok ook ok ook ot ok pk '
ANPHAWVI=OVORONANPAWLWNFEOWEISNIOANAWN OV -ITANAEWN OO O~IANDLN -

WO 92/16905 PCT/US92/02179

53

stimer MinOft I mer, —
MinOnTimer,
MotorMeasurementTimer;

/* number of pulses that equal the maximum amount of current the motor ~ */
/* can draw. The cheap AtoD gives O to 255 pulses per second depending */
/* on the analog current value. */

const int CompressorMotorMaxDraw=180,
Measurementinterval=10;

int strikes; /* motor overdraw counter */

/* now for some real code! initialization for reset, powerup and online */
/* events. Online means the node received a network management message ¥/
/* to go online. ¥/

void motor(boolean on_off_flag)
{

MotorOn = on_off_flag; .
io out(MotorCirl, on_off_flag);

if (on_off_flag == on)
MinOnTimer = MinOnTime;
clse
} MinOffTimer = MinOffTime;

void control_action()

(v
if (AmOnline &&
BuildingCooling &&
MinOffTimer = &&
OutletWaterTemp > OutletWater.HighSet &&
CndnsrHeadTemp < CndnsrHead.LowSet &&
CmprssrGasPrssr < CmprssrlnitGas.LowSet &&
CoolAirTemp > CoolAirHighCet
)
motor{(on);
clse

{
if(BuildingCooling
MinOnTimer =0

OutletWatet’I‘emg < QOutletWater. LowSet

AN EBWN=OWVONIANBEWNOVOO 1O\ B LI 1 OO 00~ U £ L)) 1=t € \O 60~ O\ B LI et

BBBP DB B UILL L UL UL LI LI N DD NI DI DI B B DI A D bt bt et et ek et et o ot ok

REE

WO 92/16905 PCT/US92/02179

54

CndnstHeadTemp > CndnsrHead HighSet &&
CmprssrGasPrssr > CmprssrInltGas.HighSet &&
CoolAirTemp < CoolAir.LowSet

motor(off);
)
)
when (ni:set)
MotorOn= false;
MotorOverload = false;
AmOnline= true;
motor(off);

/* initialize all input variables so that other nodes ¥/
/* don't have to all update this one before thisone */

/* begins operation. ¥/
OutletWaterTemp = OutletWater.LowSet;
CndnstHeadTemp = CndnsrHead.LowSet;
CoolAirTemp = CoolAir.LowSet;
CmprssrGasPrssr = CmprssrinltGasLowSet;
strikes = 14

poll(BuildingCooling); /* ask the controllerif ACison ¥

when (online)
{
AmOnline = true;
motor(off);
/¥ if the motor was overloaded & and we just came back online */
[¥ pethaps someone repaired it */

MotorOverload = false;
}

when(oi{ﬂinc)

mm#wwwowmqo\mpwwo—-oom\lo\mmewuoom\)a\mpww‘-‘o‘ow'\la\m-hww’—

-h-h-h-.h-hhhwwmwwwwwwwNNNNNNNNNNHHv-n-u—n-u-n—u-n—n

WO 92/16905 PCT/US92/02179

55

AmOnine . = false;
zlnotor(off);
when (nv update occurs)

control action();

when (1{imcr expires(MotorMeasurementTimer))
MotorMeasurementTimer = MeasurementInterval;

if (io_in(PulseAmps) > CompressorMotorMaxDraw)
{

WOV NEWNI=O\DOOIA B W -

1

1

1

1

i

% if (++su{ikes >=3) /* motor is really overloaded */
1 motor(off);

1 MotorOverload = true;
2)

2 else

2 strikes =0

2)

24

25 |Link Memory Usage Statistics:

% ’? ROM Usage: User Code & Constant Data 335 bytes

28 |EEPROM Usage: (not necessarily in order of physical layout)

29 [System Data & Parameters 72 bytes
30 |Domain & Address Tables 105 bytes
31 [Network Variable Config Tables 42 bytes
32 }User EEPROM Variables 12 bytes
33 JUser Code & Constant Data 0 bytes
g § Total EEPROM Usage 231 bytes
36 |RAMUsage: (not necessarily in order of physical layout)

37 }System Data & Parameters 549 bytes
38 [Transaction Control Blocks 132 bytes
39 1User Timers & I/O Change Events 12 bytes
40 INetwork & Application Buffers 424 bytes
41 JUserRAM Variables 9 bytes
2 % Total RAM Usage 1126 bytes
2 g End of Link Statistics

_

PCT/US92/02179

WO 92/16905
56
TABLE VI
R ME
fipragma receive_trans_count 8
/* This example has all the setpoint configuration local to this node. */
/* In this way, generic temperature and pressure sensors can be used *

/* which have no knowledge of the setpoints. They only report new temp ¥/
/¥ values when the old one changes by a threshold value. Additionally, */
/* the temperature value can be reported to many nodes whichcaneach ¥/

/* use the temperature for their specific function — even applying */
/* different set points to the temperature value. In the old study, *
/* actual temperature values were not sent on the network. Messages *

/* were sent for above high setpoint, at setpoint & below low setpoint. ¥/
/* Since no temperature values were sent, the messages sentcould only ~ */
/* be used by this node —- defeating the value of a networked approach */
/* This division of function in the old study was done to save EEPROM ¥/

WO WRNA N AW OWVONIANAWNFOWVR-JANLWN OV TAND W N

1

1

1

1

1

1

1

i.

é /* in this node since storing the setpoints takes EEPROM. *

2 fdefine true 1

2 #define false 0

2 #define on true

% #define off false

% /* Add In some message codes */

2 #define CondenstTemp 0 /* net in condensor temp */
2 #define CoolTemp 1 /¥ net in air temp */
3 #define GasPress 2 [* net in gas pressure */
3 #define BldCool 3 /* net in building cooling stat */
3 f&define MotOn 4 /* net out cmprsr mot on */
33 |Jé#define MotOvid 5 /* net out cmprsr mot overload ¥/
3 fidefine NdOnline 6 [* net out online *
35 |#define Poll BldCool 7 /¥ poll building status ¥
3 #define TimeMinOff_c 8 /* Config Msg code for time off */
3 #define TimeMinOn_c 9 f* Config Msg code for time on */
3 #define OutletH20 10 f* Netin H20 temperature ¥/
3 ##define CndnstHd_c 11 [* cndsr head temp config ¥/
40 |#&efine ColdAir ¢ 12 /* Cold air temp config *
4 #define CompGasPress_c 13 [* gass pressure config */
2 #define OutletH20_c 14 [+*Config Msg code for water tmp */

WO 92/16905 PCT/US92/02179

57

typedef signed int fahrenheit;
typedef signed int PoundsPerSqln;

struct tcfnpSctpoints

fahrenheit LowSet,
HighSet;

struct pr{cssm‘cSetpoints

PoundsPerSqIn LowSet,
HighSet;

/* EEPROM nodal configuration parameters: Minimum time the motor must */

/* remain on, minimum time the motor must remain off. Temperature & */
/* pressure setpoints. Location and device type, too!! */
signed long int MinOffTime,
MinOnTime;
struct tempSetpoints OutletWater,
CndnsrHead,
CoolAir;

struct pressureSetpoints CmprssrinltGas;
#pragma set_id_string "HVAComp"

/* Network variable declarations for temperature & pressure inputs */
/* used to decide when the motor should be turned on and off */

fahrenheit OutletWaterTemp,
CndnsrHeadTemp,
CoolAirTemp,;

PoundsPchth CmprssrGasPrssr;

boolean BuildingCooling;

/* Network variable declarations used to report status to the HVAC */

[* system controller. Reported conditions are: node offline/online, */

/* motor on/off, and motor overloaded/O.K. These conditions are only */
/* reported when they change. */

M

C\NNAWNFEOVRNIANA LN OWVOO~IA U D LR = C\O 00 ~J O\ LA LI R = O \O 00~ AU B LD s

A D et et A I IR TP IA T 3 ST R TR TR T XY O S T S Y X Y S S e

WO 92/16%905

B P P 00 U0 U LD LD LI LD LI LI LI N NI DD B BN 1D D 1O N DD bk bk ek ok et ok ek ot et ek !
SN AN LI = O \D 00 ~J O\ U LI NI et D 00~ O\ LN B LD 1) 1= A\ 00 = O\ LA B 1) B 1=t € \D 60 =2 O\ LA B LD B =4

PCT/US92/02179

58

boolean

[* Definitions of the Neuron® I/O pins. The previous study used an */

/* onchip AtoD to measure the current that the motor used. This version */
/* uses a $.50 external AtoD to convert current to an number of pulses */
/* over a 1 second interval. These pulses are accumulated via the on */

/* chip timer/counter block to determine the current the motor uses */

10_0 output bit MotorCtrl;
10_S input pulsecount PulseAmps;

/* Timer declarations */

stimer MinOffTimer,
MinOnTimer,
MotorMeasurementTimer;

/* number of pulses that equal the maximum amount of current the motor */
/* can draw. The cheap AtoD gives 0 to 255 pulses per second depending */
f* on the analog current value.*/

const int

int strikes; /* motor overdraw counter®/

F* Define all the message tags */
msg tag air temp_in;
msg tag gas_press_in;
msg tag bldstate in;
msg tag motlsOn_out;
msg tag motlsOvrld_out
msg tag Im_onin_out
msg tag getBldState;
msg tag config msg
msg tag water_temp_in;
msg tag cndsr_temp_in;

/* now for some real code! initialization for reset, powerup and online */
[*events. Online means the node received a network management message */
/* to go online. */

Motor-én,
MotorOverload,

AmOnline;

CompressorMotorMaxDraw=180,
MeasurementInterval=10;

WO 92/16905 PCT/US92/02179

59
void mo(tor(boolcan on_off_flag)
MotorOn =on_off_flag;
io_out(MotorCrl, on_off_flag);
msg_out.tag = motIsOn_out;
H msg_out.code = MotOn;
msg_out.data[0] = MotorOn;
msg_send();
if (on_off_flag = on)
MinOnTimer = MinOnTime;
else
. MinOffTimer = MinOffTime;
void control_action()
if(AmOnline &&
BuildingCooling &&
MinOffTimer ==0 &&
OutletWaterTemp > OutletWater.HighSet &&
CndnsrHeadTemp < CndnsrHead.LowSet &&i&

CmprssrGasPrssr < CmprssrInltGas.LowSet
CoolAirTempt > CoolAir.HighSet

{

motor{on);

if(BuildingCooling

MinOnTimer =0

OutletWaterTemp < OutletWater.LowSet
CndnsrHeadTemp > CndnsrHead HighSet
CmprssrGasPrssr > CmprssrInltGas.HighSet
CoolAirTemp < CoolAir.LowSet

{

BEREER

motor({off);

BB BB BB U0 0 L0 W LD LI LI LI L L B B DI DD B DI B DD DD D+t bt it et ot ek ot bk ot et)
O\'J\#WN'—‘O\OOO\IO\'J\AWNHO\OOO\)O\M-hWNHO\OOO\)O\MAwNn—AO\OOO\)O\UIthH

WO 92/16905

60

PCT/US92/02179

when (reset)

MotorOn
MotorOverload
AmOnline

msg_out.tag
msg_out.code
msg_out.data[0]
msg_send();

msg_out.tag
msg_out.code
msg_out.data[0]
msg_send();

msg_out.tag
msg_out.code

msg_out.data[0]
msg_send(;

motor{off);

/* begins operation.*/

OutletWaterTemp
CndnsrHeadTemp
CoolAirTemp

CmprssrGasPrssr

strikes

msg_out.tag
msg_out.code
msg_out.service
msg_send();

AN A WN OO 0O~ L LIND Hd OO 00 <) O\ A LI DD =4 OO 00 ~J O\ LA U B i € \O 00~ O\ LD LI R 1t

o B B 02 00 LD LD LD U L) L LI LI DI B BN YD DD B B DD DO DD bt bt ek sk ok ot et ok ok et

wauan

wnu

false;
false;
true;

motIsOn_out;
MotOn;
MotorOn;

motIsOvrld_out;
MotOvld;
MotorOverload;

Im_onln_out;
NdOnline;

AmOnline;

[¥ initialize all input variables so that other nodes */
/¥ don't have to all update this one before this one*/

OutletWaterLowSet;
CndnsrHead LowSet;
CoolAir.LowSet;
Cmprssr~nlLGa~.~owSet;

0;
getBldState;

Poll BldCool;
REQUEST;

WO 92/16905 PCT/US92/02179

€l
when(ox{ﬂm' e) T

AmOnline = true;
msg_out.tag = Im_onin_out;
msg_out.code = NdOnline;
msg_out.data[0] = AmOnline;
msg_send();
motor(off);

/* if the motor was overloaded & and we just came back online */

/* perhaps someone repaired it*/
MotorOverload = false;
msg_out.tag = motisOvrld_out;
msg_out.code = MotOvld;
msg_out.data[0] = MotorOverload;

} msg_send();

when (offline)

{
AmOnline = false;
msg_out.tag = Im_onln_out;
msg_out.code = NdOnline;
msg_out.dataf0] = AmOnline;
motor(off);

}

when (r{nsg_axﬁves(CondcnsrTcmp))

CndnstHeadTemp = (msg_in.data[0]<<8) + msg_in.data[1];
control_action(); o
whcn(m{sg_arﬁves(Coochmp))
CoolAirTemp =(msg_in.data[0]<<8) + msg_in.data[1];
| control_action();
when (x{nsg_anives(GasPress))

CmprssrGasPrsst = (msg_in.data[0]<<8) + msg_in.data[1];
control_action();

ANALWNHOVOENNANEWNIOVRTANAWN OV TANAEWN OO AU -

b et e a NI IR IR IA T AT U T ST TS TRTN TR TR Y Y S i U U

WO 92/16905

PCT/US92/02179

when (msg_arrives(BldCool))

BuildingCooling
control_action();

when (msg_arrives(OutletH20))

OutletWaterTemp =
control_action();

}
when (x{nsg_mﬁvcs(‘I’nncMinOff_c))
MinOffTime

when (msg_arrives(TimeMinOn_c))

MinOnTime

when (x[nsg arrives(CndnsrHd_c)

CndnsrHead.LowSet
CndnsrHead HighSet

}
when (?sg_arﬁves(ColdAir_c))

CoolAirLowSet =
CoolAir.HighSet =
}
when (msg_arrives(CompGasPress_c))
{
CmprssrInltGas.LowSet =
CmprsstInitGas.HighSet =

}
when (t{nsg_arrivcs(OutletI-IZO_c))

OutletWater.LowSet =
OutletWater HighSet =

O\thNHO\OOO\lO\M-P-WNHO\OOO\IO\M-hWN!—-O\OOO\IO\UlANNHO\OOO\)O\MAWNP'

PP b DDA B LI LI LI LILI LI LI LI DI DD B R N D DO I D 1N i ot et ek ok ok ok ok ot ot

msg_in.data[0];

(msg_in.data[0]<<8) + msg_in.data[1];

(msg_in.data[0]<<8) + msg_in.data[1];

(msg_in.data[0]<<8) + msg_in.data[1];

(msg_in.data[0]<<8) + msg_in.data[1];
(msg_in.data[2]<<8) + msg_in.data[3];

(msg_in.data[0]<<8) + msg_in.data[1];
(msg_in.data[2]<<8) + msg_in.data[3];

(msg_in.data[0]<<8) + msg_in.data[1];
(msg_in.data[2]<<8) + msg_in.data[3];

(msg_in.data[0]<<8) + msg_in.data[1];
(msg_in.data[2]<<8) + msg_in.data[3];

WO 92/16905 PCT/US92/02179

63

when (t{imcr_cxpircs(MotorMcasurcmcntfimcr))

- MotorMeasurementTimer = MeasurementInterval;

if (io__ir{l(PulseAmps) > CompressorMotorMaxDraw)
if (++strikes >= 3) /* motor is really overloaded i

motor(off);
MotorOverload = true;
msg_out.tag = motlsOvrld out;
msg_out.code = MotOvid;
msg_out.data[0] = MotorOverload;

| msg_send();

else
strikes = 0;
}
Link Memory Usage Statistics:

ROM Usage: User Code & Constant Data 626 bytes
EEPROM Usage: (not necessarily in order of physical layout)

System Data & Parameters 72 bytes
Domain & Address Tables 105 bytes
Network Variable Config Tables 0 bytes
User EEPROM Variables 0 bytes
User Code & Constant Data 0 bytes
Total EEPROM Usage 177 bytes
RAM Usage: (not necessarily in order of physical layout)
System Data & Parameters 549 bytes
Transaction Control Blocks 132 bytes
User Timers & I/O Change Events 12 bytes
Network & Application Buffers 600 bytes
User RAM Variables 21 bytes
Total RAM Usage 1314 bytes
End of Link Statistics

O\OOO\JO\MALQNHO\DOO\)G\MAWNHO\OOOQO\MQU)NHO\OOO\!O\M#U)NH

“&_—__ |

S hwwwwwwwwwuNNNNNNNNNNH-—-._-.—.—.-.—.—-—.-

oy

PCT/US92/02179

WO 92/16905
64
1 TABLE VII
2 STANDARD NETWORK VARIABLE TYPES
3
4
: g £ Name Quantity Units Range Bits Resolution
7 |1 SNVI_amp current amps -3,276 - 3276 16 0.1 ampere
8 2 SNVT_amp_mil current milliAmps -3,276 - 3276 16 0.1 milliampere
9 |3 SNVT_angle phase/rotation radians 0-65 16 0.001 radian
10 |} 4 SNVT_angle_vel angular
11 velocity radians/sec 3,276 - 3276 16 0.1 radians/sec
12 5 SNVT_char_ascii character character 0 - 255 8 1 character
13 } 6 SNVT_count count,event counts 0 - 65,535 16 1 count
14 |} 7 SNVT_count_inc incremental . :
15 counts counts 232,768 - +32,767 16 1 coumt
16 8 SNVT_date_cal date YYYYMMDD 1-3000,0-12,0-31, 32 1 day
17 } 9 SNVT_date_day day of Week Enum list M, TuWThFSaSu 8 N/A
18 110 SNVT_date_time time of day HH:MM:SS 00:00:00 to 23:59:59 24 1 second
19 311 SNVT_elec_kwh energy, elec Kilowatt-Hours 0 - 65,535 16 1KWH
20 J12 SNVT_elec_whr energy, elec watt-hours 0 - 6,553 16 0.1 WHR
21 |13 SNVT_flow_mil flow milliters/sec 0 - 65,535 16 1ml/s
22 J14 SNVT_length length meters 0 - 6,553 16 0.lm
23]15 SNVT_length_kilo length kilometers 0 - 6,553 . 16 0.1km
24 |16 SNVT_length_micr length microns 0 - 6,553 16 0.1km
25 17 SNVT_length_mil length millimeters 0 - 6,553 16 0.lmm
26 J18 SNVT_lev_contin level, contin percent 0 - 100% 8 5%
27 §19 SNVT_lev_disc level, discrete Enumerated list 8 N/A
28 }20 SNVT_mass mass grams 0 - 6,553 16 0.1g
29 J21 SNVT_mass_kilo mass kilograms 0 - 6,553 16 0.1kg
30 [22 SNVT_mass_mega mass metric tons 0 - 6,553 16 0.1 tone
31 }J23 SNVT_mass_mill mass milligrams 0 - 6,553 16 O.lmg
32 |24 SNVT_power power watts 0 - 6,553 16 0.1 watt
33 |25 SNVT_power_kilo power watts 0 - 6,553 16 0.1 kwau
34 }26 SNVT_ppm concentration ppm 0-65,535 16 1lppm
35 J27 SNVT_press pressure pascals -32,768 - 32,767 16 1 pascal
36 J28 SNVT_press_psi pressure Ibs/sq-in -3,276 - 3,276 16 0.1 psi
37 §29 SNVT_res resistance Ohms 0 - 6553 16 0.1 Ohm
38 |30 SNVT_res_kilo resistance kiloOhms 0 - 6,553 16 0.1 kilo-Ohm
39]31 SNVT_sound_db sound Level dBspl -327 - 327 16 001 dB
40 |32 SNVT_speed speed meters/second 0 - 655 16 0.01m/s
41 }33 SNVT_speed_kmh speed km/hour 0 - 655 16 0.01 km/h
42]34 SNVT_state_supr sensor state Enumerated list 8 N/A
43 }35 SNVT_str_asc char string ASCII
44 characters(s) 30 characters 248 N/A
22 36 SNVT_str_int char string Intl :

char set gs) 14 characters 248 N/A

WO 92/16905

panch Pd Pk pud Jumd pred pond

PCT/US92/02179

%

65
— — —_ — ——__ ——

1

2 [# Name Quantity Units Range Bits Resolution’
3

4 137 SNVT_telecom phone state Enumerated list 8§ N/A
.5 38 SNVT_temp temperature Celsius -3,276 - +3,276 16 0.1 degree

6 l39 SNVT_time_passed elapsed time HH:MM:SSIL 0 - 65,536 48 0.001 sec

7 |40 SNVT_vol volume liters 0 - 6,553 16 0.1 liter

8 J41 SNVT_vol_kilo volume kiloliters 0 - 6,553 16 0.1 kiloliter
9 42 SNVT_vol_mil volume milliliters 0 - 6,553 16 0.1 milliliter
0 J43 SNVT_volt voltage volts -3,276 - 3,276 16 0.1 volt

1 44 SNVT_volt_dbmv voltage dB microvolts -327 - 327 16 0.01 db uv dc
2 Jas SNVT_volt_kilo voltage kilo volts -3,276 - 3,276 16 0.1 kilovolt
3 }46 SNVT_voli_mil voltage millivolts -3,276 - 3,276 16 0.1 millivolt
4

5

6

PCT/US92/02179

WO 92/16905
66

1 TABLE VI

2 NETWORK VARIABLE DECLARATION

3

4 The preferred syntax for declaration of a network variable is as follows:

5 |network input | output [netvar modifier] [class] type [bind_info (fields)] identifier;

6 fwhere: \

7 Rnetvar modifier are the following optional modifiers which can be included in the

8 declaration of a network variable:

9 sync [synchronized — specifies that all values assigned to this
10 network variable must be propagated, and in their original order.
11 However, if a synchronous network variable is updated multiple
12 times within a single critical section, only the last value is sent out.
13 If this keyword is omitted from the declaration, the scheduler does
14 not guarantee that all assigned values will be propagated. For
15 example, if the variable is being modified more rapidly than its
16 update events can be processed, the scheduler may discard some
17 intermediate data values. However, the most recent data value for a
18 network variable will never be discarded.

19

.20 polled — is used only for output network variables and specifies
21 that the value of the output network variable is to be sent only in
22 response to a poll request from a node which reads the network

WO 92/16905

00 ~J O W Hh W N e

10
11
12
13
14
15
16
17
18
19
20
21
22

class

PCT/US92/02179

67

variable. When this keyword is omitted, the value is propagated

over the network every time the variable is assigned a value.

Centain classes of storage may be specified for network variables.
Specifically, the following keywords may be entered in the network
variable declaration statement:

const — specifies that the network variable may not be chgngcd by
the application program;

eeprom — allows the application program to indicate the value of
the network variable is to be preserved across power outages. In the
preferred embodiment, variables declared with this storage class are
stored in the eeprom 401. EEPROM variables have a limited
capability to accept changes before the EEPROM can no longer be
guaranteed to oi:erate properly. Therefore, initializers for the
ceprom class take effect when the program is loaded and not each
time the program is started. Reloading a program has the effect of
reinitializing all eeprom variables. '

config — specifies a const network variable in EEPROM that can
be changed only by a network management node node. This class
of network variable is typically used for application configuration by

a network manager.

PCT/US92/02179

WO 92/16905
68
1 Jupe Network variable typing serves two purposes: (1) typing ensures
2 | proper use of the variable in the compilation, and (2) typing ensures
3 proper connection of network variables at bind time. Network
4 variables may be declared as any one of the following types:
5 [signed] long integer
6 unsigned long integer
7 signed character
8 [unsigned] character
9 [signed] [short] integer
10 unsigned [short] integer
11 enumerated lists
12 structures and unions of the above types
13 standard network variable types (see Table VII)
14
15 |bind_info (fields) The following optional fields may be included in the declaration of a
16 network variable; the compiler builds the BIF file utilizing
17 information declared in these fields and the information in the BIF
18 file is used for binding the network variable inputs and outputs. The
19 fields are each optional and may be specified in any order.
20 offline — is used to signal to the bind process that a node should be
21 taken offline before an update can be made to the network variable.
22 This option is commonly used with the config class network
23 variable.

WO 92/16905

PCT/US92/02179
69

00 N O W AW e

10
11
12
13
14
15
16
17
18
19
20
21
22
23

bind | bind(var_name) — specifies whether the network variable is
bound to network variables on other nodes (the usual case) or to a
network variable on the same node. The default is bind which
indicates that the network variable can be bound to network
variables on other nodes. The other form, bind (var_narme) allows
binding an output to an input on the same node. The var_name is
the name of another network variable on the same node. It should be
noted that this option has been omitted from the currently preferred
embodiment of the present invention. '

unackd | unackd_rpt | ack [(config | nonconfig)] — tells the
protocol layer of the network management software of the present
invention the type of service to use for the variable. An
unacknowledged (unackd) network variable uses minimal network
resources to propagate its values to other nodes. As a result,
propagation failures are more likely to occur, and such failures are 4
not detected by the node. This class is typically used for variables
which are updated on a frequent, periodic basis, where the loss of
an update is not critical, or in cases where the probability of a
collision or transmission error is extremely low. The unackd_rpt
class of service is used when a variable is sent to a large group of
other nodes; with this class the message is sent multiple times to
gain a greater probability of delivery. Acknowledged (ackd) service
provides for receiver node acknowledged delivery with retries. The

WO 92/16905

I R . T S T C R

10
11
12
13
14
15
16
17
18
19
20
21
22
23

PCT/US92/02179

70
keyword config, indicates the service type can be changed at the
time connections are specified for the network variable. The
keyword nonconfig indicates the service type cannot be changed at
configuration time.
authenticated | nonauthensicated [(config | nonconfig)] — specifies
whether the network variable requires use of an authentication to
verify the identity of the sender node. The config | nonconfig
keywords specify whether the authentication designation is
configurable. The default in the system of the preferred embodiment
is nonauth (config).
priority | nonpriority [(config | nonconfig)] — specifies whether
the network variable receives priority or not. The keywords config
| nonconfig specify whether priority is configurable. The default is
nonpriority (config).
rate_est (const_expression) — specifies the estimated average
message rate, in tenths of messages per second, that an associated
network variable is expected to transmit or receive. This value
assists the network administrator in configuring the network.
max_rate_est (const_expression) — specifies the estimated
maximum message rate, in tenths of messages per second, that the
associated network variable is expected to transmit or receive. This

value assists the network administrator in configuring the network.

WO 92/16905 ’ PCT/US92/02179

71

1 TABLE IX

2 BIFFILE FORMAT
3

4 The Binder Interface File (BIF) format comprises a number of records—one record per

5 Inetwork variable and one record per message tag plus some overhead records. The format is

6‘ designed to be concise with few lines of physical lines per record. The format of the file generally

7 Jallows for the following record types: (1) File Header comprising timestamp and other general

8 Jinformation (one record); (2) Global information comprising general information of indicating

9 | general information about the node and the application program running on the node; and (3)
10 JNetwork variable and message tag records for each network variable and message tag comprising
11 Jinformation about the network variable or message tag.
12 Importantly, network variables and message tags may require differing amounts and formats
13 Jof information. Therefore, as one aspect of the present invention, a record structure has been
14 fdeveloped to allow efficient storage of the differing required information and efficient retrieval of the
15 Jrecords. In addition, in order to conserve storage, the present invention discloses an encoding
16 |scheme to encode numeric information present in the records.
17 In general, string fields contain an asterisk if they are not applicable. Integer fields contain a
18 Jzero. The first record in the file is a header which comprises three lines of commentary and
19 }copyright notice text and a timestamp. Following this header is one blank line followed by global

20 |information used by the binder process.

PCT/US92/02179

WO 92/16905
: 72
1 Global Information _
2 The first global value line is a Program ID comprising eight 2-digit hexadecimal values,
"3 |separated by colons. The second global value line comprises several numeric fields separated by

4 J¥spaces. The fields are defined in order as follows:

5 |} ¢ Eitheralora2 which specifies the number of domains.

6 |- The number of address table 901 slots in the range of decimal 1-15.

7 §+ EitheraOoral. Indicates whether the node application program handles incoming _

8 messages.

9 . The number of network variables defined by t}.xc application program in the range of 0 to 62.
10 |- The number of message tags defined by the application program in the range 0 to 15.
11 - The number of network input buffers (encoded, see below).

12 . The number of network output buffers (encoded, see below).

13 |- The number of priority network output buffers (encoded, see below).

14 | - The number of priority application output buffers (encoded, see below).

15 } - The number of application output buffers (encoded, see below).

16 | « Thenumber of application input buffers (encoded, see below).

17 . The size of a network input buffer (encoded, see below).

18 . The size of a network output buffer (encoded, see below).

19 | - The size of an application input buffer (encoded, see below).

20 | - The size of an application output buffer (encoded, see below).

21 The third line is used for node-specific parameters and has not been fully defined in the

22 jcurently preferred embodiment. The fourth and following lines are optional and may include a node

23 §documentation string which may be transmitted to the network management node for documeming,

WO 92/16905 ‘ PCT/US92/02179

0O ~J O Wi A W) e

10
11
12
13
14
15
16
17
18
19
20
21
22
23

73

—

for example, the general function of the node. If not supplied, these nodes comprise a single
asterisk. If supplied, these lines each begin with a double-quote character which is not included as
part of the documentation string. Multiple lines are concatenated without any intervening characters.
There is no end double quote. The global values section ends with a blank line.

As noted above, buffer sizes and count fields are encoded. The encoded values allow
selected values, given below, to be stored in a nibble, thus reducing the size of the database.In the
preferred embodiment, buffer sizes must be one of 20, 21, 22, 24, 26, 30, 34, 42, 50, 66, 82, 114,
146, 210 or 255 (i.e., 15 allowed buffer size values where the buffer sizes are given in bytes);
non-priority buffer counts must be one of 1,2, 3, 5,7, 11,

15,23, 31, 47, or 63 (i.e., 11 allowed buffer size values). Priority buffer counts must be one of 0,
1,2,3,5,7, 11, 15, 23, 31, 47, or 63 (i.c., 12 allowed buffer size values).

In order to represent these values in a single nibble (4 bits), the following formulas are used
to transform the nibble value (n) to the above values:

for buffer sizes: 21/2 4 (n&1) * 2n/2-1 ; 18 (except where n = 0; size = 255); and

for count (priority and non-priority): 2M/2 4 (n&1) * 20/2-1 .1

where n is the nibble value and the & symbol indicétés a logical AND function between the
four bit n value and 0001 (e.g., for n = 310, the result of n&1 is 0011&0001=0001 or 110, for n=2,
the result is 010; in general for any even number n, the value of this function will be 0 and for any
odd number n, the value will be 1). Also, in the above equations, integer arithmetic is used;
therefore, where fractional values result in the computation of a value (e.g., /2 where n = 1), the
fractional values are rounded down to the next lowest integer (¢.g., for n=1, n/2 = 1/2, is rounded

down to 0). Use of the above formula, as opposed to, for example a table lookup routine, leads to

decreased requirements for static memory. '
—-———___________—ﬁ-————-—cl—————_____

WO 92/16905 PCT/US92/02179

74

Network Variable and Message Tag Records

Zero or more records are produced which correspond to the network variables and message
tag definitions in the program. Message tag records begin with the word "TAG"; Network variable
messages begin with "VAR". Following the "TAG" or "VAR" identifier is a string of at maximum
16 characters which is the name of the tag or variable. Next,
there is a decimal number (0-61 for network variables; 0-14 for message tags) which translates the

name into an internal program index for the object code. Finally, there are two rate estimates, each a

00 N O W B W N

decimal number from 0-255, which are the rate_est and max_rate_est, respectively, in units of tenths
9 Jof amessage per second.
10 The second line of each record corresponds to the bind_info fields and other numeric fields in

11 |the order and as defined below:

12 Feld Values

13 offline specifier Oor1l

14 bindable specifier Oorl

15 bind target index 0-61 (63 if no bind target is specified)
16 direction O=input, 1=output

17 service type O=acknowledged, 1=unackd_rpt, 2=unackd
18 service type configurable? 1=yes, O=no

19 authenticated? 1=yes, O0=no

20 authenticated configurable? 1=yes, O=no

21 priority 1=yes, O=no

22 priority configurable? 1=yes, O=no

23 polled 1=yes, O=no '

WO 92/16905 PCT/US92/02179

00 ~J O W H WD e

10
11
12
13
14
15
16
17
18
19
20
21
22

75

synchronized 1=yes, 0=no

config 1=yes, O=no

The third and any subsequent lines optionally contain variable docurnentation in the same
format as the node documentation described above. If no documentation is supplied, a single asterisk
is used.

For network variables, the remaining lines following any documentation comprise the
following information. Message tags do not require this information.

The first line following the documentation lines is a header in which a first field indicates
whether the variable is a standard network variable type; if so, the remaining fields are ignored and
there are no more lines in the record. The format of the line, in order of the fields, is as follows:

Fiel Yalues

Standard network variable type number 1-255 (0 if not a standard type)

First typedef name used in the definition maximum length 16 characters, * if none
Number of elements in the type 1 unless structured or union, 256 max
There is one additional line per element, (where the number of elements was given

immediately above). The format of these lines is as follows, in order of the fields presented:

Field Values

Basic Type O=char, 1=integer, 2=long, 3=bitfield, 4=union
Bitfield Offset 0-7, 0if not applicable

Bitfield / union size 1-7 for bitfield; 1-31 for union; 0 if not applicable
Signedness O=unsigned, I1=signed

___Array bound 1-31, 0 if not an array
——————-—————-—-——________--———————___d

WO 92/16905 PCT/US92/02179

76
TABLEX

BIFFILE FOR PROGRAM OF TABLE YV

File: node_31_right.bif generated by APC Revision 0.99
Copyright (¢) 1990 Echelon Corporation
Run on Mon Feb4 10:31:40 1991

48:56:41:43:6F:6D:70:00
215014033333311942
*

*

VAR MinOffTime 000
01630010101001
*

0% 1
20010
VAR MinOnTime 100
91630010101001

0* 1

20010

VAR OutletWater2 00
01630010101001
E 3

0* 2

10010

10010

VAR CndnsrHead 300
01630010101001
*

0* 2

10010

10010

VAR CoolAir400
01630010101001
*

0 2

10010

10010

VAR CmprssrInltGas 500
01630010101001

£ B P U0 L0 LD L0 U0 LD LI) LD L B N D N DD DD DD DO DO DN bt bk bk et bk et bk ok ok ok '
WOV NONPAWNIFHOWOIOANAWNFHOWOIANDBWRIHOWOEIANA W N -

PCT/US92/02179

WO 92/16905

77

o (=] o
M o o o o
oo 5o O oo So o Co o
o oo o0 © %0 =il o o oo
-t — - — = O —t —
o, o
o g§o go do MO - S, g _ <o
— — O nWl v — — vt
o WO Bo o =) o MO Ho
WO 0@% O%M o 83 o8B mOow mOow §o S §o
oo 6 o © oo o0 oo WO O MO =) MO O MO
* OO0 (=] (=] o (=] (<= L) (=] L] o (=]

tOllVO:OlVO:OIVO*OlVOtOIVOtOlVO*OIVO*01V0t01

12345678901234567890123456789012345678901234
it et At et el e =S QAN AN AN AN NN NN NN NN NN Y < 3 < <

PCT/US92/02179

WO 92/16905
78
1 TABLE X1
2 1/0 DEVICE DECLARATION
"y _
4 Each I/O device is declared in the application program as an external "device name".
5 | The syntax for such declaration is as follows:
6 <pin> <type> [<assign>] <device-name> [=<initial-output-level>];
7 §where <pin> is one of the eleven reserved pin names: 10_0, I0_1,10_2, 10_3,10_4,
8 J]10_5,10_6,10_7,10_8,10_9, and IO_10;
9
10 <type> is one of the following types, may specify the indicated pins and is subject
11 jto the indicated restrictions:
12 (1) ousput bit — Used to control the logical output state of a single pin, where 0
13 }equalslow and 1 equals high; may specify any pin I0_0 to IO_10 and is unrestricted.
14 (2) inpur bit — Used to read the logical output state of a single pin, where 0 equals
15 Jlow and 1 equals high; may specify any pin IO_0 to I0_10 and is unrestricted.
16 (3) [output] bitshift [numbits (<expr>)] [clockedge ({ + | - })] [kbaud (<expr>)] —
17 JUsed to shift a data word of up to 16 bits out of the node. Data is clocked out by an
18 }intemally generated clock. numbits specifies the number of bits to be shifted; clockedge
19 |specifies whether the data is stable on the positive going or negative going edge; and kbaud
20 |specifies the baud rate. Requires adjacent pin pairs; the pin specification specifies the low
21 }numbered pin of the pair and may be I0_0 through IO_6 or I0_8 or I0_9.
22 (4) [input] bitshift [numbits (<expr>)] [clockedge ({ + [- })] [kbaud (<expr>)] —
23

Used to shift a data word of up to 16 bits into the node. Data is clocked in bz_ an intemallz

WO 92/16905 PCT/US92/02179

00 N O W BW N e

10
11
12
13
14
15
16
17
18
19
20
21
22

79

S e —
generated clock. numbits specifies the number of bits to be shifted; clockedge specifies

whether the data is read on the positive going or negative going edge; and kbaud specifies
the baud rate. Requires adjacent pin pairs; the pin specification specifies the low numbered
pin of the pair and may be IO_0 through IO_6 or I0_8 or I0_9.

(5) [owsput] frequency [invert] [clock (<expr>)] — This device type produces a
repeating square wave output signal whose period is a function of an output value and the
selected clock, clock (<expr>), where clock (<expr>) specifies one of 8 clocks provided by
the node. Must specify IO_0 or IO_1. The mux keyword (see below) must be specified for
10_0 and the ded keyword (see below) must be specified for I0_1.

(6) [outpus] triac sync <pin> [invert] [clock (<expr>)] — This device type is used
to control the delay of an output pulse signal with respect to an input trigger signal, the
sync input. Must specify IO_0 or IO_1. The mux keyword (see below) must be specified
for I0_0 and the ded keyword (see below) must be specified for I0_1. IFI0_0is
specified, the sync pin must be 10_4 through 10_7; if IO_1 is specified, the sync pin must
be I0_4.

(7) [owsput] pulsewidth [invert] [clock (<expr>)] — This device type is used to
produce a repeating waveform which duty cycle is a function of a specified output value
and whose period is a function of a specified clock period. Must specify I0_0 or IO_1.
The mux keyword (see below) must be specified for I0_0 and the ded keyword (see
below) must be specified for IO_1.

(8) input pulsecount [invert] — This device type counts the number of input edges

at the g‘ ut gin overa griod of 0.839 seconds. Must s&' 10 4 through 10_17.

PCT/US92/02179

WO 92/16905
80
1 (9) ousput pulsecount [invert] [clock (<expr>)] — This device type produces a
2 |sequence of pulses whose period is a function of the specified clock period. Must specify
. 3 }O_0or IO_1. The mux keyword (see below) must be specified for IO_0 and the ded
4 [Jkeyword (see below) must be specified for IO_1.
5 (10) [input] ontime [invert] [clock (<expr>)] — This device type measures the high
6]period of an input signal in units of the specified clock period. Must specify I0_4 through
7 JO_7.
8 (11) {output | input } serial [baud (<expr>)] — This device type is used to transfer
9]data using an asynchronous serial data format, as in RS-232 communications. Output
10 }serial must specify I0_10; input serial must specify I0_8.
11 (12) parallel — This device type is used to transfer eight bit data words between
12 jtwo nodes across an eleven pin parallel bus. This is a bidirectional interface. Requires all
13 }pins and must specify I0_0.
14 (13) neurowire select <pin> [kbaud (<expr>)] — This device type is used to
15 }uansfer data using a synchronous serial data format. Regquires three adjacent pins and must
16 |specify IO_8. The select pin must be one of IO_0 through I0_7.
17 (14) [input] quadrature — This device type is used to read a shaft or positional
18 Jencoder input on two adjacent pins. Requires adjacent pin pairs; the pin specification
19 |fspecifies the low numbered pin of the pair and may be I0_0 through IO_6 or IO_8 or
20 j10.9.
21 (15) [inpus] period [invert] [clock (<expr>)] — This device type measures the total
22 {}period from negative going edge to negative going edge of an input signal in units of the
23 |specified clock period. Must specify 10_4 through IO 7.

WO 92/16905 PCT/US92/02179

00 ~ O W bW N e

10
11
12
13
14
15
16
17
18
19
20
21

81

(16) [outpus] oneshot [invert] [clock (<expr>)] — This device type produces a
single output pulse whose duration is a function of a specified output value and the selected
clock value. Must specify IO_0 or IO_1. The mux keyword (see below) must be specified
for I0_0 and the ded keyword (see below) must be specified for IO_1.

(17) {output | input } nibble — This device type is used to read or control four
adjacent pins simultaneously. Requires four adjacent pins; the pin specifies denotes the
lowest number pin of the quartet and may be pin I0_0 through 10_4.

(18) {output [input } byre — This device type is used to read or control ei ght pins
simultaneously. Requires eight adjacent pins; the pin specification denotes the lowest
number pin and must be I0_0.

(In general, pins may appear in a single device declaration only; however, a pin

may appear in multiple declarations if the types belong to the set of {bit, nibble and byte});

where <assign> is one of "mux" which indicates the device is assigned 10 a
multiplexed timer counter circuit or "ded" which indicates the device is assignedtoa

dedicated timer counter circuit; and

where <initial-output-state> is a constant expression used to set the output pin of
the channel to an initial state at initialization time (e.g., when the application program is

reset).

|

PCT/US92/02179

WO 92/16905
82

1 TABLE X1
2 ACCESS TO I/O DEVICES VIA BUILT IN FUNCTIONS

3 _
4 To access one of the I/O devices (after declaring it as shown above), the application
5 }programmer merely calls one of the built-in functions defined below. These built-in functions
6 |appear syntactically to be nothing more than procedure calls. However, these procedure calls
7 Jare not be defined as external functions to be linked in. Instead, these procedure names are
8]"known" to the compiler, and the compiler enforces type checking on the parameters of the
9 |procedures.

10

11 |}The built-in function syntax is as follows:

12

13 <return-value>io_in (<device> [<args>})

14 <return-value> io_out (<device>, <output-value> [<args>])

15 where the <device> name corresponds to an I/O device declaration and <args> are as

16 }follows, depending on the type of device:

17 bitshift [, <numbits>}

18 serial (output only) , <count>

19 serial (input only) , <input-value>, <count>

20 neurowire (output only) , <count>

21 neurowire (input only) , <input-value>, <count>

22 parallel (output only) , <count>

23 parallel (input only) , <input-value>, <count>

WO 92/16905 ' PCT/US92/02179

00 I O W AW

10
11
12
13
14
15
16
17
18
19
20
21

83

All other devices do not permit extra arguments in the calls to jo_in or io_out.

Some of the above arguments may also appear in the device declaration, If the
attribute is specified in the declaration and the attribute is supplied as an argument, the
argument overrides the declared value for that call only. These attributes may be specified in
both places, either place or not at all. ‘If left unspecified, the default is used (see defaults
below).

The data type of the <return-value> for the function io_in, and the data type of the
<output-value> for io_out is given by the following table. The data values will be implicitly
converted as necessary. A wamning is output by the compiler if an io_in that returns a 16-bit

quantity is assigned to a smaller value.

bit short bit 0 used; others are 0
bitshift long shifted value

frequency long period in nanoseconds
pulsewidth short pulsewidth in nanoseconds
pulsecount long count in .84 seconds
ontime, period long period in nanoseconds
quadrature short si gnéd count

oneshot ' short count

nibble short bit 0-3 used; others are 0

short all bits used

PCT/US92/02179

WO 92/16905
84
1 For period, pulsecount and ontime input devices, the built-in variable "input_is_new"
2 }is setto TRUE whenever the io_in call returns an updated value. The frequency with which
" 3 Jupdates occur depends on the device declaration
4 For parallel, serial and neurowire, io_out and io_in require a pointer to the data buffer
5 }as the <output-value> and the <input-value>, respectively. For parallel and serial, io_in
6 |Jreturns a short integer which contains the count of the actual number of bytes received.
7 Ranges and defaults
8 The following ranges and defaults apply to the various IO attributes:
9 « The bitshift "numbits” may be specified in the bitshift declaration as any
10 number from 1 to 16 and, if not specified, defaults to 16. In the calls to io_in
11 and io_out, the shift value may be any number from 1 to 127. For io_in, only
12 the last 16 bits shifted in will be returned. For io_out, after 16 bits, zeroes are
13 shifted out.
14 * The bitshift output clock may be either '+' or -'. It defaults to “+'. This
15 defines whether the data is shifted on the positive-going or negative-going
16 edge of the clock. This can only be specified in the declaration.
17 « The initial frequencies of the frequency output, triac output, pulsewidth
18 output and pulsecount output are 0.
19 * The clock value specifies a clock in the range 0...7 where 0 is the fastest
20 clock and 7 is the slowest. The defaults are as follows:
21 frequency output 0
22 triac output 7
23 pulsewidthoutput 0

WO 92/16905 PCT/US92/02179

85
1 pulsecountoutput 7
2 oneshot output 7
'3 ontime input 2
4 period input 0
5 The baud rate of serial may be 300, 1200 or 2400 baud with a default of
6 2400.
7 * The baud rate for neurowire and bitshift may be 1,10 or 25 kbits/second
8 and defaults to 25 kbits/second.
9
10 Example
11 An example follows—to read a switch attached to pin 1 and light an LED attached to

12 §pin 2 when the switch is closed, the following would be coded by the application

13]programmer:

14

15 I0_1 input bit chl switch;
16 I0_2 output bit led;

17 if (io_in(switch))

18 {

19 io_out (led, TRUE);
20 }

21

22

23

PCT/US92/02179

WO 92/16905
86

1 Multiplexin

2 The timer counter circuit may be multiplexed among pins 4 to 7. To facilitate this, the
"3 Hollowing built-in function is provided:

4 io_select (<device>);

5 This function causes the specified device to become the new owner of the timer

6 [counter circuit. Any reinitialization of the timer counter circuit is handled by this function. It

7 Bis under the application's control when the timer counter is connected to which pin. The

8 [multiplexed timer counter is initially assigned to the mux device which is declared first.

9 For example, the application may choose to select a new device after a when change
10 [clause has executed for the current connected device. Alternatively, the selection could be
11 Jdone based on a timer, e.g., select a new device every 100 milliseconds.

12

WO 92/16905

0 3 O W AW e

10
11
12
13
14
15
16
17
18
19
20
21
22
23

PCT/US92/02179

87
TABLE XTI
WHEN STATEMENT SYNTAX

The syntax of a when statement in the system of the preferred embodiment is given

below:

where:

priority

-

[priority] when (event) task

is an option used to force evaluation of the following when clause
each time the scheduler runs. This allows priority when clauses to
be evaluated first. Within a program having multiple priority when
clauses, priority when clauses are evaluated in the order coded in the
program. If any priority when clause evaluates to true, the
corresponding task is run and the scheduler starts over at the top of
the priority when clauses. If no priority when clause evaluates to
true then a non-priority when clause is evaluated and selected in a
round robin fashion. The scheduler then starts over with the priority
when clauses. This process may be best understood by example:
Assume the following when clauses coded in the following order:
priority when (A)

priority when (B)

when (C)

when (D).

Assume only C and D are true; first A is evaluated, then B is

WO 92/16905

00 N N W BHWN e

10
11
12
13
14
15
16
17
18
19
20
21

22
23

event

task

PCT/US92/02179

88
evaluated and finally C is evaluated and the task associated with C is
executed. A is then evaluated again, then B is evaluated and then, in
round robin fashion, D is evaluated and executed.
may be either a predefined event or, importantly, may be any valid C
expression. Predefined events include, by way of example, input
pin state changes (io changes, io update occurs); network variable
changes (network variable update completes, network variable
update fails, network variable update occurs, network variable
update succeeds); timer expiration; message reception information
(message arrives, message completes, message fails, message
succeeds); and other status information (powerup, reset, online,
offline).
is a C compound statement consisting of a series of C declarations

and statements enclosed in braces.

The following predefined events exist in the system of the preferred embodiment:

flush_completes

A flush function is available in the system of the preferred
embodiment which causes the node to monitor the status of all
incoming and outgoing messages. When the node has
completed processing of all messages the flush_complete event
becomes true indicating all outgoing transactions have been
completed, no more incoming messages are outstanding, and no

network variable updates are occurring.

PCT/US92/02179

This event indicates the status of one or more I/O pins associated

This event indicates that a timer/counter device associated with a

This event indicates a message has completed successfully.

This event indicates a network variable update has occurred.

This event indicates a network variable update has completed

WO 92/16905
89
1 Jio_changes
2 with a specified input device have changed state.
3 lio_update_occurs
4 specified pin has been updated.
5 |msg_arrives ‘This event indicates a message has arrived for processing.
6 |Jmsg_completes This event indicates a message has complcied (cither
7 successfully or by failure).
& Jmsg_fails This event indicates a message has failed.
9 |Jmsg_succeeds
10 pnv_update_completes This event indicates a network variable update has completed
11 (either successfully or by failure).
12 {[nv_update_fails This event indicates a network variable update has failed
13 [nv_update occurs
14 [Inv_update_succeeds
15 successfully.
16 jJoffline This event indicates the node has been taken offline.
17 }Jonline This event indicates the node has been brought online.
18 [powerup This event indicates the node has been powered up.
19 |Jreset This event indicates the node has been reset.
20 {Jresp_arrives This event indicates a response has arrived to a message.
21 [Jtimer_expires This event indicates the designated timer has expired.
22

e e

WO 92/16905 PCT/US92/02179

90

R 1

Predefined events may be used within other control expressions in addition to in the
when statement; for example, in an if, while or for statement.
As noted above, a user-defined event may be any valid C expression and may

include assignment statements to assign values to global variables and function calls.

(S - VA S

WO 92/16905 PCT/US92/02179

91
TABLE XTV
ASSEMBLY LANGUAGE LISTING FOR THE
NETWORK VARIABLE PROGRAM OF TABLE V

; APC - Echelon (R) Neuron (R) Application-C Compiler

; Copyright (c) 1990, Echelon Corporation

; Assembly code from APC Revision 0.99

; Code generated from 'node _ 31 _ right.nc' on Mon Feb 4 10:31:40 1991

1
2
3
4
5
6
7
5
i (1) SUBHEAD Generated from the input file: node_ 31_ right.nc
1 % RADIX HEX
1
14 SEG EECODE.
15 ORG 0F000
16 INBMTS EQU 000
17 INNVS . EQU O00E
% g PROTECT EQU 00
20 [NEURONID
21 RES 8
22 |DIRECTORY
23 data.b PTR TEVT-3*NNVS,PROTECT+NNVS,0,0
24 |}PROGID
25 data.b 048,056,041,043,06F,06D,070,000
26 JMODETABLE
27 data.b 053
28 data.b 0F0,037
29 data.b 024,098
30 data.b 033,033,033
31]EENEARBYTES
32 data.b 000
33 data.b 000,000
34 data.b 001,000,000,047
35 [|LOCATION
36 RES 8
37 JOCOMM
38 RES 10
39 IMSG
40 RES 1
41 JDOMAIN
42 RES 01E

WO 92/16905 PCT/US92/02179

92

ADDR
RES 04B
TNVCNFG
RES 3 *NNVS
CONFIGCHECKSUM
RES 1
PAGE
; Boilerplate file for compiler-generated assembly output
; Copyright () 1990, 1991 Echelon Corporation. All Rights Reserved.
; Date last modified: 1/30/91
; List of exported symbols
EXPORT APINIT,DOMAIN,EENEARBYTES, MODETABLE,TEVT
5 List of imported symbols - Library functions
IMPORT application _ restart,delay,error log)
IMPORT flush,flush _ cancel,flush _ wait,go _ offline,go _ unconfigured
IMPORT node _ reset,offline _ confirm, _ post events,powerup
IMPORT random,retrieve _ status,retrieve _ XCvr _ status
IMPORT reverse,timers _ off,watchdog _ update
; List of imported symbols - Compiler helper functions
IMPORT _abs8, _ abs16, _ add16, _and16, _ alloc
IMPORT _bcd2bin, _bin2bed, dealloc
IMPORT _div8, _div8s, _div16, _divi6s
IMPORT _drop_n, drop_n_preserve_1, _drop_n_preserve_2
IMPORT —drop _n_return_1, _drop_ n_return_2
IMPORT —eeprom_write, _ecprom _wrlte _long
IMPORT —eeprom_far_write,_ eeprom_ far_ write_ long
IMPORT _equal 8, _equal 116
IMPORT —gequs8,_ gequ8s, _ gequl6,_ gequlbs
IMPORT _less8,_ less8s,_ less16,_ lessl6s
IMPORT log8,_logl6,_ lognot8, _lognotl6
IMPORT _1_shift8, _ 1 shift8s, 1_ shift16, _ 1_ shift16s
IMPORT _1_shift8 3, 1 shift8_4, 1_shift8_5, 1_shift8_6, 1 shift8_7
IMPORT _max8,_max 8s,_max16,_max16s
IMPORT _memcpy,_memcpyl, memset, memsetl
IMPORT _min8,_min8s,_min16, _ min16s
IMPORT _minus_16_s
IMPORT _mod8,_ mod8s,_ mod16, mod16s,_ mul8, mullé
IMPORT _notl6,_orl6
IMPORT _pop, _push
IMPORT _r_shift8, r_shift8s,_r_ shiftl6, r_ shiftl6s
IMPORT _r_shift8_3, r_shift8_4,_ r_shift8 5, r_shift8_6, r_ shift8_7
IMPORT _register_ call,_ sign_ extend16
IMPORT _subl6, _xorl6
PAGE
; List of imported symbols - I/O functions

IMPORT _bit_ ingut,_ bit_ ingut_ d,_bit_ ougut

BB B 00000 13 10 13 LD L L3 U3 DI I B B 1 1O DO D 1D I bt o 1t 1t 1t 1t 1t 1t 1t ot '
OV LI N 4 © A0 00 =1 OV A 2 L) B 14 €340 60~ O U1 12 B 1t ©540 00 = O\ LA o 103 b 1t €910 00 ~3 O LA o U3 B 1t

WO 92/16905 PCT/US92/02179

93

IMPORT bitshift_ input, _bitshift_ output .
IMPORT _byte_input,_ byte_ output
IMPORT ~nibble_input, _nibble_ input_ d,_ nibble_ output
IMPORT _frequency_ output,_ leveldetect_ input
IMPORT —neurowire_ input,_ neurowire_ output
IMPORT —oneshot_ output,_ ontime__ input
IMPORT —parallel_ input, _parallel_ input_ ready
IMPORT —parallel_ output,_ parallel_ output_ ready, parallel_ output_ request
IMPORT _period_ input
IMPORT —pulsecount_ input,_ pulsecount_ output
IMPORT _pulsewidth_ output
IMPORT _Quadrature_ input
IMPORT —serial_ input,_ serial _ output
IMPORT -totalize_input, triac_ output,_ triggered_ count_ output

IMPORT _init_ timer_ counterl, _ init_ timer_ counter2
IMPORT _init_baud,_io_ set_ clock
IMPORT _io_input_ value,_io_ change_ init,_ select_ input_fn

list of imported symbols - Messaging support
IMPORT _bound_ mt
IMPORT ~msg_alloc,_msg_alloc_ priority, msg_ cancel,_ msg_free
IMPORT _msg_receive,_msg_ send
IMPORT -msg_addr_blockget, msg_addr_ get, msg_ auth_get, msg_code_ get
IMPORT -msg_data_ blockget, msg_data_get, msg_len_get, msg_service_ get
IMPORT -msg_addr_ blockset,_ msg_ addr_ set,_msg_ auth_set,_msg_code_ set
IMPORT -msg_data_ blockset,_ msg_ data_ set,_ msg_ domain_ set,_msg node_ set
IMPORT _msg_ priority_ set_,_msg_ service_ set,_msg_tag_set
IMPORT —resp_ alloc,_resp_ cancel, _ resp_ free,_resp_ receive,_ resp_ send
IMPORT _resp_ code_ set,_resp_ data_ blockset,_ resp_ data_ set

; List of imported symnbols - Network Variable support
IMPORT ~bound_nv,_nv_poll,_nv_ poll_all
IMPORT _nv_update,_nv_ update_ int,_ nv_ update_ long
IMPORT _nv_update_int_offset,_nv_ update_ long_ offset
; List of imported symbols - Timer support
IMPORT _timer_ get, timer_ off
IMPORT _timer_mset, timer_ mset_ repeat, timer_ sset,_ timer_ sset_ repeat
; List of imported symbols - Event support
IMPORT _flush_ completes
IMPORT _io_changes, io_ changes_ to,_ io_ changes_ by,_io_ update_ occurs
IMPORT _msg_ arrives,_ msg_ code_ arrives
IMPORT _msg_completes, msg_fails, msg_ succeeds
IMPORT _nv_update_ completes, _ nv_ update_ fails,_ nv_ update_ succeeds
IMPORT _nv_ update_ occurs
IMPORT _offline, _online,_ resp_ arrives
IMPORT _timer_ expires,_ timer_ expires_ any,_ wink

; List of lmged ﬂbols - Misc builtin function support

BB BB B LI L LI L LD LD L LI LI LI B B I DI NI BRI DI B DD D et it 1o b bt it 4t bt et et i
ANAWNN=OVONANLE WOV TAUNALIN OO0~ L L LN O \D 00 ~JO\ NI

WO 92/16905 PCT/US92/02179

94

1 IMPORT _slecp
% ; End boilerplate file
§ PAGE
6 SEG ENEAR
7 ORG CONSTRAINED
8 [%MinOffTime
9 RES 02
% (l) EXPORT %MinOffTime
12 SEG EENEAR
13 ORG CONSTRAINED
14 §%MinOnTime
15 RES 02
% §] EXPORT %MinOnTime
18 SEG EENEAR
19 ORG CONSTRAINED
20 }%OutletWater
21 RES 02
%% EXPORT %OutletWater
24 SEG EENEAR
25 ORG CONSTRAINED
26 }%CndnsrHead
27 RES 02
% g EXPORT %CndnsrHead
30 SEG EENEAR
31 ORG CONSTRAINED
32 }%CoolAir
33 RES 02
g g EXPORT %CoolAir
36 SEG EENEAR
37 ORG CONSTRAINED
38 }%CmprssrInltGas
39 RES 02 ,
2 (l) EXPORT %CmprssrinltGas
42 SEG RAMNEAR
43 ORG CONSTRAINED
44 J%OutletWaterTemp
45 RES 01
46 | EXPORT %OwleWaeTewp |

WO 92/16905 ' PCT/US92/02179

95

l s
2 SEG RAMNEAR
i ORG CONSTRAINED
"5 %CadnsrHeadTemp
6 RES 01
g EXPORT %CndnsrHeadTemp
9 SEG RAMNEAR
10 ORG CONSTRAINED
11 §%CoolAirTemp
12 RES 01
% Z EXPORT %CoolAirTemp
15 SEG RAMNEAR
16 ORG CONSTRAINED
17 }%CmprssrGasPrssr
18 RES 01
% (9) EXPORT %CmprssrGasPrssr
21 SEG RAMNEAR
% % ORG CONSTRAINED
24 RES o
% g EXPORT %BuildingCooling
217 SEG RAMNEAR
28 ORG CONSTRAINED
29 §%MotorOn
30 RES 01
g ; EXPORT %MotorOn
33 SEG - RAMNEAR
34 ORG CONSTRAINED
35 [%MotorOverload
36 RES 01
g g EXPORT %MotorOverload
39 SEG RAMNEAR
40 ORG CONSTRAINED
41 J%AmOnline
42 RES 01
2 3 EXPORT %AmOnline
45
46

WO 92/16905 PCT/US92/02179

%6

% strikes
RES 01
EXPORT %strikes
SEG CODE
ORG

EXPORT %motor

1
2
3
.4
5
6
7
8
9
10 J%motor ; Function body
11 push tos
12 push #0B
13 call _nv_update_int
14 push tos
15 pushs #00
16 call _bit _output
17 pushs 01
18 push next
19 call _equal8
20 sbrnz *+4
21 brf %motor+01D
22 push %MinOnTime
23 push %MinOnTime+01
24 pushs #01
25 call _timer _sset
26 brf %motor+026
27 push %MinOffTime
28 push %MinOff Time+01
29 pushs #00
30 call _timer_sset
31 dealloc #01
32
33 SEG CODE
34 ORG
35 EXPORT %control action
36 J%control_action ; Function body
37 push [1] [@NEAR (%CoolAirTemp)]
38 push %CoolAir+1
39 call _less8s
40 push %CmprsstinltGas
41 push [I[@NEAR(CmprssrGasPssr)]
42 call _less8s
43 push %CndnsrHead
44 push [1]1 [@ NEAR (%CndnsrHeadTemp)]
45 push [1] [@NEAR (%OutletWaterTemp)]
46 ush %OutletWater+01

WO 92/16905 ' : PCT/US92/02179

97

1 call Jess8s T 1
2 pushs #00
3 pushs #00
4 pushs #00
"5 call _timer_ get
6 call _equall6é
7 push (1] [@NEAR(%BuildingCooling)]
8 push (1] [@NEAR(%AmOnline)]
9 and
10 and
11 and
12 and
13 and
14 and
15 sbrnz 14
16 brf %control_ action+038
17 pushs #01
18 callf %motor
19 brf %control_ action+06A
20 push %CoolAir
21 push [1]1 [@NEAR (%CoolAirTemp)]
22 _less8s
23 push [1] [@NEAR (%CmprssrGasPrssr)]
24 push %CmprssrinltGas+01
25 call Jess8
26 push [[@NEAR(%CndnstHeadTemp)]
27 push %CndnsrHead+01
28 call less8s
29 push %OutletWater
30 push ﬂ][[@NEAR(%OuﬂctWatexTemp)]
31 call _less8s
32 pushs #00
33 pushs #00
34 pushs #01
35 call _timer_ get
36 call _equall6
37 push ﬂ][@NEAR(%BuildingCooling)]
38 and
39 and
40 and
41 and
42 and
43 sbrnz *+4
44 brf %control_ action+06A
45 pushs #00
46 I callf %motor

PCT/US92/02179

WO 92/16905
98
1 et
2
3 SEG CODE
4 ORG
5 JWHENI
-6 EXPORT WHENI
7 callf %control_ action
8 ret
9
10 SEG CODE
11 ORG
12 JWHEN2
13 EXPORT WHEN2
14 push #0A
15 call _sign_ extend16
16 pushs #02
17 call _timer_ sset
18 push #040
19 call _pulsecount_ input
20 push #0B4
21 call _sign _extend16
22 call _less16
23 sbrnz *+4
24 brf WHEN2+02E
25 pushs #03
26 push [1][@NEAR (%strikes)]
27 inc
28 push tog
29 pop [1] [@NEAR (%strikes)]
30 call _gequ8s
31 sbrnz *+4
32 brf WHEN2+02B
33 pushs #00
34 callf %motor
35 pushs #01
36 push #0C
37 call _nv_update_int
38 brf WHEN2+031
39 pushs #00
40 pop [I{@NEAR (%strikes)]
41 ret
42
43 SEG CODE
44 ORG
45 |APINIT : Init & event code
46 | _pwh w84 00000000

WO 92/16905 A PCT/US92/02179

99

1 push #072
2 call _init _timer_counterl
3 ret
4 EXPORT RESET
-5 JRESET; When-unit body
6 pushs #00
7 push #0B
8 call _nv_update_ int
9 pushs #00
10 push #0C
11 call _nv_update_ int
12 pushs #01
13 push #D
14 call _nv_update_ int
15 pushs #00
16 callf Jemotor
17 push %0OutletWater
18 pop [1{@NEAR(%OutletWaterTemp))
19 push %CndnsrHead
20 pop [1] [@QNEAR(%CndnsrHeadTemP) |
21 push %CoolAir
22 pop [1] [@NEAR(%CoolAirTemp)]
23 push %CmprssrinltGas
24 Pop [1] [@NEAR (%CmprssrGasPrssr)]
25 pushs #00
26 pop [1][@NEAR(%strikes)]
27 push #0A
28 call _nv_poll
29 ret
30 EXPORT OFFLINE
31 JOFFLINE; When-unit body
32 pushs #00
33 push #0D
34 call _nv_update_ int
35 pushs #00
36 callf %motor
37 ret
g g EXPORT ONLINE
40 JONLINE ; When-unit body
41 pushs #01
42 push #0D
43 call _nv_update_ int
44 pushs #00
2 g callf %motor

gushs #00 |

WO 92/16905 PCT/US92/02179

100

1 push #0C
2 call _nv_update_ int
3 ret
4
-5 SEG CODE
6 ORG
7 [TNVEFIX ; NV Fixed table
8 data.b 022,PTR %MinOffTime
9 data.b 022,PTR %MinOnTime
10 data.b 022,PTR %OutletWater
11 data.b 022,PTR %CndnsrHead
12 data.b 022,PTR %CoolAir
13 data.b 022,PTR %CmprssrinltGas
14 data.b 021,PTR %QutletWaterTemp
15 data.b 021,PTR %CndnrHeadTemp
16 data.b 021,PTR %CoolAirTemp
17 data.b 021,PTR %CmprssrGasPrssr
18 data.b 021,PTR %BuildingCooling
19 data.b 021,PTR %MotorOn
20 data.b 021,PTR %MotorOverload
% é datab 021,PTR %AmOnline
23 JTEVT;Eventtable
24 data.b PTR APINIT-2
25 data.b 0,RESET-APINIT+1
26 data.b OFFLINE-APINIT+1,ONLINE-APINIT+1
27 data.b 00,02
28 data.b OFF,PTR WHEN]1-1
% (9) data.b 0A,PTR WHEN2-1
31 }; Resource usage information
32 RESOURCE NADDR OF
33 RESOURCE NDOM 2
34 RESOURCE NRCVIX 08
35 RESOURCE NTMR 03
36 RESOURCE NNIB 02
37 RESOURCE NNOB 02
38 RESOURCE NAIB 02
39 RESOURCE NAOB 02
40 RESOURCE NNPOB 02
41 RESOURCE NAPOB 02
42 RESOURCE SNIB 042
43 RESOURCE SNOB 02A
44 RESOURCE SAIB 016
45 RESOURCE SAOB 014
46 | RESOURCE NNVS 0E

WO 92/16905 PCT/US92/02179

0O N O W bW N e

S I S R o T S e S A VPO
N - O O 00 N0 N W A W N = v

10l
TABLEXV

GENERAL DEFINITIONS

tome— e — -

The following definitions are generally applicable to terms used in this specification:

Neuron, or node: A neuron or node is an intelligent, programmable element or
elements providing remote control, sensing, and/or communications, that when
interconnected with other like elements forms a communications, control and/or sensing
network. Nodes are named with Neuron ids (see below). Nodes may be addressed as a
part of a domain and subnet using a node number. The node number in the preferred
embodiment is 7 bits. Multiple nodes may be addressed using a groupid. The group id in
the preferred embodiment is 8 bits.

Neuron id: Nodes in the present invention are assigned a unique identification
number at the time of manufacture. The identification number is preferably 48-bits long.
This 48-bit identification number does not change during the lifetime of node. Asis
appreciated, the assignment of a unique identification to each individual node allows for
numerous advantages. This 48-bit identification number may be referred to as the node_id.

Domain addresses: The term "domain" is used to describe a virtual network
wherein all communication, as supported by the network of the present invention, must be
within a singlg: domain. Any required inter-domain communication must be facilitated by
application level gateways. In the preferred embodiment, domains are identified with

48-bit domain identifiers. However, in certain applications the size of the domain field may

vary.
W

PCT/US92/02179

WO 92/16905
102
1 Subnet — In the preferred embodiment, a subnet is a subset of a domain
2 [fcontaining from 0 to 127 nodes. In the preferred embodiment, subnets are identified with
‘ 3 Jan 8-bit subnet identification number. A single domain may contain up to 255 subnets.
4 Group: A group is a set of nodes which work together to perform a common
5 [function. In the preferred embodiment, groups are identified with an 8-bit group
6 |Jidentification number. A single domain may contain up to 255 groups. For example, a
7 | group may be created to include all nodes in a connection, such as connection_2 142 in
8 |} which case the group would include a node at temperature sensor_2 116, a node at cell_1
9 |101 and a node at cell_2 121.
10 Addressing — The present invention provides for a hierarchical address structure
11 Jand supports three basic addressing modes: (1) (Domain, Subnet, Node number); (2)
12 }(Domain, Subnet, Node_id); and (3) (Domain, Group).
13

WO 92/16905 v PCT/US92/02179

103

CLAIMS
What is claimed is:
1. Amethod for declaring and configuring variables in a program for execution on a
processor, said method comprising the steps of:

(a) declaring a state of a parameter for a variable, said parameter indicating a
characteristic of said variable;

(b) declaring said parameter as configurable by a configuration process;

(b) compiling said program, said compiling producing a compiled program as an
output; said compiling further producing an output file providing information on
said parameter, said information including information on said parameter;

(d) configuring said program using a configuration routine said configuration process

including varying the state of said parameter.

2. The method as recited by claim 1 wherein said state of said parameter is selected from a set

of states consisting of unacknowledged, unacknowledged with repeat and acknowledged.

3. The method as recited by claim 1 wherein said state of said parameter is selected from a set

of states consisting of authenticated and unauthenticated.

4. The method as recited by claim 1 wherein said state of said parameter is selected from a set

of states consisting of priority and nonpriority.

5. A method of scheduling tasks in 2 computer system comprising the steps of:
(a) declaring a first event as a first logical programming expression;
(b) declaring at least one first step to be accomplished by a first task;
() evaluating said first logical programming expression;

WO 92/16905 PCT/US92/02179

104

(d) determining said first logical programming expression evaluates to true; and
(e) executing said at least one first step responsive to determining said first logical

programming expression evaluates to true.

6. The method as recited by claim 5 wherein said method further includes the steps of:

(f) declaring a second event as a second logical programming expression, said second
event declared as a priority event;

(g) declaring at least one second step to be accomplished by a second task;

(h) evaluating said second logical programming expression prior to evaluating said
first logical programming expression;

(i) determining said second logical programming expression evaluates to true; and

(i) executing said at least one second step responsive to determining said second

logical programming statement evaluates to true.

7. The method as recited by claim 5 wherein said declaration of said first event comprises the

keyword "when" followed by said first logical programming expression.

8. A method of prioritizing and scheduling tasks in a computer system comprising the steps
of:
(a) declaring a first event as a priority event;
(b) declaring at least one first step to be accomplished by a first task;
(c) declaring a second event as a non-priority event;
(d) delaring at least one second step to be accomplished as a second task;
(¢) evaluating said first event to determine if said first event has occurred;

WO 92/16905 ' PCT/US92/02179

105
(f) evaluating said second event to determine if said second event has occured, said
evaluation of said second event being accomplished subsequent to said evaluation
of said first event;
(g) determining said first event has occurred; and
(h) executing said at least one first step responsive to determining said first event has

occurred.

9. The method as recited by claim 8 wherein said first event is declared as a logical
programming expression.

10. In a method of scheduling tasks to be executed by a computer, said method including
evaluating each of a plurality of events associated with each of said tasks in a round robin
fashion and conditionally executing said associated ones of said tasks upon evaluation of
one of said events as true, the improvement wherein:

(a) certain of said events are designated as priority events and others of said events are
evaluated as non-priority events; and

(b) said priority events are evaluated prior to evaluation of said non-priority events.

11. The method as recited by claim 9 wherein said at least one of said plurality of events is

declared as a logical programming expression.

12. Ina device for scheduling execution of tasks responsive to occurrence of events, said
device comprising a processor for executing said tasks, wherein said events may comprise
any of a plurality of predefined event types, an improvement wherein said events may
further comprise a logical programming expression.

WO 92/16905 PCT/US92/02179

106

13. The improvement of claim 12 wherein said logical programming expression may comprise

any valid C programming language logical statement.

14. A method for declaring and accessing I/O devices comprises the steps of:
(1) declaring an /O device designating a hardware device, a device type and a device
name;
(2) configuring said hardware device to perform functions of said device type
responsive to declaring said I/O device;
(3) executing an operation, said operation designating said device name; and
(4) performing an /O operation comprising functions of said device type on said

hardware device responsive to execution of said operation.

15. The method of claim 14 wherein said device type is chosen from the set consisting of bit,
bitshift, frequency, triac, pulsewidth, pulsecount, ontime, serial, parallel, microwire,

quadrature, period, oneshot, nibble and byte.

2179
WO 92/16905 PCT/US92/0

1714

Connecti temp_out
7y 1?1

102 YT et b .'_v.;':._.:.‘.';:..._:.,_ 'rEMP

SENSOR_1
115

Cell_L T.2

101 103 Connection 2
142 teﬂl!giout

TEMP
SENSOR_2
y 116

Connection_3(; L
143

FIG. |

SUBSTITUTE SHEET

PCT/US92/02179

WO 92/16905

2/14

¢ 9ld

el

1¢1

TNvd 1"NVd
WNIGIW NOLLVDINNIWINOD
o ooy ST
€ JOSNHS 7 4OSNAS 1"HOSNAS 1 101
JWHL JNEL dWEL T TIED ™ TTED

SUBSTITUTE SHEET

PCT/US92/02179

WO 92/16905

3/ 14

_cel 1€l
C Nvd "NV
. SO€E Y0E
(D) 9|4 1TTED a THED
102
WNIGIN NOLLVIINNIWINOD
€0€ <0t 10e
T €T VvV TTED
AL 911 _ ST
£ 4OSNIS 7 4OSNHS 1JOSNHS
dWHL dWil dWHL

SUBSTITUTE SHEET

WO 92/16905 PCT/US92/02179

4 /14

117

SENSOR_3

TEMP
SENSOR_2
116

1

115

TEMP
SENSO

SUBSTITUTE SHEET

PCT/US92/02179

WO 92/16905

5714

10¢

VIQIW NOLLVOINNWINOO

OO QOIAIIS~ uowom.m

wdt

R 1
>

4 YYyYvyvey J STy ¥ V¥
80 uog L O IUNOD/IdUIL], ssomty, b
—533598800 - [BURS-U0d [d[[erd-O/] [e12udD) pue lonuo)
Y0019 O/l 1200
H\m +_ob=oO pue w::hﬁ.%v \«V # ﬂ-»
(M-8 sng wieq EEE_ ‘
02V <¥ 3
Nq-9[Sng SSUPPV|: 4
/
Oolvy
/
X4 2

¥ 9ld

SUBSTITUTE SHEET

WO 92/16905 PCT/US92/02179

65 /14
Overview

_ 501
l:;g;‘:gg; l Define hardware parameters r
! - 502
Repeat for Define network and logical
each node parameters

Repeat for
each node

503
Program the nodes
: 504

Compile, link and load executable
programs onto the nodes

Repeat for
each node

505

Repeat for
other
connections

Connect network variables

506

FIG. 5

Bind network variables

SUBSTITUTE SHEEY i K End '

WO 92/16905 ' PCT/US92/02179

7714

Define hardware
requirements

601

Define a name for a node

| 602
Specify the node type
603

Specify the node location

604
Specify the channel
7 605

Specify the channel priority

605

Specify the hardware property
database record

Install application node hardware
definitions

(=)

FIG. 6

SUBSTITUTE SHEET

WO 92/16905 PCT/US92/02179

8714

Define network and logical
parameters

701
Select a node for definition of
network parameters
702
Select a program file for definition
of network parameters
Select logical network location of
the node (domain, subnet)
703
Select hardware for definition of
network parameters
' 704

Save the definition of the node

End

SUBSTITUTE SHEEF

WO 92/16905 PCT/US92/02179

9 /14

Connect network
variables

801

Define a connection name

802

Select a first defined node

803

Select a network variable
name for the first node

804

Select a second defined
node

805

| Select a network variable
name for the second node

806

Set parameters

807

Add to connection list

(=)

FIG. 8(a)

SUBSTITUTE SHEET

WO 92/16905

PCT/US92/02179

10 /14

Bind network
variables

Repeat for
other
connections

Repeat for
other
connections

Repeat for
other
connections

Repeat for
other
connections

821
Read list of connections
822
Perform type checking and
message rate constraint
checking
825
Assign group addresses
824
Determine address mode
823

Assign network variable
identifications (netvar_IDs)
to connection

(=)

FIG. 8(b)

SUBSTITUTE SHEET

WO 92/16905

PCT/US92/02179

11714

ADDRESS TABLE NETWORK VARIABLE TABLE

i -

000:

001 00000000000000

001:
002:
003:
004:
005:

015:

Address of FAN_1 004 00000000000001

N

Groupl 003 0000000000010

Address of FAN_2 002 00000000000xxx

005 00000000000xxx

O~

006 00000000000xxx

008 00000000000xxx

NETWORK
VARIABLE ID 911

NETWO&% ADDRESS ADDR%S g TABLE INDEX
1

FIG. S

SUBSTITUTE SHEET

WO 92/16905

12 /14

Configuration using Standard
Network Variable Types

1001

Couple a new node to the network

1002

Communicate a command to the
new node requesting its standard
network variable types

The new node exposes the network 1003
variables employed by the node

including their standard network
variable types and other interface

documentation

1004

The network management node
receives the exposed network
variable information

End

FIG. 10

SUBSTITUTE SHEET

PCT/US92/02179

WO 92/16905

PCT/US92/02179

13714

Declaring and configuring
network variables

1101
Declare a network variable
including parameters
1102
Declare the parameters as
configurable
1103
Compile the program and produce
a compiled output and a binder
interface file
1104

Optimize the network by
configuring the network variable

(=)

FIG. 11

SUBSTITUTE SHEET

WO 92/16905

PCT/US92/02179

14714

Declaring and accessing I/O
devices

1201
Declare an I/O device including pin
designation, device type and device
name
1202
Pins configured responsive to the
declaration
1203
Link device name with the
specified pin
1204
Perform an operation on the device
name
1205

Perform I/O with the designated
pin responsive to performing the
the operation

FIG. 12

End

SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT
“r2e37 31 d22 2191 No PCT/U592/02179

!. CLASSIFICATION OF SUBJECT MATTER ' ' s...-y, TG SN S.mISIS 1881, ~me1ts 1) 4

Ac:i2ra.ng 17 tnrernanonal Patent Class.ication 1PC) 2r 3 3011 Narard Cias8..c30n ang I1PC

IPC(5) GO6F 15/40, 15/46, 15/56, GO5B 19/00
US C1 395 600,700,725,200 364/468

1 FIELDS SEARCHED

Mo~ 00g .~ wntin0n Suarzves

Crlagss o1 :e S,gmm . . Chisssicat.on Somaars

Us . 395/600,700,725,200; 364/468

Jec.mantar an Seara=ag Jtrerte A oA, o Dseimania 3n
Trma Eerantmat g 2 Doz menty ara tes i1 4 tma Saiag Seiremag d

i1l DOCUMENTS CONSIOERED TO 8L RELEVANT I

Catagory ¢ C.011.0n 9t DOCUMENL, " Wit "GICINON w-3re 102937 1, 3T *F 4 raisy nr 21s3ages 2 Batwermreg Crrmny,

Y,P US, A 5093916(KART ET AL) 03 March 1992 1-15
See the entire document

Y US, A 4937760 (BEITEL ET AL) 26 June 1990 1-15
See the entire document :

Y US, A 4843545 (KIKUCH() 27 June 1989 1-15
See the entire document ™

Y AUTOMATIC PROGRAMMING OF COMMUNICATIONS SOFTWARE VIA 5-13
NONPROCEDURAL DESCRIPTIONS, GINSPARG ET AL, IEEE
TRANSACTION ON COMMUICATIONS, VOL. COM-30, NO.6,
June 1982, See the entire article

Y US, A 4727575 (HANSEN ET AL) 23 February 1988 1-15
See the entire document

Y US, A 4974151 (ADVANI ET AL) 27 November 1990 14-15
See the entire document

* Special catey of citea tg: '@ T later agcument oudlisnea morﬂtno nternatong: “ing aate
“A" document defining the general state of the art amch 13 not S aa o Sate and not . conflict ith the agoncar on dut
€16 10 uNdErstana the BANC:OlE OF theary ungeri.ng tre
congigerea to e of parhcular relevance Aention
B eart 5
€ fihng aate - ToT Dut DuBisRed on or after the aternatianal X" gocument of particular "slevance: tne clamed ~verran

" CaNNot D CoNsicersd NOvel Qr cannot De consigered 'C
“L" dacument anich may throw deudts an prionty claim(s) or nvoive an \nventive step

;::::t;'of';.t:o?z;::::'::a:no:! 72‘:"3.":?3.3»'" of anotter YT document of particular relevance: the claimeg -nvert 9n

) Cannot Be CoNIdEred tO :Nvoive an :Nventive $160 wren e

"Q" document reternng 10 an oral AiISClOsure, use. exMGION OF GOCUMENt '3 COMBINGD aith ON@ Ar TOre OtPEr SuCh 23C.-

other means TENTS, SUCH COMDINANION D@ING QOVIOUS 10 & DErsan sxueg
“#" document oudiished pror to the international filing date But N the art.
lates than the onornty date claimed 4" document member of the same patent farmty
V. CERTIFICATION
Oate of the Actuai Camptation ot the international Search Date ot Maiing of thig Intarnationat Search Regort
22 May 1992
Inteenatianal Searching Authenty
ISA/US

Fomn FCTASAR10 (ssuune shess (Rov.1147)

searmyr 3m3 A
-

2 it No PCT/"'-:GA foma 7,;

L Y BT §

il DOCUMENTS CONSIODERED TO SE RELEVANT (CONTINUED FROM THE SECOND SHEET)

Catagery * Cuation of Document with 17QIC1L0N wnere 300OOCILE. It the reavint oassages

Retevant 3 Clam No

Y US, A 4589063 (SHAH ET AL) 13 May 1986
See the entire document

14-15

Fawm PCTARAR'C (aalra sram) (Aov.11-87)

a)

€

‘nter~atc~3l Aponcation N0 DT T°2Q70 f'"‘l-’:,
A det .

el Semd 1

FURTMER INFORMATION CONTINUED FROM THE SECOND SHEET

Y US, A 4926375 (MERCER ET AL) 15 May 1990 1-15
See the entire document

Y US, A 4720782 (KOVALCIN) 19 January 1988 1-15
See the entire document

Y US, A 3582901 (COCHRANE) 01 June 1971 1-15

See the entire document

Y US, A 4885684 (AUSTIN ET AL) 05 December 1989 - 1-15
See the entire document !

v D OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE '

Tiug international searcn report nas not Boen estadiisned in resoect of certain claims under Articie 17(2) (a) for the tolloawing reasons:
1 D Claim numoers Decause they retate 1o SUDIECt matter i not required to be searched by this Autnonty, namety:

2 D Claim numoers - DECIUSA they reiale (o Darty of the international appicaton that 4o net comply wilh the prescribed reae re-
TeNIS 10 SUCh AN ettent that No meamngtul international search can de carned aut !, specifically:

10 clam rumoen
PCT Ruie 6.4,

BOCHLSS 110y 270 609endent s Not AraNted 1 A0CSrERNce W e $0CON ANA TWE 3eNNENCes of

vi D OBSERVATIONS WHERE UMITY OF INVENTION IS LACKING 3

This international Searching Authenty found Mmultinie \vennens in this international apphcation as folows:

! D A3 all required adeitionsl seerch fees were imely pard By Ihe anDlicant, this international sesrch regort covers ail searchadie claims
of the internationsl spphcaton.
Z.U As only some of the required additiensl search fees were timel, 0aid By the EDENCAN, this International Searcn report covers only
tNOse claims of the internatienal apshcaten for wqoch tees were paia, specificaily claims:

J-D No required agditionat search fees were timely aid By the aophicant. Cansequently, this international search report is restnicted to
the inve first mer in the CIaims; 1t 13 COVEred By Claim numbers:

4 D As 21l searcranie ciarms could Be searched without effort justitying an agditionsl fee, the International Searching Autnornty aig ~3t
Nvite oayment of any aaagitional tee.

Remarx an Protest
D The adaitional search tees were sccomsanied Dy agphcant's protest.
D No orotest saccompanied the Bayment of ad€ibenal sesrch fees.

Fom FCTAMAR O (asamuan shen C§ (Ao, 1187

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

