woO 2014/134170 A2 [N/ N0F 000000 00O A O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

(43) International Publication Date WO 2014/134170 A2
4 September 2014 (04.09.2014) WIRPQOI|IPCT
(51) International Patent Classification: (72) Inventors: KANG, Jewon; 263-12 Nonhyun-Dong, Gan-
HO4N 19/51 (2014.01) nam-Gu, Seoul 135-010 (KR). CHEN, Ying; 5775 More-
(21) International Application Number: house DHV?’ San_Diego, Cahfoma 92121._1714 (US)'
PCT/US2014/018679 ZHANG, Li; 5775 Morehouse Drive, San Diego, Califor-
nia 92121-1714 (US).
(22) International Filing Date: 26 February 2014 (26.00.2014) (74 Agent: NAYATE, Ambar P.; Shumaker & Sieflert, P.A.,
ebruary 2014 (26.02.2014) 1625 Radio Drive, Suite 300, Woodbury, Minnesota 55125
(25) Filing Language: English (US).
(26) Publication Language: English (81) Designated States (unless otherwise indicated, for every
L. kind of national protection available). AE, AG, AL, AM,
(30) Priority Data: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
61/770,263 27 February 2013 (27.02.2013) us DO. DZ. EC. EE. EG. ES. FL GB. GD. GE. GH. GM. GT.
61/772,321 4 March 2013 (04.03.2013) Us HN. HR. HU. ID. IL. IN. IR. IS. JP. KE. KG. KN. KP. KR,
61/803,384 19 March 2013 (19.03.2013) us KZ LA LC. LK. LR. LS. LT LU. LY. MA. MD. ME.
61/815,656 24 April 2013 (24.04.2013) Us MG. MK. MN. MW. MX. MY. MZ. NA. NG. NL NO. NZ
14/189,177 25 February 2014 (25.02.2014) us OM. PA, PE, PG, PIL, PL, PT, QA, RO, RS, RU, RW, SA.
(71) Applicant: QUALCOMM INCORPORATED [US/US]; SC, SD, SE, 8G, SK, SL, SM, ST, SV, 8Y, TH, TJ, TM,

Attn: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

(84)

TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

[Continued on next page]

(54) Title: NEIGHBOR BLOCK-BASED DISPARITY VECTOR DERIVATION IN 3D-AVC

(57) Abstract: Techniques are de-
scribed for deriving a disparity vector
for a current block based on a disparity
motion vector of a neighboring block in

106
Vs

OF DEPENDENT VIEWS

RECEIVE CODED BITSTREAM IN 3D-AVC COMPLIANT VIDEO
CODING PROCESS GENERATED WITH TEXTURE-FIRST CODING

a 3D-AVC video coding process. The
disparity vector derivation allows for
texture-first coding where a depth view
component of a dependent view is

coded subsequent to the coding of the
corresponding texture component of the

108
Ve

DECODE TEXTURE VIEW COMPONENT OF DEPENDENT VIEW

dependent view.

Y

110
Ve

TEXTURE VIEW COMPONENT

DECODE DEPTH VIEW COMPONENT THAT CORRESPONDS TO
TEXTURE VIEW COMPONENT SUBSEQUENT TO DECODING

FIG. 8

WO 2014/1341°70 A2 W00V 000 00 O 0 AR

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Published:
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, S, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

WO 2014/134170 PCT/US2014/018679

NEIGHBOR BLOCK-BASED DISPARITY VECTOR DERIVATION IN 3D-AVC

[0001] This application claims the benefit of:
U.S. Provisional Application No. 61/769,716, filed February 26, 2013,
U.S. Provisional Application No. 61/770,263, filed February 27, 2013,
U.S. Provisional Application No. 61/772,321, filed March 4, 2013,
U.S. Provisional Application No. 61/803,384, filed March 19, 2013, and
U.S. Provisional Application No. 61/815,656, filed April 24, 2013, the contents

of each of which are incorporated herein in their entirety.

TECHNICAL FIELD
[0002] This disclosure relates to video coding and, more particularly, to techniques for

deriving disparity vectors.

BACKGROUND
[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, digital
cameras, digital recording devices, digital media players, video gaming devices, video
game consoles, cellular or satellite radio telephones, video teleconferencing devices, and
the like. Digital video devices implement video compression techniques, such as those
described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T
H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency Video
Coding (HEVC) standard presently under development, and extensions of such
standards, to transmit, receive and store digital video information more efficiently.
[0004] Video compression techniques include spatial prediction and/or temporal
prediction to reduce or remove redundancy inherent in video sequences. For block-
based video coding, a video frame or slice may be partitioned into blocks. Each block
can be further partitioned. Blocks in an intra-coded (I) frame or slice are encoded using
spatial prediction with respect to reference samples in neighboring blocks in the same
frame or slice. Blocks in an inter-coded (P or B) frame or slice may use spatial

prediction with respect to reference samples in neighboring blocks in the same frame or

WO 2014/134170 PCT/US2014/018679

slice or temporal prediction with respect to reference samples in other reference frames.
Spatial or temporal prediction results in a predictive block for a block to be coded.
Residual data represents pixel differences between the original block to be coded and
the predictive block.

[0005] An inter-coded block is encoded according to a motion vector that points to a
block of reference samples forming the predictive block, and the residual data indicating
the difference between the coded block and the predictive block. An intra-coded block
is encoded according to an intra-coding mode and the residual data. For further
compression, the residual data may be transformed from the pixel domain to a transform
domain, resulting in residual transform coefficients, which then may be quantized. The
quantized transform coefficients, initially arranged in a two-dimensional array, may be
scanned in a particular order to produce a one-dimensional vector of transform

coefficients for entropy coding.

SUMMARY
[0006] In general, this disclosure describes disparity vector derivation for blocks of a
texture view component for 3D-Advanced Video Coding (3D-AVC) compliant video
coding process without needing a corresponding depth view component. The disparity
vector derivation techniques evaluate the motion information of neighboring block to
identify a neighboring block that is inter-view predicted with a disparity motion vector,
and utilize the disparity motion vector to derive the disparity vector. By not relying on
the corresponding depth view component for disparity vector derivation, the techniques
allow for texture-first coding in 3D-AVC resulting in compatibility with other video
coding techniques, bandwidth efficiency, and reduction in coding complexity.
[0007] In one example, the disclosure describes a method of decoding video data for
3D-Advanced Video Coding (3D-AVC) comprising receiving a coded bitstream in a
3D-AVC compliant video coding process generated with texture-first coding of
dependent views, decoding a texture view component of a dependent view of the
dependent views in the 3D-AVC compliant video coding process, wherein decoding the
texture view component comprises selecting a first temporal picture, wherein the first
temporal picture comprises a picture identified at a first entry of a first reference picture
list, selecting a second temporal picture, wherein the second temporal picture comprises

a picture identified at a first entry of a second reference picture list, evaluating motion

WO 2014/134170 PCT/US2014/018679

information of one or more neighboring blocks of a current macroblock in the texture
view component to determine whether at least one neighboring block is inter-view
predicted with a disparity motion vector that refers to an inter-view reference picture in
a view other than the dependent view, wherein the one or more neighboring blocks
comprise spatial neighboring blocks and at least one temporal neighboring block in at
least one of the first selected temporal picture or the second selected temporal picture,
deriving a disparity vector for the current block based on the disparity motion vector for
one of the evaluated neighboring blocks, and assigning the derived disparity vector to
cach block within the macroblock, and decoding a depth view component that
corresponds to the texture view component subsequent to decoding the texture view
component.

[0008] In one example, the disclosure describes a method of encoding video data for
3D-Advanced Video Coding (3D-AVC) comprising encoding a texture view component
of a dependent view in a 3D-AVC compliant video coding process, wherein encoding
the texture view component comprises selecting a first temporal picture, wherein the
first temporal picture comprises a picture identified at a first entry of a first reference
picture list, selecting a second temporal picture, wherein the second temporal picture
comprises a picture identified at a first entry of a second reference picture list,
evaluating motion information of one or more neighboring blocks of a current
macroblock in the texture view component to determine whether at least one
neighboring block is inter-view predicted with a disparity motion vector that refers to an
inter-view reference picture in a view other than the dependent view, wherein the one or
more neighboring blocks comprise spatial neighboring blocks and at least one temporal
neighboring block in at least one of the first selected temporal picture or the second
selected temporal picture, deriving a disparity vector for the current block based on the
disparity motion vector for one of the evaluated neighboring blocks, and assigning the
derived disparity vector to each block within the macroblock, encoding a depth view
component that corresponds to the texture view component subsequent to encoding the
texture view component, and generating for output a coded bitstream with texture-first
coding of dependent views that includes the encoded texture view component and the
encoded depth view component.

[0009] In one example, the disclosure describes a device for coding video data for 3D-

Advanced Video Coding (3D-AVC) comprising a memory configured to store video

WO 2014/134170 PCT/US2014/018679

data, and a video coder, the video coder comprising one or more processors and
configured to code, in a 3D-AVC compliant video coding process, a texture view
component of a dependent view of the video data, wherein, to code the texture view
component, the video coder is configured to evaluate motion information of only one or
more neighboring blocks, of a current macroblock block in the texture view component,
with motion vectors that refer to a first reference picture list of two reference picture
lists and avoid evaluating motion information of neighboring blocks with motion
vectors that refer to a second reference picture list of the two reference picture lists to
determine whether at least one neighboring block is inter-view predicted with a
disparity motion vector that refers to an inter-view reference picture in a view other than
the dependent view, and derive a disparity vector for the current block based on the
disparity motion vector for one of the evaluated neighboring blocks, assign the derived
disparity vector to each block within the macroblock, and code a depth view component,
of the video data, that corresponds to the texture view component subsequent to coding
the texture view component.

[0010] In one example, the disclosure describes a computer-readable storage medium
having instructions stored thereon that when executed cause one or more processors of a
video coder of a device for coding video data for 3D-Advanced Video Coding (3D-
AVC) to code a texture view component of a dependent view of the dependent views in
the 3D-AVC compliant video coding process, wherein the instructions that cause the
one or more processors to code the texture view component comprise instructions that
cause the one or more processors to evaluate motion information of only one or more
neighboring blocks, of a current macroblock block in the texture view component, with
motion vectors that refer to a first reference picture list of two reference picture lists and
avoid evaluating motion information of neighboring blocks with motion vectors that
refer to a second reference picture list of the two reference picture lists to determine
whether at least one neighboring block is inter-view predicted with a disparity motion
vector that refers to an inter-view reference picture in a view other than the dependent
view, and derive a disparity vector for the current block based on the disparity motion
vector for one of the evaluated neighboring blocks, assign the derived disparity vector to
cach block within the macroblock, and code a depth view component that corresponds

to the texture view component subsequent to coding the texture view component.

WO 2014/134170 PCT/US2014/018679

[0011] The details of one or more examples are set forth in the accompanying drawings
and the description below. Other features, objects, and advantages will be apparent

from the description and drawings, and from the claims.

BRIEY DESCRIPTION OF DRAWINGS
[0012] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system that may utilize the techniques described in this disclosure.
[0013] FIG. 2 is a block diagram illustrating an example video encoder that may
implement the techniques described in this disclosure.
[0014] FIG. 3 is a block diagram illustrating an example video decoder that may
implement the techniques described in this disclosure.
[0015] FIGS. 4A-H illustrate example block positions for the temporally co-located
macroblock (MB) that are checked for disparity vector derivation.
[0016] FIG. SA-5D illustrate example block positions for the spatially neighboring
macroblocks that are checked for disparity vector derivation.
[0017] FIGS. 6A and 6B illustrate example block positions of neighboring blocks for
macroblock partitions that are checked for disparity vector derivation.
[0018] FIG. 7 is a flowchart illustrating an example operation of encoding in
accordance with techniques described in this disclosure.
[0019] FIG. 8 is a flowchart illustrating an example operation of decoding in
accordance with the techniques described in this disclosure.
[0020] FIG. 9 is a flowchart illustrating an example operation of disparity vector
derivation and inter-prediction coding in accordance with techniques described in this
disclosure.
[0021] FIG. 10 is a flowchart illustrating another example operation of disparity vector
derivation and inter-prediction coding in accordance with techniques described in this

disclosure.

DETAILED DESCRIPTION
[0022] This disclosure is related to multiview video coding based on advanced codecs,
including the coding of two or more views with the 3D-Advanced Video Coding (AVC)
codec. More specifically, techniques related to the disparity vector generation are

proposed. In 3D-AVC, a view component includes a texture view component and a

WO 2014/134170 PCT/US2014/018679

depth view component, where the texture view component includes the video data (i.c.,
a picture) and the corresponding depth view component indicates relative depth of the
objects in the texture view component. The disparity vector is a vector of a block in the
texture view component that indicates the location of a corresponding block in a texture
view component of another view.

[0023] Some techniques for disparity vector generation in 3D-AVC rely on the depth
view component (also referred to as a depth map) to generate a disparity vector for a
block in the texture view component. There may be certain issues with needing to rely
on the depth view component to generate a disparity vector. Because the depth view
component is needed for disparity vector generation, for non-base views, a video coder
(e.g., video encoder or video decoder) needs to code (e.g., encode or decode) the depth
view component first before coding (e.g., encoding or decoding) the corresponding
texture view component (referred to as a depth-first coding). However, a client of the
3D-AVC based video service may only require the texture view components (i.e.,
decoding of the texture views), but it may be impossible for a media gateway to skip
forwarding the depth view components (e.g., depth packets) or for a video decoder to
avoid unnecessarily decoding the depth view components. Accordingly, these other
techniques significantly increase both bandwidth and decoding complexity.

[0024] Moreover, some other video coding standards allow for texture-first coding, in
which the texture view component is coded before the depth view component, such as in
the multiview video coding (MVC) plus depth (D), or MVC+D, video coding standard
and the 3D-High Efficiency Video Coding (3D-HEVC) video coding standard in
development. Some other video coding standards do not even rely on depth, such as the
MVC extension of H.264/AVC. With depth-first coding order, multi-view
compatibility may not be possible because there is no capability of texture only
extraction. Also, texture-first coding order is commonly used for MVC coding
standards, and the commonality in the design may provide ease of implementation.
However, with depth-first coding, such commonality in design may not be possible. In
other words, depth-first coding may be considered as an inconsistent design element.
[0025] Furthermore, because a depth view component is decoded prior to corresponding
texture view component, in depth-first coding, there is a delay in when the texture view

component is decoded. This delay may be generally undesirable, but especially if the

WO 2014/134170 PCT/US2014/018679

texture view component is random access point of view and there is decoding latency in
the random access point of view.

[0026] Some techniques have been used where texture-first coding is implemented for
3D-AVC. In these other techniques, disparity vector derivation is excluded (i.e., there is
an absence of the disparity vector derivation). These other techniques resulted in poor
coding performance for the 3D-AVC codec, as compared to 3D-AVC codec with depth-
first coding and disparity vector derivation, and close to MVC+D codec. In other
words, the absence of the disparity vector derivation method incurs significant
inefficient coding costs for texture coding tools.

[0027] The techniques described in this disclosure allow for texture-first coding
resulting in ease of implementation with other video coding techniques while deriving a
disparity vector. In particular, the techniques described in this disclosure derive the
disparity vector for a macroblock without relying on the corresponding depth view
component (e.g., depth map). For example, a video coder (e.g., a video encoder or a
video decoder) evaluates (i.e., checks) the motion vector information of macroblocks
neighboring the current macroblock. The motion vector of neighboring block refers to a
picture in a view other the view that includes the current macroblock, the video coder
converts such a motion vector of the evaluated neighboring block to a disparity vector
for the current macroblock (i.e., utilizes the motion vector of the neighboring block as a
disparity vector for the current macroblock). In this manner, the video coder does not
need to rely on the depth view component to determine the disparity vector for a
macroblock in the texture view component.

[0028] In this disclosure, a motion vector that refers to a picture in a view other than the
view that includes the current macroblock is referred to as a disparity motion vector. In
other words, a disparity motion vector is a vector that refers to a block in an inter-view
reference picture (i.c., a picture in a view other than the view that includes the current
macroblock). In the techniques described in this disclosure, if the video coder
determines that an evaluated neighboring block is inter-predicted with a disparity
motion vector, the video coder converts the disparity motion vector of the neighboring
macroblock into a disparity vector for the current block.

[0029] The disparity motion vector and the disparity vector should not be confused.

The disparity motion vector refers to a macroblock in an inter-view reference picture

used for compensation (i.e., a residual between the current block and the macroblock

WO 2014/134170 PCT/US2014/018679

referred to by the disparity motion vector is determined and used to reconstruct the
current block as part of motion or disparity compensation). A disparity vector is a
vector that indicates disparity between the current block and a corresponding block to
which the disparity vector refers. The disparity vector is then used for various purposes
such as a view synthesis, motion vector prediction, and various other coding tools. In
some cases, it may be possible that the block referred to by the disparity vector is used
for compensation. In such cases, the disparity vector is considered to also be a disparity
motion vector. In other words, the disparity vector and the disparity motion vector are
different vectors except in the cases where the macroblock referred to by the disparity
vector just happens to also be used for compensation, in which case, the disparity vector
and disparity motion vector become the same.

[0030] The disparity motion vector and a temporal motion vector should not be
confused. In non-multiview video coding, a motion vector refers to a block in a
different picture; however, because there is only one view, this block in a different
picture is in the same view as the current macroblock being inter-predicted. Such a
motion vector is referred to as a temporal motion vector or normal motion vector in this
disclosure to avoid confusion. A disparity motion vector, on the other hand, is used in
multiview video coding techniques, such as 3D-AVC, where the motion vector refers to
a reference picture in another view.

[0031] For instance, in the context of multiview video coding, there are two kinds of
motion vectors. One is normal motion vector pointing to temporal reference pictures
and the corresponding inter prediction is motion-compensated prediction (MCP). The
other is disparity motion vector pointing to pictures in a different view and the
corresponding inter prediction is disparity-compensated prediction (DCP). A normal
motion vector that is not a disparity motion vector is also referred to as a temporal
motion vector in this disclosure.

[0032] Also, inter-prediction in the case where the reference picture is another view is
referred to as inter-view prediction. A reference picture in a view other than the view
that includes the current macroblock is referred to as an inter-view reference picture,
and a reference picture in the same view is referred to as a temporal reference picture.
Moreover, one access unit includes video data for decoding pictures from different
views that are to be displayed at substantially a same time, and a disparity motion vector

may only refer to inter-view reference pictures in the same access unit as the access unit

WO 2014/134170 PCT/US2014/018679

that includes the video data for the current macroblock. A temporal motion vector,
however, refers to a temporal reference picture in another access unit, but for the same
view.

[0033] In other words, in multiview video coding, inter-view prediction is performed
among pictures captured in the different views of the same access unit (i.e., with the
same time instance) to remove correlation between views. A picture coded with inter-
view prediction may be added into a reference picture list for the inter-view prediction
of the other non-base views. An inter-view prediction reference picture can be put in
any position of a reference picture list in the same way with an inter prediction reference
picture.

[0034] As described in more detail, a video coder (e.g., a video encoder or a video
decoder) may evaluate motion information of one or more neighboring blocks of a
current macroblock to determine whether a neighboring block is inter-predicted with a
disparity motion vector that refers to an inter-view reference picture. In some examples,
the video coder may only evaluate motion information of motion vectors of neighboring
blocks that refer to picture in a first reference picture list (RefPicList0), and avoid
evaluating motion information of motion vectors of neighboring blocks that refer to
picture in a second reference picture list (RefPicListl). For example, a first neighboring
block may have a disparity motion vector (e.g., inter-predicted with a disparity motion
vector); however, this disparity motion vector may refer to an inter-view reference
picture in RefPicListl. In this example, the video coder may avoid evaluating (e.g.,
checking) the disparity motion vector for this first neighboring block (i.e., the disparity
motion vector for this first neighboring block will not be the disparity vector for the
current block), and proceed with another neighboring block. In this way, the techniques
may reduce the amount of motion information that needs to accessed, thereby reducing
the amount of time it takes to code the current macroblock.

[0035] The blocks that neighbor the current macroblock include spatial neighboring
blocks (e.g., blocks in the same picture as the current macroblock) and temporal
neighboring blocks (e.g., blocks in a different picture that the picture that includes the
current macroblock). The pictures that include temporal neighboring blocks are referred
to as temporal pictures.

[0036] There may be large number of candidate temporal pictures (e.g., any previously

coded picture stored in a decoded picture buffer). However, the techniques described in

WO 2014/134170 PCT/US2014/018679

10

this disclosure may limit the number of candidate temporal pictures, in some examples.
For instance, the techniques may limit the number of candidate temporal pictures that
include temporal neighboring blocks to two temporal pictures.

[0037] As one example, the video coder may select a first temporal picture, where the
first temporal picture is a picture identified at a first entry of a first reference picture list
(e.g., entry 0 of RefPicList0), and select a second temporal picture, where the second
temporal picture is a picture identified at a first entry of a second reference picture list
(e.g., entry 0 of RefPicListl). Selecting the pictures identified in the first entries of the
two reference picture lists may exploit the mechanism in which the reference picture
lists are constructed to utilize temporal pictures that are likely to yield temporal
neighboring blocks that are inter-predicted with a disparity motion vector (and in some
examples, disparity motion vectors that refer to RefPicList0).

[0038] In some examples, the video coder may partition the current macroblock into a
plurality of blocks (e.g., partitions or sub-blocks). As described above, the video coder
may derive a disparity vector for the current macroblock based on a disparity motion
vector for one of the evaluated neighboring blocks. In some examples, the video coder
may assign this derived disparity vector to each of the blocks within the current
macroblock. In this way, the video coder may minimize the amount of disparity vector
it needs to derive, and can derive one for the macroblock and assign that same one to all
blocks of the macroblock (i.e., the blocks of the macrobock adopt the disparity vector
derived for the macroblock as their own respective disparity vectors).

[0039] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system in accordance with one or more examples described in this disclosure. For
example, system 10 includes source device 12 and destination device 14. Source device
12 and destination device 14 are configured to implement multiview video coding in
which source device 12 and destination device 14 each code pictures of different views.
When the pictures of the different views are viewed at substantially a same time, the
viewer perceives an image that encompasses a 3D volume, instead of an image that is
constrained to the 2D area of the display.

[0040] System 10 may operate in accordance with different video coding standards, a
proprictary standard, or any other way of multiview coding. The following describes a
few examples of video coding standards, and should not be considered limiting. Video

coding standards include ITU-T H.261, ISO/IEC MPEG-1 Visual, ITU-T H.262 or

WO 2014/134170 PCT/US2014/018679

11

ISO/IEC MPEG-2 Visual, ITU-T H.263, ISO/IEC MPEG-4 Visual and ITU-T H.264
(also known as ISO/IEC MPEG-4 AVC), including its Scalable Video Coding (SVC)
and Multiview Video Coding (MVC) extensions. The latest joint draft of MVC is
described in “Advanced video coding for generic audiovisual services,” ITU-T
Recommendation H.264, Mar 2010, the entire content of which is incorporated herein
by reference. Another joint draft of the MVC is described in “Advanced video coding
for generic audiovisual services,” ITU-T Recommendation H.264, June 2011, the entire
content of which is incorporated herein by reference. Some additional video coding
standards include the MVC+D and 3D-AVC.

[0041] For purposes of illustration only, the techniques described in this disclosure are
described with examples in accordance the H.264 standard, such as the 3D-AVC.
However, the techniques described in this disclosure should not be considered limited to
these example standards, and may be extendable to other video coding standards for
multiview coding or 3D video coding (¢.g., 3D-HEVC), or to techniques related to
multiview coding or 3D video coding that are not necessarily based on a particular
video coding standard. For example, the techniques described in this disclosure are
implemented by video encoders/decoders (codecs) for multiview coding, where
multiview coding includes coding of two or more views.

[0042] As shown in FIG. 1, system 10 includes a source device 12 that generates
encoded video data to be decoded at a later time by a destination device 14. Source
device 12 and destination device 14 comprise any of a wide range of devices, including
a wireless handset such as so-called “smart” phones, so-called “smart” pads, or other
such wireless devices equipped for wireless communication. Additional examples of
source device 12 and destination device 14 include, but are not limited to, a digital
television, a device in digital direct broadcast system, a device in wireless broadcast
system, a personal digital assistants (PDA), a laptop computer, a desktop computer, a
tablet computer, an e-book reader, a digital camera, a digital recording device, a digital
media player, a video gaming device, a video game console, a cellular radio telephone, a
satellite radio telephone, a video teleconferencing device, and a video streaming device,
or the like.

[0043] Destination device 14 may receive the encoded video data to be decoded via a
link 16. Link 16 comprises any type of medium or device capable of moving the

encoded video data from source device 12 to destination device 14. In one example,

WO 2014/134170 PCT/US2014/018679

12

link 16 comprises a communication medium to enable source device 12 to transmit
encoded video data directly to destination device 14 in real-time. The encoded video
data may be modulated according to a communication standard, such as a wireless
communication protocol, and transmitted to destination device 14. The communication
medium may comprise any wireless or wired communication medium, such as a radio
frequency (RF) spectrum or one or more physical transmission lines. The
communication medium may form part of a packet-based network, such as a local area
network, a wide-area network, or a global network such as the Internet. The
communication medium may include routers, switches, base stations, or any other
equipment that may be useful to facilitate communication from source device 12 to
destination device 14.

[0044] In some examples, encoded data is output from output interface 22 to a storage
device 34. Similarly, encoded data is accessed from storage device 34 by input
interface 28. Examples of storage device 34 include any of a variety of distributed or
locally accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-
ROMs, flash memory, volatile or non-volatile memory, or any other suitable digital
storage media for storing encoded video data. In a further example, storage device 34
corresponds to a file server or another intermediate storage device that holds the
encoded video generated by source device 12. In these examples, destination device 14
accesses stored video data from storage device 34 via streaming or download. The file
server is any type of server capable of storing encoded video data and transmitting that
encoded video data to the destination device 14. Example file servers include a web
server (e.g., for a website), an FTP server, network attached storage (NAS) devices, or a
local disk drive. Destination device 14 accesses the encoded video data through any
standard data connection, including an Internet connection. This may include a wireless
channel (e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.),
or a combination of both that is suitable for accessing encoded video data stored on a
file server. The transmission of encoded video data from storage device 34 may be a
streaming transmission, a download transmission, or a combination of both.

[0045] The techniques of this disclosure are not necessarily limited to wireless
applications or settings. The techniques may be applied to video coding in support of
any of a variety of multimedia applications, such as over-the-air television broadcasts,

cable television transmissions, satellite television transmissions, streaming video

WO 2014/134170 PCT/US2014/018679

13

transmissions (e.g., via the Internet), encoding of digital video for storage on a data
storage medium, decoding of digital video stored on a data storage medium, or other
applications. In some examples, system 10 is configured to support one-way or two-
way video transmission to support applications such as video streaming, video
playback, video broadcasting, and/or video telephony.

[0046] In the example of FIG. 1, source device 12 includes a video source 18, video
encoder 20 and an output interface 22. In some cases, output interface 22 includes a
modulator/demodulator (modem) and/or a transmitter. In source device 12, video
source 18 includes one or more of a source such as a video capture device (¢.g., a video
camera), a video archive containing previously captured video, a video feed interface to
receive video from a video content provider, and/or a computer graphics system for
generating computer graphics data as the source video, a combination of such sources,
or any other source. As one example, if video source 18 is a video camera, source
device 12 and destination device 14 may form so-called camera phones or video phones.
However, the techniques described in this disclosure are applicable to video coding in
general, and may be applied to wireless and/or wired applications.

[0047] Video encoder 20 encodes the captured, pre-captured, or computer-generated
video. Output interface 22 of source device 12 is configured to transmit the encoded
video data to destination device 14. The encoded video data may also (or alternatively)
be stored onto storage device 34 for later access by destination device 14 or other
devices, for decoding and/or playback.

[0048] Destination device 14 includes an input interface 28, a video decoder 30, and a
display device 32. In some cases, input interface 28 includes a receiver and/or a
modem. Input interface 28 of destination device 14 receives the encoded video data
over link 16 or from storage device 34. The encoded video data communicated over
link 16, or provided on storage device 34, includes a variety of syntax elements
generated by video encoder 20 for use by a video decoder, such as video decoder 30, in
decoding the video data. Such syntax elements may be included with the encoded video
data transmitted on a communication medium, stored on a storage medium, or stored a
file server.

[0049] Display device 32 may be integrated with, or external to, destination device 14.
In some examples, destination device 14 includes an integrated display device and also

configured to interface with an external display device. In other examples, destination

WO 2014/134170 PCT/US2014/018679

14

device 14 is a display device. In general, display device 32 displays the decoded video
data to a user, and comprises any of a variety of display devices such as a liquid crystal
display (LCD), a plasma display, an organic light emitting diode (OLED) display, or
another type of display device.

[0050] Video encoder 20 and video decoder 30 may operate according to various video
coding standards, such as the examples listed above. However, the techniques described
in this disclosure should not be considered limited as such. For purposes of description,
video encoder 20 and video decoder 30 are described in context of the H.264 standard,
such as the 3D-AVC standard. The techniques of this disclosure, however, are not
limited to any particular coding standard. Other examples of video compression
standards include MPEG-2 and ITU-T H.263, and include the 3D-HEVC. Proprietary
coding techniques, such as those referred to as On2 VP6/VP7/VPS§, may also implement
one or more of the techniques described herein.

[0051] Although not shown in FIG. 1, in some aspects, video encoder 20 and video
decoder 30 are each integrated with an audio encoder and decoder, and include
appropriate MUX-DEMUX units, or other hardware and software, to handle encoding
of both audio and video in a common data stream or separate data streams. If
applicable, in some examples, MUX-DEMUX units conform to the ITU H.223
multiplexer protocol, or other protocols such as the user datagram protocol (UDP).
[0052] Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable encoder circuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations
thereof. For example, the techniques described in this disclosure may be described from
the perspective of an apparatus or a device. As one example, the apparatus or device
may include video decoder 30 (e.g., destination device 14 as part of a wireless
communication device), and video decoder 30 may include one or more processors
configured to implement techniques described in this disclosure (e.g., decode video data
in accordance with techniques described in this disclosure). As another example, the
apparatus or device may include a micro-processor or an integrated circuit (IC) that
includes video decoder 30, and the micro-processor or IC may be part of destination
device 14 or another type of device. The same may apply for video encoder 20 (i.¢., an

apparatus or device like source device 12 and/or a micro-controller or IC includes video

WO 2014/134170 PCT/US2014/018679

15

encoder 20, where video encoder 20 is configured to encode video data in accordance
with techniques described in this disclosure).

[0053] When the techniques are implemented partially in software, a device may store
instructions for the software in a suitable, non-transitory computer-readable medium and
execute the instructions in hardware using one or more processors to perform the
techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be
included in one or more encoders or decoders, either of which may be integrated as part
of a combined encoder/decoder (CODEC) in a respective device.

[0054] A video sequence typically includes a series of video pictures from a view. A
group of pictures (GOP) generally comprises a series of one or more video pictures. A
GOP may include syntax data in a header of the GOP, a header of one or more pictures
of the GOP, or elsewhere, that describes a number of pictures included in the GOP.
Each picture may include picture syntax data that describes an encoding mode for the
respective picture. Video encoder 20 typically operates on video blocks within
individual video pictures in order to encode the video data. A video block may
correspond to a macroblock, a partition of a macroblock, and possibly a sub-block of a
partition, as defined in the H.264 standard. The video blocks may have fixed or varying
sizes, and may differ in size according to a specified coding standard. Each video
picture may include a plurality of slices. Each slice may include a plurality of blocks.
[0055] As an example, the ITU-T H.264 standard supports intra-prediction in various
block sizes, such as 16 by 16, 8 by 8, or 4 by 4 for luma components, and 8x8 for
chroma components, as well as inter-prediction in various block sizes, such as 16x16,
16x8, 8x16, 8x8, 8x4, 4x8 and 4x4 for luma components and corresponding scaled sizes
for chroma components. In this disclosure, “NxN” and “N by N” may be used
interchangeably to refer to the pixel dimensions of the block in terms of vertical and
horizontal dimensions (e.g., 16x16 pixels or 16 by 16 pixels). In general, a 16x16 block
will have 16 pixels in a vertical direction (y = 16) and 16 pixels in a horizontal direction
(x =16). Likewise, an NxN block generally has N pixels in a vertical direction and N
pixels in a horizontal direction, where N represents a nonnegative integer value. The
pixels in a block may be arranged in rows and columns. Moreover, blocks need not
necessarily have the same number of pixels in the horizontal direction as in the vertical
direction. For example, blocks may comprise NxM pixels, where M is not necessarily

equal to N.

WO 2014/134170 PCT/US2014/018679

16

[0056] When the block is intra-mode encoded (e.g., intra-predicted), the block may
include data describing an intra-prediction mode for the block. As another example,
when the block is inter-mode encoded (e.g., inter-predicted), the block may include
information defining a motion vector for the block. This motion vector refers to a
reference picture in the same view (e.g., a temporal motion vector), or refers to a
reference picture in another view (e.g., a disparity motion vector). The data defining the
motion vector for a block describes, for example, a horizontal component of the motion
vector, a vertical component of the motion vector, a resolution for the motion vector
(e.g., one-quarter pixel precision or one-eighth pixel precision). In addition, when inter-
predicted, the block may include reference index information such as a reference picture
to which the motion vector points, and/or a reference picture list (e.g., RefPicList0 or
RefPicList1) for the motion vector.

[0057] In the H.264 standard, following intra-predictive or inter-predictive coding,
video encoder 20 calculates residual data for the macroblocks. The residual data may
correspond to pixel differences between pixels of the unencoded picture and prediction
values for the macroblock in H.264.

[0058] Following any transforms to produce transform coefficients, video encoder 20
performs quantization of the transform coefficients, in some examples. Quantization
generally refers to a process in which transform coefficients are quantized to possibly
reduce the amount of data used to represent the coefficients, providing further
compression. The quantization process reduces the bit depth associated with some or all
of the coefficients. For example, an n-bit value is rounded down to an m-bit value
during quantization, where n is greater than m.

[0059] In some examples, video encoder 20 utilizes a predefined scan order to scan the
quantized transform coefficients to produce a serialized vector that can be entropy
encoded. In other examples, video encoder 20 performs an adaptive scan. After
scanning the quantized transform coefficients to form a one-dimensional vector, in some
examples, video encoder 20 entropy encodes the one-dimensional vector according to
context adaptive variable length coding (CAVLC), context adaptive binary arithmetic
coding (CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC),
Probability Interval Partitioning Entropy (PIPE) coding or another entropy encoding

methodology, as a few examples. Video encoder 20 also entropy encodes syntax

WO 2014/134170 PCT/US2014/018679

17

elements associated with the encoded video data for use by video decoder 30 in
decoding the video data.

[0060] To perform CABAC, video encoder 20 may assign a context within a context
model to a symbol to be transmitted. The context may relate to, for example, whether
neighboring values of the symbol are non-zero or not. To perform CAVLC, video
encoder 20 may select a variable length code for a symbol to be transmitted.
Codewords in VLC may be constructed such that relatively shorter codes correspond to
more probable symbols, while longer codes correspond to less probable symbols. In
this way, the use of VLC may achieve a bit savings over, for example, using equal-
length codewords for each symbol to be transmitted. The probability determination
may be based on a context assigned to the symbol.

[0061] Video decoder 30 implements the inverse of the techniques of video encoder 20.
For example, video decoder 30 decodes the encoded video bitstream and determines the
residual blocks by inverse quantization and inverse transform. Video decoder 30 sums
the residual blocks with blocks of previously decoded pictures to determine the pixel
values for the blocks within the picture.

[0062] As described above, the techniques described in this disclosure are directed to
the 3D-AVC. To better understand the techniques, the following describes some basic
H.264/AVC coding techniques, multiview video coding from the perspective of
H.264/MVC extension and the High Efficiency Video Coding (HEVC) standard, and
3D-AVC techniques. After such description, the disclosure describes techniques for
deriving a disparity vector, and in particular, deriving a disparity vector for 3D-AVC
without needing to rely on a depth view component (e.g., a depth map).

[0063] For H.264/Advance Video Coding (AVC), video encoding or decoding (e.g.,
coding) is implemented on macroblocks, where a macroblock represents a portion of a
frame which are inter-predicted or intra-predicted (i.e., inter-prediction encoded or
decoded or intra-prediction encoded or decoded). For instance, in H.264/AVC, each
inter Macroblock (MB) (e.g., inter-predicted macroblock) may be partitioned into four
different ways: one 16x16 MB partition, two 16x8 MB partitions, two 8x16 MB
partitions, or four 8x8 MB partitions. Different MB partitions in one MB may have
different reference index values for each direction (i.e., RefPicList0 or RefPicListl).
When a MB is not partitioned into four 8x8 MB partitions, it has only one motion vector

for the whole MB partition in each direction.

WO 2014/134170 PCT/US2014/018679

18

[0064] As part of video coding (encoding or decoding), video encoder 20 and video
decoder 30 are configured to construct one or two reference picture lists, referred to as
RefPicList0 and RefPicList]l. The reference picture list(s) identify reference pictures
that can be used to inter-predict macroblocks of a frame or a slice. For instance, video
encoder 20 may signal a reference index and a reference picture list identifier. Video
decoder 30 may receive the reference index and the reference picture list identifier and
determine the reference picture that is to be used for inter-prediction decoding the
current macroblock from the reference index and the reference picture list identifier.
[0065] When a MB is partitioned into four 8x8 MB partitions, each 8x8 MB partition
can be further partitioned into sub-blocks. There are four different ways to get sub-
blocks from an 8x8 MB partition: one 8x8 sub-block, two 8x4 sub-blocks, two 4x8 sub-
blocks, or four 4x4 sub-blocks. Each sub-block can have a different motion vector in
cach direction. The manner in which an 8x8 MB partition is partitioned into sub-blocks
is named sub-block partition.

[0066] For multiview video coding there are multiple different video coding standards.
To avoid confusion, when this disclosure describes multiview video coding generically,
this disclosure uses the phrase “multiview video coding.” In general, in multiview
video coding, there is a base view and one or more enhancement or dependent views.
The base view is fully decodable without reference to any of the dependent views (i.c.,
the base view is only inter-predicted with temporal motion vectors). This allows a
codec that is not configured for multiview video coding to still receive at least one view
that is fully decodable (i.c., the base view can be extracted out and the other views
discarded, allowing a decoder not configured for multiview video coding to still decode
the video content albeit without 3D experience). The one or more enhancement or
dependent views may be inter-predicted with respect to the base view or with respect to
other enhancement or dependent view or with respect to other pictures in the same view
(i.e., disparity compensation predicted or motion compensated predicted).

[0067] Whereas “multiview video coding” is used generically, the acronym MVC is
associated with an extension of H.264/AVC. Accordingly, when the disclosure uses the
acronym MVC, the disclosure is referring specifically to the extension to H.264/AVC
video coding standard. The MVC extension of H.264/AVC relies upon disparity motion
vectors as another type of motion vector in addition to temporal motion vectors.

Another video coding standard, referred to as MVC+D, has also been developed by

WO 2014/134170 PCT/US2014/018679

19

JCT-3V and MPEG. MVC+D applies the same low-level coding tools as those of MVC
for both texture and depth and the decoding of depth is independent to the decoding of
texture and vice-versa. For instance, in MVC, a frame is represented only by one view
component, referred to as a texture view component, or simply texture. In MVC+D,
there are two view components: texture view component and depth view component, or
simply texture and depth. For example, in MVC+D, each view includes a texture view
and a depth view, where the view includes a plurality of view components, the texture
view includes a plurality of texture view components, and the depth view includes a
plurality of depth view components.

[0068] Each texture view component is associated with a depth view component to
form a view component of a view. The depth view component represents relative depth
of the objects in the texture view component. In MVC+D, the depth view component
and the texture view component are separately decodable. For example, video decoder
30 may implement two instances of an MVC codec, in which a first codec decodes the
texture view components and a second coded decodes the depth view components.
These two codecs can execute independent of one another because the texture view
components and the depth view components are separately encoded.

[0069] In MVC+D, a depth view component is always immediately following the
associated (e.g., corresponding) texture view component. In this manner, MVC+D
supports texture-first coding, where the texture view component is decoded prior to the
depth view component.

[0070] A texture view component and its associated (e.g., corresponding) depth view
component may include the same picture order count (POC) value and view id (i.e., the
POC value and view _id of a texture view component and its associated depth view
component is the same). The POC value indicates the display order of the texture view
component and the view_id indicates the view to which the texture view component and
depth view component belong.

[0071] The following additional description for 3D-Advance Video Coding (AVC).
Recent standardization activities in MPEG include the Call for Proposal (CfP) for 3D
video technologies, and there are several techniques selected among the responses in the
current reference software. AVC based 3D video (3D-AVC) coding standard is
currently under development by JCT-3V, and the latest version of 3D-AVC is now

available in public and incorporated herein by reference in its entirety: M. M.

WO 2014/134170 PCT/US2014/018679

20

Hannuksela, Y. Chen, T. Suzuki, J.-R. Ohm, G. J. Sullivan, “3D-AVC draft text 5,”
JCT3V-C1002, Geneva, CH, Jan., 2013. It is available, as of February 25, 2014, from
the following link: http://phenix.it-

sudparis.cu/jct2/doc_end user/documents/3 Geneva/wgl1/JCT3V-C1002-v3.zip.
[0072] 3D-AVC is compatible to H.264/AVC in a way that the texture part of the base
view is fully decodable for H.264/AVC decoder. For example, the texture view
components in view components of the base view may only be inter-predicted with
other texture view components in the same base view. The texture view components in
the base view may not inter-view predicted. Also, the texture view component in the
base view may not require the corresponding depth view component for decoding
purposes.

[0073] For enhanced view components in 3D-AVC, in some other example techniques,
the depth may be coded prior to the texture and a texture view component may be coded
based on the information from the depth view component, which is also known as a
depth-first coding. However, each texture view component is coded before the
respective depth view components in texture-first coding order, such as in MVC+D
described above. In other words, in some other example techniques, in 3D-AVC, the
texture view component of the base view is coded first, followed by the associated depth
view component of the base view, followed by the depth view component of a first
enhancement or dependent view, followed by the associated texture view component of
the first enhancement or dependent view, followed by the depth view component of a
second enhancement or dependent view, followed by the associated texture view
component of the second enhancement or dependent view, and so forth.

[0074] For example, the coding orders of the texture and depth view components in the
3D-AVC are exemplified as follows; wherein TO and DO, respectively, refer to the
texture and depth view components of the base view, and T1 and D1, respectively, refer
to the texture and depth view components of the dependent view. TO, DO, D1, T1...,
The base view is coded with the texture-first coding order while the dependent view is
coded with the depth-first coding order. The hybrid coding order is used in some other
example techniques for the 3D-AVC. The base view may have AVC compatibility due
to the texture-first coding order while the dependent views do not have such the kind of

compatibility since the decoded information of Di is used by Ti (i unequal to 0).

WO 2014/134170 PCT/US2014/018679

21

[0075] In some examples, even for 3D-AVC, texture first coding of the base views and
dependent views may be possible, exemplified in the following coding order: T0, DO,
T1, D1... In this example, all the view components are coded with the texture-first
coding order which may provide the AVC/multi-view compatibility.

[0076] As described above, in addition to compatibility issues, there may be certain
drawbacks with depth-first coding, as compared to texture-first coding. For example,
decoding latency in random access point of view, where the decoding of the texture
view component is delayed by the decoding of the corresponding depth view
component. However, it may be preferable to minimize decoding latency for random
access point of view, as a random access point of view picture is a picture that allows
for channel switch over.

[0077] Furthermore, with depth-first coding, if a video decoder does not need depth and
only needs to decode texture views, there may be no practical way to skip the depth
packets or allow the video decoder to skip the decoding of the depth views because the
depth views are needed to decode the texture views. For instance, a media gateway may
not be able to discard the depth views from the coded bitstream since the depth views
are need to decode the texture views in depth-first coding. This results in increased
bandwidth and increases decoding complexity.

[0078] Also, there may be inconsistent design elements. For instance, texture-first
coding order is commonly used for multiview video coding, including MVC+D and the
HEVC video coding standard, described below. The commonality in the design may
provide each of implementation unavailable where depth-first coding is needed.

[0079] Some techniques have been proposed to use texture-first coding with 3D-AVC.
As one example, 3D-AVC uses the depth view component to derive a disparity vector
for a macroblock in the corresponding texture view component, requiring the depth
view component to be decoded first. Some techniques have proposed avoiding the
derivation of the disparity vector, which assists with texture-first coding. However, the
performance of the 3D-AVC codec, in examples where disparity vector derivation is
absent, is poor and in line with MVC+D.

[0080] As noted above, some example techniques for 3D-AVC use the depth map (e.g.,
depth view component) to derive the disparity vector for a macroblock in the associated
texture view component. How to derive the disparity vector may vary with each low-

level coding tool. However, commonly, the depth data of the dependent views is

WO 2014/134170 PCT/US2014/018679

22

employed for the texture view component coding owing to the depth-first coding order.
An in-loop block-based view synthesis inter-view prediction and depth-based motion
vector prediction (D-MVP) in the 3D-AVC are the low-level coding tools that use the
disparity vector supported from the depth map. In the 3D-AVC software, the results of
the conversion process from the actual depth map value to a disparity to a particular
view are stored in look-up tables with camera parameters.

[0081] In general, the disparity vector may be used to implement one or more coding
tools (e.g., video encoder 20 and video decoder 30 may utilize the derived disparity
vector for implementing one or more coding tools without using the depth view
component for deriving the disparity vector). For example, as described above, the
disparity vector may be used as part as inter-view prediction and motion vector
prediction (MVP). MVP generically refers to the techniques where the coded bitstream
does not include the information for the actual motion vector of a macroblock, but
instead includes information from which motion vector can be derived. For instance, in
motion vector prediction, the motion vector for the macroblock is predicted from a
motion vector predictor such as motion vector of a neighboring block or a motion vector
of a block referred to by the motion vector of a neighboring block, as well as a motion
vector difference, which is the difference between the actual motion vector and the
motion vector predictor. The motion vector predictor may itself by predicted from a set
of candidate predictors.

[0082] The following describes depth-based motion vector prediction for normal inter-
prediction mode. D-MVP refers to a motion vector prediction method incorporating the
associated depth map data in the current view which is available due to the depth-first
coding order. D-MVP is applied with the texture view components in dependent views.
[0083] In 3D-AVC, the D-MVP method is incorporated into the conventional median
function-based motion vector prediction in H.264/AVC. Specifically, the type of
motion vector to be predicted (i.c., whether temporal motion vector or disparity motion
vector) is first identified. For example, in the D-MVP method, a video coder (e.g.,
video encoder 20 or video decoder 30) may check the reference indices of the motion
vectors in the neighboring blocks to determine whether the reference pictures used to
inter-predict the neighboring blocks are reference pictures in the same view as the
current macroblock or a different view. If the reference picture is in the same view,

then the neighboring block is inter-predicted with a temporal motion vector, and if the

WO 2014/134170 PCT/US2014/018679

23

reference picture is in a different view, then the neighboring block is inter-predicted
with a disparity motion vector (i.c., inter-view predicted).

[0084] The neighboring blocks include in order of left block, above block, above-right
block and above-left block of the current block. The motion vector in above-left block
is used only when one of the other three neighboring block does not contain a motion
vector. As one example, if the left block, above block, or above-right block is intra-
predicted, then a motion vector for the intra-predicted block is considered unavailable.
In this example, the video coder may evaluate the motion vector of the above-left block.
These neighboring blocks are the same neighboring blocks used for motion prediction in
the H.264/AVC video coding standard.

[0085] If three neighboring blocks are available, the motion vectors in the three
neighboring blocks are employed for the motion vector prediction of the current block.
In temporal prediction, if the motion vectors of the neighboring blocks are of the same
type (i.e., all temporal motion vectors or all disparity motion vectors) and have the same
reference indices (i.e., refer to the same reference picture), the video coder (e.g., video
encoder 20 or video decoder 30) directly uses median filter as in H.264/AVC to
determine a motion vector predictor. The video coder uses the motion vector predictor
to determine the motion vector for the current block.

[0086] Otherwise, if the motion vectors of neighboring blocks are of different types
and/or have the different reference indices, a motion vector is further derived to be used
to determine the motion vector predictor. When the current reference picture is inter-
view reference picture, the video coder checks (e.g., evaluates) the motion vector types
and their reference indices in neighboring block positions. If the video coder
determines that they have all the same motion vector type and the same reference
indices, the video coder applies the median filter to determine a motion vector predictor.
[0087] In both cases (e.g., motion vector of same type and same reference indices or
motion vector of different types or different reference indices), if less than three
neighboring blocks are available, the video coder derives motion vectors for the
unavailable blocks so that three neighboring blocks become available. A motion vector
derived for a neighboring block is called a derived motion vector and generated as
described below.

[0088] The video coder may determine if the current motion vector is a disparity motion

vector. To do so, the video coder may determine the reference index into a reference

WO 2014/134170 PCT/US2014/018679

24

picture list of the motion vector for the current block (i.e., video decoder 30 may
determine from the signaled coded bitstream the reference index into a reference picture
list of the motion vector for the current block). If the reference index identifies an inter-
view reference picture (i.c., a reference picture in another view as determined from the
POC value and/or view_id), the video coder may determine that the motion vector for
the current block is a disparity motion vector.

[0089] If the current motion vector is a disparity motion vector, where its motion vector
has a different type than that of the current motion vector or its motion vector is
unavailable, the derived motion vector of this block is set to be a disparity motion
vector, which is converted from the corresponding depth view component. In other
words, in this example techniques for 3D-AVC, if the motion vector for the current
block is a disparity motion vector, and a motion vector for a neighboring block is not a
disparity motion vector or is otherwise unavailable, to derive a disparity motion vector
for the neighboring block, the video coder identifies a corresponding block in the depth
view component, uses the corresponding block in the depth view component to
determine a disparity vector for the neighboring block, and uses the disparity vector for
the neighboring block as a disparity motion vector of the neighboring block. This
disparity motion vector is considered to be the derived motion vector for the
neighboring block.

[0090] The video coder uses the corresponding block of the depth view component in
the same view and converts the maximum value of the depth values of the four corners
of this corresponding block to a disparity value. This disparity value becomes the
horizontal component of the derived motion vector. The video coder sets the vertical
component of the derived motion vector to be zero.

[0091] In the above example, the motion vector for the current block was a disparity
motion vector. In some cases, the video coder may determine that the motion vector for
the current block is a temporal motion vector. For instance, the video coder may
determine the reference index into a reference picture list of the motion vector for the
current macroblock and identify the reference picture from the reference index. If the
reference picture belongs to the same view as the current macroblock (as determined
from POC value and/or view_id), the video coder determines that the motion vector for
the current macroblock is a temporal motion vector (i.e., the reference picture is a

temporal reference picture).

WO 2014/134170 PCT/US2014/018679

25

[0092] If the current motion vector is a temporal motion vector, the video coder uses the
disparity value (derived similar to above) to get a temporal motion vector of the
reference block in the reference (base) view. In this example, the video coder sets the
derived motion vector to be the temporal motion vector. If the temporal motion vector
is considered to be unavailable (Intra block or not pointing to a reference picture in the
reference view aligned with the current reference picture), the derived motion vector is
set to zero.

[0093] For example, in the case where the motion vector for the current block is a
temporal motion vector, to derive a temporal motion vector for the neighboring block
where the motion vector for the neighboring block is not a temporal motion vector or is
otherwise unavailable, the video coder may determine a disparity vector for the
neighboring block using techniques described above. Then, the video coder determines
the block in the base view to which the disparity vector refers. The video coder
determines whether a motion vector for the block in the base view exists. If the motion
vector for the block in the base view exists, the motion vector is required to be a
temporal motion vector because blocks in the base view cannot be inter-view predicted.
The video coder sets the temporal motion vector of the block in the base view as the
derived motion vector for the neighboring block. If the motion vector for the block in
the base view does not exist (i.c., intra-coded or if the motion vector for the block in the
base view refers to a reference picture that is not identified as a reference picture for the
current picture), the video coder sets the derived motion vector for the neighboring
block equal to zero.

[0094] The above described examples are for motion vector prediction for normal
modes. The following describes examples for motion vector prediction for skip and
direct modes, and in particular, inter-view motion prediction for skip and direct modes
in some example techniques of 3D-AVC.

[0095] The inter-view motion prediction in the 3D-AVC is performed in P-skip, B-skip,
B-16x16 direct mode, and B-8x8 direct mode. The video coder may first derive a
disparity vector from the neighboring blocks as well as the disparity vector converted
from the depth values of the depth view component of the same view. If one available
spatial neighboring block contains a disparity motion vector, this disparity motion
vector becomes the disparity vector. Otherwise, for neighboring blocks that do not

contain a disparity motion vector, a disparity motion vector of a block is converted from

WO 2014/134170 PCT/US2014/018679

26

the depth values (similar to the conversion in D-MVP), afterwards median filter is
applied to three neighboring blocks to get the disparity vector.

[0096] The video coder uses the derived vector to get a temporal motion vector of the
reference block in the reference (base) view to identify a temporal motion vector in the
reference block of the reference view. If the temporal motion vector is unavailable, the
video coder first derives the reference index and the video coder applies the D-MVP
techniques described above to produce a motion vector predictor. The D-MVP
techniques described above refer to the depth-based motion vector prediction for normal
inter-prediction mode.

[0097] Based on the above description, it can be seen that a disparity vector is a useful
coding tool in 3D-AVC. For instance, the disparity vector is used to implement one or
more coding tools such as for motion vector prediction; however, there may be other
uses for the disparity vector as well. As described above, some 3D-AVC techniques use
the depth view component of the texture view component for disparity vector derivation
(i.e., for depth-first coding for dependent or enhancement views), which leads to issues
such as decoding latency, implementation complexity, lack of scalability to other video
coding standards, bandwidth inefficiencies if depth view components are not needed,
and other potential drawbacks.

[0098] The techniques described in this disclosure allow for disparity vector derivation
that does not require use of a corresponding depth view component. In this manner, the
techniques allow for texture-first coding in 3D-AVC for dependent views with disparity
vector derivation. To achieve disparity vector derivation, the techniques described in
this disclosure rely upon the motion vector information of neighboring blocks. As one
example, if a motion vector for a neighboring block is a disparity motion vector, the
techniques described in this disclosure utilize the disparity motion vector of the
neighboring block as a disparity vector for the current block. In this manner, video
encoder 20 and video decoder 30 may determine a disparity vector for the current
macroblock of a texture view component without needing to rely on the corresponding
depth view component. Also, in this manner, video encoder 20 and video decoder 30
may implement one or more coding tools utilizing the derived disparity vector without
using the depth view component for deriving the disparity vector.

[0099] The 3D-HEVC video coding standard utilizes a scheme referred to as a
neighboring block based disparity vector (NBDV) derivation. The techniques described

WO 2014/134170 PCT/US2014/018679

27

in this disclosure may utilize the NBDV derivation techniques in 3D-AVC.
Furthermore, the NBDV derivation techniques in 3D-HEVC rely on the concept of
coding units (CUs) including prediction units (PUs). Coding units and prediction units
do not exist in 3D-AVC, and macroblocks are used instead, creating complexity in
leveraging the NBDV techniques in 3D-AVC. The techniques described in this
disclosure overcome such complexities of leverage coding tools such as NBDV
derivation in 3D-HEVC for 3D-AVC.

[0100] In this sense, the techniques described in this disclosure may be considered as a
neighbor block-based disparity vector derivation process in 3D-AVC. Prior to
describing the disparity vector derivation for 3D-AVC that leverages NBDV derivation,
the following provides additional context for NBDV derivation.

[0101] The NBDYV derivation process is used for a disparity vector derivation method in
the 3D-HEVC video coding standard that uses the texture-first coding order for all the
views. In the current 3D-HEVC design, the video coder uses the NBDV to retrieve
depth data from the depth map of a reference view.

[0102] The latest reference software description as well as the working draft of 3D-
HEVC is to be available, as of February 25, 2014, from http://phenix.it-
sudparis.eu/jct3v/doc_end user/current document.php?id=460, as follows: Gerhard
Tech, Krzysztof Wegner, Ying Chen, Sehoon Yea, “3D-HEVC Test Model Description
draft 2,” JCT3V-B1005, Joint Collaborative Team on 3D Video Coding Extension
Development of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 2nd Meeting:
Shanghai, CN, Oct. 2012, the entire content of which is incorporated herein by
reference.

[0103] The following provides an overview of the NBDV derivation process. As
described above, a disparity vector (DV) may be indicative of an estimation of the
disparity between two views. In many cases, neighboring blocks share almost the same
motion/disparity information in video coding. Accordingly, the current block can use
the motion vector information in neighboring blocks as a good disparity predictor.
Because the motion information of neighboring blocks form a good disparity prediction,
the NBDV derivation uses the neighboring disparity information for estimating the
disparity vector in different views.

[0104] In NBDYV derivation, there are several possible spatial and temporal neighboring
blocks, and pre-defined spatial and neighboring blocks are evaluated as part of the

WO 2014/134170 PCT/US2014/018679

28

NBDYV derivation techniques. The video coder checks (e.g., evaluates) each of the
neighboring blocks in a pre-defined order determined by the priority of the correlation
between the current block and the candidate block (i.c., the neighboring block being
checked). Once the video coder determines that a candidate (i.e., in one of the
neighboring blocks) is inter-predicted with a disparity motion vector (i.c., inter-view
predicted), the video coder converts the disparity motion vector of the neighboring
block to a disparity vector for the current block.

[0105] As described in more detail below, there may be certain limitations to which
neighboring blocks are evaluated. As one example, video encoder 20 and video decoder
30 may evaluate (e.g., check) neighboring blocks with motion vectors that refer to a first
reference picture list (e.g., a disparity motion vector that refers to an inter-view
reference picture identified in the first reference picture list) and may avoid evaluating
(e.g., not evaluate or not check) neighboring blocks with motion vectors that refer to a
second reference picture list (e.g., a disparity motion vector that refers to an inter-view
reference picture identified in the second reference picture list).

[0106] For example, if a reference picture list index for a neighboring block is equal to
0 (identifying RefPicList0), then video encoder 20 and video decoder 30 may evaluate
the motion information for purposes of determining whether a motion vector for the
neighboring block is a disparity motion vector that can be used to derive the disparity
vector for the current macroblock. If a reference picture list index for a neighboring
block is equal to 1 (identifying RefPicList1), then video encoder 20 and video decoder
30 may avoid evaluating (e.g., not evaluate) the motion information for purposes of
determining whether a motion vector for the neighboring block is a disparity motion
vector that can be used to derive the disparity vector for the current macroblock.
[0107] In other words, if a neighboring block has a disparity motion vector, but that
disparity motion vector refers to an inter-view reference picture in RefPicList1, video
encoder 20 and video decoder 30 may utilize this disparity motion vector for deriving
the disparity vector for the current block, and may keep evaluating additional
neighboring blocks until a neighboring block with a disparity motion vector that refers
to an inter-view reference picture is RefPicList0 is found. Video encoder 20 and video
decoder 30 may then utilize this disparity motion vector to derive the disparity vector

for the current block. In this way, the techniques may minimize the number of

WO 2014/134170 PCT/US2014/018679

29

neighboring blocks that need to be evaluated to find a disparity motion vector that can
be used to derive the disparity vector for the current block.

[0108] In some examples, the video coder utilizes two sets of neighboring blocks: one
set is from spatial neighboring blocks and the other set is from temporal neighboring
blocks. Spatial neighboring blocks are blocks in the same frame as the current
macroblock, and temporal neighboring blocks are blocks in a different frame. In some
examples, temporal neighboring blocks are required by in the same view as the current
macroblock (i.e., the frame that includes the temporal neighboring block and the frame
that includes the current macroblock are in the same view).

[0109] As described in more detail, a picture that includes a temporal neighboring block
is referred to as a temporal picture. In some examples, there may be a limit to the
number of temporal pictures that video encoder 20 and video decoder 30 select to
identify temporal neighboring blocks. As one example, there may be two temporal
pictures, and video encoder 20 and video decoder 30 may select a picture located in the
first entry (entry 0) of a first reference picture list (RefPicList0) as one of the temporal
pictures, and select a picture located in the first entry (entry 0) of a second reference
picture list (RefPicListl) as the other temporal picture. Video encoder 20 and video
decoder 30 may evaluate blocks within these selected temporal pictures. As one
example, video encoder 20 and video decoder 30 may evaluate the bottom-right block,
where the bottom-right block is a block located at a position bottom and to right of the
current macroblock in the selected temporal pictures.

[0110] With respect to the spatial neighboring blocks, there may be certain limitations.
For example, video encoder 20 and video decoder 30 may evaluate motion information
of up to a maximum of four spatial neighboring blocks. These four spatial neighboring
blocks include a block located left of the current macroblock, a block located above the
current macroblock, a block located above-left of the current macroblock, and a block
located above-right of the current macroblock.

[0111] As described in this disclosure, for motion prediction, video encoder 20 and
video decoder 30 may evaluate the left block, above block, above-right block and
above-left block of the current block, where the motion vector in above-left block is
used only when one of the other three neighboring block does not contain a motion
vector. Accordingly, in some examples, three of the four spatial neighboring blocks that

video encoder 20 and video decoder 30 evaluate for purposes of deriving the disparity

WO 2014/134170 PCT/US2014/018679

30

vector may be the same neighboring blocks used for motion prediction in the
H.264/AVC video coding standard.

[0112] The following provides additional details with respect to NBDV derivation in
3D-HEVC. 3D-HEVC firstly adopted the NBDV method proposed in JCT3V-A0097,
the entire content of which is incorporated herein by reference. Implicit disparity
vectors were included with a simplified NBDV in JCTVC-A0126, the entire content of
which is incorporated herein by reference. In addition, in JCT3V-B0047, the entire
content of which is incorporated herein by reference, the NBDV is further simplified by
removing the implicit disparity vectors stored in the decoded picture buffer, but also
improved a coding gain with the random access point (RAP) picture selection.

[0113] JCT3V-A0097: 3D-CES5.h: Disparity vector generation results, L. Zhang, Y.
Chen, M. Karczewicz, can be found, as of February 25, 2014, from http://phenix.int-
evry.fr/jct3v/doc_end user/current document.php?id=89. JCT3V-A0126: 3D-CES5.h:
Simplification of disparity vector derivation for HEVC-based 3D video coding, Jacwon
Sung, Moonmo Koo, Sehoon Yea (LG) , can be found, as of February 25, 2014, from
http://phenix.int-evry.fr/jct2/doc_end_user/current document.php?id=142. JCT3V-
B0047: 3D-CES5.h related: Improvements for disparity vector derivation, J. Kang, Y.
Chen, L. Zhang, M. Karczewicz, can be found, as of February 25, 2014, from
http://phenix.it-sudparis.eu/jct2/doc_end user/current document.php?id=236.

[0114] In one proposal for the NBDV derivation process for 3D-HEVC, five spatial
neighboring blocks are used for the disparity vector derivation: below-left, left, above-
right, above and above-left blocks of current prediction unit (PU), as denoted by AO,
Al, B0, B1 or B2. It should be noted that these blocks are the same as those used in the
MERGE modes in HEVC; therefore, no additional memory access is required.

[0115] For checking temporal neighboring blocks, the video coder may first perform a
construction process of a candidate picture list. In this example, all the reference
pictures from current view may be treated as candidate pictures. The video coder may
first insert a co-located reference picture to the candidate picture list, followed by the
rest of candidate pictures in the ascending order of reference index. When the reference
pictures with the same reference index in both reference picture lists are available, the
one in the same reference picture list of the co-located picture precedes the other one. In
some examples, for each candidate picture in the candidate picture list, three candidate

regions are determined for deriving the temporal neighboring blocks.

WO 2014/134170 PCT/US2014/018679

31

[0116] When a block is coded with inter-view motion prediction, a disparity vector may
need to be derived for selecting a corresponding block in a different view. An implicit
disparity vector (IDV or derived disparity vector) refers to the disparity vector derived
in the inter-view motion prediction of a neighboring block. Even though the
neighboring block is coded with motion prediction, the derived disparity vector is not
discarded for the purpose of coding a following block. For instance, the derived
disparity vector of a neighboring block (i.e., implicit disparity vector) may be used as
the disparity vector for the current block.

[0117] Typically, the NBDV derivation process checks disparity motion vectors in the
temporal neighboring blocks, disparity motion vectors in the spatial neighboring blocks,
and then the implicit disparity vector in order; however, other orders are possible.
Once, the disparity motion vector or implicit disparity vector is found, the video coder
terminates the process, and uses the disparity motion vector or implicit disparity vector
as the disparity vector for the current block.

[0118] In addition, there is also the concept of a depth oriented neighboring block
disparity vector (DoNBDV). To derive a DONBDV, the NBDV derivation process is
used for retrieving a depth data of reference views, so that the corresponding depth data
is used to derive a disparity vector. It should be noted that the depth data here is from
the depth view component of the reference view, and not that of the texture view
component that includes the current block. Accordingly, texture-first coding is still
possible with DONBDV derivation. The joint optimization of the NBDV and the depth
data may enhance the accuracy of the disparity vector as compared to the disparity
vector solely derived from the NBDV derivation process. In addition, the result of
NBDYV or DoNBDYV derivation may be used to other coding tools, such as inter-view
motion prediction and inter-view residual prediction. DoNBDVderivation is described
in JCT3V-C0131: 3D-CE1.h: Depth Oriented neighboring block disparity vector with
virtual depth retrieval, Y.L.Chang et al., MediaTek, which as of February 25, 2014, is
available from http://phenix.int-

evry.fr/jct3v/doc_end user/current document.php?id=572, the entire content of which
is incorporated herein by reference.

[0119] Video encoder 20 and video decoder 30 may be configured to implement the
techniques described in this disclosure. For example, video encoder 20 and video

decoder 30 may be configured to implement techniques that enable efficient coding of

WO 2014/134170 PCT/US2014/018679

32

3D-AVC by allowing the texture to be coded first for each view component. Video
encoder 20 and video decoder 30 may derive the disparity vector using example NBDV
derivation techniques of this disclosure that consider more than one available disparity
motion vector from the spatial/temporal neighboring blocks of the current block when
the corresponding depth data is not available (or not yet available) in 3D-AVC due to
the texture-first coding order.

[0120] As one example, video decoder 30 may receive a coded bitstream in a 3D-AVC
compliant video coding process generated with texture-first coding of dependent views.
In this example, the 3D-AVC compliant video coding process refers to a video coding
process that uses video coding tools defined in the 3D-AVC video coding standard. The
texture-first coding of dependent views refers to the case where the texture view
components are coded prior to the corresponding depth view components (i.e., TO, DO,
T1, DI, and so forth).

[0121] Video decoder 30 may decode a texture view component of a dependent view of
the dependent views in the 3D-AVC compliant video coding process. In this example,
to decode the texture view component, video decoder 30 may be configured to evaluate
motion information of one or more neighboring blocks of a current block in the texture
view component to determine whether at least one neighboring block is inter-view
predicted with a disparity motion vector that refers to an inter-view reference picture in
a view other than the dependent view. Also, to decode the texture view component,
video decoder 30 may be configured to derive a disparity vector for the current block
based on the disparity motion vector for one of the neighboring blocks. Video decoder
30 may decode a depth view component that corresponds to the texture view component
subsequent to decoding the texture view component.

[0122] As another example, video encoder 20 may encode a texture view component of
a dependent view in a 3D-AVC compliant video coding process. In this example, to
encode the texture view component, video encoder 20 may be configured to evaluate
motion information of one or more neighboring blocks of a current block in the texture
view component to determine whether at least one neighboring block is inter-view
predicted with a disparity motion vector that refers to an inter-view reference picture in
a view other than the dependent view. Also, to encode the texture view component,
video encoder 20 may be configured to derive a disparity vector for the current block

based on the disparity motion vector for one of the neighboring blocks.

WO 2014/134170 PCT/US2014/018679

33

[0123] Video encoder 20 may encode a depth view component that corresponds to the
texture view component subsequent to encoding the texture view component. Video
encoder 20 may also generate for output a coded bitstream with texture-first coding of
dependent views that includes the encoded texture view component and the encoded
depth view component.

[0124] As discussed in further detail below, the techniques applying the NBDV
derivation process to 3D-AVC may include features related to NBDV derivation in 3D-
AVC and/or Motion vector prediction with NBDV derivation. The following describes
examples for NBDV derivation for 3D-AVC, followed by description of example ways
in which the disparity vector may be used, such as in inter-view motion prediction.
[0125] For ease of description, the techniques are described with respect to a video
coder. Examples of the video coder include video encoder 20 and video decoder 30. In
the following description, the term “code” may be used to describe encode or decode, as
applicable. For instance, the term code refers to encode when performed by video
encoder 20 and decode when performed by video decoder 30. Similarly, the term
“coding” may refer to encoding when performed by video encoder 20 and decoding
when performed by video decoder 30.

[0126] For example, in the techniques described in this disclosure, a device for coding
video data for 3D-AVC includes a video coder, the video coder comprising one or more
processors and may be configured to implement the techniques described in this
disclosure. For instance, the video coder may code a texture view component of a
dependent view in a 3D-AVC compliant video coding process. To code the texture
view component, the video coder is configured to evaluate motion information of one or
more neighboring blocks of a current block in the texture view component to determine
whether at least one neighboring block is inter-view predicted with a disparity motion
vector that refers to an inter-view reference picture in a view other than the dependent
view, and derive a disparity vector for the current block based on the disparity motion
vector for one of the neighboring blocks. The video coder is also configured to code a
depth view component that corresponds to the texture view component subsequent to
coding the texture view component.

[0127] In general, the video coder checks previously coded motion information of
neighboring block positions to determine disparity motion vectors for the texture view

components, and used for the current block being coded as the disparity vector. In

WO 2014/134170 PCT/US2014/018679

34

addition, in some examples, the video coder may consider a motion vector as a disparity
motion vector if the current block is related to other modes such as view synthesis
related modes. As described above, the video coder checks pre-defined temporal and
spatial neighboring block in order. In some examples, once the video coder identifies a
disparity motion vector, the video coder derives the disparity vector for the current
block based on the disparity motion vector for the neighboring block (i.e., the disparity
motion vector becomes the disparity vector). After identifying a disparity motion vector
and using the disparity motion vector derive the disparity vector, the video coder
terminates the NBDV derivation process.

[0128] The NBDYV derivation process used by a 3D-AVC-compliant coder may include
one or more of several features adaptively designed with the coding situations of 3D-
AVC. For example, as described above, a macroblock (MB) can be partitioned into
sub-blocks and the sub-blocks may be further divided to a 4x4 block level. In some
examples, the video coder may derive a disparity vector once for the macroblock (e.g.,
the NBDV process is performed once), and assigns this derived disparity vector to all of
the blocks (i.e., sub-blocks or 4x4 block) within the macroblock. In some examples, the
video coder may derive the disparity vector for each individual MB partition-level, a
sub-MB partition-level, or even in a 4x4 block level (i.e., the NBDV process can be
invoked in an individual MB partition-level, a sub-MB partition-level, or even in a 4x4
block level).

[0129] In other words, a video coder may derive a disparity vector for a current block.
In some examples, the current block may be a macroblock of the texture view
component. In these examples, the video coder may assign the derived disparity vector
to each block within the macroblock. In some examples, the current block may be a
block within a macroblock that includes a plurality of blocks. In these examples, the
video coder may derive a disparity vector for each of the plurality of blocks within the
macroblock.

[0130] In some examples, when checking the motion information for each neighboring
block to identify a disparity motion vector, the video coder may check only the motion
vector corresponding to a reference picture list (e.g., RefPicList0). In these examples,
the video coder may not check the motion vector corresponding to the other reference

picture list (e.g., RefPicListl).

WO 2014/134170 PCT/US2014/018679

35

[0131] For instance, as part of video coding, the video coder constructs one or two
reference picture lists, referred to as RefPicList0 and RefPicListl. Video encoder 20
and video decoder 30 each utilize the same process to construct the reference picture list
or lists. The reference picture lists identify reference pictures that can be used for inter-
prediction. A reference index into the reference picture list identifies the reference
picture that is to be used for inter-prediction. For bi-predicted frames or slices (i.e., B-
frame or B-slice), the video coder constructs both reference picture lists, and for uni-
directionally predicted frames or slices (i.c., P-frames or P-slices), the video coder
constructs only one reference picture list (e.g., RefPicList0).

[0132] A neighboring block may include two motion vectors, each referring to one of
the reference picture lists. In these examples, the video coder may only determine if the
motion vector that refers to RefPicList0 is a disparity motion vector, and not if the
motion vector that refers to RefPicList] is a disparity motion vector, or vice-versa. In
other words, to evaluate (e.g., check) motion information, the video coder may evaluate
motion information of only the one or more neighboring blocks with motion vectors that
refer to a first reference picture list of two reference picture lists to determine whether at
least one neighboring block is inter-view predicted with the disparity motion vector, and
avoid the evaluation of motion information of the one or more neighboring blocks with
motion vectors that refer to a second reference picture list of the two reference picture
lists to determine whether at least one neighboring block is inter-view predicted with the
disparity motion vector.

[0133] As described above, the video coder may evaluate motion information of
neighboring blocks, where neighboring blocks include spatial neighboring blocks and
temporal neighboring blocks. Spatial neighboring blocks are blocks in the same frame
or picture as the block being coded, and temporal neighboring blocks are in temporal
pictures, where temporal pictures are pictures in the same view as the picture that
includes the block being coded.

[0134] There may be vast possibilities of temporal pictures whose blocks can
potentially be temporal neighboring blocks. However, to minimize the number of
temporal pictures that need to evaluated for deriving the disparity vector, the video
coder may implement one or more of the following example techniques for determining

the temporal pictures used for deriving the deriving the disparity vector.

WO 2014/134170 PCT/US2014/018679

36

[0135] Typically, the video coder may choose up to two temporal pictures for checking
disparity motion vectors in temporal neighboring blocks. The temporal neighboring
blocks may be co-located (e.g., collocated) blocks. A co-located block encompasses the
same area in the temporal picture that the current block encompasses in the current
picture (i.e., the co-located block is located in the same position in the temporal picture
that the current block is located in the current picture). For example, the video coder
may evaluate the motion information of one or more temporal neighboring blocks in a
first temporal picture, and if none of the temporal neighboring blocks are inter-view
predicted with a disparity motion vector, the video coder may evaluate the motion
information of one or more temporal neighboring blocks in a second temporal picture.
[0136] In some examples, of the two candidate temporal pictures, one candidate
temporal picture is the picture with index 0 (e.g., entry 0) from RefPicList0, and the
other candidate temporal picture is the picture with index 0 (e.g., entry 0) in
RefPicListl. If the picture type is a P picture (i.e., RefPicList 1 is not available), the
video coder may only use the picture with index 0 from RefPicList0. In other words, as
part of the coding of the texture view component, the video coder may select a first
temporal picture, where the first temporal picture is a picture identified at a first entry
(c.g., index 0) of a first reference picture list (e.g., RefPicList0). The video coder may
also select a second temporal picture, where the second temporal picture is a picture
identified at a first entry (e.g., index 0) of a second reference picture list (e.g.,
RefPicListl).

[0137] The temporal neighboring block that the video coder may evaluate may be a
block within one of the two candidate temporal pictures. For instance, in these
examples, the video coder may evaluate the motion information of at least one temporal
neighboring block in at least one of the first selected temporal picture or the second
selected temporal picture.

[0138] Alternatively, the video coder may derive the two temporal pictures with an
algorithmic process considering the anchor picture, the temporal ID, and the POC
difference with the current picture. The temporal ID is a temporal identification value,
where pictures with higher temporal ID values cannot be used to inter-predict pictures
with lower temporal ID values, but pictures with lower temporal ID values can be used
to inter-predict pictures with higher temporal ID values. For example, the video coder

may select the anchor picture identified in one of the reference picture lists as the

WO 2014/134170 PCT/US2014/018679

37

temporal picture, if available. If not available, the video coder may select the picture in
the reference picture list with the smallest temporal ID value, and if multiple pictures
have the same smallest temporal ID value, the video coder may select the reference
picture with the least distance to the current picture based on the POC values (i.e., the
picture with the smallest difference is considered to be the temporal picture).

[0139] In some examples, if the picture type is a P picture, the video coder may return
only one picture from RefPicList0. In some examples, rather than determining the
temporal pictures used to derive the disparity vector, video encoder 20 may signal
information indicative of the two temporal pictures used to derive the disparity vector
and video decoder may receive the signaled information and determine the two temporal
pictures used to derive the disparity vector based on the signaled information. For
example, the video encoder 20 may signal and video decoder 30 may receive the
information indicative of the two temporal pictures used to derive the disparity vector as
part of the slice header.

[0140] Although the above examples describe the video coder determining up to two
temporal pictures, the techniques are not so limited. For instance, the video coder may
use only one picture as a temporal picture. As one example, only the pictures that are
anchor pictures can be temporal pictures. As another example, only the pictures that are
anchor pictures can be temporal pictures.

[0141] In some examples, only the pictures that with temporal level equal to 0 (i.e.,
temporal ID value of 0) can be temporal pictures. In these examples, it may be possible
for there to be one, two, or more than two temporal pictures.

[0142] As part of the NBDV derivation techniques, once the video coder selects the
temporal picture or pictures, the video coder may evaluate the motion information for
one or more temporal blocks within the temporal picture or pictures. The temporal
blocks may refer to any block position inside or outside the temporally collocated MB.
The positions and order of the temporal blocks that the video coder evaluates may be
pre-defined.

[0143] As one example, video coder may evaluate the motion information of the center
block inside the co-located MB, and if the center block is not inter-view predicted, may
evaluate the motion information of the bottom-right corner block inside the co-located
MB, or vice-versa. As another example, the video coder may evaluate the motion

information of the center block inside the co-located MB, and if the center block is not

WO 2014/134170 PCT/US2014/018679

38

inter-view predicted, may evaluate the motion information of the bottom-left corner
block inside the MB, or vice-versa. As yet another example, the video coder may
evaluate the motion information of the bottom-right corner block inside the co-located
MB, and if the bottom-right corner block is not inter-view predicted, may evaluate the
motion information of the bottom-left corner block inside the MB, or vice-versa. As
more examples, the video coder may evaluate the motion information of the center
block inside the co-located MB, and if the center block is not inter-view predicted, may
evaluate the motion information of the bottom-right block outside the MB, or vice-
versa.

[0144] In some examples, the video coder may evaluate the motion information of the
center block inside the co-located MB, and if the center block is not inter-view
predicted, may evaluate the motion information of the bottom-left corner block inside
the MB, and if the bottom-left corner block inside the MB is not inter-view predicted,
may evaluate the motion information of the bottom-right block outside the MB, or any
permutation. However, if the bottom-right block position is outside the MB is not
available (e.g., out of the picture boundary), the video coder may evaluate the motion
information of blocks in the four corner positions. For example, the video coder may
evaluate the motion information of the bottom-right corner position for disparity vector
derivation.

[0145] In some examples, the video coder may evaluate the motion information of the
center block inside the co-located MB, and if the center block is not inter-view
predicted, may evaluate the motion information of the bottom-right block outside the
MB, and if the bottom-right block outside the MB is not inter-view predicted, may
evaluate the motion information of the four corner blocks of the temporally co-located
MB, or any permutation. In general, any selected block positions from the
inside/outside collocated MB can be considered (e.g. the center and the bottom right
block only).

[0146] Rather than evaluating a plurality of blocks in the temporal picture, in some
examples, the video coder may evaluate the motion information of only one temporal
block (e.g., only the bottom-right block). For example, the video coder may evaluate
motion information for only one block (e.g., the bottom-right block) in at least one of

the candidate temporal pictures (e.g., at least one of a first selected temporal picture or a

WO 2014/134170 PCT/US2014/018679

39

second selected temporal picture, where the first selected temporal picture is entry 0 in
RefPicList0 and the second selected temporal picture is entry 0 in RefPicListl).

[0147] In some examples, only the horizontal component of a motion vector in the
temporal picture is accessed. In these examples, the vertical component may not need
to be stored or accessed. In some examples, one component of a motion vector in the
temporal picture is clipped to a range of [-128, 127]. In these examples, the video coder
may need to store only one byte for a motion vector (i.c., 8 bits can be used to represent
256 values ranging from -128 to 127).

[0148] In some examples, only one flag is stored to replace reference index to indicate
whether the block contains disparity motion vector or temporal motion vector. In this
case, the NBDV derivation process implemented by the video coder may always
returns a disparity vector to one reference view.

[0149] The above described examples of determining the temporal picture or pictures
and determining which temporal blocks within the determined temporal picture or
pictures the video coder evaluates for deriving the disparity vector for the current block.
The following describes examples of the video coder accessing spatial neighboring
blocks for deriving the disparity vector for the current block.

[0150] In some examples, the spatial blocks may refer any block positions that are
previously coded in the same picture. The video coder may evaluate the motion
information for these spatial blocks and if the motion vector of the spatial block
indicates that the spatial block is inter-view predicted, the video coder may utilize the
disparity motion vector of the spatial block for deriving the disparity vector.

[0151] In some examples, the spatial blocks include up to a maximum of four spatial
neighboring blocks such as the neighboring blocks in the left, the above, the above-left,
and the above-right positions of the current block being coded. In these examples, three
of the four neighboring blocks are the same as the neighboring blocks used in motion
prediction in the H.264/AVC video coding standard. In some examples, the video coder
may consider the above-left position only if the above-right position is not available
(e.g., out of the picture boundary).

[0152] As described above, the video coder may evaluate motion information
neighboring blocks in a pre-defined order and when the video coder identifies a
disparity motion vector for a neighboring block (that in some examples is required to

refer to a RefPicList0), the video coder may use the disparity motion vector to derive

WO 2014/134170 PCT/US2014/018679

40

the disparity vector (i.e., convert the disparity motion vector to the disparity vector) and
terminate the NBDV derivation process even if there are other neighboring blocks
whose motion information has not yet been evaluated. However, the techniques
described in this disclosure are not so limited.

[0153] As one example, once the video coder identifies a disparity motion vector with
its horizontal component unequal to 0, the video coder may convert the disparity motion
vector to the disparity vector and terminate the NBDV derivation process at that
juncture, and not after the first identified disparity motion vector. As another example,
once the video coder identifies a non-zero disparity motion vector, the video coder may
convert the disparity motion vector to the disparity vector and terminate the NBDV
derivation process at that juncture, and not after the first identified disparity motion
vector.

[0154] In some examples, furthermore, when no disparity motion vector is identified
within spatial/temporal neighboring blocks, the video coder uses a zero disparity vector.
In other words, the video coder may set the disparity vector for the current block equal
to zero if none of the one or more neighboring blocks is inter-view predicted.

[0155] In some examples, there may be certain restrictions on the disparity vector
derived using NBDV derivation techniques for 3D-AVC. As one example, the video
coder may set the vertical component of the derived disparity vector to be the same as
the vertical component of the disparity motion vector so that the vertical component of
the disparity vector is not set to 0. In one example, the video coder may always set the
vertical component of the disparity vector equal to 0 at the end of the derivation process.
For instance, the video coder may set a horizontal component of the disparity vector
equal to a horizontal component of the disparity motion vector, and set a vertical
component of the disparity vector equal to zero.

[0156] In another example, the video coder may or may not set the vertical component
of the disparity vector equal to 0, depending on a coding mode using the disparity
vector. For example, in inter-view motion prediction, the video coder may convert the
disparity vector yielded by the NBDV derivation process into a disparity motion vector
as a disparity motion vector predictor. The converted disparity motion vector may have
a zero vertical component due to the “inter-view motion prediction mode” no matter
what the vertical component of the disparity motion vector was. However, it may be

possible that the disparity motion vector is unchanged. The same situation can be

WO 2014/134170 PCT/US2014/018679

41

applied to temporal motion prediction and P-skip/B-direct mode when NBDV
derivation is used.

[0157] As described above, the video coder may utilize the derived disparity vector for
purposes of motion vector prediction as one example of one or more coding tools that
the video coder may implement utilizing the derived motion vector without using the
depth view component for deriving the disparity vector. The following describes
motion vector prediction with NBDV derivation.

[0158] In the texture-first coding order, the NBDV derivation process is employed to be
the disparity vector in the motion vector prediction process and used to identify a
reference block of the reference view or used to be converted to a disparity motion
vector of the current coding block. As examples, the following cases are described.
[0159] The video coder (e.g., video encoder 20 and video decoder 30) may utilize D-
MVP (Depth based motion vector prediction) derivation for normal inter-prediction
modes. However, rather than relying on depth, the techniques utilize NBDV derivation
for motion vector prediction. Normal inter-prediction modes refer to inter-prediction
modes where the coded bitstream includes information from which a motion vector is
derived and includes residual data, where the residual data is the difference between the
block referred to by the motion vector and the actual current block.

[0160] In a first example technique for motion vector prediction in normal inter-
prediction modes, during the motion vector prediction process, the video coder may
determine whether the reference picture used to inter-predict the current block is an
inter-view reference picture. As one example, video encoder 20 may signal in the coded
bitstream the reference index into a reference picture list that was used for inter-
prediction encoding the current block, and video decoder 30 may identify the reference
picture used for inter-prediction decoding of the current block. Video decoder 30 may
then determine whether the identified reference picture is an inter-view reference picture
or a temporal reference picture based on the POC value and/or view_id value of the
reference picture. Video encoder 20 selected the reference picture used for inter-
prediction, and therefore, video encoder 20 may determine whether the selected
reference picture is an inter-view reference picture or a temporal reference picture.
[0161] In other words, the video coder may determine whether a reference index for the
current block corresponds to an inter-view reference picture. In this sense, the reference

picture that is to be used for inter-prediction may be known, but the motion vector that

WO 2014/134170 PCT/US2014/018679

42

refers to be reference picture may be unknown and may be predicted using motion
vector prediction techniques.

[0162] If the reference picture is an inter-view reference picture, the video coder may
determine whether a neighboring block that is used for motion vector prediction is not
inter-view predicted. As described above, in motion vector prediction, the video coder
utilizes the motion vector for left block, above block, above-right block, and above-left
block only if a motion vector for one of the other blocks is unavailable. In this
disclosure, the left block, above block, above-right block, and above-left block only if a
motion vector for one of the other blocks is unavailable are examples of neighboring
blocks that are used for motion vector prediction.

[0163] In this example technique, if the reference index for the current block
corresponds to an inter-view reference picture and a neighboring block that is used for
motion vector prediction is not inter-view predicted (i.¢., not predicted with a disparity
motion vector that refers to an inter-view reference picture), the video coder may assign
the derived disparity vector, using the NBDV derivation techniques described above, as
a disparity motion vector to the neighboring block that is used for motion vector
prediction and is not inter-view predicted. As an example, assume that the left block is
not inter-view predicted, and therefore, there is no disparity motion vector for the left
block. However, the current block is inter-view predicted as indicated by the reference
index corresponding to an inter-view reference picture.

[0164] In this example, the video coder considers the derived disparity vector for the
current block as if it is a disparity motion vector for the left block for purposes of
motion vector prediction. It should be understood that the derived disparity motion
vector for the current block, now assigned to as a disparity motion vector for the left
block, is not used to inter-predict the left block. Rather, the derived disparity vector
replaces or substitutes as a disparity motion vector of the left block, if the left block is
not inter-view predicted, for purposes of motion vector prediction for the current block.
[0165] Afterwards, the median filter is applied to the motion vectors of the neighboring
blocks to derive the motion vector predictor. For example, the video coder constructs a
candidate list of motion vectors, where the candidate list includes disparity motion
vectors in this case because the current block is inter-view predicted (e.g., three
disparity motion vectors). If one of neighboring blocks used for motion vector

prediction is not inter-view predicted, the video coder substitutes the derived disparity

WO 2014/134170 PCT/US2014/018679

43

vector as the candidate motion vector into the list of three disparity motion vectors. The
video coder determines a motion vector predictor for the current block utilizing median
filtering, where the median filtering utilizes the derived disparity vector for the current
block that is assigned as the disparity motion vector to the neighboring block that is
used for motion vector prediction as one of the motion vectors that is filtered.

[0166] The video coder then inter-prediction codes (decodes for video decoder 30 or
encodes for video encoder 20) the current block based on the motion vector predictor.
For instance, the video coder determines a motion vector difference (MVD) (e.g., video
encoder 20 signals the MVD and video decoder 30 receives the MVD), the video coder
then adds the MVD to the motion vector predictor to determine the motion vector for
the current block (e.g., the disparity motion vector for the current block in this
example). The video coder then inter-prediction codes the current block with the
determined motion vector that refers to the reference picture identified by the reference
index for the current block.

[0167] In a second example technique for motion vector prediction, the video coder
may determine whether the current block is inter-view predicted (e.g., determine
whether a reference index into a reference picture list for the current block corresponds
to an inter-view reference picture). In this example, if the reference index for the
current block corresponds to the inter-view reference picture, the video coder may
utilize the derived disparity vector for the current block as the motion vector predictor
for the current. In this example, the video coder may not utilize median filtering to
determine the motion vector predictor, but instead, directly converts the derived
disparity vector to a disparity motion vector to predict the current motion vector (i.c.,
the motion vector for the current block). The video coder may inter-prediction code the
current block based on the motion vector predictor as described above.

[0168] The above examples for motion vector prediction were based on the case where
the current block is inter-view predicted. The following describes one example
technique for motion vector prediction using the derived disparity vector when the
current block is not inter-view predicted, but is predicted with a temporal reference
picture.

[0169] The video coder may determine whether the current block is predicted with a
temporal reference picture based on the reference picture that corresponds to the

reference index into the reference picture list. In some examples, it may be possible that

WO 2014/134170 PCT/US2014/018679

44

a neighboring block that is used for motion vector prediction is not inter-predicted with
a temporal motion vector.

[0170] In this case, the video coder may utilize the disparity vector derived using
NBDYV derivation techniques for the current block to located a reference block in a
reference view (i.c., located the block referred to by the disparity vector). If the block
referred to by the disparity vector has an available temporal motion vector, the video
coder may assign this temporal motion vector as the motion vector for neighboring
block used for motion vector prediction that is not inter-predicted with a temporal
motion vector. In other words, the video coder substitutes the temporal motion vector
for the block referred to by the disparity vector as the temporal motion vector for the
neighboring block for purposes of motion vector prediction. The video coder then uses
median filtering to determine the motion vector predictor similar to above.

[0171] In general, for motion vector prediction, the candidate motion vectors that are
used to determine a motion vector predictor may need to be the same type of motion
vector as the motion vector that will be used for the current block. For instance, if the
current block is inter-view predicted as determined from the reference index, the motion
vector for the current block is a disparity motion vector. In some examples, the
candidate motion vectors that are used to determine motion vector predictor for the
current block should also be disparity motion vectors. In this case, the disparity vector
is substituted as a disparity motion vector for a neighboring block that is not inter-view
predicted or is directly used as the motion vector predictor. If the current block is inter-
predicted with a reference picture in same view as determined from the reference index,
the motion vector for the current block is a temporal motion vector. In some examples,
the candidate motion vectors that are used to determine motion vector predictor for the
current block should also be temporal motion vectors. In this case, the disparity vector
is used to identify a block, and the temporal motion vector for this identified block is
substituted as the temporal motion vector for a neighboring block that is not inter-view
predicted.

[0172] The above described examples with respect to motion vector prediction with
respect to normal inter-prediction modes. The following describes example techniques
for motion vector prediction with respect to skip and direct modes using NBDV.

[0173] Skip mode and direct mode refer to inter-prediction modes in which no residual

or motion vectors are included in the coded bitstream for decoding the current block. In

WO 2014/134170 PCT/US2014/018679

45

contrast, in normal inter-prediction modes, video encoder 20 signals information from
which the motion vector is derived or signals information identifying the motion vector.
In addition, in normal inter-prediction modes, video encoder 20 signals a residual
between the block identified by the motion vector and the actual current block. Skip
mode is generally associated with uni-directionally predicted pictures or slices (e.g., P-
frame or —slice) and direct mode is generally associated with bi-predicted pictures or
slices (e.g., B-frame or —slice). For purposes of brevity, inter-view motion vector
prediction for skip and direct modes using NBDV derivation process are described
together.

[0174] In one example, the video coder may utilize the disparity vector derived from the
NBDYV derivation techniques for the current block, together with the disparity motion
vectors of the neighboring block to determine a disparity vector that is used for inter-
view motion prediction for skip and direct modes. The disparity vector derived from the
NBDYV derivation techniques and the disparity vector that is used for inter-view motion
prediction for skip and direct modes may be different or may be the same. The video
coder utilizes the disparity vector that is used for inter-view motion prediction to
identify a block in a reference view, and determines the motion vector for the identified
block. The video coder converts the motion vector for the identified block into the
motion vector for the current block as in the current 3D-AVC.

[0175] In some examples, if there is not a disparity motion vector for a neighboring
block, then the video coder may substitute the disparity vector derived for the current
block from the NBDV derivation techniques as the disparity motion vector for the
neighboring block, instead of the disparity vector of the neighboring block. In this
manner, the neighboring blocks of the current block may practically have the same
disparity vector as the current block when used for the prediction of the final disparity
vector used for inter-view motion prediction.

[0176] The above examples described one way to utilize the disparity vector for inter-
view motion prediction for skip and direct modes using NBDV derivation techniques.
However, aspects of this disclosure are not so limited. As one example, the video coder
may directly use the disparity vector derived from NBDV derivation techniques for
inter-view motion prediction for skip and direct modes. As another example, if the
derived disparity vector is available, it is directly used for inter-view motion prediction;

otherwise, median filtering is used as described above.

WO 2014/134170 PCT/US2014/018679

46

[0177] FIG. 2 is a block diagram illustrating an example of a video encoder that may
implement the techniques described in this disclosure. For example, FIG. 2 illustrates
video encoder 20 which may perform intra- and inter-coding of video blocks within
video slices. For example, video encoder 20 may perform inter-prediction encoding or
intra-prediction encoding. Intra-coding relies on spatial prediction to reduce or remove
spatial redundancy in video within a given video frame or picture. Inter-coding relies
on temporal prediction or inter-view prediction to reduce or remove temporal
redundancy within adjacent frames or pictures of a video sequence or redundancy
between pictures in different views. Intra-mode (I mode) may refer to any of several
spatial based compression modes. Inter-modes, such as uni-directional prediction (P
mode) or bi-prediction (B mode), may refer to any of several temporal-based
compression modes.

[0178] In the example of FIG. 2, video encoder 20 includes video data memory 40,
prediction processing unit 42, reference picture memory 64, summer 50, transform
processing unit 52, quantization processing unit 54, and entropy encoding unit 56.
Prediction processing unit 42 includes motion estimation unit 44, motion compensation
unit 46, and intra-prediction unit 48. For video block reconstruction, video encoder 20
also includes inverse quantization processing unit 58, inverse transform processing unit
60, and summer 62. A deblocking filter (not shown in FIG. 2) may also be included to
filter block boundaries to remove blockiness artifacts from reconstructed video. If
desired, the deblocking filter would typically filter the output of summer 62. Additional
loop filters (in loop or post loop) may also be used in addition to the deblocking filter.
[0179] Video data memory 40 may store video data to be encoded by the components of
video encoder 20 (e.g., configured to store video data). The video data stored in video
data memory 40 may be obtained, for example, from video source 18. Reference
picture memory 64 is one example of a decoding picture buffer (DPB that stores
reference video data for use in encoding video data by video encoder 20 (e.g., in intra-
or inter-coding modes, also referred to as intra- or inter-prediction coding

modes). Video data memory 40 and reference picture memory 64 may be formed by
any of a variety of memory devices, such as dynamic random access memory (DRAM),
including synchronous DRAM (SDRAM), magnetoresistive RAM (MRAM), resistive
RAM (RRAM), or other types of memory devices. Video data memory 40 and

reference picture memory 64 may be provided by the same memory device or separate

WO 2014/134170 PCT/US2014/018679

47

memory devices. In various examples, video data memory 40 may be on-chip with
other components of video encoder 20, or off-chip relative to those components.

[0180] Video encoder 20 receives video data, and a partitioning unit (not shown)
partitions the data into video blocks. This partitioning may also include partitioning
into slices, tiles, or other larger units, as wells as video block partitioning (e.g.,
macroblock partitions and sub-blocks of partitions). Video encoder 20 generally
illustrates the components that encode video blocks within a video slice to be encoded.
The slice may be divided into multiple video blocks (and possibly into sets of video
blocks referred to as tiles). Prediction processing unit 42 may select one of a plurality
of possible coding modes, such as one of a plurality of intra coding modes (intra-
prediction coding modes) or one of a plurality of inter coding modes (inter-prediction
coding modes), for the current video block based on error results (e.g., coding rate and
the level of distortion). Prediction processing unit 42 may provide the resulting intra- or
inter-coded block to summer 50 to generate residual block data and to summer 62 to
reconstruct the encoded block for use as a reference picture.

[0181] Intra-prediction unit 48 within prediction processing unit 42 may perform intra-
predictive coding of the current video block relative to one or more neighboring blocks
in the same frame or slice as the current block to be coded to provide spatial
compression. Motion estimation unit 44 and motion compensation unit 46 within
prediction processing unit 42 perform inter-predictive coding of the current video block
relative to one or more predictive blocks in one or more reference pictures to provide
temporal compression.

[0182] Motion estimation unit 44 may be configured to determine the inter-prediction
mode for a video slice according to a predetermined pattern for a video sequence. The
predetermined pattern may designate video slices in the sequence as P slices or B slices.
Motion estimation unit 44 and motion compensation unit 46 may be highly integrated,
but are illustrated separately for conceptual purposes. Motion estimation, performed by
motion estimation unit 44, is the process of generating motion vectors, which estimate
motion for video blocks. A motion vector, for example, may indicate the displacement
of a video block within a current video frame or picture relative to a predictive block
within a reference picture.

[0183] A predictive block is a block that is found to closely match the video block to be

coded in terms of pixel difference, which may be determined by sum of absolute

WO 2014/134170 PCT/US2014/018679

48

difference (SAD), sum of square difference (SSD), or other difference metrics. In some
examples, video encoder 20 may calculate values for sub-integer pixel positions of
reference pictures stored in reference picture memory 64. For example, video encoder
20 may interpolate values of one-quarter pixel positions, one-cighth pixel positions, or
other fractional pixel positions of the reference picture. Therefore, motion estimation
unit 44 may perform a motion search relative to the full pixel positions and fractional
pixel positions and output a motion vector with fractional pixel precision.

[0184] Motion estimation unit 44 calculates a motion vector for a video block in an
inter-coded (inter-prediction coded) slice by comparing the position of the video block
to the position of a predictive block of a reference picture. The reference picture may be
selected from a first reference picture list (RefPicList0) or a second reference picture list
(RefPicListl), each of which identify one or more reference pictures stored in reference
picture memory 64. Motion estimation unit 44 sends the calculated motion vector to
entropy encoding unit 56 and motion compensation unit 46.

[0185] Motion compensation, performed by motion compensation unit 46, may involve
fetching or generating the predictive block based on the motion vector determined by
motion estimation, possibly performing interpolations to sub-pixel precision. Upon
receiving the motion vector for the current video block, motion compensation unit 46
may locate the predictive block to which the motion vector points in one of the
reference picture lists. Video encoder 20 forms a residual video block by subtracting
pixel values of the predictive block from the pixel values of the current video block
being coded, forming pixel difference values. The pixel difference values form residual
data for the block, and may include both luma and chroma difference components.
Summer 50 represents the component or components that perform this subtraction
operation. Motion compensation unit 46 may also generate syntax elements associated
with the video blocks and the video slice for use by video decoder 30 in decoding the
video blocks of the video slice.

[0186] Intra-prediction unit 48 may intra-predict a current block, as an alternative to the
inter-prediction performed by motion estimation unit 44 and motion compensation unit
46, as described above. In particular, intra-prediction unit 48 may determine an intra-
prediction mode to use to encode a current block. In some examples, intra-prediction
unit 48 may encode a current block using various intra-prediction modes, ¢.g., during

separate encoding passes, and intra-prediction unit 48 (or a mode select unit, in some

WO 2014/134170 PCT/US2014/018679

49

examples) may select an appropriate intra-prediction mode to use from the tested
modes. For example, intra-prediction unit 48 may calculate rate-distortion values using
a rate-distortion analysis for the various tested intra-prediction modes, and select the
intra-prediction mode having the best rate-distortion characteristics among the tested
modes. Rate-distortion analysis generally determines an amount of distortion (or error)
between an encoded block and an original, unencoded block that was encoded to
produce the encoded block, as well as a bit rate (that is, a number of bits) used to
produce the encoded block. Intra-prediction unit 48 may calculate ratios from the
distortions and rates for the various encoded blocks to determine which intra-prediction
mode exhibits the best rate-distortion value for the block.

[0187] In any case, after selecting an intra-prediction mode for a block, intra-prediction
unit 48 may provide information indicative of the selected intra-prediction mode for the
block to entropy encoding unit 56. Entropy encoding unit 56 may encode the
information indicating the selected intra-prediction mode in accordance with the
techniques of this disclosure. Video encoder 20 may include in the transmitted
bitstream configuration data, which may include a plurality of intra-prediction mode
index tables and a plurality of modified intra-prediction mode index tables (also referred
to as codeword mapping tables), definitions of encoding contexts for various blocks,
and indications of a most probable intra-prediction mode, an intra-prediction mode
index table, and a modified intra-prediction mode index table to use for each of the
contexts.

[0188] After prediction processing unit 42 generates the predictive block for the current
video block via either inter-prediction or intra-prediction, video encoder 20 forms a
residual video block by subtracting the predictive block from the current video block.
The residual video data in the residual block may be applied to transform processing
unit 52. Transform processing unit 52 transforms the residual video data into residual
transform coefficients using a transform, such as a discrete cosine transform (DCT) or a
conceptually similar transform. Transform processing unit 52 may convert the residual
video data from a pixel domain to a transform domain, such as a frequency domain.
[0189] Transform processing unit 52 may send the resulting transform coefficients to
quantization processing unit 54. Quantization processing unit 54 quantizes the
transform coefficients to further reduce bit rate. The quantization process may reduce

the bit depth associated with some or all of the coefficients. The degree of quantization

WO 2014/134170 PCT/US2014/018679

50

may be modified by adjusting a quantization parameter. In some examples,
quantization processing unit 54 may then perform a scan of the matrix including the
quantized transform coefficients. Alternatively, entropy encoding unit 56 may perform
the scan.

[0190] Following quantization, entropy encoding unit 56 entropy encodes the quantized
transform coefficients. For example, entropy encoding unit 56 may perform context
adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding
(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability
interval partitioning entropy (PIPE) coding or another entropy encoding methodology or
technique. Following the entropy encoding by entropy encoding unit 56, the encoded
bitstream may be transmitted to video decoder 30, or archived for later transmission or
retrieval by video decoder 30. Entropy encoding unit 56 may also entropy encode the
motion vectors and the other syntax elements for the current video slice being coded.
[0191] Inverse quantization processing unit 58 and inverse transform processing unit 60
apply inverse quantization and inverse transformation, respectively, to reconstruct the
residual block in the pixel domain for later use as a reference block of a reference
picture. Motion compensation unit 46 may calculate a reference block by adding the
residual block to a predictive block of one of the reference pictures within one of the
reference picture lists. Motion compensation unit 46 may also apply one or more
interpolation filters to the reconstructed residual block to calculate sub-integer pixel
values for use in motion estimation. Summer 62 adds the reconstructed residual block
to the motion compensated prediction block produced by motion compensation unit 46
to produce a reference block for storage in reference picture memory 64. The reference
block may be used by motion estimation unit 44 and motion compensation unit 46 as a
reference block to inter-predict a block in a subsequent video frame or picture.

[0192] In this manner, video encoder 20 is an example of a video encoder that is
configured to implement one or more example techniques described in this disclosure.
For example, video data memory 40 stores video data. The video data may include a
texture video component of a dependent view and a depth view component that
corresponds to the texture view component, each of which video encoder 20 is to
encode in a 3D-AVC compliant video coding process.

[0193] In the techniques described in this disclosure, video encoder 20 may include one

or more processors that are configured to encode, in a 3D-AVC compliant video coding

WO 2014/134170 PCT/US2014/018679

51

process, a texture view component of a dependent view of the video data. As described
above, each view in a 3D-AVC includes a texture view component and depth view
component. There is one base view and one or more enhancement or dependent views
in 3D-AVC, where texture view components of the one or more enhancement or
dependent views may be inter-view predicted.

[0194] To encode the texture view component, video encoder 20 may be configured to
evaluate motion information of one or more neighboring blocks of a current macroblock
in the texture view component to determine whether at least one neighboring block is
inter-view predicted with a disparity motion vector that refers to an inter-view reference
picture in a view other than the dependent view. In some examples, video encoder 20
may evaluate motion information of neighboring blocks with motion vectors that refer
to a first reference picture list (RefPicList0) and avoid evaluating motion information of
neighboring blocks with motion vectors that refer to a second reference picture list
(RefPicListl).

[0195] The neighboring blocks are spatial and temporal neighboring blocks. The
temporal neighboring blocks may be in at least one of a first selected picture and a
second selected picture. The first selected picture is a picture identified in entry 0
(index 0) of the first reference picture list (RefPicList0). The second selected picture is
a picture identified in entry 0 (index 0) of the second reference picture list
(RefPicListl). There may be up to a maximum of four spatial neighboring blocks that
video encoder 20 evaluates, where three of the four spatial neighboring blocks are the
same neighboring blocks as those used in motion prediction in the H.264/AVC video
coding standard.

[0196] Video encoder 20 may derive a disparity vector for the current macroblock
based on the disparity motion vector for one of the neighboring blocks. Video encoder
20 assign the derived disparity vector for the current macroblock to blocks within the
current macroblock. For texture-first coding, video encoder 20 may encode a depth
view component, of the video data, that corresponds to the texture view component
subsequent to encoding the texture view component.

[0197] As one example, video encoder 20 may select the candidate temporal pictures,
and may evaluate a temporal block within one of these candidate temporal pictures. For
instance, video encoder 20 may select a first temporal picture, which is a picture

identified in a first entry (e.g., entry 0) of a first reference picture list (e.g., RefPicList0),

WO 2014/134170 PCT/US2014/018679

52

and select a second temporal picture, which is a picture identified in a first entry (e.g.,
entry 0) of a second reference picture list (¢.g., RefPicListl). The one or more
neighboring blocks include at least one temporal neighboring block in at least one of the
first selected temporal picture or the second selected temporal picture. In some
examples, there may be only one temporal neighboring block (e.g., the bottom-right
block).

[0198] As another example (which may be used in combination with the above example
or separately), video encoder 20 may evaluate motion information of only one or more
neighboring blocks with motion vectors that refer to a first reference picture list (e.g.,
RefPicList0) of two reference picture lists to determine whether at least one neighboring
block is inter-view predicted with the disparity motion vector. In these examples, video
encoder 20 may avoid the evaluation of motion information of the one or more
neighboring blocks with motion vectors that refer to a second reference picture list (e.g.,
RefPicList]) of the two reference picture lists to determine whether at least one
neighboring block is inter-view predicted with the disparity motion vector.

[0199] In some examples, prediction processing unit 42 of video encoder 20 may be one
example of a processor configured to implement the examples described in this
disclosure. In some examples, a unit (e.g., one or more processors) other than
prediction processing unit 42 may implement the examples described above. In some
examples, prediction processing unit 42 in conjunction with one or more other units of
video encoder 20 may implement the examples described above. In some examples, a
processor of video encoder 20 (not shown in FIG. 2) may, alone or in conjunction with
other processors of video encoder 20, implement the examples described above.

[0200] FIG. 3 is a block diagram illustrating an example of a video decoder that may
implement the techniques described in this disclosure. For example, video decoder 30
may perform inter-prediction decoding or intra-prediction decoding. FIG. 3 illustrates
video decoder 30. In the example of FIG. 3, video decoder 30 includes video data
memory 69, entropy decoding unit 70, prediction processing unit 71, inverse
quantization processing unit 76, inverse transform processing unit 78, summer 80, and
reference picture memory 82. Prediction processing unit 71 includes motion
compensation unit 72 and intra-prediction unit 74. Video decoder 30 may, in some
examples, perform a decoding pass generally reciprocal to the encoding pass described

with respect to video encoder 20 from FIG. 2.

WO 2014/134170 PCT/US2014/018679

53

[0201] Video data memory 69 may store video data (e.g., configured to store video
data), such as an encoded video bitstream, to be decoded by the components of video
decoder 30. The video data stored in video data memory 69 may be obtained, for
example, from storage device 34, from a local video source, such as a camera, via wired
or wireless network communication of video data, or by accessing physical data storage
media. Video data memory 69 may form a coded picture buffer (CPB) that stores
encoded video data from an encoded video bitstream.

[0202] Reference picture memory 82 is one example of a decoded picture buffer (DPB)
that stores reference video data for use in decoding video data by video decoder 30 (e.g.,
in intra- or inter-coding modes). Video data memory 69 and reference picture memory
82 may be formed by any of a variety of memory devices, such as dynamic random
access memory (DRAM), including synchronous DRAM (SDRAM), magnetoresistive
RAM (MRAM), resistive RAM (RRAM), or other types of memory devices. Video
data memory 69 and reference picture memory 82 may be provided by the same
memory device or separate memory devices. In various examples, video data memory
69 may be on-chip with other components of video decoder 30, or off-chip relative to
those components.

[0203] During the decoding process, video decoder 30 receives an encoded video
bitstream that represents video blocks of an encoded video slice and associated syntax
elements from video encoder 20. Entropy decoding unit 70 of video decoder 30 entropy
decodes the bitstream to generate quantized coefficients, motion vectors, and other
syntax elements. Entropy decoding unit 70 forwards the motion vectors and other
syntax elements to prediction processing unit 71. Video decoder 30 may receive the
syntax elements at the video slice level and/or the video block level.

[0204] When the video slice is coded as an intra-coded (1) slice, intra-prediction unit 74
of prediction processing unit 71 may generate prediction data for a video block of the
current video slice based on a signaled intra prediction mode and data from previously
decoded blocks of the current frame or picture. When the video frame is coded as an
inter-coded (i.e., B or P) slice, motion compensation unit 72 of prediction processing
unit 71 produces predictive blocks for a video block of the current video slice based on
the motion vectors and other syntax elements received from entropy decoding unit 70.
The predictive blocks may be produced from one of the reference pictures within one of

the reference picture lists. Video decoder 30 may construct the reference picture lists

WO 2014/134170 PCT/US2014/018679

54

(RefPicList0 and RefPicList]) using default construction techniques based on reference
pictures stored in reference picture memory 82.

[0205] Motion compensation unit 72 determines prediction information for a video
block of the current video slice by parsing the motion vectors and other syntax elements,
and uses the prediction information to produce the predictive blocks for the current
video block being decoded. For example, motion compensation unit 72 uses some of
the received syntax elements to determine a prediction mode (e.g., intra- or inter-
prediction) used to code the video blocks of the video slice, an inter-prediction slice
type (e.g., B slice or P slice), construction information for one or more of the reference
picture lists for the slice, motion vectors for each inter-encoded video block of the slice,
inter-prediction status for each inter-coded video block of the slice, and other
information to decode the video blocks in the current video slice.

[0206] Motion compensation unit 72 may also perform interpolation based on
interpolation filters. Motion compensation unit 72 may use interpolation filters as used
by video encoder 20 during encoding of the video blocks to calculate interpolated values
for sub-integer pixels of reference blocks. In this case, motion compensation unit 72
may determine the interpolation filters used by video encoder 20 from the received
syntax elements and use the interpolation filters to produce predictive blocks.

[0207] Inverse quantization processing unit 76 inverse quantizes (i.¢., de-quantizes), the
quantized transform coefficients provided in the bitstream and decoded by entropy
decoding unit 70. The inverse quantization process may include use of a quantization
parameter calculated by video encoder 20 for each video block in the video slice to
determine a degree of quantization and, likewise, a degree of inverse quantization that
should be applied. Inverse transform processing unit 78 applies an inverse transform
(e.g., an inverse DCT, an inverse integer transform, or a conceptually similar inverse
transform process), to the transform coefficients in order to produce residual blocks in
the pixel domain.

[0208] After motion compensation unit 72 generates the predictive block for the current
video block based on the motion vectors and other syntax elements, video decoder 30
forms a decoded video block by summing the residual blocks from inverse transform
processing unit 78 with the corresponding predictive blocks generated by motion
compensation unit 72. Summer 80 represents the component or components that

perform this summation operation. If desired, a deblocking filter may also be applied to

WO 2014/134170 PCT/US2014/018679

55

filter the decoded blocks in order to remove blockiness artifacts. Other loop filters
(either in the coding loop or after the coding loop) may also be used to smooth pixel
transitions, or otherwise improve the video quality. The decoded video blocks in a
given picture are then stored in reference picture memory 82, which stores reference
pictures used for subsequent motion compensation. Reference picture memory 82 also
stores decoded video for later presentation on a display device, such as display device
32 of FIG. 1.

[0209] In this manner, video decoder 30 is an example of a video decoder that is
configured to implement one or more example techniques described in this disclosure.
For example, video data memory 69 stores video data. The video data may include
information from which video decoder 30 can decode a texture video component of a
dependent view and a depth view component that corresponds to the texture view
component, each of which video encoder 20 is encoded in a 3D-AVC compliant video
coding process.

[0210] In the techniques described in this disclosure, video decoder 30 may include one
or more processors that are configured to decode, in a 3D-AVC compliant video coding
process, a texture view component of a dependent view of the video data. To decode
the texture view component, video decoder 30 may be configured to evaluate motion
information of one or more neighboring blocks of a current macroblock in the texture
view component to determine whether at least one neighboring block is inter-view
predicted with a disparity motion vector that refers to an inter-view reference picture in
a view other than the dependent view. In some examples, video decoder 30 may
evaluate motion information of neighboring blocks with motion vectors that refer to a
first reference picture list (RefPicList0) and avoid evaluating motion information of
neighboring blocks with motion vectors that refer to a second reference picture list
(RefPicListl).

[0211] The neighboring blocks are spatial and temporal neighboring blocks. The
temporal neighboring blocks may be in at least one of a first selected picture and a
second selected picture. The first selected picture is a picture identified in entry 0
(index 0) of the first reference picture list (RefPicList0). The second selected picture is
a picture identified in entry 0 (index 0) of the second reference picture list
(RefPicListl). There may be up to a maximum of four spatial neighboring blocks that

video decoder 30 evaluates, where three of the four spatial neighboring blocks are the

WO 2014/134170 PCT/US2014/018679

56

same neighboring blocks as those used in motion prediction in the H.264/AVC video
coding standard.

[0212] Video decoder 30 may derive a disparity vector for the current macroblock
based on the disparity motion vector for one of the neighboring blocks. Video decoder
30 may assign the derived disparity vector for the current macroblock to blocks within
the current macroblock. For texture-first coding, video decoder 30 may decode a depth
view component, of the video data, that corresponds to the texture view component
subsequent to decoding the texture view component.

[0213] As one example, video decoder 30 may select the candidate temporal pictures,
and may evaluate a temporal block within one of these candidate temporal pictures. For
instance, video decoder 30 may select a first temporal picture, which is a picture
identified in a first entry (e.g., entry 0) of a first reference picture list (e.g., RefPicList0),
and select a second temporal picture, which is a picture identified in a first entry (e.g.,
entry 0) of a second reference picture list (e.g., RefPicListl). The one or more
neighboring blocks include at least one temporal neighboring block in at least one of the
first selected temporal picture or the second selected temporal picture. In some
examples, there may be only one temporal neighboring block (e.g., the bottom-right
block).

[0214] As another example (which may be used in combination with the above example
or separately), video decoder 30 may evaluate motion information of only one or more
neighboring blocks with motion vectors that refer to a first reference picture list (e.g.,
RefPicList0) of two reference picture lists to determine whether at least one neighboring
block is inter-view predicted with the disparity motion vector. In these examples, video
decoder 30 may avoid the evaluation of motion information of the one or more
neighboring blocks with motion vectors that refer to a second reference picture list (e.g.,
RefPicList]) of the two reference picture lists to determine whether at least one
neighboring block is inter-view predicted with the disparity motion vector.

[0215] In some examples, prediction processing unit 71 of video decoder 30 may be one
example of a processor configured to implement the examples described in this
disclosure. In some examples, a unit (e.g., one or more processors) other than
prediction processing unit 71 may implement the examples described above. In some
examples, prediction processing unit 71 in conjunction with one or more other units of

video decoder 30 may implement the examples described above. In yet some other

WO 2014/134170 PCT/US2014/018679

57

examples, a processor of video decoder 30 (not shown in FIG. 3) may, alone or in
conjunction with other processors of video decoder 30, implement the examples
described above.

[0216] The following describes the example manners in which video encoder 20 and
video decoder 30 may implement the techniques described above and are described with
a video coder for brevity, where a video coder may be video encoder 20 or video
decoder 30 based on the context. The techniques described in this disclosure should not
be considered limited to any of the specific example implementations. Any of the
techniques can be combined with one or more of the other techniques for disparity
vector derivation. Each aspect of the techniques can be combined to one complete
technique.

[0217] Initially, the video coder may determine one or more temporal pictures. For
each temporal picture, the video coder may check (e.g., evaluate) one or more
determined temporal neighboring blocks pre-defined by block positions. For instance,
the video coder may determine temporal pictures to be one or more pictures in the
reference picture lists. Each temporal picture may be required to belong to the same
view as the current picture.

[0218] In one example, the video coder may determine the temporal pictures using an
implicit derivation technique. In the following, the video coder determines up to two
temporal pictures: tempPic[0] and tempPic[1].

[0219] As one example for implicitly determining the temporal pictures, the first entries
in RefPicList0 and RefPicList] are used and up to two temporal pictures are used. In
one example, when the current slice is a P slice, RefPicList0[0] is the only temporal
picture, and when the current slice is a B slice, RefPicList0[0] is the first temporal
picture and RefPicList1[0] is the second temporal picture. As another example,
RefPicList1[0] is the first temporal picture and RefPicList0[0] is the second temporal
picture. As yet another example, any two temporal reference pictures in the reference
picture lists or in the DPB (decoded picture buffer) can be chosen as the temporal
pictures.

[0220] As another example for implicitly determining the temporal pictures, the video
coder may select the co-located picture (i.c., RefPicList1[0]), as used in H.264/AVC

temporal direct mode, as a first temporal picture. The video coder selects the second

WO 2014/134170

PCT/US2014/018679

58

temporal picture in a way that the second temporal picture is more likely to include

more disparity motion vectors.

[0221] The following describes examples for implicitly determining the temporal

pictures.

- 1=0;

— If'the current slice type is B, tempPic[i]=RefPicList1[0], i++;

— tempPic[i] is derived as follows:

For each picture Pic in RefPicListQ or RefPicListl, if Pic is an anchor
picture, tempPic[i] = Pic, return;

For pictures in RefPicList0 and RefPicList1 if available, tempPic[i] is
set to the picture with the lowest temporal_id. If there are multiple ones
having the same temporal id, tempPic[i] is set to be the picture with a
less POC difference to the current picture. Alternatively, even when
RefPicListl is available, pictures in RefPicList] are not considered in

this step.

[0222] As another example, the temporal id is not considered in the middle of the

derivation process as follows:

- 1=0;

— If'the current slice type is B, tempPic[i]=RefPicList1[0], i++;

— tempPic[i] is derived as follows:

For each picture Pic in RefPicListQ or RefPicListl, if Pic is an anchor
picture, tempPic[i] = Pic, return;

If the current slice is a P slice, for pictures in RefPicList0, tempPic[i] is
set to the picture with the one having the least POC difference to the
current picture.

If the current slice is a B slice, check pictures in RefPicList0 followed
by the pictures in RefPicListl in a way that tempPic[i] is set to be the
picture with the one having the least POC difference to the current

picture.

[0223] In some examples, instead of implicit derivation of the temporal pictures,

explicit derivation may be possible. For example, the number of temporal pictures and

the temporal pictures can be explicitly signaled in the slice header or picture parameter

WO 2014/134170 PCT/US2014/018679

59

set by video encoder 20 that video decoder 30 receives. In one example, only one
temporal picture is explicitly signaled.

[0224] In one example, the video coder may determine that the first temporal picture is
always to be RefPicList1[0] for B slice and RefPicList0[0] for P slice. In this example,
the second temporal picture is signaled by video encoder 20 and received by video
decoder 30 in the slice header as ref idx_temp pic and the second temporal picture is
derived to be RefPicListO[ref idx temp pic]. In another example, the second temporal
picture is not available thus not signaled for a P slice. In another example, both
reference index values are signaled as indices ref idx _temp picO and

ref idx_temp picl and the temporal pictures are identified as
RefPicListO[ref idx temp picO] and RefPicListO[ref idx temp picl]. In another
example, both reference index values are signaled as indices ref idx temp pic0O and
ref idx_temp picl and the temporal pictures are identified as
RefPicListO[ref idx temp picO] and RefPicList1[ref idx temp picl].

[0225] As additional examples, both reference index values are signaled as indices

ref idx temp picO and ref idx temp picl. However, for a B slice, one additional flag
list0_flag0 and list0_flagl (inferred to be 0 for P slice) is signaled if the current slice is a
B slice, and the temporal pictures are identified as RefPicListX0[ref idx temp pic0]
and RefPicListX1[ref idx temp picl], with X0 and X1 equal to list0 flag0 and
list0_flagl, respectively.

[0226] With the determined temporal pictures, the video coder may evaluate the motion
information of temporally co-located block positions to determine whether neighboring
block is inter-view predicted with a disparity motion vector. Basically, pre-defined 4x4
blocks of the temporally co-located macro-block are checked to search a disparity
motion vector.

[0227] FIGS. 4A-H illustrate example block positions for the temporally co-located
macroblock (MB) that are checked for disparity vector derivation. As shown in FIG.
4A, the block positions can be inside the macro-block such as the four corner blocks and
the center block or even outside the macro-block such as the bottom-right block.
Alternatively, however, the positions can be any 4x4 blocks in the collocated MB and
any neighboring blocks outside the MB. Alternatively, however, several selective

positions in all the possible positions can be used to reduce complexity.

WO 2014/134170 PCT/US2014/018679

60

[0228] In FIG. 4B, only center and bottom right position outside the MB may be
considered. In FIG. 4C, only center and bottom right corner position inside the MB
may be considered. In FIG. 4D, only center and bottom left corner position inside the
MB may be considered. In FIG. 4E, the bottom right corner position and the bottom left
corner position inside the MB may be considered. In FIG. 4F, the center and the two
corner positions in the bottom row may be considered. In FIG. 4G, the center, the
bottom-left corner block inside, and the bottom-right block outside the MB can be
considered.

[0229] In some examples, if one of the block candidates is not available (e.g. out of a
picture boundary), the position is replaced with another position. For example, in FIG.
4H, if the bottom-right block position outside the MB is not available, the bottom-right
corner position is checked.

[0230] In some examples, the positions may vary with a certain condition. For
example, if there is a significant motion change between the current MB and the co-
located MB, the positions may be accordingly changed with the motion. The checking
order can be any permutated order of the block positions to be checked.

[0231] The above described examples for evaluating temporal blocks, the following
describes implementations for evaluating spatial blocks. The examples indicate spatial
blocks that the video coder checks to determine if any of these blocks are inter-view
predicted with a disparity motion vector.

[0232] FIG. 5SA-5D illustrate example block positions for the spatially neighboring
macroblocks that are checked for disparity vector derivation. In a similar manner to the
temporally co-located blocks, there are also pre-defined 4x4 spatially neighboring
blocks for the currently coded MB. The block position A, B, C and D are checked to
find out a disparity motion vector, as illustrated in FIGS. 5SA-5D; however, other
combinations and permutations may be possible.

[0233] In FIG. 5A, the block position A, B, and C are checked to find out a disparity
motion vector. If the position C is not available (e.g. out of picture boundary), then the
position D is considered. In some examples, any neighboring positions in all the rows
and columns of the current MB can be considered on top of the position A, B, C, and D.
In some examples, any selective positions in the rows and columns can be considered.
[0234] In FIG. 5B, block positions A and B may be considered. In FIG. 5C, the block

positions A and C may be considered, and in some examples, the block position C may

WO 2014/134170 PCT/US2014/018679

61

be replaced with D if the block at position C is not available. In FIG. 5D, the block
positions in the above-row of the MB may be considered. In addition, any permuted
order in the selected block positions can be applied in the search process.

[0235] The above described examples of spatial and temporal neighbors whose motion
information is evaluate to determine if any of these neighboring block are inter-view
predicted for disparity vector derivation in the NBDV (neighboring block based
disparity vector) derivation techniques. The following describes examples of when the
NBDYV derivation technique is terminated (i.c., when the video coder stops evaluating
motion information of neighboring block for deriving the disparity vector).

[0236] In general, the video coder stops evaluating motion information once the video
coder identifies a disparity motion vector. However, in some examples, the disparity
motion vector with its horizontal component unequal to 0 may not be considered as the
termination condition. In other words, even if a neighboring block is inter-view
predicted with a disparity motion vector, if the horizontal component of the disparity
motion vector is unequal to 0, the video coder may keep evaluating motion information
of neighboring blocks.

[0237] In some examples, the termination condition may be when the video identifies a
zero disparity motion vector. In some examples, the video may identify multiple
disparity motion vector candidates, and then apply filtering so that one becomes the
disparity vector. In some examples, if no disparity motion vector is found, the video
coder uses a zero disparity vector for motion vector prediction or other coding tools
dependent on disparity vectors.

[0238] The following describes implementation examples for motion vector prediction.
For instance, the following provides detailed implementation on NBDV based motion
vector prediction for normal inter modes as well as skip and direct modes. In this
example, during both the D-MVP process and inter-view motion prediction for skip and
direct modes, when a disparity motion vector is unavailable for a neighboring block, it
is converted from the NBDV derivation result. During the D-MVP process for the
temporal prediction, the disparity vector used to identify the reference block is set to be
the NBDV result. The following uses underlining and italics to identify language
deleted from earlier versions of 3D-AVC, and underlining and bolding to identify added

language as a way to illustrate changes.

WO 2014/134170 PCT/US2014/018679

62

[0239] The following is pseudo-code for NBDV derivation with the D-MVP process in
inter-view prediction.
J.8.3 3DV inter prediction, inter-view prediction, view synthesis prediction and

adaptive luminance compensation

The function Disparitv(depthSample, srcindex, reflndex) is specified to return

disparityValue specified as follows.

- disparityValue = (Ndrlnverse[depthSample] *
DisparityScalef dps_id][srclndex][reflndex] +
(DisparitvOffset dps_id][srclndex][reflndex] << BitDepthy) +
(1 << (log2Div—1)))>> log2Div

J.8.3.1.8 Depth-based derivation process for median luma motion vector prediction

When ecither partition mbAddrN\mbPartIldxN\subMbPartldxN is not available or
refldxLXN is not equal to refldxLX, mvLXN is derived as specified by the following
ordered steps:
1. The inverse macroblock scanning process as specified in subclause 6.4.1is
invoked with CurrMbAddr as the input and the output is assigned to (x1, y1).

2. The inverse macroblock partition scanning process specified in subclause

6.4.2.1 is invoked with mbPartldx as the input and the output assigned to (dxl,
davl).

3. The inverse sub-macroblock partition scanning process specified in subclause
6.4.2.2 is invoked with mbPartldx and subMbPartldx as the input and the output
assigned to (dx2, dy2).

4. The modification process of inter-view motion vector in median luma motion

vector prediction as specified in subclause J.8.3.1.8.1 is invoked with depthPic
being equal to DepthRefPicList0] refldxL0], dbxl being equal to xI + dxI +

dx2, dbvl being equal to vl + dvl + dv2, and mv being equal to mvL0 as inputs

and the output is assigned to the motion vector mvLXN.
Each component of the motion vector prediction mvpLX is given by the median of the
corresponding vector components of the motion vector mvLXA, mvLXB, and mvLXC:

mvpLX][0] = Median(mvLXA[0], mvLXB[0], mvLXC[0]) (J8-XX)

WO 2014/134170 PCT/US2014/018679

63
mvpLX][1]= Median(mvLXA[1], mvLXB[1], mvLXC[1]) (J8-XX)
J.8.3.1.8.1 Modification process for inter view motion vector in median luma

motion vector prediction

Let refViewld be the view id value of depthPic.

The following ordered steps apply:

1. The variable maxDepth is specified as follows:
- maxDepth = INT _MIN
for(j = 0; j < partHeight; j += (partHeight — 1))
for(i = 0; i < partWidth; i += (partWidth—1)) (J-8-XX)
if{ depthPic[dbxl + i, dbvl +j] > maxDepth)
maxDepth = depthPic[dbxl + i, dbyl +j]

2. The variable mv is specified as follows:

— srcindex = ViewldTo3D VAcquisitionParamindex(view_id)
reflndex = ViewldTo3DVAcquisitionParamlIndex(refViewld)
mv[0] = Disparity(maxDepth, srclndex, reflndex)
mv[1]=0

Invoke the NBDV process as specified into the embodiment #1, and the outputted

disparity vector tempDYV is set to as follows:
mv|[0] = tempDV]0]

mv[l]=0
[0240] The following is pseudo-code for NBDV with the D-MVP process in temporal

prediction.
J.8.3 3DV inter prediction, inter-view prediction, view synthesis prediction and

adaptive luminance compensation

The function Disparitv(depthSample, srcindex, reflndex) is specified to return

disparityValue specified as follows.

- disparityValue = (Ndrlnverse[depthSample] *
DisparityScalef dps_id][srclndex][reflndex] +
(DisparitvOffset/ dps_id][srclndex][reflndex] << BitDepthy) +
(1 <<(log2Div—1))) >> log2Div

WO 2014/134170 PCT/US2014/018679

64

J.8.3.1.9 Depth-based derivation process for median luma temporal motion vector

prediction

When ecither partition mbAddrN\mbPartIldxN\subMbPartldxN is not available or
refldxLXN is not equal to refldxLX, mvLXN is derived as specified by the following
ordered steps:
1. The inverse macroblock scanning process as specified in subclause 6.4.1is
invoked with CurrMbAddr as the input and the output is assigned to (x1, y1).

2. The inverse macroblock partition scanning process specified in subclause

6.4.2.1 is invoked with mbPartldx as the input and the output assigned to (dx1,

dvl).

3. The inverse sub-macroblock partition scanning process specified in subclause

6.4.2.2 is invoked with mbPartldx and subMbPartldx as the input and the output
assigned to (dx2, dv2).

4. The process specified in subclause J.8.3.1.9.1 is invoked with depthPic set to
DepthCurrPic, dbx1 set to xI + dxl + dx2, dbyl set to vyl +dyl + dv2 and

listSuffixFlag as input and InterViewPic, an offset vector dv and an variable

InterViewAvailable as outputs.

5. The refldxCorrespond and mvCorrespond are set as follows.

J.8.3.1.9.1 Derivation process for the disparity vector and the inter-view reference

Inputs to this process are depth reference view component depthPic, the location of a

top-left sample (dbx1, dbvl) of a partition and the listSuffixFlag.

Outputs of this process are a picture InterViewPic, an offset vector dv and a variable

InterViewAvailable

The variable InterViewAvailable is set equal to 0.

The following applies to derive an inter-view reference picture or inter-view only

reference picture, InterViewPic, with X set to 1 when listFuffixFlag is 1 or 0 otherwise:

WO 2014/134170 PCT/US2014/018679

65

for(cldx = O;cldx<num_ref_idx_I0_active_minusl + I && !InterViewAvailable;
cldx ++)
if (view order index of RefPicList0[cldx] is equal to 0) {
InterViewPic = RefPicList0[cldx]
InterViewAvailable = 1

_ !

When InterViewAvailable is equal to 1, the following steps apply in order.

1. The variable maxDepth is specified as follows:
- maxDepth = INT _MIN
for(j = 0; j < partHeight; j+=(partHeight-1))
for(i =0; i < partWidth; i+=(partWidth-1))
ifl depthPic[dbxl + i, dbvl +j] > maxDepth) maxDepth = depthPic[
dbxl + i, dbyl +j]

2. The variable dv is specified as follows:

currlndex = ViewldTo3DVAcquisitionParamiIndex(view id of the current view)

reflndex = ViewldTo3DVAcquisitionParamiIndex(view id of the InterViewPic)

dv/ 0] = Disparity(maxDepth, currindex, reflndex)
dvf1]=0

Invoke the NBDV process as specified into the embodiment #1, and the outputted

disparity vector tempDYV is set to as follows:
dv][0] = tempDV]0]

dvil] =0
[0241] The following is pseudo-code for NBDV with inter-view motion prediction.

J.8.3 3DV inter prediction, inter-view prediction, view synthesis prediction and

adaptive luminance compensation

The function Disparitv(depthSample, srcindex, reflndex) is specified to return

disparityValue specified as follows.

- disparityValue = (NdrInverse[depthSample] *
DisparityScalef dps_id][srclndex][reflndex] +

WO 2014/134170 PCT/US2014/018679

66

(DisparityOffset] dps id][srcindex][reflndex | << BitDepthy) +
(1 << (log2Div—1))) >> log2Div

J.8.3.1.4 Derivation process for the disparity vector and the inter-view reference

If DvAvailable[0] + DvAvailable[1] + DvAvailable[2] is equal to 1, the
following applies:
— dv[0]=mvCand[i1][0]
— dv[1]=mvCand[i][1]
— Otherwise, the following steps apply in order:
— The variable maxDepth is specified as follows:
maxDepth = INT MIN
for(j = 0; j < partHeight; j += (partHeight — 1))
for(i = 0; i < partWidth; i += (partWidth—1))
if{ depthPic[dbxl + i, dbyvl +j] > maxDepth)
maxDepth = depthPic[dbx1 + i, dbvl +j]

— The variable dispVector is specified as follows:

currlndex = ViewldTo3DVAcquisitionParamiIndex(view_id of the current

view

reflndex = ViewldTo3DVAcquisitionParamlndex(view_id of the
InterViewPic)

dispVector[0] = Disparity(maxDepth, currindex, reflndex)
dispVector[1] =0

— Invoke the NBDV process as specified in the embodiment #1, and the

outputted disparitv vector tempDV is set to as follows:
dispVector| 0 |=tempDV]0]
dispVector[1 |=0

[0242] The following provides another example of detailed implementation of NBDV
based motion vector prediction when the disparity vector derived from the NBDV is
directly used for inter-view prediction and/or the direct and skip mode. In this

implementation, the disparity vector is converted from the disparity vector from the

WO 2014/134170 PCT/US2014/018679

67

NBDYV, and the median filtering is skipped. Instead, the disparity motion vector
becomes the motion vector prediction.

[0243] The following provides pseudo-code for direct use of NBDV for D-MVP in
inter-view prediction.

J.8.3.1.8 Depth-based derivation process for median luma motion vector prediction

When either partition mbAddrN\mbPartldxN\subMbPartldxN is not available or
refldxLXN is not equal to refldxLX, mvLXN is derived as specified by the following

ordered steps:

1. The inverse macroblock scanning process as specified in subclause 6.4.1is
invoked with CurrMbAddr as the input and the output is assigned to (x1, y1).

2. The inverse macroblock partition scanning process specified in subclause

6.4.2.1 is invoked with mbPartldx as the input and the output assigned to (dxl,

dvl).

3. The inverse sub-macroblock partition scanning process specified in subclause

6.4.2.2 is invoked with mbPartldx and subMbPartldx as the input and the output
assigned to (dx2, dv2).

4. The modification process of inter-view motion vector in median luma motion

vector prediction as specified in subclause J.8.3.1.8.1 is invoked with depthPic
being equal to DepthRefPicList0f refldxL0], dbxl being equal to xI + dxI +

dx2, dbvl being equal to vl + dvl + dv2, and mv being equal to myvL0 as inputs

and the output is assigned to the motion vector mvLXN.

Each component of the motion vector prediction mvpLX is given by the median of the

corresponding vector components of the motion vector mvLXA, mvLXB, and mvLXC:
mypLX] 0] = Median(mvLXAJ 0], myvLXB[0], myvLXC/ 0]) (J8-XX)
mypL X[1] = Median(mvLXA[1], mvLXB[1], myvLXC[1]) (J8-XX)

— Invoke the NBDV process as specified in the embodiment #1. and store

the disparity vector to tempDV.
— mvpLX]0] = tempDV][0]
— mvpLX]1] = tempDV]1].

WO 2014/134170 PCT/US2014/018679

68

[0244] The following provides pseudo-code for direct use of NBDV for the inter-view

motion vector prediction in skip/direct modes.

J.8.3.1.4 Derivation process for the disparity vector and the inter-view reference

Set InterViewAvailable equal to 0.

The following applies to derive an inter-view reference picture or inter-view only

reference picture InterViewPic:

for(cldx = 0;cldx<=num_ref idx_[0_active_minusl && !InterViewAvailable;
cldx ++)
if (view order index of RefPicList0[cldx] is equal to 0) {
InterViewPic = RefPicList0[cldx]
InterViewAvailable = 1

_ !

When InterViewAvailable is equal to 1, the following steps apply in order.

- The process specified in subclause 8.4.1.3.2 is invoked with mbPartldx set equal

to 0, subMbPartldx set equal to 0, currSubMbType set equal to "na’”, and listSuffixFlag

set equal to 0 as input and with reference indices refldxCandL0/ i | and the motion

vectors mvCandL0[i] as outputs with i equal to 0, 1, and 2 corresponding to

neighbouring partition A, B, and C, respectively.

- The process specified in subclause 8.4.1.3.2 is invoked with mbPartldx set equal

to 0, subMbPartldx set equal to 0, currSubMbType set equal to "na’”, and listSuffixFlag

set equal to 1 as input and with reference indices refldxCandL1[i] and the motion

vectors mvCandL1[i] as outputs with i equal to 0, 1, and 2 corresponding to

neighbouring partition A, B, and C, respectively.

- The variable dv is derived as specified by the following ordered steps:

— Set DvAvailable/ i] and myvCand/ i] with i equal to 0, 1, and 2 corresponding

to neighbouring partitions A, B, and C, respectively, as follows

for(i=0;i<3;it++)
if{ view order index of RefPicList0[refldxCandL0[i]] is equal to 0) {
DvAvailable[i] = 1
mvCand[i] = mvCandL0[i]
} else if{ view order index of RefPicListl[refldxCandL1[i]] is equal to

0){

WO 2014/134170 PCT/US2014/018679

69

DvAvailable[i] = 1
mvCand[i] = mvCandLI[i]
} else
DvAvailable[i] = 0
— If DvAvailable[0] + DvAvailable[I] + DvAvailable[2] is equal to 1, the

following applies.
- dvf 0] =mvCand[i][0]
— dvf1]=mvCand[i][1]

— Otherwise, the following steps apply in order:

— The variable maxDepth is specified as follows:
maxDepth = INT _MIN
for(j = 0; j < partHeight; j += (partHeight — 1))
for(i = 0; i < partWidth; i += (partWidth—1))
if{ depthPic[dbxl + i, dbvl +j] > maxDepth)
maxDepth = depthPic[dbxl + i, dbyl +j]

— The variable dispVector is specified as follows:

currlndex = ViewldTo3DVAcquisitionParamindex(view id of the current

view

reflndex = ViewldTo3DVAcquisitionParamindex(view_id of the
InterViewPic)

dispVector[0] = Disparity(maxDepth, currindex, reflndex)
dispVector[1] =0

— For each value of i equal to 0, 1, and 2, when DvAvailable/ i | is equal to 0,

mvCand/ i] is set to dispVector.

— FEach component of the variable dv is derived as follows:
dvl 0] = Median(mvCand/ 0]/ 0], myvCand/ 1]/ 0], mvCand[2]/ 0])
dvl 1] = Median(mvCand/ 0]/ 1], mvCand/ 1]/ 1] mvCand/ 2]/ 1])

Invoke the NBDV process as specified in the embodiment #1. and store

the disparity vector to tempDV.
dv][0] = tempDV]0]
dv[l] = tempDV]1].

WO 2014/134170 PCT/US2014/018679

70

[0245] As described above, in some example, the video coder may invoke the NBDV
process once for a macroblock, and all the partitions share the same results. In some
examples, the video coder may invoke the NBDV process in the MB partition-level.
[0246] FIGS. 6A and 6B illustrate example block positions of neighboring blocks for
macroblock partitions that are checked for disparity vector derivation when the partition
is 8x16. In particular, FIG. 6A illustrates spatial neighboring blocks in MB-partition
based NBDV derivation, and FIG. 6B illustrates temporal neighboring blocks in MB-
partition based NBDV derivation.

[0247] In some examples, the temporal blocks follow the positions of the MB-based
NBDYV derivation. In some examples, the spatial blocks following the positions of the
MB-based NBDV derivation. In some examples, the NBDV derivation process may be
invoked in sub-MB partition or even in 4x4 block level, and the block positions may be
changed accordingly.

[0248] In the D-MVP (i.c., in motion vector prediction), the video coder may invoke the
motion vector prediction in sub-MB partition level or the MB-partition level. As one
example, the video coder may invoke the MB-partition based NBDV derivation in every
D-MVP process in the MB partition or in the sub-MB partition. As another example,
the video coder may invoke in every D-MVP process in the MB partition or in the sub-
MB partition.

[0249] The above described examples of derivation of temporal pictures, an example of
NBDYV and motion prediction, an example of NBDV derivation with the D-MVP
process in inter-view prediction, an example of NBDV derivation with the D-MVP
process in temporal prediction, and NBDV derivation with the inter-view motion
prediction. The following provide some additional examples of such techniques. These
examples are in addition to or instead of the techniques for deriving the temporal
pictures described above. In other words, the following techniques may be used
separately or in conjunction with any of the examples described above.

[0250] The following is a first additional example for derivation of temporal pictures.
In some examples, a temporal picture is a picture which does not belong to the same
access unit as the current picture. If a current picture is a P slice, only one temporal
picture is derived to be RefPicListO[0]. If a current picture is a B slice, two temporal

pictures are derived, in order as: RefPicList1[0] and RefPicListO[O].

WO 2014/134170 PCT/US2014/018679

71

[0251] In some examples, the following alternative derivation processes may apply. If
a current picture has a temporal id equal to 0, only one temporal picture is derived to be
RefPicListO[0]. Alternatively, the temporal picture in this case can be RefPicList1[0]
if available, and RefPicListO[0] if RefPicList1[0] is unavailable. If a current picture
has a temporal_id larger than 0, two temporal pictures are derived, in order as:
RefPicListl[0] if available and RefPicListO[O] if available.
[0252] In some examples, the following alternative derivation processes may apply. If
a current picture has an anchor picture, only one temporal picture is derived to be
RefPicListO[0]. Alternatively, the temporal picture in this case can be RefPicList1[0]
if available, and RefPicListO[0] if RefPicList1[0] is unavailable. If a current picture
has a non-anchor picture, two temporal pictures are derived, in order as:
RefPicListl[0] if available and RefPicListO[O] if available.
[0253] The following is a second additional example for derivation of temporal
pictures. The techniques of second additional example for derivation of temporal
pictures may be similar to the first example for derivation of temporal pictures.
However, if a current picture belongs to an anchor picture, no temporal picture is
derived and the NBDV derivation process may not check the temporal neighboring
blocks (e.g., the NBDV process always doesn’t check the temporal neighboring blocks).
[0254] The following describes an additional example for NBDV derivation and motion
prediction. This example technique may be similar to the example described above for
NBDYV derivation in 3D-AVC. However, one of the two alternatives apply, assuming
the output of the NBDV process is a disparity vector (DV), which is set by a disparity
motion vector (DMV) of a block:

e DV[1]issetto0;

e DV[1]issettoDMV[1].
[0255] Here, it is assumed the NBDV derivation process has been invoked for the
whole MB. Also, similar to as described above with motion vector prediction based on
NBDYV, the DV is used to replace the disparity vector converted from depth, and it is
further used in the same way of various inter prediction modes.
[0256] The following is pseudo-code for another example of NBDV derivation with the
D-MVP process in inter-view prediction.
J.8.3 3DV inter prediction, inter-view prediction, view synthesis prediction and

adaptive luminance compensation

WO 2014/134170 PCT/US2014/018679

72

The same as described above with respect to first example of NBDV with the D-MVP
process in inter-view prediction.

J.8.3.1.8.1 Modification process for inter view motion vector in median luma
motion vector prediction

Let refViewld be the view id value of depthPic.

The following ordered steps apply:

3. The variable maxDepth is specified as follows:
- maxDepth = INT _MIN
for(j = 0; j < partHeight; j += (partHeight — 1))
for(i = 0; i < partWidth; i += (partWidth — 1)) (J-8-XX)
if{ depthPic[dbxl + i, dbvl +j] > maxDepth)
maxDepth = depthPic[dbxl + i, dbyl +j]

4. The variable myv is specified as follows:

— srclndex = Viewld103DVAcquisitionParamindex(view_id)
refIndex = ViewldTo3DVAcquisitionParamIndex(refViewld)

mvy/[0] = Disparity(maxDepth, srclndex, reflndex)
mv[1]=0
mv[0]=DV[0]
mv[1]=DV[1]
[0257] The following is pseudo-code for another example of NBDV with the D-MVP

process in temporal prediction.

J.8.3 3DV inter prediction, inter-view prediction, view synthesis prediction and
adaptive luminance compensation

The same as described in the first example of NBDV with the D-MVP process in
temporal prediction.

J.8.3.1.9 Depth-based derivation process for median luma temporal motion vector
prediction

The same as described in the first example of NBDV with the D-MVP process in
temporal prediction.

J.8.3.1.9.1 Derivation process for the disparity vector and the inter-view reference

Inputs to this process are depth reference view component depthPic, the location of a

top-left sample (dbx1, dbvl) of a partition and the listSuffixFlag.

WO 2014/134170 PCT/US2014/018679

73

Qutputs of this process are a picture InterViewPic, an offset vector dv and a variable

InterViewAvailable

The variable InterViewAvailable is set equal to 0.

The following applies to derive an inter-view reference picture or inter-view only

reference picture, InterViewPic, with X set to 1 when listFuffixFlag is 1 or 0 otherwise:

for(cldx = O;cldx<num_ref_idx_I0_active_minusl + I && !InterViewAvailable;
cldx ++)
if (view order index of RefPicList0[cldx] is equal to 0) {
InterViewPic = RefPicList0] cldx]
InterViewAvailable = 1

_

When InterViewAvailable is equal to 1, the following steps apply in order.

1. The variable maxDepth is specified as follows:
- maxDepth = INT MIN
for(j = 0; j < partHeight; j+=(partHeight-1))
for(i =0; i < partWidth; i+=(partWidth-1))
ifl depthPic[dbxl + i, dbvl +j] > maxDepth) maxDepth = depthPic[
dbxl + i, dbyl +j]

2. The variable dv is specified as follows:

currlndex = ViewldTo3DVAcquisitionParamiIndex(view id of the current view)

reflndex = ViewldTo3DVAcquisitionParamindex(view_id of the InterViewPic)

dv/ 0] = Disparity(maxDepth, currindex, reflndex)
dv[1]=0

dv[0]=DV[O0]

dv[1]1=DV[1]

[0258] The following is pseudo-code for an additional example for NBDV with the
inter-view motion prediction.

J.8.3 3DV inter prediction, inter-view prediction, view synthesis prediction and
adaptive luminance compensation

The same as described in the first example of NBDV with inter-view motion prediction

described above.

WO 2014/134170 PCT/US2014/018679

74

J.8.3.1.4 Derivation process for the disparity vector and the inter-view reference

If DvAvailable[0] + DvAvailable[1] + DvAvailable[2] is equal to 1, the
following applies:
— dv[0]=mvCand[i1][0]
— dv[1]=mvCand[i][1]
— Otherwise, the following steps apply in order:
——The variable maxDepth is specified as follows:
maxDepth = INT MIN
for(j = 0; j < partHeight; j += (partHeight — 1))
for(i = 0; i < partWidth; i += (partWidth—1))
if{ depthPic[dbxl + i, dbyvl +j] > maxDepth)
maxDepth = depthPic[dbx1 + i, dbvl +j]

— The variable dispVector is specified as follows:

currlndex = ViewldTo3DVAcquisitionParamiIndex(view_id of the current

view

reflndex = ViewldTo3DVAcquisitionParamlndex(view_id of the
InterViewPic)

dispVector[0] = Disparity(maxDepth, currindex, reflndex)
dispVector[1] =0

— Set dispVector as follows:

dispVector[0]= DV][0]

dispVector[1][=DV][1]
[0259] FIG. 7 is a flowchart illustrating an example operation of encoding in
accordance with techniques described in this disclosure. Video data memory 40 may
store base views and dependent views. One or more processors of video encoder 20
may encode, in a 3D-AVC compliant video coding process, a texture view component
of a dependent view (100). The one or more processors of video encoder 20 may
encode a depth view component that corresponds to the texture view component
subsequent to encoding the texture view component (102). The techniques allow for the
texture view component to be encoded before the depth view component because the
disparity vector derivation for a block in the texture view component does not need the

depth view component. The one or more processors of video encoder 20 may generate

WO 2014/134170 PCT/US2014/018679

75

for output a coded bitstream with texture-first coding of dependent views that includes
the encoded texture view component and the encoded depth view component.

[0260] FIG. 8 is a flowchart illustrating an example operation of decoding in
accordance with the techniques described in this disclosure. One or more processors of
video decoder 30 may receive a coded bitstream in 3D-AVC compliant video coding
process generated with texture-first coding of dependent views (106). For instance,
video data memory 69 may store information that the one or more processors of video
decoder 30 uses for decoding 3D-AVC compliant video including base and dependent
views that include texture view components and depth view components.

[0261] The one or more processors of video decoder 30 may decode a texture view
component of a dependent view (108). The one or more processors of video decoder 30
may decode a depth view component that corresponds to the texture view component
subsequent to decoding the texture view component (110).

[0262] FIG. 9 is a flowchart illustrating an example operation of disparity vector
derivation and inter-prediction coding in accordance with techniques described in this
disclosure. For purposes of illustration the example illustrated in FIG. 9 is described
with a video coder. One example of the video coder is video encoder 20 and another
example of the video coder is video decoder 30. Accordingly, video encoder 20 and
video decoder 30 may be configured to implement the example techniques described in
FIG. 9.

[0263] As illustrated, the video coder may evaluate motion information of neighboring
blocks to determine whether a neighboring block is inter-view predicted with a disparity
motion vector that refers to an inter-view reference picture (112). The video coder may
derive a disparity vector based on the disparity motion vector of the inter-view predicted
neighboring block (114).

[0264] For example, the one or more neighboring blocks include a temporal
neighboring block. This temporal neighboring block may be in a temporal picture of
two temporal picture candidates. To determine the two temporal picture candidates, the
video coder may select a first temporal picture and a second temporal picture, the first
temporal picture and the second temporal picture may be pictures identified in the first
entry of respective reference picture lists.

[0265] In some examples, the video coder may evaluate motion information of only

neighboring blocks with motion vectors that refer to one of the two reference picture

WO 2014/134170 PCT/US2014/018679

76

lists (e.g., refer to RefPicList0). If a motion vector for a neighboring block refers to the
other reference picture list, then the video coder may not evaluate the motion
information. In other words, the video coder may avoid the evaluating of motion
information of neighboring blocks with motion vectors that refer to the other reference
picture list (RefPicListl). In this way, even if there is a disparity motion vector, this
disparity motion vector may not be used to derive the disparity vector for the current
macroblock, if the disparity motion vector refers to RefPicListl (i.e., an inter-view
reference picture in RefPicListl).

[0266] In the techniques described in this disclosure for inter-view motion vector
prediction for normal inter-prediction mode, if the reference index corresponds to an
inter-view reference picture and a neighboring block that is used for motion vector
prediction is not inter-predicted with a disparity motion vector, the video coder may
assign the derived disparity vector to the neighboring block that is not inter-view
predicted (116). The video coder may be able to determine if the current block is to be
inter-view predicted if the reference index into the reference picture list identifies an
inter-view reference picture.

[0267] In the example illustrated in FIG. 9, the video coder may determine a motion
vector predictor utilizing median filtering, where the median filtering utilizes the
disparity vector assigned as a disparity motion vector to the neighboring block that is
not inter-view predicted (118). The video coder may inter-prediction code the current
block based on the motion vector predictor (120). For example, the video coder may
determine the motion vector for the current block based on the motion vector predictor
and a difference between the motion vector predictor and the actual motion vector for
the current block. The video coder may then identify the predictor block from the
motion vector for the current block used for inter-prediction coding.

[0268] FIG. 10 is a flowchart illustrating another example operation of disparity vector
derivation and inter-prediction coding in accordance with techniques described in this
disclosure. For purposes of illustration the example illustrated in FIG. 10 is described
with a video coder. One example of the video coder is video encoder 20 and another
example of the video coder is video decoder 30. Accordingly, video encoder 20 and
video decoder 30 may be configured to implement the example techniques described in

FIG. 10.

WO 2014/134170 PCT/US2014/018679

77

[0269] As illustrated in FIG. 10, the video coder may evaluate motion information of
neighboring block to determine whether neighboring block is inter-view predicted (122)
and derive a disparity vector based on the disparity motion vector of inter-view
predicted neighboring block (124), similar to the above description with respect to FIG.
9. In the example in FIG. 10, if the reference index corresponds to inter-view reference
picture, the video coder utilizes the derived disparity vector as a motion vector predictor
(126). In this example, the video coder may not need to use median filtering to
determine the motion vector predictor. The video coder may inter-prediction code the
current block based on the motion vector predictor, similar to inter-prediction coding
described above with respect to FIG. 9 (128).

[0270] It is to be recognized that depending on the example, certain acts or events of
any of the methods described herein can be performed in a different sequence, may be
added, merged, or left out all together (e.g., not all described acts or events are
necessary for the practice of the method). Moreover, in certain examples, acts or events
may be performed concurrently (e.g., through multi-threaded processing, interrupt
processing, or multiple processors, rather than sequentially).

[0271] Those of skill will recognize that the various illustrative logical blocks, modules,
circuits, and algorithm steps described in connection with the methods, systems, and
apparatuses disclosed herein may be implemented as electronic hardware, computer
software executed by a processor, or combinations of both. To clearly illustrate this
interchangeability of hardware and software, various illustrative components, blocks,
modules, circuits, and steps have been described above generally in terms of their
functionality. Whether such functionality is implemented as hardware or software
depends upon the particular application and design constraints imposed on the overall
system. Skilled artisans may implement the described functionality in varying ways for
cach particular application, but such implementation decisions should not be interpreted
as causing a departure from the scope of the present disclosure.

[0272] Moreover, examples disclosed herein may be implemented or performed with an
electronic device or circuit such as a general purpose processor, a digital signal
processor (DSP), an application specific integrated circuit (ASIC), a field programmable
gate array (FPGA) or other programmable logic device, discrete gate or transistor logic,
discrete hardware components, or any combination thereof designed to perform the

functions described herein. A general purpose processor may be a microprocessor, but

WO 2014/134170 PCT/US2014/018679

78

in the alternative, the processor may be any conventional processor, controller,
microcontroller, or state machine. A processor may also be implemented as a
combination of computing devices, ¢.g., a combination of a DSP and a microprocessor,
a plurality of microprocessors, one or more microprocessors in conjunction with a DSP
core, or any other such configuration.

[0273] The steps of a method or algorithm described in connection with the examples
disclosed herein may be embodied directly in hardware, in a software module executed
by a processor, or in a combination of the two. A software module may reside in RAM
memory, flash memory, ROM memory, EPROM memory, EEPROM memory,
registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium
known in the art. An exemplary storage medium is coupled to the processor such the
processor can read information from, and write information to, the storage medium. In
the alternative, the storage medium may be integral to the processor. The processor and
the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In
the alternative, the processor and the storage medium may reside as discrete components
in a user terminal.

[0274] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more

processors as described above, in conjunction with suitable software and/or firmware.

WO 2014/134170 PCT/US2014/018679

79

WHAT IS CLAIMED IS:

1. A method of decoding video data for 3D-Advanced Video Coding (3D-AVC)
comprising:
receiving a coded bitstream in a 3D-AVC compliant video coding process
generated with texture-first coding of dependent views;
decoding a texture view component of a dependent view of the dependent views
in the 3D-AVC compliant video coding process, wherein decoding the texture view
component comprises:
selecting a first temporal picture, wherein the first temporal picture
comprises a picture identified at a first entry of a first reference picture list;
selecting a second temporal picture, wherein the second temporal picture
comprises a picture identified at a first entry of a second reference picture list;
evaluating motion information of one or more neighboring blocks of a
current macroblock in the texture view component to determine whether at least
one neighboring block is inter-view predicted with a disparity motion vector that
refers to an inter-view reference picture in a view other than the dependent view,
wherein the one or more neighboring blocks comprise spatial neighboring blocks
and at least one temporal neighboring block in at least one of the first selected
temporal picture or the second selected temporal picture;
deriving a disparity vector for the current block based on the disparity
motion vector for one of the evaluated neighboring blocks; and
assigning the derived disparity vector to each block within the
macroblock; and
decoding a depth view component that corresponds to the texture view

component subsequent to decoding the texture view component.

2. The method of claim 1, further comprising:
implementing one or more coding tools utilizing the derived disparity vector

without using the depth view component for deriving the disparity vector.

WO 2014/134170 PCT/US2014/018679

80

3. The method of claim 1, wherein evaluating motion information comprises:

evaluating motion information of only the one or more neighboring blocks with
motion vectors that refer to the first reference picture list of two reference picture lists to
determine whether at least one neighboring block is inter-view predicted with the
disparity motion vector; and

avoiding the evaluation of motion information of the one or more neighboring
blocks with motion vectors that refer to the second reference picture list of the two
reference picture lists to determine whether at least one neighboring block is inter-view

predicted with the disparity motion vector.

4. The method of claim 1, wherein evaluating motion information comprises:
evaluating motion information for only one bottom-right block in at least one of
the first selected temporal picture or the second selected temporal picture, wherein the
bottom-right block comprises a block located at a position bottom and to right of the
current macroblock and in the at least one of the first selected temporal picture or the

second selected temporal picture.

5. The method of claim 1, wherein evaluating motion information comprises:
evaluating motion information of up to a maximum of four spatial neighboring

blocks.

6. The method of claim 5, wherein three of the four spatial neighboring blocks
comprise the same neighboring blocks used for motion prediction in the H.264/AVC

video coding standard.

7. The method of claim 5, wherein the four spatial neighboring blocks comprise:
a block located left of the current macroblock, a block located above the current
macroblock, a block located above-left of the current macroblock, and a block located

above-right of the current macroblock.

WO 2014/134170 PCT/US2014/018679

81

8. The method of claim 1, wherein deriving a disparity vector comprises:
setting a horizontal component of the disparity vector equal to a horizontal
component of the disparity motion vector; and

setting a vertical component of the disparity vector equal to zero.

9. A method of encoding video data for 3D-Advanced Video Coding (3D-AVC)
comprising:
encoding a texture view component of a dependent view in a 3D-AVC
compliant video coding process, wherein encoding the texture view component
comprises:
selecting a first temporal picture, wherein the first temporal picture
comprises a picture identified at a first entry of a first reference picture list;
selecting a second temporal picture, wherein the second temporal picture
comprises a picture identified at a first entry of a second reference picture list;
evaluating motion information of one or more neighboring blocks of a
current macroblock in the texture view component to determine whether at least
one neighboring block is inter-view predicted with a disparity motion vector that
refers to an inter-view reference picture in a view other than the dependent view,
wherein the one or more neighboring blocks comprise spatial neighboring blocks
and at least one temporal neighboring block in at least one of the first selected
temporal picture or the second selected temporal picture;
deriving a disparity vector for the current block based on the disparity
motion vector for one of the evaluated neighboring blocks; and
assigning the derived disparity vector to each block within the
macroblock;
encoding a depth view component that corresponds to the texture view
component subsequent to encoding the texture view component; and
generating for output a coded bitstream with texture-first coding of dependent
views that includes the encoded texture view component and the encoded depth view

component.

WO 2014/134170 PCT/US2014/018679

82

10. The method of claim 9, further comprising:
implementing one or more coding tools utilizing the derived disparity vector

without using the depth view component for deriving the disparity vector.

11. The method of claim 9, wherein evaluating motion information comprises:

evaluating motion information of only the one or more neighboring blocks with
motion vectors that refer to the first reference picture list of two reference picture lists to
determine whether at least one neighboring block is inter-view predicted with the
disparity motion vector; and

avoiding the evaluation of motion information of the one or more neighboring
blocks with motion vectors that refer to the second reference picture list of the two
reference picture lists to determine whether at least one neighboring block is inter-view

predicted with the disparity motion vector.

12. The method of claim 9, wherein evaluating motion information comprises:
evaluating motion information for only one bottom-right block in at least one of
the first selected temporal picture or the second selected temporal picture, wherein the
bottom-right block comprises a block located at a position bottom and to right of the
current macroblock and in the at least one of the first selected temporal picture or the

second selected temporal picture.

13. The method of claim 9, wherein evaluating motion information comprises:
evaluating motion information of up to a maximum of four spatial neighboring

blocks.

14. The method of claim 13, wherein three of the four spatial neighboring blocks
comprise the same neighboring blocks used for motion prediction in the H.264/AVC

video coding standard.

15. The method of claim 13, wherein the four spatial neighboring blocks comprise:
a block located left of the current macroblock, a block located above the current
macroblock, a block located above-left of the current macroblock, and a block located

above-right of the current macroblock.

WO 2014/134170 PCT/US2014/018679

&3

16. The method of claim 9, wherein deriving a disparity vector comprises:
setting a horizontal component of the disparity vector equal to a horizontal
component of the disparity motion vector; and

setting a vertical component of the disparity vector equal to zero.

17. A device for coding video data for 3D-Advanced Video Coding (3D-AVC)
comprising:
a memory configured to store video data; and
a video coder, the video coder comprising one or more processors and
configured to:
code, in a 3D-AVC compliant video coding process, a texture view component
of a dependent view of the video data, wherein, to code the texture view component, the
video coder is configured to:
evaluate motion information of only one or more neighboring blocks, of
a current macroblock block in the texture view component, with motion vectors
that refer to a first reference picture list of two reference picture lists and avoid
evaluating motion information of neighboring blocks with motion vectors that
refer to a second reference picture list of the two reference picture lists to
determine whether at least one neighboring block is inter-view predicted with a
disparity motion vector that refers to an inter-view reference picture in a view
other than the dependent view; and
derive a disparity vector for the current block based on the disparity
motion vector for one of the evaluated neighboring blocks;
assign the derived disparity vector to each block within the macroblock;
and
code a depth view component, of the video data, that corresponds to the texture

view component subsequent to coding the texture view component.

WO 2014/134170 PCT/US2014/018679

&4

18. The device of claim 17, wherein the video coder comprises a video decoder, and
wherein the video decoder is configured to receive a coded bitstream in the 3D-AVC
compliant video coding process generated with texture-first coding of dependent views
from which the video decoder decodes the texture view component and decodes the

depth view component that corresponds to the texture view component.

19. The device of claim 17, wherein the video coder comprises a video encoder, and
wherein the video encoder is configured to generate for output a coded bitstream with
texture-first coding of dependent views that includes the texture view component
encoded by the video encoder and includes the depth view component encoded by the

video encoder.

20. The device of claim 17, wherein to code the texture view component, the video
coder is configured to:

select a first temporal picture, wherein the first temporal picture comprises a
picture identified at a first entry of the first reference picture list; and

select a second temporal picture, wherein the second temporal picture comprises
a picture identified at a first entry of the second reference picture list,

wherein, to evaluate motion information, the video coder is configured to
evaluate motion information of at least one block in at least one of the first temporal
picture or the second temporal picture if a motion vector for the at least one block refers

to the first reference picture list.

21. The device of claim 20, wherein, to evaluate motion information, the video
coder is configured to:

evaluate motion information for only one bottom-right block in at least one of
the first selected temporal picture or the second selected temporal picture, wherein the
bottom-right block comprises a block located at a position bottom and to right of the
current macroblock and in the at least one of the first selected temporal picture or the

second selected temporal picture.

WO 2014/134170 PCT/US2014/018679

&5

22. The device of claim 17, wherein, to evaluate motion information, the video
coder is configured to:
evaluate motion information of up to a maximum of four spatial neighboring

blocks.

23. The device of claim 22, wherein three of the four spatial neighboring blocks
comprise the same neighboring blocks used for motion prediction in the H.264/AVC

video coding standard.

24. The device of claim 22, wherein the four spatial neighboring blocks comprise:
a block located left of the current macroblock, a block located above the current
macroblock, a block located above-left of the current macroblock, and a block located

above-right of the current macroblock.

25. The device of claim 17, wherein, to derive a disparity vector, the video coder is
configured to:

set a horizontal component of the disparity vector equal to a horizontal
component of the disparity motion vector; and

set a vertical component of the disparity vector equal to zero.

26. The device of claim 17, wherein the device comprises a wireless communication

device.

WO 2014/134170 PCT/US2014/018679

86

27. A computer-readable storage medium having instructions stored thereon that
when executed cause one or more processors of a video coder of a device for coding
video data for 3D-Advanced Video Coding (3D-AVC) to:
code a texture view component of a dependent view of the dependent views in
the 3D-AVC compliant video coding process, wherein the instructions that cause the
one or more processors to code the texture view component comprise instructions that
cause the one or more processors to:
evaluate motion information of only one or more neighboring blocks, of
a current macroblock block in the texture view component, with motion vectors
that refer to a first reference picture list of two reference picture lists and avoid
evaluating motion information of neighboring blocks with motion vectors that
refer to a second reference picture list of the two reference picture lists to
determine whether at least one neighboring block is inter-view predicted with a
disparity motion vector that refers to an inter-view reference picture in a view
other than the dependent view; and
derive a disparity vector for the current block based on the disparity
motion vector for one of the evaluated neighboring blocks;
assign the derived disparity vector to each block within the macroblock;
and
code a depth view component that corresponds to the texture view component

subsequent to coding the texture view component.

28. The computer-readable storage medium of claim 27, further comprising
instructions that cause the one or more processors to:

select a first temporal picture, wherein the first temporal picture comprises a
picture identified at a first entry of the first reference picture list; and

select a second temporal picture, wherein the second temporal picture comprises
a picture identified at a first entry of the second reference picture list,

wherein the instructions that cause the one or more processors to evaluate
motion information comprise instructions that cause the one or more processors to
evaluate motion information of at least one block in at least one of the first temporal
picture or the second temporal picture if a motion vector for the at least one block refers

to the first reference picture list.

WO 2014/134170 PCT/US2014/018679

87

29. The computer-readable storage medium of claim 27, wherein the video coder
comprises a video decoder, the storage medium further comprising instructions that
cause the one or more processors of the video decoder to:

receive a coded bitstream in the 3D-AVC compliant video coding process
generated with texture-first coding of dependent views from which the video decoder
decodes the texture view component and decodes the depth view component that

corresponds to the texture view component.

30. The computer-readable storage medium of claim 27, wherein the video coder
comprises a video encoder, the storage medium further comprising instructions that
cause the one or more processors of the video encoder to:

generate for output a coded bitstream with texture-first coding of dependent
views that includes the texture view component encoded by the video encoder and

includes the depth view component encoded by the video encoder.

WO 2014/134170

SOURCE DEVICE
12

VIDEO SOURCE
18

l

VIDEO
ENCODER
20

l

OUTPUT
INTERFACE
22

1711

— e— e— — —

l

| STORAGE |
| DEVICE L—

| 34

— —— — |

PCT/US2014/018679

Yy

FIG. 1

DESTINATION DEVICE
14

DISPLAY DEVICE
32

T

VIDEO
DECODER
30

T

INPUT INTERFACE
28

PCT/US2014/018679

WO 2014/134170

2/11

A ¢ 9Old
-t Y- - - - - - —_ e Y —_—= === || e |
114 |
Y3AOONI 03AIN |
— — Z9 |
95 8¢ 09 S)2079 03aIA 55 _
LINA LINN LINN a3LoNYLISNODIY Asonaw | !
ONId0oNS [CA™| ONISSIO0¥d [ONISSI00Nd -+ > _
NOILVZILNVNO IWNO4SNVYL e 3dN12ld
AdOU.N3 3ISHIANI JsuaANl | | A0018 8y FENEE R
1 -aIsay 1INN _
‘NOD3Y NOILOId3¥d _
VLN _
— |
17 |
1INN |
NOILVSN3dINOD |
NOILOW |
A «— _
v |
¢ ¢ 1INN _
SININTTI XVINAS NOILVINILST "
— NOILOW |
v _
1INN ONISSID0¥d |
NOILOIa3¥d |
— — 05
SIN3I0144309 75 ZS _ q - "
INMO4SNVYL 1INN 1INN
<] P
vnais3y ONISSID0Ud ONISSID0Nd . syoolg <Hwﬁw_uwm,__ A " V1va
a3ZILNVNO NOILVZILNVNO WHO4SNV¥L [SHO01E o3dIA | o3aiA

PCT/US2014/018679

WO 2014/134170

3/11

_
_ 78
- ! AMOWIN |
O3AIA | JUNLOId
a3aodad ETN 08 S)2079
_ vnais3y
_
_ 7
_ 1IN
| NOILDId3¥d
| VHINI
_ 7z
_ 1IN
| —— | NOILVSNIJINOD
| NOILOW
_ 1z
1INN ONISSID0¥d
_ NOILOIa3Nd
_
_
_
_
_ 0%

¥3a0903a OddIA

8z 97
1INN 1INN
ONISSIOONd |[€— SNISSIOONUd
INMO4SNVYL NOILVZILNVYND
3SYIANI 3SYIANI

A
‘44309
"ZILNVNO
0Z
eeemeemecemeememecemeeee] 1INN
9NIQ023a
SINIWITI XVINAS [5700 oo
69
AMOWIN [
v1vda o3diA

NVvI™1sllg
O3dIA
d3doON3

WO 2014/134170

N
:

Colocated BB

FIG. 4A

3 R}
b By
b
t*

PCT/US2014/018679

4/11 i

¥ 3

& 3
E N & 3

%

B

Codocssed MB

FIG. 4B

18 o

Co-Yoated MB

FIG. 4D

WO 2014/134170

16

Cotocated MB

FIG. 4E

? K

N ¥
i& : 3

;

:

Codocated MB

FIG. 4G

PCT/US2014/018679

5/11 16
i

18

To-dacxted B

FIG. 4F

R

CoYooated MB

FIG. 4H

WO 2014/134170

¥ 5
H &
£y ¥
H H
[&
H 3
o ~de
H ¥
H 3
H ¥
¥ ¢
@
% e
¥ ¥
H 3
H 5
] 3
3 3
A S e e e g
i ¥
H H
H ¥
! £
H &

Carrentiy coded BR

FIG. 5A

4
. m om o s
4

303D DD DURE DD DD DMNIAN 0g DY DX MNNL DN Mg N 0 pn o]

3
3
3
t]
]

o ¥ k
R TR 0 0 g 0

o i e e .

Currently coded MB

FIG. 5C

PCT/US2014/018679

% ¥
¥ ¥ H
¥ N 3
% N £
i § H
L3 ¥ H
N S P ey
¥ & 3
t & £
4 ¥ H
¥ by H
t ¥ H
Rl Bt S e
¥ & £
¥ ¥ H
$ by H
¥ 8 H
% N H
S e e -

§ S S
3 ¥ H
¥

t

%

Currently coded M2

FIG. 5B

by B]
Shehahaidd R il Sl R S SR adach et

P 3
U S
i 2

Currently coded MB

FIG. 5D

WO 2014/134170 PCT/US2014/018679

MB
g} 3 r&été@\} SRV \f s e neae oo
ﬁ o

Cawrventhy coded MB

FIG. 6A

Loener
BOsEtion

Ca-located MS patition

FIG. 6B

WO 2014/134170 PCT/US2014/018679

8/11

100
Ve

ENCODE TEXTURE VIEW COMPONENT OF DEPENDENT VIEW IN
3D-AVC COMPLIANT VIDEO CODING PROCESS

l r102

ENCODE DEPTH VIEW COMPONENT THAT CORRESPONDS TO
TEXTURE VIEW COMPONENT SUBSEQUENT TO ENCODING THE
TEXTURE VIEW COMPONENT

l /104

GENERATE FOR OUTPUT CODED BITSTREAM WITH TEXTURE-
FIRST CODING OF DEPENDENT VIEWS THAT INCLUDES ENCODED
TEXTURE VIEW COMPONENT AND DEPTH VIEW COMPONENT

FIG. 7

WO 2014/134170 PCT/US2014/018679

9/11

106
Ve

RECEIVE CODED BITSTREAM IN 3D-AVC COMPLIANT VIDEO
CODING PROCESS GENERATED WITH TEXTURE-FIRST CODING
OF DEPENDENT VIEWS

l r108

DECODE TEXTURE VIEW COMPONENT OF DEPENDENT VIEW

l /110

DECODE DEPTH VIEW COMPONENT THAT CORRESPONDS TO
TEXTURE VIEW COMPONENT SUBSEQUENT TO DECODING
TEXTURE VIEW COMPONENT

FIG. 8

WO 2014/134170 PCT/US2014/018679

10 /11

/-112
EVALUATE MOTION INFORMATION OF NEIGHBORING BLOCKS TO
DETERMINE WHETHER NEIGHBORING BLOCK IS INTER-VIEW
PREDICTED

l r114

DERIVE DISPARITY VECTOR BASED ON DISPARITY MOTION
VECTOR OF INTER-VIEW PREDICTED NEIGHBORING BLOCK

l r116

IF REFERENCE INDEX CORRESPONDS TO INTER-VIEW
REFERENCE PICTURE AND NEIGHBORING BLOCK NOT INTER-
PREDICTED WITH DISPARITY MOTION VECTOR, ASSIGN DERIVED
DISPARTY VECTOR TO NEIGHBORING BLOCK

l f118

DETERMINE MOTION VECTOR PREDICTOR UTILIZING MEDIAN
FILTERING WITH DERIVED DISPARITY VECTOR ASSIGNED TO
NEIGHBORING BLOCK

l /120

INTER-PREDICTION CODE CURRENT BLOCK BASED ON MOTION
VECTOR PREDICTOR

FIG.9

WO 2014/134170 PCT/US2014/018679

11/11

122
Vs

EVALUATE MOTION INFORMATION OF NEIGHBORING BLOCKS TO
DETERMINE WHETHER NEIGHBORING BLOCK IS INTER-VIEW
PREDICTED

l r124

DERIVE DISPARITY VECTOR BASED ON DISPARITY MOTION
VECTOR OF INTER-VIEW PREDICTED NEIGHBORING BLOCK

l r126

IF REFERENCE INDEX CORRESPONDS TO INTER-VIEW
REFERENCE PICTURE, UTILIZE DERIVED DISPARITY VECTOR AS
MOTION VECTOR PREDICTOR

l r128

INTER-PREDICTION CODE CURRENT BLOCK BASED ON MOTION
VECTOR PREDICTOR

FIG. 10

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - claims
	Page 82 - claims
	Page 83 - claims
	Page 84 - claims
	Page 85 - claims
	Page 86 - claims
	Page 87 - claims
	Page 88 - claims
	Page 89 - claims
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings

