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1. 

METHOD AND APPARATUS FOR 
CONTINUED RETIREMENT DURING 

COMMIT OF A SPECULATIVE REGION OF 
CODE 

BACKGROUND 

Field of the Invention 
This invention relates generally to the field of computer 

processors and Software. More particularly, the invention 
relates to a method and apparatus for continued retirement 
during commit of a speculative region of code. 

Description of the Related Art 
In prior processor architectures, the reorder buffer (ROB) 

was forced to stall retirement when a region commit uop was 
the oldest until the memory system (MEU) was prepared to 
commit values altered in the region. This process caused the 
out-of-order speculation mechanism to get "backed up' 
while waiting for the MEU. That is, at the time the commit 
operation is at the head of the ROB and ready to retire, its 
retirement is held back, thus preventing the ROB from 
retiring and speculating deeper into code Subsequent to the 
region. Delay in the retirement of the commit causes delay 
in the retirement of Subsequent uops, which delays releasing 
resources causing yet other sources of delay. 

BRIEF DESCRIPTION OF THE DRAWINGS 

A better understanding of the present invention can be 
obtained from the following detailed description in conjunc 
tion with the following drawings, in which: 

FIG. 1A is a block diagram illustrating both an exemplary 
in-order pipeline and an exemplary register renaming, out 
of-order issue/execution pipeline according to embodiments 
of the invention; 

FIG. 1B is a block diagram illustrating both an exemplary 
embodiment of an in-order architecture core and an exem 
plary register renaming, out-of-order issue/execution archi 
tecture core to be included in a processor according to 
embodiments of the invention; 

FIG. 2 is a block diagram of a single core processor and 
a multicore processor with integrated memory controller and 
graphics according to embodiments of the invention; 

FIG. 3 illustrates a block diagram of a system in accor 
dance with one embodiment of the present invention; 

FIG. 4 illustrates a block diagram of a second system in 
accordance with an embodiment of the present invention; 

FIG. 5 illustrates a block diagram of a third system in 
accordance with an embodiment of the present invention; 

FIG. 6 illustrates a block diagram of a system on a chip 
(SoC) in accordance with an embodiment of the present 
invention; 

FIGS. 7A-7B illustrates a block diagram contrasting the 
use of a software instruction converter to convert binary 
instructions in a source instruction set to binary instructions 
in a target instruction set according to embodiments of the 
invention; 

FIG. 8 shows a pipeline that can execution instructions 
out-of-order and execute instructions speculatively; 

FIG. 9 shows an embodiment of components of data 
dependency logic circuitry; 

FIG. 10a shows a first process for entering a pointer to 
physical register space to a free list array; 

FIG. 11a shows logic circuit components for performing 
the process of FIG. 10a; 

FIG. 10b shows a second process for entering a pointer to 
physical register space to a carry over write buffer; 
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2 
FIG.11b shows logic circuit components for performing 

the process of FIG. 10b, 
FIG. 12 shows a RAT having a bit for each entry to 

indicate whether the entry existed in the RAT at the end of 
non speculative execution; 

FIG. 13 shows a process for restoring RAT information 
from a COW buffer in order to rollback program state from 
a speculative region to a non speculative region; 

FIG. 14 shows a pipeline having a COW buffer in a write 
back stage of a pipeline; 

FIG. 15 shows a pipeline having a COW buffer in a write 
back stage of a pipeline and region identification logic in a 
data fetch stage; 

FIGS. 16a-c illustrate the timing of exemplary transac 
tional memory region commits and instruction retirements; 

FIG. 17 illustrates a method in accordance with one 
embodiment of the invention. 

DETAILED DESCRIPTION 

In the following description, for the purposes of expla 
nation, numerous specific details are set forth in order to 
provide a thorough understanding of the embodiments of the 
invention described below. It will be apparent, however, to 
one skilled in the art that the embodiments of the invention 
may be practiced without some of these specific details. In 
other instances, well-known structures and devices are 
shown in block diagram form to avoid obscuring the under 
lying principles of the embodiments of the invention. 

Exemplary Processor Architectures and Data Types 

FIG. 1A is a block diagram illustrating both an exemplary 
in-order pipeline and an exemplary register renaming, out 
of-order issue/execution pipeline according to embodiments 
of the invention. FIG. 1B is a block diagram illustrating both 
an exemplary embodiment of an in-order architecture core 
and an exemplary register renaming, out-of-order issue? 
execution architecture core to be included in a processor 
according to embodiments of the invention. The solid lined 
boxes in FIGS. 1A-B illustrate the in-order pipeline and 
in-order core, while the optional addition of the dashed lined 
boxes illustrates the register renaming, out-of-order issue? 
execution pipeline and core. Given that the in-order aspect 
is a Subset of the out-of-order aspect, the out-of-order aspect 
will be described. 

In FIG. 1A, a processor pipeline 100 includes a fetch stage 
102, a length decode stage 104, a decode stage 106, an 
allocation stage 108, a renaming stage 110, a scheduling 
(also known as a dispatch or issue) stage 112, a register 
read/memory read stage 114, an execute stage 116, a write 
back/memory write stage 118, an exception handling stage 
122, and a commit stage 124. 

FIG. 1B shows processor core 190 including a front end 
unit 130 coupled to an execution engine unit 150, and both 
are coupled to a memory unit 170. The core 190 may be a 
reduced instruction set computing (RISC) core, a complex 
instruction set computing (CISC) core, a very long instruc 
tion word (VLIW) core, or a hybrid or alternative core type. 
As yet another option, the core 190 may be a special-purpose 
core, such as, for example, a network or communication 
core, compression engine, coprocessor core, general purpose 
computing graphics processing unit (GPGPU) core, graphics 
core, or the like. 
The front end unit 130 includes a branch prediction unit 

132 coupled to an instruction cache unit 134, which is 
coupled to an instruction translation lookaside buffer (TLB) 
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136, which is coupled to an instruction fetch unit 138, which 
is coupled to a decode unit 140. The decode unit 140 (or 
decoder) may decode instructions, and generate as an output 
one or more micro-operations, micro-code entry points, 
microinstructions, other instructions, or other control sig- 5 
nals, which are decoded from, or which otherwise reflect, or 
are derived from, the original instructions. The decode unit 
140 may be implemented using various different mecha 
nisms. Examples of suitable mechanisms include, but are not 
limited to, look-up tables, hardware implementations, pro- 10 
grammable logic arrays (PLAS), microcode read only 
memories (ROMs), etc. In one embodiment, the core 190 
includes a microcode ROM or other medium that stores 
microcode for certain macroinstructions (e.g., in decode unit 
140 or otherwise within the front end unit 130). The decode 15 
unit 140 is coupled to a rename/allocator unit 152 in the 
execution engine unit 150. 
The execution engine unit 150 includes the rename/ 

allocator unit 152 coupled to a retirement unit 154 and a set 
of one or more scheduler unit(s) 156. The scheduler unit(s) 20 
156 represents any number of different schedulers, including 
reservations stations, central instruction window, etc. The 
scheduler unit(s) 156 is coupled to the physical register 
file(s) unit(s) 158. Each of the physical register file(s) units 
158 represents one or more physical register files, different 25 
ones of which store one or more different data types. Such as 
Scalar integer, Scalar floating point, packed integer, packed 
floating point, vector integer, vector floating point, status 
(e.g., an instruction pointer that is the address of the next 
instruction to be executed), etc. In one embodiment, the 30 
physical register file(s) unit 158 comprises a vector registers 
unit, a write mask registers unit, and a scalar registers unit. 
These register units may provide architectural vector regis 
ters, vector mask registers, and general purpose registers. 
The physical register file(s) unit(s) 158 is overlapped by the 35 
retirement unit 154 to illustrate various ways in which 
register renaming and out-of-order execution may be imple 
mented (e.g., using a reorder buffer(s) and a retirement 
register file(s); using a future file(s), a history buffer(s), and 
a retirement register file(s); using a register maps and a pool 40 
of registers; etc.). The retirement unit 154 and the physical 
register file(s) unit(s) 158 are coupled to the execution 
cluster(s) 160. The execution cluster(s) 160 includes a set of 
one or more execution units 162 and a set of one or more 
memory access units 164. The execution units 162 may 45 
perform various operations (e.g., shifts, addition, Subtrac 
tion, multiplication) and on various types of data (e.g., Scalar 
floating point, packed integer, packed floating point, vector 
integer, vector floating point). While some embodiments 
may include a number of execution units dedicated to 50 
specific functions or sets of functions, other embodiments 
may include only one execution unit or multiple execution 
units that all perform all functions. The scheduler unit(s) 
156, physical register file(s) unit(s) 158, and execution 
cluster(s) 160 are shown as being possibly plural because 55 
certain embodiments create separate pipelines for certain 
types of data/operations (e.g., a scalar integer pipeline, a 
Scalar floating point/packed integer/packed floating point/ 
vector integer/vector floating point pipeline, and/or a 
memory access pipeline that each have their own scheduler 60 
unit, physical register file(s) unit, and/or execution cluster— 
and in the case of a separate memory access pipeline, certain 
embodiments are implemented in which only the execution 
cluster of this pipeline has the memory access unit(s) 164). 
It should also be understood that where separate pipelines 65 
are used, one or more of these pipelines may be out-of-order 
issue/execution and the rest in-order. 

4 
The set of memory access units 164 is coupled to the 

memory unit 170, which includes a data TLB unit 172 
coupled to a data cache unit 174 coupled to a level 2 (L.2) 
cache unit 176. In one exemplary embodiment, the memory 
access units 164 may include a load unit, a store address 
unit, and a store data unit, each of which is coupled to the 
data TLB unit 172 in the memory unit 170. The instruction 
cache unit 134 is further coupled to a level 2 (L2) cache unit 
176 in the memory unit 170. The L2 cache unit 176 is 
coupled to one or more other levels of cache and eventually 
to a main memory. 
By way of example, the exemplary register renaming, 

out-of-order issue/execution core architecture may imple 
ment the pipeline 100 as follows: 1) the instruction fetch 138 
performs the fetch and length decoding stages 102 and 104; 
2) the decode unit 140 performs the decode stage 106; 3) the 
rename/allocator unit 152 performs the allocation stage 108 
and renaming stage 110; 4) the scheduler unit(s) 156 per 
forms the schedule stage 112; 5) the physical register file(s) 
unit(s) 158 and the memory unit 170 perform the register 
read/memory read stage 114; the execution cluster 160 
perform the execute stage 116; 6) the memory unit 170 and 
the physical register file(s) unit(s) 158 perform the write 
back/memory write stage 118; 7) various units may be 
involved in the exception handling stage 122; and 8) the 
retirement unit 154 and the physical register file(s) unit(s) 
158 perform the commit stage 124. 
The core 190 may support one or more instructions sets 

(e.g., the x86 instruction set (with some extensions that have 
been added with newer versions); the MIPS instruction set 
of MIPS Technologies of Sunnyvale, Calif.; the ARM 
instruction set (with optional additional extensions such as 
NEON) of ARM Holdings of Sunnyvale, Calif.), including 
the instruction(s) described herein. In one embodiment, the 
core 190 includes logic to support a packed data instruction 
set extension (e.g., AVX1, AVX2, and/or some form of the 
generic vector friendly instruction format (U=0 and/or U=1), 
described below), thereby allowing the operations used by 
many multimedia applications to be performed using packed 
data. 

It should be understood that the core may support multi 
threading (executing two or more parallel sets of operations 
or threads), and may do so in a variety of ways including 
time sliced multithreading, simultaneous multithreading 
(where a single physical core provides a logical core for each 
of the threads that physical core is simultaneously multi 
threading), or a combination thereof (e.g., time sliced fetch 
ing and decoding and simultaneous multithreading thereaf 
ter such as in the Intel(R) Hyperthreading technology). 

While register renaming is described in the context of 
out-of-order execution, it should be understood that register 
renaming may be used in an in-order architecture. While the 
illustrated embodiment of the processor also includes sepa 
rate instruction and data cache units 134/174 and a shared L2 
cache unit 176, alternative embodiments may have a single 
internal cache for both instructions and data, such as, for 
example, a Level 1 (L1) internal cache, or multiple levels of 
internal cache. In some embodiments, the system may 
include a combination of an internal cache and an external 
cache that is external to the core and/or the processor. 
Alternatively, all of the cache may be external to the core 
and/or the processor. 

FIG. 2 is a block diagram of a processor 200 that may 
have more than one core, may have an integrated memory 
controller, and may have integrated graphics according to 
embodiments of the invention. The solid lined boxes in FIG. 
2 illustrate a processor 200 with a single core 202A, a system 
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agent 210, a set of one or more bus controller units 216, 
while the optional addition of the dashed lined boxes illus 
trates an alternative processor 200 with multiple cores 
202A-N, a set of one or more integrated memory controller 
unit(s) 214 in the system agent unit 210, and special purpose 5 
logic 208. 

Thus, different implementations of the processor 200 may 
include: 1) a CPU with the special purpose logic 208 being 
integrated graphics and/or scientific (throughput) logic 
(which may include one or more cores), and the cores 10 
202A-N being one or more general purpose cores (e.g., 
general purpose in-order cores, general purpose out-of-order 
cores, a combination of the two); 2) a coprocessor with the 
cores 202A-N being a large number of special purpose cores 
intended primarily for graphics and/or scientific (through- 15 
put); and 3) a coprocessor with the cores 202A-N being a 
large number of general purpose in-order cores. Thus, the 
processor 200 may be a general-purpose processor, copro 
cessor or special-purpose processor, Such as, for example, a 
network or communication processor, compression engine, 20 
graphics processor, GPGPU (general purpose graphics pro 
cessing unit), a high-throughput many integrated core (MIC) 
coprocessor (including 30 or more cores), embedded pro 
cessor, or the like. The processor may be implemented on 
one or more chips. The processor 200 may be a part of 25 
and/or may be implemented on one or more Substrates using 
any of a number of process technologies. Such as, for 
example, BiCMOS, CMOS, or NMOS. 
The memory hierarchy includes one or more levels of 

cache within the cores, a set or one or more shared cache 30 
units 206, and external memory (not shown) coupled to the 
set of integrated memory controller units 214. The set of 
shared cache units 206 may include one or more mid-level 
caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or 
other levels of cache, a last level cache (LLC), and/or 
combinations thereof. While in one embodiment a ring 
based interconnect unit 212 interconnects the integrated 
graphics logic 208, the set of shared cache units 206, and the 
system agent unit 210/integrated memory controller unit(s) 
214, alternative embodiments may use any number of well 
known techniques for interconnecting Such units. In one 
embodiment, coherency is maintained between one or more 
cache units 206 and cores 202-A-N. 

In some embodiments, one or more of the cores 202A-N 
are capable of multi-threading. The system agent 210 
includes those components coordinating and operating cores 
202A-N. The system agent unit 210 may include for 
example a power control unit (PCU) and a display unit. The 
PCU may be or include logic and components needed for 
regulating the power state of the cores 202A-N and the 
integrated graphics logic 208. The display unit is for driving 
one or more externally connected displays. 
The cores 202A-N may be homogenous or heterogeneous 

in terms of architecture instruction set; that is, two or more 
of the cores 202A-N may be capable of execution the same 
instruction set, while others may be capable of executing 
only a subset of that instruction set or a different instruction 
set. In one embodiment, the cores 202A-N are heteroge 
neous and include both the “small cores and “big” cores 
described below. 

FIGS. 3-6 are block diagrams of exemplary computer 
architectures. Other system designs and configurations 
known in the arts for laptops, desktops, handheld PCs, 
personal digital assistants, engineering workstations, Serv 
ers, network devices, network hubs, switches, embedded 
processors, digital signal processors (DSPs), graphics 
devices, video game devices, set-top boxes, micro control 
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6 
lers, cell phones, portable media players, hand held devices, 
and various other electronic devices, are also suitable. In 
general, a huge variety of systems or electronic devices 
capable of incorporating a processor and/or other execution 
logic as disclosed herein are generally suitable. 

Referring now to FIG. 3, shown is a block diagram of a 
system 300 in accordance with one embodiment of the 
present invention. The system 300 may include one or more 
processors 310, 315, which are coupled to a controller hub 
320. In one embodiment the controller hub 320 includes a 
graphics memory controller hub (GMCH)390 and an Input/ 
Output Hub (IOH) 350 (which may be on separate chips); 
the GMCH390 includes memory and graphics controllers to 
which are coupled memory 340 and a coprocessor 345; the 
IOH 350 is couples input/output (I/O) devices 360 to the 
GMCH 390. Alternatively, one or both of the memory and 
graphics controllers are integrated within the processor (as 
described herein), the memory 340 and the coprocessor 345 
are coupled directly to the processor 310, and the controller 
hub 320 in a single chip with the IOH 350. 
The optional nature of additional processors 315 is 

denoted in FIG. 3 with broken lines. Each processor 310, 
315 may include one or more of the processing cores 
described herein and may be some version of the processor 
2OO. 
The memory 340 may be, for example, dynamic random 

access memory (DRAM), phase change memory (PCM), or 
a combination of the two. For at least one embodiment, the 
controller hub 320 communicates with the processor(s) 310, 
315 via a multi-drop bus, such as a frontside bus (FSB), 
point-to-point interface Such as QuickPath Interconnect 
(QPI), or similar connection 395. 

In one embodiment, the coprocessor 345 is a special 
purpose processor, such as, for example, a high-throughput 
MIC processor, a network or communication processor, 
compression engine, graphics processor, GPGPU, embed 
ded processor, or the like. In one embodiment, controller hub 
320 may include an integrated graphics accelerator. 

There can be a variety of differences between the physical 
resources 310,315 in terms of a spectrum of metrics of merit 
including architectural, microarchitectural, thermal, power 
consumption characteristics, and the like. 

In one embodiment, the processor 310 executes instruc 
tions that control data processing operations of a general 
type. Embedded within the instructions may be coprocessor 
instructions. The processor 310 recognizes these coproces 
sor instructions as being of a type that should be executed by 
the attached coprocessor 345. Accordingly, the processor 
310 issues these coprocessor instructions (or control signals 
representing coprocessor instructions) on a coprocessor bus 
or other interconnect, to coprocessor 345. Coprocessor(s) 
345 accept and execute the received coprocessor instruc 
tions. 

Referring now to FIG. 4, shown is a block diagram of a 
first more specific exemplary system 400 in accordance with 
an embodiment of the present invention. As shown in FIG. 
4, multiprocessor System 400 is a point-to-point interconnect 
system, and includes a first processor 470 and a second 
processor 480 coupled via a point-to-point interconnect 450. 
Each of processors 470 and 480 may be some version of the 
processor 200. In one embodiment of the invention, proces 
sors 470 and 480 are respectively processors 310 and 315, 
while coprocessor 438 is coprocessor 345. In another 
embodiment, processors 470 and 480 are respectively pro 
cessor 310 coprocessor 345. 

Processors 470 and 480 are shown including integrated 
memory controller (IMC) units 472 and 482, respectively. 
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Processor 470 also includes as part of its bus controller units 
point-to-point (P-P) interfaces 476 and 478; similarly, sec 
ond processor 480 includes P-P interfaces 486 and 488. 
Processors 470, 480 may exchange information via a point 
to-point (P-P) interface 450 using P-P interface circuits 478, 
488. As shown in FIG. 4, IMCs 472 and 482 couple the 
processors to respective memories, namely a memory 432 
and a memory 434, which may be portions of main memory 
locally attached to the respective processors. 

Processors 470, 480 may each exchange information with 
a chipset 490 via individual P-P interfaces 452, 454 using 
point to point interface circuits 476, 494, 486, 498. Chipset 
490 may optionally exchange information with the copro 
cessor 438 via a high-performance interface 439. In one 
embodiment, the coprocessor 438 is a special-purpose pro 
cessor, Such as, for example, a high-throughput MIC pro 
cessor, a network or communication processor, compression 
engine, graphics processor, GPGPU, embedded processor, 
or the like. 
A shared cache (not shown) may be included in either 

processor or outside of both processors, yet connected with 
the processors via P-P interconnect, such that either or both 
processors local cache information may be stored in the 
shared cache if a processor is placed into a low power mode. 

Chipset 490 may be coupled to a first bus 416 via an 
interface 496. In one embodiment, first bus 416 may be a 
Peripheral Component Interconnect (PCI) bus, or a bus such 
as a PCI Express bus or another third generation I/O 
interconnect bus, although the scope of the present invention 
is not so limited. 
As shown in FIG. 4, various I/O devices 414 may be 

coupled to first bus 416, along with a bus bridge 418 which 
couples first bus 416 to a second bus 420. In one embodi 
ment, one or more additional processor(s) 415. Such as 
coprocessors, high-throughput MIC processors, GPGPUs, 
accelerators (such as, e.g., graphics accelerators or digital 
signal processing (DSP) units), field programmable gate 
arrays, or any other processor, are coupled to first bus 416. 
In one embodiment, second bus 420 may be a low pin count 
(LPC) bus. Various devices may be coupled to a second bus 
420 including, for example, a keyboard and/or mouse 422, 
communication devices 427 and a storage unit 428 Such as 
a disk drive or other mass storage device which may include 
instructions/code and data 430, in one embodiment. Further, 
an audio I/O 424 may be coupled to the second bus 420. 
Note that other architectures are possible. For example, 
instead of the point-to-point architecture of FIG. 4, a system 
may implement a multi-drop bus or other such architecture. 

Referring now to FIG. 5, shown is a block diagram of a 
second more specific exemplary system 500 in accordance 
with an embodiment of the present invention. Like elements 
in FIGS. 4 and 5 bear like reference numerals, and certain 
aspects of FIG. 4 have been omitted from FIG. 5 in order to 
avoid obscuring other aspects of FIG. 5. 

FIG. 5 illustrates that the processors 470, 480 may include 
integrated memory and I/O control logic (“CL”) 472 and 
482, respectively. Thus, the CL 472, 482 include integrated 
memory controller units and include I/O control logic. FIG. 
5 illustrates that not only are the memories 432, 434 coupled 
to the CL 472, 482, but also that I/O devices 514 are also 
coupled to the control logic 472, 482. Legacy I/O devices 
515 are coupled to the chipset 490. 

Referring now to FIG. 6, shown is a block diagram of a 
SoC 600 in accordance with an embodiment of the present 
invention. Similar elements in FIG. 2 bear like reference 
numerals. Also, dashed lined boxes are optional features on 
more advanced SoCs. In FIG. 6, an interconnect unit(s) 602 
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is coupled to: an application processor 610 which includes 
a set of one or more cores 202A-N and shared cache unit(s) 
206; a system agent unit 210; a bus controller unit(s) 216; an 
integrated memory controller unit(s) 214; a set or one or 
more coprocessors 620 which may include integrated graph 
ics logic, an image processor, an audio processor, and a 
Video processor, an static random access memory (SRAM) 
unit 630; a direct memory access (DMA) unit 632; and a 
display unit 640 for coupling to one or more external 
displays. In one embodiment, the coprocessor(s) 620 include 
a special-purpose processor, Such as, for example, a network 
or communication processor, compression engine, GPGPU, 
a high-throughput MIC processor, embedded processor, or 
the like. 

Embodiments of the mechanisms disclosed herein may be 
implemented in hardware, software, firmware, or a combi 
nation of such implementation approaches. Embodiments of 
the invention may be implemented as computer programs or 
program code executing on programmable systems compris 
ing at least one processor, a storage system (including 
Volatile and non-volatile memory and/or storage elements), 
at least one input device, and at least one output device. 

Program code, such as code 430 illustrated in FIG.4, may 
be applied to input instructions to perform the functions 
described herein and generate output information. The out 
put information may be applied to one or more output 
devices, in known fashion. For purposes of this application, 
a processing system includes any system that has a proces 
Sor, such as, for example; a digital signal processor (DSP), 
a microcontroller, an application specific integrated circuit 
(ASIC), or a microprocessor. 
The program code may be implemented in a high level 

procedural or object oriented programming language to 
communicate with a processing system. The program code 
may also be implemented in assembly or machine language, 
if desired. In fact, the mechanisms described herein are not 
limited in scope to any particular programming language. In 
any case, the language may be a compiled or interpreted 
language. 
One or more aspects of at least one embodiment may be 

implemented by representative instructions stored on a 
machine-readable medium which represents various logic 
within the processor, which when read by a machine causes 
the machine to fabricate logic to perform the techniques 
described herein. Such representations, known as “IP cores' 
may be stored on a tangible, machine readable medium and 
Supplied to various customers or manufacturing facilities to 
load into the fabrication machines that actually make the 
logic or processor. 

Such machine-readable storage media may include, with 
out limitation, non-transitory, tangible arrangements of 
articles manufactured or formed by a machine or device, 
including storage media such as hard disks, any other type 
of disk including floppy disks, optical disks, compact disk 
read-only memories (CD-ROMs), compact disk rewritable's 
(CD-RWs), and magneto-optical disks, semiconductor 
devices such as read-only memories (ROMs), random 
access memories (RAMs) such as dynamic random access 
memories (DRAMs), static random access memories 
(SRAMs), erasable programmable read-only memories 
(EPROMs), flash memories, electrically erasable program 
mable read-only memories (EEPROMs), phase change 
memory (PCM), magnetic or optical cards, or any other type 
of media suitable for storing electronic instructions. 

Accordingly, embodiments of the invention also include 
non-transitory, tangible machine-readable media containing 
instructions or containing design data, such as Hardware 
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Description Language (HDL), which defines structures, cir 
cuits, apparatuses, processors and/or system features 
described herein. Such embodiments may also be referred to 
as program products. 

In some cases, an instruction converter may be used to 
convert an instruction from a source instruction set to a 
target instruction set. For example, the instruction converter 
may translate (e.g., using static binary translation, dynamic 
binary translation including dynamic compilation), morph, 
emulate, or otherwise convert an instruction to one or more 
other instructions to be processed by the core. The instruc 
tion converter may be implemented in Software, hardware, 
firmware, or a combination thereof. The instruction con 
verter may be on processor, off processor, or part on and part 
off processor. 

FIG. 7 is a block diagram contrasting the use of a software 
instruction converter to convert binary instructions in a 
Source instruction set to binary instructions in a target 
instruction set according to embodiments of the invention. 
In the illustrated embodiment, the instruction converter is a 
software instruction converter, although alternatively the 
instruction converter may be implemented in Software, firm 
ware, hardware, or various combinations thereof. FIG. 7 
shows a program in a high level language 702 may be 
compiled using an x86 compiler 704 to generate x86 binary 
code 706 that may be natively executed by a processor with 
at least one x86 instruction set core 716. The processor with 
at least one x86 instruction set core 716 represents any 
processor that can perform Substantially the same functions 
as an Intel processor with at least one x86 instruction set 
core by compatibly executing or otherwise processing (1) a 
substantial portion of the instruction set of the Intel x86 
instruction set core or (2) object code versions of applica 
tions or other software targeted to run on an Intel processor 
with at least one x86 instruction set core, in order to achieve 
Substantially the same result as an Intel processor with at 
least one x86 instruction set core. The x86 compiler 704 
represents a compiler that is operable to generate x86 binary 
code 706 (e.g., object code) that can, with or without 
additional linkage processing, be executed on the processor 
with at least one x86 instruction set core 716. Similarly, FIG. 
7 shows the program in the high level language 702 may be 
compiled using an alternative instruction set compiler 708 to 
generate alternative instruction set binary code 710 that may 
be natively executed by a processor without at least one x86 
instruction set core 714 (e.g., a processor with cores that 
execute the MIPS instruction set of MIPS Technologies of 
Sunnyvale, Calif. and/or that execute the ARM instruction 
set of ARM Holdings of Sunnyvale, Calif.). The instruction 
converter 712 is used to convert the x86 binary code 706 into 
code that may be natively executed by the processor without 
an x86 instruction set core 714. This converted code is not 
likely to be the same as the alternative instruction set binary 
code 710 because an instruction converter capable of this is 
difficult to make; however, the converted code will accom 
plish the general operation and be made up of instructions 
from the alternative instruction set. Thus, the instruction 
converter 712 represents software, firmware, hardware, or a 
combination thereof that, through emulation, simulation or 
any other process, allows a processor or other electronic 
device that does not have an x86 instruction set processor or 
core to execute the x86 binary code 706. 

Method and Apparatus for Continued Retirement 
During Commit of a Speculative Region 

The embodiments of the invention described below pro 
vide a mechanism to allow continued retirement of instruc 
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10 
tions during a commit of a speculative region of program 
code. Specifically, one embodiment allows the retirement of 
instructions to proceed through the commit micro-operation 
(hereinafter “uop’) into post-region code even if the 
memory execution unit (MEU) has not committed the region 
yet. In this embodiment, the uops that follow a region may 
be considered to be part of the region itself. When retirement 
is allowed to proceed past the commit uop, but yet the region 
Subsequently aborts because of a memory issue, the archi 
tectural register values must be restored to the point at the 
beginning of the region, throwing out both the region and 
post-region execution. This new mode ends when one of 
several conditions arises. First, if a new region begin is ready 
to retire, retirement must stall until the previous region is 
ready to commit otherwise extra tracking is required for two 
regions to be in the process of committing simultaneously, 
which is added complexity especially in the MEU. Second, 
if a uop comes up for retirement that is not allowed inside 
of a region because its retirement cannot be undone by the 
copy-on-write (COW) mechanism described below, retire 
ment must stall. Third, if the region actually commits, and 
there are no additional regions inside the conventional 
speculation mechanism, treating Subsequent code as being 
inside the region is no longer necessary (this is referred to as 
“free and clear”). 
The COW mechanism implemented in one embodiment 

of the invention will first be described with reference to 
FIGS. 8-14, followed by a detailed description of techniques 
for continued retirement during commit of a speculative 
region of code. 
As observed in FIG. 8, an instruction sequence 810 

executed by an instruction execution pipeline is composed 
of a series of instructions that a compiler or programmer has 
determined should be executed in the order the instructions 
are presented to the pipeline. Here, registers R1 and R2 are 
understood to be architectural registers as they are specifi 
cally called out and comprehended by the program code. 
Often, the resultant of an earlier instruction is used as an 
input operand for a later instruction. For example, the 
resultant R1 of instruction 811 is used as an input operand 
for instruction 812. In this sense, instruction 812 can be said 
to have “a dependency” on instruction 811. That is, instruc 
tion 812 can not be executed in the execution stage 803 until 
instruction 811 is executed and its resultant retired. Instruc 
tion 813 is also observed to have a dependency on instruc 
tion 812. 
By contrast, instructions 814 through 816 do not have any 

dependency on instructions 811 through 813 (instruction 
sequence 814 through 816 processes data from memory 
location MI2048 and writes memory location M2056 
which is different than instruction sequence 811 through 813 
which processes data from memory location M1024 and 
writes memory location M1032). Strict in order execution 
of the instruction sequence 810 will therefore lead to a drop 
off in performance if delay is encountered fetching the data 
for instruction 811. As it turns out, the input operand for 
instruction 811 needs to be fetched from system memory 
(which is a time wasteful process). As such, all of instruc 
tions 812 through 816 must wait until the data for instruction 
811 has been retrieved from system memory if instruction 
sequence 810 is to be processed strictly in order. 

In order to avoid the unnecessary delay of an instruction 
that does not have any dependencies on earlier “in flight' 
instructions, many modern instruction execution pipelines 
have enhanced data fetch and write back stages to effect 
“out-of-order execution. Here, the data fetch stage 802 of 
pipeline 800 is enhanced to include data dependency logic 
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805 to recognize when an instruction does not have a 
dependency on an earlier in flight instruction, and, permit its 
issuance to the instruction execution stage 803 “ahead of. 
e.g., an earlier instruction whose data has not yet been 
fetched. Typically, physical registers as opposed to archi 
tectural registers are used to Support the out-of-order execu 
tion. 

Moreover, the write-back stage 804 is enhanced to include 
a re-order buffer 806 that re-orders the results of out-of-order 
executed instructions into their correct order, and, delays 
their retirement to the architectural register file at least until 
a correctly ordered consecutive sequence of instruction 
execution results have retired. Note that in a physical 
register-based out-of-order machine, the retirement of val 
ues to the architectural register file does not involve a copy 
of the data, but rather a proper management of the mapping 
between the architectural register ID and the physical reg 
ister holding the value. 
The enhanced instruction execution pipeline is also 

observed to include instruction speculation logic 807 within 
the instruction fetch stage 801. Instruction sequences branch 
out into different paths depending on a condition Such as the 
value of a variable. The speculation logic 807 studies the 
upcoming instruction sequence, guesses at what conditional 
branch direction or jump the instruction sequence will take 
(it has to guess because the condition that determines the 
branch direction or jump may not have executed or retired 
yet) and begins to fetch the instruction sequence that flows 
from that direction or jump. The speculative instructions are 
then processed by the remaining stages of the execution 
pipeline 800. 

Here, the re-order buffer 806 of the write back stage 804 
will delay the retirement of the results of the speculatively 
executed instructions until there is confirmation that the 
original guess made by the speculation logic 807 was 
correct. Once confirmation is made that the guess was 
correct, the results are retired to the architectural register 
file. If it turns out the guess was wrong, results in the 
re-order buffer 806 for the speculative instructions are 
discarded (“flushed') as is the state of any in flight specu 
lative instructions within the pipeline 800. The pipeline 800 
then re-executes from the branch/jump target with the cor 
rect sequence of instructions. 

Here, instructions must be retired to the architectural 
register file in order so that stores write to the memory 
system in the proper order. If execution is stopped for any 
reason (such as an exception or user breakpoint or interrupt) 
the state of the retired architectural registers are consistent 
Such that everything before the stopping point has been 
completed and nothing after the stopping point has been 
completed. 

Traditionally, the size of the re-order buffer 806 deter 
mines the number of instructions that can execute out-of 
order as well as execute speculatively. Here, the re-order 
buffer 806 acts as a kind of temporary queue for the results 
of instructions that have been executed by the execution 
stage 803, but, are not yet able to be retired. This kind of 
speculation can be referred to as “traditional speculation'. 

FIG. 9 shows pertinent design features of the data depen 
dency logic 805 of the pipeline 800 of FIG. 8. Referring to 
FIGS. 8 and 9, note that original instruction sequence 810 
calls out architectural register R1. Data dependency logic 
805 will recognize that: 1) instructions 814, 815 and 816 do 
not depend on instructions 811, 812 and 813; and 2) if 
instructions 814, 815, and 816 are to be executed before or 
commensurate with instructions 811, 812 and 813 (to effect 
out-of-order execution), then, in order to calculate the cor 
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12 
rect resultants, registers other than architectural register R1 
need to be referred to (e.g., R1', R1", R1", R1" as discussed 
below). As such, data dependency logic 805 performs “reg 
ister renaming to rename, or map, where appropriate to 
effect out-of-order execution, the specific architectural reg 
isters called out by the original program code to a larger set 
of “physical registers”. 
As observed in FIG. 8 and the architectural register R1 

called out by original code sequence 810 of FIG. 8 (R1) is 
renamed 820 to registers R1', R1", R1", R1". Here, note 
that renaming can typically be viewed as a form of version 
ing where R1' is viewed as the older version of architectural 
register R1" and R1" is viewed as the older version of 
architectural register R1", etc. 
Renamed registers R1" through R1" are, in turn, mapped 

to physical registers. For simplicity, FIG. 9 only shows the 
mapping of registers R1" and R1" to Phys ID 1 and Phy 
s ID 2. Here, a Register Alias Table (RAT) 901 contains a 
mapping of the renamed registers R1, R1" to the corre 
sponding physical registers Phys ID 1, Phys ID 2 that are 
used to actually implement the renamed registers R1, R1". 
The RAT 901 essentially contains a listing of the specific 
physical registers that the data fetch stage has allocated for 
the corresponding renamed registers of the instructions that 
are being processed by the pipeline (“in-flight') but have not 
yet retired. As observed in FIG. 9, the RAT901 contains a 
mapping for each in flight renamed register, and, a corre 
sponding physical address or pointer to its specific, corre 
sponding register in the physical register file 902. Note that 
RAT 901 represents the correct mapping to the physical 
registers for the point in the program that is currently 
allocating into the processor, as well as mappings for older 
versions of an architectural register that is still in flight, and 
further contains the mapping for the retired version of the 
architectural register. The specific structures used to track all 
in flight renamed versions of an architectural register may 
vary from embodiment to embodiment. 
A free list array 903 also contains a list of pointers to 

registers in the physical register file 902 whose correspond 
ing register data is not associated with any version of an 
architectural register including the retired version, or other 
wise can be overwritten. 

Here, logic circuitry within the data dependency logic 805 
(and/or within the write back stage 804) is designed to 
recognize when no further dependencies exist on an archi 
tectural register entered in the RAT901. Again, typically, the 
program code that is presented to the pipeline assumes that 
the pipeline will process the program code strictly in order. 
AS Such, a signature within the original program code (i.e., 
before renaming) that a register is holding information that 
no following instructions depend on is the first occurrence of 
an instruction that overwrites the register with new infor 
mation from memory or another register. Instruction 814 of 
instruction sequence 810 of FIG. 8 has this property. Such 
instructions may be viewed as belonging to a class of 
instructions referred to as “overwriter instructions. 
Upon the retirement of an overwriter instruction, the entry 

in the RAT 901 for the retired version of the corresponding 
architectural register that was overwritten in the original 
code is flushed from the RAT 901, and, the pointer to the 
physical register file 902 for the flushed entry is moved from 
the RAT901 to the free list array 903. For example, when 
instruction 814 retires, R1" becomes the retired version, and 
the previous retired version is no longer needed and can be 
moved to the free list. That is, renamed register R1" with 
PhysID 2 is no longer needed, and PhysID 2 can be moved 
to the free list. 
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When a new instruction is presented to the data fetch stage 
802 for execution, new versions are created and thus new 
physical registers are allocated for the architectural registers 
written by the instruction. The new physical registers are 
allocated by taking pointers from the free list array 903 and 
creating a mapping from architectural register to the physi 
cal register in the RAT901. 

In the case of speculative execution, data dependency 
logic 805 also has the ability to restore the RAT901 back to 
its state at the branch or jump whose direction was incor 
rectly guessed, or back to the retired values if the machine 
nukes (that is, the entire pipeline is cleared or flushed). 

Recalling that, traditionally, a re-order buffer will retire 
instruction results to the architectural register file when a 
series of results are realized in correct sequence order. 
Physical (actual) registers are written to at execution time. 
These same registers are deemed architectural when they 
retire. Depending on implementation, the contents of a 
retired register could be copied over to an actual architec 
tural register, or simply remain in the physical register file 
but managed or otherwise tracked as the architectural ver 
sion vs speculative/physical versions within the RAT. 

Moreover, recall that the size of the re-order buffer 
traditionally sets a limit on the number of instructions that 
can be executed out-of-order or speculatively. More 
advanced pipelines are presently being designed to Support 
more aggressive speculation ("extended speculation') 
whose run length of speculative code can be (e.g., much) 
larger than the size of the re-order buffer. 

In order to Support extended speculative execution 
beyond the size of the reorder buffer, one perspective is that 
any extended speculative instruction stream may execute 
and even retire its results to the architectural register file 
and/or memory, so long as the state of the machine can be 
brought back to the correct (non-speculative) instruction 
stream if the speculation was incorrect. In an embodiment, 
in order to support extended speculative execution, the 
pipeline is configured to implement an "atomic' scale com 
mitment process when committing extended speculatively 
executed code. In particular, the results of an entire self 
consistent region of extended speculative code (a "commit 
point”) is concurrently committed to the true architectural 
state and/or memory ("commit the region'). 

In order to Support this or other approaches where 
extended speculative results are actually retired to the archi 
tectural register file and/or memory, the RAT and free array 
list should be designed to prevent the overwriting of infor 
mation that existed in the physical register file for each of the 
architectural registers consistent with a program point just 
before speculation first started (e.g., content within the 
physical register file for each of the architectural registers 
consistent with a program point as of the end of non 
speculation). The corpus of physical register space that is 
pointed to by the entries in the free list array at the time 
speculation started is free to be used by the speculative code 
going forward. However, precautions should be taken to 
make Sure that the corpus of physical register space that is 
pointed to by the entries in the RAT for each of the 
architectural registers consistent with a program point when 
speculation starts should not be overwritten by the specu 
lative code. By so doing, if the code needs to fall back and 
re-start from the point just before the start of speculation, the 
state of the program code for each of the architectural 
registers at the point can be recalled. That is, if a physical 
register holds a value that is needed after a fall back 
operation, even if the value is no longer associated with any 
active version of an architectural register during traditional 
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speculation including the architecturally retired version, the 
physical register must be preserved. 

Thus, in an embodiment, the start of extended speculation 
is marked and the program code progresses speculatively. As 
discussed above, in the case of extended speculation instruc 
tions are permitted to retire to architectural state. 

Recall from the background that, typically, the program 
code that is presented to the pipeline assumes that the 
pipeline will process the program code strictly in order. As 
Such, the signature within the original program code (i.e., 
before renaming) that a register is holding information that 
no following instructions depend on is the first occurrence of 
an overwriter instruction. 

In the case of extended speculative execution, the specu 
latively executed code is apt to reach (potentially multiple 
times, once for each architectural register that is represented 
in the RAT) a region where a physical register file register 
that was “live” at the moment speculation started (i.e., there 
were potential dependences on its associated information) 
no longer has any dependencies on it. For example, the 
speculatively executed code is apt to present the pipeline 
with an “overwriter instruction that intends to overwrite the 
information associated with an architectural register. During 
allocation a new version of that architectural register is 
created, thus replacing as current an earlier version of a 
renamed register. The earlier version has an entry in the RAT 
that was carried over from the non speculative to speculative 
code regions. 

According to traditional register renaming behavior, refer 
ring to FIGS. 10a and 11a, upon retirement of an overwriter 
instruction 1114, the entry 1120 in the RAT 1101 for the 
retired version of a renamed register 1111 whose information 
was supposed to be overwritten is deleted 1001 from the 
RAT 1101, and, the entry's pointer 1112 to the physical 
register space 1111 is moved 1002 to the free array list1103. 
This has the effect of freeing up register space 1111 for 
Subsequent overwriting. 
By contrast, in an embodiment, referring to FIGS. 1 Ob 

and 11 b, this behavior is not followed when the overwriter 
instruction 1114 is extended speculatively executed and 
retired and is attempting to overwrite an older version of a 
renamed register that had an existing entry 1120 in the RAT 
1101 that was carried over from the non speculative to the 
speculative code regions. In the case of a speculative over 
writer instruction that is to overwrite information having an 
entry in the RAT that was carried over from the non 
speculative to the speculative code regions, the entry's 
pointer 1112 to the physical register space 1111 is not moved 
to the free array list 1103 when overwriter instruction 1114 
retires. Rather, it is moved 1004 to a copy-on-write (COW) 
buffer 1104. 

In a further embodiment, the pointer 1112 is appended or 
otherwise linked to the architectural register (R1) that it was 
associated with in the RAT (e.g., the information of the 
entire entry 1120 is stored in the COW buffer 1104). Here, 
by preventing the pointer 1112 from entering the free list 
array 1103, the corresponding physical register space 1111 
cannot be overwritten by Subsequently executed speculative 
code. By also saving the identity of the pointer's corre 
sponding architectural register, the state information of the 
RAT 1101 for that entry 1120 at the end of non speculative 
execution is essentially being saved. By treating each entry 
that existed in the RAT 1101 that was consistent with the 
point in the program when non-speculative execution ended 
in the same fashion, the entire contents of the RAT 1101 as 
of the end of non speculative execution is essentially saved 
in the COW buffer 1104. As such, if needed, the machine can 
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roll-back and restart execution from that state if the specu 
lative execution needs to be discarded. 

Thus, to reiterate, in an embodiment, only the entries that 
exist in the RAT 1101 consistent with a point in the program 
when speculative execution is started have their pointers to 
physical register space (and, associated logical register 
names) specially saved to the COW buffer 1104. Subsequent 
entries that are created in the RAT for the (potentially 
extensive) speculatively executed code have their pointers 
moved to the free array list 1103 upon the retirement of an 
overwriter consistent with the processes of FIGS. 10a and 
11a. By so doing, state information in physical register space 
1111 reflecting a point in program consistent with the end of 
non speculative execution is saved thereby permitting pro 
gram execution to roll-back back to that state should the 
speculative execution need to be discarded. For extended 
speculation, in one embodiment, branches are resolved 
before they retire in the traditional speculation portion of the 
machine. Here, traditional speculation corresponds to specu 
lation within the depth/size of the reorder buffer. Not spe 
cially saving RAT information for RAT entries that are not 
carried over from the non-speculative region to the specu 
lative region is acceptable regardless if the traditional specu 
lation follows the correct program code path or not. The 
physical register associated with RAT entry 1120 is not 
moved to the free list array 1103 or the COW buffer 1104 
until the overwriter retires, by which time all prior branches 
must have been resolved, and correct program code path 
determined. On a branch misprediction in the traditional 
speculation portion of the machine, the RAT 1101 deletes the 
mappings to physical registers associated with instructions 
on the incorrect path, returns their allocated physical regis 
ters to the free list array 1103, and restores as current the 
mappings between architectural registers and physical reg 
isters, including information about which current RAT 1101 
entries were carried over from the non speculative region to 
the speculative region, to the point immediately after the 
mispredicting branch on the correct path. In another embodi 
ment branch direction is not resolved until after traditional 
speculation has retired but before extended speculation has 
committed. In this case, Some physical registers may have 
been returned to the free list array 1103 that might be needed 
on the correct path, and thus the whole extended speculation 
region must be discarded, the RAT 1101 restored from the 
COW buffer 1104, and execution resumed from the restored 
State. 

In an embodiment, as observed in FIG. 12, each entry in 
the RAT 1201 is provided with a bit 1202 to indicate whether 
or not the entry corresponds to an entry that was carried over 
in RAT 1201 from the non speculative region to the specu 
lative region. If the bit of an entry is set to indicate that the 
entry was carried over in the RAT 1201 from the non 
speculative region, the entry is treated according to the 
processes discussed above with respect to FIGS. 10b and 
11b. By contrast, if the bit of an entry indicates that the entry 
was not carried over in the RAT 1201 from the non 
speculative region, the entry is treated according to the 
processes of FIGS. 10a and 11a. By definition, any new 
entry that is entered into the RAT 1201 during the execution 
of extended speculative code does not have its bit set, thus 
indicating that it was not carried over from the non-specu 
lative region to the speculative region. This effectively 
ensures that only the RAT state consistent with a point in the 
program at the end of non speculative execution is saved 
across a non speculative/speculative code boundary. 

Referring to FIG. 13, if the speculation is deemed unsuc 
cessful 1301, a "pipeline nuke' is performed to clear the 
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pipeline of any state information associated with traditional 
speculative code. This process will restore the RAT to be 
consistent with the current retirement point in the re-order 
buffer. Any results in the re-order buffer that were deter 
mined speculatively through traditional speculation may 
also be flushed from the re-order buffer, and their corre 
sponding physical registers identifiers returned to the free 
list array. Then, the RAT entries that were not carried over 
from the non-speculative region to the speculative region are 
flushed from the RAT 1302. Here, any pointers of such 
entries are returned to the free array list to permit their 
associated information in the physical register file to be 
overwritten. The Saved RAT entries within the COW are 
then re-populated back into the RAT to restore the RAT to 
a point in the program just before speculation started 1303. 
So doing has the effect of rolling back program execution to 
its last non-speculative point. 
The physical register file 1102 discussed above is typi 

cally used to hold operand data and resultants of “math 
ematical and/or logic' operations performed on the oper 
ands. There are typically two kinds of Such operands/ 
resultants: integer and floating point. Here, physical register 
space 1102 may be viewed as corresponding to one or the 
other or both depending on implementation. Other kinds of 
information may be stored in register space that is typically 
not associated with the operands/resultants of standard 
mathematical/logic operations. Examples include control or 
control-like information kept in model specific register 
(MSR) space, and/or control and/or status flag register space 
used to help direct program flow (e.g., an MXCSR register 
that stores program directives, flags and masks (e.g., under 
flow mask, overflow mask, round-to-zero, round positive, 
round to nearest, precision flag, etc.). Again, register file 
1102 may be presumed to include such registers. 

Normally, however, program control register space Such 
as the contents of an MXCSR register is not the type of 
register space associated with register renaming and out-of 
order execution. Therefore there may not be any entry in a 
RAT for a mapping to a specific version or physical register, 
even though it is part of the state of executing program code. 
In other embodiments, these types of registers may be 
versioned and renamed into a separate physical register file 
that is separate from the physical register file used for data. 
Further this physical control register file may not be of 
Sufficient size or may not be of a Sufficient organization (e.g., 
an array of physical entries organized as a properly ordered 
list) to preserve overwritten versions until the speculative 
region commits while allowing additional entries for tradi 
tional speculative. As such in these embodiments, when the 
end of non speculative execution is recognized but before 
the start of execution of speculative program code, accord 
ing to one embodiment, the allocation pipeline includes 
logic circuitry to automatically dump Such program control 
content into temporary integer or floating point logical 
register space 1102 and create a corresponding entry in the 
RAT including the setting of the bit to indicate the entry was 
present in the RAT as of the end of non speculative execu 
tion. By so doing, the program control state information of 
the code will also not be overwritten by the speculative code 
according to the processes discussed above with respect to 
FIGS. 10b, 11b and 12. If the speculation is to be discarded 
and the program returned to its last state prior to the start of 
speculation, after the RAT is repopulated with the contents 
from the COW buffer, the entry corresponding to the pro 
gram control state information is dumped back into its 
appropriate register space by special logic circuitry of the 
pipeline. Note that throughout extended speculation, the 
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pointer to the saved copy of the MXCSR register may reside 
in RAT 1120. Only if the same temporary register is over 
written inside the extended speculation region will the 
pointer to the physical register containing the saved copy of 
the MXCSR register be moved into the COW. In another 
embodiment, the allocation pipeline may insert micro-op 
erations into the pipeline that perform the dump into the 
temporary registers. In a further embodiment, an architec 
tural instruction that signals the beginning of extended 
speculation may include dedicated micro-operations to per 
form the dump into the temporary registers. 

In a similar vein, certain areas of “same' defined register 
space can exist in different physical locations. For example, 
8-bit AH register space, which is logically bits 8-15 of parent 
register RAX, may be stored in a different physical location 
than the 8 bit allocation for it within its parent RAX register. 
As such, in an embodiment, prior to the start of speculation, 
the separately stored AH portion is combined back into its 
RAX parent by special logic circuitry so that only one RAT 
entry and one physical register contain all of the RAX data, 
and, only one COW entry would need to be created for the 
RAX and AH data items if RAX (and therefore implicitly 
AH) is overwritten inside the extended speculation region 
rather than two. If the speculative code has to be rolled back 
to the end of non speculative state, the pipeline includes 
special logic circuitry that can separately store the AH 
information from the RAX register space to reflect the state 
of the code at the end of its non speculative region. In 
another embodiment, the RAT will be restored with the 
mapping of RAX to the single combined physical register, 
and an indication set in the RAT that AH is not separate and 
currently comprehend in physical register mapped to RAX. 
Like with control register State, the merge may be performed 
by dedicated allocation pipeline circuitry, by micro-opera 
tions inserted by the allocation engine, or by dedicated 
micro-operations included in the micro-operation flow of 
instructions that indicate the start of extended speculation. 

Furthermore, even though the RAX parent is combined at 
the beginning of the speculative region, the AH information 
might be written alone inside the speculative region (thus 
creating a COW entry mapping AH to its old physical 
register). Note, however, that the RAT still holds a mapping 
from RAX (minus the AH part) to the same physical register. 
If RAX is written to later in the speculative region, the 
mapping of RAX to the same physical register will be 
moved to the COW. So the COW will have AH and RAX in 
two records pointing to that same physical register. Note that 
this is the last reference to that physical register, but by the 
processes of FIGS. 10b/11b, that physical register will not be 
returned to the freelist. Note that there would have been 
additional cases if AH and RAX could have started the 
speculative region as two different physical entries. 

Architectural result flags of a carry flag ('C') group and 
different result flag components of an overflow? sign/parity/ 
auxiliary/Zero flag (OSPAZ) group can also similarly be 
combined into a single register location just prior to entering 
a speculative code region. As such, isolated pieces of 
register state, even including mathematical/logic state, may 
be combined into same register space just prior to entry into 
a speculative code region to reduce COW entry overhead. 

FIG. 14 illustrates architectural components employed in 
one embodiment which include a register rename and allo 
cation logic 1411 and reservation station 1412 at the data 
fetch stage, and a ROB 1405, register reclaim table (RRT) 
1430, COW buffer 1404, and free list array 1403 at the write 
back stage. The discussion above has primarily contem 
plated the presence and control of the free list array within 
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the data fetch stage, assuming that the RAT 1413 tracks all 
in-flight versions of each architectural register including the 
retired version. In the implementation shown in FIG. 14, the 
free list array 1403 is managed by logic circuitry of the write 
back stage in conjunction with the operation of the RRT 
1430 which keeps track of the in-flight (allocated) over 
writer instructions whose retirement represents that no 
dependencies exist on the respective information that the 
over-writer instruction over-writes in the original, strictly 
ordered program code. This structure is written when an 
over-writer allocates into the RAT, and read when the 
over-writer retires. Without extended speculation, physical 
register identifiers read from the RRT upon retirement 
represent physical registers that can be returned to the free 
list array, as described in FIGS. 10a and 11a. 

For each such over-writer instruction, the RRT 1430 lists 
the pointers into physical register space where the informa 
tion that the over-writer overwrites in the original code 
resides. Thus, upon retirement of a non speculative over 
writer instruction, the instruction’s corresponding pointer in 
the RRT 1430 is flushed from the RRT 1430 and entered into 
the free list array 1403. Notably, in the particular embodi 
ment of FIG. 14, the free list array 1403 and COW buffer 
1404 are located in the write-back pipeline stage as opposed 
to the data fetch pipeline stage (although each or one or the 
other could conceivably be located in the data fetch stage). 
In an embodiment, in order to Support extended speculative 
execution, similar to the discussion of FIG. 12, each entry in 
the RRT may include a bit that indicates whether the RAT 
mapped an architectural register to a physical register that 
carried over from the non speculative region to the specu 
lative region. As a physical register identifier is replaced 
from the RAT due to an overwriter, it is placed into the RRT 
corresponding to the overwriter, and the bit associated with 
the RAT entry specifying whether it was present at the end 
of the non-speculative execution is copied into the RRT 
along with the physical register identifier. Retirement of a 
speculative overwriter, as a consequence of the set bit, 
causes the corresponding pointer that is flushed from the 
RRT to be entered into the COW 1404 rather than the free 
list array 1403. 

In an alternate embodiment, a second RAT (not shown in 
FIG. 14, also referred to as a Retirement RAT (RRAT)) is 
located in the write-back stage, whereas the primary RAT is 
located in the allocation or data fetch stage. The primary 
RAT tracks the mapping between architectural registers and 
physical registers during renaming, whereas the retirement 
RAT in the write-back stage tracks the mapping between 
architectural and physical registers representing the retired 
state in program order. When an over writer retires, the over 
written physical register pointer can be moved from the 
second RAT to the freelist or to the COW, depending on the 
processes of FIGS. 10a/11a and 10b/11b. 

In an alternative embodiment, rather than have an extra bit 
for each RRT entry, a separate data structure (not shown in 
FIG. 14) is used to keep track of the non speculative state 
information (that is, information that would need to be 
restored if state must be rolled back due to incorrect 
extended speculation) that could be overwritten by specu 
lative code if precautions are not undertaken. For example, 
a non speculative RRT may exist that is separate from the 
RRT. Upon allocation of a speculative overwriter that could 
overwrite non speculative state information needed for roll 
back, an entry is created in the non speculative RRT with a 
pointer to the impacted non speculative state information 
(and an identifier of the associated architectural register). In 
an embodiment, the creation of the entry may include 
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shifting an entry that existed at the end of non speculative 
execution within the RRT from the RRT to the non specu 
lative RRT. 

Speculative overwriters that do not affect non speculative 
state needed for rollback have entries created in the normal 
RRT rather than the non speculative RRT. Upon retirement 
of a speculative overwriter instruction that can impact non 
speculative state, the pointer to the physical register space in 
the corresponding non speculative RRT entry is automati 
cally moved to the COW (along with the identifier of the 
logical register). According to one embodiment, both the 
normal RRT and the non speculative RRT are contained 
within the traditional speculative portion of the machine. 
Both are corrected in response to branch misprediction by 
eliminating entries for overwriters that were on the wrong 
path. Upon retirement of an overwriter, the overwritten 
physical registers that are no longer needed as stored in the 
RRT are moved to the freelist, and the physical registers that 
must be preserved in case of a rollback as stored in the non 
speculative RRT are moved into the COW. According to one 
embodiment, the RRT and the freelist may be a single 
structure with a pointer that distinguishes the portion rep 
resenting the RRT and the portion representing the freelist, 
whereas the pointer is advanced upon retirement of an 
overwriter effectively moving physical register identifiers 
from the traditional speculation engine (RRT) portion to the 
free list portion. Similarly, the non speculative RRT and the 
COW may be a single structure with a pointer that distin 
guishes the portion representing the non speculative RRT 
and the portion representing the COW, whereas the pointer 
is advanced upon retirement of an overwriter effectively 
moving physical register identifiers from the traditional 
speculation engine (non speculative RRT) portion to the 
COW portion. Because the COW essentially protects a 
certain amount of register space from overwriting during 
speculation, the size of the COW can be viewed as setting a 
limit on how far speculative code can progress in terms of 
overwriting non speculative state information. In order to 
reduce COW size, one approach is to permit speculation 
only for a certain type of register. For example, according to 
one approach, the COW is designed to support extended 
speculation for integer registers but not floating point reg 
isters. As such, extended speculation can proceed until a first 
floating point register is used by the speculative code. Upon 
reaching the first extended speculative instruction that 
attempts to modify a register type that cannot be modified 
during extended speculation, an atomic commit is forced 
upon any speculative retired but not committed instructions. 
If the atomic commit is not possible, the speculation is rolled 
back to its last non speculative state. 

Note that the above discussion has focused on a circuitry 
designs for a single thread. Support for speculation for each 
of multiple threads could be effected by instantiating a 
separate instance of Such circuitry for each of the multiple 
threads and/or storage for the associated context of each 
thread. 
Upon atomic commit of the extended speculative region, 

the physical registers mapped by pointers in the COW 1404 
no longer need to be preserved because there is no further 
risk of a rollback. After the commit, the physical register 
identifiers from the COW can be moved to the free list. 
Techniques for Continued Retire During Commit 
The extended speculation mechanisms described above 

allow the size of the instruction region (number of instruc 
tions that may be executed prior to knowing whether to 
commit or abort the region) to exceed that of the reorder 
buffer used for conventional out-of-order speculation. The 
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machine performs conventional (i.e., "traditional') specula 
tion for high performance execution while retiring instruc 
tions within the region. As discussed above, the COW 1404 
maintains copies of the architectural registers from the time 
the extended speculation mechanism began, thus providing 
a mechanism for restoring the architectural registers to 
pre-speculation values. 
The region of code for extended speculation will be 

referred to below as the InTx (inside a transaction) region. 
In the architecture discussed above, the ROB was forced to 
stall retirement when a region commit uop was the oldest 
until the memory system (MEU) was prepared to commit 
values altered in the region. This process causes the out-of 
order speculation mechanism to get “backed up” while 
waiting for the MEU. That is, at the time the commit 
operation is at the head of the ROB 1405 and ready to retire, 
its retirement is held back, thus preventing the ROB 1405 
from retiring and speculating deeper into code Subsequent to 
the region. Delay in the retirement of the commit causes 
delay in the retirement of Subsequent uops, which delays 
releasing resources causing yet other sources of delay. 
The embodiments of the invention described below allow 

continued retirement of instructions during a commit of a 
speculative region of program code. Specifically, one 
embodiment allows the retirement of instructions to proceed 
through the commit uop into post-region code even if the 
memory execution unit (MEU) 164 has not committed the 
region yet. The range of uops not normally InTX (not 
normally inside the extended speculation region) but 
included inside the region by the techniques described below 
is referred as the “Post-Tx' region. That is, the Post-Txuops 
are considered to be part of the region itself. When retire 
ment is allowed to proceed past the commit uop, but yet the 
region Subsequently aborts because of a memory issue, the 
architectural register values must be restored to the point at 
the beginning of the region, throwing out both the region and 
post-region execution. 

In one embodiment, this new mode ends when one of 
several conditions arises. First, if the beginning of a new 
region is ready to retire, retirement must stall until the 
previous region is ready to commit otherwise extra tracking 
is required for two regions to be in the process of committing 
simultaneously, which is added complexity especially in the 
MEU. Second, if a uop comes up for retirement that is not 
allowed inside of a region because its retirement cannot be 
undone by the copy-on-write (COW) mechanism described 
below, retirement must stall. Third, if the region actually 
commits, and there are no additional regions inside the 
conventional speculation mechanism, treating Subsequent 
code as being inside the region is no longer necessary (this 
is referred to as “free and clear). 

FIG. 15 includes one embodiment of an architecture for 
continued retirement of instructions during a commit of a 
speculative region of program code. Unless otherwise stated, 
the components illustrated in FIG. 15 perform the same 
functions as those described above with respect to FIG. 14. 

In one embodiment, the decisions related to the inclusion 
of uops inside regions are made at allocation time. Specifi 
cally, region identification logic 1501 within the register 
rename and allocation logic 1411 identifies InTX and post 
TX transactional memory regions and generates region indi 
cators to identify these regions. As mentioned, the region 
indicator may treat the InTX and post-Tx regions as a single 
region. 

Transactions may be delineated by begin and end instruc 
tions such as XBEGIN and XEND, respectively. In one 
embodiment, using this information, the region identifica 
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tion logic 1501 tags instructions with the region indicator. 
During this stage, a decision is made as to what storage 
location is to be used (such as a position in the load or store 
buffer of a MOB), an assignment of a physical register for 
use by the instruction (this may include register renaming), 
and which functional unit to use (if necessary). Regardless 
of how region indicator tagging is performed, region indi 
cator information is subsequently stored within the ROB 
1405. 

FIGS. 16a-b illustrate an example where program order 
includes InTx Region 1, followed by a PostTx Region 1, 
further followed by an InTx Region 2. The diagram depicts 
an abstract view of the Reorder Buffer (ROB 1405), where 
program order runs left to right. The shaded region 1600 is 
the PostTX code, that is, instructions not normally consid 
ered part of a region. As mentioned, in one embodiment, the 
region identification logic 1501 in the RAT 1413 treats 
PostTx Region 1 1610 as part of the InTx region, putting 
overwritten values into the COW 1404 if the values were 
live across the boundary into InTx Region 1. In this Figure, 
the PostTx Region 1 is defined by the RAT 1413 and the 
ROB 1405 will send the RAT the commit signals described 
herein. In FIG. 16a, the region has not committed by the 
time the Begin of InTx of Region 2 has started allocation, 
thus the entirety of instructions between the two regions are 
considered PostTx, and the RAT includes them in Region 1. 

In FIG. 16a, the region has not committed by the time the 
Begin of InTx Region 2 1605 reaches retirement. At this 
point, the Begin InTX of Region 2 serves as the actual 
commit point of Region 1, and retirement will be delayed 
until the combined InTx Region 1 +the PostTx Region 1 
have actually committed. Thus the ROB considered the 
entirety of InTx Region 1+the PostTx Region 1 to be in the 
region 1620. When this combined region commits, all of the 
COW entries for the combined InTx Region 1+the PostTx 
Region 1 have been accounted for as the overwriters that 
created them have been retired. The physical registers pre 
served in the COW 1404 for the combined region can all be 
moved to the free list array 1403 because the possibility of 
an abort has passed. The next entries in the COW 1404 will 
belong to InTX Region 2 and Subsequent regions. Thus the 
RAT 1413 and ROB 1405 have equivalent views of what is 
PostTx and what is not. 

In FIG. 16b, like in FIG. 16a, the region has not com 
mitted by the time the Begin of InTx of Region 2 has started 
allocation, thus the entirety of instructions between the two 
regions are considered PostTx, and the RAT includes them 
in Region 1. However, in FIG. 16b the region commits while 
in the middle of retiring PostTx Region 1 code. At this point, 
only some overwriters that created COW entries have retired 
and others have not. The ROB 1405 view of what was just 
committed is a subset of what the RAT 1413 marked (portion 
1601 of PostTx Region 1 vs the complete PostTx Region 1 
(portions 1601+1602)) 1630. When the combined InTx 
Region 1 +the partial PostTx Region 1 (1601) have actually 
committed, the physical registers in those COW entries can 
be moved to the free list 1403. However, subsequent uops 
may have been considered PostTx at allocation time (by the 
RAT 1413) and created entries in the COW 1404 even 
though the ROB considers the transaction complete. When 
those overwriter uops retire, the physical registers held in 
those COW entries can be moved directly to the free list 
1403; there is no more risk of an abort of the combined 
region. Note that this is equivalent to treating these COW 
entries (region 1602) as if they were actually in the RRT 
1430 (as previously described). That is, as these overwriters 
retire, the physical registers do not need to be saved in case 
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of an abort, and can be freed into the free list 1403. Even 
though the ROB 1405 is no longer in Tx, it should compre 
hend that RAT considered them in Tx and free the COW 
entries like it would RRT entries upon uop retirement. 
The third scenario illustrated in FIG.16c is similar, except 

that the RAT 1413 can terminate a PostTx region 1604 when 
it encounters a non-allowed uop 1603. Where the non 
allowed uop comes up for retirement prior to the combined 
region commit, retirement will stall on the not-allowed uop 
until the combined region does commit. The combined 
commit point is at the non-allowed uop. In one embodiment, 
where the commit occurs prior to the non-allowed uop 
coming up for retirement, the commit can proceed (as in 
FIG. 16b), but the ROB 1405 must free physical registers 
stored in the COW 1404 as retirement proceeds up to the 
point of the non-allowed uop within ROB PostTx Region 
1606. Note that in the non-allowed code region 1603, the 
RAT 1413 will not put any physical registers into the COW 
1404. 
The fourth scenario is a special case where there are no 

Subsequent regions or non-allowed uops in the conventional 
out-of-order mechanism when the combined region com 
mits. Up to this point, the region identification logic 1501 
has been marking uops as PostTX and can now stop because 
it is not possible for any further regions to abort. In this 
scenario, there is no case as in FIG.16a, but the case in FIG. 
16b still applies. After the commit, the region identification 
logic 1501 will stop marking uops as PostTX, and the ROB 
1405 must free the physical registers held in the COW 1404 
upon retirement of overwriters up to the point where the 
region identification logic 1501 stopped marking uops as 
PostTx. Considering branch misprediction and pipeline 
nukes, it is possible for the conventional speculative path to 
be considered PostTx, a branch mispredict to occur simul 
taneous with the commit, and then the newly allocated 
correct path be free-and-clear (non-PostTx). In one embodi 
ment, the speculation mechanism described above repairs 
the COW 1404 such that uops allocated into the ROB 1405 
prior to the commit will still have COW entries and be 
considered PostTX, COW entries created for wrong path 
uops will be eliminated and the incorrectly allocated physi 
cal registers returned to the free list 1403, and no COW 
entries are created for the non-PostTx uop allocations. 
A method in accordance with one embodiment of the 

invention is illustrated in FIG. 17. The method may be 
implemented on the architecture illustrated in FIG. 15, but is 
not limited to any particular architecture. 
At 1701, a plurality of transactional memory regions are 

identified within program code to be executed. For example, 
as mentioned above, each instruction may be tagged with a 
transactional memory region identifier. At 1702, one or more 
uops following one (or more) of the transactional memory 
regions are identified. As discussed above, the transactional 
memory region may be logically extended to include these 
uops (i.e., so that the “region' used for processing comprises 
the transactional memory region+the post-region uops). At 
1703, one or more of the plurality of uops which follow the 
transactional memory region (i.e., in the post-region code) 
are allowed to retire following execution even if a commit 
operation associated with the transactional memory region is 
waiting to complete (e.g., due to memory latency in the 
pipeline). Thus, as discussed above, rather than stalling the 
pipeline until the commit has completed, this embodiment of 
the invention allows additional uops in the post-region code 
to retire, thereby improving performance. 

In the foregoing specification, the invention has been 
described with reference to specific exemplary embodiments 
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thereof. It will, however, be evident that various modifica 
tions and changes may be made thereto without departing 
from the broader spirit and scope of the invention as set forth 
in the appended claims. The specification and drawings are, 
accordingly, to be regarded in an illustrative rather than a 5 
restrictive sense. 

Embodiments of the invention may include various steps, 
which have been described above. The steps may be embod 
ied in machine-executable instructions which may be used to 
cause a general-purpose or special-purpose processor to 10 
perform the steps. Alternatively, these steps may be per 
formed by specific hardware components that contain hard 
wired logic for performing the steps, or by any combination 
of programmed computer components and custom hardware 
components. 15 
As described herein, instructions may refer to specific 

configurations of hardware such as application specific 
integrated circuits (ASICs) configured to perform certain 
operations or having a predetermined functionality or soft 
ware instructions stored in memory embodied in a non- 20 
transitory computer readable medium. Thus, the techniques 
shown in the Figures can be implemented using code and 
data stored and executed on one or more electronic devices 
(e.g., an end Station, a network element, etc.). Such elec 
tronic devices store and communicate (internally and/or with 25 
other electronic devices over a network) code and data using 
computer machine-readable media, Such as non-transitory 
computer machine-readable storage media (e.g., magnetic 
disks; optical disks; random access memory; read only 
memory; flash memory devices; phase-change memory) and 30 
transitory computer machine-readable communication 
media (e.g., electrical, optical, acoustical or other form of 
propagated signals—such as carrier waves, infrared signals, 
digital signals, etc.). In addition, Such electronic devices 
typically include a set of one or more processors coupled to 35 
one or more other components. Such as one or more storage 
devices (non-transitory machine-readable storage media), 
user input/output devices (e.g., a keyboard, a touchscreen, 
and/or a display), and network connections. The coupling of 
the set of processors and other components is typically 40 
through one or more busses and bridges (also termed as bus 
controllers). The storage device and signals carrying the 
network traffic respectively represent one or more machine 
readable storage media and machine-readable communica 
tion media. Thus, the storage device of a given electronic 45 
device typically stores code and/or data for execution on the 
set of one or more processors of that electronic device. Of 
course, one or more parts of an embodiment of the invention 
may be implemented using different combinations of Soft 
ware, firmware, and/or hardware. Throughout this detailed 50 
description, for the purposes of explanation, numerous spe 
cific details were set forth in order to provide a thorough 
understanding of the present invention. It will be apparent, 
however, to one skilled in the art that the invention may be 
practiced without some of these specific details. In certain 55 
instances, well known structures and functions were not 
described in elaborate detail in order to avoid obscuring the 
Subject matter of the present invention. Accordingly, the 
Scope and spirit of the invention should be judged in terms 
of the claims which follow. 60 
What is claimed is: 
1. A method implemented in a processor comprising: 
identifying a plurality of transactional memory regions in 

program code, including a first transactional memory 
region; and 65 

retiring one or more of plurality of operations which 
follow the first transactional memory region even when 
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a commit operation associated with the first transac 
tional memory region is waiting to complete, wherein 
the commit operation associated with the first transac 
tional memory region includes at least one speculative 
execution, wherein the one or more of plurality of 
operations that follow the first transactional memory 
region are treated as part of the first transactional 
memory region so that states of architectural registers 
of the processor from execution of the first transac 
tional memory region and the one or more of the 
plurality of operations are preserved. 

2. The method as in claim 1 wherein the operations are 
microoperations (uops). 

3. The method as in claim 1 further comprising: 
stalling a retirement operation of a current transactional 
memory region until a previous transactional memory 
region is ready to commit. 

4. The method as in claim 1 further comprising: 
detecting an abort operation to abort execution of the 

plurality of operations following the first transactional 
memory region; and 

restoring the architectural registers to a state existing at a 
start of the first transactional memory region; and 

discarding results from the first transactional memory 
region and/or the plurality of operations following the 
first transactional memory region. 

5. The method as in claim 4 wherein restoring the 
architectural registers comprises reading data associated 
with the state from a copy-on-write (COW) buffer. 

6. The method as in claim 1 further comprising: 
detecting that retirement of an operation of the plurality of 

operations following the first transactional memory 
region would result in the inability to restore the 
architectural registers to a state existing at a start of the 
first transactional memory region; and 

responsively stalling retirement of the operation. 
7. The method as in claim 6 wherein detecting comprises 

detecting that retirement cannot be undone by restoring the 
architectural registers from a copy-on-write (COW) buffer. 

8. A processor comprising: 
first logic to identify a plurality of transactional memory 

regions in program code, including a first transactional 
memory region; and 

second logic to retire one or more of a plurality of 
operations which follow the first transactional memory 
region even when a commit operation associated with 
the first transactional memory region is waiting to 
complete, wherein the commit operation associated 
with the first transactional memory region includes at 
least one speculative execution, 

and wherein the first logic and second logic treat the 
plurality of operations that follow the first transactional 
memory region as part of the first transactional memory 
region for the purposes of retiring operations so that 
states of architectural registers of the processor from 
execution of the first transactional memory region and 
the one or more of the plurality of operations are 
preserved. 

9. The processor as in claim 8 wherein the operations are 
microoperations (uops). 

10. The processor as in claim 8 wherein the second logic 
stalls a retirement operation of a current transactional 
memory region until a previous transactional memory region 
is ready to commit. 

11. The processor as in claim 8 comprising additional 
logic to: 
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detect an abort operation to abort execution of the plu 
rality of operations following the first transactional 
memory region; and 

restore the architectural registers to a state existing at a 
start of the first transactional memory region; and 

discard results from the first transactional memory region 
and/or the plurality of operations following the first 
transactional memory region. 

12. The processor as in claim 11 further comprising: 
a copy-on-write (COW) buffer, wherein restoring the 

architectural registers comprises reading data associ 
ated with the state from the COW buffer. 

13. The processor as in claim 8 comprising additional 
logic to: 

detect that a retire operation of the plurality of operations 
following the first transactional memory region would 
result in the inability to restore the architectural regis 
ters to a state existing at a start of the first transactional 
memory region; and 

responsively stall retirement of the operation. 
14. The processor as in claim 13 wherein detecting 

comprises detecting that retirement cannot be undone by 
restoring the architectural registers from a copy-on-write 
(COW) buffer. 

15. A system comprising: 
a memory for storing program code and data; 
a input/output communication interface for communicat 

ing with one or more peripheral devices: 
a network communication interface for communicatively 

coupling the system to a network; and 
a processor comprising: 
first logic to identify a plurality of transactional memory 

regions in program code, including a first transactional 
memory region; and 

Second logic to retire one or more of a plurality of 
operations which follow the first transactional memory 
region even when a commit operation associated with 
the first transactional memory region is waiting to 
complete, wherein the commit operation associated 
with the first transactional memory region includes at 
least one speculative execution, 
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and wherein the first logic and second logic treat the 

plurality of operations that follow the first transactional 
memory region as part of the first transactional memory 
region for the purposes of retiring operations so that 
states of architectural registers of the processor from 
execution of the first transactional memory region and 
the one or more of the plurality of operations are 
preserved. 

16. The system as in claim 15 wherein the operations are 
microoperations (uops). 

17. The system as in claim 15 wherein the second logic 
stalls a retirement operation of a current transactional 
memory region until a previous transactional memory region 
is ready to commit. 

18. The system as in claim 15 wherein the processor 
comprises additional logic to: 

detect an abort operation to abort execution of the plu 
rality of operations following the first transactional 
memory region; and 

restore the architectural registers to a state existing at a 
start of the first transactional memory region; and 

discard results from the first transactional memory region 
and/or the plurality of operations following the first 
transactional memory region. 

19. The system as in claim 18 wherein the processor 
further comprises: 

a copy-on-write (COW) buffer, wherein restoring the 
architectural registers comprises reading data associ 
ated with the state from the COW buffer. 

20. The system as in claim 15 wherein the processor 
comprises additional logic to: 

detect that a retire operation of the plurality of operations 
following the first transactional memory region would 
result in the inability to restore the architectural regis 
ters to a state existing at a start of the first transactional 
memory region; and 

responsively stall retirement of the operation. 
21. The system as in claim 20 wherein detecting com 

prises detecting that retirement cannot be undone by restor 
ing the architectural registers from a copy-on-write (COW) 
buffer. 


