
(12) United States Patent
Rajwar et al.

USO09535744B2

US 9,535,744 B2
Jan. 3, 2017

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND APPARATUS FOR
CONTINUED RETREMENT DURING
COMMIT OF A SPECULATIVE REGION OF
CODE

(71) Applicant: Intel Corporation, Santa Clara, CA
(US)

(72) Inventors: Ravi Rajwar, Portland, OR (US);
Matthew C. Merten, Hillsboro, OR
(US); Christine E. Wang, Portland, OR
(US); Vijaykumar B. Kadgi, Portland,
OR (US); Rajesh S. Parthasarathy,
Hillsboro, OR (US)

(73) INTEL CORPORATION, Santa Clara,
CA (US)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 536 days.

(21)

(22)

Appl. No.: 13/931,860

Filed: Jun. 29, 2013

Prior Publication Data

US 2015/OOO6496 A1 Jan. 1, 2015
(65)

Int. C. (51)
(2006.01)
(2006.01)
(2006.01)

U.S. C.
CPC G06F 9/467 (2013.01); G06F 9/384

(2013.01); G06F 9/3836 (2013.01); G06F
9/3842 (2013.01); G06F 9/3857 (2013.01);

G06F 9/3861 (2013.01); G06F 9/3863
(2013.01); G06F 9/466 (2013.01); G06F

9/528 (2013.01)

(52)

ORE SC \

FRONENN
13

EXONENGs
N50

S.
RETREETINT

ExEction GijstEisigo".

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,566,315 A 10, 1996 Milillo et al.
5,655,098 A * 8/1997 Witt G06F 9/30014

T11 201
5,721,855 A * 2/1998 Hinton GO6F9,30152

T11, E12,049
5,911,776 A 6, 1999 Guck
5,951,670 A * 9/1999 Glew GO6F9,300.98

T12/200
6,085,199 A 7, 2000 Rose

(Continued)

OTHER PUBLICATIONS

Prototyping Architectural Support for Program Rollback Using
FPGAs by Radu Teodorescu and Josep Torrellas, Proceedings of
the 13th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, copyright 2005, IEEE.*

(Continued)
Primary Examiner — Steven Snyder
(74) Attorney, Agent, or Firm — Nicholson De Vos
Webster & Elliott LLP

(57) ABSTRACT
A processor, system, and method are described for continued
retirement of operations during a commit of a speculative
region of program code. For example, one embodiment of a
method comprises the operations of identifying a plurality of
transactional memory regions in program code, including a
first transactional memory region; and retiring one or more
of a plurality of operations which follow the first transac
tional memory region even when a commit operation asso
ciated with the first transactional memory region is waiting
to complete.

21 Claims, 19 Drawing Sheets

mamma-a-a-a-a-a-a-a-a-a-a-a-a-a-a-Y.
DECON

AAR is
472

-4

CACHE

DATA CACHE UNIT JE
176

MEMORY
UNIT 170

4.

US 9,535,744 B2
Page 2

(56)

6,094,716

6,240,503

6,393,442
6,549,918
7,472,260

7,500,087

7,613,908

7,962,730

8, 180,977
8,219,787

8.418,156

2003, OO61439
2004/O103268

2004/0177239

2006, O161740

2006/0248320

2007,026,0942

2008.0024834
2008, OO65864
2008/0244544
2008, 02888.19

2009/0217013

2010.0042868
2010/O165032
2010, 0169579
2011/O145551

2011/0208921

2011/O296399
2012,0005461

2012,0030518
2012fOO75319
2012/O128241
2012/0304002
2012fO3O4178
2013/0335756
2014/O156933

References Cited

U.S. PATENT DOCUMENTS

A *

A1
A1
A1
A1
A1
A1
A1*

T/2000

5, 2001

5, 2002
4, 2003

12, 2008

3, 2009

11/2009

6, 2011

5, 2012
T/2012

4, 2013

3, 2003
5, 2004

9, 2004

T/2006

11, 2006

11/2007

1/2008
3, 2008

10, 2008
11/2008

8, 2009

2, 2010
T/2010
T/2010
6, 2011

8, 2011

12/2011
1, 2012

2, 2012
3/2012
5, 2012

11, 2012
11, 2012
12, 2013
6, 2014

Witt GO6F9,30032
71.2/215

Witt G06F 9,301.01
T11 200

Cromarty et al.
Probert et al.
Lien GO6F9,30174

711,141
Saha G06F 9,3004

71.2/235
Raikin G06F 9,3004

T12/218
Lien GO6F9,30174

T12/219
Rajwar et al.
Lien GO6F 9.30174

T12/219
Wang G06F 9,3834

712/245
Shau
Paulraj.................. GO6F9,3857

712/227
Clift G06F9,384

T12/228
Kottapalli GO6F9,528

711 152
Chin G06F 9,3836

T12/241
Rajwar GO6F9,526

T14,54
Matsui
Akkary et al.
Neelakantam et al.
Heller, Jr. G06F 9,3004

Caprioli GO6F9,301.23
T12/228

Apelbaum et al.
Yoshida
Sheaffer et al.
Wang G06F 9,3834

71.2/225
Pohlack GO6F 9/467

T11 147
Tugnawat et al.
Moir GO6F9,3857

T12/228
Rajwar et al.
Dally
Jung
Chen et al.
Grove et al.
Bhaskaran et al.
Shaikh GO6F 12,0875

T11 123

2014/01893 15 A1* 7/2014 Rajwar GO6F9,301.45
T12/216

2015,0378731 A1* 12/2015 Lai GO6F9,30174
T12/30

2016/0170770 A1* 6/2016 Cain, III GO6F9,301.09
T12/219

OTHER PUBLICATIONS

Speculation-Based Techniques for Transactional Lock-Free Execu
tion of Lock-Based Programs by Ravi Rajwar, A dissertation
submitted in partial fulfillment of the require ements for the degree
of Doctor of Philosophy (Computer Sciences) at the University of
Wisconsin–Madison, 2002.
'Computer Architecture Lecture 10: Out-of-Order Execution by
Professor Onur Mutlu, Carnegie Mellon University, Fall 2011.*
'CSE 502: Computer Architecture—Instruction Commit from
Stony Brook University, archived on Jan. 14, 2015.*
Office Action for counterpart U.S. Appl. No. 13/566.421, mailed
Jan. 15, 2015, 15 pages.
Office Action for counterpart U.S. Appl. No. 13/566.421, mailed
Jun. 19, 2015, 17 pages.
“Yuv,” by Wikipedia (Jul. 28, 2011 revision). Available at https://
en.wikipedia.org/w/index.php?title=YUV&oldid=441795719.
“How to convert 16-bit 565 rgb value to 32 bit.” by anuragkhanna8.
In: Bytes IT Community (Oct. 20, 2006). Available at: http://bytes.
com/topic/c/answers/552128-how-convert-16-bit-565-rgb-value
32-bit.
“Texture tiling and Swizzling.” by the Ryg Blog (Jan. 17, 2011).
Available at https://fgiesen.wordpress.com/2011/01/17/texture-til
ing-and-Swizzling?.
“Image tile formats.” by Wikipedia (Jul 23, 2011 revision). Avail
able at: https://en.wikipedia.org/w/index.php?title-Image file for
matS&oldid-440938301n.
Office Action for counterpart U.S. Appl. No. 13/691,218, mailed
Dec. 9, 2014, 17 pages.
Office Action for counterpart U.S. Appl. No. 13/691,218, mailed
Sep. 10, 2015, 13 pages.
Final Office Action for counterpart U.S. Appl. No. 13/691,218,
mailed Mar. 23, 2015, 17 pages.
International Search Report and Written Opinion for foreign coun
terpart Application No. PCT/US2013/045982, mailed Sep. 30,
2013, 9 pages.
InternationalPreliminary Report on Patentability for foreign coun
terpart Application No. PCT/US2013/045982, mailed Jun. 11, 2015,
8 pages.
Final Office Action for counterpart U.S. Appl. No. 13/566.421,
mailed Dec. 31, 2015, 20 pages.
Notice of Allowance for counterpart U.S. Appl. No. 13/566.421,
mailed Mar. 15, 2016, 9 pages.
“Online Compression Caching.” by Plaxton et al., In: SWAT 2008,
pp. 414-425.
“Managing Persistent Objects in a Multi-Level Store.” by
Stonebraker, Michael. In: Proc. 1991 ACM SIGMOD Int’l Conf.
Management of Data, 18 pages.
Notice of Allowance for counterpart for U.S. Appl. No. 13/691,218,
mailed Feb. 29, 2016, 9 pages.

* cited by examiner

US 9,535,744 B2 Sheet 1 of 19 Jan. 3, 2017 U.S. Patent

|| Zz, – – – – – – –

\06; 3800

US 9,535,744 B2 Sheet 2 of 19 Jan. 3, 2017 U.S. Patent

~ ~ ~ ~)

| |

| Nººz || |||

| |

U.S. Patent Jan. 3, 2017 Sheet 3 of 19

35
300 - - - 17

T 310

controller
CO. HUB 320

PROCESSOR . T GMC 390

| – | 1. 360 Y areer | -

IOH350

F.G. 3

MEMORY

US 9,535,744 B2

340

949

US 9,535,744 B2 Sheet 5 Of 19 Jan. 3, 2017 U.S. Patent

…---------~~~~--~~~~
___--~~~~

US 9,535,744 B2

~)
awawawawa

U.S. Patent

U.S. Patent Jan. 3, 2017 Sheet 9 of 19 US 9,535,744 B2

RA 90

PHYSCA REGISTER
FILE902

FREES ARRAY

903

PhysiO 3

FIG. 9
(PRIOR ART)

U.S. Patent Jan. 3, 2017 Sheet 10 of 19 US 9,535,744 B2

UPON REREMEN OF ANOVERWRR
DEEE ENRY IN RA FOR ARCECURA
REGISTER WHOSE INFORMATON WASO
BE OVERWREN BYE OVERWRER

UPON REREMENT OF ANOVERWRTER
DEEE ENTRY NRA FOR ARC-ECTURA
REGSER WHOSE INFORMATION WAS TO
BE OVERWREN BY HE OVERWRITER

U.S. Patent Jan. 3, 2017 Sheet 11 of 19 US 9,535,744 B2

RAT 10
14 /

4.R1 = M2048 20
3.M. 1032 = Rt
2, R - R - 2 R1' PhysiD

4. R = M1024 y PHYSICAL REGSER
FE 102

R" PhysiO2

FREES ARRAY
O3

N. MOVE PhysiD 1
NO FREES
ARRAY UPON
RERVEN OF

* NSRCON 14 S NSRCON 4
NOTSPECULATIVE, OR,
NSRUCON 4. S
SPECUAVE AND ENRY
1120 DO NO EXES IN
HE RAWEN
SPECUAON STARTED

F.G. 1 1A

U.S. Patent Jan. 3, 2017 Sheet 12 of 19 US 9,535,744 B2

R" PhysiD 1

R1" PhysiD 2 \
20 Mb

Y. PHYSICA REGESER
FILE 1102

NSRCON 4 S
NO SPECUAVE AND
ENTRY 20 EXSED
N HE RAWHEN
SPECAON STARED ---

N. MOVE PhysiD
NO COW BUFFER UPON
REREVEN OF
NSRCON 4

COW BUFFER .-

104. FREELIST ARRAY
103

F.G. 11B

U.S. Patent Jan. 3, 2017 Sheet 13 Of 19 US 9,535,744 B2

BO NOCATE WHETHER
RA ENRY EXSED WHEN 202

NON SPECUAON ENDED
OGCA
REGSER PONERO RA

20 N. PHYSICA REGSER
l FE

U.S. Patent Jan. 3, 2017 Sheet 14 of 19 US 9,535,744 B2

US ENRES FROM HE RA
A WERE NOT N E RA

A E STAR OF SPECUATION

US 9,535,744 B2 U.S. Patent

US 9,535,744 B2 U.S. Patent

US 9,535,744 B2

§ 3.83%?

Sheet 17 Of 19 Jan. 3, 2017 U.S. Patent

US 9,535,744 B2

***************************&&&&&&&3&& &&3&&3 &{;&#

Sheet 18 of 19 Jan. 3, 2017 U.S. Patent

US 9,535,744 B2 Sheet 19 Of 19 Jan. 3, 2017 U.S. Patent

US 9,535,744 B2
1.

METHOD AND APPARATUS FOR
CONTINUED RETIREMENT DURING

COMMIT OF A SPECULATIVE REGION OF
CODE

BACKGROUND

Field of the Invention
This invention relates generally to the field of computer

processors and Software. More particularly, the invention
relates to a method and apparatus for continued retirement
during commit of a speculative region of code.

Description of the Related Art
In prior processor architectures, the reorder buffer (ROB)

was forced to stall retirement when a region commit uop was
the oldest until the memory system (MEU) was prepared to
commit values altered in the region. This process caused the
out-of-order speculation mechanism to get "backed up'
while waiting for the MEU. That is, at the time the commit
operation is at the head of the ROB and ready to retire, its
retirement is held back, thus preventing the ROB from
retiring and speculating deeper into code Subsequent to the
region. Delay in the retirement of the commit causes delay
in the retirement of Subsequent uops, which delays releasing
resources causing yet other sources of delay.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained from the following detailed description in conjunc
tion with the following drawings, in which:

FIG. 1A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out
of-order issue/execution pipeline according to embodiments
of the invention;

FIG. 1B is a block diagram illustrating both an exemplary
embodiment of an in-order architecture core and an exem
plary register renaming, out-of-order issue/execution archi
tecture core to be included in a processor according to
embodiments of the invention;

FIG. 2 is a block diagram of a single core processor and
a multicore processor with integrated memory controller and
graphics according to embodiments of the invention;

FIG. 3 illustrates a block diagram of a system in accor
dance with one embodiment of the present invention;

FIG. 4 illustrates a block diagram of a second system in
accordance with an embodiment of the present invention;

FIG. 5 illustrates a block diagram of a third system in
accordance with an embodiment of the present invention;

FIG. 6 illustrates a block diagram of a system on a chip
(SoC) in accordance with an embodiment of the present
invention;

FIGS. 7A-7B illustrates a block diagram contrasting the
use of a software instruction converter to convert binary
instructions in a source instruction set to binary instructions
in a target instruction set according to embodiments of the
invention;

FIG. 8 shows a pipeline that can execution instructions
out-of-order and execute instructions speculatively;

FIG. 9 shows an embodiment of components of data
dependency logic circuitry;

FIG. 10a shows a first process for entering a pointer to
physical register space to a free list array;

FIG. 11a shows logic circuit components for performing
the process of FIG. 10a;

FIG. 10b shows a second process for entering a pointer to
physical register space to a carry over write buffer;

10

15

25

30

35

40

45

50

55

60

65

2
FIG.11b shows logic circuit components for performing

the process of FIG. 10b,
FIG. 12 shows a RAT having a bit for each entry to

indicate whether the entry existed in the RAT at the end of
non speculative execution;

FIG. 13 shows a process for restoring RAT information
from a COW buffer in order to rollback program state from
a speculative region to a non speculative region;

FIG. 14 shows a pipeline having a COW buffer in a write
back stage of a pipeline;

FIG. 15 shows a pipeline having a COW buffer in a write
back stage of a pipeline and region identification logic in a
data fetch stage;

FIGS. 16a-c illustrate the timing of exemplary transac
tional memory region commits and instruction retirements;

FIG. 17 illustrates a method in accordance with one
embodiment of the invention.

DETAILED DESCRIPTION

In the following description, for the purposes of expla
nation, numerous specific details are set forth in order to
provide a thorough understanding of the embodiments of the
invention described below. It will be apparent, however, to
one skilled in the art that the embodiments of the invention
may be practiced without some of these specific details. In
other instances, well-known structures and devices are
shown in block diagram form to avoid obscuring the under
lying principles of the embodiments of the invention.

Exemplary Processor Architectures and Data Types

FIG. 1A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out
of-order issue/execution pipeline according to embodiments
of the invention. FIG. 1B is a block diagram illustrating both
an exemplary embodiment of an in-order architecture core
and an exemplary register renaming, out-of-order issue?
execution architecture core to be included in a processor
according to embodiments of the invention. The solid lined
boxes in FIGS. 1A-B illustrate the in-order pipeline and
in-order core, while the optional addition of the dashed lined
boxes illustrates the register renaming, out-of-order issue?
execution pipeline and core. Given that the in-order aspect
is a Subset of the out-of-order aspect, the out-of-order aspect
will be described.

In FIG. 1A, a processor pipeline 100 includes a fetch stage
102, a length decode stage 104, a decode stage 106, an
allocation stage 108, a renaming stage 110, a scheduling
(also known as a dispatch or issue) stage 112, a register
read/memory read stage 114, an execute stage 116, a write
back/memory write stage 118, an exception handling stage
122, and a commit stage 124.

FIG. 1B shows processor core 190 including a front end
unit 130 coupled to an execution engine unit 150, and both
are coupled to a memory unit 170. The core 190 may be a
reduced instruction set computing (RISC) core, a complex
instruction set computing (CISC) core, a very long instruc
tion word (VLIW) core, or a hybrid or alternative core type.
As yet another option, the core 190 may be a special-purpose
core, such as, for example, a network or communication
core, compression engine, coprocessor core, general purpose
computing graphics processing unit (GPGPU) core, graphics
core, or the like.
The front end unit 130 includes a branch prediction unit

132 coupled to an instruction cache unit 134, which is
coupled to an instruction translation lookaside buffer (TLB)

US 9,535,744 B2
3

136, which is coupled to an instruction fetch unit 138, which
is coupled to a decode unit 140. The decode unit 140 (or
decoder) may decode instructions, and generate as an output
one or more micro-operations, micro-code entry points,
microinstructions, other instructions, or other control sig- 5
nals, which are decoded from, or which otherwise reflect, or
are derived from, the original instructions. The decode unit
140 may be implemented using various different mecha
nisms. Examples of suitable mechanisms include, but are not
limited to, look-up tables, hardware implementations, pro- 10
grammable logic arrays (PLAS), microcode read only
memories (ROMs), etc. In one embodiment, the core 190
includes a microcode ROM or other medium that stores
microcode for certain macroinstructions (e.g., in decode unit
140 or otherwise within the front end unit 130). The decode 15
unit 140 is coupled to a rename/allocator unit 152 in the
execution engine unit 150.
The execution engine unit 150 includes the rename/

allocator unit 152 coupled to a retirement unit 154 and a set
of one or more scheduler unit(s) 156. The scheduler unit(s) 20
156 represents any number of different schedulers, including
reservations stations, central instruction window, etc. The
scheduler unit(s) 156 is coupled to the physical register
file(s) unit(s) 158. Each of the physical register file(s) units
158 represents one or more physical register files, different 25
ones of which store one or more different data types. Such as
Scalar integer, Scalar floating point, packed integer, packed
floating point, vector integer, vector floating point, status
(e.g., an instruction pointer that is the address of the next
instruction to be executed), etc. In one embodiment, the 30
physical register file(s) unit 158 comprises a vector registers
unit, a write mask registers unit, and a scalar registers unit.
These register units may provide architectural vector regis
ters, vector mask registers, and general purpose registers.
The physical register file(s) unit(s) 158 is overlapped by the 35
retirement unit 154 to illustrate various ways in which
register renaming and out-of-order execution may be imple
mented (e.g., using a reorder buffer(s) and a retirement
register file(s); using a future file(s), a history buffer(s), and
a retirement register file(s); using a register maps and a pool 40
of registers; etc.). The retirement unit 154 and the physical
register file(s) unit(s) 158 are coupled to the execution
cluster(s) 160. The execution cluster(s) 160 includes a set of
one or more execution units 162 and a set of one or more
memory access units 164. The execution units 162 may 45
perform various operations (e.g., shifts, addition, Subtrac
tion, multiplication) and on various types of data (e.g., Scalar
floating point, packed integer, packed floating point, vector
integer, vector floating point). While some embodiments
may include a number of execution units dedicated to 50
specific functions or sets of functions, other embodiments
may include only one execution unit or multiple execution
units that all perform all functions. The scheduler unit(s)
156, physical register file(s) unit(s) 158, and execution
cluster(s) 160 are shown as being possibly plural because 55
certain embodiments create separate pipelines for certain
types of data/operations (e.g., a scalar integer pipeline, a
Scalar floating point/packed integer/packed floating point/
vector integer/vector floating point pipeline, and/or a
memory access pipeline that each have their own scheduler 60
unit, physical register file(s) unit, and/or execution cluster—
and in the case of a separate memory access pipeline, certain
embodiments are implemented in which only the execution
cluster of this pipeline has the memory access unit(s) 164).
It should also be understood that where separate pipelines 65
are used, one or more of these pipelines may be out-of-order
issue/execution and the rest in-order.

4
The set of memory access units 164 is coupled to the

memory unit 170, which includes a data TLB unit 172
coupled to a data cache unit 174 coupled to a level 2 (L.2)
cache unit 176. In one exemplary embodiment, the memory
access units 164 may include a load unit, a store address
unit, and a store data unit, each of which is coupled to the
data TLB unit 172 in the memory unit 170. The instruction
cache unit 134 is further coupled to a level 2 (L2) cache unit
176 in the memory unit 170. The L2 cache unit 176 is
coupled to one or more other levels of cache and eventually
to a main memory.
By way of example, the exemplary register renaming,

out-of-order issue/execution core architecture may imple
ment the pipeline 100 as follows: 1) the instruction fetch 138
performs the fetch and length decoding stages 102 and 104;
2) the decode unit 140 performs the decode stage 106; 3) the
rename/allocator unit 152 performs the allocation stage 108
and renaming stage 110; 4) the scheduler unit(s) 156 per
forms the schedule stage 112; 5) the physical register file(s)
unit(s) 158 and the memory unit 170 perform the register
read/memory read stage 114; the execution cluster 160
perform the execute stage 116; 6) the memory unit 170 and
the physical register file(s) unit(s) 158 perform the write
back/memory write stage 118; 7) various units may be
involved in the exception handling stage 122; and 8) the
retirement unit 154 and the physical register file(s) unit(s)
158 perform the commit stage 124.
The core 190 may support one or more instructions sets

(e.g., the x86 instruction set (with some extensions that have
been added with newer versions); the MIPS instruction set
of MIPS Technologies of Sunnyvale, Calif.; the ARM
instruction set (with optional additional extensions such as
NEON) of ARM Holdings of Sunnyvale, Calif.), including
the instruction(s) described herein. In one embodiment, the
core 190 includes logic to support a packed data instruction
set extension (e.g., AVX1, AVX2, and/or some form of the
generic vector friendly instruction format (U=0 and/or U=1),
described below), thereby allowing the operations used by
many multimedia applications to be performed using packed
data.

It should be understood that the core may support multi
threading (executing two or more parallel sets of operations
or threads), and may do so in a variety of ways including
time sliced multithreading, simultaneous multithreading
(where a single physical core provides a logical core for each
of the threads that physical core is simultaneously multi
threading), or a combination thereof (e.g., time sliced fetch
ing and decoding and simultaneous multithreading thereaf
ter such as in the Intel(R) Hyperthreading technology).

While register renaming is described in the context of
out-of-order execution, it should be understood that register
renaming may be used in an in-order architecture. While the
illustrated embodiment of the processor also includes sepa
rate instruction and data cache units 134/174 and a shared L2
cache unit 176, alternative embodiments may have a single
internal cache for both instructions and data, such as, for
example, a Level 1 (L1) internal cache, or multiple levels of
internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that is external to the core and/or the processor.
Alternatively, all of the cache may be external to the core
and/or the processor.

FIG. 2 is a block diagram of a processor 200 that may
have more than one core, may have an integrated memory
controller, and may have integrated graphics according to
embodiments of the invention. The solid lined boxes in FIG.
2 illustrate a processor 200 with a single core 202A, a system

US 9,535,744 B2
5

agent 210, a set of one or more bus controller units 216,
while the optional addition of the dashed lined boxes illus
trates an alternative processor 200 with multiple cores
202A-N, a set of one or more integrated memory controller
unit(s) 214 in the system agent unit 210, and special purpose 5
logic 208.

Thus, different implementations of the processor 200 may
include: 1) a CPU with the special purpose logic 208 being
integrated graphics and/or scientific (throughput) logic
(which may include one or more cores), and the cores 10
202A-N being one or more general purpose cores (e.g.,
general purpose in-order cores, general purpose out-of-order
cores, a combination of the two); 2) a coprocessor with the
cores 202A-N being a large number of special purpose cores
intended primarily for graphics and/or scientific (through- 15
put); and 3) a coprocessor with the cores 202A-N being a
large number of general purpose in-order cores. Thus, the
processor 200 may be a general-purpose processor, copro
cessor or special-purpose processor, Such as, for example, a
network or communication processor, compression engine, 20
graphics processor, GPGPU (general purpose graphics pro
cessing unit), a high-throughput many integrated core (MIC)
coprocessor (including 30 or more cores), embedded pro
cessor, or the like. The processor may be implemented on
one or more chips. The processor 200 may be a part of 25
and/or may be implemented on one or more Substrates using
any of a number of process technologies. Such as, for
example, BiCMOS, CMOS, or NMOS.
The memory hierarchy includes one or more levels of

cache within the cores, a set or one or more shared cache 30
units 206, and external memory (not shown) coupled to the
set of integrated memory controller units 214. The set of
shared cache units 206 may include one or more mid-level
caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or
other levels of cache, a last level cache (LLC), and/or
combinations thereof. While in one embodiment a ring
based interconnect unit 212 interconnects the integrated
graphics logic 208, the set of shared cache units 206, and the
system agent unit 210/integrated memory controller unit(s)
214, alternative embodiments may use any number of well
known techniques for interconnecting Such units. In one
embodiment, coherency is maintained between one or more
cache units 206 and cores 202-A-N.

In some embodiments, one or more of the cores 202A-N
are capable of multi-threading. The system agent 210
includes those components coordinating and operating cores
202A-N. The system agent unit 210 may include for
example a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the cores 202A-N and the
integrated graphics logic 208. The display unit is for driving
one or more externally connected displays.
The cores 202A-N may be homogenous or heterogeneous

in terms of architecture instruction set; that is, two or more
of the cores 202A-N may be capable of execution the same
instruction set, while others may be capable of executing
only a subset of that instruction set or a different instruction
set. In one embodiment, the cores 202A-N are heteroge
neous and include both the “small cores and “big” cores
described below.

FIGS. 3-6 are block diagrams of exemplary computer
architectures. Other system designs and configurations
known in the arts for laptops, desktops, handheld PCs,
personal digital assistants, engineering workstations, Serv
ers, network devices, network hubs, switches, embedded
processors, digital signal processors (DSPs), graphics
devices, video game devices, set-top boxes, micro control

35

40

45

50

55

60

65

6
lers, cell phones, portable media players, hand held devices,
and various other electronic devices, are also suitable. In
general, a huge variety of systems or electronic devices
capable of incorporating a processor and/or other execution
logic as disclosed herein are generally suitable.

Referring now to FIG. 3, shown is a block diagram of a
system 300 in accordance with one embodiment of the
present invention. The system 300 may include one or more
processors 310, 315, which are coupled to a controller hub
320. In one embodiment the controller hub 320 includes a
graphics memory controller hub (GMCH)390 and an Input/
Output Hub (IOH) 350 (which may be on separate chips);
the GMCH390 includes memory and graphics controllers to
which are coupled memory 340 and a coprocessor 345; the
IOH 350 is couples input/output (I/O) devices 360 to the
GMCH 390. Alternatively, one or both of the memory and
graphics controllers are integrated within the processor (as
described herein), the memory 340 and the coprocessor 345
are coupled directly to the processor 310, and the controller
hub 320 in a single chip with the IOH 350.
The optional nature of additional processors 315 is

denoted in FIG. 3 with broken lines. Each processor 310,
315 may include one or more of the processing cores
described herein and may be some version of the processor
2OO.
The memory 340 may be, for example, dynamic random

access memory (DRAM), phase change memory (PCM), or
a combination of the two. For at least one embodiment, the
controller hub 320 communicates with the processor(s) 310,
315 via a multi-drop bus, such as a frontside bus (FSB),
point-to-point interface Such as QuickPath Interconnect
(QPI), or similar connection 395.

In one embodiment, the coprocessor 345 is a special
purpose processor, such as, for example, a high-throughput
MIC processor, a network or communication processor,
compression engine, graphics processor, GPGPU, embed
ded processor, or the like. In one embodiment, controller hub
320 may include an integrated graphics accelerator.

There can be a variety of differences between the physical
resources 310,315 in terms of a spectrum of metrics of merit
including architectural, microarchitectural, thermal, power
consumption characteristics, and the like.

In one embodiment, the processor 310 executes instruc
tions that control data processing operations of a general
type. Embedded within the instructions may be coprocessor
instructions. The processor 310 recognizes these coproces
sor instructions as being of a type that should be executed by
the attached coprocessor 345. Accordingly, the processor
310 issues these coprocessor instructions (or control signals
representing coprocessor instructions) on a coprocessor bus
or other interconnect, to coprocessor 345. Coprocessor(s)
345 accept and execute the received coprocessor instruc
tions.

Referring now to FIG. 4, shown is a block diagram of a
first more specific exemplary system 400 in accordance with
an embodiment of the present invention. As shown in FIG.
4, multiprocessor System 400 is a point-to-point interconnect
system, and includes a first processor 470 and a second
processor 480 coupled via a point-to-point interconnect 450.
Each of processors 470 and 480 may be some version of the
processor 200. In one embodiment of the invention, proces
sors 470 and 480 are respectively processors 310 and 315,
while coprocessor 438 is coprocessor 345. In another
embodiment, processors 470 and 480 are respectively pro
cessor 310 coprocessor 345.

Processors 470 and 480 are shown including integrated
memory controller (IMC) units 472 and 482, respectively.

US 9,535,744 B2
7

Processor 470 also includes as part of its bus controller units
point-to-point (P-P) interfaces 476 and 478; similarly, sec
ond processor 480 includes P-P interfaces 486 and 488.
Processors 470, 480 may exchange information via a point
to-point (P-P) interface 450 using P-P interface circuits 478,
488. As shown in FIG. 4, IMCs 472 and 482 couple the
processors to respective memories, namely a memory 432
and a memory 434, which may be portions of main memory
locally attached to the respective processors.

Processors 470, 480 may each exchange information with
a chipset 490 via individual P-P interfaces 452, 454 using
point to point interface circuits 476, 494, 486, 498. Chipset
490 may optionally exchange information with the copro
cessor 438 via a high-performance interface 439. In one
embodiment, the coprocessor 438 is a special-purpose pro
cessor, Such as, for example, a high-throughput MIC pro
cessor, a network or communication processor, compression
engine, graphics processor, GPGPU, embedded processor,
or the like.
A shared cache (not shown) may be included in either

processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 490 may be coupled to a first bus 416 via an
interface 496. In one embodiment, first bus 416 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation I/O
interconnect bus, although the scope of the present invention
is not so limited.
As shown in FIG. 4, various I/O devices 414 may be

coupled to first bus 416, along with a bus bridge 418 which
couples first bus 416 to a second bus 420. In one embodi
ment, one or more additional processor(s) 415. Such as
coprocessors, high-throughput MIC processors, GPGPUs,
accelerators (such as, e.g., graphics accelerators or digital
signal processing (DSP) units), field programmable gate
arrays, or any other processor, are coupled to first bus 416.
In one embodiment, second bus 420 may be a low pin count
(LPC) bus. Various devices may be coupled to a second bus
420 including, for example, a keyboard and/or mouse 422,
communication devices 427 and a storage unit 428 Such as
a disk drive or other mass storage device which may include
instructions/code and data 430, in one embodiment. Further,
an audio I/O 424 may be coupled to the second bus 420.
Note that other architectures are possible. For example,
instead of the point-to-point architecture of FIG. 4, a system
may implement a multi-drop bus or other such architecture.

Referring now to FIG. 5, shown is a block diagram of a
second more specific exemplary system 500 in accordance
with an embodiment of the present invention. Like elements
in FIGS. 4 and 5 bear like reference numerals, and certain
aspects of FIG. 4 have been omitted from FIG. 5 in order to
avoid obscuring other aspects of FIG. 5.

FIG. 5 illustrates that the processors 470, 480 may include
integrated memory and I/O control logic (“CL”) 472 and
482, respectively. Thus, the CL 472, 482 include integrated
memory controller units and include I/O control logic. FIG.
5 illustrates that not only are the memories 432, 434 coupled
to the CL 472, 482, but also that I/O devices 514 are also
coupled to the control logic 472, 482. Legacy I/O devices
515 are coupled to the chipset 490.

Referring now to FIG. 6, shown is a block diagram of a
SoC 600 in accordance with an embodiment of the present
invention. Similar elements in FIG. 2 bear like reference
numerals. Also, dashed lined boxes are optional features on
more advanced SoCs. In FIG. 6, an interconnect unit(s) 602

10

15

25

30

35

40

45

50

55

60

65

8
is coupled to: an application processor 610 which includes
a set of one or more cores 202A-N and shared cache unit(s)
206; a system agent unit 210; a bus controller unit(s) 216; an
integrated memory controller unit(s) 214; a set or one or
more coprocessors 620 which may include integrated graph
ics logic, an image processor, an audio processor, and a
Video processor, an static random access memory (SRAM)
unit 630; a direct memory access (DMA) unit 632; and a
display unit 640 for coupling to one or more external
displays. In one embodiment, the coprocessor(s) 620 include
a special-purpose processor, Such as, for example, a network
or communication processor, compression engine, GPGPU,
a high-throughput MIC processor, embedded processor, or
the like.

Embodiments of the mechanisms disclosed herein may be
implemented in hardware, software, firmware, or a combi
nation of such implementation approaches. Embodiments of
the invention may be implemented as computer programs or
program code executing on programmable systems compris
ing at least one processor, a storage system (including
Volatile and non-volatile memory and/or storage elements),
at least one input device, and at least one output device.

Program code, such as code 430 illustrated in FIG.4, may
be applied to input instructions to perform the functions
described herein and generate output information. The out
put information may be applied to one or more output
devices, in known fashion. For purposes of this application,
a processing system includes any system that has a proces
Sor, such as, for example; a digital signal processor (DSP),
a microcontroller, an application specific integrated circuit
(ASIC), or a microprocessor.
The program code may be implemented in a high level

procedural or object oriented programming language to
communicate with a processing system. The program code
may also be implemented in assembly or machine language,
if desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.
One or more aspects of at least one embodiment may be

implemented by representative instructions stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores'
may be stored on a tangible, machine readable medium and
Supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the
logic or processor.

Such machine-readable storage media may include, with
out limitation, non-transitory, tangible arrangements of
articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type
of disk including floppy disks, optical disks, compact disk
read-only memories (CD-ROMs), compact disk rewritable's
(CD-RWs), and magneto-optical disks, semiconductor
devices such as read-only memories (ROMs), random
access memories (RAMs) such as dynamic random access
memories (DRAMs), static random access memories
(SRAMs), erasable programmable read-only memories
(EPROMs), flash memories, electrically erasable program
mable read-only memories (EEPROMs), phase change
memory (PCM), magnetic or optical cards, or any other type
of media suitable for storing electronic instructions.

Accordingly, embodiments of the invention also include
non-transitory, tangible machine-readable media containing
instructions or containing design data, such as Hardware

US 9,535,744 B2
9

Description Language (HDL), which defines structures, cir
cuits, apparatuses, processors and/or system features
described herein. Such embodiments may also be referred to
as program products.

In some cases, an instruction converter may be used to
convert an instruction from a source instruction set to a
target instruction set. For example, the instruction converter
may translate (e.g., using static binary translation, dynamic
binary translation including dynamic compilation), morph,
emulate, or otherwise convert an instruction to one or more
other instructions to be processed by the core. The instruc
tion converter may be implemented in Software, hardware,
firmware, or a combination thereof. The instruction con
verter may be on processor, off processor, or part on and part
off processor.

FIG. 7 is a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a
Source instruction set to binary instructions in a target
instruction set according to embodiments of the invention.
In the illustrated embodiment, the instruction converter is a
software instruction converter, although alternatively the
instruction converter may be implemented in Software, firm
ware, hardware, or various combinations thereof. FIG. 7
shows a program in a high level language 702 may be
compiled using an x86 compiler 704 to generate x86 binary
code 706 that may be natively executed by a processor with
at least one x86 instruction set core 716. The processor with
at least one x86 instruction set core 716 represents any
processor that can perform Substantially the same functions
as an Intel processor with at least one x86 instruction set
core by compatibly executing or otherwise processing (1) a
substantial portion of the instruction set of the Intel x86
instruction set core or (2) object code versions of applica
tions or other software targeted to run on an Intel processor
with at least one x86 instruction set core, in order to achieve
Substantially the same result as an Intel processor with at
least one x86 instruction set core. The x86 compiler 704
represents a compiler that is operable to generate x86 binary
code 706 (e.g., object code) that can, with or without
additional linkage processing, be executed on the processor
with at least one x86 instruction set core 716. Similarly, FIG.
7 shows the program in the high level language 702 may be
compiled using an alternative instruction set compiler 708 to
generate alternative instruction set binary code 710 that may
be natively executed by a processor without at least one x86
instruction set core 714 (e.g., a processor with cores that
execute the MIPS instruction set of MIPS Technologies of
Sunnyvale, Calif. and/or that execute the ARM instruction
set of ARM Holdings of Sunnyvale, Calif.). The instruction
converter 712 is used to convert the x86 binary code 706 into
code that may be natively executed by the processor without
an x86 instruction set core 714. This converted code is not
likely to be the same as the alternative instruction set binary
code 710 because an instruction converter capable of this is
difficult to make; however, the converted code will accom
plish the general operation and be made up of instructions
from the alternative instruction set. Thus, the instruction
converter 712 represents software, firmware, hardware, or a
combination thereof that, through emulation, simulation or
any other process, allows a processor or other electronic
device that does not have an x86 instruction set processor or
core to execute the x86 binary code 706.

Method and Apparatus for Continued Retirement
During Commit of a Speculative Region

The embodiments of the invention described below pro
vide a mechanism to allow continued retirement of instruc

10

15

25

30

35

40

45

50

55

60

65

10
tions during a commit of a speculative region of program
code. Specifically, one embodiment allows the retirement of
instructions to proceed through the commit micro-operation
(hereinafter “uop’) into post-region code even if the
memory execution unit (MEU) has not committed the region
yet. In this embodiment, the uops that follow a region may
be considered to be part of the region itself. When retirement
is allowed to proceed past the commit uop, but yet the region
Subsequently aborts because of a memory issue, the archi
tectural register values must be restored to the point at the
beginning of the region, throwing out both the region and
post-region execution. This new mode ends when one of
several conditions arises. First, if a new region begin is ready
to retire, retirement must stall until the previous region is
ready to commit otherwise extra tracking is required for two
regions to be in the process of committing simultaneously,
which is added complexity especially in the MEU. Second,
if a uop comes up for retirement that is not allowed inside
of a region because its retirement cannot be undone by the
copy-on-write (COW) mechanism described below, retire
ment must stall. Third, if the region actually commits, and
there are no additional regions inside the conventional
speculation mechanism, treating Subsequent code as being
inside the region is no longer necessary (this is referred to as
“free and clear”).
The COW mechanism implemented in one embodiment

of the invention will first be described with reference to
FIGS. 8-14, followed by a detailed description of techniques
for continued retirement during commit of a speculative
region of code.
As observed in FIG. 8, an instruction sequence 810

executed by an instruction execution pipeline is composed
of a series of instructions that a compiler or programmer has
determined should be executed in the order the instructions
are presented to the pipeline. Here, registers R1 and R2 are
understood to be architectural registers as they are specifi
cally called out and comprehended by the program code.
Often, the resultant of an earlier instruction is used as an
input operand for a later instruction. For example, the
resultant R1 of instruction 811 is used as an input operand
for instruction 812. In this sense, instruction 812 can be said
to have “a dependency” on instruction 811. That is, instruc
tion 812 can not be executed in the execution stage 803 until
instruction 811 is executed and its resultant retired. Instruc
tion 813 is also observed to have a dependency on instruc
tion 812.
By contrast, instructions 814 through 816 do not have any

dependency on instructions 811 through 813 (instruction
sequence 814 through 816 processes data from memory
location MI2048 and writes memory location M2056
which is different than instruction sequence 811 through 813
which processes data from memory location M1024 and
writes memory location M1032). Strict in order execution
of the instruction sequence 810 will therefore lead to a drop
off in performance if delay is encountered fetching the data
for instruction 811. As it turns out, the input operand for
instruction 811 needs to be fetched from system memory
(which is a time wasteful process). As such, all of instruc
tions 812 through 816 must wait until the data for instruction
811 has been retrieved from system memory if instruction
sequence 810 is to be processed strictly in order.

In order to avoid the unnecessary delay of an instruction
that does not have any dependencies on earlier “in flight'
instructions, many modern instruction execution pipelines
have enhanced data fetch and write back stages to effect
“out-of-order execution. Here, the data fetch stage 802 of
pipeline 800 is enhanced to include data dependency logic

US 9,535,744 B2
11

805 to recognize when an instruction does not have a
dependency on an earlier in flight instruction, and, permit its
issuance to the instruction execution stage 803 “ahead of.
e.g., an earlier instruction whose data has not yet been
fetched. Typically, physical registers as opposed to archi
tectural registers are used to Support the out-of-order execu
tion.

Moreover, the write-back stage 804 is enhanced to include
a re-order buffer 806 that re-orders the results of out-of-order
executed instructions into their correct order, and, delays
their retirement to the architectural register file at least until
a correctly ordered consecutive sequence of instruction
execution results have retired. Note that in a physical
register-based out-of-order machine, the retirement of val
ues to the architectural register file does not involve a copy
of the data, but rather a proper management of the mapping
between the architectural register ID and the physical reg
ister holding the value.
The enhanced instruction execution pipeline is also

observed to include instruction speculation logic 807 within
the instruction fetch stage 801. Instruction sequences branch
out into different paths depending on a condition Such as the
value of a variable. The speculation logic 807 studies the
upcoming instruction sequence, guesses at what conditional
branch direction or jump the instruction sequence will take
(it has to guess because the condition that determines the
branch direction or jump may not have executed or retired
yet) and begins to fetch the instruction sequence that flows
from that direction or jump. The speculative instructions are
then processed by the remaining stages of the execution
pipeline 800.

Here, the re-order buffer 806 of the write back stage 804
will delay the retirement of the results of the speculatively
executed instructions until there is confirmation that the
original guess made by the speculation logic 807 was
correct. Once confirmation is made that the guess was
correct, the results are retired to the architectural register
file. If it turns out the guess was wrong, results in the
re-order buffer 806 for the speculative instructions are
discarded (“flushed') as is the state of any in flight specu
lative instructions within the pipeline 800. The pipeline 800
then re-executes from the branch/jump target with the cor
rect sequence of instructions.

Here, instructions must be retired to the architectural
register file in order so that stores write to the memory
system in the proper order. If execution is stopped for any
reason (such as an exception or user breakpoint or interrupt)
the state of the retired architectural registers are consistent
Such that everything before the stopping point has been
completed and nothing after the stopping point has been
completed.

Traditionally, the size of the re-order buffer 806 deter
mines the number of instructions that can execute out-of
order as well as execute speculatively. Here, the re-order
buffer 806 acts as a kind of temporary queue for the results
of instructions that have been executed by the execution
stage 803, but, are not yet able to be retired. This kind of
speculation can be referred to as “traditional speculation'.

FIG. 9 shows pertinent design features of the data depen
dency logic 805 of the pipeline 800 of FIG. 8. Referring to
FIGS. 8 and 9, note that original instruction sequence 810
calls out architectural register R1. Data dependency logic
805 will recognize that: 1) instructions 814, 815 and 816 do
not depend on instructions 811, 812 and 813; and 2) if
instructions 814, 815, and 816 are to be executed before or
commensurate with instructions 811, 812 and 813 (to effect
out-of-order execution), then, in order to calculate the cor

10

15

25

30

35

40

45

50

55

60

65

12
rect resultants, registers other than architectural register R1
need to be referred to (e.g., R1', R1", R1", R1" as discussed
below). As such, data dependency logic 805 performs “reg
ister renaming to rename, or map, where appropriate to
effect out-of-order execution, the specific architectural reg
isters called out by the original program code to a larger set
of “physical registers”.
As observed in FIG. 8 and the architectural register R1

called out by original code sequence 810 of FIG. 8 (R1) is
renamed 820 to registers R1', R1", R1", R1". Here, note
that renaming can typically be viewed as a form of version
ing where R1' is viewed as the older version of architectural
register R1" and R1" is viewed as the older version of
architectural register R1", etc.
Renamed registers R1" through R1" are, in turn, mapped

to physical registers. For simplicity, FIG. 9 only shows the
mapping of registers R1" and R1" to Phys ID 1 and Phy
s ID 2. Here, a Register Alias Table (RAT) 901 contains a
mapping of the renamed registers R1, R1" to the corre
sponding physical registers Phys ID 1, Phys ID 2 that are
used to actually implement the renamed registers R1, R1".
The RAT 901 essentially contains a listing of the specific
physical registers that the data fetch stage has allocated for
the corresponding renamed registers of the instructions that
are being processed by the pipeline (“in-flight') but have not
yet retired. As observed in FIG. 9, the RAT901 contains a
mapping for each in flight renamed register, and, a corre
sponding physical address or pointer to its specific, corre
sponding register in the physical register file 902. Note that
RAT 901 represents the correct mapping to the physical
registers for the point in the program that is currently
allocating into the processor, as well as mappings for older
versions of an architectural register that is still in flight, and
further contains the mapping for the retired version of the
architectural register. The specific structures used to track all
in flight renamed versions of an architectural register may
vary from embodiment to embodiment.
A free list array 903 also contains a list of pointers to

registers in the physical register file 902 whose correspond
ing register data is not associated with any version of an
architectural register including the retired version, or other
wise can be overwritten.

Here, logic circuitry within the data dependency logic 805
(and/or within the write back stage 804) is designed to
recognize when no further dependencies exist on an archi
tectural register entered in the RAT901. Again, typically, the
program code that is presented to the pipeline assumes that
the pipeline will process the program code strictly in order.
AS Such, a signature within the original program code (i.e.,
before renaming) that a register is holding information that
no following instructions depend on is the first occurrence of
an instruction that overwrites the register with new infor
mation from memory or another register. Instruction 814 of
instruction sequence 810 of FIG. 8 has this property. Such
instructions may be viewed as belonging to a class of
instructions referred to as “overwriter instructions.
Upon the retirement of an overwriter instruction, the entry

in the RAT 901 for the retired version of the corresponding
architectural register that was overwritten in the original
code is flushed from the RAT 901, and, the pointer to the
physical register file 902 for the flushed entry is moved from
the RAT901 to the free list array 903. For example, when
instruction 814 retires, R1" becomes the retired version, and
the previous retired version is no longer needed and can be
moved to the free list. That is, renamed register R1" with
PhysID 2 is no longer needed, and PhysID 2 can be moved
to the free list.

US 9,535,744 B2
13

When a new instruction is presented to the data fetch stage
802 for execution, new versions are created and thus new
physical registers are allocated for the architectural registers
written by the instruction. The new physical registers are
allocated by taking pointers from the free list array 903 and
creating a mapping from architectural register to the physi
cal register in the RAT901.

In the case of speculative execution, data dependency
logic 805 also has the ability to restore the RAT901 back to
its state at the branch or jump whose direction was incor
rectly guessed, or back to the retired values if the machine
nukes (that is, the entire pipeline is cleared or flushed).

Recalling that, traditionally, a re-order buffer will retire
instruction results to the architectural register file when a
series of results are realized in correct sequence order.
Physical (actual) registers are written to at execution time.
These same registers are deemed architectural when they
retire. Depending on implementation, the contents of a
retired register could be copied over to an actual architec
tural register, or simply remain in the physical register file
but managed or otherwise tracked as the architectural ver
sion vs speculative/physical versions within the RAT.

Moreover, recall that the size of the re-order buffer
traditionally sets a limit on the number of instructions that
can be executed out-of-order or speculatively. More
advanced pipelines are presently being designed to Support
more aggressive speculation ("extended speculation')
whose run length of speculative code can be (e.g., much)
larger than the size of the re-order buffer.

In order to Support extended speculative execution
beyond the size of the reorder buffer, one perspective is that
any extended speculative instruction stream may execute
and even retire its results to the architectural register file
and/or memory, so long as the state of the machine can be
brought back to the correct (non-speculative) instruction
stream if the speculation was incorrect. In an embodiment,
in order to support extended speculative execution, the
pipeline is configured to implement an "atomic' scale com
mitment process when committing extended speculatively
executed code. In particular, the results of an entire self
consistent region of extended speculative code (a "commit
point”) is concurrently committed to the true architectural
state and/or memory ("commit the region').

In order to Support this or other approaches where
extended speculative results are actually retired to the archi
tectural register file and/or memory, the RAT and free array
list should be designed to prevent the overwriting of infor
mation that existed in the physical register file for each of the
architectural registers consistent with a program point just
before speculation first started (e.g., content within the
physical register file for each of the architectural registers
consistent with a program point as of the end of non
speculation). The corpus of physical register space that is
pointed to by the entries in the free list array at the time
speculation started is free to be used by the speculative code
going forward. However, precautions should be taken to
make Sure that the corpus of physical register space that is
pointed to by the entries in the RAT for each of the
architectural registers consistent with a program point when
speculation starts should not be overwritten by the specu
lative code. By so doing, if the code needs to fall back and
re-start from the point just before the start of speculation, the
state of the program code for each of the architectural
registers at the point can be recalled. That is, if a physical
register holds a value that is needed after a fall back
operation, even if the value is no longer associated with any
active version of an architectural register during traditional

5

10

15

25

30

35

40

45

50

55

60

65

14
speculation including the architecturally retired version, the
physical register must be preserved.

Thus, in an embodiment, the start of extended speculation
is marked and the program code progresses speculatively. As
discussed above, in the case of extended speculation instruc
tions are permitted to retire to architectural state.

Recall from the background that, typically, the program
code that is presented to the pipeline assumes that the
pipeline will process the program code strictly in order. As
Such, the signature within the original program code (i.e.,
before renaming) that a register is holding information that
no following instructions depend on is the first occurrence of
an overwriter instruction.

In the case of extended speculative execution, the specu
latively executed code is apt to reach (potentially multiple
times, once for each architectural register that is represented
in the RAT) a region where a physical register file register
that was “live” at the moment speculation started (i.e., there
were potential dependences on its associated information)
no longer has any dependencies on it. For example, the
speculatively executed code is apt to present the pipeline
with an “overwriter instruction that intends to overwrite the
information associated with an architectural register. During
allocation a new version of that architectural register is
created, thus replacing as current an earlier version of a
renamed register. The earlier version has an entry in the RAT
that was carried over from the non speculative to speculative
code regions.

According to traditional register renaming behavior, refer
ring to FIGS. 10a and 11a, upon retirement of an overwriter
instruction 1114, the entry 1120 in the RAT 1101 for the
retired version of a renamed register 1111 whose information
was supposed to be overwritten is deleted 1001 from the
RAT 1101, and, the entry's pointer 1112 to the physical
register space 1111 is moved 1002 to the free array list1103.
This has the effect of freeing up register space 1111 for
Subsequent overwriting.
By contrast, in an embodiment, referring to FIGS. 1 Ob

and 11 b, this behavior is not followed when the overwriter
instruction 1114 is extended speculatively executed and
retired and is attempting to overwrite an older version of a
renamed register that had an existing entry 1120 in the RAT
1101 that was carried over from the non speculative to the
speculative code regions. In the case of a speculative over
writer instruction that is to overwrite information having an
entry in the RAT that was carried over from the non
speculative to the speculative code regions, the entry's
pointer 1112 to the physical register space 1111 is not moved
to the free array list 1103 when overwriter instruction 1114
retires. Rather, it is moved 1004 to a copy-on-write (COW)
buffer 1104.

In a further embodiment, the pointer 1112 is appended or
otherwise linked to the architectural register (R1) that it was
associated with in the RAT (e.g., the information of the
entire entry 1120 is stored in the COW buffer 1104). Here,
by preventing the pointer 1112 from entering the free list
array 1103, the corresponding physical register space 1111
cannot be overwritten by Subsequently executed speculative
code. By also saving the identity of the pointer's corre
sponding architectural register, the state information of the
RAT 1101 for that entry 1120 at the end of non speculative
execution is essentially being saved. By treating each entry
that existed in the RAT 1101 that was consistent with the
point in the program when non-speculative execution ended
in the same fashion, the entire contents of the RAT 1101 as
of the end of non speculative execution is essentially saved
in the COW buffer 1104. As such, if needed, the machine can

US 9,535,744 B2
15

roll-back and restart execution from that state if the specu
lative execution needs to be discarded.

Thus, to reiterate, in an embodiment, only the entries that
exist in the RAT 1101 consistent with a point in the program
when speculative execution is started have their pointers to
physical register space (and, associated logical register
names) specially saved to the COW buffer 1104. Subsequent
entries that are created in the RAT for the (potentially
extensive) speculatively executed code have their pointers
moved to the free array list 1103 upon the retirement of an
overwriter consistent with the processes of FIGS. 10a and
11a. By so doing, state information in physical register space
1111 reflecting a point in program consistent with the end of
non speculative execution is saved thereby permitting pro
gram execution to roll-back back to that state should the
speculative execution need to be discarded. For extended
speculation, in one embodiment, branches are resolved
before they retire in the traditional speculation portion of the
machine. Here, traditional speculation corresponds to specu
lation within the depth/size of the reorder buffer. Not spe
cially saving RAT information for RAT entries that are not
carried over from the non-speculative region to the specu
lative region is acceptable regardless if the traditional specu
lation follows the correct program code path or not. The
physical register associated with RAT entry 1120 is not
moved to the free list array 1103 or the COW buffer 1104
until the overwriter retires, by which time all prior branches
must have been resolved, and correct program code path
determined. On a branch misprediction in the traditional
speculation portion of the machine, the RAT 1101 deletes the
mappings to physical registers associated with instructions
on the incorrect path, returns their allocated physical regis
ters to the free list array 1103, and restores as current the
mappings between architectural registers and physical reg
isters, including information about which current RAT 1101
entries were carried over from the non speculative region to
the speculative region, to the point immediately after the
mispredicting branch on the correct path. In another embodi
ment branch direction is not resolved until after traditional
speculation has retired but before extended speculation has
committed. In this case, Some physical registers may have
been returned to the free list array 1103 that might be needed
on the correct path, and thus the whole extended speculation
region must be discarded, the RAT 1101 restored from the
COW buffer 1104, and execution resumed from the restored
State.

In an embodiment, as observed in FIG. 12, each entry in
the RAT 1201 is provided with a bit 1202 to indicate whether
or not the entry corresponds to an entry that was carried over
in RAT 1201 from the non speculative region to the specu
lative region. If the bit of an entry is set to indicate that the
entry was carried over in the RAT 1201 from the non
speculative region, the entry is treated according to the
processes discussed above with respect to FIGS. 10b and
11b. By contrast, if the bit of an entry indicates that the entry
was not carried over in the RAT 1201 from the non
speculative region, the entry is treated according to the
processes of FIGS. 10a and 11a. By definition, any new
entry that is entered into the RAT 1201 during the execution
of extended speculative code does not have its bit set, thus
indicating that it was not carried over from the non-specu
lative region to the speculative region. This effectively
ensures that only the RAT state consistent with a point in the
program at the end of non speculative execution is saved
across a non speculative/speculative code boundary.

Referring to FIG. 13, if the speculation is deemed unsuc
cessful 1301, a "pipeline nuke' is performed to clear the

10

15

25

30

35

40

45

50

55

60

65

16
pipeline of any state information associated with traditional
speculative code. This process will restore the RAT to be
consistent with the current retirement point in the re-order
buffer. Any results in the re-order buffer that were deter
mined speculatively through traditional speculation may
also be flushed from the re-order buffer, and their corre
sponding physical registers identifiers returned to the free
list array. Then, the RAT entries that were not carried over
from the non-speculative region to the speculative region are
flushed from the RAT 1302. Here, any pointers of such
entries are returned to the free array list to permit their
associated information in the physical register file to be
overwritten. The Saved RAT entries within the COW are
then re-populated back into the RAT to restore the RAT to
a point in the program just before speculation started 1303.
So doing has the effect of rolling back program execution to
its last non-speculative point.
The physical register file 1102 discussed above is typi

cally used to hold operand data and resultants of “math
ematical and/or logic' operations performed on the oper
ands. There are typically two kinds of Such operands/
resultants: integer and floating point. Here, physical register
space 1102 may be viewed as corresponding to one or the
other or both depending on implementation. Other kinds of
information may be stored in register space that is typically
not associated with the operands/resultants of standard
mathematical/logic operations. Examples include control or
control-like information kept in model specific register
(MSR) space, and/or control and/or status flag register space
used to help direct program flow (e.g., an MXCSR register
that stores program directives, flags and masks (e.g., under
flow mask, overflow mask, round-to-zero, round positive,
round to nearest, precision flag, etc.). Again, register file
1102 may be presumed to include such registers.

Normally, however, program control register space Such
as the contents of an MXCSR register is not the type of
register space associated with register renaming and out-of
order execution. Therefore there may not be any entry in a
RAT for a mapping to a specific version or physical register,
even though it is part of the state of executing program code.
In other embodiments, these types of registers may be
versioned and renamed into a separate physical register file
that is separate from the physical register file used for data.
Further this physical control register file may not be of
Sufficient size or may not be of a Sufficient organization (e.g.,
an array of physical entries organized as a properly ordered
list) to preserve overwritten versions until the speculative
region commits while allowing additional entries for tradi
tional speculative. As such in these embodiments, when the
end of non speculative execution is recognized but before
the start of execution of speculative program code, accord
ing to one embodiment, the allocation pipeline includes
logic circuitry to automatically dump Such program control
content into temporary integer or floating point logical
register space 1102 and create a corresponding entry in the
RAT including the setting of the bit to indicate the entry was
present in the RAT as of the end of non speculative execu
tion. By so doing, the program control state information of
the code will also not be overwritten by the speculative code
according to the processes discussed above with respect to
FIGS. 10b, 11b and 12. If the speculation is to be discarded
and the program returned to its last state prior to the start of
speculation, after the RAT is repopulated with the contents
from the COW buffer, the entry corresponding to the pro
gram control state information is dumped back into its
appropriate register space by special logic circuitry of the
pipeline. Note that throughout extended speculation, the

US 9,535,744 B2
17

pointer to the saved copy of the MXCSR register may reside
in RAT 1120. Only if the same temporary register is over
written inside the extended speculation region will the
pointer to the physical register containing the saved copy of
the MXCSR register be moved into the COW. In another
embodiment, the allocation pipeline may insert micro-op
erations into the pipeline that perform the dump into the
temporary registers. In a further embodiment, an architec
tural instruction that signals the beginning of extended
speculation may include dedicated micro-operations to per
form the dump into the temporary registers.

In a similar vein, certain areas of “same' defined register
space can exist in different physical locations. For example,
8-bit AH register space, which is logically bits 8-15 of parent
register RAX, may be stored in a different physical location
than the 8 bit allocation for it within its parent RAX register.
As such, in an embodiment, prior to the start of speculation,
the separately stored AH portion is combined back into its
RAX parent by special logic circuitry so that only one RAT
entry and one physical register contain all of the RAX data,
and, only one COW entry would need to be created for the
RAX and AH data items if RAX (and therefore implicitly
AH) is overwritten inside the extended speculation region
rather than two. If the speculative code has to be rolled back
to the end of non speculative state, the pipeline includes
special logic circuitry that can separately store the AH
information from the RAX register space to reflect the state
of the code at the end of its non speculative region. In
another embodiment, the RAT will be restored with the
mapping of RAX to the single combined physical register,
and an indication set in the RAT that AH is not separate and
currently comprehend in physical register mapped to RAX.
Like with control register State, the merge may be performed
by dedicated allocation pipeline circuitry, by micro-opera
tions inserted by the allocation engine, or by dedicated
micro-operations included in the micro-operation flow of
instructions that indicate the start of extended speculation.

Furthermore, even though the RAX parent is combined at
the beginning of the speculative region, the AH information
might be written alone inside the speculative region (thus
creating a COW entry mapping AH to its old physical
register). Note, however, that the RAT still holds a mapping
from RAX (minus the AH part) to the same physical register.
If RAX is written to later in the speculative region, the
mapping of RAX to the same physical register will be
moved to the COW. So the COW will have AH and RAX in
two records pointing to that same physical register. Note that
this is the last reference to that physical register, but by the
processes of FIGS. 10b/11b, that physical register will not be
returned to the freelist. Note that there would have been
additional cases if AH and RAX could have started the
speculative region as two different physical entries.

Architectural result flags of a carry flag ('C') group and
different result flag components of an overflow? sign/parity/
auxiliary/Zero flag (OSPAZ) group can also similarly be
combined into a single register location just prior to entering
a speculative code region. As such, isolated pieces of
register state, even including mathematical/logic state, may
be combined into same register space just prior to entry into
a speculative code region to reduce COW entry overhead.

FIG. 14 illustrates architectural components employed in
one embodiment which include a register rename and allo
cation logic 1411 and reservation station 1412 at the data
fetch stage, and a ROB 1405, register reclaim table (RRT)
1430, COW buffer 1404, and free list array 1403 at the write
back stage. The discussion above has primarily contem
plated the presence and control of the free list array within

5

10

15

25

30

35

40

45

50

55

60

65

18
the data fetch stage, assuming that the RAT 1413 tracks all
in-flight versions of each architectural register including the
retired version. In the implementation shown in FIG. 14, the
free list array 1403 is managed by logic circuitry of the write
back stage in conjunction with the operation of the RRT
1430 which keeps track of the in-flight (allocated) over
writer instructions whose retirement represents that no
dependencies exist on the respective information that the
over-writer instruction over-writes in the original, strictly
ordered program code. This structure is written when an
over-writer allocates into the RAT, and read when the
over-writer retires. Without extended speculation, physical
register identifiers read from the RRT upon retirement
represent physical registers that can be returned to the free
list array, as described in FIGS. 10a and 11a.

For each such over-writer instruction, the RRT 1430 lists
the pointers into physical register space where the informa
tion that the over-writer overwrites in the original code
resides. Thus, upon retirement of a non speculative over
writer instruction, the instruction’s corresponding pointer in
the RRT 1430 is flushed from the RRT 1430 and entered into
the free list array 1403. Notably, in the particular embodi
ment of FIG. 14, the free list array 1403 and COW buffer
1404 are located in the write-back pipeline stage as opposed
to the data fetch pipeline stage (although each or one or the
other could conceivably be located in the data fetch stage).
In an embodiment, in order to Support extended speculative
execution, similar to the discussion of FIG. 12, each entry in
the RRT may include a bit that indicates whether the RAT
mapped an architectural register to a physical register that
carried over from the non speculative region to the specu
lative region. As a physical register identifier is replaced
from the RAT due to an overwriter, it is placed into the RRT
corresponding to the overwriter, and the bit associated with
the RAT entry specifying whether it was present at the end
of the non-speculative execution is copied into the RRT
along with the physical register identifier. Retirement of a
speculative overwriter, as a consequence of the set bit,
causes the corresponding pointer that is flushed from the
RRT to be entered into the COW 1404 rather than the free
list array 1403.

In an alternate embodiment, a second RAT (not shown in
FIG. 14, also referred to as a Retirement RAT (RRAT)) is
located in the write-back stage, whereas the primary RAT is
located in the allocation or data fetch stage. The primary
RAT tracks the mapping between architectural registers and
physical registers during renaming, whereas the retirement
RAT in the write-back stage tracks the mapping between
architectural and physical registers representing the retired
state in program order. When an over writer retires, the over
written physical register pointer can be moved from the
second RAT to the freelist or to the COW, depending on the
processes of FIGS. 10a/11a and 10b/11b.

In an alternative embodiment, rather than have an extra bit
for each RRT entry, a separate data structure (not shown in
FIG. 14) is used to keep track of the non speculative state
information (that is, information that would need to be
restored if state must be rolled back due to incorrect
extended speculation) that could be overwritten by specu
lative code if precautions are not undertaken. For example,
a non speculative RRT may exist that is separate from the
RRT. Upon allocation of a speculative overwriter that could
overwrite non speculative state information needed for roll
back, an entry is created in the non speculative RRT with a
pointer to the impacted non speculative state information
(and an identifier of the associated architectural register). In
an embodiment, the creation of the entry may include

US 9,535,744 B2
19

shifting an entry that existed at the end of non speculative
execution within the RRT from the RRT to the non specu
lative RRT.

Speculative overwriters that do not affect non speculative
state needed for rollback have entries created in the normal
RRT rather than the non speculative RRT. Upon retirement
of a speculative overwriter instruction that can impact non
speculative state, the pointer to the physical register space in
the corresponding non speculative RRT entry is automati
cally moved to the COW (along with the identifier of the
logical register). According to one embodiment, both the
normal RRT and the non speculative RRT are contained
within the traditional speculative portion of the machine.
Both are corrected in response to branch misprediction by
eliminating entries for overwriters that were on the wrong
path. Upon retirement of an overwriter, the overwritten
physical registers that are no longer needed as stored in the
RRT are moved to the freelist, and the physical registers that
must be preserved in case of a rollback as stored in the non
speculative RRT are moved into the COW. According to one
embodiment, the RRT and the freelist may be a single
structure with a pointer that distinguishes the portion rep
resenting the RRT and the portion representing the freelist,
whereas the pointer is advanced upon retirement of an
overwriter effectively moving physical register identifiers
from the traditional speculation engine (RRT) portion to the
free list portion. Similarly, the non speculative RRT and the
COW may be a single structure with a pointer that distin
guishes the portion representing the non speculative RRT
and the portion representing the COW, whereas the pointer
is advanced upon retirement of an overwriter effectively
moving physical register identifiers from the traditional
speculation engine (non speculative RRT) portion to the
COW portion. Because the COW essentially protects a
certain amount of register space from overwriting during
speculation, the size of the COW can be viewed as setting a
limit on how far speculative code can progress in terms of
overwriting non speculative state information. In order to
reduce COW size, one approach is to permit speculation
only for a certain type of register. For example, according to
one approach, the COW is designed to support extended
speculation for integer registers but not floating point reg
isters. As such, extended speculation can proceed until a first
floating point register is used by the speculative code. Upon
reaching the first extended speculative instruction that
attempts to modify a register type that cannot be modified
during extended speculation, an atomic commit is forced
upon any speculative retired but not committed instructions.
If the atomic commit is not possible, the speculation is rolled
back to its last non speculative state.

Note that the above discussion has focused on a circuitry
designs for a single thread. Support for speculation for each
of multiple threads could be effected by instantiating a
separate instance of Such circuitry for each of the multiple
threads and/or storage for the associated context of each
thread.
Upon atomic commit of the extended speculative region,

the physical registers mapped by pointers in the COW 1404
no longer need to be preserved because there is no further
risk of a rollback. After the commit, the physical register
identifiers from the COW can be moved to the free list.
Techniques for Continued Retire During Commit
The extended speculation mechanisms described above

allow the size of the instruction region (number of instruc
tions that may be executed prior to knowing whether to
commit or abort the region) to exceed that of the reorder
buffer used for conventional out-of-order speculation. The

10

15

25

30

35

40

45

50

55

60

65

20
machine performs conventional (i.e., "traditional') specula
tion for high performance execution while retiring instruc
tions within the region. As discussed above, the COW 1404
maintains copies of the architectural registers from the time
the extended speculation mechanism began, thus providing
a mechanism for restoring the architectural registers to
pre-speculation values.
The region of code for extended speculation will be

referred to below as the InTx (inside a transaction) region.
In the architecture discussed above, the ROB was forced to
stall retirement when a region commit uop was the oldest
until the memory system (MEU) was prepared to commit
values altered in the region. This process causes the out-of
order speculation mechanism to get “backed up” while
waiting for the MEU. That is, at the time the commit
operation is at the head of the ROB 1405 and ready to retire,
its retirement is held back, thus preventing the ROB 1405
from retiring and speculating deeper into code Subsequent to
the region. Delay in the retirement of the commit causes
delay in the retirement of Subsequent uops, which delays
releasing resources causing yet other sources of delay.
The embodiments of the invention described below allow

continued retirement of instructions during a commit of a
speculative region of program code. Specifically, one
embodiment allows the retirement of instructions to proceed
through the commit uop into post-region code even if the
memory execution unit (MEU) 164 has not committed the
region yet. The range of uops not normally InTX (not
normally inside the extended speculation region) but
included inside the region by the techniques described below
is referred as the “Post-Tx' region. That is, the Post-Txuops
are considered to be part of the region itself. When retire
ment is allowed to proceed past the commit uop, but yet the
region Subsequently aborts because of a memory issue, the
architectural register values must be restored to the point at
the beginning of the region, throwing out both the region and
post-region execution.

In one embodiment, this new mode ends when one of
several conditions arises. First, if the beginning of a new
region is ready to retire, retirement must stall until the
previous region is ready to commit otherwise extra tracking
is required for two regions to be in the process of committing
simultaneously, which is added complexity especially in the
MEU. Second, if a uop comes up for retirement that is not
allowed inside of a region because its retirement cannot be
undone by the copy-on-write (COW) mechanism described
below, retirement must stall. Third, if the region actually
commits, and there are no additional regions inside the
conventional speculation mechanism, treating Subsequent
code as being inside the region is no longer necessary (this
is referred to as “free and clear).

FIG. 15 includes one embodiment of an architecture for
continued retirement of instructions during a commit of a
speculative region of program code. Unless otherwise stated,
the components illustrated in FIG. 15 perform the same
functions as those described above with respect to FIG. 14.

In one embodiment, the decisions related to the inclusion
of uops inside regions are made at allocation time. Specifi
cally, region identification logic 1501 within the register
rename and allocation logic 1411 identifies InTX and post
TX transactional memory regions and generates region indi
cators to identify these regions. As mentioned, the region
indicator may treat the InTX and post-Tx regions as a single
region.

Transactions may be delineated by begin and end instruc
tions such as XBEGIN and XEND, respectively. In one
embodiment, using this information, the region identifica

US 9,535,744 B2
21

tion logic 1501 tags instructions with the region indicator.
During this stage, a decision is made as to what storage
location is to be used (such as a position in the load or store
buffer of a MOB), an assignment of a physical register for
use by the instruction (this may include register renaming),
and which functional unit to use (if necessary). Regardless
of how region indicator tagging is performed, region indi
cator information is subsequently stored within the ROB
1405.

FIGS. 16a-b illustrate an example where program order
includes InTx Region 1, followed by a PostTx Region 1,
further followed by an InTx Region 2. The diagram depicts
an abstract view of the Reorder Buffer (ROB 1405), where
program order runs left to right. The shaded region 1600 is
the PostTX code, that is, instructions not normally consid
ered part of a region. As mentioned, in one embodiment, the
region identification logic 1501 in the RAT 1413 treats
PostTx Region 1 1610 as part of the InTx region, putting
overwritten values into the COW 1404 if the values were
live across the boundary into InTx Region 1. In this Figure,
the PostTx Region 1 is defined by the RAT 1413 and the
ROB 1405 will send the RAT the commit signals described
herein. In FIG. 16a, the region has not committed by the
time the Begin of InTx of Region 2 has started allocation,
thus the entirety of instructions between the two regions are
considered PostTx, and the RAT includes them in Region 1.

In FIG. 16a, the region has not committed by the time the
Begin of InTx Region 2 1605 reaches retirement. At this
point, the Begin InTX of Region 2 serves as the actual
commit point of Region 1, and retirement will be delayed
until the combined InTx Region 1 +the PostTx Region 1
have actually committed. Thus the ROB considered the
entirety of InTx Region 1+the PostTx Region 1 to be in the
region 1620. When this combined region commits, all of the
COW entries for the combined InTx Region 1+the PostTx
Region 1 have been accounted for as the overwriters that
created them have been retired. The physical registers pre
served in the COW 1404 for the combined region can all be
moved to the free list array 1403 because the possibility of
an abort has passed. The next entries in the COW 1404 will
belong to InTX Region 2 and Subsequent regions. Thus the
RAT 1413 and ROB 1405 have equivalent views of what is
PostTx and what is not.

In FIG. 16b, like in FIG. 16a, the region has not com
mitted by the time the Begin of InTx of Region 2 has started
allocation, thus the entirety of instructions between the two
regions are considered PostTx, and the RAT includes them
in Region 1. However, in FIG. 16b the region commits while
in the middle of retiring PostTx Region 1 code. At this point,
only some overwriters that created COW entries have retired
and others have not. The ROB 1405 view of what was just
committed is a subset of what the RAT 1413 marked (portion
1601 of PostTx Region 1 vs the complete PostTx Region 1
(portions 1601+1602)) 1630. When the combined InTx
Region 1 +the partial PostTx Region 1 (1601) have actually
committed, the physical registers in those COW entries can
be moved to the free list 1403. However, subsequent uops
may have been considered PostTx at allocation time (by the
RAT 1413) and created entries in the COW 1404 even
though the ROB considers the transaction complete. When
those overwriter uops retire, the physical registers held in
those COW entries can be moved directly to the free list
1403; there is no more risk of an abort of the combined
region. Note that this is equivalent to treating these COW
entries (region 1602) as if they were actually in the RRT
1430 (as previously described). That is, as these overwriters
retire, the physical registers do not need to be saved in case

5

10

15

25

30

35

40

45

50

55

60

65

22
of an abort, and can be freed into the free list 1403. Even
though the ROB 1405 is no longer in Tx, it should compre
hend that RAT considered them in Tx and free the COW
entries like it would RRT entries upon uop retirement.
The third scenario illustrated in FIG.16c is similar, except

that the RAT 1413 can terminate a PostTx region 1604 when
it encounters a non-allowed uop 1603. Where the non
allowed uop comes up for retirement prior to the combined
region commit, retirement will stall on the not-allowed uop
until the combined region does commit. The combined
commit point is at the non-allowed uop. In one embodiment,
where the commit occurs prior to the non-allowed uop
coming up for retirement, the commit can proceed (as in
FIG. 16b), but the ROB 1405 must free physical registers
stored in the COW 1404 as retirement proceeds up to the
point of the non-allowed uop within ROB PostTx Region
1606. Note that in the non-allowed code region 1603, the
RAT 1413 will not put any physical registers into the COW
1404.
The fourth scenario is a special case where there are no

Subsequent regions or non-allowed uops in the conventional
out-of-order mechanism when the combined region com
mits. Up to this point, the region identification logic 1501
has been marking uops as PostTX and can now stop because
it is not possible for any further regions to abort. In this
scenario, there is no case as in FIG.16a, but the case in FIG.
16b still applies. After the commit, the region identification
logic 1501 will stop marking uops as PostTX, and the ROB
1405 must free the physical registers held in the COW 1404
upon retirement of overwriters up to the point where the
region identification logic 1501 stopped marking uops as
PostTx. Considering branch misprediction and pipeline
nukes, it is possible for the conventional speculative path to
be considered PostTx, a branch mispredict to occur simul
taneous with the commit, and then the newly allocated
correct path be free-and-clear (non-PostTx). In one embodi
ment, the speculation mechanism described above repairs
the COW 1404 such that uops allocated into the ROB 1405
prior to the commit will still have COW entries and be
considered PostTX, COW entries created for wrong path
uops will be eliminated and the incorrectly allocated physi
cal registers returned to the free list 1403, and no COW
entries are created for the non-PostTx uop allocations.
A method in accordance with one embodiment of the

invention is illustrated in FIG. 17. The method may be
implemented on the architecture illustrated in FIG. 15, but is
not limited to any particular architecture.
At 1701, a plurality of transactional memory regions are

identified within program code to be executed. For example,
as mentioned above, each instruction may be tagged with a
transactional memory region identifier. At 1702, one or more
uops following one (or more) of the transactional memory
regions are identified. As discussed above, the transactional
memory region may be logically extended to include these
uops (i.e., so that the “region' used for processing comprises
the transactional memory region+the post-region uops). At
1703, one or more of the plurality of uops which follow the
transactional memory region (i.e., in the post-region code)
are allowed to retire following execution even if a commit
operation associated with the transactional memory region is
waiting to complete (e.g., due to memory latency in the
pipeline). Thus, as discussed above, rather than stalling the
pipeline until the commit has completed, this embodiment of
the invention allows additional uops in the post-region code
to retire, thereby improving performance.

In the foregoing specification, the invention has been
described with reference to specific exemplary embodiments

US 9,535,744 B2
23

thereof. It will, however, be evident that various modifica
tions and changes may be made thereto without departing
from the broader spirit and scope of the invention as set forth
in the appended claims. The specification and drawings are,
accordingly, to be regarded in an illustrative rather than a 5
restrictive sense.

Embodiments of the invention may include various steps,
which have been described above. The steps may be embod
ied in machine-executable instructions which may be used to
cause a general-purpose or special-purpose processor to 10
perform the steps. Alternatively, these steps may be per
formed by specific hardware components that contain hard
wired logic for performing the steps, or by any combination
of programmed computer components and custom hardware
components. 15
As described herein, instructions may refer to specific

configurations of hardware such as application specific
integrated circuits (ASICs) configured to perform certain
operations or having a predetermined functionality or soft
ware instructions stored in memory embodied in a non- 20
transitory computer readable medium. Thus, the techniques
shown in the Figures can be implemented using code and
data stored and executed on one or more electronic devices
(e.g., an end Station, a network element, etc.). Such elec
tronic devices store and communicate (internally and/or with 25
other electronic devices over a network) code and data using
computer machine-readable media, Such as non-transitory
computer machine-readable storage media (e.g., magnetic
disks; optical disks; random access memory; read only
memory; flash memory devices; phase-change memory) and 30
transitory computer machine-readable communication
media (e.g., electrical, optical, acoustical or other form of
propagated signals—such as carrier waves, infrared signals,
digital signals, etc.). In addition, Such electronic devices
typically include a set of one or more processors coupled to 35
one or more other components. Such as one or more storage
devices (non-transitory machine-readable storage media),
user input/output devices (e.g., a keyboard, a touchscreen,
and/or a display), and network connections. The coupling of
the set of processors and other components is typically 40
through one or more busses and bridges (also termed as bus
controllers). The storage device and signals carrying the
network traffic respectively represent one or more machine
readable storage media and machine-readable communica
tion media. Thus, the storage device of a given electronic 45
device typically stores code and/or data for execution on the
set of one or more processors of that electronic device. Of
course, one or more parts of an embodiment of the invention
may be implemented using different combinations of Soft
ware, firmware, and/or hardware. Throughout this detailed 50
description, for the purposes of explanation, numerous spe
cific details were set forth in order to provide a thorough
understanding of the present invention. It will be apparent,
however, to one skilled in the art that the invention may be
practiced without some of these specific details. In certain 55
instances, well known structures and functions were not
described in elaborate detail in order to avoid obscuring the
Subject matter of the present invention. Accordingly, the
Scope and spirit of the invention should be judged in terms
of the claims which follow. 60
What is claimed is:
1. A method implemented in a processor comprising:
identifying a plurality of transactional memory regions in

program code, including a first transactional memory
region; and 65

retiring one or more of plurality of operations which
follow the first transactional memory region even when

24
a commit operation associated with the first transac
tional memory region is waiting to complete, wherein
the commit operation associated with the first transac
tional memory region includes at least one speculative
execution, wherein the one or more of plurality of
operations that follow the first transactional memory
region are treated as part of the first transactional
memory region so that states of architectural registers
of the processor from execution of the first transac
tional memory region and the one or more of the
plurality of operations are preserved.

2. The method as in claim 1 wherein the operations are
microoperations (uops).

3. The method as in claim 1 further comprising:
stalling a retirement operation of a current transactional
memory region until a previous transactional memory
region is ready to commit.

4. The method as in claim 1 further comprising:
detecting an abort operation to abort execution of the

plurality of operations following the first transactional
memory region; and

restoring the architectural registers to a state existing at a
start of the first transactional memory region; and

discarding results from the first transactional memory
region and/or the plurality of operations following the
first transactional memory region.

5. The method as in claim 4 wherein restoring the
architectural registers comprises reading data associated
with the state from a copy-on-write (COW) buffer.

6. The method as in claim 1 further comprising:
detecting that retirement of an operation of the plurality of

operations following the first transactional memory
region would result in the inability to restore the
architectural registers to a state existing at a start of the
first transactional memory region; and

responsively stalling retirement of the operation.
7. The method as in claim 6 wherein detecting comprises

detecting that retirement cannot be undone by restoring the
architectural registers from a copy-on-write (COW) buffer.

8. A processor comprising:
first logic to identify a plurality of transactional memory

regions in program code, including a first transactional
memory region; and

second logic to retire one or more of a plurality of
operations which follow the first transactional memory
region even when a commit operation associated with
the first transactional memory region is waiting to
complete, wherein the commit operation associated
with the first transactional memory region includes at
least one speculative execution,

and wherein the first logic and second logic treat the
plurality of operations that follow the first transactional
memory region as part of the first transactional memory
region for the purposes of retiring operations so that
states of architectural registers of the processor from
execution of the first transactional memory region and
the one or more of the plurality of operations are
preserved.

9. The processor as in claim 8 wherein the operations are
microoperations (uops).

10. The processor as in claim 8 wherein the second logic
stalls a retirement operation of a current transactional
memory region until a previous transactional memory region
is ready to commit.

11. The processor as in claim 8 comprising additional
logic to:

US 9,535,744 B2
25

detect an abort operation to abort execution of the plu
rality of operations following the first transactional
memory region; and

restore the architectural registers to a state existing at a
start of the first transactional memory region; and

discard results from the first transactional memory region
and/or the plurality of operations following the first
transactional memory region.

12. The processor as in claim 11 further comprising:
a copy-on-write (COW) buffer, wherein restoring the

architectural registers comprises reading data associ
ated with the state from the COW buffer.

13. The processor as in claim 8 comprising additional
logic to:

detect that a retire operation of the plurality of operations
following the first transactional memory region would
result in the inability to restore the architectural regis
ters to a state existing at a start of the first transactional
memory region; and

responsively stall retirement of the operation.
14. The processor as in claim 13 wherein detecting

comprises detecting that retirement cannot be undone by
restoring the architectural registers from a copy-on-write
(COW) buffer.

15. A system comprising:
a memory for storing program code and data;
a input/output communication interface for communicat

ing with one or more peripheral devices:
a network communication interface for communicatively

coupling the system to a network; and
a processor comprising:
first logic to identify a plurality of transactional memory

regions in program code, including a first transactional
memory region; and

Second logic to retire one or more of a plurality of
operations which follow the first transactional memory
region even when a commit operation associated with
the first transactional memory region is waiting to
complete, wherein the commit operation associated
with the first transactional memory region includes at
least one speculative execution,

5

10

15

25

30

35

40

26
and wherein the first logic and second logic treat the

plurality of operations that follow the first transactional
memory region as part of the first transactional memory
region for the purposes of retiring operations so that
states of architectural registers of the processor from
execution of the first transactional memory region and
the one or more of the plurality of operations are
preserved.

16. The system as in claim 15 wherein the operations are
microoperations (uops).

17. The system as in claim 15 wherein the second logic
stalls a retirement operation of a current transactional
memory region until a previous transactional memory region
is ready to commit.

18. The system as in claim 15 wherein the processor
comprises additional logic to:

detect an abort operation to abort execution of the plu
rality of operations following the first transactional
memory region; and

restore the architectural registers to a state existing at a
start of the first transactional memory region; and

discard results from the first transactional memory region
and/or the plurality of operations following the first
transactional memory region.

19. The system as in claim 18 wherein the processor
further comprises:

a copy-on-write (COW) buffer, wherein restoring the
architectural registers comprises reading data associ
ated with the state from the COW buffer.

20. The system as in claim 15 wherein the processor
comprises additional logic to:

detect that a retire operation of the plurality of operations
following the first transactional memory region would
result in the inability to restore the architectural regis
ters to a state existing at a start of the first transactional
memory region; and

responsively stall retirement of the operation.
21. The system as in claim 20 wherein detecting com

prises detecting that retirement cannot be undone by restor
ing the architectural registers from a copy-on-write (COW)
buffer.

