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(57) ABSTRACT 
Methods and systems are described for quantitatively deter 
mining a score for a patient having a disorder, e.g. a stroke, in 
a tissue, such as the brain, by analyzing both the extent and 
location of damage to the tissue caused by the disorder. 
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TISSUEDSORDER MAGING ANALYSIS 

TECHNICAL FIELD 

0001. The invention relates to methods of evaluating dis 
orders in tissue, such as the severity of a stroke or other 
disorder in the brain. 

BACKGROUND 

0002 Quantitative imaging tools such as computer 
tomography (CT) and magnetic resonance imaging (MRI) are 
used to image various tissues such as the brain heart, and 
joints. For example, in the brain, various disorders such as 
stroke, autism, Alzheimer Disease, Multiple Sclerosis, and 
Schizophrenia, can be imaged using these and other known 
techniques. Such images often display the regions that are at 
risk or are damaged, e.g., with a structural or functional 
lesion, caused by the disease or disorder, or by physical or 
neurological trauma. Many of these other diseases, such as 
stroke, have clinical rating scales that are numerical and cor 
relate physical behavior and degree of recovery with physical 
or functional tissue trauma, Such as in the brain. 
0003 For example, in an attempt to better classify stroke 
patients (and study stroke patients as groups), a number of 
standardized clinical rating scales have been developed. Such 
as the NIH Stroke Scale (NIHSS) score. The NIHSS is a 
15-item, clinical evaluation instrument used in clinical trials 
and practice to assess neurological outcome and degree of 
recovery. Such assessment tools assign a numerical score 
(e.g., 0 to 42 in the case of the NIHSS) to attempt to summa 
rize a given patient's degree of disability based on a qualita 
tive evaluation of the patient. In general, the higher the score, 
the higher the deficit. Such scores are widely used as indica 
tors of outcome for stroke. 

SUMMARY 

0004. The invention is based, at least in part, on the dis 
covery that if one uses imaging-based techniques to identify 
and analyze the location of tissue, e.g., in the brain, that has 
been damaged by some disorder, e.g., disease or trauma, and 
combines that information with data relating to the extent of 
the deficit caused by the damage, one can create a so-called 
"hazardatlas” of the tissue. Sucha hazardatlas can be used to 
obtain a quantitative, imaging-based analysis of the severity 
of a current or future tissue disorder in patients. For example, 
a hazard atlas of the brain can be used to assess the prognosis 
of a patient who has had a stroke. 
0005. The imaging-based method applies a weight or 
value to each Volume element (voxel, e.g., a cubic millime 
ter), or combination of Volume elements, in the tissue based 
on the impact an infarction or other damage in that Volume 
element of the tissue, e.g., the brain, would have on the 
prognosis of a patient. The spatial impact of an infarctor other 
tissue trauma is stored in the hazard atlas. The new diagnostic 
methods apply such a hazard atlas to patient images to com 
pute a hazard score (or display a hazard map) for that patient. 
0006. In general, the invention features hazard atlases of a 
disorder (Such as stroke) in a tissue (e.g., the brain, heart, or a 
joint) including an image of the tissue (e.g., a three-dimen 
sional image), wherein the image has a plurality of Voxels, 
each Voxel representing a hazard value of an extent of deficit 
caused by damage from the disorder to that voxel of tissue at 
that location. In these atlases, the hazard value of each voxel 
can be based on any one or more of anatomical, vascular, and 

Oct. 9, 2014 

functional regions of tissue scored according to a specific 
numerical rating scale. Alternatively, the hazard value of each 
Voxel can be based on actual patient images (e.g., from 200 
patients) and recorded patient behavior and outcomes. 
0007. In certain embodiments, the tissue can be brain tis 
sue, and the hazard value for each voxel can be determined by 
analyzing a set of images from a group of patients that cor 
relates damage in a specific region of the brain with a degree 
of loss of function and wherein the hazard value is commen 
Surate with the degree of loss of function. 
0008. The hazard atlas can further include a scale that 
correlates the values of the voxels to a code. For example, the 
code can be color, a series of numbers, or a gray scale. The 
hazard atlas can be comprised of digital data (e.g., lists of 
numbers and locations) and can be stored on a computer 
readable medium. 
0009. In another aspect, the invention features systems for 
determining a hazard score for a patient having a disorder in 
a tissue. The systems include a device arranged to obtain or 
store an image of the patient’s tissue, wherein the image 
includes a plurality of patient image Voxels; a memory or 
computer-readable medium storing a hazard atlas of a disor 
der in the tissue, wherein the hazard atlas is comprised of a 
plurality of Voxels, each Voxel representing a hazard value of 
an extent of deficit caused by damage from the disorder to that 
Voxel of tissue at that location; an output device; and a pro 
cessor linked to the imaging device, memory, and output 
device. The processor is programmed to (i) obtain the image 
of a tissue of the patient; (ii) identify voxels of the patient 
image that are damaged by the disorder as damaged patient 
image Voxels; (iii) obtain from the memory or computer 
readable medium the hazardatlas of the disorder in the tissue; 
(iv) compute a hazard score for the patient, wherein the score 
is the integration of all damaged patient image Voxels 
weighted by a hazard value corresponding to that VOXel loca 
tion; and (v) transmit the hazard score to the output device. 
0010. In this system, the device to obtain the image of the 
patient's tissue can be a magnetic resonance imaging device; 
the hazard atlas can be of the brain affected by stroke. The 
hazard atlas can include a scale that correlates the values of 
the Voxels to a code. The damaged patient image Voxels can 
be identified using an image segmentation method, and the 
image of a tissue of the patient can be comprised of a series of 
images to represent a three-dimensional image. 
0011. In yet another aspect, the invention features meth 
ods for determining a patients hazard score for a disorder 
(such as stroke or trauma) in a tissue (e.g., the brain or a joint, 
Such as the knee) by obtaining an image of a tissue of the 
patient, wherein the image comprises a plurality of patient 
image Voxels; identifying Voxels of the patient image that are 
damaged by the disorder as damaged patient image Voxels; 
obtaining a hazard atlas of the disorder in the tissue; wherein 
the hazard atlas comprises a plurality of Voxels, each Voxel 
representing a hazard value of an extent of deficit caused by 
damage from the disorder to that voxel of tissue at that loca 
tion; and computing a hazard score for the patient, wherein 
the score is the integration of all damaged patient image 
Voxels weighted by a hazard value corresponding to that 
voxel location. The hazard score can be used to determine the 
patient’s prognosis. 
0012. The methods can further include matching the 
patient image to a standardized set of anatomical images of 
that tissue to provide a standardized image, and can be used to 
determine a course of treatment based on the hazard score. 
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0013. In other aspects, the invention includes methods for 
determining the efficacy of a treatment method for a patient 
having a tissue disorder by administering a treatment to the 
patient; measuring a hazard score using the new methods 
described herein at two or more points in time after adminis 
tering the treatment; and determining the efficacy of the treat 
ment based on the hazard scores. 

0014. The invention also includes methods of generating 
expert or data-driven hazard atlases by either identifying one 
or more of anatomical, vascular, and functional regions on a 
standard set of anatomical images of a tissue; assigning 
weighting factors to the regions according to clinically-rel 
evant assessment methodologies; and generating an expert 
hazard atlas of the tissue comprising a plurality of Voxels 
based on the weighting factors for each Voxel in the atlas; or 
acquiring patient image data; matching patient image data to 
a standardized set of anatomical images; identifying regions 
of the patient’s tissue with damage based on the image data; 
assigning weighting factors to the regions based on actual 
patient outcome data; and generating a data-driven hazard 
atlas of the tissue comprising a plurality of Voxels based on 
the weighting factors for each Voxel in the atlas. 
0015. In another aspect, the invention includes a computer 
program for determining a hazard score of a patient having a 
disorder in a tissue, the program residing on a computer 
readable medium and having instructions for causing a pro 
cessor to: (a) obtain an image of a tissue of the patient, 
wherein the image comprises a plurality of patient image 
Voxels; (b) identify voxels of the patient image that are dam 
aged by the disorder as damaged patient image Voxels; (c) 
obtain from a memory or computer-readable medium a haz 
ardatlas of the disorder in the tissue, wherein the hazard atlas 
comprises a plurality of Voxels, each voxel representing a 
hazard value of an extent of deficit caused by damage from the 
disorder to that voxel of tissue at that location; (d) compute a 
hazard score for the patient, wherein the score is the integra 
tion of all damaged patient image Voxels weighted by a haZ 
ard value corresponding to that Voxel location; wherein the 
hazard score determines the patient’s prognosis; and (e) 
transmit the hazard score to an output device. 
0016. The invention also includes methods of generating a 
combined expert- and data-driven hazard atlas by acquiring 
patient brain image data; matching patient brain image data to 
a standardized set of anatomical images; identifying regions 
of the patient’s brain with lesions based on the image data; 
and assigning weighting factors to voxels comprising the 
hazard atlas based computational techniques (such as least 
squares minimization) using the acquired patient brain data, 
combined with expert input. 
0017. In the new methods, a hazard score can be computed 
by acquiring patient brain image data; matching patient brain 
image data to a standardized atlas; identifying regions of the 
patient’s brain with lesions based on the image data; and 
computing a hazard score wherein the score is the sum of 
identified regions weighted by a factor for each region 
wherein the factor indicates an impact an infarct in that region 
has on a patient. For example, the weighting factor for a 
region can be determined by analyzing a set of images from a 
group of patients that correlates a lesion in the region of the 
brain with a degree of loss of function and wherein the 
weighting factor is commensurate with the degree of loss of 
function. Alternatively, algorithms that are more complex can 
be applied to analyze the patterns of tissue damage associated 
with various outcome scores. 
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0018. The invention provides several advantages. For 
example, it can improve acute stroke management by better 
stratifying patients according to expected prognosis. Patients 
who are predicted by the new methods to improve substan 
tially in the natural course of their disease could be spared 
risky therapeutics, whereas patients whose prognosis is poor 
may choose to weigh the risks associated with therapeutic 
options against any improvement from their natural course. 
The new methods can also be used in the development of 
novel therapies such as neuroprotective drugs or other inter 
ventions, e.g., inclinical trials, as a Superior Surrogate marker 
of clinical severity to imaging-based lesion Volume alone or 
as a Superior marker of clinical severity to clinical assess 
ment, which may be time-consuming and carries with it a 
certain degree of inter-rater variability. 
0019. As in acute stroke management, the new methods 
can be used in the context of therapy development to stratify 
patients according to prognosis, as the therapeutic interven 
tion being evaluated may be more efficacious for patients with 
a certain type of prognosis. The methods can also be used to 
more effectively evaluate the efficacy of novel therapeutic 
interventions by improving the statistical power of Such cal 
culations (i.e., since actual outcome with the therapeutic can 
be compared to potential outcome determined by the “haz 
ard' atlases if the therapeutic were not administered, in the 
same patient), thus reducing sample sizes. In addition, the 
new “hazard' atlases will enable the generation and testing of 
new hypotheses to better understand, and eventually to better 
treat, human acute cerebral ischemia and other disorders in 
the brain. 
0020. In addition, while the present examples are drawn 
from the field of ischemic stroke, the same methodology can 
be applied to any pathology, inside or outside the brain, where 
there are imaging abnormalities and a clinical rating score. 
This includes other neurological illness, such a multiple scle 
rosis or Alzheimer's disease, where there are neuroimaging 
abnormalities and known rating scales. This also includes 
other non-neurological illness, such as cardiac disease (e.g., 
myocardial infarction) or joint disease (e.g., rheumatoid 
arthritis or osteoarthritis), where clinical scores are obtained 
and imaging abnormalities are present. 
0021. Unless otherwise defined, all technical and scien 

tific terms used herein have the same meaning as commonly 
understood by one of ordinary skill in the art to which this 
invention belongs. Although methods and materials similar or 
equivalent to those described herein can be used in the prac 
tice or testing of the present invention, Suitable methods and 
materials are described below. All publications, patent appli 
cations, patents, and other references mentioned herein are 
incorporated by reference in their entirety. In case of conflict, 
the present specification, including definitions, will control. 
In addition, the materials, methods, and examples are illus 
trative only and not intended to be limiting. 
0022. Other features and advantages of the invention will 
be apparent from the following detailed description, and from 
the claims. 

DESCRIPTION OF DRAWINGS 

0023 FIG. 1A is a flow chart outlining a method for deter 
mining a hazard score for a stroke patient using a weighted 
atlas. 
0024 FIG. 1B is a brain atlas based on an MRI scan and 
provides an outcome score based on the well-known NIH 
stroke scale. 
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0025 FIG. 2 is a flowchart outlining a method for deter 
mining a weighted hazard atlas. 
0026 FIG. 3A is a flowchart outlining a method for deter 
mining the course of treatment for a stroke patient. 
0027 FIG. 3B is a representation of a method of generat 
ing a hazard score by combining patient images with a hazard 
atlas to obtain a numerical hazard score. 

0028 FIG. 3C is a representation of a method of combin 
ing a risk map with a hazard atlas to highlight possible sal 
vageable tissue. 
0029 FIG. 4 is a flowchart outlining a method for deter 
mining the effectiveness of a treatment for stroke patients. 
0030 FIGS.5A and 5B are a pair of graphs comparing the 
correlation coefficients of volume score v. NIHSS (5A) and 
hazard score V. NIHSS (5B) based on a hazard atlas generated 
using standard textbook information of deficit correlations in 
different anatomical, Vascular, and functional regions of the 
brain. 

0031 FIG. 6 is a representation of a pair of slices of an 
expert hazard atlas generated using known standard textbook 
information of deficit correlations in different anatomical, 
vascular, and functional regions of the brain. 
0032 FIGS. 7A and 7B are a pair of graphs comparing the 
correlation coefficients of volume score v. NIHSS (7A) and 
hazard score V. NIHSS (7B), looking only at right hemisphere 
infarcts. 

0033 FIGS. 8A and 8B are a pair of graphs comparing the 
correlation coefficients of volume score v. NIHSS (8A) and 
hazard score V. NIHSS (8B), looking only at left hemisphere 
infarcts. 

0034 FIGS. 9A and 9B are a pair of graphs comparing the 
correlation coefficients of volume score v. NIHSS (9A) and 
hazard score V. NIHSS (9B) based on a hazard atlas generated 
using actual patient data to develop deficit correlations for 
different voxels of the brain. 

0035 FIG. 10 is a representation of a series of slices of a 
data-driven hazard atlas generated using actual patient data to 
develop deficit correlations for different voxels of the brain. 

DETAILED DESCRIPTION 

0036 Although the new methods can be applied to tissues 
in various locations in the body, e.g., the heart, muscles, and 
the brain, the new methods are described herein with respect 
to the brain. The new methods employ a quantitative analysis 
of brain images to assess the severity of a stroke or other brain 
disorder based on the extent and spatial position of the dam 
aged or “at risk” tissue. First, a detailed description of the 
imaging method and the analysis used to assess the severity of 
the stroke or other disorder (measuring a “hazard score') is 
described. These methods assess severity in part using a 
weighted anatomical "hazard' atlas. Second, methods are 
described for producing the weighted atlas. These methods 
are followed by a description of methods that use the new 
assessment methods to determine the course of treatment for 
stroke patients. Next, a method is outlined that uses Such 
assessment methods to determine the effectiveness of treat 
ments, such as stroke therapy, by repeatedly monitoring 
images of patients undergoing treatments. Thereafter, 
examples of different ways of generating a hazard atlas, and 
comparisons of the effectiveness of Such atlases compared to 
known methods of assessing patient prognosis are presented. 
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Measuring a Hazard Score and Producing a Weighted Hazard 
Atlas 

0037 FIG. 1A summarizes a method 100 for measuring a 
hazard score (by using a hazard atlas as described in further 
detail below) for a patient having a brain disorder that 
involves lesions or death of brain tissue. Method 100 first 
acquires imaging data from a patient (step 110). Typically, 
Such data is obtained using techniques such as magnetic reso 
nance imaging (MRI) or computer tomography (CT). In 
embodiments using MRI, for example, images are typically 
acquired that highlight both anatomical features of the brain 
and also highlight lesions associated with stroke or other 
brain disorder such as Multiple Sclerosis or Alzheimer's. 
Suitable pulse sequences for obtaining Such images are T2 
weighted images (showing for example vasogenic edema 
formation); diffusion weighted images (showing cytotoxic 
edema formation); or perfusion weighted images (showing 
hemodynamics including regions of abnormally high or low 
blood flow and blood volume); T1 weighted, gradient-echo, 
or other structural images (showing normal and abnormal 
anatomy); magnetic resonance angiographic sequences 
(showing patency of major vessels); images after the admin 
istration of a contrast agent (showing areas of blood-brain 
barrier breakdown); spectroscopy (showing areas of abnor 
mal metabolism Such as increased lactate concentrations); or 
other types of images. 
0038. Data from other imaging modalities such as com 
puted tomography or nuclear emission tomography could 
also be incorporated. In addition, the new methods can be 
used to diagnose any neurological disorders that cause physi 
cal or functional lesions in the brain, such as autism, schizo 
phrenia, multiple Sclerosis, Alzheimer's disease, and brain 
tumors. 

0039 Perfusion imaging can be obtained with the use of 
exogenous gadolinium-based contrast agents (see, e.g., Radi 
ology, 210(2):519-27, 1999), or with intrinsic contrast agents 
(so-called arterial spin labeling). These various input images, 
diffusion, T2, perfusion, and potentially other input imaging 
data Such as computed tomography, spectroscopic data, or 
other spatially localized information, can then be processed 
either singly or in a combined way (e.g., as risk maps, see Wu 
etal, Stroke, 32(4):933-42, 2001) to identify regions of poten 
tial abnormality. 
0040. The method next matches or co-registers (e.g., by 
computer) the set of patient images to a standardized set of 
anatomical images of the brain (“standardized atlas”) (Step 
120), e.g., research brain atlases (e.g., splweb.bwh.harvard. 
edu:8000/pages/images movies.html) or commercial brain 
atlases (e.g., available on the Internet at cortechs.net/atlas) 
and intextbooks as listed below to obtain a set of standardized 
images. The standardized atlas spatially identifies the various 
anatomical features of a normal human brain, and the match 
ing is done to transformall patient data to a common, Stereo 
taxic space. Using Such an atlas, the method assigns each 
portion or “volume element' (also known as a voxel) of the 
brain to an anatomical region of the atlas. These voxels are of 
a standard size, e.g., 1 cm. 
0041. Next, the patient brain images are analyzed to iden 
tify the damaged Voxels, e.g., those having a lesion, and 
segmenting the images into normal and damaged Voxels (Step 
130). Such image segmentation methods are widely used in 
neuroimaging research and can be automated or done manu 
ally (see, for example, Brain Atlas for Functional Imaging: 
Clinical and Research Applications, by Wieslaw L. Nowinski 
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et al. (Thieme Medical Pub; ISBN: 0865779279; Cd-Rom 
edition (Feb. 15, 2001) and Co-Planar Stereotaxic Atlas of the 
Human Brain: 3-Dimensional Proportional System: An 
Approach to Cerebral Imaging, by Jean Talairach, Pierre 
Tournoux (Thieme Medical Pub; ISBN: 0865772932; (Jan. 
15, 1988)); on the Internet, see, e.g., loni.ucla.edu/~thomp 
son/disease atlases or mgh.harvard.edu/cma/CMA.homep 
age). 
0042. In some embodiments, such a determination is 
binary, i.e., the method determines that the tissue in a voxel is 
or is not lesioned, and can set the lesioned tissue to 1 and the 
normal tissue to 0 (or vice versa). In other embodiments, such 
a determination is continuous; the method determines the 
extent or percentage of the tissue Volume element that is 
either infarcted or damaged or on the path to infarction. In a 
typical embodiment, the method analyzes T2, diffusion, and 
perfusion images (along with relevant clinical information 
Such as time from onset of symptoms) to estimate the risk of 
infarction if no treatment is applied. The voxel-by-voxel esti 
mate of risk of infarction might typically be calculated in a 
manner similar to published techniques (see, e.g., Stroke, 
32(4):933-42, 2001). A coregistration transformation matrix 
can then be applied to the segmented lesion data set to ensure 
that all data sets are analyzed in a common, Stereotaxic space. 
0043. Having identified anatomical regions of the images 
and having the spatial location of lesions (damaged Voxels), 
the method generates an overall hazard score by the extent 
and location of the lesions as compared to the hazard atlas 
(which is different from the standardized or normalbrain atlas 
of step 120), which indicates the deficit or “hazard' associ 
ated with having a lesion in each voxel in the brain (Step 140). 
The hazard atlas weights lesions in various anatomical 
regions differently depending on the impact Such a lesion has 
on the type of assessment being performed. For example, in 
embodiments directed at motor skills, a lesion in the primary 
motor cortex is typically weighted heavily due to its large 
impact on motor skills, while a lesion in the frontal lobes may 
not be as heavily weighted. By Summing the weights for each 
identified lesion over all the voxels in the image data of the 
patient’s brain, the method produces a numerical hazard score 
(Step 150). The computation of the hazard score is described 
in further detail below and in the Examples. Alternatively, one 
can use the integrated image and hazard atlas to provide a 
hazard map of the patient’s damaged voxels (in those case in 
which healthy voxels are set to 0). 
0044 FIG. 1B shows a schematic of a possible brain haz 
ard atlas based on an outcome score such as the NIH stroke 
scale (NIHSS) score. Coronal slices from an MRI are coded, 
e.g., by color, gray-scale, or numbers according to their 
weights. FIG. 1B uses various shadings and cross-hatching 
marks to indicate different regions of importance. Areas near 
the motor cortex (S), basal ganglia (2), or brainstem (E), 
are weighted heavily with 10 points per voxel. Right hemi 
sphere white matter (dark gray) has a lower score (e.g., 1 
point) than left hemisphere white matter (light gray;3 points), 
because language is typically located in the left hemisphere. 
Other areas include the cerebellum (E), intermediate weight 
of 5 points; and non-motor cortex (white; 4 points). 
0045. In some embodiments, the weighted hazard atlas 
also includes errorestimations for each of the weights. Using 
standard statistical techniques such as linear estimation mod 
els, the method computes statistical parameters such as con 
fidence levels, variance, or statistical error based on the errors 
in the images and the errors in the atlas. 
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0046 FIG. 2 illustrates a generalized method 200 for pro 
ducing a weighted hazard atlas. The method acquires brain 
images from patients with a stroke or other brain disorder and 
information on known behavior (Step 210). The method 
matches or co-registers the images to a standardized anatomi 
cal atlas (Step 220). As discussed above, the method assigns 
each Voxel of the brain to an anatomical region of the atlas. 
The method analyses the images as described above and 
identifies the lesioned voxels (Step 230). The cumulative 
effect of the lesions in the patient causes, in part, the known 
behavior. The method uses regression methods and computes 
a weight for each voxel Such that a hazard score using Such 
weights would produce a score that is commensurate with the 
patient’s known behavior (Step 240). Typical regression 
methods include linear regression models such as a General 
ized Linear Model. Non-linear models can also be used. Hav 
ing produced the weighted hazard atlas by regression, the 
method outputs the weighted hazard atlas (Step 250). 
0047. In one embodiment, a hazard atlas referred to herein 
as the “expert hazard atlas, is generated based on various 
anatomical, vascular, and functional regions outlined and 
scored according to NIHSS by an expert neurologist based on 
standard neurology textbook information (e.g., Duvernoy, 
The Human Brain, Surface, blood supply, and three-dimen 
sional sectional anatomy (Heidelberg, Germany: Springer 
Verlag: 1999) or Stroke Syndromes, Caplan (ed.) (New York: 
Cambridge University Press: 1995)), as well as the experts 
clinical experience. Patient images, e.g., MR images, are 
obtained using standard techniques. On each image, the 
lesions are outlined and a binary mask is created (setting 
lesioned, infarcted voxels to 1 and normal, healthy voxels to 
O). In addition, brain tissue that does not contribute to the 
NIHSS can be given a value of Zero. 
0048 Data set coregistration (or matching) is performed 
on the MR images using registration Software, such as FLIRT 
software (Image Analysis Group, FMRIB, Oxford, UK) (see, 
e.g., Jenkinson et al., Med. Image Anal., 5(2): 143-56 (2001) 
and Jenkinson et al., Neuroimage, 17(2):825-41 (2002)) to 
convert the anatomical images to Talairach space (Talairach 
et al., Co-planar Stereotaxic Atlas of the Brain (Stuttgart, 
Germany. Thieme, 1988). The coregistration transformation 
matrix for each patient is then applied to the binary lesion 
mask of that patient. The resulting binarized lesion data sets 
can have a resolution of about 1-8 mm. The expert then 
assigns each Voxel in the expert hazard atlas a specific hazard 
value based on its location in the brain, and each Voxel is then 
divided by the volume of the region in which it resides. This 
last step is done to account for later acquired patient data in 
which the actual lesion is Smaller or larger than a lesion 
represented in the expert atlas. Thus, the expert hazard atlas 
accounts for differences in lesion Volume. 

0049 FIG. 6 illustrates a pair of slices from an expert 
hazard atlas for the brain as affected by a stroke. The scale for 
the expert atlas is in units of NIHSS score, so it theoretically 
ranges from 0 to 42, but can be cut off at 30 if no regions with 
weightings above 30 are present in the atlas. The scale can be 
coded in color, as a gray-scale, or by numbers. 
0050. This atlas can be applied to a set of images corre 
sponding to a new patient as follows. First, the patient’s lesion 
on the set of patient images is outlined, binarized (e.g., 
1=lesion, 0-normal) and co-registered to the standard set of 
anatomical images. The resulting data set is then multiplied 
by the expert hazard atlas and the values of the voxels in the 
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resulting patient-specific hazard map are then Summed to 
come up with a Hazard Score of stroke outcome: 

Hazard Score prediction of NIHSS-X, N2 y. Ni 
NIHSS/volume, infarct voxel, 

where N1 is the number of outlined regions and N2 is the total 
number of infarct voxels. Other, more sophisticated math 
ematical algorithms that account for the spatial relationships 
between the voxels can also be used. 

0051. In another embodiment, a hazard atlas, referred to 
herein as a “data-driven hazard atlas, is generated based on 
actual patient data and actual NIHSS scores for each patient 
(in the case of stroke). As in the expert atlas, patient images, 
e.g., MR images, are obtained using standard techniques. On 
each image, the lesions are outlined and a binary mask is 
created (1-infarct, 0–no infarct). In addition, brain tissue that 
does not contribute to the NIHSS can be given a value of zero. 
The total collection of patient data sets for a large number of 
different patients (one set per patient) is referred to as a 
“training set and is used to generate the atlas as described 
below. The more patient data sets are included in the training 
set, the more accurate and robust the data-driven hazard atlas 
will be. 

0052 Patient data set coregistration is again performed on 
all of the MR images in the training set using registration 
software, such as FLIRT software. The result is used to create 
a 3D atlas of the brain of approximately 1-8 mm resolution, 
where each voxel represents the likelihood of an infarct in that 
area contributing to a given outcome score. This is done by 
multiplying each damaged Voxel in a given input binary 
patient data set by a coefficient corresponding to the NIH 
Stroke Scale (NIHSS) score assigned to that actual patient, 
divided by the number of damaged, lesioned voxels. Thus, the 
location of a single voxel associated with a high NIHSS score 
would get proportionately greater weight than a large lesion 
(covering many voxels) that has a low NIHSS score. This 
process is repeated for each of patient data sets. Once the 
complete training set is analyzed and input into the system, 
the resulting atlas is normalized to assign the highest value 
voxel in the atlas a value of 1.0. 

0053. In this data-driven atlas, each voxel in the atlas rep 
resents the mean NIHSS score of all voxels (divided by the 
total number of voxels) from the actual patient data sets for 
that specific location in the brain. Thus, while data from 45 
patients provides a useful data-driven hazard atlas (as in 
Example 3 below), data from 200, 300, 500, 1000, or even 
2000 or more patients will provide a more robust and accurate 
atlas. This data-driven atlas is applied to new patient data in 
the same way as the expert atlas. 
0054 FIG. 10 illustrates a series of slices from a data 
driven hazard atlas of the brain as affected by a stroke. The 
scale for the data-driven atlas is in arbitrary units (scaling 
factors have been incorporated), and varies from 10 to 100, 
with 10 being low and 100 being high, and it is linear. The 
scale can be in color (e.g., a red-blue color scale) or displayed 
as a gray-scale anatomical images. 
0055 More sophisticated analytic embodiments are also 
possible in generating the data-driven hazard atlas. For 
example, the lesions may not be rated as 0 for absent or 1 for 
present, but on a continuum from 0 to 1 depending on severity 
or probability. Furthermore, the score derived for each voxel 
need not be a simple division process, but can involve a more 
complex weighting of input parameters. Another embodi 
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ment combines the input from the expert with input from the 
data-driven approach to generate anatlas from both the expert 
and data-driven results. 
0056. Some embodiments form weighted hazard atlases 
that are directed at various behaviors and skills. For example, 
certain embodiments develop a weighted atlas for language or 
cognition skills. Other embodiments develop a weighted atlas 
for motor skills. Furthermore, in some embodiments, a 
weighted atlas is developed directed at the various phases of 
treatment such as hyperacute, acute, and chronic phases. In 
other embodiments, the regression methods described 
include statistical methods that predict the confidence levels, 
variances, or statistical errors associated with the weights. 
0057. In certain embodiments, methods 100 and 200 are 
utilized simultaneously. For example, for each set of images 
that are acquired in embodiments of method 100, the actual 
outcome of the patient’s condition can be retrospectively 
assessed. Using the combined data of images and final out 
come. Such data is used as an input to method 200. In this way, 
method 200 refines the weighted hazard atlas. In such com 
bined embodiments, method 100 can be used to augment the 
data set that is used in method 200 to define the atlas. For 
example, in some embodiments, clinical centers that use 
method 100 record the patient images and the patient condi 
tions or outcomes. These are sent to a central database auto 
matically. For example, computer programs can automati 
cally send appropriately anonymized images and conditions 
for every patient examined via the World Wide Web to a 
central database for patients giving consent for such collec 
tion. Such a central database uses the incoming images and 
conditions as input to method 200. In this way, an ever 
growing data set further refines the data-driven weighted 
hazardatlas. Furthermore, on Some periodic basis, the central 
database may then upgrade the weighted atlas being used by 
each of the clinical centers. One advantage of the data-driven 
hazard atlas is that it tends to average out the discrepancies 
that can be caused by different subjective MISS scores 
recorded by different doctors or other healthcare practitioners 
for similar patients. 

Determining Treatment and Prognosis 
0058 Referring to FIG.3A, a method 300 for determining 
the course of treatment for a stroke patient is outlined. The 
method computes the hazard score for a patient (Step 310), as 
described herein. Using the hazard score, an appropriate 
course of treatment is determined (Step 320). In general, the 
method of computing a hazard score is illustrated in FIG.3B, 
which shows that the patient data (DWI, T2, CT, etc.) is 
multiplied by the hazard atlas (and Summed; e.g., integrated) 
to generate a numerical hazard score. 
0059 Various embodiments of method 300 assess the 
severity of a stroke on varying levels. In some embodiments, 
the hazard score is directed at assessing the patient’s progno 
sis towards the activities of daily living. The quantitative 
imaging-based score produced by Such an embodiment of 
method 300 is similar to scores such as the NIHSS score. In 
other embodiments, the hazard score of method 300 focuses 
on the language or cognition prognosis of the patient. In yet 
other embodiments, the hazard score of method 300 corre 
lates with the motor skills of the patient. A user (such as a 
neurologist) can then use any or all of these variants to better 
characterize the impact of an infarct. In yet other embodi 
ments, the output hazard score can be used as the basis for an 
automated treatment. 
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0060 Method 300 can be used in a variety of phases of 
treating patients, e.g., stroke patients. For example, the hyper 
acute, acute, and chronic phases of treatment employ method 
300 in slightly differing capacities. In the hyperacute phase, 
treatment choices are made. Decisions about whether or not 
to administer risk-bearing therapies such as thrombolytics 
often entail weighing what tissue is at risk. Method 300 
quantifies the effect of infarction in a specific area at risk. If 
the tissue at risk could have a large impact on outcome, then 
greater risks might be undertaken to Salvage Such tissue. 
However, if the tissue at risk has only minor impact, or, if 
recovery from lesions in that area is known to be common, 
then it may be prudent to minimize the risk of a catastrophic 
outcome. In the acute setting, method 300 is used to deter 
mine near-term prognosis; e.g., whether or not the patient is 
doing better or worse than predicted by the stroke as visual 
ized by MRI or CT. For example, the method can be used to 
determine whether or not a particular course of rehabilitation 
therapy is warranted. In the chronic setting, the method is 
used to further confirm the patient’s progress and whether or 
not the expected outcome is being met. 
0061 Furthermore, risk maps that quantify the imaging 
correlate to the ischemic penumbra (in stroke) (see, e.g., Wu 
etal, Stroke, 32:933, 2001) could be linked by the new hazard 
atlases to provide additional information to the doctor to 
decide the potential clinical impact of treating or not treating 
a disorder. This could allow the generation of prospective 
Hazard Scores, thus allowing clinicians to assess quantita 
tively the impact of treatment decisions. The use of "risk 
maps” is described in detail in WO 01/56466. A risk map 
takes input data such as MR images from a patient and pro 
vide a prediction as to which voxels of tissue will recover and 
which will die as a result of damage caused by a specific 
disorder at the point in time when the patient images were 
made. For example, not all tissue affected by ischemia will 
die, and some tissue not directly affected, but adjacent to 
affected tissue may die. Risk maps provide a percentage of 
risk of a negative outcome for each Voxel or region of the 
tissue, such as the brain. 
0062. In particular, as shown in FIG. 3C, patient data is 
combined with (e.g., multiplied by) a risk map, e.g., as 
described in WO 01/56466, and the resulting combined 
image is multiplied by a hazard atlas to generate a "risk/ 
reward' map or indicates the spatial impact of stroke therapy 
on possible outcome. Thus, for example, a doctor can focus 
on treating tissue that has the greatest potential to recover. 
0063 For diseases other than stroke, the appropriate inter 
vention could be made based on the outcome of the hazard 
calculation. For example, if an MRI of a patient's knee gen 
erates a pattern of lesions that a hazard analysis indicates has 
high risk of future deterioration from rheumatoid arthritis, 
more aggressive anti-inflammatory treatment can be started. 

Determining Efficiency of Treatment 

0064 FIG. 4 summarizes a method for determining the 
efficacy of a treatment, e.g., for stroke. The method 400 
involves administering a treatment to one stroke patient or a 
group of stroke patients (Step 410). During this period, the 
hazard score can be repeatedly measured for each patient 
(Step 420), using the methods described herein. The method 
400 determines the efficacy of the treatment based on the 
trends and statistical analysis of the recorded hazard scores. 
Similar to the discussion of method 300 above, embodiments 
of method 400 monitor treatments directed towards hyper 
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acute, acute, or chronic treatments. In some embodiments, the 
method determines efficacy using multiple hazard scores. 

Implementation 

0065. In some embodiments, the steps described above are 
implemented in computer programs using standard program 
ming techniques. Such programs are designed to execute on 
programmable computers each including an electronic pro 
cessor, a data storage system (including memory and/or stor 
age elements), at least one input device, and least one output 
device. Such as a display or printer. For example, the pro 
grams, or a programmed computer, can be used in an MRI 
scanner. In some embodiments, the program code is applied 
to control the acquisition of the MRI data using a pulse 
sequence stored in the Software. In some embodiments, the 
code is applied to the acquired data (e.g., MRI data from a 
spectrometer), to perform the functions described herein, and 
to generate output information (e.g. treatment determina 
tions, hazard scores, weighted atlases), which is applied to 
one or more output devices. 
0.066 Each such computer program can be implemented 
in a high-level procedural or object-oriented programming 
language, or an assembly or machine language. Furthermore, 
the language can be a compiled or interpreted language. Each 
Such computer program can be stored on a computer readable 
storage medium (e.g., CD ROM or magnetic diskette) that 
when read by a computer can cause the processor in the 
computer to perform the analysis described herein. 
0067. In particular, the hazard atlases are data sets (lists of 
numbers and locations) that can be in the form of computer 
files, e.g., stored on computer-readable storage media Such as 
CDs, DVDs, magnetic disks, or in a computer or other sys 
tems hard drive. 

EXAMPLES 

0068. The following examples describe different methods 
of generating and testing hazard atlases, and are not meant to 
be limiting. 

Example 1 

Generating and Using an Expert Hazard Atlas 
0069 Patients were included in this study if they had dif 
fusion- or T2-weighted images and an NIHSS score recorded 
a minimum of 5 days after the onset of acute stroke symp 
toms. The NIHSS is a scale based on a 15-item questionnaire 
that scores the clinical deficit from 0 to 42 points, with a 
higher score corresponding to a higher deficit. The scale 
heavily weights motor functions, whereas level of conscious 
ness and sensory and cortical functions are less weighted. In 
addition, some brain functions (or dysfunctions) do not con 
tribute at all to the overall score. These include memory, 
neuropsychiatric symptoms such as compulsive behavior that 
are associated with the anterior frontal lobe lesions, and lower 
brain stem functions such as Swallowing. 
0070 Data from 1446 patients obtained at the Massachu 
setts General Hospital (Boston, Mass., USA) between 1999 
and 2003 and from 45 patients enrolled in a study at Kuopio 
University Hospital (Kuopio, Finland) was retrospectively 
reviewed. 62 patients were found to meet the inclusion crite 
ria. Of these, 3 were excluded because of noisy data, 2 were 
excluded because of hemorrhage, and 2 were excluded 
because they had had surgery. 1 patient was excluded because 
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of a very high NIHSS score (i.e., >30), 2 because of very large 
infarcts (i.e. >300 cm) that caused anatomical distortions 
such as midline shift, and 5 due to very small infarcts (i.e. <1 
cm). The total number of patients included in the study after 
these exclusions was 47 with NIHSS scores ranging from 0 to 
24 and infarct volumes ranging from 1.4 to 281.2 cm. Among 
these, 30 had right-sided infarcts, 16 had left-sided infarcts 
and 1 had a bilateral (cerebellar) infarct. The mean time to 
MRI was 9.4 days, the mean time since onset that the NIHSS 
score was recorded was 9.1 days, and the mean time elapsed 
between the MRI and NIHSS score measurement was 1.5 
days. 
0071 Imaging was performed on a 1.5T General Electric 
or a 1.5T Siemens system. T2-weighted images taken at the 
first site, Massachusetts General Hospital, were measured 
using a fast spin echo sequence. 25 axial slices were acquired 
using TR/TE=6267/110 ms, field of view (FOV)=22 cm, 
matrix=256x320, and a 5 mm slice thickness with a 1 mm 
gap. Diffusion-weighted images were measured using a 
single shot echo planar sequence in 6 directions using two b 
values: 0 and 1000s/mm. Imaging parameters were similar 
to those pertaining to the T2 sequence, except 23 axial slices 
were acquired using TR/TE=7500/118 ms, FOV-22x20 cm, 
and matrix=128. 
0072 Diffusion-weighted images taken at the second site, 
Kuopio University Hospital, were measured using an echo 
planar sequence in 3 orthogonal directions using a b value of 
1000 S/mm. 19 axial slices were acquired using 
TR/TE=4000/103 ms, FOV-26 cm, matrix=96x128 (interpo 
lated to 256x256), and a 5 mm slice thickness with a 1.5 mm 
gap. T2-weighted images were measured in a similar fashion 
using a b value of 0. 
0073. On each image, the lesion was outlined and a binary 
mask created (1=infarct, Ono infarct). Data set coregistra 
tion was performed on the MR images using FLIRT software 
(Image Analysis Group, FMRIB, Oxford, UK) (Jenkinson, 
Supra), converting the anatomical images to Talairach space 
(Talairach, Supra). The coregistration transformation matrix 
for each patient was then applied to the binary lesion mask of 
that patient. The resulting binarized lesion data sets had a 
resolution of 2 mm. 
0074 The effect of lesion location was quantified based on 
expected Stroke outcome in which various anatomical, Vas 
cular, and functional regions were outlined and scored 
according to NIHSS by an expert neurologist based on stan 
dard neurology textbook information (Duvernoy, Supra, 
Stroke Syndromes, supra). Each voxel in the expert hazard 
atlas was then divided by the volume of the region it resided 
in. The resulting set of voxels was then multiplied by each 
infarct and then summed to come up with a Hazard Score of 
stroke outcome: 

Hazard Score prediction of NIHSS-X, N2), N1 
NIHSS/volume, infarct voxel, (1) 

where N1 is the number of outlined regions and N2 is the total 
number of infarct voxels. Notallbrain tissue was outlined and 
scored in the expert hazard atlas; brain tissue that was deemed 
to not contribute to the NIHSS was given a value of Zero. 

Example 2 

Testing an Expert Hazard Atlas 
0075 To gauge the improvement in the prediction of 
NIHSS by including lesion location (rather looking just at 
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lesion Volume), linear regression was used to develop a pre 
diction of NIHSS usinglesion volume alone: 

Volume Score prediction of NIHSS=bo-b'volume (2) 

0076. The terms band b were retained if they were found 
to contribute significantly to the fit. A leave-one-out cross 
validation method was used in which the Volume Score 
computed for a given patient was based on an atlas developed 
from the remaining 46 patients. 
0077 Correlation analysis was then performed for Volume 
Score vs. NIHSS and Hazard Score vs. NIHSS by computing 
Pearson’s correlation coefficient and comparing the signifi 
cance of the difference between the two correlation coeffi 
cients. The performance of the two predictive models was 
additionally compared by calculating how often the Hazard 
Score predictions were closer to the measured NIHSS scores 
than the Volume Score predictions and then using the exact 
binomial test to determine the probability of this occurrence. 
0078. The correlation between Volume Scores and NIHSS 
scores was r=0.53 (p<0.01). Volume Scores use volume alone 
to predict NIHSS scores according to equation (2) above. 
Both terms bo and b were retained in the fit. The correlation 
between Hazard Scores and NIHSS scores was r–0.79 (p<0. 
01). Thus, Hazard Scores, which incorporate lesion location 
as well as volume, better predicted NIHSS scores than Vol 
ume Scores (p=0.021 comparing the two correlation coeffi 
cients). FIGS.5A and 5B show the two correlation plots (5A 
represents the Volume Score, and 5B represent the Hazard 
Score). FIG. 6 shows two representative slices from the expert 
hazard atlas. 

(0079 Hazard Scores better predicted NIHSS scores than 
Volume Scores in 31 out of 47 cases. The probability of this 
occurring by chance is low: 2.0% (assuming that each set of 
predictions is equally likely to be closer to the measured 
NIHSS scores). 
0080. The data was then separated into right- and left 
sided infarcts and analyzed separately. 30 out of the 47 
patients had right-sided infarcts (16 had left-sided infarcts 
and 1 had a bilateral cerebellar infarct). The correlation 
between Volume Scores and NIHSS scores was r=0.14 (p<0. 
01) and between Hazard Scores and NIHSS scores was r=0. 
55 (p<0.01). FIGS. 7A and 7B show the two correlation plots. 
The improvement in prediction of NIHSS scores provided by 
the "hazard' atlas over Volume alone was nearly significant 
(p=0.078, comparing correlation coefficients for the Hazard 
Score predictions of NIHSS scores compared to the Volume 
Score predictions). In addition, Hazard Scores better pre 
dicted NIHSS scores than Volume Scores in 19 out of 30 
cases. The probability of this occurring by chance is relatively 
low: 10.0%. The 11 out of 30 cases that were better predicted 
by Volume corresponded to significantly smaller infarct Vol 
umes than the 19 cases that were better predicted by the 
hazard atlas methodology (p=0.022). There was no differ 
ence between the two groups in terms of measured NIHSS 
SCOS. 

I0081 16 out of the 47 patients had left-sided infarcts. The 
correlation between Volume Scores and NIHSS scores was 
r=0.80 (p<0.01) and between Hazard Scores and NIHSS was 
r=0.92 (p<0.01). FIGS. 8A and 8B show the two correlation 
plots. The difference between the two correlation coefficients 
in this small subset of cases was not significant (p=0.218). 
Hazard Scores better predicted NIHSS scores than Volume 
Scores in 9 out of 16 cases. The probability of this occurring 
by chance is moderate: 40.2%. There was no significant dif 
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ference between 7 out of 16 the cases that were better pre 
dicted by volume and 9 cases that were better predicted by the 
“hazard' atlas methodology in terms of infarct volumes or 
measured NIHSS scores. 
0082. These results indicate that the inclusion of location 
in a Volume-based assessment of stroke severity significantly 
improves the correlation between imaging and outcome. In 
addition, the correlation coefficient obtained when location 
was included (r–0.79) is high enough to be of predictive 
value. 

Example 3 

Generating a Data-Driven Hazard Atlas 
0083. The criteria for patient selection were generally the 
same as in Example 1, with the additional criterion that the 
lesion corresponding to each patient had to overlap with the 
lesions corresponding to the remainder of the patients by 50% 
or more. Due to this criterion, an additional 2 patients were 
excluded, leaving a total of 45 patients. 
0084 Data was prepared as in Example 1 with respect to 
outlining lesions, created binary masks, and co-registeration. 
On each image, the lesion was outlined and a binary mask 
created (1-infarct, 0 no infarct). Data set co-registration was 
performed using FLIRT Software (Image Analysis Group, 
FMRIB, Oxford, UK). The result was then used to create a 3D 
atlas of the brain of 8 mm resolution, where each voxel 
represented the likelihood of an infarct in that area contribut 
ing to a given outcome score. This was done by using least 
squares regression in which the patient data sets and their 
corresponding NIHSS scores were treated as a system of 
linear equations represented in the following equation with 
matrices: 

Ax=b (3) 

where A is a matrix consisting of patient data (in which each 
row corresponds to a vector representation of a different 
binarized, co-registered patient data set), X is the vector rep 
resentation of the hazard atlas, and b is a vector containing the 
NIHSS scores that correspond, row-by-row, to the patients in 
matrix A. 
0085. A solution for X was obtained using least squares 
minimization. A 3D matrix representation of X (i.e., the data 
driven atlas) was obtained by reshaping the vector using the 
appropriate dimensions. A leave-one-out cross-validation 
(jack-knifing) method was used in which the data-driven atlas 
applied to a given patient was based on data from the remain 
ing 44 patients. Thus, for 45 patients, 45 atlases were created, 
each based on data from 44 patients. One Such atlas is shown 
in FIG. 10. 
I0086 A Hazard Score was obtained for each patient by 
multiplying the data-driven atlas by that patient’s binarized, 
co-registered data set, and computing the Sumacross Voxels. 

Example 4 

Testing a Data-Driven Hazard Atlas 
0087. The data-driven hazard atlas was tested in an iden 

tical manner as the expert hazard atlas, as described in 
Example 2. 
0088. The correlation between Volume Scores and NIHSS 
scores was r=0.51 (p<0.01). Volume Scores use volume alone 
to predict NIHSS scores according to equation (2) in Example 
3. Both terms band b were retained in the fit. The correlation 
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between Hazard Scores and NIHSS scores was r–0.69 (p<0. 
01). Thus, Hazard Scores, which incorporate lesion location 
as well as volume, tending to better predict NIHSS scores 
compared to Volume Scores (p=0.190 comparing the two 
correlation coefficients). However, in the present experiment, 
this improvement did not reach statistical significance for the 
sample size used here. FIGS. 9A and 9B show the two corre 
lation plots (9A represents the Volume Score, and 9B repre 
sent the Hazard Score). FIG. 10 shows representative slices 
from the data-driven hazard atlas. 
I0089 Hazard Scores better predicted NIHSS scores than 
Volume Scores in 26 out of 45 cases. The probability of this 
occurring by chance is moderate: 18.6% (assuming that each 
set of predictions is equally likely to be closer to the measured 
NIHSS scores). Based on these results, a data-driven hazard 
atlas based on patient data from 200 or more patients will 
provide a robust atlas. 

Other Embodiments 

0090. It is to be understood that while the invention has 
been described in conjunction with the detailed description 
thereof, the foregoing description is intended to illustrate and 
not limit the scope of the invention, which is defined by the 
Scope of the appended claims. Other aspects, advantages, and 
modifications are within the scope of the following claims. 
What is claimed is: 
1. A non-patient specific hazard atlas of a disorder in a 

patient tissue comprising an image of the patient’s tissue, 
wherein the image comprises a plurality of voxels, each voxel 
representing a hazard value of an extent of deficit caused by 
damage from the disorder to that voxel of the patient tissue at 
that location Such that the hazard value contains location 
specific information about the impact that the voxel’s death 
would have on behavior. 

2. The hazard atlas of claim 1, wherein the hazard value of 
each Voxel is based on any one or more of anatomical, Vas 
cular, and functional regions of tissue scored according to a 
specific numerical rating scale. 

3. The hazard atlas of claim 1, wherein the hazard value of 
each Voxel is based on patient images and recorded patient 
behavior and outcomes. 

4. The hazard atlas of claim 1, wherein the tissue is brain, 
and the hazard value for each voxel is determined by analyz 
ing a set of images from a group of patients that correlates 
damage in a specific region of the brain with a degree of loss 
of function and wherein the hazard value is commensurate 
with the degree of loss of function. 

5. The hazard atlas of claim 1, further comprising a scale 
that correlates the values of the voxels to a code. 

6. The hazard atlas of claim 5, wherein the code is color. 
7. The hazard atlas of claim 5, wherein the code is a series 

of numbers. 
8. The hazard atlas of claim 5, wherein the code is a gray 

scale. 
9. The hazard atlas of claim 1, wherein the hazard atlas 

comprises digital data and is stored on a computer-readable 
medium. 

10. The hazard atlas of claim 1, wherein the image of the 
tissue is a three-dimensional image. 

11. The hazard atlas of claim 1, wherein the tissue is brain. 
12. The hazard atlas of claim 11, wherein the disorder is 

stroke. 
13. The hazard atlas of claim 1, further comprising a device 

arranged to obtain or store the image: 
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a memory or computer-readable medium storing the non 
patient specific hazard atlas; 

an output device; and 
a processor linked to the imaging device, memory, and 

output device, wherein the processor is programmed to 
(i) obtain the image of the patient's tissue; 
(ii) identify Voxels of the patient linage that are damaged 
by the disorder as damaged patient image Voxels; 

(iii) obtain from the memory or computer-readable 
medium the hazard atlas of the disorder in the tissue; 

(iv) compute a hazard score for the patient, wherein the 
score is the integration of all damaged patient image 
Voxels weighted by the hazard value corresponding to 
that voxel location; and 

(v) transmit the hazard score to the output device. 
14. The hazard atlas of claim 13, wherein the device to 

obtain the image of the patient's tissue is a magnetic reso 
nance imaging device. 

15. The hazard atlas of claim 13, wherein the hazard atlas 
is an atlas of the brain affected by stroke. 

16. The hazard atlas of claim 13, wherein the hazard atlas 
comprises a scale that correlates the values of the Voxels to a 
code. 

17. The hazard atlas of claim 13, wherein the hazard score 
is computed using the formula: 

Hazard Score=? a 'National Institute of 
Health Stroke Scale/volume;xinf arct voxel, 

where N1 is the number of outlined regions and N2 is the 
total number of infarct voxels. 

18. The hazard atlas of claim 13, wherein damaged patient 
image Voxels are identified using an image segmentation 
method. 

19. The hazard atlas of claim 13, wherein the image of a 
tissue of the patient comprises a series of images to represent 
a three-dimensional image. 

20. A method for determining a patients hazard score for a 
disorder in a patient tissue, the method comprising: 

obtaining an image of a tissue of the patient, wherein the 
image comprises a plurality of patient image Voxels; 

identifying Voxels of the patient image that are damaged by 
the disorder as damaged patient image Voxels; 

obtaining a non-patient specific hazard atlas of the disorder 
in a tissue; wherein the hazardatlas comprises a plurality 
of Voxels, each voxel representing a hazard value of an 
extent of deficit caused by damage from the disorder to 
that voxel of the tissue at that location such that the 
hazard value contains location specific information 
about the impact that the voxels death would have on 
behavior; and 

computing a hazard score for the patient, wherein the haZ 
ard score is the integration of all damaged patient image 
Voxels weighted by the hazard value corresponding to 
that voxel location; wherein the hazard score determines 
the patient’s prognosis. 

21. The method of claim 20, further comprising matching 
the patient image to a standardized set of anatomical images 
of that tissue to provide a standardized image. 

22. The method of claim 20, further comprising determin 
ing a course of treatment based on the hazard score. 
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23. The method of claim 20, wherein the tissue is brain 
tissue. 

24. The method of claim 23, wherein the disorder is stroke. 
25. A method for determining the efficacy of a treatment 

method for a patient having a tissue disorder, the method 
comprising: 

administering a treatment to the patient; 
measuring a hazard score using the method of claim 20 at 
two or more points in time after administering the treat 
ment; and 

determining the efficacy of the treatment based on the 
hazard scores. 

26. A method of generating an expert hazard atlas, the 
method comprising: 

identifying one or more of anatomical, vascular, and func 
tional regions on a standard set of anatomical images of 
a tissue; 

assigning weighting factors to the regions according to 
clinically-relevant assessment methodologies; and 

generating a non-patient specific expert hazard atlas of the 
tissue comprising a plurality of Voxels based on the 
weighting factors for each Voxel in the atlas. 

27. A method of generating a data-driven non-patient spe 
cific hazard atlas, the method comprising: 

acquiring patient image data; 
matching patient image data to a standardized set of ana 

tomical images; 
identifying regions of the patient's tissue with damage 

based on the image data; 
assigning weighting factors to the regions based on actual 

patient outcome data; and 
generating a data-driven non-patient specific hazard atlas 

of the tissue comprising a plurality of Voxels based on 
the weighting factors for each Voxel in the atlas. 

28. A computer program for determining a hazard score of 
a patient having a disorder in a patient tissue, the program 
residing on a computer-readable medium and comprising 
instructions for causing a processor to: 

(a) obtain an image of a tissue of the patient, wherein the 
image comprises a plurality of patient image Voxels; 

(b) identify Voxels of the patient image that are damaged by 
the disorder as damaged patient image Voxels; 

(c) obtain from a memory or computer-readable medium a 
non-patient specific hazard atlas of the disorder in a 
tissue, wherein the hazard atlas comprises a plurality of 
Voxels, each voxel representing a hazard value of an 
extent of deficit caused by damage from the disorder to 
that voxel of the tissue at that location such that the 
hazard value contains location specific information 
about the impact that the voxels death would have on 
behavior; 

(d) compute a hazard score for the patient, wherein the 
hazard score is the integration of all damaged patient 
image Voxels weighted by the hazard value correspond 
ing to that Voxel location; wherein the hazard score 
determines the patient’s prognosis; and 

(e) transmit the hazard score to an output device. 
k k k k k 


