Physical Stress
-20°C frozen storage, freeze-thaw

Segregation of constituents

FIG. 2A

(57) Abstract: The disclosure features a lipid nanoparticle (LNP) formulation comprising a plurality of LNPs and a stabilizing agent that mitigates the degradation of the LNPs or a subpopulation thereof. Lipid nanoparticles further including therapeutics and/or prophylactics such as RNA are useful in the delivery of therapeutics and/or prophylactics to mammalian cells or organs to, for example, regulate polypeptide, protein, or gene expression. Methods of manufacturing LNP formulations and screening for a stabilizing agent are also disclosed.
Declarations under Rule 4.17:
— as to applicant’s entitlement to apply for and be granted a patent (Rule 4.17(H))

Published:
— with international search report (Art. 21(3))
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
STABILIZED FORMULATIONS OF LIPID NANOPARTICLES

RELATED APPLICATION
[0001] This application claims priority to, and the benefit of, U.S. provisional application No. 62/419,459, filed November 8, 2016, the entire content of which is incorporated herein by reference in its entirety.

BACKGROUND
[0002] The effective targeted delivery of biologically active substances such as small molecule drugs, proteins, and nucleic acids represents a continuing medical challenge. In particular, the delivery of nucleic acids to cells is made difficult by the relative instability and low cell permeability of such species. Thus, there exists a need to develop methods and compositions to facilitate the delivery of therapeutics and/or prophylactics such as nucleic acids to cells.

[0003] Lipid-containing nanoparticles or lipid nanoparticles, liposomes, and lipoplexes have proven effective as transport vehicles into cells and/or intracellular compartments for biologically active substances such as small molecule drugs, proteins, and nucleic acids. Though a variety of such lipid-containing nanoparticles have been demonstrated, improvements in safety, efficacy, and specificity are still lacking.

SUMMARY
[0004] In one aspect, the present disclosure provides a stabilized lipid nanoparticle (LNP) formulation comprising a plurality of LNPs and a stabilizing agent that mitigates the degradation of the LNPs or a subpopulation of the LNPs, wherein the LNPs comprise an ionizable lipid and a structural lipid, and the stabilizing agent comprises a cryoprotectant, a chelator, an antioxidant, or any combination thereof. In some embodiments, the stabilizing agent further comprises a surfactant.

[0005] The stabilized LNP formulation may include one or more of the following features.

[0006] For example, the formulation is an aqueous formulation or a frozen formulation thereof (e.g., an aqueous formulation being stored at about -20 °C or lower, such as at about -20 °C, -25 °C, -30 °C, -40 °C, -50 °C, -60 °C, -70 °C, or -80 °C).

[0007] For example, the degradation comprises a phase separation of one or more LNP components (e.g., phase separation of a fraction of the structure lipid such as cholesterol or phase separation of a fraction of the ionizable lipid such as an ionizable amino lipid) from the remainder of
LNP. For example, the formulation has a decreased fraction of the phase-separated structure lipid and/or ionizable lipid as compared to a corresponding formulation which does not comprise the stabilizing agent. For example, decrease in the fraction of the phase-separated structure lipid and/or ionizable lipid is about 20% or more (e.g., about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, or about 90%, or more) as compared to that of a corresponding formulation which does not comprise the stabilizing agent.

[0008] For example, the degradation of LNPs is determined by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), turbidity analysis, flow microscopy analysis, flow cytometry, FTIR microscopy, resonant mass measurement (RMM), Raman microscopy, filtration, laser diffraction, electron microscopy, atomic force microscopy (AFM), static light scattering (SLS), multi-angle static light scattering (MALS), field flow fractionation (FFF), analytical ultracentrifugation (AUC), or any combination thereof.

[0009] For example, the degradation yields an increased average size of particles in the formulation. For example, the degradation yields an increase in LNP mean size of about 20% or less (e.g., about 15%, about 10%, about 5% or less) after storage at -20 °C or lower for at least one month, e.g., as measured dynamic light scattering (DLS).

[0010] For example, the degradation yields an increase in LNP mean size of about 20% or less (e.g., about 15%, about 10%, about 5% or less) after up to 30 freeze/thaw cycles, e.g., as measured dynamic light scattering (DLS).

[0011] For example, the degradation yields an increase in turbidity of about 20% or less (e.g., about 15%, about 10%, about 5% or less) after storage at -20 °C or lower for at least one month, e.g., via nephelometric turbidity analysis.

[0012] For example, the degradation yields an increase in turbidity of about 20% or less (e.g., about 15%, about 10%, about 5% or less) after up to 30 freeze/thaw cycles, e.g., via nephelometric turbidity analysis.

[0013] For example, the formulation has a decreased average size of particles (e.g., about 95% or less, about 90% or less, about 85% or less, about 80% or less, about 75% or less, about 70% or less, about 65% or less, about 60% or less, about 55% or less, about 50% or less, about 45% or less, about 40% or less, about 35% or less, or about 30% or less) as compared to a corresponding formulation which does not comprise the stabilizing agent.

[0014] For example, the formulation has a decreased number of particles (e.g., about 95% or less, about 90% or less, about 85% or less, about 80% or less, about 75% or less, about 70% or less,
about 65% or less, about 60% or less, about 55% or less, about 50% or less, about 45% or less,
about 40% or less, about 35% or less, or about 30% or less) as compared to a corresponding
formulation which does not comprise the stabilizing agent.

[0015] For example, the cryoprotectant comprises a polyol (e.g., a diol or a triol such as
propylene glycol, glycerol, (+/-)-2-methyl-2,4-pentanediol, 1,6-hexanediol, 2,3-butanediol, ethylene
glycol, or diethylene glycol), a nondetergent sulfobetaine (e.g., NDSB-201 (3-(1-pyridino)-l-
propane sulfonate), an osmolyte (e.g., L-proline or trimethylamine N-oxide dihydrate), a polymer
(e.g., polyethylene glycol 200 (PEG 200), PEG 400, PEG 600, PEG 1000, PEG 3350, PEG 4000,
PEG 8000, PEG 10000, polyethylene glycol monomethyl ether 550 (mPEG 550), mPEG 600,
mPEG 2000, mPEG 3350, mPEG 4000, mPEG 5000, polyvinylpyrrolidone, pentaerythritol
propoxylate, or polypropylene glycol P 400), an organic solvent (e.g., dimethyl sulfoxide (DMSO)
or ethanol), a sugar (e.g., D-(+)-sucrose, D-sorbitol, trehalose, D-(+)-maltose monohydrate, meso-
erthyritol, xylitol, myo-inositol, D-(+)-raffinose pentahydrate, D-(+)-trehalose dihydrate, or D-(+)
glucose monohydrate) or any combination thereof. For example, the concentration of the
cryoprotectant in the formulation ranges from about 0.05 % to about 50 % by weight (e.g., from
about 0.05 % to about 25 % by weight, from about 1 % to 15 % by weight, from about 3 % to about
12.5 % by weight, from about 1 % to about 8 % by weight or from about 2 % to about 7 % by
weight).

[0016] For example, the cryoprotectant comprises a polyol (e.g., a diol or a triol). For example,
the cryoprotectant comprises propylene glycol. For example, the cryoprotectant comprises
butanediol, diethylene glycol, or polyethylene glycol (PEG). For example, the cryoprotectant
comprises dimethyl sulfoxide (DMSO) or 3-(1-Pyridinio)-l-propanesulfonate (NDSB-201). For
example, the cryoprotectant comprises lithium acetate, lithium chloride, lithium formate, lithium
nitrate, magnesium acetate, sodium chloride, or any hydrate thereof.

[0017] For example, the cryoprotectant comprises ethanol. For example, the cryoprotectant
comprises glycerol. For example, the cyoprotectant comprises glycerol and ethanol.

[0018] For example, the concentration of glycerol in the formulation ranges from about 0.05 %
(w/v) to about 50 % w/v, from about 0.05 % w/v to about 25 % w/v, from about 0.5 % w/v to 10 %
w/v, or from about 1 % w/v to about 5 % w/v. For example, the concentration of glycerol in the
formulation ranges from about 1.5 % w/v to about 3 % w/v, or from about 2 % w/v to about 2.5 %
w/v.
[0019] For example, the concentration of ethanol in the formulation ranges from about 0.05 \% w/v to about 50 \% w/v, from about 0.05 \% w/v to about 25 \% w/v, from about 0.5 \% w/v to 10 \% w/v, or from about 1 \% w/v to about 5 \% w/v. For example, the concentration of ethanol in the formulation ranges from about 0.7 \% w/v to about 1.5 \% w/v, or from about 1 \% w/v to about 1.2 \% w/v.

[0020] For example, the weight ratio of glycerol and ethanol in the formulation ranges from about 1:25 to about 100:1 by weight, from about 1:10 to about 40:1 by weight, from about 1:5 to about 20:1 by weight, or from about 1:1 to about 4:1 by weight. For example, the weight ratio of glycerol and ethanol in the formulation is about 2:1 by weight.

[0021] For example, the concentration of glycerol in the formulation ranges from about 2 \% w/v to about 2.5 \% w/v; and the concentration of ethanol in the formulation ranges from about 1 \% w/v to about 1.2 \% w/v. For example, the concentration of glycerol in the formulation is about 2.3 \% w/v; and the concentration of ethanol in the formulation is about 1.2 \% w/v.

[0022] For example, the concentration of glycerol in the formulation ranges from about 1 mM to about 10 M, from about 5 mM to about 5 M, from about 10 mM to about 1 M, from about 50 mM to about 600 mM, from about 100 mM to about 500 mM, or from about 200 mM to about 300 mM. For example, the concentration of glycerol in the formulation is about 250 mM.

[0023] For example, the concentration of ethanol in the formulation ranges from about 1 mM to about 10 M, from about 5 mM to about 5 M, from about 10 mM to about 1 M, from about 50 mM to about 600 mM, from about 100 mM to about 500 mM, or from about 200 mM to about 300 mM. For example, the concentration of ethanol in the formulation is about 250 mM.

[0024] For example, the molar ratio of glycerol and ethanol in the formulation ranges from about 1:100 to about 100:1 by weight, from about 1:50 to about 50:1, from about 25:1 to about 1:25, from about 10:1 to about 1:10, from about 5:1 to about 1:5, or from about 2:1 to about 1:2. For example, the molar ratio of glycerol and ethanol in the formulation is about 1:1.

[0025] For example, the concentration of glycerol in the formulation ranges from about 200 mM to about 300 mM; and the concentration of ethanol in the formulation ranges from about 200 mM to about 300 mM. For example, the concentration of glycerol in the formulation is about 250 mM; and the concentration of ethanol in the formulation ranges is about 250 mM.

[0026] For example, the surfactant comprises a nonionic surfactant (e.g., a polysorbate). For example, the polysorbate has a structure of Formula (IV):
wherein the sum of w, x, y, and z ranges from about 0 to about 200. For example, the sum of w, x, y, and z ranges from about 0 to about 100, from about 10 to about 90, or from about 20 to about 80. For example, sum of w, x, y, and z is about 20, about 40, about 60, or about 80.

[0027] For example, the polysorbate is polysorbate 20, polysorbate 40, polysorbate 60, or polysorbate 80. For example, the polysorbate is polysorbate 20.

[0028] For example, the concentration of the polysorbate (e.g., polysorbate 20) ranges from about 0.0001 % w/v to about 1.0 % w/v, from about 0.001 % w/v to about 0.1 % w/v, from about 0.005 % w/v to about 0.05 % w/v, from about 0.008 % w/v to about 0.03 % w/v, or from about 0.009 % w/v to about 0.02 % w/v. For example, the concentration of polysorbate (e.g., polysorbate 20) is about 0.01 % w/v.

[0029] For example, the stabilizing agent comprises polysorbate, glycerol, and ethanol. For example, the stabilizing agent comprises polysorbate 20, glycerol, and ethanol.

[0030] For example, the concentration of polysorbate (e.g., polysorbate 20) in the formulation ranges from about 0.009 % w/v to about 0.02 % w/v; the concentration of glycerol in the formulation ranges from about 2 % w/v to about 2.5 % w/v; and the concentration of ethanol in the formulation ranges from about 1 % w/v to about 1.5 % w/v.

[0031] For example, the concentration of polysorbate (e.g., polysorbate 20) in the formulation ranges from about 0.009 % w/v to about 0.02 % w/v; the concentration of glycerol in the formulation is about 2.3 % w/v; and the concentration of ethanol in the formulation is about 1.2 % w/v.

[0032] For example, the concentration of polysorbate (e.g., polysorbate 20) in the formulation is about 0.01 % w/v; the concentration of glycerol in the formulation ranges from about 2 % w/v to about 2.5 % w/v; and the concentration of ethanol in the formulation ranges from about 1 % w/v to about 1.5 % w/v.

[0033] For example, the concentration of polysorbate (e.g., polysorbate 20) in the formulation is about 0.01 % w/v; the concentration of glycerol in the formulation is about 2.3 % w/v; and the concentration of ethanol in the formulation is about 1.2 % w/v.
For example, the concentration of polysorbate (e.g., polysorbate 20) in the formulation ranges from about 0.009 % w/v to about 0.02 % w/v; the concentration of glycerol in the formulation ranges from about 200 mM to about 300 mM; and the concentration of ethanol in the formulation ranges from about 200 mM to about 300 mM.

For example, the concentration of polysorbate (e.g., polysorbate 20) in the formulation is about 250 mM; and the concentration of ethanol in the formulation is about 250 mM.

For example, the concentration of polysorbate (e.g., polysorbate 20) in the formulation ranges from about 0.009 % w/v to about 0.02 % w/v; the concentration of glycerol in the formulation ranges from about 200 mM to about 300 mM; and the concentration of ethanol in the formulation ranges from about 200 mM to about 300 mM.

For example, the concentration of polysorbate (e.g., polysorbate 20) in the formulation is about 0.01 % w/v; the concentration of glycerol in the formulation is about 250 mM; and the concentration of ethanol in the formulation is about 250 mM.

For example, the pH value of the formulation ranges from about 4 to about 11, from about 5 to about 10, from about 6 to about 9, from about 7 to about 8, or from about 7.3 to about 7.5. For example, the pH value of the formulation is about 7.4.

For example, the concentration of polysorbate (e.g., polysorbate 20) in the formulation is about 250 mM; the concentration of ethanol in the formulation is about 250 mM; and the pH value of the formulation is about 7.4.

For example, the chelator comprises diethylenetriamine pentaacetic acid (DTPA), ethylenediaminetetraacetic acid (EDTA), iminodiacetic acid, polyaspartic acid, ethylenediamine-N_{2}-diacetic acid (EDDS), methylglycine diacetic acid (MGDA), L-glutamic acid N_{2}-diacetic acid (GLDA), or a salt thereof.

For example, the antioxidant comprises ascorbic acid, citric acid, malic acid, methionine, monothioglycerol, phosphoric acid, potassium metabisulfite, alpha-tocopherol, or any combination thereof.

For example, the formulation is substantially free of impurities.

For example, the formulation contains about 20% or less, about 15% or less, about 10% or less, about 5% or less, about 1% or less, or about 0.5% or less of impurities.
For example, the impurities include aggregates of the phase-separated structure lipid (e.g., cholesterol crystals) and aggregates of the phase-separated ionizable lipid (e.g., ionic lipid microglobsules).

For example, the impurities include sub-visible particulates (e.g., particulates with size of greater than 1 micron). For example, the formulation has a decrease in the amount of sub-visible particulates as compared to the corresponding LNP formulation which does not comprise the stabilizing agent. For example, the amount of sub-visible particulates decreases by at least 10 times (e.g., by at least 50 times, 100 times, or 200 times) in the presence of the stabilizing agent as compared to without.

For example, the formulation comprises a sugar, such as a disaccharide (e.g., sucrose or trehalose or a combination thereof).

For example, the concentration of the sugar in total ranges between 0 % w/w and about 30 % w/w prior to freezing. For example, the concentration of the sugar ranges between 0 % w/w and about 25 % w/w (e.g., about 0-25 % w/w, 0-20 % w/w, 0-15 % w/w, 0-10 % w/w, about 5 % w/w, about 8 % w/w, about 10 % w/w, about 15 % w/w, about 20 % w/w, or about 25 % w/w) prior to freezing.

For example, the concentration of the sugar (e.g., sucrose) ranges from about 0.1 % w/v to about 20 % w/v, from about 0.5 % w/v to about 15 % w/v, from about 1 % w/v to about 10 % w/v, from about 2 % w/v to about 8 % w/v, from about 3 % w/v to about 7 % w/v, or from about 4 % w/v to about 6 % w/v. For example, the concentration of the sugar (e.g., sucrose) is about 5 % w/v.

For example, the formulation comprises a salt (e.g., a chloride salt). For example, the formulation comprises sodium chloride (NaCl).

For example, the concentration of the salt ranges between 0 mM and about 1M (e.g., 0.5-1M) prior to freezing.

For example, the concentration of the salt (e.g., NaCl) in the formulation ranges from about 1 mM to about 500 mM, from about 50 mM to about 250 mM, from about 100 mM to about 200 mM, from about 120 mM to about 170 mM, or from about 130 mM to about 150 mM. For example, the concentration of the salt (e.g., NaCl) in the formulation is about 140 mM.

For example, the formulation comprises a buffer, e.g., a tris(hydroxymethyl)-aminomethane (Tris) buffer.
For example, the concentration of the buffer (e.g., Tris) ranges from about 0.1 mM to about 500 mM, from about 0.5 mM to about 250 mM, from about 1 mM to about 100 mM, from about 5 mM to about 40 mM, from about 10 mM to about 30 mM, from about 15 mM to about 25 mM. For example, the concentration of the buffer (e.g., Tris) is about 20 mM.

For example, the formulation comprises a sugar (e.g., sucrose), a salt (e.g., NaCl), and a buffer (e.g., Tris). For example, the concentration of the sugar (e.g., sucrose) is about 5 % w/v, the concentration of the salt (e.g., NaCl) in the formulation is about 140 mM, and the concentration of the buffer (e.g., Tris) is about 20 mM.

For example, the formulation has a pH value ranging between about 4 and about 8 prior to freezing.

For example, the formulation further comprises a therapeutic and/or prophylactic agent, e.g., a nucleic acid such as an mRNA. For example, the mRNA is at least 30 nucleotides in length (e.g., at least 300 nucleotides in length).

For example, the formulation has about 0.025 mg/mL to about 4 mg/mL (e.g., about 0.025 mg/mL, about 0.05 mg/mL, about 0.075 mg/mL, about 0.1 mg/mL, about 0.2 mg/mL, about 0.25 mg/mL, about 0.4 mg/mL, about 0.5 mg/mL, about 0.75 mg/mL, about 1 mg/mL, about 1.5 mg/mL, about 2 mg/mL, about 3 mg/mL, about 4 mg/mL, about 0.025-0.4 mg/mL or about 0.05-0.2 mg/mL, about 0.05-0.1 mg/mL, about 0.25-2 mg/mL or about 0.5-2 mg/mL, or about 0.5-1 mg/mL) of a nucleic acid (e.g., an mRNA), e.g., prior to freezing.

For example, the formulation may be stored as described herein and diluted before or during administration. For example, the formulation for administration has about 0.01 mg/mL to about 2 mg/mL (e.g., about 0.01 mg/mL, about 0.025 mg/mL, about 0.05 mg/mL, about 0.075 mg/mL, about 0.1 mg/mL, about 0.3 mg/mL, about 0.5 mg/mL, about 1 mg/mL, about 1.5 mg/mL, about 2 mg/mL, about 0.025-1 mg/mL or about 0.05-1 mg/mL, or about 0.5-1 mg/mL) of a nucleic acid (e.g., an mRNA).

For example, the number ratio between the LNPs that carry one or more nucleic acids and those free of any nucleic acids is about 8:2 to about 10:0.

For example, the encapsulation efficiency of the therapeutic and/or prophylactic agent is at least 50%, at least 80%, at least 90%, or at least 95%.

For example, the encapsulation efficiency is substantially the same after storage at about -20 °C or lower for at least one month. For example, the encapsulation efficiency may decrease for
about 20% or less (e.g., about 15%, about 10%, about 5% or less) after storage at about -20 °C or lower for at least one month.

[0062] For example, the encapsulation efficiency is substantially the same after up to 30 freeze/thaw cycles.

[0063] For example, the wt/wt ratio of the LNP to the therapeutic and/or prophylactic agent is from about 10:1 to about 60:1 (e.g., about 2:1 to about 30:1).

[0064] For example, the mean size of the LNP is from about 70 nm to about 100 nm.

[0065] For example, the formulation has little or no immunogenicity. For example, the formulation has a lower immunogenicity as compared to a corresponding formulation which does not comprise the stabilizing agent.

[0066] For example, the formulation comprising a therapeutic or prophylactic agent has an increased therapeutic index as compared to a corresponding formulation which does not comprise the stabilizing agent.

[0067] For example, the LNP component further comprises a neutral lipid, e.g., a phospholipid or an analog or derivative thereof.

[0068] For example, the LNP component further comprises a structural lipid, e.g., selected from the group consisting of cholesterol, fecosterol, sitosterol, ergosterol, campesterol, stigmasterol, brassicasterol, tomatidine, ursolic acid, alpha-tocopherol, and mixtures thereof.

[0069] For example, the LNP component further comprises a PEG lipid, e.g., selected from the group consisting of a PEG-modified phosphatidylethanolamine, a PEG-modified phosphatidic acid, a PEG-modified ceramide, a PEG-modified dialkylamine, a PEG-modified diacylglycerol, a PEG-modified dialkylglycerol, and mixtures thereof.

[0070] For example, the LNP component does not comprise a PEG lipid or is PEG-less.

[0071] For example, the LNP component comprises about 30 mol % to about 60 mol % ionizable lipid, about 0 mol % to about 30 mol % phospholipid, about 18.5 mol % to about 48.5 mol % structural lipid, and about 0 mol % to about 10 mol % PEG lipid.

[0072] For example, the LNP component comprises about 50 mol % ionizable lipid, about 10 mol % phospholipid, about 38.5 mol % structural lipid, and about 1.5 mol % PEG lipid.

[0073] For example, the ionizable lipid comprises an ionizable amino lipid, e.g., a compound of any of Formulae (I), (IA), (II), (Ia), (lib), (lie), (lid) and (He).

[0074] For example, the formulation is sterile.
For example, the formulation is stabilized at temperatures ranging from about 20 °C to about 25 °C for at least one week (e.g., at least two weeks, at least one month, at least two months, or at least four months).

For example, the formulation is stabilized for at least two weeks (e.g., at least one month, at least two months, or at least four months) at about 2 °C to about 8 °C.

For example, the formulation is stabilized for at least 2 weeks (e.g., at least one month, at least two months, or at least four months) at about 4 °C or lower, such as a temperature between about -15 °C and about 0 °C or between about -80 °C and about -20 °C (e.g., about -5 °C, -10 °C, -15 °C, -20 °C, -25 °C, -30 °C, -40 °C, -50 °C, -60 °C, -70 °C, -80 °C, -90 °C, -130 °C or -150 °C).

For example, the formulation is stabilized for at least one month (e.g., at least two months, at least four months, at least six months, or at least one year) at about -20 °C or lower (e.g., about -30 °C, -40 °C, -50 °C, -60 °C, -70 °C, or -80 °C).

In another aspect, the disclosure features a method of lowering immunogenicity comprising introducing the formulation of the disclosure into cells, wherein the formulation reduces the induction of the cellular immune response of the cells to the formulation, as compared to the induction of the cellular immune response in cells induced by a corresponding formulation which does not comprise the stabilizing agent. For example, the cellular immune response is an innate immune response, an adaptive immune response, or both.

In yet another aspect, the disclosure features a method of mitigating degradation of lipid nanoparticles in a lipid nanoparticle (LNP) formulation. The method comprises adding an stabilizing agent to a first LNP formulation to form a second LNP formulation before or during storage -20 °C or lower or before a freeze/thaw cycle, wherein each of the LNPs comprises an ionizable lipid and a structural lipid, and the stabilizing agent comprises a cryoprotectant, a chelator, an antioxidant, or any combination thereof. For example, the degradation includes both physical instability (e.g., phase separation) and chemical instability (e.g., chemical degradation of mRNA). For example, the degradation can be caused by stress applied to the formulation when producing, purifying, packing, storing, and using the formulation, such as heat, shear, excessive agitation, membrane concentration polarization (change in charge state), dehydration, freezing stress, drying stress, freeze/thaw stress, nebulization stress, etc. For example, degradation of the LNP formulations can cause one or more undesired property changes to the formulation, such as an increased amount of chemical impurities, of sub-visible particles, or both, an increase in LNP size, a
decrease in encapsulation efficiency, in therapeutic efficacy, or both, and a decrease in tolerability (e.g., an increase in immunogenicity).

[0081] In still another aspect, the disclosure features a method of producing a stabilized lipid nanoparticle (LNP) formulation, comprising mixing a stabilizing agent with a first LNP formulation to form a second LNP formulation, wherein each of the LNPs comprises an ionizable lipid and a structural lipid, and the stabilizing agent comprises a cryoprotectant, a chelator, an antioxidant, or any combination thereof such that the stabilizing agent mitigates degradation of the LNPs or a subpopulation thereof.

[0082] Also disclosed is a method of screening for a stabilizing agent for mitigating degradation of lipid nanoparticles in a lipid nanoparticle (LNP) formulation, the method comprising:

(a) providing a first LNP formulation absent a stabilizing agent and a second LNP formulation comprising the stabilizing agent, wherein the first and second LNP formulations are identical except for the stabilizing agent and each of the LNPs in the first and second LNP formulations comprises an ionizable lipid and a structural lipid;

(b) determining the degradation of the LNPs in the first and second LNP formulations upon storage at about -20 °C or lower for a period of time or upon one or more freeze/thaw cycles; and

(c) selecting the stabilizing agent if the degradation of the second LNP formulation is less than that of the first LNP formulation.

[0083] Any of the methods disclosed herein may include one or more of the features described for the formulations herein and one or more of the following features.

[0084] For example, the second LNP formulation has substantially no increase in LNP mean size as compared to the first LNP formulation. For example, the second LNP formulation has an increase in LNP mean size of about 20% or less (e.g., about 15%, about 10%, about 5% or less) as compared to the first LNP formulation.

[0085] For example, the second LNP formulation has substantially no increase in polydispersity index as compared to the first LNP formulation.

[0086] For example, the second LNP formulation has an increase in polydispersity index of about 20% or less (e.g., about 15%, about 10%, about 5% or less) as compared to the first LNP formulation.

[0087] In yet another aspect, the disclosure features a pharmaceutical composition comprising a formulation according to the preceding aspects and a pharmaceutically acceptable carrier. For
example, the pharmaceutical composition is refrigerated or frozen for storage and/or shipment (e.g., being stored at a temperature of 4 °C or lower, such as a temperature between about -150 °C and about 0 °C or between about -80 °C and about -20 °C (e.g., about -5 °C, -10 °C, -15 °C, -20 °C, -25 °C, -30 °C, -40 °C, -50 °C, -60 °C, -70 °C, -80 °C, -90 °C, -130 °C or -150 °C). For example, the pharmaceutical composition is a solution that is refrigerated for storage and/or shipment at, for example, about -20 °C, -30 °C, -40 °C, -50 °C, -60 °C, -70 °C, or -80 °C.

[0088] In another aspect, the disclosure provides a method of delivering a therapeutic and/or prophylactic (e.g., an mRNA) to a cell (e.g., a mammalian cell). This method includes the step of administering to a subject (e.g., a mammal, such as a human) a formulation disclosed herein comprising (i) a stabilizing agent, (ii) at least one lipid nanoparticle component and (iii) a therapeutic and/or prophylactic, in which administering involves contacting the cell with the formulation composition, whereby the therapeutic and/or prophylactic is delivered to the cell.

[0089] In another aspect, the disclosure provides a method of producing a polypeptide of interest in a cell (e.g., a mammalian cell). The method includes the step of contacting the cell with a formulation disclosed herein comprising (i) stabilizing agent, (ii) at least one lipid nanoparticle component and (iii) an mRNA encoding the polypeptide of interest, whereby the mRNA is capable of being translated in the cell to produce the polypeptide.

[0090] In another aspect, the disclosure provides a method of treating a disease or disorder in a mammal (e.g., a human) in need thereof. The method includes the step of administering to the mammal a formulation disclosed herein comprising (i) a stabilizing agent, (ii) at least one lipid nanoparticle component and (iii) a therapeutically effective amount of a therapeutic and/or prophylactic (e.g., an mRNA). In some embodiments, the disease or disorder is characterized by dysfunctional or aberrant protein or polypeptide activity. For example, the disease or disorder is selected from the group consisting of rare diseases, infectious diseases, cancer and proliferative diseases, genetic diseases (e.g., cystic fibrosis), autoimmune diseases, diabetes, neurodegenerative diseases, cardio- and reno-vascular diseases, and metabolic diseases.

[0091] In another aspect, the disclosure provides a method of delivering (e.g., specifically delivering) a therapeutic and/or prophylactic to a mammalian organ (e.g., a liver, spleen, lung, or femur). This method includes the step of administering to a subject (e.g., a mammal) a formulation disclosed herein comprising (i) a stabilizing agent, (ii) at least one lipid nanoparticle component and (iii) a therapeutic and/or prophylactic (e.g., an mRNA), in which administering involves contacting
the cell with the formulation, whereby the therapeutic and/or prophylactic is delivered to the target organ (e.g., a liver, spleen, lung, or femur).

[0092] In another aspect, the disclosure features a method for the enhanced delivery of a therapeutic and/or prophylactic (e.g., an mRNA) to a target tissue (e.g., a liver, spleen, lung, or femur). This method includes administering to a subject (e.g., a mammal) a formulation disclosed herein comprising (i) a stabilizing agent, (ii) at least one lipid nanoparticle component and (iii) a therapeutic and/or prophylactic, the administering including contacting the target tissue with the formulation, whereby the therapeutic and/or prophylactic is delivered to the target tissue.

[0093] The disclosure also includes methods of producing the formulation or pharmaceutical composition disclosed herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0094] The skilled artisan will understand that the drawings primarily are for illustrative purposes and are not intended to limit the scope of the inventive subject matter described herein. The drawings are not necessarily to scale; in some instances, various aspects of the inventive subject matter disclosed herein may be shown exaggerated or enlarged in the drawings to facilitate an understanding of different features. In the drawings, like reference characters generally refer to like features (e.g., functionally similar and/or structurally similar elements).

[0095] The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.

[0096] The above and further features will be more clearly appreciated from the following detailed description when taken in conjunction with the accompanying drawings.

[0097] Figure 1 illustrates drawbacks of various storage options: frozen formulation (stored at about -20 °C) and refrigerated liquid and lyophilized formulations (stored at about 2-8 °C).

[0098] Figure 2A is a schematic illustrating LNP physical degradation pathway, demonstrating that LNPs degrade via phase separation instead of aggregation or particle growth of LNPs. Figure 2B is a schematic DLS plot illustrating particle size distribution upon LNP degradation.

[0099] Figure 3 is a series of graphs showing that DTPA improves mRNA (with a length of 2000 nucleotides) stability at various storage temperatures for 2 months (PBS, pH 7.4).
Figure 4 is a series of graphs showing effects of various antioxidants on chemical stability of LNP formulations stored at 40 °C, wherein LNP formulation (mRNA with a length of 2000 nucleotides, Tris, sucrose, pH 7.4) with 1 mMDTPA is used as control.

Figure 5 is a series of graphs showing physical stability of LNP formulations over long term storage at various temperatures. The LNP formulations tested included an mRNA with a length of 2000 nucleotides (PBS, pH 7-7.5). The lower physical stability at lower mRNA concentrations was observed in numerous buffer conditions.

Figure 6 is a pair of graphs showing physical stability of LNP formulations upon a few freeze/thaw cycles. The LNP formulations tested included an mRNA with a length of 2000 nucleotides (20 mM Tris, 8% sucrose, pH 7.5). The LNP formulations comprising MC3 or lipid of Formula (I) were less stable than higher concentration formulations over several freeze/thaw cycles.

Figure 7 is a pair of graphs showing effects of cryoprotectants (i.e., propylene glycol (PG) and glycerol) on frozen LNP formulations at 20hr time-point. The LNP formulations tested included an mRNA with a length of 4000 nucleotides (20 mM Tris, pH 7.4).

Figure 8 is a pair of graphs showing effects of cryoprotectants (i.e., propylene glycol (PG) and glycerol) on frozen LNP formulations at 48hr time-point. The LNP formulations tested included an mRNA encoding hEPO (PBS, pH 7.4).

Figure 9 is a flow chart illustrating an embodiment of methods of screening for stabilizing agent(s) disclosed herein.

Figure 10 is series of graphs showing size distribution by volume via DLS analysis of LNP formulations that include mRNAs with various length and empty LNPs (without any mRNAs) upon storage at -20°C, demonstrating that in the absence of a stabilizer, the effect of -20°C frozen storage is to cause formation of micron-sized particles.

Figure 11 is a series of graphs showing that addition of propylene glycol or glycerol improves stability of frozen LNP formulations.

Figure 12 is a pair of graphs showing that addition of propylene glycol or glycerol improves stability of frozen LNP formulations upon freeze/thaw cycles.

Figure 13 is a pair of graphs showing that addition of propylene glycol or glycerol improves storage stability of frozen LNP formulations upon -20 °C frozen storage while sorbitol and mannitol have adverse effects on -20 °C frozen storage stability.
Figure 14 is a graph showing that addition of propylene glycol or glycerol improves stability of frozen LNP formulations. Numbers "1-3" refer to three LNP formulations, each containing a different mRNA. "Empties" refer to LNP formulations without mRNAs.

Figure 15 is a plot comparing DLS and Turbidity data for LNPs, showing that there is a remarkable correlation between nephelometric turbidity values and DLS Z-averages, which is understandable because large particles will make a disproportionately greater contribution to the scattered intensity.

Figure 16 is a graph comparing changes in Z-averages of LNP formulations containing different cryoprotectants upon -20 °C frozen storage for three weeks.

Figure 17 is a pair of graphs comparing the Z-Average (viscosity corrected) results (left graph) and PDI results (right graph) for frozen mRNA-LNP-1 formulations (see Example 4) containing different cryoprotectants upon -20 °C frozen storage for 2 weeks.

Figure 18 is a pair of graphs comparing the Z-Average (viscosity corrected) results (left graph) and PDI results (right graph) for frozen mRNA-LNP-2 formulations (see Example 4) containing different cryoprotectants upon -20 °C frozen storage for 2 weeks.

Figure 19 is a pair of graphs comparing the Z-Average (viscosity corrected) results (left graph) and PDI results (right graph) for frozen mRNA-LNP-3 formulations (see Example 4) containing different cryoprotectants upon -20 °C frozen storage for 2 weeks.

Figures 20A-20D are a series of graphs comparing the size distribution results for mRNA-LNP-1 formulations (see Example 5) upon multiple freeze/thaw cycles. Measurements prior to the cycles are shown in red, and measurements after the cycles are shown in green.

Figure 21 is a graph comparing the size distribution results for mRNA-LNP-1 formulations (see Example 5) upon refrigerated storage for one month.

Figure 22 is a graph comparing the concentrations of particles larger than 0.6 micron for mRNA-LNP-1 formulations (see Example 5) upon multiple freeze/thaw cycles followed by refrigerated storage for one month.

Figure 23 is a graph comparing the Z-Average (viscosity corrected) results for mRNA-LNP-4 formulations (see Example 6) before and after ten freeze/thaw cycles.

Figure 24 is a graph comparing the concentrations of particles larger than 0.6 µm for 0.10 mg/mL mRNA-LNP-4 formulations (see Example 6) before and after ten freeze/thaw cycles.

Figure 25 is a graph comparing the concentrations of particles larger than 0.6 µm for 0.01 mg/mL mRNA-LNP-4 formulations (see Example 6) upon ten freeze/thaw cycles.
Figure 26 is a graph comparing Z-Average (viscosity corrected) results for mRNA-LNP formulations (see Example 7) before and after ten free/thaw cycles.

Figure 27 is a graph comparing the total concentrations of particles for mRNA-LNP formulations (see Example 7) before and after ten free/thaw cycles.

Figure 28 is a graph comparing Z-Average (viscosity corrected) results for mRNA-LNP formulations (see Example 7) upon storage at 5 °C, -20 °C, or -80 °C for one month.

Figure 29 is a graph comparing the concentrations of particles larger than 0.8 micron for mRNA-LNP formulations (see Example 7) before and after ten free/thaw cycles or storage at 5 °C or -20 °C for one month.

Figure 30 is a graph comparing the percentage by mass of particles between 0.8 µm and 10 µm for mRNA-LNP formulations (see Example 7) before and after refrigerated storage or -20 °C storage for one month.

Figures 31A-B respectively are plots of mRNA-LNP (with MC3 lipid) size and encapsulation efficiency (EE) in formulations (see Example 8) measured after various freeze/thaw (F/T) cycles.

Figures 32A-B respectively are plots of mRNA-LNP (with Compound 18) size and encapsulation efficiency (EE) in formulations (see Example 8) measured after various freeze/thaw (F/T) cycles.

Figures 33A-B respectively are plots of mRNA-LNP (with Compound 25) size and encapsulation efficiency (EE) in formulations (see Example 8) measured after various freeze/thaw (F/T) cycles.

Figures 34A-B respectively are plots of mRNA-LNP (with Compound 30) size and encapsulation efficiency (EE) in formulations (see Example 8) measured after various freeze/thaw (F/T) cycles.

Figures 35A-B respectively are plots of mRNA-LNP (with Compound 27) size and encapsulation efficiency (EE) in formulations (see Example 8) measured after various freeze/thaw (F/T) cycles.

Figures 36A-B respectively are plots of mRNA-LNP (with Compound 19) size and encapsulation efficiency (EE) in formulations (see Example 8) measured after various freeze/thaw (F/T) cycles.
Figures 37A-B respectively are plots of mRNA-LNP (with Compound 7) size and encapsulation efficiency (EE) in formulations (see Example 8) measured after various freeze/thaw (F/T) cycles.

DETAILED DESCRIPTION

Lipid nanoparticles (LNPs) containing nucleic acids are delicate delivery systems that achieve intra-cellular delivery of nucleic acids in intact form, allowing for biological change including therapeutic effects. Formation and storage stability, chemical and physical stabilities, size of LNP and degree of encapsulation of the nucleic acid are among the important parameters of performance. Stress applied to the LNP formulation when, e.g., storing and using the formulation, such as dehydration, freezing stress, drying stress, freeze/thaw stress, nebulization stress, etc., can lead to degradation of LNPs. Degradation of LNPs includes both physical instability (e.g., phase separation) and chemical instability (e.g., chemical degradation of mRNA). Degradation may be measured and determined by, e.g., phase separation, particle size, turbidity and encapsulation.

Stress that causes LNPs degradation may include one or more of the following: preparation (e.g., formation, purification, concentration increase of LNPs, and lyophilization), storage (e.g., low temperatures or other condition), handling (e.g., shaking and thawing) and delivery (e.g., shearing through ultra-fine needles for intravitreal delivery or via nebulization for inhalation). Stress can also include heating, shear, excessive agitation, freeze concentration, membrane concentration polarization (change in charge state), dehydration etc.

It has recently been discovered by Applicant that chemical stability of mRNA LNP formulation at 4 °C is not sufficient for long-term storage (e.g., about 1-4%/month loss) and physical instability (e.g., phase separation) in the frozen LNP formulation (e.g., being stored at about -20 °C or lower) is a mechanism of nanoparticle degradation, resulting in the formation of sub-visible particles. See, e.g., Figures 1 and 2.

The impact of degradation of LNPs can be loss of efficacy (due to nucleic acid degradation and/or particle aggregation) as well as changes in tolerability (immune stimulation, for example). Solutions are needed to improve stability of LNPs. Also, solutions are needed for the aforementioned challenges in order to enable safe and effective products containing nucleic acids.

The disclosure, at least in part, provides solutions to those problems. The present invention is at least partially based on an unexpected discovery that certain stabilizing agents (e.g., a
cryoprotectant such as PG or glycerol) improve stability (e.g., physical stability) of frozen LNP formulations.

[00139] In one aspect, the disclosure relates to a stabilized lipid nanoparticle (LNP) formulation comprising a plurality of LNPs and a stabilizing agent that mitigates the degradation of the LNPs or a subpopulation of the LNPs, wherein the LNPs comprise an ionizable lipid and a structural lipid, and the stabilizing agent comprises a cryoprotectant, a chelator, an antioxidant, or any combination thereof. For example, chemical stability is improved by including a chelator (such as DTPA) in the LNP formulation (either liquid or lyophilized) that is stored at about 4 °C or higher. See, e.g., Figure 3. In some embodiments, including a chelator improves chemical stability of a lyophilized LNP formulation containing a nucleic acid (such as an mRNA) that has about 900 nucleotides in length or shorter. Without wishing to be bound by the theory, the chelator prevents the nucleic acids from degradation via reacting with metal ions such as Cu$^{2+}$ and Fe$^{2+}$.

[00140] Storage refers to storing drug product in its final state or in-process storage of LNPs before they are placed into final packaging. Modes of storage include but are not limited to refrigeration in sterile bags, refrigerated or frozen formulations in vials, lyophilized formulations in vials and syringes, etc.

[00141] "Stability," "stabilized," and "stable" in the context of the present disclosure refers to the resistance of LNPs to chemical or physical changes (e.g., chemical degradation, particle size change, phase separation, aggregation, change in encapsulation, etc.) under given manufacturing, preparation, transportation, storage and/or in-use conditions, e.g., when stress is applied such as shear force, freeze/thaw stress, etc.

[00142] The "stabilized" formulations of the disclosure preferably retain at least 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% of the chemical purity (e.g., chromatographic purity) of a starting, standard, or reference preparation of the LNP formulation (e.g., mRNA-loaded LNP formulation) under given manufacturing, preparation, transportation, storage and/or in-use conditions.

[00143] The "stabilized" formulations of the disclosure also preferably retain at least 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% of the physical properties (e.g., phase homogeneity or heterogeneity, particle size, turbidity, encapsulation efficiency, etc.) of a starting, standard, or reference preparation of the LNP formulation (e.g., mRNA-loaded LNP formulation) under given manufacturing, preparation, transportation, storage and/or in-use conditions.

[00144] For example, the "stabilized" formulations of the disclosure preferably retain at least 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% of the physical stability of a starting, standard, or
reference preparation of the LNP formulation (e.g., mRNA-loaded LNP formulation) under given manufacturing, preparation, transportation, storage and/or in-use conditions. For example, the physical stability refers to little or no phase separation of LNP components, e.g., phase separation of a fraction of the structure lipid such as cholesterol or phase separation of a fraction of the ionizable lipid such as an ionizable amino lipid from the remainder of LNP. For example, the "stabilized" formulation has a decreased fraction of the phase-separated structure lipid and/or ionizable lipid as compared to a corresponding formulation which does not comprise the stabilizing agent. For example, decrease in the fraction of the phase-separated structure lipid and/or ionizable lipid is about 20% or more (e.g., about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, or about 90%, or more) as compared to that of a corresponding formulation which does not comprise the stabilizing agent.

[00145] For example, the "stabilized" formulations of the disclosure also preferably has an increase of about 20%, 10%, 5%, 1%, 0.5% or less of a starting, standard, or reference LNP mean size under given manufacturing, preparation, transportation, storage and/or in-use conditions. For example, the formulation has an increase in LNP mean size of about 20% or less (e.g., about 15%, about 10%, about 5% or less) after storage at -20 °C or lower for at least one month. For example, the formulation has an increase in LNP mean size of about 20% or less (e.g., about 15%, about 10%, about 5% or less) after up to 30 freeze/thaw cycles.

[00146] For example, the "stabilized" formulation has an increase in turbidity of about 20% or less (e.g., about 15%, about 10%, about 5% or less) after storage at -20 °C or lower for at least one month, e.g., via nephelometric turbidity analysis.

[00147] For example, the "stabilized" formulation has an increase in turbidity of about 20% or less (e.g., about 15%, about 10%, about 5% or less) after up to 30 freeze/thaw cycles, e.g., via nephelometric turbidity analysis.

[00148] For example, the physical stability of LNPs is determined by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), turbidity analysis, flow microscopy analysis, flow cytometry, FTIR microscopy, resonant mass measurement (RMM), Raman microscopy, filtration, laser diffraction, electron microscopy, atomic force microscopy (AFM), static light scattering (SLS), multi-angle static light scattering (MALS), field flow fractionation (FFF), analytical ultracentrifugation (AUC), or any combination thereof.

[00149] For example, the "stabilized" formulations of the disclosure preferably retain at least 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% of the encapsulation efficiency of a starting, standard,
or reference preparation of the LNP formulation (e.g., mRNA-loaded LNP formulation) under given manufacturing, preparation, transportation, storage and/or in-use conditions. For example, the encapsulation efficiency is substantially the same after storage at about -20 °C or lower for at least one month. For example, the encapsulation efficiency may decrease for about 20% or less (e.g., about 15%, about 10%, about 5% or less) after storage at about -20 °C or lower for at least one month. For example, the encapsulation efficiency is substantially the same after up to 30 freeze/thaw cycles.

[00150] The "stabilized" formulations of the disclosure may also preferably retain at least 80%, 85%, 90%, 95%, 98%, 99%, or 99.5% of the biological activity of a starting, standard, or reference preparation of the LNP formulation (e.g., mRNA-loaded LNP formulation) under given manufacturing, preparation, transportation, storage and/or in-use conditions.

[00151] For example, the formulation has little or no immunogenicity. For example, the immunogenicity is substantially the same after storage at about -20 °C or lower for at least one month. For example, the immunogenicity may increase for about 20% or less (e.g., about 15%, about 10%, about 5% or less) after storage at about -20 °C or lower for at least one month. For example, the immunogenicity is substantially the same after up to 30 freeze/thaw cycles. For example, the formulation has a lower immunogenicity as compared to a corresponding formulation which does not comprise the stabilizing agent.

[00152] For example, the therapeutic index of therapeutic or prophylactic agent-loaded LNP formulation is substantially the same after storage at about -20 °C or lower for at least one month. For example, the therapeutic index may decrease for about 20% or less (e.g., about 15%, about 10%, about 5% or less) after storage at about -20 °C or lower for at least one month.

[00153] For example, the therapeutic index is substantially the same after up to 30 freeze/thaw cycles.

[00154] For example, the formulation comprising a therapeutic or prophylactic agent has an increased therapeutic index as compared to a corresponding formulation which does not comprise the stabilizing agent.

[00155] The "stabilized" formulations of the disclosure also preferably has an increase of about 20% 10%, 5%, 1%, 0.5% or less of a starting, standard, or reference amount of impurities under given manufacturing, preparation, transportation, storage and/or in-use conditions.
The "stabilized" formulations of the disclosure also preferably has an increase of about 20% 10%, 5%, 1%, 0.5% or less of a starting, standard, or reference amount of sub-visible particles under given manufacturing, preparation, transportation, storage and/or in-use conditions.

The purity, LNP mean size, encapsulation efficiency, biological activity, immunogenicity, therapeutic index, amount of impurities can be determined using any art-recognized method. For example, the LNP mean size can be measured dynamic light scattering (DLS). For example, the concentration of a component of the formulation can be determined using routine methods such as UV-Vis spectrophotometry and high pressure liquid chromatography (HPLC). For example, amount of sub-visible particles can be determined by micro-flow imaging (MFI).

In certain embodiments, the present formulations are stabilized at temperatures of about -20 °C for at least 1 month, at least 2 months, at least 4 months, at least 6 months, at least 8 months, at least 10 months, at least 12 months, at least 14 months, at least 16 months, at least 18 months, at least 20 months, at least 22 months, or at least 24 months. In one embodiment, the formulation is stabilized for at least 6-12 months at -20 °C.

In certain embodiments, the present formulations are stabilized at temperatures ranging from about 2 to 8 °C for at least 1 week, at least 2 weeks, at least 3 weeks, at least 4 weeks, at least 5 weeks, at least 6 weeks, at least 1 month, at least 2 months, at least 4 months, at least 6 months, at least 8 months, at least 10 months, at least 12 months, at least 14 months, at least 16 months, at least 18 months, at least 20 months, at least 22 months, or at least 24 months. In one embodiment, the formulation is stabilized for at least 2 months at 2 to 8 °C.

In certain embodiments, the present formulations are stabilized at a temperature of about 4 °C for at least 1 week, at least 2 weeks, at least 3 weeks, at least 4 weeks, at least 5 weeks, at least 6 weeks, at least 7 weeks, at least 1 month, at least 2 months, at least 3 months, at least 4 months, at least 5 months, at least 6 months, at least 7 months, at least 8 months, at least 9 months, at least 10 months, at least 11 months, or at least 12 months. In one embodiment, the formulation is stabilized for at least 2 months at about 4 °C.

In a particular embodiment, a formulation of the disclosure is stabilized at a temperature ranging between about -20 °C and 4 °C at a nucleic acid concentration (e.g., an mRNA concentration) of up to 2 mg/mL for at least 2 weeks, for at least 4 weeks, for at least 8 weeks, for at least 12 weeks, for at least 16 weeks, for at least 32 weeks, for at least a year, or for at least two years.
In a particular embodiment, a formulation of the disclosure is stabilized at a temperature ranging between about -20 °C and 4 °C at a nucleic acid concentration (e.g., an mRNA concentration) of up to 1 mg/mL for at least 2 weeks, for at least 4 weeks, for at least 8 weeks, for at least 12 weeks, or for at least 16 weeks.

Stabilizing Agent

Suitable stabilizing agents for the formulations and methods disclosed herein include a cryoprotectant, a chelator, an antioxidant, or any combination thereof. In some embodiments, suitable stabilizing agents for the formulations and methods disclosed herein further include a surfactant.

For example, the cryoprotectant comprises one or more cryoprotective agents, and each of the one or more cryoprotective agents is independently a polyol (e.g., a diol or a triol such as propylene glycol (i.e., 1,2-propanediol), 1,3-propanediol, glycerol, (+/-)-2-methyl-2,4-pentanediol, 1,6-hexanediol, 1,2-butandiol, 2,3-butandiol, ethylene glycol, or diethylene glycol), a nondetergent sulfobetaine (e.g., NDSB-201 (3-(1-pyridino)-1-propane sulfonate), an osmolyte (e.g., L-proline or trimethylamine N-oxide dihydrate), a polymer (e.g., polyethylene glycol 200 (PEG 200), PEG 400, PEG 600, PEG 1000, PEG 3350, PEG 4000, PEG 8000, PEG 10000, PEG 20000, polyethylene glycol monomethyl ether 550 (mPEG 550), mPEG 600, mPEG 2000, mPEG 3350, mPEG 4000, mPEG 5000, polyvinylpyrrolidone (e.g., polyvinylpyrrolidone K 15), pentaerythritol propoxylate, or polypropylene glycol P 400), an organic solvent (e.g., dimethyl sulfoxide (DMSO) or ethanol), a sugar (e.g., D-(+)-sucrose, D-sorbitol, trehalose, D-(+)-maltose monohydrate, meso-erythritol, xylitol, myo-inositol, D-(+)-raffinose pentahydrate, D-(+)-trehalose dihydrate, or D-(+)-glucose monohydrate), or a salt (e.g., lithium acetate, lithium chloride, lithium formate, lithium nitrate, lithium sulfate, magnesium acetate, sodium chloride, sodium formate, sodium malonate, sodium nitrate, sodium sulfate, or any hydrate thereof) or any combination thereof.

In some embodiments, the formulation also includes one or more salts. For example, the formulation includes one or more salts selected from the group consisting of lithium salts (e.g., lithium acetate, lithium chloride, lithium formate, lithium nitrate, lithium sulfate, or any hydrate thereof), magnesium salts (e.g., magnesium acetate or a hydrate thereof), and sodium salts (e.g., sodium chloride, sodium formate, sodium malonate, sodium nitrate, sodium sulfate, or any hydrate thereof). For another example, the formulation comprises one or more sodium salts. For yet another example, the formulation comprises sodium chloride.
In some embodiments, the formulation can be free of one or more salts. For example, the formulation is free of one or more salts selected from the group consisting of lithium salts (e.g., lithium acetate, lithium chloride, lithium formate, lithium nitrate, lithium sulfate, or any hydrate thereof), magnesium salts (e.g., magnesium acetate or a hydrate thereof), and sodium salts (e.g., sodium chloride, sodium formate, sodium malonate, sodium nitrate, sodium sulfate, or any hydrate thereof). For another example, the formulation is free of one or more sodium salts. For yet another example, the formulation is free of sodium chloride.

For example, the concentration of the cryoprotectant in the formulation ranges from about 0.05 % to about 50 % by weight (e.g., from about 0.05 % to about 25 % by weight, from about 1 % to 15 % by weight, from about 3 % to about 12.5 % by weight, from about 1 % to about 8 % by weight or from about 2 % to about 7 % by weight).

For example, the concentration of the cryoprotectant in the formulation ranges from about 0.05 % w/v to about 50 % w/v (e.g., from about 0.05 % w/v to about 25 % w/v, from about 1 % w/v to 15 % w/v, from about 3 % w/v to about 12.5 % w/v, from about 1 % w/v to about 8 % w/v, or from about 2 % w/v to about 7 % w/v). In some embodiments, the concentration of the cryoprotectant in the formulation does not exceed about 90 % w/v, about 85 % w/v, about 80 % w/v, about 75 % w/v, about 70 % w/v, about 65 % w/v, about 60 % w/v, about 55 % w/v, about 50 % w/v, about 45 % w/v, about 40 % w/v, about 35 % w/v, about 30 % w/v, about 25 % w/v, about 20 % w/v, about 15 % w/v, about 10 % w/v, about 8 % w/v, about 6 % w/v, about 5 % w/v, about 4 % w/v, about 3 % w/v, about 2 % w/v, or about 1 % w/v.

For example, the concentration of the cryoprotectant in the formulation is about 3.125 % w/v, about 6.25 % w/v, about 12.5 % w/v, about 25 % w/v, or about 50 % w/v.

In certain embodiments, the concentration of any one of the one or more cryoprotective agents (e.g., glycerol or ethanol) in the formulation is about 0.01 w/v % to about 0.1 w/v % (e.g., about 0.01 % w/v, 0.02 % w/v, 0.03 % w/v, 0.04 % w/v, 0.05 % w/v, 0.06 % w/v, 0.07 % w/v, 0.08 % w/v, 0.09 % w/v, or 0.1 % w/v or any concentration therebetween), about 0.1 % w/v to about 1.0 % w/v (e.g., about 0.1 % w/v, 0.2 % w/v, 0.3 % w/v, 0.4 % w/v, 0.5 % w/v, 0.6 % w/v, 0.7 % w/v, 0.8 % w/v, 0.9 % w/v, or 1.0 % w/v or any concentration therebetween), about 1.0 % w/v to about 2.0 % w/v (e.g., about 1.0 % w/v, 1.05 % w/v, 1.1 % w/v, 1.15 % w/v, 1.2 % w/v, 1.25 % w/v, 1.3 % w/v, 1.35 % w/v, 1.4 % w/v, 1.45 % w/v, 1.5 % w/v, 1.55 % w/v, 1.6 % w/v, 1.65 % w/v, 1.7 % w/v, 1.75 % w/v, 1.8 % w/v, 1.85 % w/v, 1.9 % w/v, 1.95 % w/v, or 2.0 % w/v or any concentration therebetween), about 2.0 % w/v to about 5.0 % w/v (e.g., 2.0 % w/v, 2.1 % w/v, 2.2 % w/v, 2.3 % w/v, 2.4 % w/v, 2.5 % w/v, 2.6 % w/v, 2.7 % w/v, 2.8 % w/v, 2.9 % w/v, or 3.0 % w/v or any concentration therebetween).
% w/v, 2.4 %, w/v, 2.5 %, w/v, 2.6 %, w/v, 2.7 %, w/v, 2.8 %, w/v, 2.9 %, w/v, 3.0 %, w/v, 3.1 %, w/v, 3.2 %, w/v, 3.3 %, w/v, 3.4 %, w/v, 3.5 %, w/v, 3.6 %, w/v, 3.7 %, w/v, 3.8 %, w/v, 3.9 %, w/v, 4.0 %, w/v, 4.1 %, w/v, 4.2 %, w/v, 4.3 %, w/v, 4.4 %, w/v, 4.5 %, w/v, 4.6 %, w/v, 4.7 %, w/v, 4.8 %, w/v, 4.9 %, w/v, or 5.0 % or any concentration therebetween), about 5.0 % w/v to about 10 % w/v (e.g., about 5.0 %, w/v, 5.5 %, w/v, 6.0 %, w/v, 6.5 %, w/v, 7.0 %, w/v, 7.5 %, w/v, 8.0 %, w/v, 8.5 %, w/v, 9.0 %, w/v, 9.5 %, w/v, or 10 % by weight/w/v or any concentration therebetween), or about 10 % w/v to about 50 % w/v (e.g., about 10 %, w/v, 12 %, w/v, 14 %, w/v, 16 %, w/v, 18 %, w/v, 20 %, w/v, 25 %, w/v, 30 %, w/v, 35 %, w/v, 40 %, w/v, 45 %, w/v, or 50 % by weight or any concentration therebetween).

[00171] In certain embodiments, the concentration of any one of the one or more cryoprotective agents (e.g., glycerol or ethanol) in the formulation ranges from about 1 mM to about 10 mM (e.g., about 1 mM, about 2 mM, about 3 mM, about 4 mM, about 5 mM, about 6 mM, about 7 mM, about 8 mM, about 9 mM, or any concentration therebetween), from about 10 mM to about 100 mM (e.g., about 10 mM, about 20 mM, about 30 mM, about 40 mM, about 50 mM, about 60 mM, about 70 mM, about 80 mM, about 90 mM, or about 100 mM, or any concentration therebetween), from about 100 mM to about 200 mM (e.g., about 100 mM, about 110 mM, about 120 mM, about 130 mM, about 140 mM, about 150 mM, about 160 mM, about 170 mM, about 180 mM, about 190 mM, or about 200 mM, or any concentration therebetween), from about 200 mM to about 300 mM (e.g., about 200 mM, about 205 mM, about 210 mM, about 215 mM, about 220 mM, about 225 mM, about 230 mM, about 235 mM, about 240 mM, about 245 mM, about 250 mM, about 255 mM, about 260 mM, about 265 mM, about 270 mM, about 275 mM, about 280 mM, about 285 mM, about 290 mM, or about 300 mM, or any concentration therebetween), from about 300 mM to about 500 mM (e.g., about 300 mM, about 310 mM, about 320 mM, about 330 mM, about 340 mM, about 350 mM, about 360 mM, about 370 mM, about 380 mM, about 390 mM, about 400 mM, about 410 mM, about 420 mM, about 430 mM, about 440 mM, about 450 mM, about 460 mM, about 470 mM, about 480 mM, about 490 mM, or about 500 mM, or any concentration therebetween), from about 500 mM to about 1 M (e.g., about 500 mM, about 550 mM, about 600 mM, about 650 mM, about 700 mM, about 750 mM, about 800 mM, about 850 mM, about 900 mM, about 950 mM, or about 1 M, or any concentration therebetween), or from about 1 M to about 10 M (e.g., about 1 M, about 2 M, about 3 M, about 4 M, about 5 M, about 6 M, about 7 M, about 8 M, about 9 M, or about 10 M, or any concentration therebetween).
For example, the concentration of any combination of the one or more cryoprotective agents (e.g., the combination of glycerol and ethanol) in the formulation is about 0.01 % w/v to about 0.1% w/v (e.g., about 0.01% w/v, 0.02% w/v, 0.03% w/v, 0.04% w/v, 0.05% w/v, 0.06% w/v, 0.07% w/v, 0.08% w/v, 0.09% w/v, or 0.1% w/v or any concentration therebetween), about 0.1% w/v to about 1.0% w/v (e.g., about 0.1% w/v, 0.2% w/v, 0.3% w/v, 0.4% w/v, 0.5% w/v, 0.6% w/v, 0.7% w/v, 0.8% w/v, 0.9% w/v, or 1.0% w/v or any concentration therebetween), about 1.0% w/v to about 2.0% (e.g., about 1.0% w/v, 1.1% w/v, 1.2% w/v, 1.3% w/v, 1.4% w/v, 1.5% w/v, 1.6% w/v, 1.7% w/v, 1.8% w/v, 1.9% w/v, or 2.0% w/v or any concentration therebetween), about 2.0% w/v to about 5.0% w/v (e.g., about 2.0% w/v, 2.1% w/v, 2.2% w/v, 2.3% w/v, 2.4% w/v, 2.5% w/v, 2.6% w/v, 2.7% w/v, 2.8% w/v, 2.9% w/v, 3.0% w/v, 3.1% w/v, 3.2% w/v, 3.3% w/v, 3.4% w/v, 3.5% w/v, 3.6% w/v, 3.7% w/v, 3.8% w/v, 3.9% w/v, 4.0% w/v, 4.1% w/v, 4.2% w/v, 4.3% w/v, 4.4% w/v, 4.5% w/v, 4.6% w/v, 4.7% w/v, 4.8% w/v, 4.9% w/v, or 5.0% w/v or any concentration therebetween), about 5.0% w/v to about 10% w/v (e.g., about 5.0% w/v, 5.5% w/v, 6.0% w/v, 6.5% w/v, 7.0% w/v, 7.5% w/v, 8.0% w/v, 8.5% w/v, 9.0% w/v, 9.5% w/v, or 10% w/v or any concentration therebetween), or about 10% w/v to about 50% (e.g., about 10% w/v, 12% w/v, 14% w/v, 16% w/v, 18% w/v, 20% w/v, 25% w/v, 30% w/v, 35% w/v, 40% w/v, 45% w/v, or 50% w/v or any concentration therebetween.

For example, the weight ratio between any two of the one or more cryoprotective agents (e.g., the weight ratio between glycerol and ethanol) in the formulation is about 1:25 to about 1:1 (e.g., about 1:25, 1:20, 1:15, 1:10, 1:5, 1:4, 1:3, 1:2, or 1:1 or any ratio therebetween), about 1:1 to about 1:4 (e.g., about 1:1, 1:1.1, 1:1.2, 1:1.3, 1:1.4, 1:1.5, 1:1.6, 1:1.7, 1:1.8, 1:1.9, 1:2, 1:2.1, 1:2.2, 1:2.3, 1:2.4, 1:2.5, 1:2.6, 1:2.7, 1:2.8, 1:2.9, 1:3, 1:3.1, 1:3.2, 1:3.3, 1:3.4, 1:3.5, 1:3.6, 1:3.7, 1:3.8, 1:3.9, or 1:4 or any ratio therebetween), about 1:4 to about 1:50 (e.g., about 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, 1:10, 1:15, 1:20, 1:25, 1:30, 1:35, 1:40, 1:45, or 1:50 or any ratio therebetween), or about 1:50 to about 1:200 (e.g., about 1:50, 1:55, 1:60, 1:65, 1:70, 1:75, 1:80, 1:85, 1:90, 1:95, 1:100, 1:110, 1:120, 1:130, 1:140, 1:150, 1:160, 1:170, 1:180, 1:190, or 1:200 or any ratio therebetween).

For example, the molar ratio between any two of the one or more cryoprotective agents (e.g., glycerol and ethanol) in the formulation ranges from about 1:100 to about 1:50 (e.g., about 1:100, about 1:90, about 1:80, about 1:70, about 1:60, about 1:50, or any ratio therebetween), from about 1:50 to about 1:25 (e.g., about 1:50, about 1:45, about 1:40, about 1:35, about 1:30, about 1:25, or any ratio therebetween), from about 1:25 to about 1:5 (e.g., about 1:25, about 1:20, about 1:15, about 1:10, about 1:5, or any ratio therebetween), from about 1:5 to about 1:2 (e.g., about 1:5,
about 1:4.5, about 1:4, about 1:3.5, about 1:3, about 1:2.5, about 1:2, or any ratio therebetween),
from about 1:2 to about 2:1 (e.g., about 1:2, about 1:1.9, about 1:1.8, about 1:1.7, about 1:1.6, about
1:1.5, about 1:1.4, about 1:1.3, about 1:1.2, about 1:1.1, about 1:1, about 1.1:1, about 1.2:1, about
1.3:1, about 1.4:1, about 1.5:1, about 1.6:1, about 1.7:1, about 1.8:1, about 1.9:1, about 2:1, or any ratio therebetween),
from about 2:1 to about 5:1 (e.g., about 2:1, about 2.5:1, about 3:1, about 3.5:1, about 4:1, about 4.5:1, about 5:1, or any ratio therebetween), from about 5:1 to about 25:1 (e.g., about 5:1, about 10:1, about 15:1, about 20:1, about 25:1, or any ratio therebetween), from
about 25:1 to about 50:1 (e.g., about 25:1, about 30:1, about 35:1, about 40:1, about 45:1, about
50:1, or any ratio therebetween), or from about 50:1 to about 100:1 (e.g., about 50:1, about 60:1,
about 70:1, about 80:1, about 90:1. About 100:1, or any ratio therebetween).

[00175] For example, the chelator comprises diethylenetriamine pentaacetic acid (DTPA),
ethylenediaminetetraacetic acid (EDTA), iminodisuccinic acid, polyaspartic acid, ethylenediamine-
N,N'-disuccinic acid (EDDS), methylglycinediacetic acid (MGDA), L-glutamic acid N,N'-diacetic
acid (GLDA), or a salt thereof.

[00176] For example, the antioxidant comprises ascorbic acid, citric acid, malic acid, methionine,
monothioglycerol, phosphoric acid, potassium metabisulfite, alpha-tocopherol, or any combination
thereof.

[00177] For example, the surfactant comprises one or more anionic surfactants (e.g., 2-
acrylamido-2-methylpropane sulfonic acid, ammonium lauryl sulfate, ammonium
perfluorononanoate, docusate, disodium cocoamphodiacetate, magnesium laureth sulfate,
perfluorobutanesulfonic acid, perfluororononanoic acid, perfluoroctanesulfonic acid,
perfluoroctanoic acid, potassium lauryl sulfate, sodium alkyl sulfate, sodium dodecyl sulfate,
sodium dodecylbenzenesulfonate, sodium laureate, sodium laureth sulfate, sodium lauryl
sarcosinate, sodium myrth sulfate, sodium nonanoyloxybenzenesulfonate, sodium pareth sulfate,
sodium stearate, or sulfolipid), one or more cationic surfactants (e.g., behentrimonium chloride,
benzalkonium chloride, benzetonium chloride, benzododecinium bromide, bronidox,
carbethopencininium bromide, cetalkonium chloride, cetrimonium bromide, cetrimonium chloride,
cetylpyridinium chloride, didecylidimethylammonium chloride, dimethyldioctadecylammonium bromide, dimethyldioctadecylammonium chloride, domiphen bromide, lauryl methyl gluceth-10
hydroxypropyl dimonium chloride, octenidine dihydrochloride, olaflur, n-oleyl-1,3-propanediamine,
pahutoxin, stearkalkonium chloride, tetramethylammonium hydroxide, or thonzonium bromide), one
or more zwitterionic surfactants (e.g., cocamidopropyl betaine, cocamidopropyl hydroxysultaine,
dipalmitoylphosphatidylcholine, egg lecithin, hydroxysultaine, lecithin, myristamine oxide, peptitergents, or sodium lauroamphoacetate), and/or one or more non-ionic surfactants (e.g., alkyl polyglycoside, cetomacrogol 1000, cetostearyl alcohol, cetyl alcohol, cocamide dea, cocamide mea, decyl glucoside, decyl polyglucose, glycerol monostearate, igeal ca-630, isoceteth-20, lauryl glucoside, maltosides, monolaurin, mycosubtilin, narrow-range ethoxylate, nonidet p-40, nonoxynol-9, nonoxynols, np-40, octaethylene glycol monododecyl ether, n-octyl beta-d-thioglucopyranoside, octyl glucoside, oleyl alcohol, peg-10 sunflower glycerides, pentaethylene glycol monododecyl ether, polidocanol, poloxamer (e.g., poloxamer 407), polyethoxylated tallow amine, polyglycerol polyricinoleate, polysorbate (e.g., polysorbate 20, polysorbate 40, polysorbate 60, or polysorbate 80), sorbitan, sorbitan monolaurate, sorbitan monostearate, sorbitan tristearate, stearyl alcohol, surfactin, triton x-100).

[00178] For example, the surfactant comprises a polysorbate having a structure of Formula (IV):

\[
\begin{align*}
&\text{(IV)} \\
&w \cdot x \cdot y \cdot z \\
\end{align*}
\]

wherein the sum of \(w, x, y,\) and \(z\) ranges from about 0 to about 200. For example, sum of \(w, x, y,\) and \(z\) ranges from about 0 to about 100, from about 10 to about 90, or from about 20 to about 80. For example, the sum of \(w, x, y,\) and \(z\) is about 20, about 40, about 60, or about 80. For example, the polysorbate is polysorbate 20, polysorbate 40, polysorbate 60, or polysorbate 80.

[00179] For example, the concentration of the surfactant (e.g., polysorbate (e.g., polysorbate 20)) in the formulation ranges from about 0.0001 % w/v to about 0.001% w/v (e.g., about 0.0001 % w/v, about 0.0002 % w/v, about 0.0003 % w/v, about 0.0004 % w/v, about 0.0005 % w/v, about 0.0006 % w/v, about 0.0007 % w/v, about 0.0008 % w/v, about 0.0009 % w/v, about 0.001 % w/v, or any concentration therebetween), from about 0.001 % w/v to about 0.005% w/v (e.g., about 0.001 % w/v, about 0.002 % w/v, about 0.003 % w/v, about 0.004 % w/v, about 0.005 % w/v, or any concentration therebetween), from about 0.005 % w/v to about 0.05 % w/v (e.g., about 0.005 %, about 0.006 % w/v, about 0.007 % w/v, about 0.008 % w/v, about 0.009 % w/v, about 0.01 % w/v, about 0.015 % w/v, about 0.02 % w/v, about 0.025 % w/v, about 0.03 % w/v, about 0.035 % w/v, about 0.04 % w/v, about 0.045 % w/v, about 0.05 % w/v, or any concentration therebetween), from 0.05 % w/v to about 0.1 % w/v (e.g., about 0.05 % w/v, about 0.06 % w/v, about 0.07 % w/v, about
0.08 % w/v, about 0.09 % w/v, about 0.1 % w/v, or any concentration therebetween), or from about 0.1 % w/v to about 1% w/v (e.g., about 0.1 % w/v, about 0.2 % w/v, about 0.3 % w/v, about 0.4 % w/v, about 0.5 % w/v, about 0.6 % w/v, about 0.7 % w/v, about 0.8 % w/v, about 0.9 % w/v, about 1 % w/v, or any concentration therebetween).

Lipids

[00180] The present disclosure provides ionizable lipids including a central amine moiety and at least one biodegradable group. The lipids described herein may be advantageously used in lipid nanoparticles for the delivery of therapeutics and/or prophylactics to mammalian cells or organs.

[00181] In one embodiment, the ionizable lipid compounds described herein are of Formula (I):

![Formula (I)](image)

or salts or isomers thereof, wherein:

- \(\text{R}_i \) is selected from the group consisting of C5-30 alkyl, C5-20 alkenyl, -R*YR", -YR", and -R"M'R";

- \(\text{R}_2 \) and \(\text{R}_3 \) are independently selected from the group consisting of H, C1-14 alkyl, C2-14 alkenyl, -R*YR", -YR", and -R"OR", or \(\text{R}_2 \) and \(\text{R}_3 \), together with the atom to which they are attached, form a heterocycle or carbocycle;

- \(\text{R}_4 \) is selected from the group consisting of a C3-6 carbocycle, -(CH2)nQ, -(CH2)nCHQR, -CHQR, -CQ(R)2, and unsubstituted C1-6 alkyl, where Q is selected from a carbocycle, heterocycle, -OR, -(CH2)nN(R)2, -C(0)OR, -OC(0)R, -CX3, -CX2H, -CNH2, -CN, -N(R)2, -C(0)N(R)2, -N(R)C(0)OR, -N(OR)C(0)R, -N(OR)S(0)2R, -N(OR)C(0)OR, -N(OR)C(0)N(R)2, -N(OR)C(S)N(R)2, -N(R)RS, -N(R)N(R)2, -(N(R)C(=NR 9)N(R)2, -(N(R)C(=CHR 9)N(R)2, -(OC(0)N(R)2, -(N(R)C(0)OR, -(N(OR)C(0)R, -(N(OR)S(0)2R, -(N(OR)C(0)OR, -(N(OR)C(0)N(R)2, -(N(OR)C(S)N(R)2, -(N(OR)C(=NR 9)N(R)2, -(N(OR)C(=CHR 9)N(R)2, -(C(=NR 9)N(R)2, -(C(=NR 9)R, -(C(0)N(R)OR, and -C(R)N(R)2C(0)OR, and each \(n \) is independently selected from 1, 2, 3, 4, and 5;

- each \(\text{R}_5 \) is independently selected from the group consisting of C1-3 alkyl, C2-3 alkenyl, and H;

- each \(\text{R}_6 \) is independently selected from the group consisting of C1-3 alkyl, C2-3 alkenyl, and H;
M and M' are independently selected from -C(0)0-, -OC(O)-, -C(0)N(R')-, -N(R')C(0)-, -C(O)-, -C(S)-, -C(S)S-, -SC(S)-, -CH(OH)-, -P(0)(OR')0-, -S(0)2-, -S-S-, an aryl group, and a heteroaryl group;

R7 is selected from the group consisting of C1-3 alkyl, C2-3 alkenyl, and H;
R8 is selected from the group consisting of C3-6 carbocycle and heterocycle;
R9 is selected from the group consisting of H, CN, NO2, C1-6 alkyl, -OR, -S(0)2R, -S(0)2N(R)2, C2-6 alkenyl, C3-6 carbocycle and heterocycle;

each R is independently selected from the group consisting of C1-3 alkyl, C2-3 alkenyl, and H;
each R' is independently selected from the group consisting of C1-18 alkyl, C2-18 alkenyl, -R*YR", -YR", and H;
each R" is independently selected from the group consisting of C3-14 alkyl and C3-14 alkenyl;
each R* is independently selected from the group consisting of C1-12 alkyl and C2-12 alkkenyl;
each Y is independently a C3-6 carbocycle;
each X is independently selected from the group consisting of F, CI, Br, and I; and
m is selected from 5, 6, 7, 8, 9, 10, 11, 12, and 13.

[00182] In certain embodiments, a subset of compounds of Formula (I) includes those of Formula (IA):

![Formula (IA)](image)

or a salt or isomer thereof, wherein 1 is selected from 1, 2, 3, 4, and 5; m is selected from 5, 6, 7, 8, and 9; M is a bond or M'; R4 is unsubstituted C1-3 alkyl, or -CH2nQ, in which Q is OH, -NHC(S)N(R)2, -NHC(0)N(R)2, -N(R)C(0)R, -N(R)S(0)2R, -N(R)Rs, -NHC(=NR)N(R)2, -NHC(=CHR9)N(R)2, -OC(0)N(R)2, -N(R)C(0)OR, heteroaryl or heterocycloalkyl; M and M' are independently selected from -C(0)0-, -OC(O)-, -C(0)N(R')-, -P(0)(OR')0-, -S-S-, an aryl group, and a heteroaryl group; and R2 and R3 are independently selected from the group consisting of H, C1-14 alkyl, and C2-14 alkenyl. For example, m is 5, 7, or 9. For example, Q is OH, -NHC(S)N(R)2, or -NHC(0)N(R)2.
For example, Q is -N(R)C(0)R, or -N(R)S(0)2R. Other variables, such as R, R' and n, are as defined in Formula (I).

[00183] In certain embodiments, a subset of compounds of Formula (I) includes those of Formula (II):

![Chemical Structure](image)

(II) or a salt or isomer thereof, wherein 1 is selected from 1, 2, 3, 4, and 5; Mi is a bond or M'; R4 is unsubstituted C1-3 alkyl, or -(CH2)nQ, in which n is 2, 3, or 4, and Q is OH, -NHC(S)N(R)2, -NHC(0)N(R)2, -N(R)C(0)R, -N(R)S(0)2R, -N(R)Rs, -NHC (=NS)N(R)2, -NHC[=CHR(0)]N(R)2, -OC(0)N(R)2, -N(R)C(0)OR, heteroaryl or heterocycloalkyl; M and M' are independently selected from -C(0)0-, -OC(O)-, -C(0)N(R)0-, -P(0)(0)(OR)0-, -S-S-, an aryl group, and a heteroaryl group; and R2 and R3 are independently selected from the group consisting of H, C1-4 alkyl, and C2-14 alkenyl. Other variables, such as R and R', are as defined in Formula (I).

[00184] The compounds of any one of formula (I), (IA), or (II) include one or more of the following features when applicable.

[00185] In some embodiments, when R4 is -(CH2)nQ, -(CH2)nCHQR, -CHQR, or -CQ(R)2, then (i) Q is not -N(R)2 when n is 1, 2, 3, 4 or 5, or (ii) Q is not 5, 6, or 7-membered heterocycloalkyl when n is 1 or 2.

[00186] In some embodiments, Mi is M'.

[00187] In some embodiments, M and M' are independently -C(0)0- or -OC(O)-.

[00188] In some embodiments, 1 is 1, 3, or 5.

[00189] In some embodiments, R4 is unsubstituted methyl or -(CH2)nQ, in which Q is OH, -NHC(S)N(R)2, -NHC(0)N(R)2, -N(R)C(0)R, or -N(R)S(0)2R.

[00190] In some embodiments, Q is OH.

[00191] In some embodiments, Q is -NHC(S)N(R)2.

[00192] In some embodiments, Q is -NHC(0)N(R)2.

[00193] In some embodiments, Q is -N(R)C(0)R.

[00194] In some embodiments, Q is -N(R)S(0)2R.

[00195] In some embodiments, n is 2.

[00196] In some embodiments, n is 3.
[00197] In some embodiments, n is 4.

[00198] In some embodiments, Mi is absent.

[00199] In some embodiments, R’ is Ci-is alkyl, C2-18 alkenyl, -R*YR”, or -YR”.

[00200] In some embodiments, R2 and R3 are independently C3-14 alkyl or C3-14 alkenyl.

[00201] In one embodiment, the compounds of Formula (I) are of Formula (Ha),

or salts or isomers thereof, wherein R4 is as described herein.

[00202] In another embodiment, the compounds of Formula (I) are of Formula (Iib),

or salts or isomers thereof, wherein R4 is as described herein.

[00203] In another embodiment, the compounds of Formula (I) are of Formula (lie) or (He):

or salts or isomers thereof, wherein R4 is as described herein.

[00204] In a further embodiment, the compounds of Formula (I) are of Formula (IId),

(IId),
or salts or isomers thereof, wherein n is 2, 3, or 4; and m, R', R**, R, R3, R5, and R6 are as described herein. For example, each of R2 and R3 may be independently selected from the group consisting of C5-14 alkyl and C5-14 alkenyl.

[00205] The compounds of any one of formulae (I), (IA), (II), (Ila), (lib), (lie), (lid), and (He) include one or more of the following features when applicable.

[00206] In some embodiments, R4 is selected from the group consisting of a C3-6 carbocycle, -(CH2)nQ, -(CH2)nCHQR, -CHQR, and -CQ(R)2, where Q is selected from a C3-6 carbocycle, 5- to 14-membered aromatic or non-aromatic heterocycle having one or more heteroatoms selected from N, O, and S, -OR, -0 (CH2)nN(R)2, -C(0)OR, -OC(0)R, -CX3, -CX2H, -CXH2, -CN, -N(R)2, -C(0)N(R)2, -N(R)C(0)R, -N(R)C(0)S(N(R)2, -N(R)C(S)N(R)2, and -C(R)N(R)2C(0)OR, and each n is independently selected from 1, 2, 3, 4, and 5.

[00207] In another embodiment, R4 is selected from the group consisting of a C3-6 carbocycle, -(CH2)nQ, -(CH2)nCHQR, -CHQR, and -CQ(R)2, where Q is selected from a C3-6 carbocycle, a 5- to 14-membered heteroaryl having one or more heteroatoms selected from N, O, and S which is substituted with one or more substituents selected from oxo (=O), OH, amino, and C1-3 alkyl, and each n is independently selected from 1, 2, 3, 4, and 5.

[00208] In another embodiment, R4 is selected from the group consisting of a C3-6 carbocycle, -(CH2)nQ, -(CH2)nCHQR, -CHQR, and -CQ(R)2, where Q is selected from a C3-6 carbocycle, a 5- to 14-membered heterocycle having one or more heteroatoms selected from N, O, and S, -OR, -0 (CH2)nN(R)2, -C(0)OR, -OC(0)R, -CX3, -CX2H, -CXH2, -CN, -C(0)N(R)2, -N(R)C(0)R, -N(R)C(0)S(N(R)2, -N(R)C(S)N(R)2, -C(R)N(R)2C(0)OR, and each n is independently selected from 1, 2, 3, 4, and 5; and when Q is a 5- to 14-membered heterocycle and (1) R4 is -(CH2)nQ in which n is 1 or 2, or (11) R4 is -(CH2)nCHQR in which n is 1, or (111) R4 is -CHQR, and -CQ(R)2, then Q is either a 5- to 14-membered heteroaryl or 8- to 14-membered heterocycloalkyl.

[00209] In another embodiment, R4 is selected from the group consisting of a C3-6 carbocycle, -(CH2)nQ, -(CH2)nCHQR, -CHQR, and -CQ(R)2, where Q is selected from a C3-6 carbocycle, a 5- to 14-membered heteroaryl having one or more heteroatoms selected from N, O,
and S, -OR, -0(CH₂)nN(R)₂, -C(0)OR, -OC(0)R, -CX₃, -CX₂H, -CXH₂, -CN, -C(0)N(R)₂, -N(R)C(0)R, -N(R)S(0)₂R, -N(R)C(0)N(R)₂, -N(R)C(S)N(R)₂, -C(R)N(R)₂C(0)OR, and each n is independently selected from 1, 2, 3, 4, and 5.

[00210] In another embodiment, R₄ is unsubstituted C₄ alkyl, e.g., unsubstituted methyl.

[00211] The central amine moiety of a lipid according to Formula (I), (IA), (II), (Iia), (lib), (He), (lid) or (He) may be protonated at a physiological pH. Thus, a lipid may have a positive or partial positive charge at physiological pH. Such lipids may be referred to as cationic or ionizable (amino) lipids. Lipids may also be zwitterionic, i.e., neutral molecules having both a positive and a negative charge.

[00212] In some embodiments, the compounds of Formula (I) are selected from the group consisting of:

- (Compound 1),
- (Compound 2),
- (Compound 3),
- (Compound 4),
- (Compound 5),
- (Compound 6),
(Compound 7),
(Compound 8),
(Compound 9),
(Compound 10),
(Compound 11),
(Compound 12),
(Compound 13),
(Compound 14),
(Compound 22),
(Compound 23),
(Compound 24),
(Compound 25),
(Compound 26),
(Compound 27),
(Compound 28),
(Compound 36),
(Compound 37),
(Compound 38),
(Compound 39),
(Compound 40),
(Compound 41),
(Compound 42),
(Compound 50),

(Compound 51),

(Compound 52),

(Compound 53),

(Compound 54),

(Compound 55),

(Compound 56),

As used herein, the term "alkyl" or "alkyl group" means a linear or branched, saturated hydrocarbon including one or more carbon atoms (e.g., one, two, three, four, five, six, seven, eight,
nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty, or more carbon atoms), which is optionally substituted. The notation "Ci-14 alkyl" means an optionally substituted linear or branched, saturated hydrocarbon including 1-14 carbon atoms. Unless otherwise specified, an alkyl group described herein refers to both unsubstituted and substituted alkyl groups.

[00215] As used herein, the term "alkenyl" or "alkenyl group" means a linear or branched hydrocarbon including two or more carbon atoms (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty, or more carbon atoms) and at least one double bond, which is optionally substituted. The notation "C2-14 alkenyl" means an optionally substituted linear or branched hydrocarbon including 2-14 carbon atoms and at least one carbon-carbon double bond. An alkenyl group may include one, two, three, four, or more carbon-carbon double bonds. For example, Cis alkenyl may include one or more double bonds. A Cis alkenyl group including two double bonds may be a linoleyl group. Unless otherwise specified, an alkenyl group described herein refers to both unsubstituted and substituted alkenyl groups.

[00216] As used herein, the term "alkynyl" or "alkynyl group" means a linear or branched hydrocarbon including two or more carbon atoms (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty, or more carbon atoms) and at least one carbon-carbon triple bond, which is optionally substituted. The notation "C2-14 alkynyl" means an optionally substituted linear or branched hydrocarbon including 2-14 carbon atoms and at least one carbon-carbon triple bond. An alkynyl group may include one, two, three, four, or more carbon-carbon triple bonds. For example, Cis alkynyl may include one or more carbon-carbon triple bonds. Unless otherwise specified, an alkynyl group described herein refers to both unsubstituted and substituted alkynyl groups.

[00217] As used herein, the term "carbocycle" or "carbocyclic group" means an optionally substituted mono- or multi-cyclic system including one or more rings of carbon atoms. Rings may be three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, or twenty membered rings. The notation "C3-6 carbocycle" means a carbocycle including a single ring having 3-6 carbon atoms. Carbocycles may include one or more carbon-carbon double or triple bonds and may be non-aromatic or aromatic (e.g., cycloalkyl or aryl groups). Examples of carbocycles include cyclopropyl, cyclopentyl, cyclohexyl, phenyl, naphthyl, and 1,2-dihydronaphthyl groups. The term "cycloalkyl" as used herein means a non-aromatic
carbocycle and may or may not include any double or triple bond. Unless otherwise specified, carbocycles described herein refers to both unsubstituted and substituted carbocycle groups, i.e., optionally substituted carbocycles.

[00218] As used herein, the term "heterocycle" or "heterocyclic group" means an optionally substituted mono- or multi-cyclic system including one or more rings, where at least one ring includes at least one heteroatom. Heteroatoms may be, for example, nitrogen, oxygen, or sulfur atoms. Rings may be three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, or fourteen membered rings. Heterocycles may include one or more double or triple bonds and may be non-aromatic or aromatic (e.g., heterocycloalkyl or heteroaryl groups). Examples of heterocycles include imidazolyl, imidazolidinyl, oxazolyl, oxazolidinyl, thiazolyl, thiazolidinyl, pyrazolidinyl, pyrazolyl, isoxazolyl, isoxazolidinyl, isothiazolyl, isothiazolidinyl, morpholinyl, pyrrollyl, pyrrolidinyl, furyl, tetrahydrofuryl, thiophenyl, pyridinyl, piperidinyl, quinolyl, and isoquinolyl groups. The term "heterocycloalkyl" as used herein means a non-aromatic heterocycle and may or may not include any double or triple bond. Unless otherwise specified, heterocycles described herein refers to both unsubstituted and substituted heterocycle groups, i.e., optionally substituted heterocycles.

[00219] As used herein, a "biodegradable group" is a group that may facilitate faster metabolism of a lipid in a mammalian entity. A biodegradable group may be selected from the group consisting of, but is not limited to, -C(0)O, -OC(O)-, -C(0)N(R')-, -N(R')C(0)-, -C(O)-, -C(S)-, -C(S)S-, -SC(S)-, -CH(OH)-, -P(0)(OR')0-, -S(0) 2-, an aryl group, and a heteroaryl group. As used herein, an "aryl group" is an optionally substituted carbocyclic group including one or more aromatic rings. Examples of aryl groups include phenyl and naphthyl groups. As used herein, a "heteroaryl group" is an optionally substituted heterocyclic group including one or more aromatic rings. Examples of heteroaryl groups include pyrrolyl, furyl, thiophenyl, imidazolyl, oxazolyl, and thiazolyl. Both aryl and heteroaryl groups may be optionally substituted. For example, M and M' can be selected from the non-limiting group consisting of optionally substituted phenyl, oxazole, and thiazole. In the formulas herein, M and M' can be independently selected from the list of biodegradable groups above. Unless otherwise specified, aryl or heteroaryl groups described herein refers to both unsubstituted and substituted groups, i.e., optionally substituted aryl or heteroaryl groups.

[00220] Alkyl, alkenyl, and cyclyl (e.g., carbocyclyl and heterocyclyl) groups may be optionally substituted unless otherwise specified. Optional substituents may be selected from the group
consisting of, but are not limited to, a halogen atom (e.g., a chloride, bromide, fluoride, or iodide group), a carboxylic acid (e.g., -C(O)OH), an alcohol (e.g., a hydroxyl, -OH), an ester (e.g., -C(0)OR or -OC(O)R), an aldehyde (e.g.,-C(0)H), a carbonyl (e.g., -C(0)R, alternatively represented by C=0), an acyl halide (e.g.,-C(0)X, in which X is a halide selected from bromide, fluoride, chloride, and iodide), a carbonate (e.g., -OC(O)OR), an alkoxy (e.g., -OR), an acetal (e.g.,-C(OR)_{2}R"", in which each OR are alkoxy groups that can be the same or different and R"" is an alkyl or alkenyl group), a phosphate (e.g., P(0){_4}³), a thiol (e.g., -SH), a sulfoxide (e.g., -S(O)R), a sulfinic acid (e.g., -S(O)OH), a sulfonic acid (e.g., -S(O)2H), a thial (e.g., -C(S)H), a sulfate (e.g., S(0)_{4}²), a sulfonyl (e.g., -S(0)_{2}²), an amide (e.g., -C(0)NR_{2} or -N(R)C(0)R), an azido (e.g., -N_{3}), a nitro (e.g., -NO2), a cyano (e.g., -CN), an isocyan (e.g., -NC), an acyloxy (e.g.,-OC(O)R), an amino (e.g., -NR2, -NRH, or -NH₂), a carbamoyl (e.g., -OC(O)NR₂, -OC(O)NRH, or -OC(O)NH₂), a sulfonamide (e.g., -S(0)₂NR₂, -S(0)₂NH₂, -N(R)S(0)₂R, -N(H)S(0)₂R, -N(R)S(0)₂H, or -N(H)S(0)₂H), an alkyl group, an alkenyl group, and a cyclyl (e.g., carbocycl or heterocycl) group. In any of the preceding, R is an alkyl or alkenyl group, as defined herein. In some embodiments, the substituent groups themselves may be further substituted with, for example, one, two, three, four, five, or six substituents as defined herein. For example, a C₂-6 alkyl group may be further substituted with one, two, three, four, five, or six substituents as described herein.

[00221] About, Approximately: As used herein, the terms "approximately" and "about," as applied to one or more values of interest, refer to a value that is similar to a stated reference value. In certain embodiments, the term "approximately" or "about" refers to a range of values that fall within 25%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of the stated reference value unless otherwise stated or otherwise evident from the context (except where such number would exceed 100% of a possible value). For example, when used in the context of an amount of a given compound in a lipid component of a LNP, "about" may mean +/- 10% of the recited value. For instance, a LNP including a lipid component having about 40% of a given compound may include 30-50% of the compound.

[00222] As used herein, the term "compound," is meant to include all isomers and isotopes of the structure depicted. "Isotopes" refers to atoms having the same atomic number but different mass numbers resulting from a different number of neutrons in the nuclei. For example, isotopes of hydrogen include tritium and deuterium. Further, a compound, salt, or complex of the present
disclosure can be prepared in combination with solvent or water molecules to form solvates and hydrates by routine methods.

[00223] As used herein, the term "contacting" means establishing a physical connection between two or more entities. For example, contacting a mammalian cell with a LNP means that the mammalian cell and a nanoparticle are made to share a physical connection. Methods of contacting cells with external entities both in vivo and ex vivo are well known in the biological arts. For example, contacting a LNP and a mammalian cell disposed within a mammal may be performed by varied routes of administration (e.g., intravenous, intramuscular, intradermal, and subcutaneous) and may involve varied amounts of lipid nanoparticles. Moreover, more than one mammalian cell may be contacted by a LNP.

[00224] As used herein, the term "delivering" means providing an entity to a destination. For example, delivering a therapeutic and/or prophylactic to a subject may involve administering a LNP including the therapeutic and/or prophylactic to the subject (e.g., by an intravenous, intramuscular, intradermal, or subcutaneous route). Administration of a LNP to a mammal or mammalian cell may involve contacting one or more cells with the lipid nanoparticle.

[00225] As used herein, the term "enhanced delivery" means delivery of more (e.g., at least 1.5 fold more, at least 2-fold more, at least 3-fold more, at least 4-fold more, at least 5-fold more, at least 6-fold more, at least 7-fold more, at least 8-fold more, at least 9-fold more, at least 10-fold more) of a therapeutic and/or prophylactic by a nanoparticle to a target tissue of interest (e.g., mammalian liver) compared to the level of delivery of a therapeutic and/or prophylactic by a control nanoparticle to a target tissue of interest (e.g., MC3, KC2, or DLinDMA). The level of delivery of a nanoparticle to a particular tissue may be measured by comparing the amount of protein produced in a tissue to the weight of said tissue, comparing the amount of therapeutic and/or prophylactic in a tissue to the weight of said tissue, comparing the amount of protein produced in a tissue to the amount of total protein in said tissue, or comparing the amount of therapeutic and/or prophylactic in a tissue to the amount of total therapeutic and/or prophylactic in said tissue. It will be understood that the enhanced delivery of a nanoparticle to a target tissue need not be determined in a subject being treated, it may be determined in a surrogate such as an animal model (e.g., a rat model).

[00226] As used herein, the term "specific delivery," "specifically deliver," or "specifically delivering" means delivery of more (e.g., at least 1.5 fold more, at least 2-fold more, at least 3-fold more, at least 4-fold more, at least 5-fold more, at least 6-fold more, at least 7-fold more, at least 8-fold more, at least 9-fold more, at least 10-fold more) of a therapeutic and/or prophylactic by a
nanoparticle to a target tissue of interest (e.g., mammalian liver) compared to an off-target tissue (e.g., mammalian spleen). The level of delivery of a nanoparticle to a particular tissue may be measured by comparing the amount of protein produced in a tissue to the weight of said tissue, comparing the amount of therapeutic and/or prophylactic in a tissue to the weight of said tissue, comparing the amount of protein produced in a tissue to the amount of total protein in said tissue, or comparing the amount of therapeutic and/or prophylactic in a tissue to the amount of total therapeutic and/or prophylactic in said tissue. For example, for renovascular targeting, a therapeutic and/or prophylactic is specifically provided to a mammalian kidney as compared to the liver and spleen if 1.5, 2-fold, 3-fold, 5-fold, 10-fold, 15 fold, or 20 fold more therapeutic and/or prophylactic per 1 g of tissue is delivered to a kidney compared to that delivered to the liver or spleen following systemic administration of the therapeutic and/or prophylactic. It will be understood that the ability of a nanoparticle to specifically deliver to a target tissue need not be determined in a subject being treated, it may be determined in a surrogate such as an animal model (e.g., a rat model).

[00227] As used herein, "encapsulation efficiency" refers to the amount of a therapeutic and/or prophylactic that becomes part of a LNP, relative to the initial total amount of therapeutic and/or prophylactic used in the preparation of a LNP. For example, if 97 mg of therapeutic and/or prophylactic are encapsulated in a LNP out of a total 100 mg of therapeutic and/or prophylactic initially provided to the composition, the encapsulation efficiency may be given as 97%. As used herein, "encapsulation" may refer to complete, substantial, or partial enclosure, confinement, surrounding, or encasement.

[00228] As used herein, "expression" of a nucleic acid sequence refers to translation of an mRNA into a polypeptide or protein and/or post-translational modification of a polypeptide or protein.

[00229] As used herein, the term "in vitro" refers to events that occur in an artificial environment, e.g., in a test tube or reaction vessel, in cell culture, in a Petri dish, etc., rather than within an organism (e.g., animal, plant, or microbe).

[00230] As used herein, the term "in vivo" refers to events that occur within an organism (e.g., animal, plant, or microbe or cell or tissue thereof).

[00231] As used herein, the term "ex vivo" refers to events that occur outside of an organism (e.g., animal, plant, or microbe or cell or tissue thereof). Ex vivo events may take place in an environment minimally altered from a natural (e.g., in vivo) environment.

[00232] As used herein, the term "isomer" means any geometric isomer, tautomer, zwitterion, stereoisomer, enantiomer, or diastereomer of a compound. Compounds may include one or more
chiral centers and/or double bonds and may thus exist as stereoisomers, such as double-bond isomers (i.e., geometric E/Z isomers) or diastereomers (e.g., enantiomers (i.e., (+) or (-)) or cis/trans isomers). The present disclosure encompasses any and all isomers of the compounds described herein, including stereomerically pure forms (e.g., geometrically pure, enantiomerically pure, or diastereomerically pure) and enantiomeric and stereoisomeric mixtures, e.g., racemates. Enantiomeric and stereoisomeric mixtures of compounds and means of resolving them into their component enantiomers or stereoisomers are well-known.

[00233] As used herein, a "lipid component" is that component of a lipid nanoparticle that includes one or more lipids. For example, the lipid component may include one or more cationic/ionizable, PEGylated, structural, or other lipids, such as phospholipids.

[00234] As used herein, a "linker" is a moiety connecting two moieties, for example, the connection between two nucleosides of a cap species. A linker may include one or more groups including but not limited to phosphate groups (e.g., phosphates, boranophosphates, thiophosphates, selenophosphates, and phosphonates), alkyl groups, amidates, or glycerols. For example, two nucleosides of a cap analog may be linked at their 5' positions by a triphosphate group or by a chain including two phosphate moieties and a boranophosphate moiety.

[00235] As used herein, "methods of administration" may include intravenous, intramuscular, intradermal, subcutaneous, or other methods of delivering a composition to a subject. A method of administration may be selected to target delivery (e.g., to specifically deliver) to a specific region or system of a body.

[00236] As used herein, "modified" means non-natural. For example, an RNA may be a modified RNA. That is, an RNA may include one or more nucleobases, nucleosides, nucleotides, or linkers that are non-naturally occurring. A "modified" species may also be referred to herein as an "altered" species. Species may be modified or altered chemically, structurally, or functionally. For example, a modified nucleobase species may include one or more substitutions that are not naturally occurring.

[00237] As used herein, the "N:P ratio" is the molar ratio of ionizable (in the physiological pH range) nitrogen atoms in a lipid to phosphate groups in an RNA, e.g., in a LNP including a lipid component and an RNA.

[00238] As used herein, a "lipid nanoparticle" is a composition comprising one or more lipids. Lipid nanoparticles are typically sized on the order of micrometers or smaller and may include a lipid bilayer. Lipid nanoparticles, as used herein, unless otherwise specified, encompass lipid
nanoparticles (LNPs), liposomes (e.g., lipid vesicles), and lipoplexes. For example, a LNP may be a liposome having a lipid bilayer with a diameter of 500 nm or less.

[00239] As used herein, "naturally occurring" means existing in nature without artificial aid.

[00240] As used herein, "patient" refers to a subject who may seek or be in need of treatment, requires treatment, is receiving treatment, will receive treatment, or a subject who is under care by a trained professional for a particular disease or condition.

[00241] As used herein, a "PEG lipid" or "PEGylated lipid" refers to a lipid comprising a polyethylene glycol component.

[00242] The phrase "pharmaceutically acceptable" is used herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.

[00243] The phrase "pharmaceutically acceptable excipient," as used herein, refers to any ingredient other than the compounds described herein (for example, a vehicle capable of suspending, complexing, or dissolving the active compound) and having the properties of being substantially nontoxic and non-inflammatory in a patient. Excipients may include, for example: anti-adherents, antioxidants, binders, coatings, compression aids, disintegrants, dyes (colors), emollients, emulsifiers, fillers (diluents), film formers or coatings, flavors, fragrances, glidants (flow enhancers), lubricants, preservatives, printing inks, sorbents, suspending or dispersing agents, sweeteners, and waters of hydration. Exemplary excipients include, but are not limited to: butylated hydroxytoluene (BHT), calcium carbonate, calcium phosphate (dibasic), calcium stearate, croscarmellose, crosslinked polyvinyl pyrrolidone, citric acid, crospovidone, cysteine, ethylcellulose, gelatin, hydroxypropyl cellulose, hydroxypropyl methylcellulose, lactose, magnesium stearate, maltitol, mannitol, methionine, methylcellulose, methyl paraben, microcrystalline cellulose, polyethylene glycol, polyvinyl pyrrolidone, povidone, pregelatinized starch, propyl paraben, retinyl palmitate, shellac, silicon dioxide, sodium carboxymethyl cellulose, sodium citrate, sodium starch glycolate, sorbitol, starch (corn), stearic acid, sucrose, talc, titanium dioxide, vitamin A, vitamin E (alpha-tocopherol), vitamin C, xylitol, and other species disclosed herein.

[00244] Compositions may also include salts of one or more compounds. Salts may be pharmaceutically acceptable salts. As used herein, "pharmaceutically acceptable salts" refers to
derivatives of the disclosed compounds wherein the parent compound is altered by converting an existing acid or base moiety to its salt form (e.g., by reacting a free base group with a suitable organic acid). Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like. Representative acid addition salts include acetate, adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, glucoheptonate, glycerophosphate, hemisulfate, heptonate, hexanoate, hydrobromide, hydrochloride, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, toluenesulfonate, undecanoate, valerate salts, and the like. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like, as well as nontoxic ammonium, quaternary ammonium, and amine cations, including, but not limited to ammonium, tetramethylammonium, tetrathyammonium, methylamine, dimethylamine, trimethylamine, triethyamine, ethyamine, and the like. The pharmaceutically acceptable salts of the present disclosure include the conventional non-toxic salts of the parent compound formed, for example, from non-toxic inorganic or organic acids. The pharmaceutically acceptable salts of the present disclosure can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, Pa., 1985, p. 1418, Pharmaceutical Salts: Properties, Selection, and Use, P.H. Stahl and C.G. Wermuth (eds.), Wiley-VCH, 2008, and Berge et al., Journal of Pharmaceutical Science, 66, 1-19 (1977), each of which is incorporated herein by reference in its entirety.

[00245] As used herein, a "phospholipid" is a lipid that includes a phosphate moiety and one or more carbon chains, such as unsaturated fatty acid chains. A phospholipid may include one or more multiple (e.g., double or triple) bonds (e.g., one or more unsaturations). A phospholipid or an analog or derivative thereof may include choline. A phospholipid or an analog or derivative thereof
may not include choline. Particular phospholipids may facilitate fusion to a membrane. For example, a cationic phospholipid may interact with one or more negatively charged phospholipids of a membrane (e.g., a cellular or intracellular membrane). Fusion of a phospholipid to a membrane may allow one or more elements of a lipid-containing composition to pass through the membrane permitting, e.g., delivery of the one or more elements to a cell.

[00246] As used herein, the "polydispersity index" is a ratio that describes the homogeneity of the particle size distribution of a system. A small value, e.g., less than 0.3, indicates a narrow particle size distribution.

[00247] As used herein, the term "polypeptide" or "polypeptide of interest" refers to a polymer of amino acid residues typically joined by peptide bonds that can be produced naturally (e.g., isolated or purified) or synthetically.

[00248] As used herein, an "RNA" refers to a ribonucleic acid that may be naturally or non-naturally occurring. For example, an RNA may include modified and/or non-naturally occurring components such as one or more nucleobases, nucleosides, nucleotides, or linkers. An RNA may include a cap structure, a chain terminating nucleoside, a stem loop, a polyA sequence, and/or a polyadenylation signal. An RNA may have a nucleotide sequence encoding a polypeptide of interest. For example, an RNA may be a messenger RNA (mRNA). Translation of an mRNA encoding a particular polypeptide, for example, in vivo translation of an mRNA inside a mammalian cell, may produce the encoded polypeptide. RNAs may be selected from the non-liming group consisting of small interfering RNA (siRNA), asymmetrical interfering RNA (aiRNA), microRNA (miRNA), Dicer-substrate RNA (dsRNA), small hairpin RNA (shRNA), mRNA, long non-coding RNA (IncRNA) and mixtures thereof.

[00249] As used herein, a "single unit dose" is a dose of any therapeutic administered in one dose/at one time/single route/single point of contact, i.e., single administration event.

[00250] As used herein, a "split dose" is the division of single unit dose or total daily dose into two or more doses.

[00251] As used herein, a "total daily dose" is an amount given or prescribed in 24 hour period. It may be administered as a single unit dose.

[00252] As used herein, "size" or "mean size" in the context of lipid nanoparticles refers to the mean diameter of a LNP.

[00253] As used herein, the term "subject" refers to any organism to which a composition or formulation in accordance with the disclosure may be administered, e.g., for experimental,
diagnostic, prophylactic, and/or therapeutic purposes. Typical subjects include animals (e.g., mammals such as mice, rats, rabbits, non-human primates, and humans) and/or plants.

[00254] As used herein, "targeted cells" refers to any one or more cells of interest. The cells may be found in vitro, in vivo, in situ, or in the tissue or organ of an organism. The organism may be an animal, preferably a mammal, more preferably a human and most preferably a patient.

[00255] As used herein "target tissue" refers to any one or more tissue types of interest in which the delivery of a therapeutic and/or prophylactic would result in a desired biological and/or pharmacological effect. Examples of target tissues of interest include specific tissues, organs, and systems or groups thereof. In particular applications, a target tissue may be a kidney, a lung, a spleen, vascular endothelium in vessels (e.g., intra-coronary or intra-femoral), or tumor tissue (e.g., via intratumoral injection). An "off-target tissue" refers to any one or more tissue types in which the expression of the encoded protein does not result in a desired biological and/or pharmacological effect. In particular applications, off-target tissues may include the liver and the spleen.

[00256] The term "therapeutic agent" or "prophylactic agent" refers to any agent that, when administered to a subject, has a therapeutic, diagnostic, and/or prophylactic effect and/or elicits a desired biological and/or pharmacological effect. Therapeutic agents are also referred to as "actives" or "active agents." Such agents include, but are not limited to, cytotoxins, radioactive ions, chemotherapeutic agents, small molecule drugs, proteins, and nucleic acids.

[00257] As used herein, the term "therapeutically effective amount" means an amount of an agent to be delivered (e.g., nucleic acid, drug, composition, therapeutic agent, diagnostic agent, prophylactic agent, etc.) that is sufficient, when administered to a subject suffering from or susceptible to an infection, disease, disorder, and/or condition, to treat, improve symptoms of, diagnose, prevent, and/or delay the onset of the infection, disease, disorder, and/or condition.

[00258] As used herein, "transfection" refers to the introduction of a species (e.g., an RNA) into a cell. Transfection may occur, for example, in vitro, ex vivo, or in vivo.

[00259] As used herein, the term "treating" refers to partially or completely alleviating, ameliorating, improving, relieving, delaying onset of, inhibiting progression of, reducing severity of, and/or reducing incidence of one or more symptoms or features of a particular infection, disease, disorder, and/or condition. For example, "treating" cancer may refer to inhibiting survival, growth, and/or spread of a tumor. Treatment may be administered to a subject who does not exhibit signs of a disease, disorder, and/or condition and/or to a subject who exhibits only early signs of a disease,
disorder, and/or condition for the purpose of decreasing the risk of developing pathology associated with the disease, disorder, and/or condition.

[00260] As used herein, the "zeta potential" is the electrokinetic potential of a lipid, e.g., in a particle composition.

Lipid Nanoparticles

[00261] The disclosure also features a formulation comprising (i) a stabilizing agent and (ii) nanoparticles comprising a structure lipid component and an ionizable lipid component, such as MC3, DLin-MC3-DMA, or a compound according to Formula (I), (IA), (II), (Ila), (lib), (lie), (lid) or (He) as described herein.

[00262] In some embodiments, the largest dimension of a lipid nanoparticle is 1 µm or shorter (e.g., 1 µm, 900 nm, 800 nm, 700 nm, 600 nm, 500 nm, 400 nm, 300 nm, 200 nm, 175 nm, 150 nm, 125 nm, 100 nm, 75 nm, 50 nm, or shorter), e.g., when measured by dynamic light scattering (DLS), transmission electron microscopy, scanning electron microscopy, or another method. Lipid nanoparticles (LNPs), as used herein, may include, for example, lipid nanoparticles, liposomes, lipid vesicles, and lipoplexes. In some embodiments, LNPs are vesicles including one or more lipid bilayers. In certain embodiments, a LNP includes two or more concentric bilayers separated by aqueous compartments. Lipid bilayers may be functionalized and/or crosslinked to one another. Lipid bilayers may include one or more ligands, proteins, or channels.

[00263] LNPs comprise a lipid component including at least one compound according to Formula (I), (IA), (II), (Ila), (lib), (He), (lid) or (He), and may also include a variety of other components. For example, the lipid component of a LNP may include one or more other lipids in addition to a lipid according to Formula (I), (IA), (II), (Ila), (lib), (lie), (lid) or (He).

Cationic/ionizable lipids

[00264] A LNP may include one or more cationic and/or ionizable lipids (e.g., lipids that may have a positive or partial positive charge at physiological pH) in addition to a lipid according to Formula (I), (IA), (II), (Ila), (lib), (He), (lid) or (He). Cationic and/or ionizable lipids may be selected from the non-limiting group consisting of

3-(didodecylamino)-N1,N1,4-tridodecyl-1-piperazinethanamine (KL10),
N1-[2-(didodecylamino)ethyl]-N1,N4,N4-tridodecyl-1,4-piperazinediethanamine (KL22),
14,25-ditridecyl-1,5,18,21,24-tetraaza-octatriacontane (KL25),
1,2-dilinoleylxoy-N,N-dimethylaminopropane (DLin-DMA),
2,2-dilinoleyl-4-dimethylaminomethyl-[l,3]-dioxolane (DLin-K-DMA),
heptatriaconta-6,9,28,3 l-tetraen-19-yl 4-(dimethylamino)butanoate (DLin-MC3-DMA),
2,2-dilinoleyl-4-(2-dimethylaminoethyl)-[l,3]-dioxolane (DLin-KC2-DMA),
1,2-dioleloxy-N,N-dimethylaminopropane (DODMA),
2-({8-[(3P)-cholest-5-en-3-yloxy]octyl}oxy)-N,N-dimethyl-3-[9Z,12Z]-octadeca-9,12-dien-l-yl oxy]propan-l -amine (Octyl-CLinDMA),
(2R)-2-({8-[(3P)-cholest-5-en-3-yloxy]octyl}oxy)-N,N-dimethyl-3-[9Z,12Z]-octadeca-9,12-dien-l-yl oxy]propan-l -amine (Octyl-CLinDMA (2R)),
(2S)-2-({8-[(3P)-cholest-5-en-3-yloxy]octyl}oxy)-N,N-dimethyl-3-[9Z,12Z]-octadeca-9,12-dien-l-yl oxy]propan-l -amine (Octyl-CLinDMA (2S)),

(i.e., (12Z, 15Z)-N,N-dimethyl-2-
nonylhenicosa- 12,15-dien- l-amine), and

(i.e., N,N-dimethyl-1-{(1S,2R)-2-
octylcyclopropyl}heptadecan-8-amine).

For example, a cationic lipid may be MC3.

In addition to these, a cationic lipid may also be a lipid including a cyclic amine group. Additional cationic and/or ionizable lipids that are suitable for the formulations and methods disclosed herein include those described in WO201 5199952, WO2016176330, and WO20 1501 1633, the entire contents of each of which are hereby incorporated by reference in their entireties.

PEG lipids

[00265] The lipid component of a LNP may include one or more polyethylene glycol (PEG) lipids.

[00266] As used herein, the term "PEG-lipid" refers to polyethylene glycol (PEG)-modified lipids. Non-limiting examples of PEG-lipids include PEG-modified phosphatidylethanolamine and phosphatidic acid, PEG-ceramide conjugates (e.g., PEG-CerC14 or PEG-CerC20), PEG-modified dialkylamines and PEG-modified 1,2-diacyloxypropan-3-amines. Such lipids are also referred to as PEGylated lipids. For example, a PEG lipid can be PEG-c-DOMG, PEG-DMG, PEG-DLPE, PEG-DMPE, PEG-DPPC, or a PEG-DSPE lipid.
In some embodiments, the PEG-lipid includes, but not limited to 1,2-dimyristoyl-sn-glycerol methoxypolyethylene glycol (PEG-DMG), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)] (PEG-DSPE), PEG-disteryl glycerol (PEG-DSG), PEG-dipalmitoyleoyl, PEG-dioleyl, PEG-distearyl, PEG-diacylglycamide (PEG-DAG), PEG-dipalmitoyl phosphatidylethanolamine (PEG-DPPE), or PEG-1,2-dimyristoxlpropyl-3-amine (PEG-c-DMA).

In one embodiment, the PEG-lipid is selected from the group consisting of a PEG-modified phosphatidylethanolamine, a PEG-modified phosphatidic acid, a PEG-modified ceramide, a PEG-modified dialkyamine, a PEG-modified diacylglycerol, a PEG-modified dialkylglycerol, and mixtures thereof.

In some embodiments, the lipid moiety of the PEG-lipids includes those having lengths of from about Cn to about C22, preferably from about C14 to about C6. In some embodiments, a PEG moiety, for example an mPEG-NH₂, has a size of about 1000, 2000, 5000, 10,000, 15,000 or 20,000 daltons. In one embodiment, the PEG-lipid is PEG2k-DMG.

In one embodiment, the lipid nanoparticles described herein can comprise a PEG lipid which is a non-diffusible PEG. Non-limiting examples of non-diffusible PEGs include PEG-DSG and PEG-DSPE.

PEG-lipids are known in the art, such as those described in U.S. Patent No. 8,158,601 and International Publ. No. WO 2015/130584 A2, which are incorporated herein by reference in their entirety.

In general, some of the other lipid components (e.g., PEG lipids) of various formulae, described herein may be synthesized as described International Patent Application No. PCT/US2016/000129, filed December 10, 2016, entitled "Compositions and Methods for Delivery of Therapeutic Agents," which is incorporated by reference in its entirety.

The lipid component of a lipid nanoparticle composition may include one or more molecules comprising polyethylene glycol, such as PEG or PEG-modified lipids. Such species may be alternately referred to as PEGylated lipids. A PEG lipid is a lipid modified with polyethylene glycol. A PEG lipid may be selected from the non-limiting group including PEG-modified phosphatidylethanolamines, PEG-modified phosphatidic acids, PEG-modified ceramides, PEG-modified dialkyamines, PEG-modified diacylglycerols, PEG-modified dialkylglycerols, and mixtures thereof. For example, a PEG lipid may be PEG-c-DOMG, PEG-DMG, PEG-DLPE, PEG-DMPE, PEG-DPPC, or a PEG-DSPE lipid.
In some embodiments the PEG-modified lipids are a modified form of PEG DMG. PEG-DMG has the following structure:

In one embodiment, PEG lipids useful in the present invention can be PEGylated lipids described in International Publication No. WO2012099755, the contents of which is herein incorporated by reference in its entirety. Any of these exemplary PEG lipids described herein may be modified to comprise a hydroxyl group on the PEG chain. In certain embodiments, the PEG lipid is a PEG-OH lipid. As generally defined herein, a "PEG-OH lipid" (also referred to herein as "hydroxy-PEGylated lipid") is a PEGylated lipid having one or more hydroxyl (-OH) groups on the lipid. In certain embodiments, the PEG-OH lipid includes one or more hydroxyl groups on the PEG chain. In certain embodiments, a PEG-OH or hydroxy-PEGylated lipid comprises an -OH group at the terminus of the PEG chain. Each possibility represents a separate embodiment of the present invention.

In certain embodiments, a PEG lipid useful in the present invention is a compound of Formula (VII). Provided herein are compounds of Formula (VII):

\[
\begin{align*}
R^3 & \quad \text{(VII)} \\
& \quad \text{or salts thereof, wherein:} \\
R^3 & \quad \text{-OR}^0; \\
R^0 & \quad \text{hydrogen, optionally substituted alkyl, or an oxygen protecting group;} \\
r & \quad \text{an integer between 1 and 100, inclusive;} \\
L^1 & \quad \text{optionally substituted Ci-io alkylene, wherein at least one methylene of the optionally substituted Ci-io alkylene is independently replaced with optionally substituted carbocyclylene, optionally substituted heterocyclylene, optionally substituted arylene, optionally substituted heteroarylene, O, N(R^N), S, C(O), C(0)N(R^N), NR^N(C(0)), C(0)0, OC(O), OC(0)0, OC(0)N(R^N), NR^N(C(0))0, or NR^N(C(0))N(R^N);} \\
D & \quad \text{a moiety obtained by click chemistry or a moiety cleavable under physiological conditions;} \\
m & \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, \text{ or } 10;
\end{align*}
\]
A is of the formula:

\[
\text{L}_2^2 - \text{R}_2^2 \quad \text{or} \quad \text{B} - \text{(R}_2^2)_{\text{p}}
\]

each instance of L\(^2\) is independently a bond or optionally substituted Ci-6 alkylene, wherein

one methylene unit of the optionally substituted Ci-6 alkylene is optionally replaced with O, N(R\(^N\)), S, C(O), C(0)N(R\(^N\)), NR\(^N\)C(0), C(0)0, OC(O), OC(0)0, OC(0)N(R\(^N\)), NR\(^N\)C(0)0, or -

NR\(^N\)C(0)N(R\(^N\));

each instance of R\(^2\) is independently optionally substituted Ci-30 alkyl, optionally substituted Ci-30 alkenyl, or optionally substituted Ci-30 alkynyl; optionally wherein one or more methylene units of R\(^2\) are independently replaced with optionally substituted carbocyclylene, optionally substituted heterocyclylene, optionally substituted arylene, optionally substituted heteroarylene, -

N(R\(^N\)), O, S, C(O), C(0)N(R\(^N\)), NR\(^N\)C(0), NR\(^N\)C(0)N(R\(^N\)), C(0)0, OC(O), OC(0)0, -

OC(0)N(R\(^N\)), NR\(^N\)C(0)0, C(0)S, SC(O), C(=NR\(^N\)), C(=NR\(^N\))N(R\(^N\)), NR\(^N\)C(=NR\(^N\)), -

NR\(^N\)C(=NR\(^N\))N(R\(^N\)), C(S), C(S)N(R\(^N\)), NR\(^N\)C(S), NR\(^N\)C(S)N(R\(^N\)), S(O)0, OS(O)0, OS(0)0, OS(0)0, S(0)2, S(0)2N(R\(^N\)), N(R\(^N\))S(0)N(R\(^N\)), S(0)N(R\(^N\))S(0)N(R\(^N\)), OS(0)N(R\(^N\)), N(R\(^N\))S(0)0, S(0)2, N(R\(^N\))S(0)2, S(0)2N(R\(^N\)), N(R\(^N\))S(0)2N(R\(^N\)), OS(0)2N(R\(^N\)), or N(R\(^N\))S(0)2N(R\(^N\));

each instance of R\(^N\) is independently hydrogen, optionally substituted alky, or a nitrogen protecting group;

Ring B is optionally substituted carbocyclylene, optionally substituted heterocyclylene, optionally substituted aryl, or optionally substituted heteroarylene; and

\(p\) is 1 or 2.

[00277] In certain embodiments, the compound of Formula (VII) is a PEG-OH lipid (i.e., R\(^3\) is OR\(^0\), and R\(^2\) is hydrogen). In certain embodiments, the compound of Formula (VII) is of Formula (VII-OH):

\[
\text{OH}\left\{\text{L}_1^1 - \text{D}_2^2 - \text{A}_m^m\right\}
\]

(VII-OH), or a salt thereof.

[00278] In certain embodiments, a PEG lipid useful in the present invention is a PEGylated fatty acid. In certain embodiments, a PEG lipid useful in the present invention is a compound of Formula (VIII). Provided herein are compounds of Formula (VIII):

\[
\text{R}_3^3 - \text{O} - \text{R}_5^5
\]

(VIII), or a salts thereof, wherein:
R³ ls-OR⁰;
R⁵ is hydrogen, optionally substituted alkyl or an oxygen protecting group;
r is an integer between 1 and 100, inclusive;
R⁵ is optionally substituted Cio-40 alkyl, optionally substituted Cio-40 alkenyl, or optionally substituted Cio-40 alkynyl; and optionally one or more methylene groups of R⁵ are replaced with optionally substituted carbocyclylene, optionally substituted heterocyclylene, optionally substituted arylene, optionally substituted heteroarylene, N(R⁶), O, S, C(O), C(0)N(R⁶), NR⁶C(0), -
NR⁶C(0)N(R⁶), C(0)⁰, OC(0), OC(0)⁰, OC(0)N(R⁶), NR⁶C(0)⁰, C(0)S, SC(0), C(=NR⁶), -
C(=NR⁶)N(R⁶), NR⁶C(=NR⁶), NR⁶C(=NR⁶)N(R⁶), C(S), C(S)N(R⁶), NR⁶C(S), NR⁶C(S)N(R⁶),
S(⁰), OS(⁰), S(⁰)⁰, OS(⁰)⁰, OS(⁰)²⁰, OS(⁰)²⁰N(R⁶)S(⁰), S(⁰)⁰N(R⁶)⁰, -
N(R⁶)S(⁰)N(R⁶), OS(⁰)N(R⁶), N(R⁶)S(⁰)⁰, S(⁰)²⁰N(R⁶)S(⁰)²⁰N(R⁶), N(R⁶)S(⁰)²⁰N(R⁶),
OS(⁰)²⁰N(R⁶), or N(R⁶)S(⁰)²⁰⁰; and

each instance of R⁵ is independently hydrogen, optionally substituted alkyl, or a nitrogen protecting group.

[00279] In certain embodiments, the compound of Formula (VIII) is of Formula (VIII-OH):

\[
\begin{array}{c}
\text{HO-} \\
\text{O} \\
\text{R}^3 \\
\text{O} \\
\text{O} \\
\text{R}^5 \\
\end{array}
\]

(VIII-OH),
or a salt thereof. In some embodiments, r is 45.

[00280] In yet other embodiments the compound of Formula (VIII) is:

\[
\begin{array}{c}
\text{HO-} \\
\text{O} \\
\text{R}^3 \\
\text{O} \\
\text{O} \\
\text{R}^5 \\
\end{array}
\]

or a salt thereof.

[00281] In one embodiment, the compound of Formula (VIII) is

\[
\begin{array}{c}
\text{HO-} \\
\text{O} \\
\text{R}^3 \\
\text{O} \\
\text{O} \\
\text{R}^5 \\
\end{array}
\]

[00282] In some aspects, the lipid composition of the pharmaceutical compositions disclosed herein does not comprise a PEG-lipid.

[00283] In some embodiments, the PEG-lipids may be one or more of the PEG lipids described in U.S. Application No. 62/520,530.
Structural lipids

[00284] The lipid component of a LNP may include one or more structural lipids. Structural lipids can be selected from the group consisting of, but are not limited to, cholesterol, fecosterol, sitosterol, ergosterol, campesterol, stigmasterol, brassicasterol, tomatidine, tomatine, ursolic acid, alpha-tocopherol, and mixtures thereof. In some embodiments, the structural lipid is cholesterol. In some embodiments, the structural lipid includes cholesterol and a corticosteroid (such as prednisolone, dexamethasone, prednisone, and hydrocortisone), or a combination thereof.

Phospholipids

[00285] The lipid component of a LNP may include one or more phospholipids, such as one or more (poly)unsaturated lipids. Phospholipids may assemble into one or more lipid bilayers. In general, phospholipids may include a phospholipid moiety and one or more fatty acid moieties. For example, a phospholipid may be a lipid according to Formula (III):

\[
\begin{align*}
R_1 & \quad | \quad O \\
O & \quad | \quad O \\
R_2 & \quad | \quad OR_2 \\
\end{align*}
\]

in which \(R_P \) represents a phospholipid moiety and \(R_1 \) and \(R_2 \) represent fatty acid moieties with or without unsaturation that may be the same or different. A phospholipid moiety may be selected from the non-limiting group consisting of phosphatidylcholine, phosphatidyl ethanolamine, phosphatidyl glycerol, phosphatidyl serine, phosphatic acid, 2-lysophosphatidyl choline, and a sphingomyelin. A fatty acid moiety may be selected from the non-limiting group consisting of lauric acid, myristic acid, myristoleic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, linoleic acid, alpha-linolenic acid, erucic acid, phytanic acid, arachidic acid, arachidonic acid, eicosapentaenoic acid, behenic acid, docosapentaenoic acid, and docosahexaenoic acid. Non-natural species including natural species with modifications and substitutions including branching, oxidation, cyclization, and alkynes are also contemplated. For example, a phospholipid may be functionalized with or cross-linked to one or more alkynes (e.g., an alkenyl group in which one or more double bonds is replaced with a triple bond). Under appropriate reaction conditions, an alkyne group may undergo a copper-catalyzed cycloaddition upon exposure to an azide. Such reactions may be useful in functionalizing a lipid bilayer of a LNP to facilitate membrane permeation or
cellular recognition or in conjugating a LNP to a useful component such as a targeting or imaging moiety (e.g., a dye).

[00286] Phospholipids useful in the compositions and methods may be selected from the non-limiting group consisting of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-diundecanoyl-sn-glycero-phosphocholine (DUPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-di-0-octadecenyl-sn-glycero-3-phosphocholine (18:0 Diether PC), 1-oleoyl-2-cholesterylhemisuccinoyl-sn-glycero-3-phosphocholine (OChemsPC), 1-hexadecyl-sn-glycero-3-phosphocholine (C16 Lyso PC), 1,2-dilinolenoyl-sn-glycero-3-phosphocholine, 1,2-diarachidonoyl-sn-glycero-3-phosphocholine, 1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine, 1,2-diphytanylo-sn-glycero-3-phosphoethanolamine (ME 16.0 PE), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine, 1,2-dilinoleoyl-sn-glycero-3-phosphoethanolamine, 1,2-dilinolenoyl-sn-glycero-3-phosphoethanolamine, 1,2-diarachidonoyl-sn-glycero-3-phosphoethanolamine, 1,2-didocosahexaenoyl-sn-glycero-3-phosphoethanolamine, 1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DOPG), and sphingomyelin. In some embodiments, a LNP includes DSPC. In certain embodiments, a LNP includes DOPE. In some embodiments, a LNP includes both DSPC and DOPE.

Adjuvants

[00287] In some embodiments, a LNP that includes one or more lipids described herein may further include one or more adjuvants, e.g., Glucopyranosyl Lipid Adjuvant (GLA), CpG oligodeoxynucleotides (e.g., Class A or B), poly(LC), aluminum hydroxide, and Pam3CSK4.

Therapeutic agents

[00288] Lipid nanoparticles may include one or more therapeutics and/or prophylactics. The disclosure features methods of delivering a therapeutic and/or prophylactic to a mammalian cell or organ, producing a polypeptide of interest in a mammalian cell, and treating a disease or disorder in
a mammal in need thereof comprising administering to a mammal and/or contacting a mammalian cell with a LNP including a therapeutic and/or prophylactic.

Therapeutics and/or prophylactics include biologically active substances and are alternately referred to as "active agents." A therapeutic and/or prophylactic may be a substance that, once delivered to a cell or organ, brings about a desirable change in the cell, organ, or other bodily tissue or system. Such species may be useful in the treatment of one or more diseases, disorders, or conditions. In some embodiments, a therapeutic and/or prophylactic is a small molecule drug useful in the treatment of a particular disease, disorder, or condition. Examples of drugs useful in the lipid nanoparticles include, but are not limited to, antineoplastic agents (e.g., vincristine, doxorubicin, mitoxantrone, camptothecin, cisplatin, bleomycin, cyclophosphamide, methotrexate, and streptozotocin), antitumor agents (e.g., actinomycin D, vincristine, vinblastine, cystine arabinoside, anthracyclines, alkylative agents, platinum compounds, antimetabolites, and nucleoside analogs, such as methotrexate and purine and pyrimidine analogs), anti-infective agents, local anesthetics (e.g., dibucaine and chlorpromazine), beta-adrenergic blockers (e.g., propranolol, timolol, and labetalol), antihypertensive agents (e.g., clonidine and hydralazine), anti-depressants (e.g., imipramine, amitriptyline, and doxepin), anti-conversants (e.g., phencytoin), antihistamines (e.g., diphenhydramine, chlorpheniramine, and promethazine), antibiotic/antibacterial agents (e.g., gentamycin, ciprofloxacin, and cefoxitin), antifungal agents (e.g., miconazole, terconazole, econazole, isoconazole, butaconazole, clotrimazole, itraconazole, nystatin, naftifine, and amphotericin B), antiparasitic agents, hormones, hormone antagonists, immunomodulators, neurotransmitter antagonists, antiglaucoma agents, vitamins, narcotics, and imaging agents.

In some embodiments, a therapeutic and/or prophylactic is a cytotoxin, a radioactive ion, a chemotherapeutic, a vaccine, a compound that elicits an immune response, and/or another therapeutic and/or prophylactic. A cytotoxin or cytotoxic agent includes any agent that may be detrimental to cells. Examples include, but are not limited to, taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, teniposide, vincristine, vinblastine, colchicine, doxorubicin, daunorubicin, dihydroxyanthraclinone, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, puromycin, maytansinoids, e.g., maytansinol, rachelmin (CC-1065), and analogs or homologs thereof. Radioactive ions include, but are not limited to iodine (e.g., iodine 125 or iodine 131), strontium 89, phosphorous, palladium, cesium, iridium, phosphate, cobalt, yttrium 90, samarium 153, and praseodymium. Vaccines include compounds and preparations that are capable of providing
immunity against one or more conditions related to infectious diseases such as influenza, measles, human papillomavirus (HPV), rabies, meningitis, whooping cough, tetanus, plague, hepatitis, and tuberculosis and can include mRNAs encoding infectious disease derived antigens and/or epitopes. Vaccines also include compounds and preparations that direct an immune response against cancer cells and can include mRNAs encoding tumor cell derived antigens, epitopes, and/or neoepitopes. Compounds eliciting immune responses may include vaccines, corticosteroids (e.g., dexamethasone), and other species. In some embodiments, a vaccine and/or a compound capable of eliciting an immune response is administered intramuscularly via a composition including a compound according to Formula (I), (IA), (II), (Ha), (lib), (He), (lid) or (He) (e.g., Compound 3, 18, 20, 26, or 29). Other therapeutics and/or prophylactics include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thiotepa chlorambucil, rachelmycin (CC-1065), melphalan, carmustine (BSNU), lomustine (CCNU), cyclophosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vinristine, vinblastine, taxol and maytansinoids).

[00291] In other embodiments, a therapeutic and/or prophylactic is a protein. Therapeutic proteins useful in the nanoparticles in the disclosure include, but are not limited to, gentamycin, amikacin, insulin, erythropoietin (EPO), granulocyte-colony stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor (GM-CSF), Factor VTR, luteinizing hormone-releasing hormone (LHRH) analogs, interferons, heparin, Hepatitis B surface antigen, typhoid vaccine, and cholera vaccine.

Polynucleotides and nucleic acids

[00292] In some embodiments, a therapeutic agent is a polynucleotide or nucleic acid (e.g., ribonucleic acid or deoxyribonucleic acid). The term "polynucleotide," in its broadest sense, includes any compound and/or substance that is or can be incorporated into an oligonucleotide chain. Exemplary polynucleotides for use in accordance with the present disclosure include, but are not limited to, one or more of deoxyribonucleic acid (DNA), ribonucleic acid (RNA) including messenger mRNA (mRNA), hybrids thereof, RNAi-inducing agents, RNAi agents, siRNAs, shRNAs, miRNAs, antisense RNAs, ribozymes, catalytic DNA, RNAs that induce triple helix formation, aptamers, vectors, etc. In some embodiments, a therapeutic and/or prophylactic is an
RNA. RNAs useful in the compositions and methods described herein can be selected from the group consisting of, but are not limited to, shortmers, antagonmers, antisense, ribozymes, small interfering RNA (siRNA), asymmetrical interfering RNA (aiRNA), microRNA (miRNA), Dicer-substrate RNA (dsRNA), small hairpin RNA (shRNA), transfer RNA (tRNA), messenger RNA (mRNA), and mixtures thereof. In certain embodiments, the RNA is an mRNA.

[00293] In certain embodiments, a therapeutic and/or prophylactic is an mRNA. An mRNA may encode any polypeptide of interest, including any naturally or non-naturally occurring or otherwise modified polypeptide. A polypeptide encoded by an mRNA may be of any size and may have any secondary structure or activity. In some embodiments, a polypeptide encoded by an mRNA may have a therapeutic effect when expressed in a cell.

[00294] In other embodiments, a therapeutic and/or prophylactic is an siRNA. An siRNA may be capable of selectively knocking down or down regulating expression of a gene of interest. For example, an siRNA could be selected to silence a gene associated with a particular disease, disorder, or condition upon administration to a subject in need thereof of a LNP including the siRNA. An siRNA may comprise a sequence that is complementary to an mRNA sequence that encodes a gene or protein of interest. In some embodiments, the siRNA may be an immunomodulatory siRNA.

[00295] In some embodiments, a therapeutic and/or prophylactic is an shRNA or a vector or plasmid encoding the same. An shRNA may be produced inside a target cell upon delivery of an appropriate construct to the nucleus. Constructs and mechanisms relating to shRNA are well known in the relevant arts.

[00296] Nucleic acids and polynucleotides useful in the disclosure typically include a first region of linked nucleosides encoding a polypeptide of interest (e.g., a coding region), a first flanking region located at the 5′-terminus of the first region (e.g., a 5′-UTR), a second flanking region located at the 3′-terminus of the first region (e.g., a 3′-UTR), at least one 5′-cap region, and a 3′-stabilizing region. In some embodiments, a nucleic acid or polynucleotide further includes a poly-A region or a Kozak sequence (e.g., in the 5′-UTR). In some cases, polynucleotides may contain one or more intronic nucleotide sequences capable of being excised from the polynucleotide. In some embodiments, a polynucleotide or nucleic acid (e.g., an mRNA) may include a 5′ cap structure, a chain terminating nucleotide, a stem loop, a polyA sequence, and/or a polyadenylation signal. Any one of the regions of a nucleic acid may include one or more alternative components (e.g., an alternative nucleoside). For example, the 3′-stabilizing region may contain an alternative nucleoside such as an L-nucleoside, an inverted thymidine, or a 2′-O-methyl nucleoside and/or the coding
region, 5'-UTR, 3'-UTR, or cap region may include an alternative nucleoside such as a 5-substituted uridine (e.g., 5-methoxyuridine), a 1-substituted pseudouridine (e.g., 1-methyl-pseudouridine), and/or a 5-substituted cytidine (e.g., 5-methyl-cytidine).

[00297] Generally, the shortest length of a polynucleotide can be the length of the polynucleotide sequence that is sufficient to encode for a dipeptide. In another embodiment, the length of the polynucleotide sequence is sufficient to encode for a tripeptide. In another embodiment, the length of the polynucleotide sequence is sufficient to encode for a tetrapeptide. In another embodiment, the length of the polynucleotide sequence is sufficient to encode for a pentapeptide. In another embodiment, the length of the polynucleotide sequence is sufficient to encode for a hexapeptide. In another embodiment, the length of the polynucleotide sequence is sufficient to encode for a heptapeptide. In another embodiment, the length of the polynucleotide sequence is sufficient to encode for an octapeptide. In another embodiment, the length of the polynucleotide sequence is sufficient to encode for a nonapeptide. In another embodiment, the length of the polynucleotide sequence is sufficient to encode for a decapeptide.

[00298] Examples of dipeptides that the alternative polynucleotide sequences can encode for include, but are not limited to, carnosine and anserine.

[00299] In some cases, a polynucleotide is greater than 30 nucleotides in length. In another embodiment, the polynucleotide molecule is greater than 35 nucleotides in length. In another embodiment, the length is at least 40 nucleotides. In another embodiment, the length is at least 45 nucleotides. In another embodiment, the length is at least 50 nucleotides. In another embodiment, the length is at least 55 nucleotides. In another embodiment, the length is at least 60 nucleotides. In another embodiment, the length is at least 80 nucleotides. In another embodiment, the length is at least 90 nucleotides. In another embodiment, the length is at least 100 nucleotides. In another embodiment, the length is at least 120 nucleotides. In another embodiment, the length is at least 140 nucleotides. In another embodiment, the length is at least 160 nucleotides. In another embodiment, the length is at least 180 nucleotides. In another embodiment, the length is at least 200 nucleotides. In another embodiment, the length is at least 250 nucleotides. In another embodiment, the length is at least 300 nucleotides. In another embodiment, the length is at least 350 nucleotides. In another embodiment, the length is at least 400 nucleotides. In another embodiment, the length is at least 450 nucleotides. In another embodiment, the length is at least 500 nucleotides. In another embodiment, the length is at least 600 nucleotides. In another embodiment, the length is at least 700 nucleotides. In another embodiment, the length is at least 800 nucleotides. In another embodiment, the length is
at least 900 nucleotides. In another embodiment, the length is at least 1000 nucleotides. In another embodiment, the length is at least 1100 nucleotides. In another embodiment, the length is at least 1200 nucleotides. In another embodiment, the length is at least 1300 nucleotides. In another embodiment, the length is at least 1400 nucleotides. In another embodiment, the length is at least 1500 nucleotides. In another embodiment, the length is at least 1600 nucleotides. In another embodiment, the length is at least 1800 nucleotides. In another embodiment, the length is at least 2000 nucleotides. In another embodiment, the length is at least 2500 nucleotides. In another embodiment, the length is at least 3000 nucleotides. In another embodiment, the length is at least 4000 nucleotides. In another embodiment, the length is at least 5000 nucleotides, or greater than 5000 nucleotides.

[00300] Nucleic acids and polynucleotides may include one or more naturally occurring components, including any of the canonical nucleotides A (adenosine), G (guanosine), C (cytosine), U (uridine), or T (thymidine). In one embodiment, all or substantially all of the nucleotides comprising (a) the 5'-UTR, (b) the open reading frame (ORF), (c) the 3'-UTR, (d) the poly A tail, and any combination of (a, b, c, or d above) comprise naturally occurring canonical nucleotides A (adenosine), G (guanosine), C (cytosine), U (uridine), or T (thymidine).

[00301] Nucleic acids and polynucleotides may include one or more alternative components, as described herein, which impart useful properties including increased stability and/or the lack of a substantial induction of the innate immune response of a cell into which the polynucleotide is introduced. For example, an alternative polynucleotide or nucleic acid exhibits reduced degradation in a cell into which the polynucleotide or nucleic acid is introduced, relative to a corresponding unaltered polynucleotide or nucleic acid. These alternative species may enhance the efficiency of protein production, intracellular retention of the polynucleotides, and/or viability of contacted cells, as well as possess reduced immunogenicity.

[00302] Polynucleotides and nucleic acids may be naturally or non-naturally occurring. Polynucleotides and nucleic acids may include one or more modified (e.g., altered or alternative) nucleobases, nucleosides, nucleotides, or combinations thereof. The nucleic acids and polynucleotides useful in a LNP can include any useful modification or alteration, such as to the nucleobase, the sugar, or the internucleoside linkage (e.g., to a linking phosphate / to a phosphodiester linkage / to the phosphodiester backbone). In certain embodiments, alterations (e.g., one or more alterations) are present in each of the nucleobase, the sugar, and the internucleoside linkage. Alterations according to the present disclosure may be alterations of ribonucleic acids
(RNAs) to deoxyribonucleic acids (DNAs), e.g., the substitution of the 2′-OH of the ribofuranosyl ring to 2′-H, threose nucleic acids (TNAs), glycol nucleic acids (GNAs), peptide nucleic acids (PNAs), locked nucleic acids (LNAs), or hybrids thereof. Additional alterations are described herein.

[00303] Polynucleotides and nucleic acids may or may not be uniformly altered along the entire length of the molecule. For example, one or more or all types of nucleotide (e.g., purine or pyrimidine, or any one or more or all of A, G, U, C) may or may not be uniformly altered in a polynucleotide or nucleic acid, or in a given predetermined sequence region thereof. In some instances, all nucleotides X in a polynucleotide (or in a given sequence region thereof) are altered, wherein X may any one of nucleotides A, G, U, C, or any one of the combinations A+G, A+U, A+C, G+U, G+C, U+C, A+G+U, A+G+C, G+U+C or A+G+C.

[00304] Different sugar alterations and/or internucleoside linkages (e.g., backbone structures) may exist at various positions in a polynucleotide. One of ordinary skill in the art will appreciate that the nucleotide analogs or other alteration(s) may be located at any position(s) of a polynucleotide such that the function of the polynucleotide is not substantially decreased. An alteration may also be a 5′- or 3′-terminal alteration. In some embodiments, the polynucleotide includes an alteration at the 3′-terminus. The polynucleotide may contain from about 1% to about 100% alternative nucleotides (either in relation to overall nucleotide content, or in relation to one or more types of nucleotide, i.e., any one or more of A, G, U or C) or any intervening percentage (e.g., from 1% to 20%, from 1% to 25%, from 1% to 50%, from 1% to 60%, from 1% to 70%, from 1% to 80%, from 1% to 90%, from 1% to 95%, from 10% to 20%, from 10% to 25%, from 10% to 50%, from 10% to 60%, from 10% to 70%, from 10% to 80%, from 10% to 90%, from 10% to 95%, from 10% to 100%, from 20% to 25%, from 20% to 50%, from 20% to 60%, from 20% to 70%, from 20% to 80%, from 20% to 90%, from 20% to 95%, from 20% to 100%, from 50% to 60%, from 50% to 70%, from 50% to 80%, from 50% to 90%, from 50% to 95%, from 50% to 100%, from 70% to 80%, from 70% to 90%, from 70% to 95%, from 70% to 100%, from 80% to 90%, from 80% to 95%, from 80% to 100%, from 90% to 95%, from 90% to 100%, and from 95% to 100%). It will be understood that any remaining percentage is accounted for by the presence of a canonical nucleotide (e.g., A, G, U, or C).

[00305] Polynucleotides may contain at a minimum zero and at maximum 100% alternative nucleotides, or any intervening percentage, such as at least 5% alternative nucleotides, at least 10% alternative nucleotides, at least 25% alternative nucleotides, at least 50% alternative nucleotides, at
least 80% alternative nucleotides, or at least 90% alternative nucleotides. For example, polynucleotides may contain an alternative pyrimidine such as an alternative uracil or cytosine. In some embodiments, at least 5%, at least 10%, at least 25%, at least 50%, at least 80%, at least 90% or 100% of the uracil in a polynucleotide is replaced with an alternative uracil (e.g., a 5-substituted uracil). The alternative uracil can be replaced by a compound having a single unique structure, or can be replaced by a plurality of compounds having different structures (e.g., 2, 3, 4 or more unique structures). In some instances, at least 5%, at least 10%, at least 25%, at least 50%, at least 80%, at least 90% or 100% of the cytosine in the polynucleotide is replaced with an alternative cytosine (e.g., a 5-substituted cytosine). The alternative cytosine can be replaced by a compound having a single unique structure, or can be replaced by a plurality of compounds having different structures (e.g., 2, 3, 4 or more unique structures).

[00306] In some instances, nucleic acids do not substantially induce an innate immune response of a cell into which the polynucleotide (e.g., mRNA) is introduced. Features of an induced innate immune response include 1) increased expression of pro-inflammatory cytokines, 2) activation of intracellular PRRs (RIG-I, MDA5, etc., and/or 3) termination or reduction in protein translation.

[00307] The nucleic acids can optionally include other agents (e.g., RNAi-inducing agents, RNAi agents, siRNAs, shRNAs, miRNAs, antisense RNAs, ribozymes, catalytic DNA, tRNA, RNAs that induce triple helix formation, aptamers, vectors). In some embodiments, the nucleic acids may include one or more messenger RNAs (mRNAs) having one or more alternative nucleoside or nucleotides (i.e., alternative mRNA molecules).

WO2015101414, WO2015024667, WO2015062738, WO2015101416, all of which are incorporated by reference herein.

Nucleobase alternatives

[00309] The alternative nucleosides and nucleotides can include an alternative nucleobase. A nucleobase of a nucleic acid is an organic base such as a purine or pyrimidine or a derivative thereof. A nucleobase may be a canonical base (e.g., adenine, guanine, uracil, thymine, and cytosine). These nucleobases can be altered or wholly replaced to provide polynucleotide molecules having enhanced properties, e.g., increased stability such as resistance to nucleases. Non-canonical or modified bases may include, for example, one or more substitutions or modifications including but not limited to alkyl, aryl, halo, oxo, hydroxyl, alkoxy, and/or thio substitutions; one or more fused or open rings; oxidation; and/or reduction.

[00310] Alternative nucleotide base pairing encompasses not only the standard adenine-thymine, adenine-uracil, or guanine-cytosine base pairs, but also base pairs formed between nucleotides and/or alternative nucleotides including non-standard or alternative bases, wherein the arrangement of hydrogen bond donors and hydrogen bond acceptors permits hydrogen bonding between a non-standard base and a standard base or between two complementary non-standard base structures. One example of such non-standard base pairing is the base pairing between the alternative nucleotide inosine and adenine, cytosine, or uracil.

[00311] In some embodiments, the nucleobase is an alternative uracil. Exemplary nucleobases and nucleosides having an alternative uracil include pseudouridine (ψ), pyridin-4-one ribonucleoside, 5-aza-uracil, 6-aza-uracil, 2-thio-5-aza-uracil, 2-thio-uracil (s²U), 4-thio-uracil (s⁴U), 4-thio-pseudouridine, 2-thio-pseudouridine, 5-hydroxy-uracil (ho⁵U), 5-aminoallyl-uracil, 5-halo-uracil (e.g., 5-iodo-uracil or 5-bromo-uracil), 3-methyl-uracil (m₃U), 5-methoxy-uracil (m₀⁵U), uracil 5-oxyacetic acid (mo⁵U), uracil 5-oxyacetic acid methyl ester (mcmo⁵U), 5-carboxymethyl-uracil (cm⁵U), 1-carboxymethyl-pseudouridine, 5-carboxyhydroxymethyl-uracil (chm⁵U), 5-carboxyhydroxymethyl-uracil methyl ester (mchm⁵U), 5-methoxycarbonylmethyl-uracil (mcm⁵U), 5-methoxycarbonylmethyl-2-thio-uracil (mcmS₂⁵U), 5-aminomethyl-2-thio-uracil (nmS₂⁵U), 5-methylaminomethyl-uracil (mmm⁵U), 5-methylaminomethyl-2-thio-uracil (mmmS₂⁵U), 5-methylaminomethyl-2-seleno-uracil (mmmSe²⁵U), 5-carbamoylmethyl-uracil (ncm⁵U), 5-carboxymethylaminomethyl-uracil (cmnm⁵U), 5-carboxymethylaminomethyl-2-thio-uracil (cmnmVU), 5-propynyl-uracil, 1-propynyl-pseudouracil, 5-taurinomethyl-uracil (τm⁵U), 1-taurinomethyl-pseudouridine, 5-taurinomethyl-2-thio-uracil(xmS₂⁵U), 1-taurinomethyl-4-thio-
pseudouridine, 5-methyl-uracil (m^5U, i.e., having the nucleobase deoxythymine), 1-methyl-pseudouridine (m^1U), 5-methyl-2-thio-uracil (rrr^2U), 1-methyl-4-thio-pseudouridine (m^1s^4U), 4-thio-1-methyl-pseudouridine, 3-methyl-pseudouridine (m^3U), 2-thio-1-methyl-1-deaza-pseudouridine, dihydrouracil (D), dihydropseudouridine, 5,6-dihydrouracil, 5-methyl-dihydrouracil (m^5D), 2-thio-dihydrouracil, 2-thio-dihydropseudouridine, 2-methoxy-uracil, 2-methoxy-4-thio-uracil, 4-methoxy-pseudouridine, 4-thio-l-methyl-pseudouridine, 3-methyl-pseudouridine (ηψ), 2-thio-l-methyl-pseudouridine, 5-(isopentenylaminomethyl)uracil (inm^5U), 5-(isopentenylaminomethyl)-2-thio-uracil (inm^5s^2U), 5,2'-O-dimethyl-uridine (m^5Um), 2-thio-2'-O-methyl-uridine (s^2Um), 5-methoxy carbonylmethyl-2'-O-methyl-uridine (mcm^5Um), 5-carbamoylmethyl-2'-O-methyl-uridine (ncm^5Um), 5-hydroxymethyl-cytosine (hm^5C), 1-thio-cytosine, 5-hydroxy-cytosine, 5-(3-azidopropyl)-cytosine, and 5-(2-azidoethyl)-cytosine.

[00312] In some embodiments, the nucleobase is an alternative cytosine. Exemplary nucleobases and nucleosides having an alternative cytosine include 5-aza-cytosine, 6-aza-cytosine, pseudoisocytidine, 3-methyl-cytosine (m3C), N4-acetyl-cytosine (ac4C), 5-formyl-cytosine (f5C), N4-methyl-cytosine (m4C), 5-methyl-cytosine (m5C), 5-halo-cytosine (e.g., 5-iodo-cytosine), 5-hydroxymethyl-cytosine (hm5C), 1-methyl-pseudoisocytidine, pyrrolo-cytosine, pyrrolo-pseudoisocytidine, 2-thio-cytosine (s2C), 2-thio-5-methyl-cytosine, 4-thio-pseudoisocytidine, 4-thio-1-methyl-pseudoisocytidine, 4-thio-1-methyl-1-deaza-pseudoisocytidine, 1-methyl-1-deaza-pseudoisocytidine, zebularine, 5-aza-zebularine, 5-methyl-zebularine, 5-aza-2-thio-zebularine, 2-thio-zebularine, 2-methoxy-cytosine, 2-methoxy-5-methyl-cytosine, 4-methoxy-pseudoisocytidine, 4-methoxy-1-methyl-pseudoisocytidine, lysidine (k2C), 5,2'-O-dimethyl-cytidine (m5Cm), N4-acetyl-2'-O-methyl-cytidine (ac4Cm), N4,2'-O-dimethyl-cytidine (m4Cm), 5-formyl-2'-O-methyl-cytidine (f5Cm), N4,N4,2'-O-trimethyl-cytidine (m42Cm), 1-thio-cytosine, 5-hydroxy-cytosine, 5-(3-azidopropyl)-cytosine, and 5-(2-azidoethyl)-cytosine.

[00313] In some embodiments, the nucleobase is an alternative adenine. Exemplary nucleobases and nucleosides having an alternative adenine include 2-amino-purine, 2,6-diaminopurine, 2-amino-6-halo-purine (e.g., 2-amino-6-chloro-purine), 6-halo-purine (e.g., 6-chloro-purine),
2-amino-6-methyl-purine, 8-azido-adenine, 7-deaza-adenine, 7-deaza-8-aza-adenine, 7-deaza-2-amino-purine, 7-deaza-8-aza-2-amino-purine, 7-deaza-2,6-diaminopurine, 7-deaza-8-aza-2,6-diaminopurine, 1-methyl-adenine (mA), 2-methyl-adenine (m2A), N6-methyl-adenine (m6A), 2-methylthio-N6-methyl-adenine (ms2mA), N6-isopentenyl-adenine (i6A), 2-methylthio-N6-isopentenyl-adenine (ms2i6A), N6-(cis-hydroxyisopentenyl)adenine (io6A), 2-methylthio-N6-(cis-hydroxyisopentenyl)adenine (ms2io6A), N6-glycinylcarbamoyl-adenine (g6A), N6-threonylcarbamoyl-adenine (t6A), N6-methyl-N6-threonylcarbamoyl-adenine (m6t6A), 1-methyl-adenine (mlA), 2-methyl-adenine (m2A), N6-methyl-adenine (m6A), 2-methylthio-N6-methyl-adenine (ms2m6A), N6-isopentenyl-adenine (i6A), 2-methylthio-N6-isopentenyl-adenine (ms2i6A), N6-(cis-hydroxyisopentenyl)adenine (io6A), 2-methylthio-N6-(cis-hydroxyisopentenyl)adenine (ms2io6A), N6-threonylcarbamoyl-adenine (t6A), N6-methyl-N6-threonylcarbamoyl-adenine (m6t6A), 1,2'-0-dimethyl-adenosine (m6Am), N6,N6,2'-0-trimethyl-adenosine (m62Am), 2-amino-N6-methyl-purine, 1-thio-adenine, 8-azido-adenine, N6-(19-amino-pentaoxanonadecyl)-adenine, 2,8-dimethyl-adenine, N6-formyl-adenine, and N6-hydroxymethyl-adenine.

In some embodiments, the nucleobase is an alternative guanine. Exemplary nucleobases and nucleosides having an alternative guanine include inosine (I), 1-methyl-inosine (m1I), wyosine (imG), methylwyosine (mimG), 4-demethyl-wyosine (imG-4), isowyosine (imG2), wybutosine (yw), peroxwybutosine (o2yw), hydroxywybutosine (OHyW), undermodified hydroxywybutosine (OHyW*), 7-deaza-guanine, queuosine (Q), epoxyqueuosine (oQ), galactosyl-queuosine (galQ), mannosyl-queuosine (manQ), 7-cyano-7-deaza-guanine (preQO), 7-aminomethyl-7-deaza-guanine (preQI), archaeosine (G+), 7-deaza-8-aza-guanine, 6-thio-guanine, 6-thio-7-deaza-guanine, 6-thio-7-deaza-8-aza-guanine, 7-methyl-guanine (m7G), 6-thio-7-methyl-guanine, 7-methyl-inosine, 6-methoxy-guanine, 1-methyl-guanine (mG), N2-methyl-guanine (m2G), N2,N2-dimethyl-guanine (m22G), N2,7-dimethyl-guanine (m2,7G), N2, N2,7-dimethyl-guanine (m2,2,7G), 8-oxo-guanine, 7-methyl-8-oxo-guanine, 1-methyl-6-thio-guanine, N2-methyl-6-thio-guanine, N2,N2-dimethyl-6-thio-guanine, N2-methyl-2',0-methyl-guanosine (m2Gm), N2,N2-dimethyl-2',0-methyl-guanosine (m22Gm), 1-methyl-2',0-methyl-guanosine (m1Gm), N2,7-dimethyl-2',0-methyl-guanosine (m2,7Gm), 2',0-methyl-inosine (Im), 1,2'-0-dimethyl-inosine (m1lGm), 1-thio-guanine, and O-6-methyl-guanine.

The alternative nucleobase of a nucleotide can be independently a purine, a pyrimidine, a purine or pyrimidine analog. For example, the nucleobase can be an alternative to adenine, cytosine, guanine, uracil, or hypoxanthine. In another embodiment, the nucleobase can also include, for
example, naturally-occurring and synthetic derivatives of a base, including pyrazolo[3,4-d]pyrimidines, 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiycytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo (e.g., 8-bromo), 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxy and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8-azaguanine and 8-azaadenine, deazaguanine, 7-deazaguanine, 3-deazaguanine, deazaadenine, 7-deazaadenine, 3-deazaadenine, pyrazolo[3,4-d]pyrimidine, imidazo[1,5-a]1,3,5-triazinones, 9-deazapurines, imidazo[4,5-d]pyrazines, thiazolo[4,5-d]pyrimidines, pyrazin-2-ones, 1,2,4-triazine, pyridazine; or 1,3,5 triazine. When the nucleotides are depicted using the shorthand A, G, C, T or U, each letter refers to the representative base and/or derivatives thereof, e.g., A includes adenine or adenine analogs, e.g., 7-deaza adenine).

Alterations on the sugar

Nucleosides include a sugar molecule (e.g., a 5-carbon or 6-carbon sugar, such as pentose, ribose, arabinose, xylose, glucose, galactose, or a deoxy derivative thereof) in combination with a nucleobase, while nucleotides are nucleosides containing a nucleoside and a phosphate group or alternative group (e.g., boranophosphate, thiophosphate, selenophosphate, phosphonate, alkyl group, amidate, and glycerol). A nucleoside or nucleotide may be a canonical species, e.g., a nucleoside or nucleotide including a canonical nucleobase, sugar, and, in the case of nucleotides, a phosphate group, or may be an alternative nucleoside or nucleotide including one or more alternative components. For example, alternative nucleosides and nucleotides can be altered on the sugar of the nucleoside or nucleotide. In some embodiments, the alternative nucleosides or nucleotides include the structure:
In each of the Formulae IV, V, VI and VII,
each of m and n is independently, an integer from 0 to 5,
each of U and U’ independently, is O, S, N(R^I)_n, or C(R^U)_n, wherein n is an integer from 0 to 2 and each R^U is, independently, H, halo, or optionally substituted alkyl;
each of R^I, R^2, R^3, R^4, R^5 is, independently, if present, H, halo, hydroxy, thiol, optionally substituted alkyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted alkynoxy, optionally substituted aminooalkoxy, optionally substituted alkoxylalkoxy, optionally substituted hydroxyalkoxy, optionally substituted amino, azido, optionally substituted aryl, optionally substituted aminooalkyl, optionally substituted aminooalkenyl, optionally substituted aminoalkynyl, or absent; wherein the combination of R^3 with one or more of R^I, R^2, R^3, or R^5 (e.g., the combination of R^I and R^3, the combination of R^2 and R^3, the combination of R^2 and R^3, or the combination of R^3 and R^3) can join together to form optionally substituted alkylene or optionally substituted heteroalkylene and, taken together with the carbons to which they are attached, provide an optionally substituted heterocyclyl (e.g., a bicyclic, tricyclic, or tetracyclic heterocyclyl); wherein the combination of R^5 with one or more of R^I, R^2, R^3, or R^5 (e.g., the combination of R^I and R^5, the combination of R^I and R^5, the combination of R^2 and R^5, or the combination of R^2 and R^5) can join together to form optionally substituted alkylene or optionally substituted heteroalkylene and, taken together with the carbons to which they are attached, provide an optionally substituted heterocyclyl (e.g., a bicyclic, tricyclic, or tetracyclic heterocyclyl); and wherein the combination of R^4 and one or more of R^I, R^2, R^3, R^3, R^3,
or R5 can join together to form optionally substituted alkylene or optionally substituted heteroalkylene and, taken together with the carbons to which they are attached, provide an optionally substituted heterocycl (e.g., a bicyclic, tricyclic, or tetracyclic heterocycl); each of m' and m" is, independently, an integer from 0 to 3 (e.g., from 0 to 2, from 0 to 1, from 1 to 3, or from 1 to 2);

each of Y1, Y2, and Y3, is, independently, O, S, Se, —NRN1—, optionally substituted alkylene, or optionally substituted heteroalkylene, wherein RN1 is H, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkylnyl, optionally substituted aryl, or absent; each Y4 is, independently, H, hydroxy, thiol, boranyl, optionally substituted alky, optionally substituted alkenyl, optionally substituted alkylnyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted alknyloxy, optionally substituted thioalkoxy, optionally substituted alkoxyalkoxy, or optionally substituted amino;

each Y5 is, independently, O, S, Se, optionally substituted alkylene (e.g., methylene), or optionally substituted heteroalkylene; and

B is a nucleobase, either modified or unmodified. In some embodiments, the 2'-hydroxy group (OH) can be modified or replaced with a number of different substituents. Exemplary substitutions at the 2'-position include, but are not limited to, H, azido, halo (e.g., fluoro), optionally substituted Ci-6 alkyl (e.g., methyl); optionally substituted Ci-6 alkoxy (e.g., methoxy or ethoxy); optionally substituted C6-10 aryl-Ci-6 alkoxy, optionally substituted Ci-12 (heterocycl)oxy; a sugar (e.g., ribose, pentose, or any described herein); a polyethyleneglycol (PEG), -0(CH2CH20)nCH2CH20R, where R is H or optionally substituted alkyl, and n is an integer from 0 to 20 (e.g., from 0 to 4, from 0 to 8, from 0 to 10, from 0 to 16, from 1 to 4, from 1 to 8, from 1 to 10, from 1 to 16, from 1 to 20, from 2 to 4, from 2 to 8, from 2 to 10, from 2 to 16, from 2 to 20, from 4 to 8, from 4 to 10, from 4 to 16, and from 4 to 20); "locked" nucleic acids (LNA) in which the 2'-hydroxy is connected by a Ci-6 alkyne or Ci-6 heteroalkylene bridge to the 4'-carbon of the same ribose sugar, where exemplary bridges included methylene, propylene, ether, or amino bridges; aminoalkyl, as defined herein; aminoalkoxy, as defined herein; amino as defined herein; and amino acid, as defined herein.

Generally, RNA includes the sugar group ribose, which is a 5-membered ring having an oxygen. Exemplary, non-limiting alternative nucleotides include replacement of the oxygen in ribose (e.g., with S, Se, or alkylene, such as methylene or ethylene); addition of a double bond (e.g., to replace ribose with cyclopentenyl or cyclohexenyl); ring contraction of ribose (e.g., to form a 4-
membered ring of cyclobutane or oxetane); ring expansion of ribose (e.g., to form a 6- or 7-membered ring having an additional carbon or heteroatom, such as for anhydrohexitol, altitol, mannitol, cyclohexanyl, cyclohexenyl, and morpholino (that also has a phosphoramidate backbone)); multicyclic forms (e.g., tricyclo and "unlocked" forms, such as glycol nucleic acid (GNA) (e.g., R-GNA or S-GNA, where ribose is replaced by glycol units attached to phosphodiester bonds), threose nucleic acid (TNA, where ribose is replace with a-L-threofuranosyl-(3'→2')), and peptide nucleic acid (PNA, where 2-amino-ethyl-glycine linkages replace the ribose and phosphodiester backbone).

[00319] In some embodiments, the sugar group contains one or more carbons that possess the opposite stereochemical configuration of the corresponding carbon in ribose. Thus, a polynucleotide molecule can include nucleotides containing, e.g., arabinose or L-ribose, as the sugar.

[00320] In some embodiments, the polynucleotide includes at least one nucleoside wherein the sugar is L-ribose, 2'-O-methyl-ribose, 2'-fluoro-ribose, arabinose, hexitol, an LNA, or a PNA. Alterations on the internucleoside linkage

[00321] Alternative nucleotides can be altered on the internucleoside linkage (e.g., phosphate backbone). Herein, in the context of the polynucleotide backbone, the phrases "phosphate" and "phosphodiester" are used interchangeably. Backbone phosphate groups can be altered by replacing one or more of the oxygen atoms with a different substituent.

[00322] The alternative nucleotides can include the wholesale replacement of an unaltered phosphate moiety with another internucleoside linkage as described herein. Examples of alternative phosphate groups include, but are not limited to, phosphorothioate, phosphoroselenates, boranophosphates, boranophosphate esters, hydrogen phosphonates, phosphorimidates, phosphoramimidates, alkyl or aryl phosphonates, and phosphotriesters. Phosphorodithioates have both non-linking oxygens replaced by sulfur. The phosphate linker can also be altered by the replacement of a linking oxygen with nitrogen (bridged phosphoramidates), sulfur (bridged phosphorothioates), and carbon (bridged methylene-phosphonates).

[00323] The alternative nucleosides and nucleotides can include the replacement of one or more of the non-bridging oxygens with a borane moiety (BH3), sulfur (thio), methyl, ethyl, and/or methoxy. As a non-limiting example, two non-bridging oxygens at the same position (e.g., the alpha (α), beta (β) or gamma (γ) position) can be replaced with a sulfur (thio) and a methoxy.

[00324] The replacement of one or more of the oxygen atoms at the a position of the phosphate moiety (e.g., α-thio phosphate) is provided to confer stability (such as against exonucleases and
endonucleases) to RNA and DNA through the unnatural phosphorothioate backbone linkages. Phosphorothioate DNA and RNA have increased nuclease resistance and subsequently a longer half-life in a cellular environment.

[00325] Other internucleoside linkages that may be employed according to the present disclosure, including internucleoside linkages which do not contain a phosphorous atom, are described herein.

Internal ribosome entry sites

[00326] Polynucleotides may contain an internal ribosome entry site (IRES). An IRES may act as the sole ribosome binding site, or may serve as one of multiple ribosome binding sites of an mRNA. A polynucleotide containing more than one functional ribosome binding site may encode several peptides or polypeptides that are translated independently by the ribosomes (e.g., multicistronic mRNA). When polynucleotides are provided with an IRES, further optionally provided is a second translatable region. Examples of IRES sequences that can be used according to the present disclosure include without limitation, those from picornaviruses (e.g., FMDV), pest viruses (CFFV), polio viruses (PV), encephalomyocarditis viruses (ECMV), foot-and-mouth disease viruses (FMDV), hepatitis C viruses (HCV), classical swine fever viruses (CSFV), murine leukemia virus (MLV), simian immune deficiency viruses (SIV) or cricket paralysis viruses (CrPV).

5'-cap structure

[00327] A polynucleotide (e.g., an mRNA) may include a 5'-cap structure. The 5'-cap structure of a polynucleotide is involved in nuclear export and increasing polynucleotide stability and binds the mRNA Cap Binding Protein (CBP), which is responsible for polynucleotide stability in the cell and translation competency through the association of CBP with poly-A binding protein to form the mature cyclic mRNA species. The cap further assists the removal of 5'-proximal introns removal during mRNA splicing.

[00328] Endogenous polynucleotide molecules may be 5'-end capped generating a 5'-ppp-5'-triphosphate linkage between a terminal guanosine cap residue and the 5'-terminal transcribed sense nucleotide of the polynucleotide. This 5'-guanylate cap may then be methylated to generate an N7-methyl-guanylate residue. The ribose sugars of the terminal and/or antiterminal transcribed nucleotides of the 5' end of the polynucleotide may optionally also be 2'-0-methylated.

5'-decapping through hydrolysis and cleavage of the guanylate cap structure may target a polynucleotide molecule, such as an mRNA molecule, for degradation.

[00329] Alterations to polynucleotides may generate a non-hydrolyzable cap structure preventing decapping and thus increasing polynucleotide half-life. Because cap structure hydrolysis requires
cleavage of 5'-ppp-5' phosphorodiester linkages, alternative nucleotides may be used during the
capping reaction. For example, a Vaccinia Capping Enzyme from New England Biolabs (Ipswich,
MA) may be used with a-thio-guanosine nucleotides according to the manufacturer's instructions to
create a phosphorothioate linkage in the 5'-ppp-5' cap. Additional alternative guanosine nucleotides
may be used such as a-methyl-phosphonate and seleno-phosphate nucleotides.

[00330] Additional alterations include, but are not limited to, 2'-O-methylation of the ribose
sugars of 5'-terminal and/or 5'-anteternal nucleotides of the polynucleotide (as mentioned above)
on the 2'-hydroxy group of the sugar. Multiple distinct 5'-cap structures can be used to generate the
5'-cap of a polynucleotide, such as an mRNA molecule.

[00331] 5'-Cap structures include those described in International Patent Publication Nos.
WO2008127688, WO 2008016473, and WO 201 1015347, the cap structures of each of which are
incorporated herein by reference.

[00332] Cap analogs, which herein are also referred to as synthetic cap analogs, chemical caps,
chemical cap analogs, or structural or functional cap analogs, differ from natural (i.e., endogenous,
wild-type, or physiological) 5'-caps in their chemical structure, while retaining cap function. Cap
analog may be chemically (i.e., non-enzymatically) or enzymatically synthesized and linked to a
polynucleotide.

[00333] For example, the Anti-Reverse Cap Analog (ARCA) cap contains two guanosines linked
by a 5' 3' -triphosphate group, wherein one guanosine contains an N7-methyl group as well as a 3-
O-methyl group (i.e., N7,3'-O-dimethyl-guanosine-5'-triphosphate-5'-guanosine, m7G-3'mppp-G,
which may equivalently be designated 3'-O-Me-m7G(5')ppp(5')G). The 3'-O atom of the other,
unaltered, guanosine becomes linked to the 5'-terminal nucleotide of the capped polynucleotide
(e.g., an mRNA). The N7- and 3'-O-methylated guanosine provides the terminal moiety of the
capped polynucleotide (e.g., mRNA).

[00334] Another exemplary cap is mCAP, which is similar to ARCA but has a 2'-O-methyl group
on guanosine (i.e., N7,2'-O-dimethyl-guanosine-5'-triphosphate-5'-guanosine, m7Gm-ppp-G).

[00335] A cap may be a dinucleotide cap analog. As a non-limiting example, the dinucleotide
cap analog may be modified at different phosphate positions with a boranophosphate group or a
phosphoroselenoate group such as the dinucleotide cap analogs described in US Patent No.
8,519,1 10, the cap structures of which are herein incorporated by reference.

[00336] Alternatively, a cap analog may be a N7-(4-chlorophenoxyethyl) substituted dinucleotide
cap analog known in the art and/or described herein. Non-limiting examples of N7-(4-
chlorophenoxy ethyl) substituted dinucleotide cap analogs include a N7-(4-chlorophenoxyethyl)-G(5')ppp(5')G and a N7-(4-chlorophenoxyethyl)-m3'OG(5')ppp(5')G cap analog (see, e.g., the various cap analogs and the methods of synthesizing cap analogs described in Kore et al. Bioorganic & Medicinal Chemistry 2013 21:4570-4574; the cap structures of which are herein incorporated by reference). In other instances, a cap analog useful in the polynucleotides of the present disclosure is a 4-chloro/bromophenoxyethyl analog.

[00337] While cap analogs allow for the concomitant capping of a polynucleotide in an in vitro transcription reaction, up to 20% of transcripts remain uncapped. This, as well as the structural differences of a cap analog from endogenous 5'-cap structures of polynucleotides produced by the endogenous, cellular transcription machinery, may lead to reduced translational competency and reduced cellular stability.

[00338] Alternative polynucleotides may also be capped post-transcriptionally, using enzymes, in order to generate more authentic 5'-cap structures. As used herein, the phrase "more authentic" refers to a feature that closely mirrors or mimics, either structurally or functionally, an endogenous or wild type feature. That is, a "more authentic" feature is better representative of an endogenous, wild-type, natural or physiological cellular function, and/or structure as compared to synthetic features or analogs of the prior art, or which outperforms the corresponding endogenous, wild-type, natural, or physiological feature in one or more respects. Non-limiting examples of more authentic 5'-cap structures useful in the polynucleotides of the present disclosure are those which, among other things, have enhanced binding of cap binding proteins, increased half life, reduced susceptibility to 5'-endonucleases, and/or reduced 5'-decapping, as compared to synthetic 5'-cap structures known in the art (or to a wild-type, natural or physiological 5'-cap structure). For example, recombinant Vaccinia Virus Capping Enzyme and recombinant 2'-O-methyltransferase enzyme can create a canonical 5'-5'-triphosphate linkage between the 5'-terminal nucleotide of a polynucleotide and a guanosine cap nucleotide wherein the cap guanosine contains an N7-methylation and the 5'-terminal nucleotide of the polynucleotide contains a 2'-O-methyl. Such a structure is termed the CapI structure. This cap results in a higher translational-competency, cellular stability, and a reduced activation of cellular pro-inflammatory cytokines, as compared, e.g., to other 5' cap analog structures known in the art. Other exemplary cap structures include 7mG(5')ppp(5')NpN2p (Cap 0), 7mG(5')ppp(5')NlmpNp (Cap 1), 7mG(5')-ppp(5')NlmpN2mp (Cap 2), and m(7)Gpppm(3)(6,6,2')Apm(2')Apm(2')Cpm(2')(3,2')Up (Cap 4).
Because the alternative polynucleotides may be capped post-transcriptionally, and because this process is more efficient, nearly 100% of the alternative polynucleotides may be capped. This is in contrast to ~80% when a cap analog is linked to a polynucleotide in the course of an in vitro transcription reaction.

5'-terminal caps may include endogenous caps or cap analogs. A 5'-terminal cap may include a guanosine analog. Useful guanosine analogs include inosine, N1-methyl-guanosine, 2'-fluoro-guanosine, 7-deaza-guanosine, 8-oxo-guanosine, 2- amino-guanosine, LNA-guanosine, and 2'-azido-guanosine.

In some cases, a polynucleotide contains a modified 5'-cap. A modification on the 5'-cap may increase the stability of polynucleotide, increase the half-life of the polynucleotide, and could increase the polynucleotide translational efficiency. The modified 5'-cap may include, but is not limited to, one or more of the following modifications: modification at the 2'- and/or 3'-position of a capped guanosine triphosphate (GTP), a replacement of the sugar ring oxygen (that produced the carbocyclic ring) with a methylene moiety (CH2), a modification at the triphosphate bridge moiety of the cap structure, or a modification at the nucleobase (G) moiety.

5'-UTRs

A 5'-UTR may be provided as a flanking region to polynucleotides (e.g., mRNAs). A 5'-UTR may be homologous or heterologous to the coding region found in a polynucleotide. Multiple 5'-UTRs may be included in the flanking region and may be the same or of different sequences. Any portion of the flanking regions, including none, may be codon optimized and any may independently contain one or more different structural or chemical alterations, before and/or after codon optimization.

Shown in Table 21 in US Provisional Application No 61/775,509, and in Table 21 and in Table 22 in US Provisional Application No. 61/829,372, of which are incorporated herein by reference, is a listing of the start and stop site of alternative polynucleotides (e.g., mRNA). In Table 21 each 5'-UTR (5'-UTR-005 to 5'-UTR 6851 1) is identified by its start and stop site relative to its native or wild type (homologous) transcript (ENST; the identifier used in the ENSEMBL database).

To alter one or more properties of a polynucleotide (e.g., mRNA), 5'-UTRs which are heterologous to the coding region of an alternative polynucleotide (e.g., mRNA) may be engineered. The polynucleotides (e.g., mRNA) may then be administered to cells, tissue or organisms and outcomes such as protein level, localization, and/or half-life may be measured to evaluate the beneficial effects the heterologous 5'-UTR may have on the alternative polynucleotides (mRNA).
Variants of the 5'-UTRs may be utilized wherein one or more nucleotides are added or removed to the termini, including A, T, C or G. 5'-UTRs may also be codon-optimized, or altered in any manner described herein.

5'-UTRs, 3'-UTRs, and translation enhancer elements (TEEs)

[00345] The 5'-UTR of a polynucleotides (e.g., mRNA) may include at least one translation enhancer element. The term "translational enhancer element" refers to sequences that increase the amount of polypeptide or protein produced from a polynucleotide. As a non-limiting example, the TEE may be located between the transcription promoter and the start codon. The polynucleotides (e.g., mRNA) with at least one TEE in the 5'-UTR may include a cap at the 5'-UTR. Further, at least one TEE may be located in the 5'-UTR of polynucleotides (e.g., mRNA) undergoing cap-dependent or cap-independent translation.

[00346] In one aspect, TEEs are conserved elements in the UTR which can promote translational activity of a polynucleotide such as, but not limited to, cap-dependent or cap-independent translation. The conservation of these sequences has been previously shown by Panek et al. (Nucleic Acids Research, 2013, 1-10) across 14 species including humans.

[00347] In one non-limiting example, the TEEs known may be in the 5'-leader of the Gtx homeodomain protein (Chappell et al, Proc. Natl. Acad. Sci. USA 101:9590-9594, 2004, the TEEs of which are incorporated herein by reference).

[00349] In yet another non-limiting example, the TEE may be an internal ribosome entry site (IRES), HCV-IRES or an IRES element such as, but not limited to, those described in US Patent No. 7,468,275, US Patent Publication Nos. 2007/0048776 and 201 1/0124100 and International Patent Publication Nos. WO2007/025008 and WO2001/055369, the IRES sequences of each of which are incorporated herein by reference. The IRES elements may include, but are not limited to, the Gtx sequences (e.g., Gtx9-nt, Gtx8-nt, Gtx7-nt) described by Chappell et al. (Proc. Natl. Acad. Sci. USA 101:9590-9594, 2004) and Zhou et al. (PNAS 102:6273-6278, 2005) and in US Patent Publication
Nos. 2007/0048776 and 201 1/0124100 and International Patent Publication No. WO2007/025008, the IRES sequences of each of which are incorporated herein by reference.

[00350] "Translational enhancer polynucleotides" are polynucleotides which include one or more of the specific TEEs exemplified herein and/or disclosed in the art (see e.g., U.S. Patent Nos. 6,310,197, 6,849,405, 7,456,273, 7,183,395, U.S. Patent Publication Nos. 20090/226470, 2007/0048776, 201 1/0124100, 2009/0093049, 2013/0177581, International Patent Publication Nos. WO2009/075886, WO2007/025008, WO20 12/009644, WO2001/055371 WO1999/024595, and European Patent Nos. 2610341 and 2610340; the TEE sequences of each of which are incorporated herein (e.g., by reference) or their variants, homologs or functional derivatives. One or multiple copies of a specific TEE can be present in a polynucleotide (e.g., mRNA). The TEEs in the translational enhancer polynucleotides can be organized in one or more sequence segments. A sequence segment can harbor one or more of the specific TEEs exemplified herein, with each TEE being present in one or more copies. When multiple sequence segments are present in a translational enhancer polynucleotide, they can be homogenous or heterogeneous. Thus, the multiple sequence segments in a translational enhancer polynucleotide can harbor identical or different types of the specific TEEs exemplified herein, identical or different number of copies of each of the specific TEEs, and/or identical or different organization of the TEEs within each sequence segment.

[00352] A polynucleotide (e.g., mRNA) may include at least one TEE that has at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or at least 99% identity with the TEEs described in US Patent Publication Nos. 2009/0226470, 2007/0048776, 2013/0177581 and 201 1/0124100, International Patent Publication Nos. WO1999/024595, WO2012/009644, WO2009/075886 and WO2007/025008, European Patent Publication Nos. 2610341 and 2610340, US Patent Nos. 6,310,197, 6,849,405, 7,456,273, 7,183,395, the TEE sequences of each of which are incorporated herein by reference.
[00353] The 5’-UTR of a polynucleotide (e.g., mRNA) may include at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18 at least 19, at least 20, at least 21, at least 22, at least 23, at least 24, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 55 or more than 60 TEE sequences. The TEE sequences in the 5’-UTR of a polynucleotide (e.g., mRNA) may be the same or different TEE sequences. The TEE sequences may be in a pattern such as ABABAB, AABBAABBAABB, or ABCABCABC, or variants thereof, repeated once, twice, or more than three times. In these patterns, each letter, A, B, or C represent a different TEE sequence at the nucleotide level.

[00354] In some cases, the 5’-UTR may include a spacer to separate two TEE sequences. As a non-limiting example, the spacer may be a 15 nucleotide spacer and/or other spacers known in the art. As another non-limiting example, the 5’-UTR may include a TEE sequence-spacer module repeated at least once, at least twice, at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 7 times, at least 8 times, at least 9 times, or more than 9 times in the 5’-UTR.

[00355] In other instances, the spacer separating two TEE sequences may include other sequences known in the art which may regulate the translation of the polynucleotides (e.g., mRNA) of the present disclosure such as, but not limited to, miR sequences (e.g., miR binding sites and miR seeds). As a non-limiting example, each spacer used to separate two TEE sequences may include a different miR sequence or component of a miR sequence (e.g., miR seed sequence).

[00356] In some instances, the TEE in the 5’-UTR of a polynucleotide (e.g., mRNA) may include at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% or more than 99% of the TEE sequences disclosed in US Patent Publication Nos. 2009/0226470, 2007/0048776, 2013/0177581 and 2011/0124100, International Patent Publication Nos. WO1999/024595, WO2012/009644, WO2009/075886 and WO2007/025008, European Patent Publication Nos. 2610341 and 2610340, and US Patent Nos. 6,310,197, 6,849,405, 7,456,273, and 7,183,395 the TEE sequences of each of which are incorporated herein by reference. In another embodiment, the TEE in the 5’-UTR of the polynucleotides (e.g., mRNA) of the present disclosure may include a 5-30 nucleotide fragment, a 5-25 nucleotide fragment, a 5-20 nucleotide fragment, a 5-15 nucleotide fragment, a 5-10 nucleotide fragment of the TEE sequences disclosed in US Patent Publication Nos. 2009/0226470, 2007/0048776, 2013/0177581 and 2011/0124100, International Patent Publication Nos.

[00357] In certain cases, the TEE in the 5′-UTR of the polynucleotides (e.g., mRNA) of the present disclosure may include at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or more than 99% of the TEE sequences disclosed in Chappell et al. (Proc. Natl. Acad. Sci. USA 101:9590-9594, 2004) and Zhou et al. (PNAS 102:6273-6278, 2005), in Supplemental Table 1 and in Supplemental Table 2 disclosed by Wellensiek et al (Genome-wide profiling of human cap-independent translation-enhancing elements, Nature Methods, 2013; DOI:10.1038/NMETH.2522); the TEE sequences of each of which are herein incorporated by reference. In another embodiment, the TEE in the 5′-UTR of the polynucleotides (e.g., mRNA) of the present disclosure may include a 5-30 nucleotide fragment, a 5-25 nucleotide fragment, a 5-20 nucleotide fragment, a 5-15 nucleotide fragment, a 5-10 nucleotide fragment of the TEE sequences disclosed in Chappell et al. (Proc. Natl. Acad. Sci. USA 101:9590-9594, 2004) and Zhou et al. (PNAS 102:6273-6278, 2005), in Supplemental Table 1 and in Supplemental Table 2 disclosed by Wellensiek et al (Genome-wide profiling of human cap-independent translation-enhancing elements, Nature Methods, 2013; DOI:10.1038/NMETH.2522); the TEE sequences of each of which is incorporated herein by reference.

[00358] In some cases, the TEE used in the 5′-UTR of a polynucleotide (e.g., mRNA) is an IRES sequence such as, but not limited to, those described in US Patent No. 7,468,275 and International Patent Publication No. WO2001/055369, the TEE sequences of each of which are incorporated herein by reference.

[00359] In some instances, the TEEs used in the 5′-UTR of a polynucleotide (e.g., mRNA) may be identified by the methods described in US Patent Publication Nos. 2007/0048776 and 201 1/0124100 and International Patent Publication Nos. WO2007/025008 and WO20 12/009644, the methods of each of which are incorporated herein by reference.

[00360] In some cases, the TEEs used in the 5′-UTR of a polynucleotide (e.g., mRNA) of the present disclosure may be a transcription regulatory element described in US Patent Nos. 7,456,273 and 7,183,395, US Patent Publication No. 2009/0093049, and International Publication No. WO200 1/055371, the TEE sequences of each of which is incorporated herein by reference. The
transcription regulatory elements may be identified by methods known in the art, such as, but not limited to, the methods described in US Patent Nos. 7,456,273 and 7,183,395, US Patent Publication No. 2009/0093049, and International Publication No. WO2001/055371, the methods of each of which is incorporated herein by reference.

[00361] In yet other instances, the TEE used in the 5'-UTR of a polynucleotide (e.g., mRNA) is a polynucleotide or portion thereof as described in US Patent Nos. 7,456,273 and 7,183,395, US Patent Publication No. 2009/0093049, and International Publication No. WO2001/055371, the TEE sequences of each of which are incorporated herein by reference.

[00362] The 5'-UTR including at least one TEE described herein may be incorporated in a monocistronic sequence such as, but not limited to, a vector system or a polynucleotide vector. As a non-limiting example, the vector systems and polynucleotide vectors may include those described in US Patent Nos. 7,456,273 and 7,183,395, US Patent Publication Nos. 2007/0048776, 2009/0093049 and 2011/0124100, and International Patent Publication Nos. WO2007/025008 and WO2001/055371, the TEE sequences of each of which are incorporated herein by reference.

[00363] The TEEs described herein may be located in the 5'-UTR and/or the 3'-UTR of the polynucleotides (e.g., mRNA). The TEEs located in the 3'-UTR may be the same and/or different than the TEEs located in and/or described for incorporation in the 5'-UTR.

[00364] In some cases, the 3'-UTR of a polynucleotide (e.g., mRNA) may include at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 21, at least 22, at least 23, at least 24, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 55 or more than 60 TEE sequences. The TEE sequences in the 3'-UTR of the polynucleotides (e.g., mRNA) of the present disclosure may be the same or different TEE sequences. The TEE sequences may be in a pattern such as ABABAB, AABBAAABBAABB, or ABCABCABC, or variants thereof, repeated once, twice, or more than three times. In these patterns, each letter, A, B, or C represent a different TEE sequence at the nucleotide level.

[00365] In one instance, the 3'-UTR may include a spacer to separate two TEE sequences. As a non-limiting example, the spacer may be a 15 nucleotide spacer and/or other spacers known in the art. As another non-limiting example, the 3'-UTR may include a TEE sequence-spacer module repeated at least once, at least twice, at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 7 times, at least 8 times, at least 9 times, or more than 9 times in the 3'-UTR.
In other cases, the spacer separating two TEE sequences may include other sequences known in the art which may regulate the translation of the polynucleotides (e.g., mRNA) of the present disclosure such as, but not limited to, miR sequences described herein (e.g., miR binding sites and miR seeds). As a non-limiting example, each spacer used to separate two TEE sequences may include a different miR sequence or component of a miR sequence (e.g., miR seed sequence).

In some embodiments, a polyribonucleotide of the disclosure comprises a miR and/or TEE sequence. In some embodiments, the incorporation of a miR sequence and/or a TEE sequence into a polyribonucleotide of the disclosure can change the shape of the stem loop region, which can increase and/or decrease translation. See e.g., Kedde et al, Nature Cell Biology 2010 12(10): 1014-20, herein incorporated by reference in its entirety.

Sensor Sequences and MicroRNA (miRNA) Binding Sites

Sensor sequences include, for example, microRNA (miRNA) binding sites, transcription factor binding sites, structured mRNA sequences and/or motifs, artificial binding sites engineered to act as pseudo-receptors for endogenous nucleic acid binding molecules, and combinations thereof. Non-limiting examples of sensor sequences are described in U.S. Publication 2014/0200261, the contents of which are incorporated herein by reference in their entirety.

In some embodiments, a polyribonucleotide (e.g., a ribonucleic acid (RNA), e.g., a messenger RNA (mRNA)) of the disclosure comprising an open reading frame (ORF) encoding a polypeptide further comprises a sensor sequence. In some embodiments, the sensor sequence is a miRNA binding site.

A miRNA is a 19-25 nucleotide long noncoding RNA that binds to a polyribonucleotide and down-regulates gene expression either by reducing stability or by inhibiting translation of the polyribonucleotide. A miRNA sequence comprises a "seed" region, i.e., a sequence in the region of positions 2-8 of the mature miRNA. A miRNA seed can comprise positions 2-8 or 2-7 of the mature miRNA. In some embodiments, a miRNA seed can comprise 7 nucleotides (e.g., nucleotides 2-8 of the mature miRNA), wherein the seed-complementary site in the corresponding miRNA binding site is flanked by an adenosine (A) opposed to miRNA position 1. In some embodiments, a miRNA seed can comprise 6 nucleotides (e.g., nucleotides 2-7 of the mature miRNA), wherein the seed-complementary site in the corresponding miRNA binding site is flanked by an adenosine (A) opposed to miRNA position 1. See, for example, Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP, Mol Cell. 2007 Jul 6;27(1):91-105. miRNA profiling of the target cells or tissues can be conducted to determine the presence or absence of miRNA in the cells or
tissues. In some embodiments, a polyribonucleotide (e.g., a ribonucleic acid (RNA), e.g., a messenger RNA (mRNA)) of the disclosure comprises one or more microRNA target sequences, microRNA sequences, or microRNA seeds. Such sequences can correspond to any known microRNA such as those taught in US Publication US2005/0261218 and US Publication US2005/0059005, the contents of each of which are incorporated herein by reference in their entirety.

[00371] As used herein, the term "microRNA (miRNA or miR) binding site" refers to a sequence within a polyribonucleotide, e.g., within a DNA or within an RNA transcript, including in the 5'UTR and/or 3'UTR, that has sufficient complementarity to all or a region of a miRNA to interact with, associate with or bind to the miRNA. In some embodiments, a polyribonucleotide of the disclosure comprising an ORF encoding a polypeptide further comprises a miRNA binding site. In exemplary embodiments, a 5'UTR and/or 3'UTR of the polyribonucleotide (e.g., a ribonucleic acid (RNA), e.g., a messenger RNA (mRNA)) comprises a miRNA binding site.

[00372] A miRNA binding site having sufficient complementarity to a miRNA refers to a degree of complementarity sufficient to facilitate miRNA-mediated regulation of a polyribonucleotide, e.g., miRNA-mediated translational repression or degradation of the polyribonucleotide. In exemplary aspects of the disclosure, a miRNA binding site having sufficient complementarity to the miRNA refers to a degree of complementarity sufficient to facilitate miRNA-mediated degradation of the polyribonucleotide, e.g., miRNA-guided RNA-induced silencing complex (RISC)-mediated cleavage of mRNA. The miRNA binding site can have complementarity to, for example, a 19-25 nucleotide miRNA sequence, to a 19-23 nucleotide miRNA sequence, or to a 22 nucleotide miRNA sequence. A miRNA binding site can be complementary to only a portion of a miRNA, e.g., to a portion less than 1, 2, 3, or 4 nucleotides of the full length of a naturally-occurring miRNA sequence. Full or complete complementarity (e.g., full complementarity or complete complementarity over all or a significant portion of the length of a naturally-occurring miRNA) is preferred when the desired regulation is mRNA degradation.

[00373] In some embodiments, a miRNA binding site includes a sequence that has complementarity (e.g., partial or complete complementarity) with an miRNA seed sequence. In some embodiments, the miRNA binding site includes a sequence that has complete complementarity with a miRNA seed sequence. In some embodiments, a miRNA binding site includes a sequence that has complementarity (e.g., partial or complete complementarity) with an miRNA sequence. In some embodiments, the miRNA binding site includes a sequence that has complete complementarity
with a miRNA sequence. In some embodiments, a miRNA binding site has complete
complementarity with a miRNA sequence but for 1, 2, or 3 nucleotide substitutions, terminal
additions, and/or truncations.

[00374] In some embodiments, the miRNA binding site is the same length as the corresponding
miRNA. In other embodiments, the miRNA binding site is one, two, three, four, five, six, seven,
eight, nine, ten, eleven or twelve nucleotide(s) shorter than the corresponding miRNA at the 5’
terminus, the 3’ terminus, or both. In still other embodiments, the microRNA binding site is two
nucleotides shorter than the corresponding microRNA at the 5’ terminus, the 3’ terminus, or both.
The miRNA binding sites that are shorter than the corresponding miRNAs are still capable of
degrading the mRNA incorporating one or more of the miRNA binding sites or preventing the
mRNA from translation.

[00375] In some embodiments, the miRNA binding site binds to the corresponding mature
miRNA that is part of an active RISC containing Dicer. In another embodiment, binding of the
miRNA binding site to the corresponding miRNA in RISC degrades the mRNA containing the
miRNA binding site or prevents the mRNA from being translated. In some embodiments, the
miRNA binding site has sufficient complementarity to miRNA so that a RISC complex comprising
the miRNA cleaves the polyribonucleotide comprising the miRNA binding site. In other
embodiments, the miRNA binding site has imperfect complementarity so that a RISC complex
comprising the miRNA induces instability in the polyribonucleotide comprising the miRNA binding
site. In another embodiment, the miRNA binding site has imperfect complementarity so that a RISC
complex comprising the miRNA represses transcription of the polyribonucleotide comprising the
miRNA binding site.

[00376] In some embodiments, the miRNA binding site has one, two, three, four, five, six, seven,
eight, nine, ten, eleven or twelve mismatch(es) from the corresponding miRNA.

[00377] In some embodiments, the miRNA binding site has at least about ten, at least about
eleven, at least about twelve, at least about thirteen, at least about fourteen, at least about fifteen, at
least about sixteen, at least about seventeen, at least about eighteen, at least about nineteen, at least
about twenty, or at least about twenty-one contiguous nucleotides complementary to at least about
ten, at least about eleven, at least about twelve, at least about thirteen, at least about fourteen, at least
about fifteen, at least about sixteen, at least about seventeen, at least about eighteen, at least about
nineteen, at least about twenty, or at least about twenty-one, respectively, contiguous nucleotides of
the corresponding miRNA.
By engineering one or more miRNA binding sites into a polyribonucleotide of the disclosure, the polyribonucleotide can be targeted for degradation or reduced translation, provided the miRNA in question is available. This can reduce off-target effects upon delivery of the polyribonucleotide. For example, if a polyribonucleotide of the disclosure is not intended to be delivered to a tissue or cell but ends up there, then a miRNA abundant in the tissue or cell can inhibit the expression of the gene of interest if one or multiple binding sites of the miRNA are engineered into the 5'UTR and/or 3'UTR of the polyribonucleotide.

Conversely, miRNA binding sites can be removed from polyribonucleotide sequences in which they naturally occur in order to increase protein expression in specific tissues. For example, a binding site for a specific miRNA can be removed from a polyribonucleotide to improve protein expression in tissues or cells containing the miRNA.

In one embodiment, a polyribonucleotide of the disclosure can include at least one miRNA-binding site in the 5'UTR and/or 3'UTR in order to direct cytotoxic or cytoprotective mRNA therapeutics to specific cells such as, but not limited to, normal and/or cancerous cells. In another embodiment, a polyribonucleotide of the disclosure can include two, three, four, five, six, seven, eight, nine, ten, or more miRNA-binding sites in the 5'-UTR and/or 3'-UTR in order to direct cytotoxic or cytoprotective mRNA therapeutics to specific cells such as, but not limited to, normal and/or cancerous cells.

Regulation of expression in multiple tissues can be accomplished through introduction or removal of one or more miRNA binding sites. The decision whether to remove or insert a miRNA binding site can be made based on miRNA expression patterns and/or their profilings in diseases. Identification of miRNAs, miRNA binding sites, and their expression patterns and role in biology have been reported (e.g., Bonauer et al, Curr Drug Targets 2010 11:943-949; Anand and Chereshe Curr Opin Hematol 2011 18:171-176; Contreras and Rao Leukemia 2012 26:404-413 (2011 Dec 20. doi: 10.1038/leu.2011.356); Bartel Cell 2009 136:215-233; Landgraf et al, Cell, 2007 129:1401-1414; Gentner and Naldini, Tissue Antigens. 2012 80:393-403 and all references therein; each of which is incorporated herein by reference in its entirety).

miRNAs and miRNA binding sites can correspond to any known sequence, including non-limiting examples described in U.S. Publication Nos. 2014/0200261, 2005/0261218, and 2005/0059005, each of which are incorporated herein by reference in their entirety.

Examples of tissues where miRNA are known to regulate mRNA, and thereby protein expression, include, but are not limited to, liver (miR-122), muscle (miR-133, miR-206, miR-208),...
endothelial cells (miR-17-92, miR-126), myeloid cells (miR-142-3p, miR-142-5p, miR-16, miR-21, miR-223, miR-24, miR-27), adipose tissue (let-7, miR-30c), heart (miR-ld, miR-149), kidney (miR-192, miR-194, miR-204), and lung epithelial cells (let-7, miR-133, miR-126).

[00384] Specifically, miRNAs are known to be differentially expressed in immune cells (also called hematopoietic cells), such as antigen presenting cells (APCs) (e.g., dendritic cells and macrophages), macrophages, monocytes, B lymphocytes, T lymphocytes, granulocytes, natural killer cells, etc. Immune cell specific miRNAs are involved in immunogenicity, autoimmunity, the immune-response to infection, inflammation, as well as unwanted immune response after gene therapy and tissue/organ transplantation. Immune cells specific miRNAs also regulate many aspects of development, proliferation, differentiation and apoptosis of hematopoietic cells (immune cells). For example, miR-142 and miR-146 are exclusively expressed in immune cells, particularly abundant in myeloid dendritic cells. It has been demonstrated that the immune response to a polyribonucleotide can be shut-off by adding miR-142 binding sites to the 3'-UTR of the polyribonucleotide, enabling more stable gene transfer in tissues and cells. miR-142 efficiently degrades exogenous polyribonucleotides in antigen presenting cells and suppresses cytotoxic elimination of transduced cells (e.g., Annoni A et al, blood, 2009, 114, 5152-5161; Brown BD, et al, Nat med. 2006, 12(5), 585-591; Brown BD, et al., blood, 2007, 110(13): 4144-4152, each of which is incorporated herein by reference in its entirety).

[00385] An antigen-mediated immune response can refer to an immune response triggered by foreign antigens, which, when entering an organism, are processed by the antigen presenting cells and displayed on the surface of the antigen presenting cells. T cells can recognize the presented antigen and induce a cytotoxic elimination of cells that express the antigen.

[00386] Introducing a miR-142 binding site into the 5'UTR and/or 3'UTR of a polyribonucleotide of the disclosure can selectively repress gene expression in antigen presenting cells through miR-142 mediated degradation, limiting antigen presentation in antigen presenting cells (e.g., dendritic cells) and thereby preventing antigen-mediated immune response after the delivery of the polyribonucleotide. The polyribonucleotide is then stably expressed in target tissues or cells without triggering cytotoxic elimination.

[00387] In one embodiment, binding sites for miRNAs that are known to be expressed in immune cells, in particular, antigen presenting cells, can be engineered into a polyribonucleotide of the disclosure to suppress the expression of the polyribonucleotide in antigen presenting cells through miRNA mediated RNA degradation, subduing the antigen-mediated immune response. Expression
of the polyribonucleotide is maintained in non-immune cells where the immune cell specific miRNAs are not expressed. For example, in some embodiments, to prevent an immunogenic reaction against a liver specific protein, any miR-122 binding site can be removed and a miR-142 (and/or mirR-146) binding site can be engineered into the 5'UTR and/or 3'UTR of a polyribonucleotide of the disclosure.

[00388] To further drive the selective degradation and suppression in APCs and macrophage, a polyribonucleotide of the disclosure can include a further negative regulatory element in the 5'UTR and/or 3'UTR, either alone or in combination with miR-142 and/or miR-146 binding sites. As a non-limiting example, the further negative regulatory element is a Constitutive Decay Element (CDE).

[00389] Immune cell specific miRNAs include, but are not limited to, hsa-let-7a-2-3p, hsa-let-7a-3p, hsa-7a-5p, hsa-let-7c, hsa-let-7e-3p, hsa-let-7e-5p, hsa-let-7g-3p, hsa-let-7g-5p, hsa-let-7i-3p, hsa-let-7i-5p, miR-10a-3p, miR-10a-5p, miR-1184, hsa-let-7f-1-3p, hsa-let-7f-2-5p, hsa-let-7f-5p, miR-125b-1-3p, miR-125b-2-3p, miR-125b-5p, miR-1279, miR-130a-3p, miR-130a-5p, miR-132-3p, miR-132-5p, miR-142-3p, miR-142-5p, miR-143-3p, miR-143-5p, miR-146a-3p, miR-146a-5p, miR-146b-3p, miR-146b-5p, miR-147a, miR-147b, miR-148a-5p, miR-148a-3p, miR-150-3p, miR-150-5p, miR-151b, miR-155-3p, miR-155-5p, miR-15a-3p, miR-15a-5p, miR-15b-5p, miR-15b-3p, miR-16-1-3p, miR-16-2-3p, miR-16-5p, miR-17-5p, miR-181a-3p, miR-181a-5p, miR-181a-2-3p, miR-182-3p, miR-182-5p, miR-197-3p, miR-197-5p, miR-21-5p, miR-21-3p, miR-214-3p, miR-214-5p, miR-223-3p, miR-223-5p, miR-221-3p, miR-221-5p, miR-23b-3p, miR-23b-5p, miR-24-1-5p,miR-24-2-5p, miR-24-3p, miR-26a-1-3p, miR-26a-2-3p, miR-26a-5p, miR-26b-3p, miR-26b-5p, miR-27a-3p, miR-27a-5p, miR-27b-3p,miR-27b-5p, miR-28-3p, miR-28-5p, miR-2909, miR-29a-3p, miR-29a-5p, miR-29b-1-5p, miR-29b-2-5p, miR-29c-3p, miR-29c-5p, miR-30e-3p, miR-30e-5p, miR-30e-3p, miR-331-5p, miR-339-3p, miR-339-5p, miR-345-5p, miR-345-3p, miR-346, miR-34a-3p, miR-34a-5p, , miR-363-3p, miR-363-5p, miR-372, miR-377-3p, miR-377-5p, miR-493-3p, miR-493-5p, miR-542, miR-548b-5p, miR548c-5p, miR-548i, miR-548j, miR-548n, miR-574-3p, miR-598, miR-718, miR-935, miR-99a-3p, miR-99a-5p, miR-99b-3p, and miR-99b-5p. Furthermore, novel miRNAs can be identified in immune cell through micro-array hybridization and microtome analysis (e.g., Jima DD et al, Blood, 2010, 116:ell8-el27; Vaz C et al, BMC Genomics, 2010, 11,288, the content of each of which is incorporated herein by reference in its entirety.)

[00390] miRNAs that are known to be expressed in the liver include, but are not limited to, miR-107, miR-122-3p, miR-122-5p, miR-1228-3p, miR-1228-5p, miR-1249, miR-129-5p, miR-1303,
miR-151a-3p, miR-151a-5p, miR-152, miR-194-3p, miR-194-5p, miR-199a-3p, miR-199a-5p, miR-199b-3p, miR-199b-5p, miR-296-5p, miR-557, miR-581, miR-939-3p, and miR-939-5p. MiRNA binding sites from any liver specific miRNA can be introduced to or removed from a polyribonucleotide of the disclosure to regulate expression of the polyribonucleotide in the liver. Liver specific miRNA binding sites can be engineered alone or further in combination with immune cell (e.g., APC) miRNA binding sites in a polyribonucleotide of the disclosure.

[00391] MiRNAs that are known to be expressed in the lung include, but are not limited to, let-7a-2-3p, let-7a-3p, let-7a-5p, miR-126-3p, miR-126-5p, miR-127-3p, miR-127-5p, miR-130a-3p, miR-130a-5p, miR-130b-3p, miR-130b-5p, miR-133a, miR-133b, miR-134, miR-18a-3p, miR-18a-5p, miR-18b-3p, miR-18b-5p, miR-24-1-5p, miR-24-2-5p, miR-24-3p, miR-296-3p, miR-296-5p, miR-32-3p, miR-337-3p, miR-337-5p, miR-381-3p, and miR-381-5p. MiRNA binding sites from any lung specific miRNA can be introduced to or removed from a polyribonucleotide of the disclosure to regulate expression of the polyribonucleotide in the lung. Lung specific miRNA binding sites can be engineered alone or further in combination with immune cell (e.g., APC) miRNA binding sites in a polyribonucleotide of the disclosure.

[00392] MiRNAs that are known to be expressed in the heart include, but are not limited to, miR-1, miR-133a, miR-133b, miR-149-3p, miR-149-5p, miR-186-3p, miR-186-5p, miR-208a, miR-208b, miR-210, miR-296-3p, miR-320, miR-451a, miR-451b, miR-499a-3p, miR-499a-5p, miR-499b-3p, miR-499b-5p, miR-744-3p, miR-744-5p, miR-92b-3p, and miR-92b-5p. MiRNA binding sites from any heart specific microRNA can be introduced to or removed from a polyribonucleotide of the disclosure to regulate expression of the polyribonucleotide in the heart. Heart specific miRNA binding sites can be engineered alone or further in combination with immune cell (e.g., APC) miRNA binding sites in a polyribonucleotide of the disclosure.

[00393] MiRNAs that are known to be expressed in the nervous system include, but are not limited to, miR-124-5p, miR-125a-3p, miR-125a-5p, miR-125b-1-3p, miR-125b-2-3p, miR-125b-5p, miR-1271-3p, miR-1271-5p, miR-128, miR-132-5p, miR-135a-3p, miR-135a-5p, miR-135b-3p, miR-135b-5p, miR-137, miR-139-5p, miR-139-3p, miR-149-3p, miR-149-5p, miR-153, miR-181c-3p, miR-181c-5p, miR-183-3p, miR-183-5p, miR-190a, miR-190b, miR-212-3p, miR-212-5p, miR-219-1-3p, miR-219-2-3p, miR-23a-3p, miR-23a-5p, miR-30a-5p, miR-30b-3p, miR-30b-5p, miR-30c-1-3p, miR-30c-2-3p, miR-30c-5p, miR-30d-3p, miR-30d-5p, miR-329, miR-342-3p, miR-3665, miR-3666, miR-380-3p, miR-380-5p, miR-383, miR-410, miR-425-3p, miR-425-5p, miR-454-3p, miR-454-5p, miR-483, miR-510, miR-516a-3p, miR-548b-5p, miR-548c-5p, miR-571, miR-7-1-3p,
miR-7-2-3p, miR-7-5p, miR-802, miR-922, miR-9-3p, and miR-9-5p. MiRNAs enriched in the nervous system further include those specifically expressed in neurons, including, but not limited to, miR-132-3p, miR-132-3p, miR-148b-3p, miR-148b-5p, miR-151a-3p, miR-151a-5p, miR-212-3p, miR-212-5p, miR-320b, miR-320e, miR-323a-3p, miR-323a-5p, miR-324-5p, miR-325, miR-326, miR-328, miR-922 and those specifically expressed in glial cells, including, but not limited to, miR-1250, miR-219-1-3p, miR-219-2-3p, miR-219-5p, miR-23a-3p, miR-23a-5p, miR-3065-3p, miR-3065-5p, miR-30e-3p, miR-30e-5p, miR-32-5p, miR-338-5p, and miR-657. MiRNA binding sites from any CNS specific miRNA can be introduced to or removed from a polyribonucleotide of the disclosure to regulate expression of the polyribonucleotide in the nervous system. Nervous system specific miRNA binding sites can be engineered alone or further in combination with immune cell (e.g., APC) miRNA binding sites in a polyribonucleotide of the disclosure.

MiRNAs that are known to be expressed in the pancreas include, but are not limited to, miR-105-3p, miR-105-5p, miR-184, miR-195-3p, miR-195-5p, miR-196a-3p, miR-196a-5p, miR-214-3p, miR-214-5p, miR-216a-3p, miR-216a-5p, miR-30a-3p, miR-33a-3p, miR-33a-5p, miR-375, miR-7-1-3p, miR-7-2-3p, miR-493-3p, miR-493-5p, and miR-944. MiRNA binding sites from any pancreas specific miRNA can be introduced to or removed from a polyribonucleotide of the disclosure to regulate expression of the polyribonucleotide in the pancreas. Pancreas specific miRNA binding sites can be engineered alone or further in combination with immune cell (e.g., APC) miRNA binding sites in a polyribonucleotide of the disclosure.

MiRNAs that are known to be expressed in the kidney include, but are not limited to, miR-122-3p, miR-145-5p, miR-17-5p, miR-192-3p, miR-192-5p, miR-194-3p, miR-194-5p, miR-20a-3p, miR-20a-5p, miR-204-3p, miR-204-5p, miR-210, miR-216a-3p, miR-216a-5p, miR-296-3p, miR-30a-3p, miR-30a-5p, miR-30b-3p, miR-30b-5p, miR-30c-1-3p, miR-30c-2-3p, miR30c-5p, miR324-3p, miR-335-3p, miR-335-5p, miR-363-3p, miR-363-5p, and miR-562. MiRNA binding sites from any kidney specific miRNA can be introduced to or removed from a polyribonucleotide of the disclosure to regulate expression of the polyribonucleotide in the kidney. Kidney specific miRNA binding sites can be engineered alone or further in combination with immune cell (e.g., APC) miRNA binding sites in a polyribonucleotide of the disclosure.

MiRNAs that are known to be expressed in the muscle include, but are not limited to, let-7g-3p, let-7g-5p, miR-1, miR-1286, miR-133a, miR-133b, miR-140-3p, miR-143-3p, miR-143-5p, miR-145-3p, miR-145-5p, miR-188-3p, miR-188-5p, miR-206, miR-208a, miR-208b, miR-25-3p, and miR-25-5p. MiRNA binding sites from any muscle specific miRNA can be introduced to or
removed from a polyribonucleotide of the disclosure to regulate expression of the polyribonucleotide in the muscle. Muscle specific miRNA binding sites can be engineered alone or further in combination with immune cell (e.g., APC) miRNA binding sites in a polyribonucleotide of the disclosure.

MiRNAs are also differentially expressed in different types of cells, such as, but not limited to, endothelial cells, epithelial cells, and adipocytes.

MiRNAs that are known to be expressed in endothelial cells include, but are not limited to, let-7b-3p, let-7b-5p, miR-100-3p, miR-100-5p, miR-101-3p, miR-101-5p, miR-126-3p, miR-126-5p, miR-1236-3p, miR-1236-5p, miR-130a-3p, miR-130a-5p, miR-17-5p, miR-17-3p, miR-18a-3p, miR-18a-5p, miR-19a-3p, miR-19a-5p, miR-19b-1-5p, miR-19b-2-5p, miR-19b-3p, miR-20a-3p, miR-20a-5p, miR-217, miR-210, miR-21-3p, miR-21-5p, miR-221-3p, miR-221-5p, miR-222-3p, miR-222-5p, miR-23a-3p, miR-23a-5p, miR-296-5p, miR-361-3p, miR-361-5p, miR-421, miR-424-3p, miR-424-5p, miR-513a-5p, miR-92a-1-5p, miR-92a-2-5p, miR-92a-3p, miR-92b-3p, and miR-92b-5p. Many novel miRNAs are discovered in endothelial cells from deep-sequencing analysis (e.g., Voellenkle C et al, RNA, 2012, 18, 472-484, herein incorporated by reference in its entirety). MiRNA binding sites from any endothelial cell specific miRNA can be introduced to or removed from a polyribonucleotide of the disclosure to regulate expression of the polyribonucleotide in the endothelial cells.

MiRNAs that are known to be expressed in epithelial cells include, but are not limited to, let-7b-3p, let-7b-5p, miR-1246, miR-200a-3p, miR-200a-5p, miR-200b-3p, miR-200b-5p, miR-200c-3p, miR-200c-5p, miR-338-3p, miR-429, miR-451a, miR-451b, miR-494, miR-802 and miR-34a, miR-34b-5p, miR-34c-5p, miR-449a, miR-449b-3p, miR-449b-5p specific in respiratory ciliated epithelial cells, let-7 family, miR-133a, miR-133b, miR-126 specific in lung epithelial cells, miR-382-3p, miR-382-5p specific in renal epithelial cells, and miR-762 specific in corneal epithelial cells. MiRNA binding sites from any epithelial cell specific miRNA can be introduced to or removed from a polyribonucleotide of the disclosure to regulate expression of the polyribonucleotide in the epithelial cells.

In addition, a large group of miRNAs are enriched in embryonic stem cells, controlling stem cell self-renewal as well as the development and/or differentiation of various cell lineages, such as neural cells, cardiac, hematopoietic cells, skin cells, osteogenic cells and muscle cells (e.g., Kuppusamy KT et al., Curr. Mol Med, 2013, 13(5), 757-764; Vidigal JA and Ventura A, Semin Cancer Biol. 2012, 22(5-6), 428-436; Goff LA et al., PLoS One, 2009, 4:e7192; Monn RD et al,
Genome Res, 2008, 18, 610-621; Yoo JK et al., Stem Cells Dev. 2012, 21(11), 2049-2057, each of which is herein incorporated by reference in its entirety. MiRNAs abundant in embryonic stem cells include, but are not limited to, let-7a-2-3p, let-a-3p, let-7a-5p, let-7d-3p, miR-103a-2-3p, miR-103a-5p, miR-106b-3p, miR-106b-5p, miR-1246, miR-1275, miR-138-1-3p, miR-138-2-3p, miR-138-5p, miR-154-3p, miR-154-5p, miR-200c-3p, miR-200c-5p, miR-290, miR-301a-3p, miR-301a-5p, miR-302a-3p, miR-302a-5p, miR-302b-3p, miR-302b-5p, miR-302c-3p, miR-302c-5p, miR-302d-3p, miR-302d-5p, miR-302e, miR-367-3p, miR-367-5p, miR-369-3p, miR-369-5p, miR-370, miR-371, miR-373, miR-380-5p, miR-423-3p, miR-423-5p, miR-486-5p, miR-520c-3p, miR-548c, miR-548f, miR-548g-3p, miR-548g-5p, miR-548i, miR-548k, miR-548l, miR-548m, miR-548n, miR-548o-3p, miR-548o-5p, miR-548p, miR-664a-3p, miR-664a-5p, miR-664b-3p, miR-664b-5p, miR-766-3p, miR-766-5p, miR-885-3p, miR-885-5p, miR-93-3p, miR-93-5p, miR-941, miR-96-3p, miR-96-5p, miR-99b-3p and miR-99b-5p. Many predicted novel miRNAs are discovered by deep sequencing in human embryonic stem cells (e.g., Morin RD et al., Genome Res, 2008, 18, 610-621; Goff LA et al., PLoS One, 2009, 4:e7192; Bar M et al., Stem cells, 2008, 26, 2496-2505, the content of each of which is incorporated herein by reference in its entirety).

[00401] In one embodiment, the binding sites of embryonic stem cell specific miRNAs can be included in or removed from the 3'UTR of a polyribonucleotide of the disclosure to modulate the development and/or differentiation of embryonic stem cells, to inhibit the senescence of stem cells in a degenerative condition (e.g., degenerative diseases), or to stimulate the senescence and apoptosis of stem cells in a disease condition (e.g., cancer stem cells).

(WO20 13/066678); ovarian cancer cells (US2012/0309645, WO201 1/095623); breast cancer cells
(WO2008/073915, US2009/0092974, US2012/03 16081, US2012/0283310, WO201 0/01 8563, the
content of each of which is incorporated herein by reference in its entirety.)

[00403] As a non-limiting example, miRNA binding sites for miRNAs that are over-expressed in
certain cancer and/or tumor cells can be removed from the 3'UTR of a polyribonucleotide of the
disclosure, restoring the expression suppressed by the over-expressed miRNAs in cancer cells, thus
ameliorating the corresponsive biological function, for instance, transcription stimulation and/or
repression, cell cycle arrest, apoptosis and cell death. Normal cells and tissues, wherein miRNAs
expression is not up-regulated, will remain unaffected.

[00404] MiRNA can also regulate complex biological processes such as angiogenesis (e.g., miR-
132) (Anand and Cheresh Curr Opin Hematol 2011 18:171-176). In the polyribonucleotides of the
disclosure, miRNA binding sites that are involved in such processes can be removed or introduced,
in order to tailor the expression of the polyribonucleotides to biologically relevant cell types or
relevant biological processes. In this context, the polyribonucleotides of the disclosure are defined as
auxotrophic polyribonucleotides.

Stem loops

[00405] Polynucleotides (e.g., mRNAs) may include a stem loop such as, but not limited to, a
histone stem loop. The stem loop may be a nucleotide sequence that is about 25 or about 26
nucleotides in length such as, but not limited to, SEQ ID NOs: 7-17 as described in International
Patent Publication No. WO201 3/1 03659, of which SEQ ID NOs: 7-17 are incorporated herein by
reference. The histone stem loop may be located 3'-relative to the coding region (e.g., at the 3'
terminus of the coding region). As a non-limiting example, the stem loop may be located at the 3'
end of a polynucleotide described herein. In some cases, a polynucleotide (e.g., an mRNA) includes
more than one stem loop (e.g., two stem loops). Examples of stem loop sequences are described in
International Patent Publication Nos. WO2012/019780 and WO201502667, the stem loop sequences
of which are herein incorporated by reference. In some instances, a polynucleotide includes the
stem loop sequence CAAAGGCTTTTCAGAGCCACCA (SEQ ID NO: 1). In others, a
polynucleotide includes the stem loop sequence CAAAGGCUUUUCAGAGCCACCA (SEQ ID
NO: 2).
[00406] A stem loop may be located in a second terminal region of a polynucleotide. As a non-limiting example, the stem loop may be located within an untranslated region (e.g., 3′-UTR) in a second terminal region.

[00407] In some cases, a polynucleotide such as, but not limited to mRNA, which includes the histone stem loop may be stabilized by the addition of a 3′-stabilizing region (e.g., a 3′-stabilizing region including at least one chain terminating nucleoside). Not wishing to be bound by theory, the addition of at least one chain terminating nucleoside may slow the degradation of a polynucleotide and thus can increase the half-life of the polynucleotide.

[00408] In other cases, a polynucleotide such as, but not limited to mRNA, which includes the histone stem loop may be stabilized by an alteration to the 3′-region of the polynucleotide that can prevent and/or inhibit the addition of oligo(U) (see e.g., International Patent Publication No. WO2013/103659).

[00409] In yet other cases, a polynucleotide such as, but not limited to mRNA, which includes the histone stem loop may be stabilized by the addition of an oligonucleotide that terminates in a 3′-deoxynucleoside, 2′,3′-dideoxynucleoside 3′-0- methyl nucleosides, 3′-0-ethynucleosides, 3′-arabinosides, and other alternative nucleosides known in the art and/or described herein.

[00410] In some instances, the polynucleotides of the present disclosure may include a histone stem loop, a poly-A region, and/or a 5′-cap structure. The histone stem loop may be before and/or after the poly-A region. The polynucleotides including the histone stem loop and a poly-A region sequence may include a chain terminating nucleoside described herein.

[00411] In other instances, the polynucleotides of the present disclosure may include a histone stem loop and a 5′-cap structure. The 5′-cap structure may include, but is not limited to, those described herein and/or known in the art.

[00412] In some cases, the conserved stem loop region may include a miR sequence described herein. As a non-limiting example, the stem loop region may include the seed sequence of a miR sequence described herein. In another non-limiting example, the stem loop region may include a miR-122 seed sequence.

[00413] In certain instances, the conserved stem loop region may include a miR sequence described herein and may also include a TEE sequence.

[00414] In some cases, the incorporation of a miR sequence and/or a TEE sequence changes the shape of the stem loop region which may increase and/or decrease translation. (See, e.g., Kedde et

[00415] Polynucleotides may include at least one histone stem-loop and a poly-A region or polyadenylation signal. Non-limiting examples of polynucleotide sequences encoding for at least one histone stem-loop and a poly-A region or a polyadenylation signal are described in International Patent Publication No. WO2013/120497, WO2013/120498, WO2013/120499 and WO2013/120628, the sequences of each of which are incorporated herein by reference. In certain cases, the polynucleotide encoding for a histone stem loop and a poly-A region or a polyadenylation signal may code for a pathogen antigen or fragment thereof such as the polynucleotide sequences described in International Patent Publication No WO2013/120499 and WO2013/120628, the sequences of both of which are incorporated herein by reference. In other cases, the polynucleotide encoding for a histone stem loop and a poly-A region or a polyadenylation signal may code for a therapeutic protein such as the polynucleotide sequences described in International Patent Publication No WO2013/120497 and WO2013/120629, the sequences of both of which are incorporated herein by reference. In some cases, the polynucleotide encoding for a histone stem loop and a poly-A region or a polyadenylation signal may code for a tumor antigen or fragment thereof such as the polynucleotide sequences described in International Patent Publication No WO2013/120500 and WO2013/120627, the sequences of both of which are incorporated herein by reference. In other cases, the polynucleotide encoding for a histone stem loop and a poly-A region or a polyadenylation signal may code for an allergenic antigen or an autoimmune self-antigen such as the polynucleotide sequences described in International Patent Publication No WO2013/120498 and WO2013/120626, the sequences of both of which are incorporated herein by reference.

Poly-A regions

[00416] A polynucleotide or nucleic acid (e.g., an mRNA) may include a polyA sequence and/or polyadenylation signal. A polyA sequence may be comprised entirely or mostly of adenine nucleotides or analogs or derivatives thereof. A polyA sequence may be a tail located adjacent to a 3' untranslated region of a nucleic acid.

[00417] During RNA processing, a long chain of adenosine nucleotides (poly-A region) is normally added to messenger RNA (mRNA) molecules to increase the stability of the molecule. Immediately after transcription, the 3'-end of the transcript is cleaved to free a 3'-hydroxy. Then
poly-A polymerase adds a chain of adenosine nucleotides to the RNA. The process, called polyadenylation, adds a poly-A region that is between 100 and 250 residues long.

[00418] Unique poly-A region lengths may provide certain advantages to the alternative polynucleotides of the present disclosure.

[00419] Generally, the length of a poly-A region of the present disclosure is at least 30 nucleotides in length. In another embodiment, the poly-A region is at least 35 nucleotides in length. In another embodiment, the length is at least 40 nucleotides. In another embodiment, the length is at least 45 nucleotides. In another embodiment, the length is at least 55 nucleotides. In another embodiment, the length is at least 60 nucleotides. In another embodiment, the length is at least 70 nucleotides. In another embodiment, the length is at least 80 nucleotides. In another embodiment, the length is at least 90 nucleotides. In another embodiment, the length is at least 100 nucleotides. In another embodiment, the length is at least 120 nucleotides. In another embodiment, the length is at least 140 nucleotides. In another embodiment, the length is at least 160 nucleotides. In another embodiment, the length is at least 180 nucleotides. In another embodiment, the length is at least 200 nucleotides. In another embodiment, the length is at least 250 nucleotides. In another embodiment, the length is at least 300 nucleotides. In another embodiment, the length is at least 350 nucleotides. In another embodiment, the length is at least 400 nucleotides. In another embodiment, the length is at least 450 nucleotides. In another embodiment, the length is at least 500 nucleotides. In another embodiment, the length is at least 600 nucleotides. In another embodiment, the length is at least 700 nucleotides. In another embodiment, the length is at least 800 nucleotides. In another embodiment, the length is at least 900 nucleotides. In another embodiment, the length is at least 1000 nucleotides. In another embodiment, the length is at least 1100 nucleotides. In another embodiment, the length is at least 1200 nucleotides. In another embodiment, the length is at least 1300 nucleotides. In another embodiment, the length is at least 1400 nucleotides. In another embodiment, the length is at least 1500 nucleotides. In another embodiment, the length is at least 1600 nucleotides. In another embodiment, the length is at least 1700 nucleotides. In another embodiment, the length is at least 1800 nucleotides. In another embodiment, the length is at least 1900 nucleotides. In another embodiment, the length is at least 2000 nucleotides. In another embodiment, the length is at least 2500 nucleotides. In another embodiment, the length is at least 3000 nucleotides.

[00420] In some instances, the poly-A region may be 80 nucleotides, 120 nucleotides, 160 nucleotides in length on an alternative polynucleotide molecule described herein.
In other instances, the poly-A region may be 20, 40, 80, 100, 120, 140 or 160 nucleotides in length on an alternative polynucleotide molecule described herein.

In some cases, the poly-A region is designed relative to the length of the overall alternative polynucleotide. This design may be based on the length of the coding region of the alternative polynucleotide, the length of a particular feature or region of the alternative polynucleotide (such as mRNA), or based on the length of the ultimate product expressed from the alternative polynucleotide. When relative to any feature of the alternative polynucleotide (e.g., other than the mRNA portion which includes the poly-A region) the poly-A region may be 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100% greater in length than the additional feature. The poly-A region may also be designed as a fraction of the alternative polynucleotide to which it belongs. In this context, the poly-A region may be 10, 20, 30, 40, 50, 60, 70, 80, or 90% or more of the total length of the construct or the total length of the construct minus the poly-A region.

In certain cases, engineered binding sites and/or the conjugation of polynucleotides (e.g., mRNA) for poly-A binding protein may be used to enhance expression. The engineered binding sites may be sensor sequences which can operate as binding sites for ligands of the local microenvironment of the polynucleotides (e.g., mRNA). As a non-limiting example, the polynucleotides (e.g., mRNA) may include at least one engineered binding site to alter the binding affinity of poly-A binding protein (PABP) and analogs thereof. The incorporation of at least one engineered binding site may increase the binding affinity of the PABP and analogs thereof.

Additionally, multiple distinct polynucleotides (e.g., mRNA) may be linked together to the PABP (poly-A binding protein) through the 3’-end using alternative nucleotides at the 3’-terminus of the poly-A region. Transfection experiments can be conducted in relevant cell lines at and protein production can be assayed by ELISA at 12 hours, 24 hours, 48 hours, 72 hours, and day 7 post-transfection. As a non-limiting example, the transfection experiments may be used to evaluate the effect on PABP or analogs thereof binding affinity as a result of the addition of at least one engineered binding site.

In certain cases, a poly-A region may be used to modulate translation initiation. While not wishing to be bound by theory, the poly-A region recruits PABP which in turn can interact with translation initiation complex and thus may be essential for protein synthesis.

In some cases, a poly-A region may also be used in the present disclosure to protect against 3’-5’-exonuclease digestion.
In some instances, a polynucleotide (e.g., mRNA) may include a polyA-G Quartet. The G-quartet is a cyclic hydrogen bonded array of four guanosine nucleotides that can be formed by G-rich sequences in both DNA and RNA. In this embodiment, the G-quartet is incorporated at the end of the poly-A region. The resultant polynucleotides (e.g., mRNA) may be assayed for stability, protein production and other parameters including half-life at various time points. It has been discovered that the polyA-G quartet results in protein production equivalent to at least 75% of that seen using a poly-A region of 120 nucleotides alone.

In some cases, a polynucleotide (e.g., mRNA) may include a poly-A region and may be stabilized by the addition of a 3'-stabilizing region. The polynucleotides (e.g., mRNA) with a poly-A region may further include a 5'-cap structure.

In other cases, a polynucleotide (e.g., mRNA) may include a poly-A-G Quartet. The polynucleotides (e.g., mRNA) with a poly-A-G Quartet may further include a 5'-cap structure.

In some cases, the 3'-stabilizing region which may be used to stabilize a polynucleotide (e.g., mRNA) including a poly-A region or poly-A-G Quartet may be, but is not limited to, those described in International Patent Publication No. WO2013/103659, the poly-A regions and poly-A-G Quartets of which are incorporated herein by reference. In other cases, the 3'-stabilizing region which may be used with the present disclosure include a chain termination nucleoside such as 3'-deoxyadenosine (cordycepin), 3'-deoxyuridine, 3'-deoxycytosine, 3'-deoxyguanosine, 3'-deoxycytidine, 2',3'-dideoxynucleosides, such as 2',3'-dideoxyadenosine, 2',3'-dideoxyuridine, 2',3'-dideoxycytosine, 2',3'-dideoxyguanosine, 2',3'-dideoxycytidine, a 2'-deoxyribonucleoside, or an O-methylribonucleoside.

In other cases, a polynucleotide such as, but not limited to mRNA, which includes a polyA region or a poly-A-G Quartet may be stabilized by an alteration to the 3'-region of the polynucleotide that can prevent and/or inhibit the addition of oligio(U) (see e.g., International Patent Publication No. WO2013/103659).

In yet other instances, a polynucleotide such as, but not limited to mRNA, which includes a poly-A region or a poly-A-G Quartet may be stabilized by the addition of an oligonucleotide that terminates in a 3'-deoxynucleoside, 2',3'-dideoxynucleoside 3'-0-methylnucleosides, 3'-0-ethylriboosides, 3'-0-arabinosides, and other alternative nucleosides known in the art and/or described herein.

Chain terminating nucleosides
A nucleic acid may include a chain terminating nucleoside. For example, a chain
terminating nucleoside may include those nucleosides deoxygenated at the 2' and/or 3' positions
of their sugar group. Such species may include 3'-deoxyadenosine (cordycepin), 3'-deoxyuridine,
3'-deoxycytosine, 3'-deoxyguanosine, 3'-deoxythymine, and 2',3'-dideoxynucleosides, such as
2',3'-dideoxyadenosine, 2',3'-dideoxyuridine, 2',3'-dideoxycytosine, 2',3'-dideoxyguanosine, and
2',3'-dideoxythymine.

Other components

A LNP may include one or more components in addition to those described in the
preceding sections. For example, a LNP may include one or more small hydrophobic molecules
such as a vitamin (e.g., vitamin A or vitamin E) or a sterol.

Lipid nanoparticles may also include one or more permeability enhancer molecules,
carbohydrates, polymers, surface altering agents, or other components. A permeability enhancer
molecule may be a molecule described by U.S. patent application publication No. 2005/0222064, for
example. Carbohydrates may include simple sugars (e.g., glucose) and polysaccharides (e.g.,
glycogen and derivatives and analogs thereof).

A polymer may be included in and/or used to encapsulate or partially encapsulate a LNP.
A polymer may be biodegradable and/or biocompatible. A polymer may be selected from, but is not
limited to, polyamines, polyethers, polyamides, polyesters, polycarbonates, polyureas,
polycarbonates, polystyrenes, polyimides, polysulfones, polyurethanes, polyacrylenes,
polyethyleneimines, polyisocyanates, polyacrylates, polymethacrylates,
polyacrylonitriles, and polyyarlates. For example, a polymer may include poly(caprolactone)
(PCL), ethylene vinyl acetate polymer (EVA), poly(lactic acid) (PLA), poly(L-lactic acid) (PLLA),
poly(glycolic acid) (PGA), poly(lactic acid-co-glycolic acid) (PLGA), poly(L-lactic acid-co-glycolic acid)
(PLLGA), poly(D,L-lactide) (PDLA), poly(L-lactide) (PLLA), poly(D,L-lactide-co-
caprolactone), poly(D,L-lactide-co-caprolactone-co-glycolide), poly(D,L-lactide-co-PEO-co-D,L-
lactide), poly(D,L-lactide-co-POO-co-D,L-lactide), polyalkyl cyanoacrylate, polyurethane, poly-L-
lysine (PLL), hydroxypropyl methacrylate (HPMA), polyethylene glycol, poly-L-glutamic acid,
poly(hydroxy acids), polyanhydrides, polyorthoesters, poly(ester amides), polyamides, poly(ester
ethers), polycarbonates, polyalkylenes such as polyethylene and polypropylene, polyalkylene
glycols such as poly(ethylene glycol) (PEG), polyalkylene oxides (PEO), polyalkylene
terephthalates such as poly(ethylene terephthalate), polyvinyl alcohols (PVA), polyvinyl ethers,
polyvinyl esters such as poly(vinyl acetate), polyvinyl halides such as poly(vinyl chloride) (PVC),
polyvinylpyrrolidone (PVP), polysiloxanes, polystyrene, polyurethanes, derivatized celluloses such as alkyl celluloses, hydroxyalkyl celluloses, cellulose ethers, cellulose esters, nitro celluloses, hydroxypropylcellulose, carboxymethylcellulose, polymers of acrylic acids, such as poly(methyl(meth)acrylate) (PMMA), poly(ethyl(meth)acrylate), poly(butyl(meth)acrylate), poly(isobutyl(meth)acrylate), poly(hexyl(meth)acrylate), poly(isodecyl(meth)acrylate), poly(lauryl(meth)acrylate), poly(phenyl(meth)acrylate), poly(methyl acrylate), poly(isobutyl acrylate), poly(octadecyl acrylate) and copolymers and mixtures thereof, polydioxanone and its copolymers, polyhydroxyalkanoates, polypropylene fumarate, polyoxymethylene, poloxamers, poloxamines, poly(ortho)esters, poly(butyric acid), poly(valeric acid), poly(lactide-co-caprolactone), trimethylene carbonate, poly(N-acryloylmorpholine) (PAcM), poly(2-methyl-2-oxazoline) (PMOX), poly(2-ethyl-2-oxazoline) (PEOZ), and polyglycerol.

[00437] Surface altering agents may include, but are not limited to, anionic proteins (e.g., bovine serum albumin), surfactants (e.g., cationic surfactants such as dimethyldioctadecyl-ammonium bromide), sugars or sugar derivatives (e.g., cyclodextrin), nucleic acids, polymers (e.g., heparin, polyethylene glycol, and poloxamers), mucolytic agents (e.g., acetylcysteine, mugwort, bromelain, papain, clerodendrum, bromhexine, carbocisteine, eprazinone, mesna, ambroxol, sobrerol, domiodol, letosteine, stepronin, tiopronin, gelsolin, thymosin β4, dornase alfa, neltenexine, and erdosteine), and DNases (e.g., rhDNase). A surface altering agent may be disposed within a nanoparticle and/or on the surface of a LNP (e.g., by coating, adsorption, covalent linkage, or other process).

[00438] A LNP may also comprise one or more functionalized lipids. For example, a lipid may be functionalized with an alkyne group that, when exposed to an azide under appropriate reaction conditions, may undergo a cycloaddition reaction. In particular, a lipid bilayer may be functionalized in this fashion with one or more groups useful in facilitating membrane permeation, cellular recognition, or imaging. The surface of a LNP may also be conjugated with one or more useful antibodies. Functional groups and conjugates useful in targeted cell delivery, imaging, and membrane permeation are well known in the art.

[00439] In addition to these components, lipid nanoparticles may include any substance useful in pharmaceutical compositions. For example, the lipid nanoparticle may include one or more pharmacologically acceptable excipients or accessory ingredients such as, but not limited to, one or more solvents, dispersion media, diluents, dispersion aids, suspension aids, granulating aids, disintegrants, fillers, glidants, liquid vehicles, binders, surface active agents, isotonic agents,
thickening or emulsifying agents, buffering agents, lubricating agents, oils, preservatives, and other species. Excipients such as waxes, butters, coloring agents, coating agents, flavorings, and perfuming agents may also be included. Pharmaceutically acceptable excipients are well known in the art (see for example Remington's *The Science and Practice of Pharmacy*, 21st Edition, A. R. Gennaro; Lippincott, Williams & Wilkins, Baltimore, MD, 2006).

[00440] Examples of diluents may include, but are not limited to, calcium carbonate, sodium carbonate, calcium phosphate, dicalcium phosphate, calcium sulfate, calcium hydrogen phosphate, sodium phosphate lactose, sucrose, cellulose, microcrystalline cellulose, kaolin, mannitol, sorbitol, inositol, sodium chloride, dry starch, cornstarch, powdered sugar, and/or combinations thereof. Granulating and dispersing agents may be selected from the non-limiting list consisting of potato starch, corn starch, tapioca starch, sodium starch glycolate, clays, alginic acid, guar gum, citrus pulp, agar, bentonite, cellulose and wood products, natural sponge, cation-exchange resins, calcium carbonate, silicates, sodium carbonate, cross-linked poly(vinyl-pyrrolidone) (crospovidone), sodium carboxymethyl starch (sodium starch glycolate), carboxymethyl cellulose, cross-linked sodium carboxymethyl cellulose (crocarmellose), methylcellulose, pregelatinized starch (starch 1500), microcrystalline starch, water insoluble starch, calcium carboxymethyl cellulose, magnesium aluminum silicate (VEEGUM®), sodium lauryl sulfate, quaternary ammonium compounds, and/or combinations thereof.

[00441] Surface active agents and/or emulsifiers may include, but are not limited to, natural emulsifiers (e.g., acacia, agar, alginic acid, sodium alginate, tragacanth, chondrux, cholesterol, xanthan, pectin, gelatin, egg yolk, casein, wool fat, cholesterol, wax, and lecithin), colloidal clays (e.g., bentonite [aluminum silicate] and VEEGUM® [magnesium aluminum silicate]), long chain amino acid derivatives, high molecular weight alcohols (e.g., stearyl alcohol, cetyl alcohol, oleyl alcohol, triacetin monostearate, ethylene glycol distearate, glyceryl monostearate, and propylene glycol monostearate, polyvinyl alcohol), carbomers (e.g., carboxy polymethylene, polyacrylic acid, acrylic acid polymer, and carboxyvinyl polymer), carrageenan, cellulosic derivatives (e.g., carboxymethylcellulose sodium, powdered cellulose, hydroxymethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, methylcellulose), sorbitan fatty acid esters (e.g., polyoxyethylene sorbitan monolaurate [TWEEN®20], polyoxyethylene sorbitan [TWEEN® 60], polyoxyethylene sorbitan monooleate [TWEEN®80], sorbitan monopalmitate [SPAN®40], sorbitan monostearate [SPAN®60], sorbitan tristearate [SPAN®65], glyceryl monooleate, sorbitan monooleate [SPAN®80]), polyoxyethylene esters (e.g., polyoxyethylene monostearate [MYRJ®
45], polyoxyethylene hydrogenated castor oil, polyethoxylated castor oil, polyoxymethylene stearate, and SOLUTOL®), sucrose fatty acid esters, polyethylene glycol fatty acid esters (e.g., CREMOPHOR®), polyoxyethylene ethers, (e.g., polyoxyethylene lauryl ether [BRIJ® 30]), poly(vinyl-pyrrolidone), diethylene glycol monolaurate, triethanolamine oleate, sodium oleate, potassium oleate, ethyl oleate, oleic acid, ethyl laurate, sodium lauryl sulfate, PLURONIC®F 68, POLOXAMER® 188, cetrimonium bromide, cetylpyridinium chloride, benzalkonium chloride, docusate sodium, and/or combinations thereof.

A binding agent may be starch (e.g., cornstarch and starch paste); gelatin; sugars (e.g., sucrose, glucose, dextrose, dextrin, molasses, lactose, lactitol, mannitol); natural and synthetic gums (e.g., acacia, sodium alginate, extract of Irish moss, panwar gum, ghatti gum, mucilage of isapol husks, carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, microcrystalline cellulose, cellulose acetate, poly(vinyl-pyrrolidone), magnesium aluminum silicate (VEEGUM®), and larch arabogalactan); alginates; polyethylene oxide; polyethylene glycol; inorganic calcium salts; silicic acid; polymethacrylates; waxes; water; alcohol; and combinations thereof, or any other suitable binding agent.

Examples of preservatives may include, but are not limited to, antioxidants, chelating agents, antimicrobial preservatives, antifungal preservatives, alcohol preservatives, acidic preservatives, and/or other preservatives. Examples of antioxidants include, but are not limited to, alpha tocopherol, ascorbic acid, acorbyl palmitate, butylated hydroxyanisole, butylated hydroxytoluene, monothioglycerol, potassium metabisulfite, propionic acid, propyl gallate, sodium ascorbate, sodium bisulfite, sodium metabisulfite, and/or sodium sulfate. Examples of chelating agents include ethylenediaminetetraacetic acid (EDTA), citric acid monohydrate, disodium edetate, dipotassium edetate, edetic acid, fumaric acid, malic acid, phosphoric acid, sodium edetate, tartaric acid, and/or trisodium edetate. Examples of antimicrobial preservatives include, but are not limited to, benzalkonium chloride, benzethonium chloride, benzyl alcohol, bronopol, cetrimide, cetylpyridinium chloride, chlorhexidine, chlorobutanol, chlorocresol, chloroxylenol, cresol, ethyl alcohol, glycerin, hexetidine, imidurea, phenol, phenoxyethanol, phenylethyl alcohol, phenylmercuric nitrate, propylene glycol, and/or thimerosal. Examples of antifungal preservatives include, but are not limited to, butyl paraben, methyl paraben, ethyl paraben, propyl paraben, benzoic acid, hydroxybenzoic acid, potassium benzoate, potassium sorbate, sodium benzoate, sodium propionate, and/or sorbic acid. Examples of alcohol preservatives include, but are not
limited to, ethanol, polyethylene glycol, benzyl alcohol, phenol, phenolic compounds, bisphenol, chlorobutanol, hydroxybenzoate, and/or phenylethyl alcohol. Examples of acidic preservatives include, but are not limited to, vitamin A, vitamin C, vitamin E, beta-carotene, citric acid, acetic acid, dehydroascorbic acid, ascorbic acid, sorbic acid, and/or phytic acid. Other preservatives include, but are not limited to, tocopherol, tocopherol acetate, deteroxime mesylate, cetrimide, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), ethylenediamine, sodium lauryl sulfate (SLS), sodium lauryl ether sulfate (SLES), sodium bisulfite, sodium metabisulfite, potassium sulfite, potassium metabisulfite, GLYDANT PLUS®, PHENONIP®, methylparaben, GERMALL® 115, GERMABEN®II, NEOLONE™, KATHON™, and/or EUXYL®.

[00444] Examples of buffering agents include, but are not limited to, citrate buffer solutions, acetate buffer solutions, phosphate buffer solutions, ammonium chloride, calcium carbonate, calcium chloride, calcium citrate, calcium gluconate, calcium gluceptate, calcium glucinate, d-gluconic acid, calcium glycerophosphate, calcium lactate, calcium lactobionate, propanoic acid, calcium levulinate, pentanoic acid, dibasic calcium phosphate, phosphoric acid, tribasic calcium phosphate, calcium hydroxide phosphate, potassium acetate, potassium chloride, potassium gluconate, potassium mixtures, dibasic potassium phosphate, monobasic potassium phosphate, potassium phosphate mixtures, sodium acetate, sodium bicarbonate, sodium chloride, sodium citrate, sodium lactate, dibasic sodium phosphate, monobasic sodium phosphate, sodium phosphate mixtures, tromethamine, amino-sulfonate buffers (e.g., HEPES), magnesium hydroxide, aluminum hydroxide, alginate, pyrogen-free water, isotonic saline, Ringer's solution, ethyl alcohol, and/or combinations thereof. Lubricating agents may selected from the non-limiting group consisting of magnesium stearate, calcium stearate, stearic acid, silica, talc, malt, glyceryl behenate, hydrogenated vegetable oils, polyethylene glycol, sodium benzoate, sodium acetate, sodium chloride, leucine, magnesium lauryl sulfate, sodium lauryl sulfate, and combinations thereof.

[00445] Examples of oils include, but are not limited to, almond, apricot kernel, avocado, babassu, bergamot, black current seed, borage, cade, camomile, canola, caraway, carnauba, castor, cinnamon, cocoa butter, coconut, cod liver, coffee, corn, cotton seed, emu, eucalyptus, evening primrose, fish, flaxseed, geraniol, gourd, grape seed, hazel nut, hyssop, isopropyl myristate, jojoba, kukui nut, lavandin, lavender, lemon, litsea cubeba, macadamia nut, mallow, mango seed, meadowfoam seed, mink, nutmeg, olive, orange, orange roughy, palm, palm kernel, peach kernel, peanut, poppy seed, pumpkin seed, rapeseed, rice bran, rosemary, safflower, sandalwood, sasquana, savoury, sea buckthorn, sesame, shea butter, silicone, soybean, sunflower, tea tree, thistle, tsubaki,
vetiver, walnut, and wheat germ oils as well as butyl stearate, caprylic triglyceride, capric triglyceride, cyclomethicone, diethyl sebacate, dimethicone 360, simethicone, isopropyl myristate, mineral oil, octyldodecanol, oleyl alcohol, silicone oil, and/or combinations thereof.

Formulations

[00446] The formulation of the disclosure includes a stabilizing agent and a plurality of LNPs to e.g., increase stability of a lipid nanoparticle. Lipid nanoparticles may include a lipid component and one or more additional components, such as a therapeutic and/or prophylactic. A LNP may be designed for one or more specific applications or targets. The elements of a LNP may be selected based on a particular application or target, and/or based on the efficacy, toxicity, expense, ease of use, availability, or other feature of one or more elements. Similarly, the particular formulation of a LNP may be selected for a particular application or target according to, for example, the efficacy and toxicity of particular combinations of elements. The efficacy and tolerability of a LNP formulation may be affected by the stability of the formulation.

[00447] The lipid component of a LNP may include, for example, a lipid according to Formula (I), (IA), (II), (Ha), (lib), (He), (lid) or (He), a phospholipid (such as an unsaturated lipid, e.g., DOPE or DSPC), a PEG lipid, and a structural lipid. The lipid component of a LNP may include, for example, a lipid according to Formula (I), (IA), (II), (Ha), (lib), (He), (lid) or (He), a phospholipid (such as an unsaturated lipid, e.g., DOPE or DSPC), and a structural lipid. The elements of the lipid component may be provided in specific fractions.

[00448] In some embodiments, the lipid component of a LNP includes a lipid according to Formula (I), (IA), (II), (Ila), (lib), (lie), (lid) or (He), a phospholipid, a PEG lipid, and a structural lipid. In certain embodiments, the lipid component of the lipid nanoparticle includes about 30 mol % to about 60 mol % compound of Formula (I), (IA), (II), (Ila), (lib), (lie), (lid) or (He), about 0 mol % to about 30 mol % phospholipid, about 18.5 mol % to about 48.5 mol % structural lipid, and about 0 mol % to about 10 mol % of PEG lipid, provided that the total mol % does not exceed 100%. In some embodiments, the lipid component of the lipid nanoparticle includes about 35 mol % to about 55 mol % compound of Formula (I), (IA), (II), (Ila), (lib), (lie), (lid) or (He), about 5 mol % to about 25 mol % phospholipid, about 30 mol % to about 40 mol % structural lipid, and about 0 mol % to about 10 mol % of PEG lipid. In a particular embodiment, the lipid component includes about 50 mol % said compound, about 10 mol % phospholipid, about 38.5 mol % structural lipid, and about 1.5 mol % of PEG lipid. In another particular embodiment, the lipid component
includes about 40 mol % said compound, about 20 mol % phospholipid, about 38.5 mol % structural lipid, and about 1.5 mol % of PEG lipid. In some embodiments, the phospholipid may be DOPE or DSPC. In other embodiments, the PEG lipid may be PEG-DMG and/or the structural lipid may be cholesterol.

[00449] Lipid nanoparticles may be designed for one or more specific applications or targets. For example, a LNP may be designed to deliver a therapeutic and/or prophylactic such as an RNA to a particular cell, tissue, organ, or system or group thereof in a mammal's body. Physiochemical properties of lipid nanoparticles may be altered in order to increase selectivity for particular bodily targets. For instance, particle sizes may be adjusted based on the fenestration sizes of different organs. The therapeutic and/or prophylactic included in a LNP may also be selected based on the desired delivery target or targets. For example, a therapeutic and/or prophylactic may be selected for a particular indication, condition, disease, or disorder and/or for delivery to a particular cell, tissue, organ, or system or group thereof (e.g., localized or specific delivery). In certain embodiments, a LNP may include an mRNA encoding a polypeptide of interest capable of being translated within a cell to produce the polypeptide of interest. Such a composition may be designed to be specifically delivered to a particular organ. In some embodiments, a composition may be designed to be specifically delivered to a mammalian liver.

[00450] The amount of a therapeutic and/or prophylactic in a LNP may depend on the size, composition, desired target and/or application, or other properties of the lipid nanoparticle as well as on the properties of the therapeutic and/or prophylactic. For example, the amount of an RNA useful in a LNP may depend on the size, sequence, and other characteristics of the RNA. The relative amounts of a therapeutic and/or prophylactic and other elements (e.g., lipids) in a LNP may also vary. In some embodiments, the wt/wt ratio of the lipid component to a therapeutic and/or prophylactic in a LNP may be from about 5:1 to about 60:1, such as 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, 11:1, 12:1, 13:1, 14:1, 15:1, 16:1, 17:1, 18:1, 19:1, 20:1, 25:1, 30:1, 35:1, 40:1, 45:1, 50:1, and 60:1. For example, the wt/wt ratio of the lipid component to a therapeutic and/or prophylactic may be from about 10:1 to about 40:1. In certain embodiments, the wt/wt ratio is about 20:1. The amount of a therapeutic and/or prophylactic in a LNP may, for example, be measured using absorption spectroscopy (e.g., ultraviolet-visible spectroscopy).

[00451] In some embodiments, a LNP includes one or more RNAs, and the one or more RNAs, lipids, and amounts thereof may be selected to provide a specific N:P ratio. The N:P ratio of the composition refers to the molar ratio of nitrogen atoms in one or more lipids to the number of
phosphate groups in an RNA. In general, a lower N:P ratio is preferred. The one or more RNA, lipids, and amounts thereof may be selected to provide an N:P ratio from about 2:1 to about 30:1, such as 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, 12:1, 14:1, 16:1, 18:1, 20:1, 22:1, 24:1, 26:1, 28:1, or 30:1. In certain embodiments, the N:P ratio may be from about 2:1 to about 8:1. In other embodiments, the N:P ratio is from about 5:1 to about 8:1. For example, the N:P ratio may be about 5.0:1, about 5.5:1, about 5.67:1, about 6.0:1, about 6.5:1, or about 7.0:1. For example, the N:P ratio may be about 5.67:1.

[00452] In some embodiments, the formulation including a stabilizing agent and a LNP may further includes a salt, such as a chloride salt.

[00453] In some embodiments, the formulation including a stabilizing agent and a LNP may further includes a sugar such as a disaccharide. In some embodiments, the formulation further includes a sugar but not a salt, such as a chloride salt.

Physical properties

[00454] The characteristics of a LNP may depend on the components thereof. For example, a LNP including cholesterol as a structural lipid may have different characteristics than a LNP that includes a different structural lipid. Similarly, the characteristics of a LNP may depend on the absolute or relative amounts of its components. For instance, a LNP including a higher molar fraction of a phospholipid may have different characteristics than a LNP including a lower molar fraction of a phospholipid. Characteristics may also vary depending on the method and conditions of preparation of the lipid nanoparticle.

[00455] Lipid nanoparticles may be characterized by a variety of methods. For example, microscopy (e.g., transmission electron microscopy or scanning electron microscopy) may be used to examine the morphology and size distribution of a LNP. Dynamic light scattering or potentiometry (e.g., potentiometric titrations) may be used to measure zeta potentials. Dynamic light scattering may also be utilized to determine particle sizes. Instruments such as the Zetasizer Nano ZS (Malvern Instruments Ltd, Malvern, Worcestershire, UK) may also be used to measure multiple characteristics of a LNP, such as particle size, polydispersity index, and zeta potential.

[00456] The mean size of a LNP may be between 10s of nm and 100s of nm, e.g., measured by dynamic light scattering (DLS). For example, the mean size may be from about 40 nm to about 150 nm, such as about 40 nm, 45 nm, 50 nm, 55 nm, 60 nm, 65 nm, 70 nm, 75 nm, 80 nm, 85 nm, 90 nm, 95 nm, 100 nm, 105 nm, 110 nm, 115 nm, 120 nm, 125 nm, 130 nm, 135 nm, 140 nm, 145 nm, or 150 nm. In some embodiments, the mean size of a LNP may be from about 50 nm to about 100
nm, from about 50 nm to about 90 nm, from about 50 nm to about 80 nm, from about 50 nm to about 70 nm, from about 50 nm to about 60 nm, from about 60 nm to about 100 nm, from about 60 nm to about 90 nm, from about 60 nm to about 80 nm, from about 60 nm to about 70 nm, from about 70 nm to about 100 nm, from about 70 nm to about 90 nm, from about 70 nm to about 80 nm, from about 80 nm to about 100 nm, from about 80 nm to about 90 nm, or from about 90 nm to about 100 nm. In certain embodiments, the mean size of a LNP may be from about 70 nm to about 100 nm. In a particular embodiment, the mean size may be about 80 nm. In other embodiments, the mean size may be about 100 nm.

A LNP may be relatively homogenous. A polydispersity index may be used to indicate the homogeneity of a LNP, e.g., the particle size distribution of the lipid nanoparticles. A small (e.g., less than 0.3) polydispersity index generally indicates a narrow particle size distribution. A LNP may have a polydispersity index from about 0 to about 0.25, such as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24, or 0.25. In some embodiments, the polydispersity index of a LNP may be from about 0.10 to about 0.20.

The zeta potential of a LNP may be used to indicate the electrokinetic potential of the composition. For example, the zeta potential may describe the surface charge of a LNP. Lipid nanoparticles with relatively low charges, positive or negative, are generally desirable, as more highly charged species may interact undesirably with cells, tissues, and other elements in the body. In some embodiments, the zeta potential of a LNP may be from about -10 mV to about +20 mV, from about -10 mV to about +15 mV, from about -10 mV to about +10 mV, from about -10 mV to about +5 mV, from about -10 mV to about 0 mV, from about -10 mV to about -5 mV, from about -5 mV to about +20 mV, from about -5 mV to about +15 mV, from about -5 mV to about +10 mV, from about -5 mV to about +5 mV, from about -5 mV to about 0 mV, from about 0 mV to about +20 mV, from about 0 mV to about +15 mV, from about 0 mV to about +10 mV, from about 0 mV to about +5 mV, from about +5 mV to about +20 mV, from about +5 mV to about +15 mV, or from about +5 mV to about +10 mV.

The efficiency of encapsulation of a therapeutic and/or prophylactic describes the amount of therapeutic and/or prophylactic that is encapsulated or otherwise associated with a LNP after preparation, relative to the initial amount provided. The encapsulation efficiency is desirably high (e.g., close to 100%). The encapsulation efficiency may be measured, for example, by comparing the amount of therapeutic and/or prophylactic in a solution containing the lipid nanoparticle before
and after breaking up the lipid nanoparticle with one or more organic solvents or detergents. Fluorescence may be used to measure the amount of free therapeutic and/or prophylactic (e.g., RNA) in a solution. For the lipid nanoparticles described herein, the encapsulation efficiency of a therapeutic and/or prophylactic may be at least 50%, for example 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%. In some embodiments, the encapsulation efficiency may be at least 80%. In certain embodiments, the encapsulation efficiency may be at least 90%.

Pharmaceutical compositions

A LNP may optionally comprise one or more coatings. For example, a LNP may be formulated in a capsule, film, or tablet having a coating. A capsule, film, or tablet including a composition described herein may have any useful size, tensile strength, hardness, or density.

Formulations comprising stabilizing agent(s) and lipid nanoparticles may be formulated in whole or in part as pharmaceutical compositions. Pharmaceutical compositions may include one or more stabilizing agents and one or more lipid nanoparticles. For example, a pharmaceutical composition may include one or more stabilizing agents and one or more lipid nanoparticles including one or more different therapeutics and/or prophylactics. Pharmaceutical compositions may further include one or more pharmaceutically acceptable excipients or accessory ingredients such as those described herein. General guidelines for the formulation and manufacture of pharmaceutical compositions and agents are available, for example, in Remington's *The Science and Practice of Pharmacy*, 21st Edition, A. R. Gennaro; Lippincott, Williams & Wilkins, Baltimore, MD, 2006. Conventional excipients and accessory ingredients may be used in any pharmaceutical composition, except insofar as any conventional excipient or accessory ingredient may be incompatible with one or more components of a LNP or the one or more stabilizing agents in the formulation of the disclosure. An excipient or accessory ingredient may be incompatible with a component of a LNP or the stabilizing agent of the formulation if its combination with the component or stabilizing agent may result in any undesirable biological effect or otherwise deleterious effect.

In some embodiments, one or more excipients or accessory ingredients may make up greater than 50% of the total mass or volume of a pharmaceutical composition including a LNP. For example, the one or more excipients or accessory ingredients may make up 50%, 60%, 70%, 80%, 90%, or more of a pharmaceutical convention. In some embodiments, a pharmaceutically acceptable excipient is at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%
pure. In some embodiments, an excipient is approved for use in humans and for veterinary use. In some embodiments, an excipient is approved by United States Food and Drug Administration. In some embodiments, an excipient is pharmaceutical grade. In some embodiments, an excipient meets the standards of the United States Pharmacopoeia (USP), the European Pharmacopoeia (EP), the British Pharmacopoeia, and/or the International Pharmacopoeia.

[00463] Relative amounts of the one or more stabilizing agents, the one or more lipid nanoparticles, the one or more pharmaceutically acceptable excipients, and/or any additional ingredients in a pharmaceutical composition in accordance with the present disclosure will vary, depending upon the identity, size, and/or condition of the subject treated and further depending upon the route by which the composition is to be administered. By way of example, a pharmaceutical composition may comprise between 0.1% and 100% (wt/wt) of one or more lipid nanoparticles. As another example, a pharmaceutical composition may comprise between 0.1% and 50% (wt/wt) of one or more stabilizing agents (e.g., 0.5%, 1%, 2.5%, 5%, 10%, or 12.5% w/w).

[00464] In certain embodiments, the lipid nanoparticles and/or pharmaceutical compositions of the disclosure are refrigerated or frozen for storage and/or shipment (e.g., being stored at a temperature of 4 °C or lower, such as a temperature between about -150 °C and about 0 °C or between about -80 °C and about -20 °C (e.g., about -5 °C, -10 °C, -15 °C, -20 °C, -25 °C, -30 °C, -40 °C, -50 °C, -60 °C, -70 °C, -80 °C, -90 °C, -130 °C or -150 °C). For example, the pharmaceutical composition comprising one or more stabilizing agents and one or more lipid nanoparticles is a solution or solid (e.g., via lyophilization) that is refrigerated for storage and/or shipment at, for example, about -20 °C, -30 °C, -40 °C, -50 °C, -60 °C, -70 °C, or -80 °C. In certain embodiments, the disclosure also relates to a method of increasing stability of the lipid nanoparticles by adding an effective amount of a stabilizing agent and by storing the lipid nanoparticles and/or pharmaceutical compositions thereof at a temperature of 4 °C or lower, such as a temperature between about -150 °C and about 0 °C or between about -80 °C and about -20 °C, e.g., about -5 °C, -10 °C, -15 °C, -20 °C, -25 °C, -30 °C, -40 °C, -50 °C, -60 °C, -70 °C, -80 °C, -90 °C, -130 °C or -150 °C).

[00465] Lipid nanoparticles and/or pharmaceutical compositions including one or more lipid nanoparticles may be administered to any patient or subject, including those patients or subjects that may benefit from a therapeutic effect provided by the delivery of a therapeutic and/or prophylactic to one or more particular cells, tissues, organs, or systems or groups thereof, such as the renal system. Although the descriptions provided herein of lipid nanoparticles and pharmaceutical
compositions including lipid nanoparticles are principally directed to compositions which are suitable for administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to any other mammal. Modification of compositions suitable for administration to humans in order to render the compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and/or perform such modification with merely ordinary, if any, experimentation. Subjects to which administration of the compositions is contemplated include, but are not limited to, humans, other primates, and other mammals, including commercially relevant mammals such as cattle, pigs, hoses, sheep, cats, dogs, mice, and/or rats.

A pharmaceutical composition including one or more lipid nanoparticles may be prepared by any method known or hereafter developed in the art of pharmacology. In general, such preparatory methods include bringing the active ingredient into association with an excipient and/or one or more other accessory ingredients, and then, if desirable or necessary, dividing, shaping, and/or packaging the product into a desired single- or multi-dose unit.

A pharmaceutical composition in accordance with the present disclosure may be prepared, packaged, and/or sold in bulk, as a single unit dose, and/or as a plurality of single unit doses. As used herein, a "unit dose" is discrete amount of the pharmaceutical composition comprising a predetermined amount of the active ingredient (e.g., lipid nanoparticle). The amount of the active ingredient is generally equal to the dosage of the active ingredient which would be administered to a subject and/or a convenient fraction of such a dosage such as, for example, one-half or one-third of such a dosage.

Pharmaceutical compositions may be prepared in a variety of forms suitable for a variety of routes and methods of administration. For example, pharmaceutical compositions may be prepared in liquid dosage forms (e.g., emulsions, microemulsions, nanoemulsions, solutions, suspensions, syrups, and elixirs), injectable forms, solid dosage forms (e.g., capsules, tablets, pills, powders, and granules), dosage forms for topical and/or transdermal administration (e.g., ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants, and patches), suspensions, powders, and other forms.

Liquid dosage forms for oral and parenteral administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, nanoemulsions, solutions, suspensions, syrups, and/or elixirs. In addition to active ingredients, liquid dosage forms may comprise inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents
and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, oral compositions can include additional therapeutics and/or prophylactics, additional agents such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and/or perfuming agents. In certain embodiments for parenteral administration, compositions are mixed with solubilizing agents such as Cremophor®, alcohols, oils, modified oils, glycols, polysorbates, cyclodextrins, polymers, and/or combinations thereof.

Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing agents, wetting agents, and/or suspending agents. Sterile injectable preparations may be sterile injectable solutions, suspensions, and/or emulsions in nontoxic parenterally acceptable diluents and/or solvents, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S.P., and isotonic sodium chloride solution. Sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or diglycerides. Fatty acids such as oleic acid can be used in the preparation of injectables.

Injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, and/or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.

In order to prolong the effect of an active ingredient, it is often desirable to slow the absorption of the active ingredient from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle. Injectable depot forms are made by forming microencapsulated matrices of the drug in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and
poly(anhydrides). Depot injectable formulations are prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissues.

[00473] Compositions for rectal or vaginal administration are typically suppositories which can be prepared by mixing compositions with suitable non-irritating excipients such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active ingredient.

[00474] Solid dosage forms for oral administration include capsules, tablets, pills, films, powders, and granules. In such solid dosage forms, an active ingredient is mixed with at least one inert, pharmaceutically acceptable excipient such as sodium citrate or dicalcium phosphate and/or fillers or extenders (e.g., starches, lactose, sucrose, glucose, mannitol, and silicic acid), binders (e.g., carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidone, sucrose, and acacia), humectants (e.g., glycerol), disintegrating agents (e.g., agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate), solution retarding agents (e.g., paraffin), absorption accelerators (e.g., quaternary ammonium compounds), wetting agents (e.g., cetyl alcohol and glycerol monostearate), absorbents (e.g., kaolin and bentonite clay, silicates), and lubricants (e.g., talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate), and mixtures thereof. In the case of capsules, tablets and pills, the dosage form may comprise buffering agents.

[00475] Solid compositions of a similar type may be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like. Solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally comprise opacifying agents and can be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes. Solid compositions of a similar type may be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.

[00476] Dosage forms for topical and/or transdermal administration of a composition may include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants, and/or patches. Generally, an active ingredient is admixed under sterile conditions with a pharmaceutically acceptable excipient and/or any needed preservatives and/or buffers as may be required.
Additionally, the present disclosure contemplates the use of transdermal patches, which often have the added advantage of providing controlled delivery of a compound to the body. Such dosage forms may be prepared, for example, by dissolving and/or dispensing the compound in the proper medium. Alternatively or additionally, rate may be controlled by either providing a rate controlling membrane and/or by dispersing the compound in a polymer matrix and/or gel.

[00477] Suitable devices for use in delivering intradermal pharmaceutical compositions described herein include short needle devices such as those described in U.S. Patents 4,886,499; 5,190,521; 5,328,483; 5,527,288; 4,270,537; 5,015,235; 5,141,496; and 5,417,662. Intradermal compositions may be administered by devices which limit the effective penetration length of a needle into the skin, such as those described in PCT publication WO 99/34850 and functional equivalents thereof. Jet injection devices which deliver liquid compositions to the dermis via a liquid jet injector and/or via a needle which pierces the stratum corneum and produces a jet which reaches the dermis are suitable. Jet injection devices are described, for example, in U.S. Patents 5,480,381; 5,599,302; 5,334,144; 5,993,412; 5,649,912; 5,569,189; 5,704,911; 5,383,851; 5,893,397; 5,466,220; 5,339,163; 5,312,335; 5,503,627; 5,064,413; 5,520,639; 4,596,556; 4,790,824; 4,941,880; 4,940,460; and PCT publications WO 97/37705 and WO 97/13537. Ballistic powder/particle delivery devices which use compressed gas to accelerate vaccine in powder form through the outer layers of the skin to the dermis are suitable. Alternatively or additionally, conventional syringes may be used in the classical mantoux method of intradermal administration.

[00478] Formulations suitable for topical administration include, but are not limited to, liquid and/or semi liquid preparations such as liniments, lotions, oil in water and/or water in oil emulsions such as creams, ointments and/or pastes, and/or solutions and/or suspensions. Topically-administrable formulations may, for example, comprise from about 1% to about 10% (wt/wt) active ingredient, although the concentration of active ingredient may be as high as the solubility limit of the active ingredient in the solvent. Formulations for topical administration may further comprise one or more of the additional ingredients described herein.

[00479] A pharmaceutical composition may be prepared, packaged, and/or sold in a formulation suitable for pulmonary administration via the buccal cavity. Such a formulation may comprise dry particles which comprise the active ingredient. Such compositions are conveniently in the form of dry powders for administration using a device comprising a dry powder reservoir to which a stream of propellant may be directed to disperse the powder and/or using a self-propelling solvent/powder dispensing container such as a device comprising the active ingredient dissolved and/or suspended
in a low-boiling propellant in a sealed container. Dry powder compositions may include a solid fine powder diluent such as sugar and are conveniently provided in a unit dose form.

[00480] Low boiling propellants generally include liquid propellants having a boiling point of below 65 °F at atmospheric pressure. Generally the propellant may constitute 50% to 99.9% (wt/wt) of the composition, and active ingredient may constitute 0.1% to 20% (wt/wt) of the composition. A propellant may further comprise additional ingredients such as a liquid non-ionic and/or solid anionic surfactant and/or a solid diluent (which may have a particle size of the same order as particles comprising the active ingredient).

[00481] Pharmaceutical compositions formulated for pulmonary delivery may provide an active ingredient in the form of droplets of a solution and/or suspension. Such formulations may be prepared, packaged, and/or sold as aqueous and/or dilute alcoholic solutions and/or suspensions, optionally sterile, comprising active ingredient, and may conveniently be administered using any nebulization and/or atomization device. Such formulations may further comprise one or more additional ingredients including, but not limited to, a flavoring agent such as saccharin sodium, a volatile oil, a buffering agent, a surface active agent, and/or a preservative such as methylhydroxybenzoate. Droplets provided by this route of administration may have an average diameter in the range from about 1 nm to about 200 nm.

[00482] Formulations described herein as being useful for pulmonary delivery are useful for intranasal delivery of a pharmaceutical composition. Another formulation suitable for intranasal administration is a coarse powder comprising the active ingredient and having an average particle from about 0.2 µm to 500 µm. Such a formulation is administered in the manner in which snuff is taken, i.e. by rapid inhalation through the nasal passage from a container of the powder held close to the nose.

[00483] Formulations suitable for nasal administration may, for example, comprise from about as little as 0.1% (wt/wt) and as much as 100% (wt/wt) of active ingredient, and may comprise one or more of the additional ingredients described herein. A pharmaceutical composition may be prepared, packaged, and/or sold in a formulation suitable for buccal administration. Such formulations may, for example, be in the form of tablets and/or lozenges made using conventional methods, and may, for example, 0.1% to 20% (wt/wt) active ingredient, the balance comprising an orally dissolvable and/or degradable composition and, optionally, one or more of the additional ingredients described herein. Alternately, formulations suitable for buccal administration may comprise a powder and/or an aerosolized and/or atomized solution and/or suspension comprising
active ingredient. Such powdered, aerosolized, and/or aerosolized formulations, when dispersed, may have an average particle and/or droplet size in the range from about 0.1 nm to about 200 nm, and may further comprise one or more of any additional ingredients described herein.

A pharmaceutical composition may be prepared, packaged, and/or sold in a formulation suitable for ophthalmic administration. Such formulations may, for example, be in the form of eye drops including, for example, a 0.1/1.0% (wt/wt) solution and/or suspension of the active ingredient in an aqueous or oily liquid excipient. Such drops may further comprise buffering agents, salts, and/or one or more other of any additional ingredients described herein. Other ophthalmically-administrable formulations which are useful include those which comprise the active ingredient in microcrystalline form and/or in a liposomal preparation. Ear drops and/or eye drops are contemplated as being within the scope of this present disclosure.

Methods of stabilizing a LNP formulation and Methods of Screening

The present disclosure provides methods of stabilizing a LNP formulation by, e.g., mitigating degradation of lipid nanoparticles in a lipid nanoparticle (LNP) formulation. The method comprises adding an stabilizing agent to a first LNP formulation to form a second LNP formulation before or during storage -20 °C or lower or before a freeze/thaw cycle, wherein each of the LNPs comprises an ionizable lipid and a structural lipid, and the stabilizing agent comprises a cryoprotectant, a chelator, an antioxidant, or any combination thereof.

In still another aspect, the disclosure features a method of producing a stabilized lipid nanoparticle (LNP) formulation, comprising mixing a stabilizing agent with a first LNP formulation to form a second LNP formulation, wherein each of the LNPs comprises an ionizable lipid and a structural lipid, and the stabilizing agent comprises a cryoprotectant, a chelator, an antioxidant, or any combination thereof such that the stabilizing agent mitigates degradation of the LNPs or a subpopulation thereof.

Also disclosed is a method of screening for a stabilizing agent for mitigating degradation of lipid nanoparticles in a lipid nanoparticle (LNP) formulation, the method comprising:

(a) providing a first LNP formulation absent a stabilizing agent and a second LNP formulation comprising the stabilizing agent, wherein the first and second LNP formulations are identical except for the stabilizing agent and each of the LNPs in the first and second LNP formulations comprises an ionizable lipid and a structural lipid;
(b) determining the degradation of the LNPs in the first and second LNP formulations upon storage at about -20 °C or lower for a period of time or upon one or more freeze/thaw cycles; and

(c) selecting the stabilizing agent if the degradation of the second LNP formulation is less than that of the first LNP formulation.

Any of the methods disclosed herein may include one or more of the features described for the formulations herein and one or more of the following features.

For example, the second LNP formulation has substantially no increase in LNP mean size as compared to the first LNP formulation. For example, the second LNP formulation has an increase in LNP mean size of about 20% or less (e.g., about 15%, about 10%, about 5% or less) as compared to the first LNP formulation.

For example, the second LNP formulation has substantially no increase in polydispersity index as compared to the first LNP formulation.

For example, the second LNP formulation has an increase in polydispersity index of about 20% or less (e.g., about 15%, about 10%, about 5% or less) as compared to the first LNP formulation.

For example, the second LNP formulation has substantially no increase in turbidity as compared to the first LNP formulation. For example, the second LNP formulation has an increase in turbidity of about 20% or less (e.g., about 15%, about 10%, about 5% or less) as compared to the first LNP formulation.

For example, the method of screening also includes a filtration step and a dilution step before determining the degradation of the first and second LNP formulations, e.g., via DLS. For example, a rapid screening method is illustrated in Figure 9.

Methods of producing polypeptides in cells

The present disclosure provides methods of producing a polypeptide of interest in a mammalian cell. Methods of producing polypeptides involve contacting a cell with a formulation of the disclosure comprising a LNP including an mRNA encoding the polypeptide of interest. Upon contacting the cell with the lipid nanoparticle, the mRNA may be taken up and translated in the cell to produce the polypeptide of interest.

In general, the step of contacting a mammalian cell with a LNP including an mRNA encoding a polypeptide of interest may be performed in vivo, ex vivo, in culture, or in vitro. The
amount of lipid nanoparticle contacted with a cell, and/or the amount of mRNA therein, may depend on the type of cell or tissue being contacted, the means of administration, the physiochemical characteristics of the lipid nanoparticle and the mRNA (e.g., size, charge, and chemical composition) therein, and other factors. In general, an effective amount of the lipid nanoparticle will allow for efficient polypeptide production in the cell. Metrics for efficiency may include polypeptide translation (indicated by polypeptide expression), level of mRNA degradation, and immune response indicators.

[00496] The step of contacting a LNP including an mRNA with a cell may involve or cause transfection. A phospholipid including in the lipid component of a LNP may facilitate transfection and/or increase transfection efficiency, for example, by interacting and/or fusing with a cellular or intracellular membrane. Transfection may allow for the translation of the mRNA within the cell.

[00497] In some embodiments, the lipid nanoparticles described herein may be used therapeutically. For example, an mRNA included in a LNP may encode a therapeutic polypeptide (e.g., in a translatable region) and produce the therapeutic polypeptide upon contacting and/or entry (e.g., transfection) into a cell. In other embodiments, an mRNA included in a LNP may encode a polypeptide that may improve or increase the immunity of a subject. For example, an mRNA may encode a granulocyte-colony stimulating factor or trastuzumab.

[00498] In certain embodiments, an mRNA included in a LNP may encode a recombinant polypeptide that may replace one or more polypeptides that may be substantially absent in a cell contacted with the lipid nanoparticle. The one or more substantially absent polypeptides may be lacking due to a genetic mutation of the encoding gene or a regulatory pathway thereof. Alternatively, a recombinant polypeptide produced by translation of the mRNA may antagonize the activity of an endogenous protein present in, on the surface of, or secreted from the cell. An antagonistic recombinant polypeptide may be desirable to combat deleterious effects caused by activities of the endogenous protein, such as altered activities or localization caused by mutation. In another alternative, a recombinant polypeptide produced by translation of the mRNA may indirectly or directly antagonize the activity of a biological moiety present in, on the surface of, or secreted from the cell. Antagonized biological moieties may include, but are not limited to, lipids (e.g., cholesterol), lipoproteins (e.g., low density lipoprotein), nucleic acids, carbohydrates, and small molecule toxins. Recombinant polypeptides produced by translation of the mRNA may be engineered for localization within the cell, such as within a specific compartment such as the
nucleus, or may be engineered for secretion from the cell or for translocation to the plasma membrane of the cell.

[00499] In some embodiments, contacting a cell with a LNP including an mRNA may reduce the innate immune response of a cell to an exogenous nucleic acid. A cell may be contacted with a first lipid nanoparticle including a first amount of a first exogenous mRNA including a translatable region and the level of the innate immune response of the cell to the first exogenous mRNA may be determined. Subsequently, the cell may be contacted with a second composition including a second amount of the first exogenous mRNA, the second amount being a lesser amount of the first exogenous mRNA compared to the first amount. Alternatively, the second composition may include a first amount of a second exogenous mRNA that is different from the first exogenous mRNA. The steps of contacting the cell with the first and second compositions may be repeated one or more times. Additionally, efficiency of polypeptide production (e.g., translation) in the cell may be optionally determined, and the cell may be re-contacted with the first and/or second composition repeatedly until a target protein production efficiency is achieved.

Methods of delivering therapeutic agents to cells and organs

[00500] The present disclosure provides methods of delivering a therapeutic and/or prophylactic to a mammalian cell or organ. Delivery of a therapeutic and/or prophylactic to a cell involves administering a formulation of the disclosure that comprises a LNP including the therapeutic and/or prophylactic to a subject, where administration of the composition involves contacting the cell with the composition. For example, a protein, cytotoxic agent, radioactive ion, chemotherapeutic agent, or nucleic acid (such as an RNA, e.g., mRNA) may be delivered to a cell or organ. In the instance that a therapeutic and/or prophylactic is an mRNA, upon contacting a cell with the lipid nanoparticle, a translatable mRNA may be translated in the cell to produce a polypeptide of interest. However, mRNAs that are substantially not translatable may also be delivered to cells. Substantially non-translatable mRNAs may be useful as vaccines and/or may sequester translational components of a cell to reduce expression of other species in the cell.

[00501] In some embodiments, a LNP may target a particular type or class of cells (e.g., cells of a particular organ or system thereof). For example, a LNP including a therapeutic and/or prophylactic of interest may be specifically delivered to a mammalian liver, kidney, spleen, femur, or lung. Specific delivery to a particular class of cells, an organ, or a system or group thereof implies that a higher proportion of lipid nanoparticles including a therapeutic and/or prophylactic are delivered to
the destination (e.g., tissue) of interest relative to other destinations, e.g., upon administration of a LNP to a mammal. In some embodiments, specific delivery may result in a greater than 2 fold, 5 fold, 10 fold, 15 fold, or 20 fold increase in the amount of therapeutic and/or prophylactic per 1 g of tissue of the targeted destination (e.g., tissue of interest, such as a liver) as compared to another destination (e.g., the spleen). In some embodiments, the tissue of interest is selected from the group consisting of a liver, kidney, a lung, a spleen, a femur, vascular endothelium in vessels (e.g., intra-coronary or intra-femoral) or kidney, and tumor tissue (e.g., via intratumoral injection).

[00502] As another example of targeted or specific delivery, an mRNA that encodes a protein-binding partner (e.g., an antibody or functional fragment thereof, a scaffold protein, or a peptide) or a receptor on a cell surface may be included in a LNP. An mRNA may additionally or instead be used to direct the synthesis and extracellular localization of lipids, carbohydrates, or other biological moieties. Alternatively, other therapeutics and/or prophylactics or elements (e.g., lipids or ligands) of a LNP may be selected based on their affinity for particular receptors (e.g., low density lipoprotein receptors) such that a LNP may more readily interact with a target cell population including the receptors. For example, ligands may include, but are not limited to, members of a specific binding pair, antibodies, monoclonal antibodies, Fv fragments, single chain Fv (scFv) fragments, Fab' fragments, F(ab')2 fragments, single domain antibodies, camelized antibodies and fragments thereof, humanized antibodies and fragments thereof, and multivalent versions thereof; multivalent binding reagents including mono- or bi-specific antibodies such as disulfide stabilized Fv fragments, scFv tandems, diabodies, tribodies, or tetrabodies; and aptamers, receptors, and fusion proteins.

[00503] In some embodiments, a ligand may be a surface-bound antibody, which can permit tuning of cell targeting specificity. This is especially useful since highly specific antibodies can be raised against an epitope of interest for the desired targeting site. In one embodiment, multiple antibodies are expressed on the surface of a cell, and each antibody can have a different specificity for a desired target. Such approaches can increase the avidity and specificity of targeting interactions.

[00504] A ligand can be selected, e.g., by a person skilled in the biological arts, based on the desired localization or function of the cell. For example an estrogen receptor ligand, such as tamoxifen, can target cells to estrogen-dependent breast cancer cells that have an increased number of estrogen receptors on the cell surface. Other non-limiting examples of ligand/receptor interactions include CCR1 (e.g., for treatment of inflamed joint tissues or brain in rheumatoid
arthritis, and/or multiple sclerosis), CCR7, CCR8 (e.g., targeting to lymph node tissue), CCR6, CCR9, CCR10 (e.g., to target to intestinal tissue), CCR4, CCR10 (e.g., for targeting to skin), CXCR4 (e.g., for general enhanced transmigration), HCELL (e.g., for treatment of inflammation and inflammatory disorders, bone marrow), Alpha4beta7 (e.g., for intestinal mucosa targeting), and VLA-4NCAM-1 (e.g., targeting to endothelium). In general, any receptor involved in targeting (e.g., cancer metastasis) can be harnessed for use in the methods and compositions described herein.

[00505] Targeted cells may include, but are not limited to, hepatocytes, epithelial cells, hematopoietic cells, epithelial cells, endothelial cells, lung cells, bone cells, stem cells, mesenchymal cells, neural cells, cardiac cells, adipocytes, vascular smooth muscle cells, cardiomyocytes, skeletal muscle cells, beta cells, pituitary cells, synovial lining cells, ovarian cells, testicular cells, fibroblasts, B cells, T cells, reticulocytes, leukocytes, granulocytes, and tumor cells.

[00506] In some embodiments, a LNP may target hepatocytes. Apolipoproteins such as apolipoprotein E (apoE) have been shown to associate with neutral or near neutral lipid-containing lipid nanoparticles in the body, and are known to associate with receptors such as low-density lipoprotein receptors (LDLRs) found on the surface of hepatocytes. Thus, a LNP including a lipid component with a neutral or near neutral charge that is administered to a subject may acquire apoE in a subject's body and may subsequently deliver a therapeutic and/or prophylactic (e.g., an RNA) to hepatocytes including LDLRs in a targeted manner.

Methods of treating diseases and disorders

[00507] Lipid nanoparticles may be useful for treating a disease, disorder, or condition. In particular, such compositions may be useful in treating a disease, disorder, or condition characterized by missing or aberrant protein or polypeptide activity. For example, a formulation of the disclosure that comprises a LNP including an mRNA encoding a missing or aberrant polypeptide may be administered or delivered to a cell. Subsequent translation of the mRNA may produce the polypeptide, thereby reducing or eliminating an issue caused by the absence of or aberrant activity caused by the polypeptide. Because translation may occur rapidly, the methods and compositions may be useful in the treatment of acute diseases, disorders, or conditions such as sepsis, stroke, and myocardial infarction. A therapeutic and/or prophylactic included in a LNP may also be capable of altering the rate of transcription of a given species, thereby affecting gene expression.

[00508] Diseases, disorders, and/or conditions characterized by dysfunctional or aberrant protein or polypeptide activity for which a composition may be administered include, but are not limited to,
rare diseases, infectious diseases (as both vaccines and therapeutics), cancer and proliferative
diseases, genetic diseases (e.g., cystic fibrosis), autoimmune diseases, diabetes, neurodegenerative
diseases, cardio- and reno-vascular diseases, and metabolic diseases. Multiple diseases, disorders,
and/or conditions may be characterized by missing (or substantially diminished such that proper
protein function does not occur) protein activity. Such proteins may not be present, or they may be
essentially non-functional. A specific example of a dysfunctional protein is the missense mutation
variants of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which produce a
dysfunctional protein variant of CFTR protein, which causes cystic fibrosis. The present disclosure
provides a method for treating such diseases, disorders, and/or conditions in a subject by
administering a LNP including an RNA and a lipid component including a lipid according to
Formula (I), a phospholipid (optionally unsaturated), a PEG lipid, and a structural lipid, wherein the
RNA may be an mRNA encoding a polypeptide that antagonizes or otherwise overcomes an
aberrant protein activity present in the cell of the subject.

[00509] The disclosure provides methods involving administering lipid nanoparticles including
one or more therapeutic and/or prophylactic agents and pharmaceutical compositions including the
same. The terms therapeutic and prophylactic can be used interchangeably herein with respect to
features and embodiments of the present disclosure. Therapeutic compositions, or imaging,
diagnostic, or prophylactic compositions thereof, may be administered to a subject using any
reasonable amount and any route of administration effective for preventing, treating, diagnosing, or
imaging a disease, disorder, and/or condition and/or any other purpose. The specific amount
administered to a given subject may vary depending on the species, age, and general condition of the
subject; the purpose of the administration; the particular composition; the mode of administration;
and the like. Compositions in accordance with the present disclosure may be formulated in dosage
unit form for ease of administration and uniformity of dosage. It will be understood, however, that
the total daily usage of a composition of the present disclosure will be decided by an attending
physician within the scope of sound medical judgment. The specific therapeutically effective,
prophylactically effective, or otherwise appropriate dose level (e.g., for imaging) for any particular
patient will depend upon a variety of factors including the severity and identify of a disorder being
treated, if any; the one or more therapeutics and/or prophylactics employed; the specific composition
employed; the age, body weight, general health, sex, and diet of the patient; the time of
administration, route of administration, and rate of excretion of the specific pharmaceutical
composition employed; the duration of the treatment; drugs used in combination or coincidental
with the specific pharmaceutical composition employed; and like factors well known in the medical arts.

[00510] A LNP including one or more therapeutics and/or prophylactics may be administered by any route. In some embodiments, compositions, including prophylactic, diagnostic, or imaging compositions including one or more lipid nanoparticles described herein, are administered by one or more of a variety of routes, including oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, subcutaneous, intraventricular, trans- or intra-dermal, interdermal, rectal, intravaginal, intraperitoneal, topical (e.g., by powders, ointments, creams, gels, lotions, and/or drops), mucosal, nasal, buccal, enteral, vitreal, intratumoral, sublingual, intranasal; by intratracheal instillation, bronchial instillation, and/or inhalation; as an oral spray and/or powder, nasal spray, and/or aerosol, and/or through a portal vein catheter. In some embodiments, a composition may be administered intravenously, intramuscularly, intradermally, intra-arterially, intratumorally, subcutaneously, or by inhalation. However, the present disclosure encompasses the delivery or administration of compositions described herein by any appropriate route taking into consideration likely advances in the sciences of drug delivery. In general, the most appropriate route of administration will depend upon a variety of factors including the nature of the lipid nanoparticle including one or more therapeutics and/or prophylactics (e.g., its stability in various bodily environments such as the bloodstream and gastrointestinal tract), the condition of the patient (e.g., whether the patient is able to tolerate particular routes of administration), etc.

[00511] In certain embodiments, compositions in accordance with the present disclosure may be administered at dosage levels sufficient to deliver from about 0.0001 mg/kg to about 10 mg/kg, from about 0.001 mg/kg to about 10 mg/kg, from about 0.005 mg/kg to about 10 mg/kg, from about 0.01 mg/kg to about 10 mg/kg, from about 0.05 mg/kg to about 10 mg/kg, from about 0.1 mg/kg to about 10 mg/kg, from about 1 mg/kg to about 10 mg/kg, from about 2 mg/kg to about 10 mg/kg, from about 5 mg/kg to about 10 mg/kg, from about 0.0001 mg/kg to about 5 mg/kg, from about 0.001 mg/kg to about 5 mg/kg, from about 0.005 mg/kg to about 5 mg/kg, from about 0.01 mg/kg to about 5 mg/kg, from about 0.05 mg/kg to about 5 mg/kg, from about 0.1 mg/kg to about 5 mg/kg, from about 1 mg/kg to about 5 mg/kg, from about 2 mg/kg to about 5 mg/kg, from about 0.0001 mg/kg to about 2.5 mg/kg, from about 0.001 mg/kg to about 2.5 mg/kg, from about 0.005 mg/kg to about 2.5 mg/kg, from about 0.01 mg/kg to about 2.5 mg/kg, from about 0.05 mg/kg to about 2.5 mg/kg, from about 0.1 mg/kg to about 2.5 mg/kg, from about 1 mg/kg to about 2.5 mg/kg, from about 2 mg/kg to about 2.5 mg/kg, from about 0.0001 mg/kg to about 1 mg/kg, from about 0.001 mg/kg to about 1
mg/kg, from about 0.005 mg/kg to about 1 mg/kg, from about 0.01 mg/kg to about 1 mg/kg, from about 0.05 mg/kg to about 1 mg/kg, from about 0.1 mg/kg to about 1 mg/kg, from about 0.0001 mg/kg to about 0.25 mg/kg, from about 0.001 mg/kg to about 0.25 mg/kg, from about 0.005 mg/kg to about 0.25 mg/kg, from about 0.01 mg/kg to about 0.25 mg/kg, from about 0.05 mg/kg to about 0.25 mg/kg, or from about 0.1 mg/kg to about 0.25 mg/kg of a therapeutic and/or prophylactic (e.g., an mRNA) in a given dose, where a dose of 1 mg/kg (mpk) provides 1 mg of a therapeutic and/or prophylactic per 1 kg of subject body weight. In some embodiments, a dose of about 0.001 mg/kg to about 10 mg/kg of a therapeutic and/or prophylactic (e.g., mRNA) of a LNP may be administered. In other embodiments, a dose of about 0.005 mg/kg to about 2.5 mg/kg of a therapeutic and/or prophylactic may be administered. In certain embodiments, a dose of about 0.1 mg/kg to about 1 mg/kg may be administered. In other embodiments, a dose of about 0.05 mg/kg to about 0.25 mg/kg may be administered. A dose may be administered one or more times per day, in the same or a different amount, to obtain a desired level of mRNA expression and/or therapeutic, diagnostic, prophylactic, or imaging effect. The desired dosage may be delivered, for example, three times a day, two times a day, once a day, every other day, every third day, every week, every two weeks, every three weeks, or every four weeks. In certain embodiments, the desired dosage may be delivered using multiple administrations (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or more administrations). In some embodiments, a single dose may be administered, for example, prior to or after a surgical procedure or in the instance of an acute disease, disorder, or condition.

[00512] Lipid nanoparticles including one or more therapeutics and/or prophylactics may be used in combination with one or more other therapeutic, prophylactic, diagnostic, or imaging agents. By "in combination with," it is not intended to imply that the agents must be administered at the same time and/or formulated for delivery together, although these methods of delivery are within the scope of the present disclosure. For example, one or more lipid nanoparticles including one or more different therapeutics and/or prophylactics may be administered in combination. Compositions can be administered concurrently with, prior to, or subsequent to, one or more other desired therapeutics or medical procedures. In general, each agent will be administered at a dose and/or on a time schedule determined for that agent. In some embodiments, the present disclosure encompasses the delivery of compositions, or imaging, diagnostic, or prophylactic compositions thereof in combination with agents that improve their bioavailability, reduce and/or modify their metabolism, inhibit their excretion, and/or modify their distribution within the body.
[00513] It will further be appreciated that therapeutically, prophylactically, diagnostically, or imaging active agents utilized in combination may be administered together in a single composition or administered separately in different compositions. In general, it is expected that agents utilized in combination will be utilized at levels that do not exceed the levels at which they are utilized individually. In some embodiments, the levels utilized in combination may be lower than those utilized individually.

[00514] The particular combination of therapies (therapeutics or procedures) to employ in a combination regimen will take into account compatibility of the desired therapeutics and/or procedures and the desired therapeutic effect to be achieved. It will also be appreciated that the therapies employed may achieve a desired effect for the same disorder (for example, a composition useful for treating cancer may be administered concurrently with a chemotherapeutic agent), or they may achieve different effects (e.g., control of any adverse effects, such as infusion related reactions).

[00515] A LNP may be used in combination with an agent to increase the effectiveness and/or therapeutic window of the composition. Such an agent may be, for example, an anti-inflammatory compound, a steroid (e.g., a corticosteroid), a statin, an estradiol, a BTK inhibitor, an S1P1 agonist, a glucocorticoid receptor modulator (GRM), or an anti-histamine. In some embodiments, a LNP may be used in combination with dexamethasone, methotrexate, acetaminophen, an H1 receptor blocker, or an H2 receptor blocker. In some embodiments, a method of treating a subject in need thereof or of delivering a therapeutic and/or prophylactic to a subject (e.g., a mammal) may involve pre-treating the subject with one or more agents prior to administering a LNP. For example, a subject may be pre-treated with a useful amount (e.g., 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, or any other useful amount) of dexamethasone, methotrexate, acetaminophen, an H1 receptor blocker, or an H2 receptor blocker. Pre-treatment may occur 24 or fewer hours (e.g., 24 hours, 20 hours, 16 hours, 12 hours, 8 hours, 4 hours, 2 hours, 1 hour, 50 minutes, 40 minutes, 30 minutes, 20 minutes, or 10 minutes) before administration of the lipid nanoparticle and may occur one, two, or more times in, for example, increasing dosage amounts.

[00516] Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments in accordance with the disclosure described herein. The scope of the present disclosure is not intended to be limited to the above Description, but rather is as set forth in the appended claims.

[00517] In the claims and the descriptions, articles such as "a," "an," and "the" may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or
descriptions that include "or" between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context. The disclosure includes embodiments in which exactly one member of the group is present in, employed in, or otherwise relevant to a given product or process. The disclosure includes embodiments in which more than one, or all, of the group members are present in, employed in, or otherwise relevant to a given product or process.

[00518] It is also noted that the term "comprising" is intended to be open and permits but does not require the inclusion of additional elements or steps. When the term "comprising" is used herein, the terms "consisting essentially of" and "consisting of" are thus also encompassed and disclosed. Throughout the description, where compositions are described as having, including, or comprising specific components, it is contemplated that compositions also consist essentially of, or consist of, the recited components. Similarly, where methods or processes are described as having, including, or comprising specific process steps, the processes also consist essentially of, or consist of, the recited processing steps. Further, it should be understood that the order of steps or order for performing certain actions is immaterial so long as the invention remains operable. Moreover, two or more steps or actions can be conducted simultaneously.

[00519] Where ranges are given, endpoints are included. Furthermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value or sub-range within the stated ranges in different embodiments of the disclosure, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise.

[00520] In addition, it is to be understood that any particular embodiment of the present disclosure that falls within the prior art may be explicitly excluded from any one or more of the claims. Since such embodiments are deemed to be known to one of ordinary skill in the art, they may be excluded even if the exclusion is not set forth explicitly herein.

[00521] All cited sources, for example, references, publications, patent applications, databases, database entries, and art cited herein, are incorporated into this application by reference, even if not expressly stated in the citation. In case of conflicting statements of a cited source and the instant application, the statement in the instant application shall control.

EXAMPLES

125
Example 1: Production of lipid nanoparticles

A. Production of lipid nanoparticles

[00522] In order to investigate stabilized, safe and efficacious lipid nanoparticles for use in the delivery of therapeutics and/or prophylactics to cells, a range of formulations are prepared and tested. Specifically, the particular elements and ratios thereof in the lipid component of lipid nanoparticles are optimized.

[00523] Nanoparticles can be made with mixing processes such as microfluidics and T-junction mixing of two fluid streams, one of which contains the therapeutic and/or prophylactic and the other has the lipid components.

[00524] Lipid compositions are prepared by combining a ionizable lipid, such as MC3, the compounds according to Formula (I), (IA), (II), (Ha), (lib), (He), (lid) or (He), a phospholipid (such as DOPE or DSPC, obtainable from Avanti Polar Lipids, Alabaster, AL), a PEG lipid (such as 1,2-dimyristoyl-^-glycerol methoxypolyethylene glycol, also known as PEG-DMG, obtainable from Avanti Polar Lipids, Alabaster, AL), and a structural lipid (such as cholesterol, obtainable from Sigma-Aldrich, Taufkirchen, Germany, or a corticosteroid (such as prednisolone, dexamethasone, prednisone, and hydrocortisone), or a combination thereof) at concentrations of about 50 mM in ethanol. Solutions should be refrigeration for storage at, for example, -20 °C. Lipids are combined to yield desired molar ratios (see, for example, Table 1) and diluted with water and ethanol to a final lipid concentration of between about 5.5 mM and about 25 mM.

Table 1. Exemplary LNPs

<table>
<thead>
<tr>
<th>Composition (mol %)</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>40:20:38.5:1.5</td>
<td>Compound:Phospholipid:Chol:PEG-DMG</td>
</tr>
<tr>
<td>45:15:38.5:1.5</td>
<td>Compound:Phospholipid:Chol:PEG-DMG</td>
</tr>
<tr>
<td>50:10:38.5:1.5</td>
<td>Compound:Phospholipid:Chol:PEG-DMG</td>
</tr>
<tr>
<td>55:5:38.5:1.5</td>
<td>Compound:Phospholipid:Chol:PEG-DMG</td>
</tr>
<tr>
<td>60:5:33.5:1.5</td>
<td>Compound:Phospholipid:Chol:PEG-DMG</td>
</tr>
<tr>
<td>45:20:33.5:1.5</td>
<td>Compound:Phospholipid:Chol:PEG-DMG</td>
</tr>
<tr>
<td>50:20:28.5:1.5</td>
<td>Compound:Phospholipid:Chol:PEG-DMG</td>
</tr>
<tr>
<td>55:20:23.5:1.5</td>
<td>Compound:Phospholipid:Chol:PEG-DMG</td>
</tr>
<tr>
<td>60:20:18.5:1.5</td>
<td>Compound:Phospholipid:Chol:PEG-DMG</td>
</tr>
<tr>
<td>40:15:43.5:1.5</td>
<td>Compound:Phospholipid:Chol:PEG-DMG</td>
</tr>
</tbody>
</table>
Lipid nanoparticles including a therapeutic and/or prophylactic and a lipid component are prepared by combining the lipid solution with a solution including the therapeutic and/or prophylactic at lipid component to therapeutic and/or prophylactic wt:wt ratios between about 5:1 and about 50:1. The lipid solution is rapidly injected using a NanoAssemblr microfluidic based
system at flow rates between about 10 ml/min and about 18 ml/min into the therapeutic and/or prophylactic solution to produce a suspension with a water to ethanol ratio between about 1:1 and about 4:1.

[00526] Lipid nanoparticles can be processed by dialysis to remove ethanol and achieve buffer exchange. Formulations are dialyzed twice against phosphate buffered saline (PBS), pH 7.4, at volumes 200 times that of the primary product using Slide-A-Lyzer cassettes (Thermo Fisher Scientific Inc., Rockford, IL) with a molecular weight cutoff of 10 kD. The first dialysis is carried out at room temperature for 3 hours. The formulations are then dialyzed overnight at 4 °C. The resulting nanoparticle suspension is filtered through 0.2 µm sterile filters (Sarstedt, Nüimbrecht, Germany) into glass vials and sealed with crimp closures.

[00527] The method described above induces nano-precipitation and particle formation. Alternative processes including, but not limited to, T-junction and direct injection, may be used to achieve the same nano-precipitation.

B. Characterization of lipid nanoparticles

[00528] A Zetasizer Nano ZS (Malvern Instruments Ltd, Malvern, Worcestershire, UK) can be used to determine the particle size, the polydispersity index (PDI) and the zeta potential of the lipid nanoparticles in 1xPBS in determining particle size and 15 mM PBS in determining zeta potential.

[00529] Ultraviolet-visible spectroscopy can be used to determine the concentration of a therapeutic and/or prophylactic (e.g., RNA) in lipid nanoparticles. 100 µL of the diluted formulation in 1xPBS is added to 900 µL of a 4:1 (v/v) mixture of methanol and chloroform. After mixing, the absorbance spectrum of the solution is recorded, for example, between 230 nm and 330 nm on a DU 800 spectrophotometer (Beckman Coulter, Beckman Coulter, Inc., Brea, CA). The concentration of therapeutic and/or prophylactic in the lipid nanoparticle can be calculated based on the extinction coefficient of the therapeutic and/or prophylactic used in the composition and on the difference between the absorbance at a wavelength of, for example, 260 nm and the baseline value at a wavelength of, for example, 330 nm.

[00530] For lipid nanoparticles including an RNA, a QUANT-IT™ RIBOGREEN® RNA assay (Invitrogen Corporation Carlsbad, CA) can be used to evaluate the encapsulation of an RNA by the lipid nanoparticle. The samples are diluted to a concentration of approximately 5 µg/mL in a TE buffer solution (10 mM Tris-HCl, 1 mM EDTA, pH 7.5). 50 µL of the diluted samples are transferred to a polystyrene 96 well plate and either 50 µL of TE buffer or 50 µL of a 2% Triton X-100 solution is added to the wells. The plate is incubated at a temperature of 37 °C for 15 minutes.
The RIBOGREEN® reagent is diluted 1:100 in TE buffer, and 100 µL of this solution is added to each well. The fluorescence intensity can be measured using a fluorescence plate reader (Wallac Victor 1420 Multilabel Counter; Perkin Elmer, Waltham, MA) at an excitation wavelength of, for example, about 480 nm and an emission wavelength of, for example, about 520 nm. The fluorescence values of the reagent blank are subtracted from that of each of the samples and the percentage of free RNA is determined by dividing the fluorescence intensity of the intact sample (without addition of Triton X-100) by the fluorescence value of the disrupted sample (caused by the addition of Triton X-100).

Example 2: Stability of Frozen LNP Formulations

[00531] The effect of filtration was studied to explore the application of DLS to distinguishing physical stability of LNP formulation upon exposure to storage stress. The test LNP formulation (including an mRNA) stock exhibited a DLS Z-average size of 174 nm with a PDI of 0.24. Filtration of this sample using 0.2 µm and 0.1 µm filters resulted in Z-averages of 95.34 nm (PDI=0.113) and 80.39 nm (PDI=0.057). Measurement of DLS before and after exposure to four cycles of freeze-thaw occurring over approximately a 1 week period suggest that the current drug product vehicle (Tris, 8% sucrose, pH 7.4) appears to confer surprisingly poor stability upon the LNP formulation with respect to multiple -20 °C freeze-thaws. In contrast, propylene glycol confers improved stability to the test formulation. See Figure 12.

[00532] A study was performed to systematically compare the -20 °C frozen drug product storage stability profiles of three different mRNA LNP formulations and one LNP formulation without mRNA in a series of isotonic polyol cryoprotectant (glycerol, sorbitol, mannitol, sucrose, propylene glycol). This DLS methodology distinguished different stability profiles for different mRNAs and different formulation vehicles. Filtering the samples at 0.1 µm prior to applying the storage/stress conditions ensured a clean, monodisperse size distribution as starting material which enabled more reliable interpretations of small changes in Z-average and polydispersity.

[00533] Isotonic formulations of propylene glycol (PG) and glycerol in 20 mM Tris buffer, pH 7.4 are identified as potentially improved formulation vehicles and warrant further evaluation. Isotonic propylene glycol appears to stabilize mRNA-LNPs better than the 8% sucrose formulation with respect to refrigeration and -20 °C frozen storage. In addition to stabilizing with respect to PDI, isotonic PG appears to be broadly capable of slowing the Z-average increase upon -20 °C storage. In this study, propylene glycol had a large positive effect on empties (LNP formulations
without mRNA); improved the -20 °C stability of the tested mRNA formulations by 10-37%. Isotonic glycerol stabilized tested mRNA-LNP formulation by 14% with respect to -20 °C storage. See, e.g., Figures 10-11 and 13-14.

[00534] Example 3: Effect of Cryoprotectants on Stability of Frozen mRNA-LNP

Formulations A study was performed to systematically compare the -20 °C frozen drug product storage stability profiles of 15 different mRNA-LNP formulations that contain different combinations of isotonic diluents (see Table 2).

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Cryoprotective Agent One</th>
<th>Concentration</th>
<th>Cryoprotective Agent Two</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Glycerol</td>
<td>500 mM (4.6 %w/v)</td>
<td>Sucrose</td>
<td>250 mM (8.6 % w/v)</td>
</tr>
<tr>
<td>2</td>
<td>Glycerol</td>
<td>250 mM (2.3 %w/v)</td>
<td>Mannitol</td>
<td>250 mM (4.6 % w/v)</td>
</tr>
<tr>
<td>3</td>
<td>Glycerol</td>
<td>250 mM (2.3 %w/v)</td>
<td>Propylene Glycol</td>
<td>250 mM (1.9 % w/v)</td>
</tr>
<tr>
<td>4</td>
<td>Glycerol</td>
<td>250 mM (2.3 %w/v)</td>
<td>Ethanol</td>
<td>250 mM (1.2 % w/v)</td>
</tr>
<tr>
<td>5</td>
<td>Glycerol</td>
<td>250 mM (2.3 %w/v)</td>
<td>Propylene Glycol</td>
<td>250 mM (1.2 % w/v)</td>
</tr>
<tr>
<td>6</td>
<td>Sucrose</td>
<td>500 mM (17.2 %w/v)</td>
<td>Ethanol</td>
<td>250 mM (1.2 % w/v)</td>
</tr>
<tr>
<td>7</td>
<td>Sucrose</td>
<td>250 mM (8.6 %w/v)</td>
<td>Mannitol</td>
<td>250 mM (4.6 % w/v)</td>
</tr>
<tr>
<td>8</td>
<td>Sucrose</td>
<td>250 mM (8.6 %w/v)</td>
<td>Propylene Glycol</td>
<td>250 mM (1.9 % w/v)</td>
</tr>
<tr>
<td>9</td>
<td>Sucrose</td>
<td>250 mM (8.6 %w/v)</td>
<td>Ethanol</td>
<td>250 mM (1.2 % w/v)</td>
</tr>
<tr>
<td>10</td>
<td>Propylene Glycol</td>
<td>500 mM (3.8 %w/v)</td>
<td>Ethanol</td>
<td>250 mM (1.2 % w/v)</td>
</tr>
<tr>
<td>11</td>
<td>Propylene Glycol</td>
<td>250 mM (1.9 %w/v)</td>
<td>Ethanol</td>
<td>250 mM (1.2 % w/v)</td>
</tr>
<tr>
<td>12</td>
<td>Propylene Glycol</td>
<td>250 mM (1.9 %w/v)</td>
<td>Mannitol</td>
<td>250 mM (4.6 % w/v)</td>
</tr>
<tr>
<td>13</td>
<td>Mannitol</td>
<td>500 mM (9.2 %w/v)</td>
<td>Ethanol</td>
<td>250 mM (1.2 % w/v)</td>
</tr>
<tr>
<td>14</td>
<td>Mannitol</td>
<td>250 mM (4.6 %w/v)</td>
<td>Ethanol</td>
<td>250 mM (1.2 % w/v)</td>
</tr>
<tr>
<td>15</td>
<td>Ethanol</td>
<td>500 mM (2.4 %w/v)</td>
<td>Ethanol</td>
<td>250 mM (1.2 % w/v)</td>
</tr>
</tbody>
</table>

[00535] Each diluent was filtered at 0.2 µm prior to preparing the formulations. The formulations were frozen at -20 °C for three weeks. The combination of 250 mM glycerol and 250 mM ethanol (Sample 5) appears to stabilize mRNA-LNPs better than the other combinations of diluents with respect to refrigeration and -20 °C frozen storage. The comparison of Sample 5 with Samples 1 and 15 suggests that there may be a special synergistic effect of glycerol/ethanol mixtures that is worthy of further investigation. See, for example, Fig. 16.

Example 4: Stability of Frozen LNP Formulations with Different mRNA-LNPs

[00536] A study was performed to test the -20 °C frozen drug product storage stability profiles of mRNA-LNP formulations with different mRNA-LNPs (see Table 3). mRNA-LNP-1 was
formulated with MC3 lipid; m-RNA-LNP-2 was formulated with Compound 25; and m-RNA-LNP-3 was formulated with Compound 18.

Table 3. Exemplary mRNA-LNP formulations

<table>
<thead>
<tr>
<th>Sample #</th>
<th>mRNA-LNP</th>
<th>Cryoprotectant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-F1</td>
<td>mRNA-LNP-1</td>
<td>250 mM Glycerol; 250 mM Ethanol</td>
</tr>
<tr>
<td>1-F2</td>
<td>mRNA-LNP-1</td>
<td>500 mM Glycerol; 250 mM Ethanol</td>
</tr>
<tr>
<td>1-C1</td>
<td>mRNA-LNP-1</td>
<td>8 % w/v Sucrose; 1 % w/v Ethanol</td>
</tr>
<tr>
<td>1-C2</td>
<td>mRNA-LNP-1</td>
<td>7 % w/v Propylene Glycol; 60 mM NaCl</td>
</tr>
<tr>
<td>2-F1</td>
<td>mRNA-LNP-2</td>
<td>250 mM Glycerol; 250 mM Ethanol</td>
</tr>
<tr>
<td>2-F2</td>
<td>mRNA-LNP-2</td>
<td>500 mM Glycerol; 250 mM Ethanol</td>
</tr>
<tr>
<td>2-C1</td>
<td>mRNA-LNP-2</td>
<td>8 % w/v Sucrose; 1 % w/v Ethanol</td>
</tr>
<tr>
<td>2-C2</td>
<td>mRNA-LNP-2</td>
<td>7 % w/v Propylene Glycol; 60 mM NaCl</td>
</tr>
<tr>
<td>3-F1</td>
<td>mRNA-LNP-3</td>
<td>250 mM Glycerol; 250 mM Ethanol</td>
</tr>
<tr>
<td>3-F2</td>
<td>mRNA-LNP-3</td>
<td>500 mM Glycerol; 250 mM Ethanol</td>
</tr>
<tr>
<td>3-C1</td>
<td>mRNA-LNP-3</td>
<td>8 % w/v Sucrose; 1 % w/v Ethanol</td>
</tr>
<tr>
<td>3-C2</td>
<td>mRNA-LNP-3</td>
<td>7 % w/v Propylene Glycol; 60 mM NaCl</td>
</tr>
</tbody>
</table>

[00537] Each cryoprotectant was filtered at 0.2 µm prior to preparing the formulations. The formulations were frozen at -20 °C for three weeks. The combination of 250 mM glycerol and 250 mM ethanol appears to provide better stability to all of the three mRNA-LNPs than the combination of sucrose and ethanol and the combination of propylene glycol and NaCl. See, for examples, Figs. 17-19. This indicates that the combination of 250 mM glycerol and 250 mM ethanol may be versatile and broadly applicable to stabilize multiple types of mRNA-LNPs for -20 °C storage. Thus, the combination of 250 mM glycerol and 250 mM ethanol may represent a superior platform for mRNA-LNP formulation because it possesses improved -20°C stability, is within a desired range of osmolality for injection, and is free of NaCl.

Example 5: Compactability of Surfactants with Frozen mRNA-LNP Formulations.

[00538] A study was performed to test the compatibility of surfactants with mRNA-LNP formulations (see Table 4). The formulations were subjected to multiple freeze/thaw cycles and/or refrigerated storage for one month. The addition of 0.01% polysorbate 20 appears to generally enhance the stability of the formulation. See, for examples, Figs. 20A-20D, 21, and 22.
Example 6: Effect of Surfactants on Stability of Frozen mRNA-LNP Formulations.

A further study was performed to test the effect of surfactants on the stability profiles of mRNA-LNP formulations (see Table 5). mRNA-LNP-4 was formulated with Compound 25. The formulations were subjected to 10 freeze/thaw cycles. The addition of 0.01% w/v polysorbate 20 appears to generally enhance the stability of the formulations. Further, a more significant enhancement was observed for formulations having 0.01 mg/mL of mRNA-LNP than for formulations having 0.1 mg/mL of mRNA-LNP. See, for examples, Figs. 23-25.

Table 5. Exemplary mRNA-LNP formulations

<table>
<thead>
<tr>
<th>Sample #</th>
<th>mRNA-LNP</th>
<th>Surfactant</th>
<th>Cryoprotectant</th>
<th>Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-F2</td>
<td>0.1 mg/niL mRNA-LNP-1</td>
<td>0.05% w/v Polysorbate 20</td>
<td>250 mM Glycerol; 250 mM Ethanol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>4-F3</td>
<td>0.1 mg/mL mRNA-LNP-1</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Glycerol; 250 mM Ethanol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>4-F4</td>
<td>0.1 mg/mL mRNA-LNP-1</td>
<td>0.1% w/v Polysorbate 20</td>
<td>250 mM Glycerol; 250 mM Ethanol</td>
<td>20 mM Tris</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample #</th>
<th>mRNA-LNP</th>
<th>Surfactant</th>
<th>Cryoprotectant</th>
<th>Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-Cl</td>
<td>0.1 mg/mL mRNA-LNP-4</td>
<td>0.05% w/v Polysorbate 20</td>
<td>250 mM Glycerol; 250 mM Ethanol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>5-F1</td>
<td>0.1 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Glycerol; 250 mM Ethanol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>5-C2</td>
<td>0.01 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Glycerol; 250 mM Ethanol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>5-F2</td>
<td>0.1 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Glycerol; 250 mM Ethanol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>6-Cl</td>
<td>0.1 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Glycerol; 250 mM Ethanol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>6-F1</td>
<td>0.01 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Glycerol; 250 mM Ethanol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>6-C2</td>
<td>0.01 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Glycerol; 250 mM Ethanol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>6-F2</td>
<td>0.01 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Glycerol; 250 mM Ethanol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>7-Cl</td>
<td>0.01 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Glycerol; 250 mM Ethanol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>7-F1</td>
<td>0.01 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Glycerol; 250 mM Ethanol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>7-C2</td>
<td>0.01 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Glycerol; 250 mM Ethanol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>7-F2</td>
<td>0.01 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Glycerol; 250 mM Ethanol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>8-C1</td>
<td>0.01 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Glycerol; 250 mM Ethanol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>Sample #</td>
<td>mRNA-LNP</td>
<td>Surfactant</td>
<td>Cryoprotectant</td>
<td>Buffer</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>------------</td>
<td>-------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>8-F1</td>
<td>0.1 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Propylene Glycol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>8-C2</td>
<td>0.01 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Propylene Glycol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>8-F2</td>
<td>0.01 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Propylene Glycol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>9-C1</td>
<td>0.1 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Sorbitol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>9-F1</td>
<td>0.1 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Sorbitol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>9-C2</td>
<td>0.01 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Sorbitol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>9-F2</td>
<td>0.01 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Sorbitol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>10-C1</td>
<td>0.1 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Glycerol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>10-F1</td>
<td>0.1 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Glycerol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>10-C2</td>
<td>0.01 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Glycerol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>10-F2</td>
<td>0.01 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Glycerol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>11-C1</td>
<td>0.1 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Ethanol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>11-F1</td>
<td>0.1 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Ethanol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>11-C2</td>
<td>0.01 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Ethanol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>11-F2</td>
<td>0.01 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Ethanol</td>
<td>20 mM Tris</td>
</tr>
<tr>
<td>12-C1</td>
<td>0.1 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Ethanol</td>
<td>20 mM Tris; PBS</td>
</tr>
<tr>
<td>12-F1</td>
<td>0.1 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Ethanol</td>
<td>20 mM Tris; PBS</td>
</tr>
<tr>
<td>12-C2</td>
<td>0.01 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Ethanol</td>
<td>20 mM Tris; PBS</td>
</tr>
<tr>
<td>12-F2</td>
<td>0.01 mg/mL mRNA-LNP-4</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Ethanol</td>
<td>20 mM Tris; PBS</td>
</tr>
</tbody>
</table>

Example 7: Freeze/Thaw and Frozen Stability of mRNA-LNP Formulations with Cryoprotectants and Surfactants.

A study was performed to test the stability profiles of mRNA-LNP formulations with surfactants (see Table 6) towards freeze/thaw cycles or frozen storage. mRNA-LNP-1 was...
formulated with MC3 lipid; mRNA-LNP-2 and mRNA-LNP-5 were formulated with Compound 25; and m-RNA-LNP-6 was formulated with Compound 18.

Table 6. Exemplary mRNA-LNP formulations and mRNA formulations

<table>
<thead>
<tr>
<th>Sample #</th>
<th>mRNA-LNP or mRNA</th>
<th>Surfactant</th>
<th>Cryoprotectant</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-C1</td>
<td>0.01 mg/mL mRNA-LNP-1</td>
<td>7% w/v Propylene Glycol</td>
<td></td>
</tr>
<tr>
<td>13-C2</td>
<td>0.01 mg/mL mRNA-LNP-1</td>
<td>250 mM Glycerol and 250 mM Ethanol</td>
<td></td>
</tr>
<tr>
<td>13-F1</td>
<td>0.01 mg/mL mRNA-LNP-1</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Glycerol; 250 mM Ethanol</td>
</tr>
<tr>
<td>14-C1</td>
<td>0.01 mg/mL mRNA-LNP-2</td>
<td>7% w/v Propylene Glycol</td>
<td></td>
</tr>
<tr>
<td>14-F1</td>
<td>0.01 mg/mL mRNA-LNP-2</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Glycerol; 250 mM Ethanol</td>
</tr>
<tr>
<td>15-C1</td>
<td>0.01 mg/mL mRNA-1</td>
<td>7% w/v Propylene Glycol</td>
<td></td>
</tr>
<tr>
<td>15-F1</td>
<td>0.01 mg/mL mRNA-1</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Glycerol; 250 mM Ethanol</td>
</tr>
<tr>
<td>16-C1</td>
<td>0.01 mg/mL mRNA-2</td>
<td>7% w/v Propylene Glycol</td>
<td></td>
</tr>
<tr>
<td>16-F1</td>
<td>0.01 mg/mL mRNA-2</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Glycerol; 250 mM Ethanol</td>
</tr>
<tr>
<td>17-C1</td>
<td>0.01 mg/mL mRNA-LNP-5</td>
<td>7% w/v Propylene Glycol</td>
<td></td>
</tr>
<tr>
<td>17-F1</td>
<td>0.01 mg/mL mRNA-LNP-5</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Glycerol; 250 mM Ethanol</td>
</tr>
<tr>
<td>18-C1</td>
<td>0.01 mg/mL mRNA-LNP-6</td>
<td>7% w/v Propylene Glycol</td>
<td></td>
</tr>
<tr>
<td>18-F1</td>
<td>0.01 mg/mL mRNA-LNP-6</td>
<td>0.01% w/v Polysorbate 20</td>
<td>250 mM Glycerol; 250 mM Ethanol</td>
</tr>
</tbody>
</table>

The samples were filtered at 0.1 μM prior to applying the storage/stress conditions to ensure a clean and monodisperse size distribution as starting material. The formulations were subjected to 10 freeze/thaw cycles or stored at 5 °C, -20 °C, or -80 °C for one month and, optionally, with glass beads added. The addition of 0.01% w/v polysorbate 20 to the combination of 250 mM glycerol and 250 mM ethanol appears to provide better stability to the formulation. Further, the combination of 250 mM glycerol, 250 mM ethanol, and 0.01% w/v polysorbate 20 appears to generally provide better stability to the formulation than the combination of 7% w/v Propylene Glycol and 20 mM Tris. See, for examples, Figs. 26-30.

Example 8: Stability of Frozen formulations with buffers
Appropriate amounts of Tris buffer, and NaCl, and Poloxamer-1 88 were added into concentrated mRNA-LNPs formulations to achieve four buffer conditions for each LNP formulation at final 1 mg/mL mRNA concentration:

Condition I: 20 mM Tris Buffer, 8 % w/v sucrose, 0.4 % w/v P188;
Condition II: 20 mM Tris Buffer, 8 % w/v sucrose;
Condition III: 20 mM Tris Buffer 5 % w/v sucrose, 140 mM NaCl, 0.4% w/v P188;
Condition IV: 20 mM Tris Buffer 5 % w/v sucrose, 140 mM NaCl.

0.5 mL of each formulation was placed into 2 mL sterile vials. Each vial was frozen at -20 °C for at least 2 hours and then thawed to room temperature for at least 30 minutes. For each freeze/thaw (F/T) cycle, 1 µL of the formulation was removed from each vial for DLS measurement. For every 5 F/T cycles, 25 µL of the formulation was removed from each vial to evaluate the encapsulation using RIBOGREEN® RNA assay (Invitrogen Corporation Carlsbad, CA) and to evaluate particulate matter (>1 µm) via micro-flow imaging (MFI). Table 7 shows starting characterizations of these mRNA-LNP formulations before the freeze/thaw cycles.

Table 7. Characterizations of exemplary mRNA-LNP formulations before the freeze/thaw cycles.

<table>
<thead>
<tr>
<th>Lipid</th>
<th>Condition</th>
<th>Diameter (nm)</th>
<th>PDI</th>
<th>%EE</th>
<th>mRNA ug/mL</th>
<th>pH</th>
<th>Osmolality (mOsm/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC3</td>
<td>I</td>
<td>88.9</td>
<td>0.098</td>
<td>98</td>
<td>1018.4</td>
<td>7.464</td>
<td>313</td>
</tr>
<tr>
<td>MC3</td>
<td>II</td>
<td>87.7</td>
<td>0.093</td>
<td>96</td>
<td>1017.9</td>
<td>7.375</td>
<td>304</td>
</tr>
<tr>
<td>MC3</td>
<td>III</td>
<td>84.8</td>
<td>0.062</td>
<td>98</td>
<td>1018.6</td>
<td>7.448</td>
<td>488</td>
</tr>
<tr>
<td>MC3</td>
<td>IV</td>
<td>86</td>
<td>0.068</td>
<td>96</td>
<td>1008.2</td>
<td>7.455</td>
<td>475</td>
</tr>
<tr>
<td>Compound 18</td>
<td>I</td>
<td>76</td>
<td>0.1</td>
<td>97</td>
<td>1020.3</td>
<td>7.429</td>
<td>308</td>
</tr>
<tr>
<td>Compound 18</td>
<td>II</td>
<td>77.9</td>
<td>0.064</td>
<td>96</td>
<td>980.4</td>
<td>7.438</td>
<td>305</td>
</tr>
<tr>
<td>Compound 18</td>
<td>III</td>
<td>78.9</td>
<td>0.15</td>
<td>97</td>
<td>996.8</td>
<td>7.465</td>
<td>493</td>
</tr>
<tr>
<td>Compound 18</td>
<td>IV</td>
<td>76.8</td>
<td>0.095</td>
<td>96</td>
<td>1010.3</td>
<td>7.469</td>
<td>483</td>
</tr>
<tr>
<td>Compound 25</td>
<td>I</td>
<td>90.1</td>
<td>0.078</td>
<td>96</td>
<td>1045.9</td>
<td>7.452</td>
<td>328</td>
</tr>
<tr>
<td>Compound 25</td>
<td>II</td>
<td>89.2</td>
<td>0.096</td>
<td>95</td>
<td>921.6</td>
<td>7.453</td>
<td>308</td>
</tr>
<tr>
<td>Compound 25</td>
<td>III</td>
<td>90.8</td>
<td>0.072</td>
<td>96</td>
<td>1045.9</td>
<td>7.470</td>
<td>484</td>
</tr>
<tr>
<td>Compound 25</td>
<td>IV</td>
<td>88.6</td>
<td>0.11</td>
<td>95</td>
<td>984.2</td>
<td>7.484</td>
<td>N/D</td>
</tr>
<tr>
<td>Compound 30</td>
<td>I</td>
<td>77.7</td>
<td>0.1</td>
<td>97</td>
<td>953.6</td>
<td>7.422</td>
<td>310</td>
</tr>
<tr>
<td>Compound 30</td>
<td>II</td>
<td>76.1</td>
<td>0.098</td>
<td>95</td>
<td>921.6</td>
<td>7.416</td>
<td>304</td>
</tr>
<tr>
<td>Compound 30</td>
<td>III</td>
<td>76.7</td>
<td>0.1</td>
<td>98</td>
<td>988.0</td>
<td>7.471</td>
<td>501</td>
</tr>
<tr>
<td>Compound 30</td>
<td>IV</td>
<td>77.1</td>
<td>0.058</td>
<td>96</td>
<td>984.8</td>
<td>7.457</td>
<td>481</td>
</tr>
<tr>
<td>Compound 27</td>
<td>I</td>
<td>70.9</td>
<td>0.14</td>
<td>97</td>
<td>1099.3</td>
<td>7.422</td>
<td>310</td>
</tr>
<tr>
<td>Compound 27</td>
<td>II</td>
<td>69</td>
<td>0.15</td>
<td>96</td>
<td>943.1</td>
<td>7.415</td>
<td>307</td>
</tr>
<tr>
<td>Compound 27</td>
<td>III</td>
<td>73.2</td>
<td>0.16</td>
<td>97</td>
<td>1029.4</td>
<td>7.412</td>
<td>489</td>
</tr>
<tr>
<td>Compound 27</td>
<td>IV</td>
<td>71.7</td>
<td>0.11</td>
<td>96</td>
<td>1004.7</td>
<td>7.425</td>
<td>480</td>
</tr>
<tr>
<td>Compound 19</td>
<td>I</td>
<td>74.8</td>
<td>0.11</td>
<td>97</td>
<td>1079.5</td>
<td>7.428</td>
<td>311</td>
</tr>
</tbody>
</table>
Each of the formulations was subjected to 20 freeze/thaw cycles. The LNPs exhibited similar stability across all four buffer conditions. See, e.g., Figs. 31A-B, 32A-B, 33A-B, 34A-B, 35A-B, 36A-B, and 37A-B.

Equivalents

It is to be understood that while the present disclosure has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the present disclosure, which is defined by the scope of the appended claims. Other aspects, advantages, and alterations are within the scope of the following claims.

Compound 19	II	73.8	0.15	95	951.6	7.444	305
Compound 19	III	77.4	0.13	97	1003.5	7.479	494
Compound 19	IV	75.9	0.14	95	957.2	7.497	482
Compound 7	I	82.9	0.17	94	994.4	7.414	313
Compound 7	II	80.3	0.14	93	1046.7	7.405	305
Compound 7	III	80.9	0.19	94	1010.5	7.443	490
Compound 7	IV	82.7	0.18	93	971.5	7.431	478
CLAIMS

1. A lipid nanoparticle (LNP) formulation comprising a plurality of LNPs and a stabilizing agent that mitigates the degradation of the LNPs or a subpopulation thereof, wherein each of the LNPs comprises an ionizable lipid and a structural lipid, and the stabilizing agent comprises a surfactant, a cryoprotectant, a chelator, an antioxidant, or any combination thereof.

2. The formulation of claim 1, wherein the stabilizing agent further comprises a surfactant.

3. The formulation of any one of the preceding claims, wherein the formulation is an aqueous formulation or a frozen formulation thereof.

4. The formulation of any one of the preceding claims, wherein the degradation comprises a phase separation of one or more LNP components from the remainder of LNP.

5. The formulation of any one of the preceding claims, wherein the degradation comprises a phase separation of a fraction of the structure lipid, a phase separation of a fraction of the ionizable lipid, or both from the remainder of LNP.

6. The formulation of any one of the preceding claims, wherein the formulation has a decreased fraction of the phase-separated structure lipid, a decreased fraction of the phase-separated ionizable lipid, or both, as compared to a corresponding formulation which does not comprise the stabilizing agent.

7. The formulation of any one of the preceding claims, wherein the fraction of the phase-separated structure lipid is between about 0.1% and 50% of the total amount of the structure lipid in the formulation or the fraction of the phase-separated ionizable lipid is between about 0.1% and 50% of the total amount of the ionizable lipid in the formulation.

8. The formulation of any one of the preceding claims, wherein the degradation yields an increased average size of particles in the formulation.
9. The formulation of any one of the preceding claims, wherein the formulation has a decreased average size of particles as compared to a corresponding formulation which does not comprise the stabilizing agent.

10. The formulation of any one of the preceding claims, wherein the the average size of particles in the formulation is about 95% or less, about 90% or less, about 85% or less, about 80% or less, about 75% or less, about 70% or less, about 65% or less, about 60% or less, about 55% or less, about 50% or less, about 45% or less, about 40% or less, about 35% or less, or about 30% or less, as compared to that of a corresponding formulation which does not comprise the stabilizing agent.

11. The formulation of any one of the preceding claims, wherein decrease in the fraction of the phase-separated structure lipid or in the fraction of the phase-separated ionizable lipid is about 20% or more as compared to that of a corresponding formulation which does not comprise the stabilizing agent.

12. The formulation of any one of the preceding claims, wherein the degradation comprises a formation of reduced-size particles from the LNPs or the subpopulation thereof.

13. The formulation of any one of the preceding claims, wherein the average size of the reduced-size particles is smaller than the average size of the LNPs or the subpopulation thereof.

14. The formulation of any one of the preceding claims, wherein the formation of the reduced-size particles yields an increased number of particles in the formulation.

15. The formulation of any one of the preceding claims, wherein the formulation has a decreased number of particles as compared to a corresponding formulation which does not comprise the stabilizing agent.

16. The formulation of any one of the preceding claims, wherein the number of particles in the formulation is about 95% or less, about 90% or less, about 85% or less, about 80% or less, about 75% or less, about 70% or less, about 65% or less, about 60% or less, about 55% or less, about 50%
or less, about 45% or less, about 40% or less, about 35% or less, or about 30% or less, as compared to that of a corresponding formulation which does not comprise the stabilizing agent.

17. The formulation of any one of the preceding claims, wherein the cryoprotectant comprises ethanol.

18. The formulation of any one of the preceding claims, wherein the cryoprotectant comprises a polyol.

19. The formulation of any one of the preceding claims, wherein the cryoprotectant comprises a diol or a triol.

20. The formulation of any one of the preceding claims, wherein the cryoprotectant comprises propylene glycol.

21. The formylation of any one of the preceding claims, wherein the cryoprotectant comprises buranediol, diethylene glycol, or polyethylene glycol (PEG).

22. The formylation of any one of the preceding claims, wherein the cryoprotectant comprises dimethyl sulfoxide (DMSO) or 3-(1-Pyridinio)-1-propanesulfonate (NDSB-201).

23. The formylation of any one of the preceding claims, wherein the cryoprotectant comprises lithium acetate, lithium chloride, lithium formate, lithium nitrate, magnesium acetate, sodium chloride, or any hydrate thereof.

24. The formulation of any one of the preceding claims, wherein the cryoprotectant comprises glycerol.

25. The formulation of any one of the preceding claims, wherein the cryoprotectant comprises glycerol and ethanol.
26. The formulation of any one of the preceding claims, wherein the concentration of glycerol in the formulation ranges from about 0.05 % w/v to about 50 % w/v, from about 0.05 % w/v to about 25 % w/v, from about 0.5 % w/v to 10 % w/v, or from about 1 % w/v to about 5 % w/v.

27. The formulation of any one of the preceding claims, wherein the concentration of glycerol in the formulation ranges from about 1.5 % w/v to about 3 % w/v.

28. The formulation of any one of the preceding claims, wherein the concentration of glycerol in the formulation ranges from about 2 % w/v to about 2.5 % w/v.

29. The formulation of any one of the preceding claims, wherein the concentration of ethanol in the formulation ranges from about 0.05 % w/v to about 50 % w/v, from about 0.05 % w/v to about 25 % w/v, from about 0.5 % w/v to 10 % w/v, or from about 1 % w/v to about 5 % w/v.

30. The formulation of any one of the preceding claims, wherein the concentration of ethanol in the formulation ranges from about 0.7 % w/v to about 1.5 % w/v.

31. The formulation of any one of the preceding claims, wherein the concentration of ethanol in the formulation ranges from about 1 % w/v to about 1.2 % w/v.

32. The formulation of any one of the preceding claims, wherein the weight ratio of glycerol and ethanol in the formulation ranges from about 1:25 to about 100:1 by weight, from about 1:10 to about 40:1 by weight, from about 1:5 to about 20:1 by weight, or from about 1:1 to about 4:1 by weight.

33. The formulation of any one of the preceding claims, wherein the weight ratio of glycerol and ethanol in the formulation is about 2:1 by weight.

34. The formulation of any one of the preceding claims, wherein:

the concentration of glycerol in the formulation ranges from about 2 % w/v to about 2.5 % w/v; and
the concentration of ethanol in the formulation ranges from about 1% w/v to about 1.2% w/v.

35. The formulation of any one of the preceding claims, wherein:
the concentration of glycerol in the formulation is about 2.3% w/v; and
the concentration of ethanol in the formulation is about 1.2% w/v.

36. The formulation of any one of the preceding claims, wherein the concentration of glycerol in the formulation ranges from about 1 mM to about 10 M, from about 5 mM to about 5 M, from about 10 mM to about 1 M, from about 50 mM to about 600 mM, from about 100 mM to about 500 mM, or from about 200 mM to about 300 mM.

37. The formulation of any one of the preceding claims, wherein the concentration of glycerol in the formulation is about 250 mM.

38. The formulation of any one of the preceding claims, wherein the concentration of ethanol in the formulation ranges from about 1 mM to about 10 M, from about 5 mM to about 5 M, from about 10 mM to about 1 M, from about 50 mM to about 600 mM, from about 100 mM to about 500 mM, or from about 200 mM to about 300 mM.

39. The formulation of any one of the preceding claims, wherein the concentration of ethanol in the formulation is about 250 mM.

40. The formulation of any one of the preceding claims, wherein the molar ratio of glycerol and ethanol in the formulation ranges from about 1:100 to about 100:1 by weight, from about 1:50 to about 50:1, from about 25:1 to about 1:25, from about 10:1 to about 1:10, from about 5:1 to about 1:5, or from about 2:1 to about 1:2.

41. The formulation of any one of the preceding claims, wherein the molar ratio of glycerol and ethanol in the formulation is about 1:1.
42. The formulation of any one of the preceding claims, wherein:
 the concentration of glycerol in the formulation ranges from about 200 mM to about 300 mM; and
 the concentration of ethanol in the formulation ranges from about 200 mM to about 300 mM.

43. The formulation of any one of the preceding claims, wherein:
 the concentration of glycerol in the formulation is about 250 mM; and
 the concentration of ethanol in the formulation is about 250 mM.

44. The formulation of any one of the preceding claims, wherein the surfactant comprises a nonionic surfactant.

45. The formulation of any one of the preceding claims, wherein the surfactant comprises a polysorbate.

46. The formulation of any one of the preceding claims, wherein the polysorbate has a structure of Formula (IV):

 \[
 \text{(IV)}
 \]

 wherein the sum of \(w, x, y, z\) ranges from about 0 to about 200.

47. The formulation of any one of the preceding claims, wherein the sum of \(w, x, y, z\) ranges from about 0 to about 100, from about 10 to about 90, or from about 20 to about 80.

48. The formulation of any one of the preceding claims, wherein the sum of \(w, x, y, z\) is about 20, about 40, about 60, or about 80.
49. The formulation of any one of the preceding claims, wherein the polysorbate is polysorbate 20, polysorbate 40, polysorbate, 60, or polysorbate 80.

50. The formulation of any one of the preceding claims, wherein the polysorbate is polysorbate 20 or polysorbate 80.

51. The formulation of any one of the preceding claims, wherein the polysorbate is polysorbate 20.

52. The formulation of any one of the preceding claims, wherein the concentration of polysorbate 20 ranges from about 0.0001% w/v to about 1.0% w/v, from about 0.001% w/v to about 0.1% w/v, from about 0.005% w/v to about 0.05% w/v, from about 0.008% w/v to about 0.03% w/v, or from about 0.009% w/v to about 0.02% w/v.

53. The formulation of any one of the preceding claims, wherein the concentration of polysorbate 20 is about 0.01% w/v.

54. The formulation of any one of the preceding claims, wherein the stabilizing agent comprises polysorbate, glycerol, and ethanol.

55. The formulation of any one of the preceding claims, wherein the stabilizing agent comprises polysorbate 20, glycerol, and ethanol.

56. The formulation of any one of the preceding claims, wherein:

 - the concentration of polysorbate in the formulation ranges from about 0.009% w/v to about 0.02% w/v;
 - the concentration of glycerol in the formulation ranges from about 2% w/v to about 2.5% w/v; and
 - the concentration of ethanol in the formulation ranges from about 1% w/v to about 1.5% w/v.

57. The formulation of any one of the preceding claims, wherein:
the concentration of polysorbate in the formulation ranges from about 0.009 % w/v to about 0.02 % w/v; the concentration of glycerol in the formulation is about 2.3 % w/v; and the concentration of ethanol in the formulation is about 1.2 % w/v.

58. The formulation of any one of the preceding claims, wherein:
the concentration of polysorbate in the formulation is about 0.01 % w/v; the concentration of glycerol in the formulation ranges from about 2 % w/v to about 2.5 % w/v; and the concentration of ethanol in the formulation ranges from about 1 % w/v to about 1.5 % w/v.

59. The formulation of any one of the preceding claims, wherein:
the concentration of polysorbate in the formulation is about 0.01 % w/v; the concentration of glycerol in the formulation is about 2.3 % w/v; and the concentration of ethanol in the formulation is about 1.2 % w/v.

60. The formulation of any one of the preceding claims, wherein:
the concentration of polysorbate in the formulation ranges from about 0.009 % w/v to about 0.02 % w/v; the concentration of glycerol in the formulation ranges from about 200 mM to about 300 mM; and the concentration of ethanol in the formulation ranges from about 200 mM to about 300 mM.

61. The formulation of any one of the preceding claims, wherein:
the concentration of polysorbate in the formulation ranges from about 0.009 % w/v to about 0.02 % w/v; the concentration of glycerol in the formulation is about 250 mM; and the concentration of ethanol in the formulation is about 250 mM.

62. The formulation of any one of the preceding claims, wherein:
the concentration of polysorbate in the formulation is about 0.01 % w/v;
the concentration of glycerol in the formulation ranges from about 200 mM to about 300 mM; and
the concentration of ethanol in the formulation ranges from about 200 mM to about 300 mM.

63. The formulation of any one of the preceding claims, wherein:
the concentration of polysorbate in the formulation is about 0.01 % w/v;
the concentration of glycerol in the formulation is about 250 mM; and
the concentration of ethanol in the formulation is about 250 mM.

64. The formulation of any one of the preceding claims, wherein the pH value of the formulation ranges from about 4 to about 11, from about 5 to about 10, from about 6 to about 9, from about 7 to about 8, or from about 7.3 to about 7.5.

65. The formulation of any one of the preceding claims, wherein the pH value of the formulation is about 7.4.

66. The formulation of any one of the preceding claims, wherein:
the concentration of polysorbate in the formulation is about 0.01 % w/v;
the concentration of glycerol in the formulation is about 250 mM;
the concentration of ethanol in the formulation is about 250 mM; and
the pH value of the formulation is about 7.4.

67. The formulation of any one of the preceding claims, wherein the formulation is free of one or more salts selected from the group consisting of lithium salts, magnesium salts, and magnesium salts.

68. The formulation of any one of the preceding claims, wherein the formulation is free of one or more sodium salts.

69. The formulation of any one of the preceding claims, wherein the formulation is free of sodium chloride.
70. The formulation of any one of the preceding claims, wherein the chelator comprises diethylenetriamine pentaacetic acid (DTPA), ethylenediaminetetraacetic acid (EDTA), iminodisuccinic acid, polyaspartic acid, ethylenediamine-N,N,N,N,N-pentamethylenesuccinic acid (EDDS), methylglycine diacetic acid (MGDA), L-glutamic acid N,N,N,N-diacetic acid (GLDA), a salt thereof, or any combination thereof.

71. The formulation of any one of the preceding claims, wherein the antioxidant comprises ascorbic acid, citric acid, malic acid, methionine, monothioglycerol, phosphoric acid, potassium metabisulfite, sodium metabisulfite, alpha-tocopherol, or any combination thereof.

72. The formulation of any one of the preceding claims, wherein the concentration of the cryoprotectant in the formulation ranges from about 0.05 % to about 50 % by weight.

73. The formulation of any one of the preceding claims, wherein the concentration of the cryoprotectant in the formulation ranges from about 0.05 % to about 25 % by weight, from about 1 % to 15 % by weight, or from about 3 % to about 12.5 % by weight.

74. The formulation of any one of the preceding claims, wherein the concentration of the cryoprotectant in the formulation ranges from about 1 % to about 8 % by weight.

75. The formulation of any one of the preceding claims, wherein the concentration of the cryoprotectant in the formulation ranges from about 2 % to about 7 % by weight.

76. The formulation of any one of the preceding claims, wherein the degradation of LNPs is determined by dynamic light scattering (DLS).

77. The formulation of any one of the preceding claims, wherein the degradation of LNPs is determined by nanoparticle tracking analysis (NTA).

78. The formulation of any one of the preceding claims, wherein the degradation of LNPs is determined by turbidity analysis.
79. The formulation of any one of the preceding claims, wherein the degradation of LNPs is determined by flow microscopy analysis.

80. The formulation of any one of the preceding claims, wherein the degradation of LNPs is determined by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), turbidity analysis, flow microscopy analysis, flow cytometry, FTIR microscopy, liquid chromatography (LC), resonant mass measurement (RMM), Raman microscopy, filtration, laser diffraction, electron microscopy, atomic force microscopy (AFM), static light scattering (SLS), multi-angle static light scattering (MALS), field flow fractionation (FFF), analytical ultracentrifugation (AUC), or any combination thereof.

81. The formulation of any one of the preceding claims, wherein the formulation has an increase in LNP mean particle size of about 20% or less after storage at about -20 °C or lower for at least one month.

82. The formulation of any one of the preceding claims, wherein the formulation has an increase in LNP mean particle size of about 20% or less after up to 30 freeze/thaw cycles.

83. The formulation of any one of the preceding claims, wherein the formulation has an increase in turbidity of about 20% or less after storage at about -20 °C or lower for at least one month.

84. The formulation of any one of the preceding claims, wherein the formulation has an increase in turbidity of about 20% or less after up to 30 freeze/thaw cycles.

85. The formulation of any one of the preceding claims, wherein the formulation is purified prior to storage at about -20 °C or lower.

86. The formulation of any one of the preceding claims, wherein the formulation is purified by filtration.
87. The formulation of any one of the preceding claims, wherein the formulation is substantially free of impurities.

88. The formulation of any one of the preceding claims, wherein the formulation contains about 20% or less, about 10% or less, about 5% or less, about 1% or less, or about 0.5% or less of impurities.

89. The formulation of any one of the preceding claims, wherein the impurities comprise subvisible particulates.

90. The formulation of any one of the preceding claims further comprising a sugar.

91. The formulation of any one of the preceding claims, wherein the sugar is disaccharide.

92. The formulation of any one of the preceding claims, wherein the sugar is sucrose or trehalose or a combination thereof.

93. The formulation of any one of the preceding claims, wherein the total concentration of the sugar ranges between 0% and about 30% by weight.

94. The formulation of any one of the preceding claims further comprising a salt.

95. The formulation of any one of the preceding claims, wherein the salt is a chloride salt, preferably NaCl.

96. The formulation of any one of the preceding claims, wherein the formulation further comprises a buffer.

97. The formulation of any one of the preceding claims, wherein the buffer comprises Tris and the formulation is optionally a frozen formulation.
98. The formulation of any one of the preceding claims, wherein the buffer comprises a phosphate and the formulation is optionally a non-frozen formulation.

99. The formulation of any one of the preceding claims, wherein the formulation has a pH value ranging between about 4 and about 8 prior to freezing.

100. The formulation of any one of the preceding claims, further comprising one or more therapeutic and/or prophylactic agents carried by the LNPs.

101. The formulation of any one of the preceding claims, wherein the therapeutic and/or prophylactic agents comprise a nucleic acid.

102. The formulation of any one of the preceding claims, wherein the formulation has about 0.025 mg/mL to about 4 mg/mL of the nucleic acid, preferably about 0.025 mg/mL to about 0.4, 0.05 mg/mL to about 0.2 mg/mL, or 0.05 mg/mL to about 0.1 mg/mL of the nucleic acid prior to freezing.

103. The formulation of any one of the preceding claims, wherein the therapeutic and/or prophylactic agent is a ribonucleic acid (RNA).

104. The formulation of any one of the preceding claims, wherein the RNA is selected from the group consisting of a small interfering RNA (siRNA), an asymmetrical interfering RNA (aiRNA), a microRNA (miRNA), a Dicer-substrate RNA (dsRNA), a small hairpin RNA (shRNA), a messenger RNA (mRNA), a long non-coding RNA (IncRNA) and mixtures thereof.

105. The formulation of any one of the preceding claims, wherein the RNA is an mRNA.

106. The formulation of any one of the preceding claims, wherein the mRNA includes one or more of a stem loop, a chain terminating nucleoside, a polyA sequence, a polyadenylation signal, and/or a 5’ cap structure.
107. The formulation of any one of the preceding claims, wherein the mRNA is at least 30 nucleotides in length.

108. The formulation of any one of the preceding claims, wherein the mRNA is at least 300 nucleotides in length.

109. The formulation of any one of the preceding claims, wherein the encapsulation efficiency of the therapeutic and/or prophylactic agent is at least 50%, at least 80%, at least 90%, or at least 95%.

110. The formulation of any one of the preceding claims, wherein the number ratio between the LNPs that carry one or more therapeutic and/or prophylactic agents and those free of any therapeutic and/or prophylactic agents is about 8:2 to about 10:0.

111. The formulation of any one of the preceding claims, wherein the encapsulation efficiency or the number ratio between the LNPs that carry one or more therapeutic and/or prophylactic agents and those free of any therapeutic and/or prophylactic agents is substantially the same after storage at about -20 °C or lower for at least one month.

112. The formulation of any one of the preceding claims, wherein the encapsulation efficiency or the number ratio between the LNPs that carry one or more therapeutic and/or prophylactic agents and those free of any therapeutic and/or prophylactic agents is substantially the same after up to 30 freeze/thaw cycles.

113. The formulation of any one of the preceding claims, wherein the wt/wt ratio of the LNPs to the therapeutic and/or prophylactic agents is from about 10:1 to about 60:1.

114. The formulation of any one of the preceding claims, wherein the N:P ratio is from about 2:1 to about 30:1.

115. The formulation of any one of the preceding claims, wherein the mean size of the LNPs is from about 70 nm to about 100 nm.
116. The formulation of any one of the preceding claims, wherein the formulation has little or no immunogenicity.

117. The formulation of any one of the preceding claims, wherein the formulation further comprises a therapeutic or prophylactic agent and has an increased therapeutic index as compared to a corresponding formulation which does not comprise the stabilizing agent.

118. The formulation of any one of the preceding claims, wherein the LNPs further comprise a neutral lipid.

119. The formulation of any one of the preceding claims, wherein the neutral lipid is a phospholipid or an analog or derivative thereof.

120. The formulation of any one of the preceding claims, wherein the phospholipid is selected from the group consisting of 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-diundecanoyl-sn-glycero-phosphocholine (DUPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-di-0-octadecenyl-sn-glycero-3-phosphocholine (18:0 Diether PC), 1-oleoyl-2-cholesterylhemisuccinoyl-sn-glycero-3-phosphocholine (OChemsPC), 1-hexadecyl-sn-glycero-3-phosphocholine (C16 Lyso PC), 1,2-dilinolenoyl-sn-glycero-3-phosphocholine, 1,2-diarachidonoyl-sn-glycero-3-phosphocholine, 1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-diphytanoyl-sn-glycero-3-phosphoethanolamine (ME 16.0 PE), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine, 1,2-dilinoleoyl-sn-glycero-3-phosphoethanolamine, 1,2-dilinolenoyl-sn-glycero-3-phosphoethanolamine, 1,2-diarachidonoyl-sn-glycero-3-phosphoethanolamine, 1,2-didocosahexaenoyl-sn-glycero-3-phosphoethanolamine.
1,2-dioleoyl-sn-glycero-3-phospho-rac-(1'-glycerol) sodium salt (DOPG), sphingomyelin, and mixtures thereof.

121. The formulation of any one of the preceding claims, wherein the structural lipid is selected from the group consisting of cholesterol, fecosterol, sitosterol, ergosterol, campesterol, stigmasterol, brassicasterol, tomatidine, ursolic acid, alpha-tocopherol, and mixtures thereof.

122. The formulation of any one of the preceding claims, wherein the LNPs further comprises a PEG lipid.

123. The formulation of any one of the preceding claims, wherein the PEG lipid is selected from the group consisting of a PEG-modified phosphatidylethanolamine, a PEG-modified phosphatidic acid, a PEG-modified ceramide, a PEG-modified dialkylamine, a PEG-modified diacylglycerol, a PEG-modified dialkylglycerol, and mixtures thereof.

124. The formulation of any one of the preceding claims, wherein the LNPs comprise about 30 mol % to about 60 mol % ionizable lipid, about 0 mol % to about 30 mol % phospholipid, about 18.5 mol % to about 48.5 mol % structural lipid, and about 0 mol % to about 10 mol % PEG lipid.

125. The formulation of any one of the preceding claims, wherein the LNPs comprise about 50 mol % ionizable lipid, about 10 mol % phospholipid, about 38.5 mol % structural lipid, and about 1.5 mol % PEG lipid.

126. The formulation of any one of the preceding claims, wherein the ionizable lipid comprises an ionizable amino lipid.

127. The formulation of any one of the preceding claims, wherein the ionizable lipid comprises a compound of any of Formulae (I), (IA), (II), (IIa), (lib), (lie), (lid) and (He).

128. The formulation of any one of the preceding claims, wherein the LNPs further comprise a cationic and/or ionizable lipid selected from the group consisting of 3-(didodecylamino)-N1,N1,4-tridodecyl-1'-piperazineethanamine (KL10),
NL-[2-(didodecylamino)ethyl]-N,N4,N4-tridodecyl-1,4-piperazinediethanamine (KL22),
14,25-ditridecyl-1,5,18,21,24-tetraaza-octatriacontane (KL25),
1,2-dilinoleyloxy-N,N-dimethylaminopropane (DLin-DMA),
2,2-dilinoleyl-4-dimethylaminomethyl-[1,3]-dioxolane (DLin-K-DMA),
heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate (DLin-MC3-DMA),
2,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane (DLin-KC2-DMA),
1,2-dioleyloxy-N,N-dimethylaminopropane (DODMA),
2-({8-[3P]-cholest-5-en-3-yloxy]octyl}oxy)-N,N-dimethyl-3-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]
propan-1-amine (Octyl-CLinDMA),
(2R)-2-({8-[3P]-cholest-5-en-3-yloxy]octyl}oxy)-N,N-dimethyl-3-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]
propan-1-amine (Octyl-CLinDMA (2R)),
(2S)-2-({8-[3P]-cholest-5-en-3-yloxy]octyl}oxy)-N,N-dimethyl-3-[(9Z,12Z)-octadeca-9,12-dien-1-
yloxy]propan-1-amine (Octyl-CLinDMA (2S)),
(12Z, 15Z)-N,N-dimethyl-2-nonylhenicosa-12,15-dien-1-amine, and
N,N-dimethyl-1-(1S,2R)-2-octylcyclopropyl]heptadecan-8-amine.

129. A method of mitigating degradation of lipid nanoparticles in a lipid nanoparticle (LNP) formulation, the method comprising adding a stabilizing agent to a first LNP formulation to form a second LNP formulation before or during storage -20 °C or lower or before a freeze/thaw cycle, wherein each of the LNPs comprises an ionizable lipid and a structural lipid, and the stabilizing agent comprises a cryoprotectant, a chelator, an antioxidant, or any combination thereof.

130. A method of producing a stabilized lipid nanoparticle (LNP) formulation, comprising mixing a stabilizing agent with a first LNP formulation to form a second LNP formulation, wherein each of the LNPs comprises an ionizable lipid and a structural lipid, and the stabilizing agent comprises a cryoprotectant, a chelator, an antioxidant, or any combination thereof such that the stabilizing agent mitigates degradation of the LNPs or a subpopulation thereof.

131. A method of screening for a stabilizing agent for mitigating degradation of lipid nanoparticles in a lipid nanoparticle (LNP) formulation, the method comprising:
(a) providing a first LNP formulation absent a stabilizing agent and a second LNP formulation comprising the stabilizing agent, wherein the first and second LNP formulations are identical except
for the stabilizing agent and each of the LNPs in the first and second LNP formulations comprises an ionizable lipid and a structural lipid;

(b) determining the degradation of the LNPs in the first and second LNP formulations upon storage at about -20 °C or lower for a period of time or upon one or more freeze/thaw cycles; and

(c) selecting the stabilizing agent if the degradation of the second LNP formulation is less than that of the first LNP formulation.

132. The method of any one of the preceding claims, wherein the stabilizing agent comprises a cryoprotectant, a chelator, an antioxidant, or any combination thereof.

133. The method of any one of the preceding claims, wherein the first or the second LNP formulation further comprises a nucleic acid.

134. The method of any one of the preceding claims, wherein the number ratio between the LNPs that carry one or more nucleic acids and those free of any nucleic acids is about 8:2 to about 10:0.

135. The method of any one of the preceding claims, wherein the second LNP formulation is substantially free of impurities.

136. The method of any one of the preceding claims, wherein the second LNP formulation contains fewer impurities as compared to the first LNP formulation.

137. The method of any one of the preceding claims, wherein the second LNP formulation contains about 20% or less, about 15% or less, about 10% or less, about 5% or less, about 1% or less, or about 0.5% or less of impurities.

138. The method of any one of the preceding claims, wherein the second LNP formulation has a decrease in the amount of sub-visible particulates as compared to the first LNP formulation.

139. The method of any one of the preceding claims, wherein the concentration of the cryoprotectant in the second LNP formulation ranges from about 0.5 % to about 50 % by weight,
preferably from about 0.05 % to about 25 % by weight, from about 1 % to 15 % by weight, or from about 3 % to about 12.5 % by weight.

140. The method of any one of the preceding claims, wherein the formulation further comprises a salt.

141. The method of any one of the preceding claims, wherein the salt is a chloride salt, preferably NaCl.

142. The method of any one of the preceding claims, wherein the formulation further comprises a buffer.

143. The method of any one of the preceding claims, wherein the buffer comprises Tris and the formulation is optionally a frozen formulation.

144. The method of any one of the preceding claims, wherein the buffer comprises a phosphate and the formulation is optionally a non-frozen formulation.

145. The method of any one of the preceding claims, further comprising purifying the first LNP formulation prior to adding the stabilizing agent.

146. The method of any one of the preceding claims, wherein the purification comprises filtration.

147. The method of any one of the preceding claims, wherein the degradation comprises a phase separation of one or more LNP components from the remainder of LNP.

148. The method of any one of the preceding claims, wherein the degradation comprises a phase separation of a fraction of the structure lipid, a phase separation of a fraction of the ionizable lipid, or both, from the remainder of LNP.
149. The method of any one of the preceding claims, wherein the formulation has a decreased fraction of the phase-separated structure lipid, a decreased fraction of the phase-separated ionizable lipid, or both, as compared to a corresponding formulation which does not comprise the stabilizing agent.

150. The method of any one of the preceding claims, wherein the fraction of the phase-separated structure lipid is between about 0.1% and 50% of the total amount of the structure lipid in the formulation or the fraction of the phase-separated ionizable lipid is between about 0.1% and 50% of the total amount of the ionizable lipid in the formulation.

151. The method of any one of the preceding claims, wherein decrease in the fraction of the phase-separated structure lipid or in the fraction of the phase-separated ionizable lipid is about 20% or more as compared to that of a corresponding formulation which does not comprise the stabilizing agent.

152. The method of any one of the preceding claims, wherein the second LNP formulation has substantially no increase in LNP mean size after storage at about -20 °C or lower for at least one month.

153. The method of any one of the preceding claims, wherein the second LNP formulation has an increase in LNP mean size of about 20% or less after storage at about -20 °C or lower for at least one month.

154. The method of any one of the preceding claims, wherein the second LNP formulation has an increase in LNP mean size of about 20% or less after up to 30 freeze/thaw cycles.

155. The method of any one of the preceding claims, wherein the second LNP formulation has substantially no increase in turbidity after storage at about -20 °C or lower for at least one month.
156. The method of any one of the preceding claims, wherein the second LNP formulation has an increase in turbidity of about 20% or less after storage at about -20 °C or lower for at least one month.

157. The method of any one of the preceding claims, wherein the second LNP formulation has an increase in turbidity of about 20% or less after up to 30 freeze/thaw cycles.

158. The method of any one of the preceding claims, wherein the second LNP formulation has substantially no increase in polydispersity index after storage at about -20 °C or lower for at least one month.

159. The method of any one of the preceding claims, wherein the second LNP formulation has an increase in polydispersity index of about 20% or less after storage at about -20 °C or lower for at least one month.

160. The method of any one of the preceding claims, wherein the second LNP formulation has an increase in polydispersity index of about 20% or less after up to 30 freeze/thaw cycles.

161. The method of any one of the preceding claims, wherein the second LNP formulation has substantially no decrease in encapsulation efficiency after storage at about -20 °C or lower for at least one month.

162. The method of any one of the preceding claims, wherein the second LNP formulation has substantially no decrease in encapsulation efficiency after up to 30 freeze/thaw cycles.

163. The method of any one of the preceding claims, wherein the second LNP formulation has a decrease in encapsulation efficiency of about 20% or less after storage at about -20 °C or lower for at least one month.
164. The method of any one of the preceding claims, wherein the second LNP formulation has a decrease in encapsulation efficiency of about 20% or less after up to 30 freeze/thaw cycles.

165. A method of lowering immunogenicity comprising introducing the formulation of any one of the preceding claims into cells, wherein the formulation reduces the induction of the cellular immune response of the cells to the formulation, as compared to the induction of the cellular immune response in cells induced by a corresponding formulation which does not comprise the stabilizing agent.

166. The method of any one of the preceding claims, wherein the cellular immune response is an innate immune response, an adaptive immune response, or both.
FIG. 6
- >50% of PG and glycerol maintains encapsulation of mRNA in frozen LNP
- Size of LNP increases in the freezer, biggest change at -80°C
- >25% of PG and Glycerol mitigates against freezer-induced size increase

FIG. 7
- 50% of PG and >50% glycerol maintains encapsulation of mRNA in frozen LNP.
- Size of LNP increases in freezer at -20C
- >25% of Glycerol in PBS mitigates against freezer-induced size increase

FIG. 8
A diluted (200x) sample screen appears to be an accelerated indicator of long term stability.

Initial

After 16 days at -20°C

At isotonic concentrations propylene glycol and glycerol stabilize formulations better than sucrose.

Formulation development using this screen may identify even better -20°C (and 5°C) options.

Isotonic Sucrose

Isotonic Propylene Glycol

Isotonic Glycerol

FIG. 11

Size Distribution by Volume

Volume (Percent)
FIG. 12

- Sucrose is a surprisingly poor stabilizer with respect to freeze-thaw
- 2% propylene glycol (isotonic) and 7% are found to be significantly better
Sorbitol and mannitol have adverse effects on -20C frozen storage stability.

Sucrose, glycerol and propylene glycol confer significant stabilizing effects with respect to -20C frozen storage.

FIG. 13
Percent improvement of Z-Av increase at -20C relative to 8% sucrose formulation after 16 days

FIG. 14
COMPARISON OF DLS AND TURBIDITY FOR LNPS

- Turbidity, NTU
- Nanostar Diameter, nm

FIG. 15
Particle Counts upon Ten Freeze/Thaw Cycles (0.10 mg/mL)

- initial
- buffer only
- with 0.01% PS20

(C1) (F1)

Counts >0.6μm particles/mL

Sample 6 Sample 8 Sample 10 Sample 11

FIG. 24
Particle Counts upon Ten Freeze/Thaw Cycles (0.01 mg/mL)

- buffer only
- with 0.01% PS20

(C1) (F1)

Coulter counts > 0.6µm particles/mL

Sample 6
Sample 8
Sample 10
Sample 11

FIG. 25
Z-Average upon Ten Freeze/Thaw Cycles

- Initial
- After 10x FT
- after 10x FT with glass beads

FIG. 26
Effect of 10x freeze-thaw on subvisible counts by Coulter

- after 10x FT
- initial

FIG. 27
FIG. 33A

FIG. 33B
FIG. 35A

FIG. 35B
INTERNATIONAL SEARCH REPORT

International application No
PCT/US2017/060704

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61K9/00 A61K9/19 A61K48/00 A61K9/51

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with Indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>page 22, paragraph 5</td>
<td>2, 4-9, 11-14, 16-66, 70-81, 83, 85-99, 102, 105-114</td>
</tr>
<tr>
<td></td>
<td>page 23, paragraph 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 25, paragraph 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pages 37-38; example 6</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the International filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed
"S" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"A" document member of the same patent family

Date of the actual completion of the international search
23 February 2018

Date of mailing of the international search report
05/03/2018

Name and mailing address of the ISA/Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016
Raposo, Antonio
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>ROHAN SHAH ET AL: the whole document</td>
<td>2.4-9, 11-14, 16-66, 70-81, 83, 85-99, 102, 105-114, 116, 117, 124-128, 134-164, 166</td>
</tr>
<tr>
<td></td>
<td>item 5.4.1.1; page 88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>item 5.5.2.2; pages 92-93</td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No.</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----------------------</td>
</tr>
</tbody>
</table>

item 3.2.2; page 1111

page 24, paragraph 4
pages 59-65; claims 1-16
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU 2012356239 A1</td>
<td>29-05-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2853685 A1</td>
<td>10-05-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2853689 A1</td>
<td>27-06-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103906503 A</td>
<td>02-07-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103906504 A</td>
<td>02-07-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2773326 A2</td>
<td>10-09-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2773328 A2</td>
<td>10-09-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6133883 B2</td>
<td>24-05-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6149041 B2</td>
<td>14-06-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014534232 A</td>
<td>18-12-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2015502345 A</td>
<td>22-01-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2017165748 A</td>
<td>21-09-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20140097276 A</td>
<td>06-08-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20140101748 A</td>
<td>20-08-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2014122432 A</td>
<td>10-12-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2014122433 A</td>
<td>10-12-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201323020 A</td>
<td>16-06-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201325634 A</td>
<td>01-07-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201731491 A</td>
<td>16-09-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013164400 A</td>
<td>27-06-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013064911 A2</td>
<td>10-05-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013093648 A2</td>
<td>27-06-2013</td>
</tr>
</tbody>
</table>

		US 2016361411 A1	15-12-2016
		WO 2015130584 A2	03-09-2015