PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 98/55948
GOGF 17/30 Al o
(43) International Publication Date: 10 December 1998 (10.12.98)
(21) International Application Number: PCT/US98/11570 | (81) Designated States: CA, JP, European patent (AT, BE, CH, CY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
(22) International Filing Date: 5 June 1998 (05.06.98) SE).
(30) Priority Data: Published
08/869,588 5 June 1997 (05.06.97) Us With international search report.

Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
(71) Applicant: MICROSOFT CORPORATION [US/US]; One amendments.

Microsoft Way, Redmond, WA 98052-6399 (US).

(72) Inventors: PAL, Shankar; 9210 Red-Wood Road N.E. #A107,
Redmond, WA 98052 (US). BENNETT, John, G.; 8808
N.E. 14th Street, Bellevue, WA 98004 (US).

(74) Agents: PIRIO, Maurice, J. et al;; Seed and Berry LLP,
6300 Columbia Center, 701 Fifth Avenue, Seattle, WA
98104-7092 (US).

(54) Title: DISTRIBUTION OF A CENTRALIZED DATABASE

o st
/ a L.
02 e FETS
. e 101 i 1
Nerury Selandury) Selodny
9o PR Shonage -‘ Shieeg

DY™A Witain g
” i [_:3__] Tomntentoy ow“a.\
_1 % . 3y o Lt b
~D
o video 11 1 cbv
|| — 5 | o

L CPv

103 > T Beace
wdeo Fapr Qhite
075«[1

(57) Abstract

A system that improves performance of a centralized DBMS is provided. The improved performance is realized by distributing
part of the DBMS’s functionality across multiple computers in a client/server environment. The distribution of the DBMS’s functionality
is performed by a mechanism known as the navigational agent, which is detached from the DBMS. The navigational agent integrates
the centralized DBMS into a client/server environment so that performance improvements can be achieved by distributing a portion of
the functionality of the centralized DBMS and some of its database objects to client computers. A database object is a unit of data in
the database such as one or more fields of a record, one or more records, or one or more tables. By distributing part of the DBMS’s
functionality and some of the database objects to client computers, transactions can be performed on the client computers without having
to access the server computer on which the database resides. Since these transactions are performed by the client computer instead of the
server computer, the bottleneck created by the DBMS on the server computer is reduced, which improves performance of both the DBMS
and programs interacting with the DBMS.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania ES Spain LS Lesotho SI Slovenia
Armenia FI Finland LT Lithuania SK Slovakia
Austria FR France LU Luxembourg SN Senegal
Australia GA Gabon LV Latvia SZ Swaziland
Azerbaijan GB United Kingdom MC Monaco ™D Chad

Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo
Barbados GH Ghana MG Madagascar TJ Tajikistan
Belgium GN Guinea MK The former Yugoslav ™ Turkmenistan
Burkina Faso GR Greece Republic of Macedonia TR Turkey
Bulgaria HU Hungary ML Mali TT Trinidad and Tobago
Benin IE Ireland MN Mongolia UA Ukraine
Brazil IL Israel MR Mauritania UG Uganda
Belarus IS Iceland MW Malawi us United States of America
Canada IT Ttaly MX Mexico vz Uzbekistan
Central African Republic IP Japan NE Niger VN Viet Nam
Congo KE Kenya NL Netherlands YU Yugoslavia
Switzerland KG Kyrgyzstan NO Norway W Zimbabwe
Cote d’Ivoire KP Democratic People’s NZ New Zealand

Cameroon Republic of Korea PL Poland

China KR Republic of Korea PT Portugal

Cuba KZ Kazakstan RO Romania

Czech Republic LC Saint Lucia RU Russian Federation

Germany LI Liechtenstein Sb Sudan

Denmark LK Sri Lanka SE Sweden

Estonia LR Liberia SG Singapore

WO 98/55948 PCT/US98/11570

10

15

20

25

DISTRIBUTION OF A CENTRALIZED DATABASE

TECHNICAL FIELD
The present invention relates to data processing systems and, more

particularly, to the distribution of a centralized database.

BACKGROUND OF THE INVENTION
A Database Management System (DBMS) provides users and application

programs with the ability to retrieve data from a database, such as a relational database.

A relational database is a collection of tables of data. Each table contains records of a

certain type, and each type of record contains fields in which the data is stored. In
retrieving data from the database, a well-known query language like the Structured
Query Language (SQL) can be used. SQL is both an interactive query language that can
be used by a user and a database programming language that can be used by application
programs. Many database management systems have been developed that utilize SQL.

SQL defines four basic statements for programmatically performing
operations on a database: select, update, delete, and insert. The select statement
retrieves specific records or fields of records that match a particular selection criteria.
For example, in a table of employee information having records with fields for first
names and addresses, the select statement can be utilized to retrieve the addresses for all
employees with the first name “Joe.” The selection criteria of the select statement is
referred to as the predicate of the statement. The update statement is used to update or
modify records or fields of records that satisfy particular selection criteria. The delete
statement deletes records that satisfy particular selection criteria, and the insert statement
inserts a record into an identified table.

When issuing statements to a database, transactions containing a series of
statements are typically used. A “transaction” contains a series of statements that
together perform one logical unit of work and that satisfies the properties of atomicity,
consistency, isolation, and durability as described in Date, An Introduction to Database
Systems, Vol. I, Addison-Wesley (1983), at pp. 1-142. For example, a logical unit of

work may retrieve employment information for all employees whose first name is Joe

PCT/US98/11570

WO 98/55948

10

15

20

25

30

and increase their salaries by ten percent. The first statement contained in a transaction
is typically the “Begin Transaction” statement, which indicates to the DBMS that a
transaction is about to begin. The DBMS uses this indication to identify any updates
requested during the transaction as being tentative only, not permanent, so that if an
error occurs, the updates can be undone easily. The updates are considered to be
tentative until such time as the caller issues a “Commit” statement. Upon receiving a
“Commit” statement, the DBMS performs all updates in the transaction. However, if an
error occurred during the processing of the transaction, the caller can issue a “Rollback”
statement which cancels the transaction and returns the database to its pre-transaction
state. Therefore, a transaction either executes in its entirety or is completely canceled.
In either case, the transaction is said to have completed. In this manner, a transaction
makes a sequence of operations that is non-atomic operate as though it were atomic.

When more than one transaction is being processed by a DBMS,
concurrency problems can arise which lead to the unreliable execution of the
transactions. An example of such a concurrency problem is depicted in Figure 1A.
Figure 1A depicts two transactions, transaction A and transaction B, which are being
executed on a database simultaneously. Transaction A increments a field X and a
field Y, and transaction B multiplies the value of field X by 2 and increments field Z.
The processing of the transactions is depicted chronologically with respect to times
T1-T6. Attime T1, transaction A retrieves a field X of a record using a select statement
and stores the value of the field into a variable “templ.” At time T2, transaction B
retrieves the value of field X and copies this value into a variable “temp2.” At time T3,
transaction A updates field X with the original value of X incremented by 1. At time T4,
transaction B updates field X with the original value of X multiplied by 2, which nullifies
transaction A’s processing with respect to this field. At time TS, transaction A retrieves
field Y and transaction B retrieves field Z. At time T6, transaction A updates Y with
Y + 1 and transaction B updates Z with Z+ 1. The processing performed at times TS5
and T6 do not pose any concurrency problems because the actions are performed on
unrelated fields.

One technique used to solve concurrency problems is to serially execute

the transactions so that only one transaction ever executes on the DBMS at a time. For

PCT/US98/11570

WO 98/55948

10

15

20

25

30

example, transaction A executes completely and then transaction B executes. In this
manner, concurrency problems are avoided. However, if the DBMS can only process a
single transaction at a time, the DBMS becomes a bottleneck and transactions may have
to wait a significant amount of time before being processed. Serial execution is an
undesirable solution to concurrency problems because many transactions are sufficiently
unrelated (i.e., the transactions do not operate on common data) such that they can
execute concurrently and pose no concurrency problems. Having a transaction that is
unrelated to an executing transaction wait before being executed is an unnecessary
restriction and siows down both the performance of the DBMS and the performance of
the programs that issue the transactions.

In order to simultaneously process database transactions and prevent
concurrency problems from occurring, some conventional DBMSs execute transactions
in a serializable manner. A serializable execution of transactions guarantees that a
correct result occurs. A “correct” result is a result that would occur had the transactions
been executed serially in some order. In the example of Figure 1A, a correct result for
field X is either (X*2)+1 or (X+1)*2. From the perspective of the database, either one
of these results is a correct result. Serializable execution of transactions is an interleaved
execution of the transactions that produces a correct result.

An example of two serializable transactions executing simultaneously is
depicted in Figure 1B. In Figure 1B, at time T1, transaction A retrieves field X and
copies it into a variable. At time T2, transaction A updates field X with an incremented
value. Although transaction B may attempt to retrieve field X after time T1 and before
time T2, transaction B is prevented from doing so by the database until transaction A
updates field X so that concurrency problems do not arise. At time T3, transaction B is
allowed to retrieve field X and copy it into a variable. Also at time T3, transaction A
simultaneously retrieves field Y. At time T4, transaction B updates field X with its
current value multiplied by 2, and transaction A updates field Y with an incremented
value. At time T35, transaction B retrieves field Z, and at time T6, transaction B updates
fieldZ. As can be seen from this example, transaction A and transaction B are
performed simultaneously to improve performance, and since transaction B cannot

access field X while transaction A is using it, concurrency problems are avoided.

PCT/US98/11570

WO 98/55948

10

15

20

25

30

Most DBMSs are centralized in nature. A “centralized DBMS” is a
DBMS where all the data within the database is stored on a single computer, usually the
secondary storage device of the computer. In a centralized DBMS, as the number of
transactions executing on the DBMS increases, performance of the DBMS significantly
decreases and becomes a drain on the overall performance of the computer. As a result,
a centralized DBMS acts as a bottleneck which slows down performance of both the
computer and programs executing on the computer. It is thus desirable to improve

performance of a centralized DBMS.

SUMMARY OF THE INVENTION

A system that improves performance of a centralized DBMS is provided.
The improved performance is realized by distributing part of the DBMS’s functionality
across multiple computers in a client/server environment. The distribution of the
DBMS’s functionality is performed by a mechanism known as the navigational agent,
which is detached from the DBMS. The navigational agent integrates the centralized
DBMS into a client/server environment so that performance improvements can be
achieved by distributing a portion of the functionality of the centralized DBMS and some
of its database objects to client computers. A database object is a unit of data in the
database such as one or more fields of a record, one or more records, or one or more
tabies. By distributing part of the DBMS’s functionality and some of the database
objects to client computers, transactions can be performed on the client computers
without having to access the server computer on which the database resides. Since these
transactions are performed by the client computer instead of the server computer, the
bottleneck created by the DBMS on the server computer is reduced, which improves
performance of both the DBMS and programs interacting with the DBMS.

In accordance with a first aspect of the present invention, a method is
provided in a data processing system having a centralized database with database
objects, having clients with copies of the database objects that utilize the copies of the
database objects, and having a synchronizing agent. The method is performed under the
control of the synchronizing agent which is detached from the centralized database. The

method distributes a copy of one of the database objects to one of the clients and

PCT/US98/11570

WO 98/55948

10

15

20

25

synchronizes the copy of the database object with the centralized database such that the
client is notified when the copy of the database object will become out of date.

In accordance with a second aspect of the present invention, a method is
provided in a data processing system having a server computer and client computers.
The method is for distributing a centralized database on the server computer having
database objects. The method stores copies of a plurality of database objects on a
plurality of the client computers by a navigational agent that is detached from the
centralized database and executes transactions involving the database objects at the
client computers in a serializable manner.

In accordance with a third aspect of the present invention, a data
processing system is provided comprising a secondary storage device, a memory, and a
processor. The secondary storage device has a database with database objects. The
memory contains a database management system that manages the database, a client for
maintaining a copy of one of the database objects until being notified that the copy is no
longer valid, and a synchronization agent that is detached from the database management
system. The client, however, may reside in a separate memory. The synchronization
agent determines when the database object is to be updated and notifies the client when
the database object is to be updated and will no longer be a valid representation of the
database object. The processor runs the database management system, the client, and

the synchronization agent.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1A depicts two transactions occurring simultaneously in which a
concurrency problem occurs.
- Figure 1B depicts two transactions occurring simultaneously in a
serializable manner to avoid concurrency problems.
Figure 2 depicts an example use of a callback message by a preferred
embodiment of the present invention.
Figure 3 depicts a data processing system suitable for practicing a

preferred embodiment of the present invention.

PCT/US98/11570

WO 98/55948

10

15

20

25

30

Figure 4 depicts a more-detailed diagram of the server computer and a
client computer of Figure 3.

Figures 5A and 5B depict a flowchart of the steps performed by the
transaction manager of a preferred embodiment of the present invention.

Figure 6 depicts a flowchart of the steps performed by the navigational

agent of a preferred embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

A preferred embodiment of the present invention improves performance
of a centralized database management system (DBMS) by distributing part of its
functionality across multiple computers in a client/server environment. The distribution
of the DBMS’s functionality is performed by a mechanism known as a navigational agent
on the server computer and a transaction manager on each of the client computers. The
navigational agent is detached from the DBMS so that it can operate with any of a
number of suitable centralized DBMSs. The navigational agent integrates the centralized
DBMS into a client/server environment to achieve performance improvements by
distributing a portion of the functionality of the centralized DBMS and some of its
database objects to client computers. A database object is a unit of data in the database
such as one or more fields of a record, one or more records, or one or more tables. By
distributing part of the DBMS’s functionality and some of the database objects to client
computers, transactions can be performed on the client computers without having to
access the server computer on which the database resides. Since these transactions are
performed by the client computer instead of the server computer, the bottleneck created
by the DBMS on the server computer is reduced, which improves performance of both
the DBMS and programs interacting with the DBMS.

To improve performance, a preferred embodiment distributes some of the
DBMS’s database objects to client computers, where they are stored in an object cache.
The object cache stores copies of database objects which are maintained by the DBMS,
and the transaction manager can perform queries on these copies. When distributing the
database objects, concurrency management and cache cohex;ency become probiems for

which solutions are needed. The centralized DBMS ensures that the transactions it

WO 98/55948

10

15

20

25

30

PCT/US98/11570

performs on database objects execute so as to avoid concurrency problems. However,
when database objects are distributed from the centralized DBMS to client computers
where transactions can be performed on them, the centralized DBMS does not have
control over the distributed copies of the database objects. Consequently, there are no
safeguards against concurrency problems occurring nor are there safeguards against the
distributed copy of the database object becoming out of synchronization with respect to
the master copy of the database object maintained by the centralized DBMS. To solve
these problems, the navigational agent ensures that database transactions running on the
client computers are serializable, thus ensuring that transactions involving a common
database object are performed so that a correct result is generated and concurrency
problems are avoided. Additionally, the navigational agent notifies the client computers
when their copy of a database object will become out of synchronization with the
DBMS’s version of the database object (i.e., it will soon be updated). In this manner,
the client computers that use the distributed copies of database objects are ensured to be
notified when the distributed copies of the database objects become out of date, which
solves the problem of synchronizing the distributed copy of a database object with the
DBMS and which provides cache coherency.

The serializability and synchronization provided by the navigational agent
are provided through the use of callback messages. A “callback message” is a message
sent from the navigational agent to a client computer, where the callback message
requests a response when the client computer has completed processing with a particular
database object. The generation of a callback message to a client computer indicates
that another client computer has requested write access (“a writelock”) to the object;
thus the callback message provides notification that the database object will soon
become out of date. Upon receiving a callback, if a client computer is currently using
the object as part of a transaction, the client computer delays responding to the callback
message until it has completed utilizing the object and the transaction has completed.
However, if the client computer is not using the object, the client computer immediately
responds to the callback message so that the transaction requesting the writelock may
proceed and be committed to the database. After responding to the callback message,

the client computer discards the database object, as it will soon become out of date. For

PCT/US98/11570

WO 98/55948

10

15

20

25

example, when a client computer wishes to update an object, it first issues a writelock
request to the navigational agent. The navigational agent then requests a writelock on
the database object from the DBMS, which grants the request unless another writelock is
outstanding. After obtaining the writelock, the navigational agent notifies each client
computer having a copy of the database object using a callback message so that these
client computers are made aware that the database object will become out of date.
Additionally, the navigational agent does not allow an update of the database object to
be committed until a reply to each callback message is received. As such, each client
computer having a copy of the database object will complete the transaction using the
database object before the database object is updated, which provides serializability, and
each client will discard its copy of the database object after the transaction completes
because the database object will become out of date.

A preferred embodiment provides a transaction manager on each of the
client computers so that application programs executing transactions at the client
computers do not need to know of the navigational agent or the distribution of the
centralized DBMS. In performing this functionality, the transaction manager receives a
transaction from an application program and performs the statements of the transaction
on the centralized DBMS and, in some circumstances, on the database objects in the
object cache. The transaction manager performs a statement on the database objects in
the object cache when the statement is a select statement and the database objects
necessary for performing the query are located in the object cache. Additionally, the
transaction manager processes all callback messages received by the client computer.

As stated above, the navigational agent distributes the processing
performed by a centralized DBMS to improve performance. To provide this
functionality, the navigational agent prevents concurrency problems from occurring by
providing for the serializable execution of the transactions running on the client
computers, and the navigational agent provides cache coherency by ensuring that the

distributed database objects are synchronized with their counterparts in the DBMS.

PCT/US98/11570

WO 98/55948

10

15

20

25

30

Example
Figure 2 depicts an example of the techniques utilized by a preferred

embodiment. In Figure2, a server computer 200 is interacting with two client
computers 202 and 204. The server computer 200 contains a centralized DBMS 206
and a navigational agent 208 that is detached from the DBMS. The navigational agent
208 maintains a directory structure 210 indicating all clients that have been allocated
particular database objects. For example, the directory structure 210 contains an entry
indicating that object X has been allocated to both “client 1” and “client 2.” Client
computer 202 has a client 216 (“client 1), and client computer 204 has a client 218
(“client 2”). In a preferred embodiment, client 1 and client 2 are the transaction
managers of the respective client computers 202 and 204. The transaction manager is
described in greater detail below. Both client computers 202 and 204 have an object
cache 212 and 214 which contain any database objects that the clients may be using. For
example, object cache 212 and object cache 214 contain a copy of object X.

In the example depicted in Figure 2, client 1 and client 2 have already
retrieved object X by issuing a select statement to the DBMS 206 via the navigational
agent 208. When processing the select statement, the DBMS 206 automatically places a
readlock on the identified database objects which permits read access to these database
objects. After receiving object X, the example begins with client 2 requesting that a
writelock be granted on object X so that object X may be updated. Client 2 sends this
request to the navigational agent 208 which then passes the request to the DBMS 206.
The DBMS 206 will grant the writelock as long as no other writelocks are outstanding
on the object. In a preferred embodiment, only one writelock at a time is allowed per
database object. While a writelock is in effect on a database object, no other locks are
granted, not even readlocks. Conversely, when a database object does not have a
writelock in effect, multiple readlocks may be granted.

After receiving the writelock request, the DBMS 206 passes a response
to the writelock request to the navigational agent 208, and the navigational agent sends
an indication of this response to client 2. Assuming the writelock is granted, after
sending the indication, the navigational agent 208 accesses the directory structure 210 to

determine all clients that currently have object X allocated. The navigational agent 208

WO 98/55948

10

15

20

25

30

PCT/US98/11570
10

then sends a callback message to each of these clients other than the client requesting the
writelock (e.g., client 1) to notify them that object X will soon become out of date.
Upon receiving the callback, client 1 determines if a transaction is executing that utilizes
object X. If such a transaction is executing, client 1 delays responding to the callback
until it has completed processing. If client 1 determines that object X is not in use,
client 1 immediately sends back a response. After sending the response, client 1 discards
object X since it will be updated and object X will become out of date. Upon receiving
the response, the navigational agent 208 deallocates object X from client 1 by deleting
the indication of client 1 in the directory structure 210.

At some point while client 1 is responding to the callback message,
client 2 modifies a portion of object X and sends an update request to the navigational
agent 208. This update request may be a delayed update request that requests an update
at a future time. The navigational agent 208 passes the update request to the DBMS
206. Subsequently, client 2 issues a commit statement to commit the update and the
navigational agent 208 delays passing the commit statement to the DBMS 206 until it
has received a response to all outstanding callback messages. After receiving a response
to all callback messages, the navigational agent 208 can guarantee that all transactions
involving object X have completed and thus the update to object X can be committed
and concurrency problems involving object X are avoided. Having ensured that
concurrency problems with respect to object X will be avoided, the navigational agent
208 passes the commit to the DBMS 206. In this manner, a transaction performed by
client 1 and a transaction performed by client 2 are executed simultaneously in a
serializable manner.

Although a preferred embodiment is described as a client fetching an
object before an update is requested on the object, the present invention also works on
blind updates. A “blind update” is an update requested on an object that has not already
been fetched by the client. In response to receiving the blind update request, the
navigational agent accesses the directory structure and sends callback messages to the

clients, similar to that described above.

WO 98/55948 PCT/US98/11570

10

15

20

25

30

11

Implementation Details
Figure 3 depicts a data processing system 300 suitable for practicing a

preferred embodiment of the present invention. The data processing system 300
contains server computer 200, client computer 202, and client computer 204
interconnected via a network 308, such as a local area network or a wide area network.
One skilled in the art will appreciate that the data processing system 300 may contain
additional client computers.

Figure 4 depicts a more-detailed diagram of server computer 200 and
client computer 202. Although client computer 202 is depicted, it should be appreciated
that the other client computers are similarly configured. Server computer 200 contains a
memory 402, a secondary storage device 404, a video display 408, a central processing
unit (CPU) 406, and an input device 410. The memory 402 contains a suitable
centralized DBMS 206, such as the Microsoft SQL Server available from Microsoft
Corporation of Redmond, Washington; the navigational agent 208; and the directory
structure 210. The secondary storage device 404 contains a database 420 that stores the
data for the DBMS 206. The client computer 302 contains a memory 411, a secondary
storage device 412, a video display 416, a CPU 414, and an input device 418. The
memory 411 contains an application program 425 and a transaction manager 424 for
processing transactions and for interacting with the navigational agent 208. Since the
transaction manager 424 performs the transactions and interacts with the navigational
agent 208, it is the transaction manager that acts as the client. However, one skilled in
the art will appreciate that such functionality can be performed by either the application
program 425 or another entity on the client computer 302, and as such, the term client
should be construed to include all such entities. The secondary storage device 412
contains an object cache 426 that contains database objects received from the DBMS
206. The database objects in the object cache 426 are the results of previous queries
performed on the DBMS 206. The database objects in the results are maintained in the
object cache 226 so that subsequent transactions may be performed against these objects
instead of having to execute the transaction on the DBMS 206.

The transaction manager 424 receives a transaction from the application

program 425 and performs the statements in the transaction against the objects in the

WO 98/55948 PCT/US98/11570

10

15

20

25

30

12

object cache 426 of the secondary storage device 412. Alternatively, if the objects
necessary to perform the transaction are not found in the object cache 426, the
statements are performed against the DBMS 206 via the navigational agent 208. In
circumstances where the transaction manager 424 can perform a select statement or
query against objects in the object cache 426, the burden of performing this processing is
relieved from the DBMS 206, which significantly improves performance of the server
computer 200 and the DBMS 206.

Figures SA and 5B depict a flowchart of the steps performed by the
transaction manager of a preferred embodiment. The transaction manager first receives
a transaction from the application program (step 502). The transaction manager then
chooses a statement from the transaction, starting with the first statement (step 504).
After selecting a statement, the transaction manager determines if the statement is a
select statement performing a query (step 506). If the statement is a select statement,
the transaction manager determines if specific objects are identified in the predicate of
the select statement (step 508). In this step, the transaction manager determines whether
a particular database object is identified or whether a close-ended range of database
objects is identified. Each database object in the system has a 16-byte unique identifier
associated with it. Thus, in this step, the determination made is whether a particular
object is specified in the predicate (e.g., object id. 123) or whether a close-ended range
is specified (e.g., object ids. 123-125). The transaction manager cannot handle open-
ended ranges of objects (e.g., object ids. > 123) since the transaction manager does not
have knowledge of all objects maintained by the DBMS. The transaction manager only
knows of the database objects in the local object cache.

If the condition of step 508 is true, the transaction manager determines if
the requested database objects are located in the object cache (step 510). If the
requested database objects are in the object cache, the transaction manager performs the
select statement on the objects in the object cache (step 512). However, if the database
objects are not in the cache, if specific objects are not identified in the predicate, or if the
statement is not a select statement, the transaction manager sends the statement to the
navigational agent to be processed by the DBMS (step 514). For example, the statement

may be a begin transaction, commit, rollback, update, delete, or insert statement. After

WO 98/55948

10

15

20

25

30

PCT/US98/11570

13

sending the statement to the navigational agent, the navigational agent sends the
statement to the DBMS where the statement is performed and results are returned. If
the statement is a select statement, the results returned are a set of database objects that
reflect the results of the query. For example, the results may include database objects
reflecting all records of employees living in a particular city. It should be appreciated
that the returned database objects may contain one or more fields, one or more records,
or one or more tables. After receiving the set of database objects, the transaction
manager stores the database objects into the object cache for use in performing queries
until such time as they will be updated by another client. After sending the statement to
the navigational agent, the transaction manager determines whether there are more
statements to be performed as part of the transaction (step 516). If there are more
statements in the transaction, processing continues to step 504. However, if there are no
more statements in the transaction, processing continues to step 518 in Figure 5B.

Steps 518-524 reflect the processing performed when the transaction
manager receives a callback message. Although these steps are described as occurring
after a transaction, one skilled in the art will appreciate that these steps can be performed
during a transaction. The transaction manager receives a callback message from the
navigational agent that identifies a database object (step 518). After receiving the
callback message, the transaction manager determines if there is a transaction in progress
that is utilizing the database object identified in the callback message (step 520). If there
is such a transaction in progress, the transaction manager waits until the transaction
completes (step 522). After waiting until the transaction completes, or if there is no
transaction in progress, the transaction manager sends a response to the callback
message to the navigational agent. After sending the response, processing ends.

Figure 6 depicts a flowchart of the steps performed by the navigational
agent of a preferred embodiment. The navigational agent first receives a statement from
a transaction manager on a client computer (step 602). After receiving a statement, the
navigational agent determines if the statement is a select for update statement or whether
the statement requests a blind update (step 604). The “select for update” statement
requests that a writelock be placed on a specified database object. The select for update

statement does not itself request a copy of the object; rather, it is assumed that the

WO 98/55948 PCT/US98/11570

10

15

20

25

30

14

transaction manager already has a copy of the object with a readlock on it. Therefore,
before a transaction manager can obtain a writelock on a database object, it must first
retrieve the object from the database utilizing a select command and receive a readlock.
Only after receiving the object with the readlock can the transaction manager issue a
select for update statement to obtain a writelock on the object. The select for writelock
statement is not a standard SQL statement, but is provided by the centralized DBMS of
a preferred embodiment. One skilled in the art will appreciate that the present invention
can be used with a centralized database that does not support the select for writelock
statement. Similar to the select for update, the blind update requests that a writelock be
placed on the database object in preparation for an update. However, in this case, the
transaction manager has not received (or fetched) a copy of the object. If the statement
is a select for update statement or a request for a blind update, the navigational agent
sends the statement to the DBMS and returns the response to the transaction manager
(step 606). In this step, the navigational agent requests a writelock from the DBMS and
the DBMS will grant the writelock as long as no other writelocks are outstanding on this
object. Next, the navigational agent sends a callback message to all clients except the
requesting client who have allocated the object as indicated in the directory structure
(step 608). The callback messages are only sent if the writelock has been granted.

If the statement is not a select for update statement or a request for a
blind update, the navigational agent determines if the statement is a commit statement
where an update occurred as part of the transaction (step 610). If a transaction manager
1s committing a transaction that performed an update, the navigational agent waits until
all callback responses have been received (step 612). The navigational agent then sends
the commit statement to the DBMS (step 614) and deallocates the database object from
all transaction managers that have allocated the database object except for the
transaction manager with the writelock (step 616). If the statement is not a commit
statement where the transaction performed an update, the navigational agent determines
if the statement is a select statement (step 618).

If the statement is a select statement, the navigational agent sends the
statement to the DBMS for processing (step 620). The navigational agent then allocates

the returned database objects (“the results”) to the transaction manager (step 622) and

WO 98/55948 PCT/US98/11570

15

returns the database objects to the transaction manager (step 624). In this step, the
DBMS grants a readlock on the database objects. If the statement is not a select
statement, the navigational agent sends the statement to the DBMS for processing (step
626). In this step, the statement may be an update, insert, begin transaction, a rollback,
S5 or a commit where no update occurred during the transaction. Next, processing ends.

While the present invention has been described with reference to a
preferred embodiment thereof, those skilled in the art will know of various changes in
form that may be made without departing from the spirit and scope of the claimed

invention as defined in the appended claims.

WO 98/55948 PCT/US98/11570
16

CLAIMS

1. A method in a data processing system for synchronizing database
objects contained in a centralized database management system on a server computer with
copies of the database objects stored in client computers, the synchronizing performed by a
synchronization agent that is detached from the centralized database management system, the
method performed by the synchronization agent comprising the steps of:

receiving a request from one of the client computers requesting a selected one
of the database objects;

sending the request to the centralized database management system such that
the centralized database management system grants a readlock on the selected database object;

sending a copy of the selected database object to the client computer;

storing an indication of the client computer into a directory structure, the
indication indicating that the client computer has allocated the selected object;

receiving a request from the client computer requesting a writelock for the
selected database object;

sending the writelock request to the centralized database management system
such that the centralized database management system grants the writelock:

accessing the directory structure to determine allocating clients that have
allocated the selected object;

sending to the allocating clients a callback message requesting a response when
the allocating clients have completed use of the selected object, the callback message
indicating that the selected object will become updated;

receiving a request to modify the selected object from the client computer;

waiting until receiving a response to each of the callback messages to ensure
that the allocating clients have completed use of the selected object; and

modifying the selected object after receiving the response to each of the

callback messages.

2. The method of claim 1 wherein the step of receiving a request from one

of the client computers includes receiving a query.

WO 98/55948 PCT/US98/11570
17

3. The method of claim 2 wherein the first query is performed as part of a
first transaction, and wherein the method further includes receiving a second query as part of a
second transaction from a second of the client computers, and performing the first transaction

and the second transaction in a serializable manner.

4. A method in a data processing system for synchronizing database
objects contained in a centralized database management system with copies of the database
objects stored with clients that utilize the copies of the database objects, the synchronizing
performed by a synchronizing agent, comprising the steps of:

one of the clients sending a request for a writelock on a selected one of the
database objects to the synchronizing agent, the client having a copy of the selected database
object;

the synchronizing agent receiving the writelock request and sending the
writelock request to the centralized database management system, the synchronizing agent
being detached from the centralized database management system,

the centralized database management system granting the writelock request;

the synchronizing agent accessing a directory structure containing indications
of allocating clients that have allocated the selected database object and sending a callback
message to each of the allocating clients requesting a response when the allocating client has
completed use of the selected database object, the callback message indicating that the
selected database object will become updated;

the client modifying a portion of the selected database object and sending an
indication to the synchronizing agent to update the centralized database management system;,

the synchronizing agent receiving the indication, waiting to receive the
response from each allocating client, and sending the indication to the centralized database
management system after receiving the response from each allocating client; and

the centralized database management system receiving the indication and

updating the selected database object.

WO 98/55948 PCT/US98/11570

18

5. A method in a data processing system for distributing copies of
database objects contained in a centralized database to clients that utilize the copies of the
database objects, the distribution performed by a distribution agent, comprising the steps of’

under control of the distribution agent which is detached from the centralized
database,

receiving a request from a client for a writelock on a selected one of the
database objects, the client having a copy of the selected database object;

requesting the writelock from the centralized database wherein the
centralized database grants the writelock;

sending an indication that the writelock has been granted to the client
wherein the client modifies the copy of the selected object;

determining allocating clients that have a copy of the selected object;

sending a notification to the allocating clients requesting a response
when the allocating clients have completed use of the selected object, the notification
indicating that the selected object will become updated,;

receiving a request from the client requesting that the centralized
database be updated to reflect the modifications;

waiting until receiving the response from each allocating client to
ensure that each allocating client has completed use of the selected object; and

updating the centralized database after receiving the response from each

allocating client.

6. The method of claim 5 wherein the data processing system has a
directory structure containing an indication of the allocating clients and wherein the step of

determining allocating clients includes accessing the directory structure.

7. The method of claim 5 wherein the step of waiting includes:
for each response received,

deallocating the selected object from the allocating client.

WO 98/55948 PCT/US98/11570
19

8. The method of claim 7 wherein each allocating client has a readlock on
the selected object and wherein the step of deallocating the selected object includes

terminating the readlock.

9. The method of claim 5 wherein the step of receiving a request from the
client requesting that the centralized database be updated includes receiving an update

statement.

10. The method of claim 9 wherein the step of receiving an update

statement further includes sending the update statement to the centralized database.

11. The method of claim 10 wherein the update statement is performed as
part of a transaction and wherein the step of sending the update statement includes receiving a

commit statement from the client to commit the transaction.

12, A method in a data processing system for distributing copies of
database objects contained in a centralized database to clients that utilize the copies of the
database objects, the distribution performed by a distribution agent, the method performed by
one of the clients having a copy of a selected one of the database objects, comprising the steps
of:

sending a request for a writelock on the selected one of the database objects to
the distribution agent which is detached from the centralized database such that the
distribution agent determines allocating clients currently having a copy of the selected database
object and requests a notification from each allocating client when the allocating client has
completed use of the copy of the selected database object;

receiving from the distribution agent an indication that the writelock has been
granted;

modifying the copy of the selected database object; and

sending a request to the distribution agent to update the centralized database to

reflect the modification made to the copy of the selected database object, wherein the

WO 98/55948 PCT/US98/11570

20

distribution agent waits until receiving the notification from each of the allocating clients

before updating the centralized database.

13, The method of claim 12 wherein the data processing system comprises
a server computer containing the centralized database and the distribution agent and comprises
a client computer containing the client, wherein the step of sending a request for a writelock
includes sending the request for the writelock to the distribution agent on the server computer
and wherein the step of sending a request to the distribution agent to update the centralized

database includes sending the request to the distribution agent on the server computer.

14 A method in a data processing system for synchronizing a database
object contained in a centralized database with a copy of the database object stored with a
client that performs transactions utilizing the copy of the database object, the synchronizing
performed by a synchronizing agent, the method performed by the client comprising the steps
of’
receiving a callback message from the synchronizing agent indicating that the
database object will be updated and the copy will become out of date, the synchronizing agent
being detached from the centralized database;
determining whether a transaction is in progress which utilizes the database
object;
when it is determined that the transaction is in progress which utilizes the
database object,
delaying a response to the callback message until the transaction has
completed; and
responding to the synchronizing agent indicating that the database
object is no longer being used by the client when the transaction has completed; and
when it is determined that the transaction is not in progress which utilizes the
database object,
responding to the synchronizing agent indicating that the database

object is not being used by the client.

WO 98/55948 PCT/US98/11570

21

15. The method of claim 14, further including the step of discarding the

copy of the database object to prevent the use of the copy when the copy becomes out of date.

16. A method in a data processing system having a centralized database
with database objects, having clients with copies of the database objects that utilize the copies
of the database objects, and having a synchronizing agent, comprising the steps of:

under control of the synchronizing agent which is detached from the centralized
database,

distributing a copy of one of the database objects to one of the clients;
and

synchronizing the copy of the database object with the centralized
database such that the client is notified when the copy of the database object will become out

of date.

17. The method of claim 16 wherein the step of synchronizing includes:

determining when the copy of the database object will become out of date; and

sending a callback message to the client indicating that the copy of the database
object will become out of date when it is determined that the database object will become out

of date.

18. The method of claim 17 wherein the step of determining includes
receiving a request from a second of the clients to update the database object and determining
that the database object is to become out of date in response to receiving the request from the

second client.

19. A method in a data processing system having a server computer and
client computers for distributing a centralized database on the server computer having
database objects, comprising:

storing copies of a plurality of the database objects on a plurality of the client

computers by a navigational agent that is detached from the centralized database; and

WO 98/55948 PCT/US98/11570

22

executing transactions involving the database objects at the client computers in

a serializable manner.

20. The method of claim 19 wherein the step of executing transactions
includes sending callback messages from the navigational agent to the client computers to

facilitate the execution of the transactions in a serializable manner.

21 A data processing system, comprising;
a client computer, further comprising:

a memory containing a copy of a selected database object and
containing a client that requests that a writelock be placed on the selected database object, that
modifies the selected database object after the writelock has been granted, and that generates
an update indication to request update of the selected database object; and

a processor for running the client; and

a server computer, further comprising:

a secondary storage device containing a database with database objects
including the selected database object;

a memory containing

a directory structure with indications of allocating clients that
have allocated the selected database object for access;

a database management system for managing the database and
for granting writelocks on the database objects; and

a distribution agent detached from the database management
system that receives the writelock request from the client, that obtains a writelock from the
database management system for the selected database object, that accesses the directory
structure to determine the allocating clients, that sends each allocating client a message
requesting a response when the allocating client has completed use of the selected database
object, that receives the update indication from the client, that waits until receiving the
response from each allocating client, and that sends the update indication to the database

management system after receiving the response from each allocating client; and

WO 98/55948 PCT/US98/11570

23

a processor for running the database management system and the

distribution agent.

22. A data processing system, comprising:
a secondary storage device having a database with database objects; and
a memory containing;

a database management system that manages the database:

a client for maintaining a copy of one of the database objects until being
notified that the copy is nd longer valid;

a synchronization agent detached from the database management
system that determines when the database object is to be updated and that notifies the client
when the database object is to be updated and will no longer be a valid representation of the
database object; and

a processor for running the database management system, the client, and the

synchronization agent.

23. The data processing system of claim 22, further including a server
computer with a memory and a secondary storage device and a client computer with a
memory, wherein the database is stored on the secondary storage device of the server
computer, wherein the synchronization agent and the database management system are stored
in the memory of the server computer, and wherein the client is stored in the memory of the

client computer.

24. The data processing system of claim 22 wherein the database is a

centralized database.

25. The data processing system of claim 22 wherein the client stores the

copy of the database object in an object cache.

26. The data processing system of claim 22 wherein the database

management system operates in response to SQL statements.

WO 98/55948 PCT/US98/11570

24

27. The data processing system of claim 22 wherein the memory further
includes a second client that maintains a copy 6f a second one of the database objects, that
executes transactions against the copy of the second database object, and that executes
transactions against the database objects in the database, wherein the first client executes
transactions against the copy of the database object and against the database objects in the
database, and wherein the synchronization agent ensures that the transactions executed by

both the first client and the second client are executed in a serializable manner.

28. A computer-readable medium containing instructions for controlling a
data processing system to distribute copies of database objects contained in a centralized
database to clients that utilize the copies of the database objects, the distribution performed by
a distribution agent performing the steps of:

under control of the distribution agent which is detached from the centralized
database,

receiving a request from a client for a writelock on a selected one of the
database objects, the client having a copy of the selected database object;

requesting the writelock from the centralized database wherein the
centralized database grants the writelock;

sending an indication that the writelock has been granted to the client
wherein the client modifies the copy of the selected object;

determining allocating clients that have a copy of the selected object;

sending a notification to the allocating clients requesting a response
when the allocating clients have completed use of the selected object, the notification
indicating that the selected object will become updated;

receiving a request from the client requesting that the centralized
database be updated to reflect the modifications:

waiting until receiving the response from each allocating client to
ensure that each allocating client has completed use of the selected object; and

updating the centralized database after receiving the response from each

allocating client.

WO 98/55948 PCT/US98/11570

25

29. The computer-readable medium of claim 28 wherein the data
processing system has a directory structure containing an indication of the allocating clients
and wherein the step of determining allocating clients includes accessing the directory

structure.

30. The computer-readable medium of claim 28 wherein the step of waiting
includes:
for each response received,

deallocating the selected object from the allocating client.

31. The computer-readable medium of claim 30 wherein each allocating
client has a readlock on the selected object and wherein the step of deallocating the selected

object includes terminating the readlock.

32. The computer-readable medium of claim 28 wherein the step of
receiving a request from the client requesting that the centralized database be updated includes

receiving an update statement.

33. The computer-readable medium of claim 32 wherein the step of
receiving an update statement further includes sending the update statement to the centralized

database.

34, The computer-readable medium of claim 33 wherein the update
statement is performed as part of a transaction and wherein the step of sending the update

statement includes receiving a commit statement from the client to commit the transaction.

35. A computer-readable medium containing instructions for controlling a
data processing system to perform a method for distributing copies of database objects
contained in a centralized database to clients that utilize the copies of the database objects, the
distribution performed by a distribution agent, the method performed by one of the clients

having a copy of a selected one of the database objects, the method comprising the steps of’

WO 98/55948 PCT/US98/11570
26

sending a request for a writelock on the selected one of the database objects to
the distribution agent which is detached from the centralized database such that the
distribution agent determines allocating clients currently having a copy of the selected database
object and requests a notification from each allocating client when the allocating client has
completed use of the copy of the selected database object;

receiving from the distribution agent an indication that the writelock has been
granted,

modifying the copy of the selected database object; and

sending a request to the distribution agent to update the centralized database to
reflect the modification made to the copy of the selected database object, wherein the
distribution agent waits until receiving the notification from each of the allocating clients

before updating the centralized database.

36. The computer-readable medium of claim 35 wherein the data
processing system comprises a server computer containing the centralized database and the
distribution agent and comprises a client computer containing the client, wherein the step of
sending a request for a writelock includes sending the request for the writelock to the
distribution agent on the server computer and wherein the step of sending a request to the
distribution agent to update the centralized database includes sending the request to the

distribution agent on the server computer.

37. A computer-readable medium containing instructions for controlling a
data processing system to perform a method for synchronizing a database object contained in a
centralized database with a copy of the database object stored with a client that performs
transactions utilizing the copy of the database object, the synchronizing performed by a
synchronizing agent, the method performed by the client by performing the steps of:

receiving a callback message from the synchronizing agent indicating that the
database object will be updated and the copy will become out of date, the synchronizing agent
being detached from the centralized database;

determining whether a transaction is in progress which utilizes the database

object;

WO 98/55948 PCT/US98/11570

27

when it is determined that the transaction is in progress which utilizes the
database object,
delaying a response to the callback message until the transaction has

completed; and
responding to the synchronizing agent indicating that the database
object is no longer being used by the client when the transaction has completed; and
when it is determined that the transaction is not in progress which utilizes the
database object,
responding to the synchronizing agent indicating that the database

object is not being used by the client.

38. The computer-readable medium of claim 37, further including the step
of discarding the copy of the database object to prevent the use of the copy when the copy

becomes out of date.

39. A computer-readable medium containing instructions for controlling a
data processing system to perform a method, the data processing system having a centralized
database with database objects, having clients with copies of the database objects that utilize
the copies of the database objects, and having a synchronizing agent, the method comprising
the steps of’

under control of the synchronizing agent which is detached from the centralized
database,

distributing a copy of one of the database objects to one of the clients;
and

synchronizing the copy of the database object with the centralized
database such that the client is notified when the copy of the database object will become out

of date.

40. The computer-readable medium of claim 39 wherein the step of

synchronizing includes:

determining when the copy of the database object will become out of date; and

WO 98/55948 PCT/US98/11570

28

sending a callback message to the client indicating that the copy of the database
object will become out of date when it is determined that the database object will become out

of date.

41. The computer-readable medium of claim 40 wherein the step of
determining includes receiving a request from a second of the clients to update the database
object and determining that the database object is to become out of date in response to

recetving the request from the second client.

42. A computer-readable medium containing instructions for controlling a
data processing system having a server computer and client computers to perform a method
for distributing a centralized database on the server computer having database objects, the
method comprising:

storing copies of a plurality of the database objects on a plurality of the client
computers by a navigational agent that is detached from the centralized database; and

executing transactions involving the database objects at the client computers in

a serializable manner.

43. The computer-readable medium of claim 42 wherein the step of
executing transactions includes sending callback messages from the navigational agent to the

client computers to facilitate the execution of the transactions in a serializable manner.

44. A method in a data processing system for distributing copies of
database objects contained in a centralized database to clients that utilize the copies of the
database objects, the distribution performed by a distribution agent, comprising the steps of:

under control of the distribution agent which is detached from the centralized
database,

receiving an update request from a client to modify a selected one of
the database objects;
passing the update request to the centralized database wherein the

centralized database indicates that the update request will be successfully processed;

WO 98/55948 PCT/US98/11570

29

determining allocating clients that have a copy of the selected object;

sending a notification to the allocating clients requesting a response
when the allocating clients have completed use of the selected object, the notification
indicating that the selected object will become updated;

receiving a commit request from the client requesting that the
centralized database be updated to reflect the modifications requested by the update request;

waiting until receiving the response from each allocating client to
ensure that each allocating client has completed use of the selected object; and

updating the centralized database after receiving the response from each

allocating client.

45. A computer-readable medium containing instructions for controlling a
data processing system to perform a method for distributing copies of database objects
contained in a centralized database to clients that utilize the copies of the database objects, the
distribution performed by a distribution agent, the method comprising the steps of:

under control of the distribution agent which is detached from the centralized
database,

receiving an update request from a client to modify a selected one of
the database objects;

passing the update request to the centralized database wherein the
centralized database indicates that the update request will be successfully processed;

determining allocating clients that have a copy of the selected object;

sending a notification to the allocating clients requesting a response
when the allocating clients have completed use of the selected object, the notification
indicating that the selected object will become updated,

receiving a commit request from the client requesting that the
centralized database be updated to reflect the modifications requested by the update request;

waiting until receiving the response from each allocating client to
ensure that each allocating client has completed use of the selected object; and

updating the centralized database after receiving the response from each

allocating client.

WO 98/55948

Troatedie A

Tme

PCT/US98/11570

Tr"“)db";uk (S
e ——— | T " S
S oy X i e
R R
T — l . §¢(,,+ R
e] [y X T g2 T
LP dak X
Lo prplsl T 1
']"‘7 L/Fdak. X widhy
o ¥ 2
. s Y Tr Selo b 2
e ¥ — '
Sl TL. VpIuh Z it 24

WO 98/55948

PCT/US98/11570

T

r ¢ -vJI(,J'.‘o\,_ (S

ﬁau\Jlbl;/k A

B N B '
G X ey
) Jaix e - | i
T T dmpl) T2
, . ey T T Y Sz{m PO
Tt | Copy Kb dmp
--:._‘_ . »~ L}_{) Date ™ y L,(.\/\{)ao\v'c X w-h
B A AT T ¥rp 2 %2
m___-__:_~:;_;__:—__"____~ T_§ - _ N ; ;S:,,Pa"}' 2. e et
e I L I

PCT/US98/11570

WO 98/55948

AL B S T
it

[SRR I

! ERRRRE i N
SERRRRSRREE Clg _ .
RN R] o ”“
el N .___ LWM “_._
_ i N A A
: _ ___" A
_ | P P i
| i EERR R
; A 0
m BN NN I
i HEEEE B A Lo
i i W__.V . _mm
. | bl i P
u i _‘ B Pl
H H oy Sy,
! _ _...w.”
__ f_:, EEEERERE

. U

v PP N

o __m.
I IR o
. ; S
i : S
b ! I
B B B

i ___

_
B IR
el X || a9

L AIP “¥Go

<:,
g _ 90

)
!
4) ot .\ %m

,°
S

-9 , . | ,
(el ™ ny
o] | oo w
R SIS
c) SR

WO 98/55948 PCT/US98/11570

- C: R e _-_ “'-_::'_;;L SLITTUTIT
oa

CiPal

2 N -
[\
N\ -

9"

pous

A

Aerory

L Aplsiaf;n pryrs ”
A\;&:. ion 1;{»? . Dt cade
?x m | 3
' \h“ 4
/ : \J‘ Jb

vide ¢] - m

:—nw "mmhﬁc_

O:&i i E .

o IR

SR B Z
o . ”mﬁs?} Devic
o
h‘m i
I I O
R
ST

A R A R R

: bbby

, : A A SR L B B VRS

; _ SERN __l,i..““

_ P N AT ST O I U Y
EERHHHEINEE
SRR
FooL g IR
[:_:__;::,

/

8P65S/86 OM

0LSTE/86S11/1Dd

WO 98/55948

PCT/US98/11570

Trowed o~
Hamene

4

~Leceiwe

Tromig, g

e

[Choiie G i

~

TN D T S@qd Sbebeely | o -
........... o 5] R NIA 6 o e
-— -Pef’bth_s&a}' s e e v T T T - T *--:;———_
T SYkRcar T T -

T e o g _ e

- - Y

) - Mo'(5“’5"‘?#1

oLt T DN m Afiedtin?

5A

WO 98/55948

PCT/US98/11570

LTI . - 42— —
. T ~ N —" ‘Tfﬂll-ln‘:ys.‘ ——— _Z
I~ 'D/IJJMII7)
T ’”
. Z
et b/
| - v e son ("'PL'Q
R 21
. = Tl o A 4
Tosmmiii oo | eed Neome
P R Call big -
_ fy 56

WO 98/55948

PCT/US98/11570

=
A
s
g-
3>
3
|

Tary by all
Callbade mpov«u -
Jreceed

. “1, P R

w};;;;
L Ao DGrU

e L

- - . H
4_11.f_.5k Q&]m“\[ﬂ N

(et] T
o _?_’7_5 . B e

Se~d 4 OBMS
Ak reir Prefoye _

Y%

gﬁh} (4/“4@(

hes e yed o atl
qily ¢atiay ﬁﬂm} .-

-\4“ .

do

-y

j“ 1 “5"64 0= Moagers - S - -
—— N 34 Skl e L 92

T T ST Yo DG Pj o A ”u(ak abitds o - f v -

B S —“‘__ T - o Ee A Moy, . : -

L T _

(e \in obsed) -
)v 4(culpton

. Moenage- B NI

Fiyt

INTERNATIONAL SEARCH REPORT

“national Application No

PCT/US 98/11570

CLASSIFICATION OF S 3B(:).IECT MATTER

TP “R0BF7

According to Interational Patent Classification(IPC) or to both national classification and 1PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 GO6F

Documentation searched other than minimumdocumentation to the extent that such documents are included in the tields searched

Electronic data base consuited during the intsrnationai search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

118-125, XP002080349

see the whole document

BC, CANADA, 30 MAY-2 JUNE 1995, pages

ISBN 0-8186-7025-8, 1995, Los Alamitos,
CA, USA, IEEE Comput. Soc. Press, USA

X JIN JING ET AL: "Distributed lock 1,4,5,
management for mobile transactions" 12,14,
PROCEEDINGS OF THE 15TH INTERNATIONAL 16,19,
CONFERENCE ON DISTRIBUTED COMPUTING 21,22,
SYSTEMS (CAT. NO.95CH35784), PROCEEDINGS 28,35,
OF 15TH INTERNATIONAL CONFERENCE ON 37,39,
DISTRIBUTED COMPUTING SYSTEMS, VANCOUVER, 42,44 .45

I:I Further documents are listed in the continuation of box C.

D Patent family members are listed in annex.

° Spacial categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier documant but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publicationdate of another
citation or other special reason (as specified)

"0" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the intemational filing date but
later than the priority date claimed

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considerad to involve an inventive step when the
document is combined with one or more other such docu-
merr‘\ts. such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of theinternational search

12 October 1998

Date of mailing of the international search report

22/10/1998

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016

Authorized officer

Katerbau, R

Form PCT/ISA210 (second sheet) (July 1992)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

