PCT

International Bureau

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : (11) International Publication Number: WO 98/21654
GOGF 11/00, 12/00 Al . .

(43) International Publication Date: 22 May 1998 (22.05.98)

(21) International Application Number: PCT/US97/20561 | (81) Designated States: AU, CA, CN, IL, JP, KR, MX, NO, NZ,

(22) International Filing Date:

(30) Priority Data:
60/030,905

(71) Applicant: MITSUBISHI

TECHNOLOGY CENTER AMERICA,

Broadway, Cambridge, MA 02139 (US
(72) Inventors: WONG, David, W., H,;

(74) Agent: TENDLER, Robert, K.; 65 Atlan
MA 02110 (US).

11 November 1997 (11.11.97)

14 November 1996 (14.11.96)

ELECTRIC INFORMATION

162 Guggins Lane,
Boxborough, MA 01719 (US). SCHWENKE, Derek, L.;
95 Rice Street, Marlboro, MA 01752 (US).

UsS

INC. [US/US]; 201
).

tic Avenue, Boston,

SG, European patent (AT, BE, CH, DE, DK, ES, Fl, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of

amendments.

(54) Title: LOG BASED DATA ARCHITECTURE FOR A TRANSACTIONAL MESSAGE QUEUING SYSTEM

(587) Abstract

A message queuing 62 60
system is provided that saves /
and stores messages and
their state in an efficient MSGER N)\SG : WIRE
single file on a single disk to HEAD DATA (:> x
enable rapid recovery from INFO
server failures. The single
disk, single file storage
system into which messages ~— ~ 4 MAJOR
and their states are stored
eliminates writes to three 80 CHECK POINT INTERVAL
different disks, the data disk, r QEMT
the index structure disk and [CONTROL INFORMATION)
the log disk. The single 92\ _:]
disk, single file storage is Z Y
made possible by clustering 04 SECTOR1 — % /MSG//
all information together in \J ///B/l/gl(’:/lss 7
a contiguous space on the SECTOR 2 SECTOR < -
same disk. The result is that 96___/ LOG RECORD
all writes are contained in SECTOR 3
one sweeping motion of the fv
write head in which the write 08 LOG RECORD
head moves only in one SECT?Eﬁ/ 2
direction and only once to
find the area where it needs LOG RECORD 3

to start writing messages
and their states are stored.
In order to keep track of the

clustered information, a unique Queue Entry Map Table (100) is used which includes control information (100), message blocks (102) and
log records (104) in conjunction with single file disk storage that allows the write head never to have to back-up to traverse saved data
when writing new records. The system also permits locating damaged files without the requirement of scanning entire log files.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
C™M

CuU
cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cate d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
mMC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
us
uz
VN
YU
A4

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 98/21654 PCT/US97/20561

LOG BASED DATA ARCHITECTURE FOR A TRANSACTIONAL MESSAGE

QUEUING SYSTEM.

WO 98/21654

PCT/US97/20561
FIELD OF INVENTION
This invention relates to message queuing, and more

particularly to a fast, reliable message queuing system for both
client-server and mobile agent applications.
CROSS -REFERENCE TO RELATED APPLICATIONS

A claim of priority is made to U.S. Provisional Patent
Application Serial No. 60/030,905, filed November 14, 1996,
entitled LOG BASED DATA ARCHITECTURE FOR A TRANSACTIONAL MESSAGE
QUEUING SYSTEM.

BACKGROUND OF THE INVENTION

Message queuing 1is the most fundamental paradigm for
communication between applications on different computer systems
due to its inherent flexibility in allowing both synchronous and
asynchronous processing. The message queuing middleware
infrastructure is a very flexible framework for a number of
application domains in both general client-server as well as mobile
agent computing arenas, to wit work flow computing, object
messaging, transactional messaging and data replication services.

It will be appreciated that in many transactional messaging
scenarios data is oftentimes lost during the transmission. This is
no more catastrophic than in the banking industry in which banking
records transmitted from one location to another can be‘lost due to
server failures, transmission line failures or other artifacts. It
is incumbent upon the system managers to be able to quickly locate
the fact that an error has occurred and to be able to reconstruct
the data from a known point where the data was valid.

Establishing that point at which an error has occurred has in
the past been accomplished by systems which scan an entire so-
called log file to reconstruct the up-to-date state of the system
before the crash. Log files are routinely utilized with their
associated time stamps to identify messages and the data they

contain. However, the scanning of entire log files to ascertain

WO 98/21654 PCT/US97/20561

the up-to-date state can require scanning as many as 1,000 log
records.

Not only is the scanning of the overall log record an
inefficient way to ascertain where an error occurred and to be able
to reconstruct files from that point, systems in the past have
required two disk files, one serving as a data file, and the other
serving as a log file.

Moreover, the correlation between the log entries and the
data files or sectors is complicated by the fact that in the past,
sectors were stored in some indiscriminant order, leaving the
mapping between the log file and the sectors a somewhat time
consuming process.

By way of further background, it will be appreciated that
message queuing is used in general to be able to provide a fail-
safe storage for data records which are transmitted from one point
to another. 1If, for instance, an error occurs and data is lost at
one location, it can be reconstructed at a second location due to
the storage inherent in message queuing.

As an example, it is desirable, especially in stock market
trades, that any interruption in trading to be minimized to minutes
as opposed to hours. On occasion, however, when system servers go
down, recovery can take from two to eight hours depending on the
number of trades in the system at that time. There is thus a need
to minimize down time and expense of locating and reconstructing
damaged files. |

Note that as used herein, the term queue file refers to the
physical storage of messages that are in transmission. Queue files
may also be viewed as holding cells for uncompleted operations.
Basically, what this means is that if the receiver is not there to
receive a given message, the message is held in the queue file and
is deliverable at a later time. As a result, the queue files offer
reliability in the retention of information that is transmitted.

Moreover, 1in traditional systems, the recovery data is not

provided by the queue file itself. Thus, queue files have not been

WO 98/21654 PCT/US97/20561

utilized to identify the state of the file when an error or lost
data has occurred, and have thus not been used to reconstruct the
data file from data which is previously uncorrupted. In a
traditional system, the recovery data is not provided by the queue
file itself.

Another example of how message queuing is applied to a real-
world application involves how a message queuing infrastructure may
support real-time on-line transaction processing using mobile
agents. In this example, the customer, for instance, is a bank
with geographically dispersed branches. Customer accounts are
created and kept at the 1local branches where the account was
opened. For illustrative purposes, this is called the home branch
of the account. A copy of each account is also kept at the main
office. A read operation on an account can be made from either the
local branch or the main office. An update to an account, however,
will require that both the home branch copy and the main office
copy be updated in a coordinated fashion.

If the update request occurred at the home branch, the local
copy must then be updated. This update can trigger an agent which
then automatically submits an enqueue request to the queue manager
or queue server. This queue manager in turn dequeues the request
across a wide area network to another queue manager, which in turn,
dequeues the update request to the database server for the mirror
office accounts.

A message queue in this example provides asynchronous and
reliable processing. Asynchronous processing begins with the agent
that is triggered by the database update at one location. The agent
submits the update request to the message queue manager in an
asynchronous manner, and need not wait around for a response. The
message queue manager serves as holding cell for the request so
that the requester can continue processing without the need to wait
for a response. The message queue manager also provides reliability
in this example in that it maintains a copy of the update request

in its queue until the recipient of this update request has

WO 98/21654 PCT/US97/20561

acknowledged its receipt wvia a well-known handshaking protocol
called the Two Phase Commit protocol, known in the industry as
transactional message queuing.

While these types of message queuing systems have operated
reliably in the past, they have relied on a data architecture that
uses separate queue data and log record files to store the messages
that are appended to a message queue. This architecture prevents
rapid repair at the time of a serve crash and requires two storage
disks, one for data and one for the log records. Moreover,
traditional message queuing architectures are dgenerally not
optimized for write operations without requiring extra hardware to
work efficiently, and are not appropriate for high throughput
systems with low message residence times. The separate queue data
and log files mentioned above also introduce an extra level of
unreliability since there exists two points of potential file
corruption and media failure. Additionally, there is wusually no
means for the message queuing systems administrator to predefine
the amount of work needed to do recovery a priori.

Note, the above systems are commercially available as Digital
Equipment Corporation's DECmessageQ, IBM's MQ Series, and
Transarc's Encina RQS.

SUMMARY OF INVENTION

In order to solve the above noted problems with traditional
message queuing, a message queuing system is provided that saves
and stores messages and their state in an efficient single file on
a single disk to enable rapid recovery from server failures. The
single disk, single file storage system into which messages and
their states are stored eliminates writes to three different disks,
the data disk, the index structure disk and the log disk. The
single disk, single file storage is made possible by clustering all
information together in a contiguous space on the same disk. The
result is that all writes are contained in one sweeping motion of
the write head in which the write head moves only in one direction

and only once to find the area where it needs to start writing

WO 98/21654 PCT/US97/20561

messages and their states are stored. In order to keep track of
the clustered information, a unique Queue Entry Map Table is used
which includes control information, message blocks and log records
in conjunction with single file disk storage that allows the write
head never to have to back-up to traverse saved data when writing
new records. The system also permits locating damaged files
without the requirement of scanning entire log files.

In order to find the most recent valid data, a control check
point interval system is utilized to find the most recent
uncorrupted data. Scanning to find the most recent check point
interval permits rapid identification of the last queue. Subsequent
scanning of log records after the checkpoint establishes the most
up-to-date state of all messages. The above system permits data
recovery in an order of magnitude less time than previous systems,
while at the same time establishing an efficient forward writing
mechanism to prevent the need for searching through unordered
sectors.

In one embodiment, a circular wrap around buffering system is
used in which a modification of a previous sector is made by
appending a new record at the last sector to indicate that the
state of a file has changed, thus to reuse previous blocks that
have been freed and no longer hold valid messages and/or log
records.

The present invention thus provides a log-based data
architecture for transactional message queuing systems which
utilizes a combined on-disk file structure for the message queue
data and log records. It is the combined queue data/log record
file, in one embodiment, on a single disk, which improves write
operation performance and reliability, while at the same time
reducing the number of disks used. As mentioned above, system
crash recovery is accelerated through the use of a Queue Entry Map
Table which does not require searching though all of the 1log
records to ascertain where the error occurred. The use of the

Queue Entry Map Table also permits a priori assigning the number of

WO 98/21654 PCT/US97/20561

requirements on a queue data file that results in extensibility and
flexibility to system administrators.

Also as mentioned above, the subject system utilizes a
circular queue that implies that there is potential wrap around of
the queue data file for storage reuse. This requires that a
reservation table or free space heap be maintained to ensure that
when the queue wraps around, subsequent write operations do not
overwrite queue data and/or log records that might still be valid.

In one embodiment, the gqueue data storage architecture
consists of a single flat file that is created when a queue manager
is first initialized based on a fixed size for the queue. The
initial queue creation is based on the system administrator’s feel
for the peak load on the message queuing system, e.g., the maximum
number of expected entries in message queue at any given point in
time. Each message in the queue data file contains a Message
Header and a Message Body. The Message Body, which contains the
message content, is stored on disk in subsequent contiguous blocks
that follow the message header.

In the above embodiment, the queue data file is partitioned
into a predefined number of logical segments or sectors which can
be extended at run time. Each segment contains a copy of the Queue
Entry Map Table or QEMT for short, which is stored at the beginning
of each segment. The QEMT contains control information for the
queue entries and log record information stored in the entire queue
file. Message headers, message bodies, and log records are stored
after the QEMT with potential mixing of message data and log record
blocks.

As will be appreciated, the QEMT size depends on some
expected maximum number of queue entries defined by the user at
queue creation time. Since the 1log record takes up some
deterministic number of bytes, the queue data file will consist of
mixed data types of log records, message headers, message bodies,

and QEMTs.

WO 98/21654 PCT/US97/20561

When a new segment is reached in the queue data file, a new
QEM Table is written to disk at the beginning of the new segment,
with the message and log records following the QEM Table. Since the
smallest on-disk data type is the log record, a segment in the
queue data file is defined to consist of blocks, where one block is
the size of the 1log record. This implementation enhancement
simplifies development of search algorithms.

The state of a transactional message queuing system is
captured by the control information contained in a QEMT. The QEMT
is defined as a static data structure that multiple threads can
operate on, rather than each thread maintaining its own copy.

As a result of the log-based data architecture, the subject
invention provides a number of improvements over existing
transactional message queuing data architectures. It improves on
the performance of the write operation over existing message
queuing architectures, which makes message queuing systems based on
this invention highly appropriate for high throughput systems with
low message residence times such as high speed banking
applications. The subject system 1is also applicable to the
underlying reliable messaging infrastructure for the transport of
agents over unreliable networks and/or networks with different
bandwidths.

Moreover, message data and log record write operations always
proceed in the forward direction and both can be stored on the same
disk file.

This system also improves the reliability of transactional
message queuing systems. In this log-based data architecture,
there exists a single place where file corruption can occur versus
two potential file corruption scenarios with separate queue data
and log record files. Reliability is also improved since fewer
disk files are used. A combined queue data/log record file adheres
to the Atomicity, Consistency, and Isolation properties of the
well-known ACID properties. Also, as will be seen, one can utilize

existing RAID technology to do transparent duplicate writes.

WO 98/21654 PCT/US97/20561

The subject system allows the resulting message queuing
system to support any method of message data access including First
In First Out, Last In First Out or priority-based message data
access, while at the same time reducing the amount of time needed
for recovery from system crashes. Instead of scanning all data in
an entire file for log records in traditional approaches, the
subject system only requires that one test a few Queue Entry Map
Tables first to determine the most recent checkpoint, and then
proceed to scan the log records within that segment.

Moreover, the subject system provides extensibility and
flexibility to message queuing systems administration since the
invention allows the administrator to control how much work they
want to do on system recovery by a priori predefining the number of
segments on a queue data file, and subsequently the number of
checkpoint intervals, again determined a priori. System
administrators can thus pay the overhead cost of writing the
checkpoints up front to avoid paying the heavier cost of doing
extensive log record scans upon recovery. This tradeoff can be
adjusted and fine-tuned to suit the application requirements and
domains.

The above advantages flow from the use of a pre-allocated on-
disk queue buffer containing queue control information, message
data, and transactional log records of message operations. The
on-disk queue buffer consists of a number of segments or sectors.
Each segment consists of the same predefined number of blocks. At
the beginning of each segment is the aforementioned Queue Entry Map
Table, which contains control information data regarding the state
of the individual queue entries, and pointer offsets to where on
disk the messages are physically stored. The Queue Entry Map
Table serves as a fixed checkpoint interval for the entire message
queuing system. Messages and transactional log records of message
operations are stored on the blocks in the segment such that

message blocks and log record blocks can be intertwined. Moreover,

WO 98/21654 PCT/US97/20561

there is no requirement that the 1log record for a particular
message be stored contiguously to the message.

As a feature of the subject invention, a message data write
operation always proceeds in a forward manner for the disk head.
Additionally, a message is stored contiguously on disk with no need
for pointer traversal. Further, a 1log record write operation
always proceeds in a forward manner for the disk head. Log records
are written for change of state in a message operation that follows
the Two Phase Commit protocol. Therefore, log records can be
written for Prepare, Prepared, Commit, Abort, Acknowledge messages
from a remote queue manager.

As an another unique feature, the entire queue can be scanned
in a single pass. Moreover, on-disk garbage collection is always a
linear process. Additionally, there exists a number of Queue Entry
Map Tables on the same file, with the unique sequence number of the
most recent table being stored on disk on a graceful shutdown of
the queue manager.

Importantly, the read operation can follow the First In First
Out, Last In First Out, or Priority-based policy such that no
special provision is needed to implement any of the three policies.

Moreover, the recovery procedure is accelerated by searching
only the Queue Entry Map Tables timestamp. This 1is because, the
most recent Queue Entry Map Table serves as the starting state for
the recovery process. Log records following this table are then
read sequentially and changes are then made to the in-memory copy
of this most recent Queue Entry Map Table to reflect changes made
after the
last known checkpoint.

B F_DE T F DRAWIN

These and other features of the Subject Invention will be

better understood with reference to the Detailed Description taken

in conjunction with the Drawings, of which:

10

WO 98/21654 PCT/US97/20561

Figure 1 is a block diagram of a typical banking application
utilizing the subject system in which messages flow from the main
office to subsidiary branches;

Figure 2 is a diagrammatic representation of a two file
system in which data is recorded at one file, whereas logs are
recorded on a separate file, with the data stored at non-
consecutive sectors and with the requirement that the entire log
file be scanned in order to reconstruct an up-to-date state, the
recovery process involving both the data file and log file to
obtain the complete state of all messages in the system;

Figure 3 is a diagrammatic representation of the subject
system in which a single file is utilized to store the data and
QEMT mapping table to permit rapid recovery of lost data with a
minimum amount of hardware and with reduced scanning time required
for data recovery;

Figure 4 1is a diagrammatic illustration of the storage of
blocks of data within the file of Figure 3, indicating a circular
file with a single write direction;

Figure 5 is a diagrammatic illustration of the possible QEMT
control blocks at various well known positions or offsets within
the file indicating that through the utilization of these QEMT
control blocks, the position and/or location of valid data can be
easily ascertained;

Figure 6 1is a diagrammatic illustration showing the
interdispersion of state change log records with the message data
blocks to enable the forward writing of the file;

Figure 7 1is a table 1illustrating the QEMT structure,
including the QEMT sequence number which serves as a time stamp and
which contains the incremental check point information required to
restore the system;

Figure 8 1is a table providing information to permit the

restoration of individual message states;

11

WO 98/21654 PCT/US97/20561

Figure 9 is a diagrammatic illustration of the forward
directional flow of data in a wrap around system in which a
circular gqueue is implemented;

Figure 10 is a table illustrating the information stored in
the incremental log record with the log entries of Figure 6;

Figure 11 is a flow chart illustrating the procedure for
fetching a message from the queue;

Figure 12 is a flow chart illustrating a procedure for
writing a message in the queue; and,

Figure 13 is a flow chart illustrating the recovery process
in which the most recent QEMT is identified by an initial scan,
with subsequent reading of the 1log records following the
identification of the most recent QEMT resulting in a completely
restored state.

DETAILED DESCRIPTION

Referring now to Figure 1, a message queuing system 10 is
provided between branch offices of banks 12 and a main office 14
for the purpose of transmitting updated account information from
the branches to the main office. 1In order to accomplish this, data
is entered at terminals 16, 18 and 20 respectively at different
branch offices of the bank. This data is stored in local database
servers 22, 24 and 26 of the respective branches, with each
database server having its own local storage, here designated by
reference character 28.

The output the database server is coupled to a series of
message queuing servers 30, 32 and 34 respectively, each having
their own storage units, here labeled by reference character 36.

The outputs of the message queuing servers are applied to a
wide area network 40 which couples the outputs to a message queuing
server 42 at the main office, with this server having associated
respective storage units 44 as illustrated. The message queuing
servers 30, 32, and 34 communicate with a wide to a database server
50 having its associated units 52 as illustrated. The output of

the message queuing server 42 is coupled to a database server 50

12

WO 98/21654 PCT/US97/20561

having its associated units 52 as illustrated. The information in
this database is viewable at terminals 54 at the main office.

It is the purpose of the message gqueuing system to be able to
reliably transmit updated account information from the branches so
that it will reside at the main office. It is also important that
the transaction at the branches can proceed without regard to
direct connection to the central office.

Referring now to Figure 2, in the past messages and headers
such as illustrated at 60 and 62 were stored on data disks 64 in
sectors 66, 68, 70 and 72, with the message and accompanying header
being randomly placed within the sectors.

At the same time, message state information was stored on a
log disk 80 which included records about each message stored in the
data disk, including the order of arrival and its location on the
data disk. Moreover, the state of the transaction was logged into
log disk 80 for each of the messages and corresponding headers.

In the case of an interrupted transmission as indicated by
“X” 82, in the past was a requirement that the entire log file,
here illustrated at 84, be scanned to be able to reconstruct the
up-to-date state of the data disk file just prior to the
interruption of the transmission. As mentioned hereinbefore, this
is a time-consuming process in which the entire log file must be
scanned in order to be able to reconstruct the state of the system
just prior to the crash. The situation is made even more
complicated due to the storage of the message and header
information at nonsequential sectors on the data disk, requiring
the interaction of the log file and the data file in order to
locate those messages which are uncorrupted at the time of the
interruption of the transmission.

Referring now to Figure 3, in the subject system message data
60 and message header information 62 are stored on a single disk
storage 90 in sequential sectors, here illustrated at 92, 94, 96
and 98. It is a feature of the subject invention that the message

and header information is stored in an order which is accessible

13

WO 98/21654 PCT/US97/20561

through the utilization of a queue entry management table, which
locates message data through a checkpoint system to be described.

It will be appreciated that the message data is not stored
across all of the sectors, but rather is stored in the above-
mentioned sequential manner.

In order to be able to access the data stored in file 90, the
queue entry management table, or QEMT, contains sector information
which includes entries for control information 100, message blocks
102 and log records 104 all of which are designed to uniquely
specify the sector in which relevant data and headers can be found.
The QEMT therefore specifies the state of the system in so doing.

As will be seen in connection with Figures 4, 5 and 6 the
Queue Entry Management Table is stored in file 90 interspersed
between message data and header information.

Referring now to Figure 4, in one embodiment, file 90 is
arranged such that contiguous sectors have blocks of information,
here illustrated at 106, with the blocks of information entering
from the left as illustrated by arrow 108 and traversing the file
from left to right as illustrated by block number 1 entering from
the left and block number 13 exiting from the right. It will be
understood that the contiguous of blocks and the flow through the
file creates a so-called write direction which does not change.

Referring now to Figure 5, it will be seen that the
aforementioned QEMT control blocks 100 can be interspersed between
other contiguous blocks 106 so that the position of the QEMT
control information blocks 100 specify check points at well-known
offsets throughout file 90.

The purpose of interspersing the QEMT control blocks at
regular intervals is to be able to quickly locate a complete system
state containing specific message data and header information by
merely specifying the checkpoint number or checkpoint interval, as
the case may be. The result is that it is possible to have message
data and log record blocks to either side of a control QEMT control

block, such that upon identification of a check point interval as

14

WO 98/21654 PCT/US97/20561

being the last to have valid information, the contiguous blocks
written after the QEMT block specifies where valid data may be
found as well as its identity and location.

As an alternative explanation, the QEMT control blocks
provide the recovery process with well-known locations to examine
the state of the system.

Referring now to Figure 6, it will be seen that blocks 106
can be utilized as message data blocks as illustrated at 110 or
incremental log blocks as illustrated at 112, with blocks 112
corresponding to log record 104 of Figure 3. These log records
record state changes to messages in contiguous downstream blocks.
Note, the control block provides only some known point for the
beginning of the examination of the file, whereas the log records
provide information concerning individual messages in the file.

Referring back to Figure 3, it will be appreciated that log
record 104 is but one of a number of sequential 1log records
relating to the data having its start point indicated by the QEMT
control block. These log records record changes to information in
the preceding message block so that a complete history of changes
to that particular message block are annotated.

Referring back to Figure 6, it is noted that a given number
of message blocks are bounded by QEMT control blocks which specify
additional message data blocks that have occurred after the check
point. Within this sector are transactional log records 112. It
will be seen that log record T, can describe a change in any one of
the message blocks. As can be seen from arrow 114, the information
flow is from left to right. This being the case, transactional log
record T, can describe the state change for any message in the
system, which could be an acknowledgment that the message has been
received and is no longer needed to be kept, or that a message has
been sent and has not been received or acknowledged, the above
reflecting the two pass handshaking technique for the transmission

of the secure messages in this type of system.

15

WO 98/21654 PCT/US97/20561

For instance, transactional log record T; could indicate that
a new message has been added to the file at that particular point.
It will be appreciated that the position of the log record is
determined by the write head when the log record is created. Thus,
when the log record is created at a time T, the write head is at a
particular point in the file. However, the log record can refer
to transactions and messages anywhere within the whole file
structure.

Likewise, transactional log records T,, T; and T, reflect that
these messages have changed state, with these log records being
posted sequentially in time.

It will be appreciated that since the QEMT blocks and the log
record blocks are insertable into the single file structure and
since the single file structure in one embodiment has a information
flow in one direction, it is possible to completely eliminate the
two-file structure of the prior art. Moreover, the utilization of
the QEMT blocks and the transactional log record blocks permits
rapid diagnose of the effect of information interruption, with a
way of specifying uniquely those messages which are uncorrupted,
while thereafter permitting rapid recovery of the state of the
system after failure.

Referring now to Figure 7, the organization of the Queue
Entry Management Table header is illustrated at 120. As can be
seen, in one embodiment, the header includes the number of segments
in a queue file 122, the segment size 124, the QEMT sequence number
or timestamp 126, the sequence number of the last log record in the
previous segment 128, the current segment number 130, the queue
head pointer 132, the queue tail pointer 134, the next available
block in the current segment 136, the list of QEMT entries 138, the
reservation table of disk blocks 140, the pending transaction list
acting as coordinator 142 and the pending transaction list acting
as participant 144.

It will be appreciated that the information contained in the

header is supporting information for the recovery process.

16

WO 98/21654 PCT/US97/20561

Referring now to Figure 8, each QEMT entry 138 includes a
sequence number 146, a message ID 148, a message operational mode

150, which is either Q,, or Qg., the message recipient’s node name

152, the message recipient’s server name 154, the transaction
state 156, which is either “active”, “pending”, “abort” or
“commit”, the participant 2 PC vote 158 which is the last known

response that was received by the receiver, a set of additional
flags 160 and a pointer on-disk location of message 162.

Thus the Queue Entry Management Table provides exact
information as to the state of the file and more particularly any
queue entry.

Referring now to Figure 9, what will be appreciated is that
since a single message is stored in contiguous blocks, the
reprocess involves reading contiguous blocks back. As a result,
this cuts down on the head movement during a read operation.

In summary, in the prior art doing a read might require the
read head to traverse noncontiguous blocks, and therefore take a
considerable amount of time. In the subject system since the
message are stored in contiguous blocks, only traversing these
contiguous blocks is necessary in the read operation. Likewise,
for a sequential write operation, the head traverses only a limited
-amount of the file.

In short, because there is a forward directional flow and
wrap around on subsequent writes, the data is arranged in
contiguous blocks and the above advantages flow therefrom.

Referring now to Figure 10, the transactional log record 112
of Figure 6 includes a special log record marker 162 in one
embodiment. In this embodiment, a sequence number 164 is provided
along with a message operational mode 166 which refers to either a
Qget O Q,c Operation. Also included is a message ID 168, a set of
operational flags 170, the transactional state 172 which includes
“active”, “pending”, “abort” or “commit” states, the participant 2
PC vote 174 mentioned above and a pointer 176 to on-disk location

of message in queue file.

17

WO 98/21654 PCT/US97/20561

Referring now to Figure 11, what is shown is a flow chart for
the write or Q,, operation. In this flow chart, upon having
started as illustrated at 180, a block queue head pointer 182
effectively puts a lock on the head of the list so that no other
user can access the head entry. Thereafter, the system increments
the queue head pointer and sets the transaction state to “active
read”. This indicates the beginning of the handshaking process.

As illustrated at 186, the system then unlocks the queue head
pointer and then, as illustrated at 188, reads the messages from
the on-disk queue file. Thereafter, the QEM Table is locked as
illustrated at 190, whereafter the 1log record is written as
illustrated at 192 and the QEM Table is unlocked as illustrated at
194. The output of the unlock QEM Table step is referred to a
decision block 196 which ascertains if the message transmission is
transactional. If so, as illustrated at 198, the system runs a
two-phase “commit” protocol to permit handshaking. This completes
the Qu. or write operation.

Referring now to Figure 12, a Qg: Or read operation is
described. As can be seen, upon starting as illustrated at 200,
the queue tail pointer is locked as illustrated at 202 and a new
QEM entry is created with the queue tail pointer being incremented
as illustrated at 204. Thereafter, as illustrated at 206, the
system fills in the QEM entry control information and sets the
transaction state to “active control”. Thereafter, as illustrated
at 208, the queue tail pointer is unlocked and the QEM table is
locked as illustrated at 210. Subsequently, as illustrated at 212,
the system allocates on-disk blocks from the reservation table,
with a block crossing a segment boundary being indicated at
decision block 214. If the blocks cross segment boundaries, then
as illustrated at 216, the system forces the QEMT check point write
to disk. This refers to the fact of writing the in-memory copy to
disk. It will be appreciated that block 206 updates the in-memory
copy of the state of the QEM Table and thus the QEM entry.

18

WO 98/21654 PCT/US97/20561

After having forced the QEMT check point write to disk as
illustrated at 218, the system writes the message data to disk and
unlocks the QEM Table. Decision block 220 establishes whether or
not the messages is a transactional one and if so, runs a two phase
commit protocol as illustrated at 221 to facilitate the
handshaking. The end of the write sequence is illustrated at 222.
It will be appreciated that block 220 refers to the receiver end
running the handshaking protocol.

Referring now to Figure 13, a recovery sequence is
illustrated in which, upon starting as illustrated at 230, the
queue table pointers are 1locked as illustrated at 232 and the
system thereafter restores global data structure as illustrated at
234. This initializes the state of the system as a whole.
Thereafter, as illustrated at 236 the system scans each QEMT in the
queue file for the most recent QEMT. This establishes the wmost
recent check point before communications interruption. Thereafter,
as illustrated at 238, the system scans the log records in this
segment for the log record with the latest QEMT. This means that
the log records of the segment are applied to the messages referred
to by the entries in the QEMT.

As illustrated at decision block 240, the system ascertains
if there are more log records to scan. It will be appreciated that
the QEMT specifies the most recent log record subsequent to the
pointer associated with the QEMT in question. However, there may
indeed be subsequent 1log records thereafter which need to be
scanned. If this is the case, then the system contacts the
participant about the transaction state of the message as
illustrated at 242. 1In one instance, the receiver is queried as to
whether it has received a message or not. Thereafter, the system
invokes a two-phase “commit” protocol to resolve the transaction as
illustrated at 244. This refers to the fact that the handshaking
process 1is a two pass process. Thus, whatever state that one
receives back from the receiver is used to restart the handshaking

process at the point at which the system had failed.

19

WO 98/21654 PCT/US97/20561

As can be seen at 246, the system updates the state of the
reservation table and determines a new file pointer position.
Thus, the entire section is scanned to update the state of
reservation table 140, with the determination of the new file
pointer position being established by the current segment number
130 and the next available block in the current segment 136.

As illustrated at 248, the system then writes out the new
QEMT state to the disk at which point the recovery is complete as
illustrated at 250.

As described hereinafter, the programming 1listing for one

embodiment of the subject invention written in C follows:

20

WO 98/21654 PCT/US97/20561

Copyright (C) 1995 MITSUBISHI ELECTRIC ITA. ALL RIGHTS RESERVED.
UNPUBLISHED -- RIGHTS RESERVED UNDER THE COPYRIGHT

LAWS OF THE UNITED STATES. USE OF A COPYRIGHT NOTICE

IS PRECAUTIONARY ONLY AND DOES NOT IMPLY PUBLICATION

OR DISCLOSURE.

THIS SOFTWARE CONTAINS CONFIDENTIAL INFORMATION AND

TRADE SECRETS OF MITSUBISHI ELECTRIC ITA. USE, DISCLOSURE,
OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR

EXPRESS WRITTEN PERMISSION OF MITSUBISHI ELECTRIC ITA.

OpenMQ
Module: gmain.c
Author: David Wong 9/8/95

* % % % b F % F F F % % F ¥ ¥ F

*

TS SES =SS ST S SS=S=S S CSS oS SRS S S SS=SS==S=S===S=S=S=S=S====S========S=S=S=======

Command Line Syntax:
C> gserv [-c] [-lg <name>] (-pg <name>] [-p <pathnames>] \
[-t <threads>] [(-n <#igentries>) [-e <#gextents>] \

[-s <#isegments>]

where (] = Optional flag.

-c = Create new queue file mode. Will overwrite
existing queue data and state files. If not
set, then it is a restart caes.

Logical queue name.

Physical queue server name.

Path of queue data and state files.

Number of queue server threads to allocate

Number of queue entries to allocate for new queue.
Max number of additional extries that the queue
can be extended to; not supported currently.
Number of segments to allocate for new queue.

-1g
-Pq
-p
-t
-n
-e

wn uw n nu

* % % % ok % o ¥ b ¥ A O A F o A A H H F
1
)]
1

// Include Files
//#include <memory.hs
#include "qlib.h"
#include "gserv.h"
#include "gadmin.h"

1pQEMT MQEMT;

1pQSTR MQstate;

1pOPSTATS MQops;

1pMTLIST Pending TXNs = NULL;

int BLOCKS PER_SEG;
int SEGMENT_SIZE;
int TOT MSG_BLOCKS ;
Aint QEMT_Size;

int QEMT_Seq No = 0;
int LREC_Seq No = 0;
int NUM_SEGS;

int MAX_ELMS; 21

WO 98/21654 . PCT/US97/20561

int shdn_flag=0;

int holey entries=0;
unsigned long QEME TS = 1;
1pLPG_TS_STR Last_Pending_Get;
1pLRCLST Active LREC_List;

#define DefaultPath "C:\\Q\\QSERV"
#define DefaultLogQue "Q1i"

#define DefaultPhyQue "Qs1

#define Op_State " Op_State"
#define DefaultElms 100

#define DefaultExt 0

#define DefaultSegs 10

#define DefaultThrs 1

#define Format "C> gserv [-c] [-lg <name>] [-pg <name>] [-p <pathnames)

void Process_Msg(

{

1pMSTR arg)

HANDLE hQSHDN Event;
1pQHANDLE ghandle;
1pTSTR thr_str;
SMBUF ENQ;

Diag("Queue Server Thread No. %d starting up...",arg->thr_no);

// Open the queue for getting
if (!(ghandle = Qopen(arg-sphysical,GET_MODE,0,0,0,-1,0)))
Fail ("QServ_main: could not open gqueue server %s",arg->physical);

thr str = (TSTR *)malloc(sizeof (TSTR));

while ((thr_str->Que_File Handle=Open_Queue_File (arg->gname))
== INVALID_HANDLE VALUE) ;

while (!shdn_flag && (QSUCCESS ==
(QlistenBeforeReply (qhandle, &ENQ.msgh, ENQ.mdata, MAXMSGDATA)))

strcpy (thr str->logical,arg->logical) ;
strcpy (thr_str->physical,arg->physical);
strcpy (thr str->gname,arg->gname) ;
strcpy (thr str->gstate,arg->gstate);

thr str->ghandle ghandle;
thr_str->lpsmbuf &ENQ;

Diag(" n) ;
Diag ("Request Serviced by QS Thread No. %d",arg->thr_no);

switch (ENQ.msgh.mode)
case PUT_MODE:
Diag("DiskQ(%s) Queue Server in PUT _MODE", arg->physical);
QS_QPut (thr_str) ;
break;
case REQUEST MODE:
Diag ("DiskQ(%s) Queuwe Server in GET_MODE",arg->physical);

22

[-t <thr

WO 98/21654 PCT/US97/20561

QS_QGet (thr_str);
break;

case ABORT_MODE:
case COMMIT MODE:
if (ENQ.msgh.mode == ABORT_MODE)
Diag ("DiskQ(%s) Queue Server in ABORT_MODE",arg->physical) ;
else Diag("DiskQ(%s) Queue Server in COMMIT_MODE", arg-sphysical) ;
QS_QCommit (thr_str) ;
break;

case ADMINREQ MODE:
Diag("DiskQ(%s) Queue Server in ADMINREQ MODE" ,arg->physical);
QS_QAdmin(thr_str);
if (shdn_flag)

QreplyAfterListen(ghandle, ADMINREP MODE, SUB_MODE OK,0,0,0) ;

// Qclose (NULL,arg->physical) ;
Qclose (&ghandle, 0) ;

hQSHDN_Event = OpenEvent (EVENT_MODIFY_STATE, TRUE, QSHDN_ EVENT) ;
if (!'hQSHDN Event)
Diag ("QS_Admin: Can't OpenEvent for QS Shutdown");

if (SetEvent (hQSHDN Event) == FALSE)
Diag("QS_Admin: Can't SetEvent for QS Shutdown");
return;
break;
default:

Diag("DiskQ (%s): Unexpected Mode=%d", arg->physical, ENQ.msgh.mode) ;
QreplyAfterListen(ghandle, ACK_MODE, SUB_MODE_BAD REQ,0,0,0);

Diag("head = %d, tail = %d, pgets = %d, pputs = %d, segment = %d, block = %d",

MQEMT->que_hd_ptr, MQEMT->que_tl ptr,
MQops->pending_gets, MQops->pending_puts,
MQEMT->next_avail_block.segment, MQEMT->next_avail_block.block) ;

print_RST() ;
print_Active_Log List();
print QEME_txn_states();

// Sleep(3000);

void main(

int argc,
CHAR **argv)

23

WO 98/21654

HANDLE Que_File_ Handle;

HANDLE Que_State_Handle;

HANDLE hQHD, hQTL, hQEMT;

HANDLE hQEME, hLPG;

HANDLE hMQstate, hMQops;

HANDLE hQSHDN, hQSHDN_Event ;
HANDLE hTSM [MAX QSERV_THREADS] ;

DWORD idTSM [MAX QSERV_THREADS) ;

DWORD dwPointer;

DWORD dwBytesRead, dwBytesWritten;

1pMSTR thr arg[MAX_ QSERV_THREADS] ;

BOOL Return_Status;

long temp_time;

int seg_no;

int i,status;

int newg=0;

CHAR logical [NAMESIZE] =DefaultLogQue;

CHAR physical (NAMESIZE] =DefaultPhyQue;

CHAR path[QUE_FILE SIZE]=DefaultPath;

CHAR quefile [QUE_FILE SIZE] ;

CHAR gstate [QUE_FILE_SIZE];

CHAR buf (255] ;

int max_elms=DefaultElms;

int ext _elms=DefaultExt;

int num_segs=DefaultSegs;

int num_threads=DefaultThrs;

int max_txns_per_seg;

i=1;

if ((argc > 1) && (!strcmp(argv(i],"-c")))
newqg = 1;
i++;

}

while (i < argc)
if (!strcmp(argv([i]),"-1q"))

i++;

if (argv(i] (0] != '-"')
strcpy (logical,argv(i)) ;
else Diag("%s",Format) ;

}

else if (!strcmp(argv(i],"-pg"))

i++;

if (argv(i] [0] != '-"')
strcpy (physical,argv[i]) ;
else Diag("%s",Format) ;

else if (!strcmp(argv(i],"-p"))
i++;
if (argv(il [0) t= '-"')

strcpy(path,argv(il) ;
else Diag("%s";ﬁormat);

24

PCT/US97/20561

WO 98/21654

sprintf (quefile, "%s\\%s.dat",path,physical) ;
sprintf (gstate, "¥s\\%s.sta",path,physical);

// Check to see if QNETD is running.

if

// Create mutexes for protected data structures.
hQHD = CreateMutex (NULL, FALSE,QUE_HD PTR_LOCK) ;

if

hQTL = CreateMutex (NULL, FALSE,QUE_TL_PTR_LOCK) ;

if

hQEME = CreateMutex (NULL, FALSE,QEME_TS_GEN_LOCK) ;

if

hLPG = CreateMutex (NULL, FALSE, LPG_TS_GEN_LOCK) ;

else if (!strcmp(argv([i],6 "-t"))

1++4;
if (argv(i] [0] !'= '-')

num_threads = atoi(argvl[i]);

else Diag("%s",Format) ;
else if (!strcmp(argv(i],"-n"))

i++;

if (argv([i] [0] !'= '-")
max_elms = atoi(argv(il]);
else Diag("%s",Format) ;

)

else if (!strcmp(argv(i], "-e"))

1++; ‘

if (argv([i] [0] 1= '-")
ext_elms = atoi(argv(i]);
else Diag("%s", Format);

else if (!strcmp(argv(i],"-s"))
{

14+

if (argv([i] [0] != '-")

num_segs = atoi(argv(il);
else Diag("%s",Format) ;

144

(tAttachSharedMemory ())

Fail ("Exrror: QNETD is not running.");

('hQHD)

Diag("CreateMutex for Que Head Pointer lock failed.");

('hQTL)

Diag("CreateMutex for Que Head Pointer lock failed.");

('hQEME)

Diag("CreateMutex for QEME_TS Lock failed.");

25

PCT/US97/20561

WO 98/21654

if (!hLPG)
Diag("CreateMutex for LPG_TS Lock failed.");

hQEMT = CreateMutex (NULL, FALSE, QEMT_LOCK) ;

if (!hQEMT)
Diag("CreateMutex for QEM Table lock failed.");

hMQstate = CreateMutex (NULL, FALSE,MQstate_LOCK) ;

if (!'hMQstate)
Diag("CreateMutex for MQstate file lock failed.");

hMQops = CreateMutex (NULL, FALSE, MQops_ LOCK) ;

if (!'hMQops) .
Diag("CreateMutex for MQops stats lock failed.");

hQSHDN = CreateMutex (NULL, FALSE, QSHDN_ LOCK) ;

if (!'hQSHDN)
Diag("CreateMutex for QShutdown lock failed.");

hQSHDN_Event = CreateEvent (NULL, TRUE, FALSE, QSHDN_EVENT) ;

if (!'hQSHDN Event)
Diag("CreateEvent for QShutdown event failed.");

// BAllocate structure for queue shutdown
// state and recovery statistics. ‘
MQstate = (QSTR *)malloc(sizeof (QSTR)) ;

// If new queue file get max_elms and num_segs
// from command line, else find most recent

// QEM table from disk. Policy is to delete
// existing quefile and gstate file when the
// -c flag is used.

if (newq)

Que_File_Handle = Create_Queue_File(quefile,gstate,
max_elms,num_segs) ;

while (Que_File_Handle == INVALID HANDLE_VALUE)

sprintf (buf, "del %s",quefile);
system (buf) ;
sprintf (buf, "del %s",gstate);
system (buf) ;

Que_File Handle = Create_Queue_File(quefile, gstate,

}

MAX_ELMS
NUM_SEGS

max_elms,num_segs) ;

max_elms;
num_segs;

26

else

PCT/US97/20561

WO 98/21654 PCT/US97/20561

" Que_File_Handle = Open_Queue_File(quefile);
status = Find Latest_ QEM(Que File Handle, &MQEMT, &seg_no) ;
// print_QEMT (MQEMT, 1) ;
Return_Status = CloseHandle (Que_File_Handle) ;

MAX ELMS MQEMT->max_entries;
NUM_SEGS = MQEMT->num_segs;

Update_ QEME TS({() ;

Update_Globals() ;
Last_Pending Get = (LPG_TS_STR *)malloc(sizeof (LBG_TS_STR)) ;

Last_Pending Get->geme_no = NIL;
Last_Pending Get->timestamp = 1;

// Theoretically possible to have MAX ELMS
// GET operations and txn termination log
// records in same segment?

max_txns_per_ seg = MAX_ ELMS;
// max_txns_per seg = 2*MAX ELMS;
// max_txns_per_seg (int) ceil ((double) (MAX_ELMS/NUM_SEGS)) ;

non

Active LREC_List = (LRCLST *)malloc(sizeof (LRCLST)) ;
Active LREC_List->max_tXns_per_seg = max_tXns_per_seg;

Active LREC_List->address =
(int *)malloc(max_txns_per_seg*sizeof (int));

// Reinitialize the active log record list.
Init_Active_LREC_List () ;

Que_State_ Handle = Open_Queue_File(gstate) ;
// If new queue file, or if a restart clear,

// case, initialize global data structures
// and create new initial QEM Table.

if (newq)
status = Create QEMT (&MQEMT,MAX ELMS) ;
status = Init QEMT (MQEMT,MAX_ ELMS,ext_elms,NUM_SEGS) ;
status = Write QEMT(Que_File_Handle, 0,MQEMT) ;

MOstate->svr_ state = QUEUE_ACTIVE;
MQOstate->num_restarts = 0;

MQstate->num recov tries = 0;

temp time = time (&MQstate->first_start_time);
temp_time = time(&MQstate->last_restart_time);
MQstate->last_recov_time = 0;

27

WO 98/21654 PCT/US97/20561

else // Restart case.
// see if queue server shutdown cleanly last time

dwPointer = SetFilePointer (Que_State_Handle,
O,NULL,FILE_BEGIN);

Return_Status = ReadFile (Que_State_Handle,
MQstate, sizeof (QSTR) ,
&dwBytesRead, NULL) ;

if ((Return_Status == FALSE) || (dwBytesRead != sizeof (QSTR)))

if (Return_Status == FALSE)
Diag("status = FALSE") ;
Fail ("Main: Problem reading MQstate; BytesRead = %d",dwBytesRead) ;

MQstate->num_restarts++;
temp_time = time(&MQstate->last_restart_time) ;

// If queue server did not shutdown cleanly
// last time, then run the recovery module.
if (MQstate->svr_state == QUEUE_ACTIVE)

MQstate->num_recov_tries++;
MQstate->last_recov_time = temp_time;

dwPointer = SetFilePointer (Que_State_Handle,
0,NULL, FILE_BEGIN) ;
Return_Status = WriteFile(Que_State_Handle,
MQstate, sizeof (QSTR) ,
&dwBytesWritten, NULL) ;
if ((Return_Status == FALSE) ||
(dwBytesWritten != sizeof (QSTR)))

if (Return_Status == FALSE)
Diag("status = FALSE");
Fail ("Main: Problem writing MQstate; BytesWrtten = %d",dwBytesWritten) ;

QRecov (Que_File_Handle, seg_no) ;

MQstate-snum_recov_tries
MQstate->last_recov_time

0;
0;

else // Clean shutdown last time; simple restart case.
MQstate->svr_state = QUEUE_ACTIVE;

MQEMT->qget_state = ENABLED;
MQEMT->qgput_state ENABLED;

if (!Reconstruct RST())
Fail ("Restart procedure failed: cannot reconstruct BST");

// update the queue server state file
dwPointer = SetFilePointer (Que_State_Handle,

28

WO 98/21654 PCT/US97/20561

0,NULL, FILE BEGIN) ;

Return_Status = WriteFile (Que_State_ Handle,
MQstate,sizeof (QSTR),
&dwBytesWritten, NULL) ;

if ((Return_Status == FALSE) || (dwBytesWritten != sizeof (QSTR)))

if (Return_Status == FALSE)
Diag("status = FALSE");
Fail ("Main: Problem writing MQstate; BytesWrtten = %d",dwBytesWritten);

Return Status

_ CloseHandle (Que_File Handle) ;
Return_Status

CloseHandle (Que State Handle) ;

non

// initialize RT statistical counters

MQops = (OPSTATS *)malloc(sizeof (OPSTATS)) ;
MQops->num_gets = 0;
MQops->num_puts = 0;
MQops->num_aborts = 0;
MQops->num_commits = 0
MQops->pending gets
MQops->pending puts

0;
0;

// do initial close to clear stale buffers
Qclose (NULL, physical) ;

// spawn off worker threads
i = 0;
while (i < num_threads)

thr arg(i] = (MSTR *)malloc(sizeof (MSTR)) ;

strcpy(thr_arg(i] ->logical, logical);
strcpy (thr_arg(i] ->physical,physical);
strcpy (thr _arg(i] ->gname,quefile);
strcpy (thr_arg[i] ->gstate,gstate);
thr_arg(i]->thr no = i;

hTSM[i] = CreateThread(NULL,O,
(LPTHREAD_START_ ROUTINE) Process_Msg,
thr_arg(i],0,&idTSM[1i]) ;

14+

// Wait for shutdown to be signalled by a worker thread.
// Add code later to check on status of worker threads.

hQSHDN Event = OpenEvent (SYNCHRONIZE, TRUE, QSHDN EVENT) ;
if ((status = WaitForSingleObject (hQSHDN_ Event, INFINITE)) !=
WAIT_OBJECT_0)
Diag("QS Main: Synch wait for ¢S Shutdown Event failed");

/*
29

strcpytt.hr

*/

WO 98/21654 PCT/US97/20561

// Clear memory buffers held by worker threads.
// Need to wait for remaining replies to be sent
// back before issuing Qclose.

Sleep(3000) ;
Qclose (NULL, physical) ;

// Fetch all locks first.

hQHD = OpenMutex (SYNCHRONIZE, FALSE,QUE_HD PTR_LOCK) ;
if (!'hQHD)
Diag("QS Main: Can't OpenMutex for que head pointer lock");
if ((status = WaitForSingleObject (hQHD,QUE_LOCK_ TIMEOUT)) !=
WAIT_OBJECT_0)
Diag("QS Main: Synch wait for que head pointer lock failed");

hQTL = OpenMutex (SYNCHRONIZE, FALSE,QUE TL PTR_LOCK) ;
if (!'hQTL)
Diag("QS Main: Can't OpenMutex for que tail pointer lock");
if ((status = WaitForSingleObject (hQTL,QUE_LOCK_TIMEOUT)) !=
WAIT_OBJECT_O)
Diag("QS_Main: Synch wait for que tail pointer lock failed");

hQEME = OpenMutex(SYNCHRONIZE,FALSE,QEME_TS_GEN~LOCK);
if (!'hQEME)
Diag("QS_Main: Can't OpenMutex for QEME TS Lock") ;
if ((status = WaitForSingleObject (hQEME,QUE LOCK_ TIMEOUT)) !=
WAIT OBJECT 0)

Diag ("QS Main: Synch wait for QEME TS Lock failed");

hLPG = OpenMutex (SYNCHRONIZE, FALSE,LPG_TS GEN_LOCK) ;
if (!hLPG)
Diag("QS_Main: Can't OpenMutex for LPG_TS Lock") ;
if ((status = WaitForSingleObject (hLPG,QUE_LOCK TIMEOUT)) !=
WAIT OBJECT_O)
Diag("QS_Main: Synch wait for LPG_TS Lock failed");

hQEMT = OpenMutex (SYNCHRONIZE, FALSE, QEMT_LOCK) ;
if (!thQEMT)
Diag("QS Main: Can't OpenMutex for QEM Table lock");
if ((status = WaitForSingleObject (hQEMT,QUE LOCK_TIMEOUT)) !=
WAIT_OBJECT_O0)
Diag("QS_Main: Synch wait for QEM Table lock failed");
hQSHDN = OpenMutex (SYNCHRONIZE, FALSE, QSHDN LOCK) ;
if (!hQSHDN)
Diag("QS Main: Can't OpenMutex for QSHDN lock");
if ((status = WaitForSingleObject (hQSHDN,QUE_LOCK_TIMEOUT)) !=
WAIT_OBJECT_O0)
Diag("QS_Main: Synch wait for QSHDN lock failed");

hMQstate = OpenMutex (SYNCHRONIZE, FALSE,MQstate_ LOCK) ;
if (!'hMQstate)
Diag("QS_Main: Can't OpenMutex for MQstate lock");
if ((status = WaitForSingleObject (hMQstate,QUE_LOCK_TIMEOUT)) !=
WAIT OBJECT_O)
Diag("QS Main: Synch wait for MQstate lock failed");

30

WO 98/21654 PCT/US97/20561

// write out last QEM Table before shutting down
Que_File Handle = Open_Queue File(quefile);

status = Gen_QEM_Seq_ No (&MQEMT->gem_sn) ;

MQEMT->next avail block.segment =
(MQEMT->next_avail_block.segment+1) $MQEMT->num_segs;
MQEMT->next_avail_block.block = 0;

status = Write QEMT(Que_File_Handle,
MQEMT->next_avail_ block.segment,
MQEMT) ;

Return_Status = CloseHandle{Que_File Handle);
// Write out graceful shutdown state
MQstate->svr_state = QUEUE_SHUTDOWN;
Que_State_Handle = Open_Queue_ File (gstate);

dwPointer = SetFilePointer (Que State Handle,
0,NULL, FILE_BEGIN) ;

Return_Status = WriteFile(Que_State Handle,
MQstate, sizeof (QSTR),
&dwBytesWritten, NULL) ;

if ((Return_Status == FALSE) || (dwBytesWritten != sizeof (QSTR)))

if (Return_Status == FALSE)

Diag("status = FALSE");
Fail ("QS_Main: Problem writing MQstate; BytesWritten = %d",
} dwBytesWritten) ;

Return_Status = CloseHandle (Que_State_Handle) ;
Say ("Queue Server %s shuts down gracefully",physical);
Sleep (3000) ;

// print QEMT (MQEMT, 1) ;

// keep the locks to avoid worker
// threads from writing to queue

ReleaseMutex (hMQstate) ;
ReleaseMutex (hQSHDN) ;
ReleaseMutex (hQEMT) ;
ReleaseMutex (hLPG) ;
ReleaseMutex (hQEME) ;
ReleaseMutex (hQTL) ;
ReleaseMutex (hQHD) ;

31

WO 98/21654

User: root
Host: bunny
Class: bunny
Job: stdin

32

PCT/US97/20561

WO 98/21654 PCT/US97/20561

/*

* Copyright (C)1995 MITSUBISHI ELECTRIC ITA. ALL RIGHTS RESERVED.
* UNPUBLISHED -- RIGHTS RESERVED UNDER THE COPYRIGHT

* LAWS OF THE UNITED STATES. USE OF A COPYRIGHT NOTICE

* IS PRECAUTIONARY ONLY AND DOES NOT IMPLY PUBLICATION

* OR DISCLOSURE.

*

* THIS SOFTWARE CONTAINS CONFIDENTIAL INFORMATION AND

* TRADE SECRETS OF MITSUBISHI ELECTRIC ITA. USE, DISCLOSURE,
* OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR -

* EXPRESS WRITTEN PERMISSION OF MITSUBISHI ELECTRIC ITA.

*

* OpenMQ

* Module: qrecov.c

* Author: David Wong 10/15/95

*

/

// Include Files
#include "glib.h"
#include "gserv.h"
#include "gadmin.h"

extern 1pQEMT MQEMT;
extern 1pQSTR MQstate;
extern 1pMTLIST Pending_ TXNs;

extern int BLOCKS_PER_SEG;
extern int SEGMENT_SIZE;
extern int TOT_MSG_BLOCKS;
axtern int QEMT_Size;
axtern int QEMT_Seqg_No;
extern int LREC_Seqg_No;
extern int NUM_SEGS;
extern int MAX ELMS;

extern unsigned long QEME TS;

Recovery module basic algorithm:

- lock queue table and head/tail ptrs
- restore global data structures
- fetch log records

- determine state

- contact client

invoke (partial) 2PC protocol

- rollback bad cases

- commit good cases

- fix up reservation table

- determine file ptr position

- write new QEM Table out to disk

D N U N N N T N
N N N N
1

void QRecov (
HANDLE Que File Handle,

33

WO 98/21654

int seq_no)

HANDLE hQHD, hQTL, hQEMT;
1pMTLIST This_TXN;

LREC log_rec;

BOOL Return_Status;
DWORD dwPointer;
DWORD dwBytesRead;
SN lrec_no;

int i,status;

hQHD = OpenMutex(SYNCHRONIZE,FALSE,QUE_HD_PTRMLOCK);
if (!'hQHD)
Diag ("QS_QRecov: Can't OpenMutex for queue head pointer
if ((status = WaitForSingleObject (hQHD,QUE_LOCK_TIMEOUT))
Diag("QS_QRecov: Synch wait for queue head pointer lock

hQTL = OpenMutex (SYNCHRONIZE, FALSE,QUE_TL_PTR_LOCK) ;
if (!'hQTL)
Diag("QS _QRecov: Can't OpenMutex for queue tail pointer
if ((status = WaitForSingleObject (hQTL,QUE_LOCK TIMEOUT))
Diag ("QS_QRecov: Synch wait for queue tail pointer lock

hQEMT = OpenMutex (SYNCHRONIZE, FALSE,QUE_TL_PTR_LOCK) ;
if (!hQEMT)
Diag("QS_QRecov: Can't OpenMutex for QEM table lock");
if ((status = WaitForSingleObject (hQEMT, QUE_LOCK_ TIMEOUT))
Diag("QS_QRecov: Synch wait for QEM table lock failed");

// set file pointer to start of log records

dwPointer = SetFilePointer (Que_File Handle,
seq_no*SEGMENT_SIZE,
NULL, FILE_BEGIN) ;

dwPointer = SetFilePointer (Que_File Handle,
QEMT_Size,
NULL, FILE_CURRENT) ;

// Initialize log record timestamp, which is recorded
// in QEMT. Next, start reading the log records and
// construct extended pending txn list based on one
// fetched from QEMT.

i = 0;

lrec_no.timestamp = MQEMT->lrec_sn.timestamp;
lrec_no.counter = MQEMT—>lrec_sn.counter;

while (1<BLOCKS_PER_SEG)
Return_Status = ReadFile(Que_File Handle,
&log_rec,sizeof (LREC),
&dwBytesRead,NULL) ;
i += LOG_REC_BLOCKS;

if (log_rec.marker != LRMARK)

34

PCT/US97/20561

lock") ;
t= WAIT_OBJECT_O)
failed") ;

lock") ;
I= WAIT_OBJECT_0)
failed") ;

= WAIT_OBJECT N

WO 98/21654 PCT/US97/20561

dwPointer = SetFilePointer (Que_File_ Handle,
(MSG_BODY_BLOCKS+LOG_REC_BLOCKS)*BLOCK,
NULL, FILE CURRENT) ;

i += (MSG_BODY_BLOCKS+LOG_REC_BLOCKS) ;
else if (Bigger_Seq_No(&log_rec.seq_no, &lrec_no))

// only need to be concern about log records
// with increasing timestamps.
lrec_no.timestamp = log_rec.seq_no.timestamp;
lrec_no.counter = log_rec.seq no.counter;

// find txn in pending list
Return_Status = Find_MTlist (Pending_TXNs, &This_TXN, log_rec.mid) ;

switch (log_rec.txn_state)

case PENDING:
if (Return_Status == TRUE)

Return_Status = Find Tlist (This_TXN->ops,log_rec.geme no);
if (Return_Status == FALSE)
Add_Tlist (&This_TXN->ops, log_rec.geme_no) ;

else

Add_MTlist (&Pending_ TXNs, &This_TXN, log_rec.mid) ;
Add Tlist (&This_TXN->ops, log_rec.geme_no) ;

break;

case ABORT:
case COMMIT:
if (Return Status == TRUE)

Return_Status = Del MTlist (&Pending_TXNs, log_ rec.mid);
if (Return_Status == FALSE)
Diag("QS_Recovery: Error deleting TID %d from Host %d4d",
log_rec.mid.tid,log_rec.mid.host) ;

break;

case EMPTY:
break;

default:
Diag("QRecov: No such txn state");
break;

}
} }

// now, resolve pending txns
'OR_Resolve_PTL(Que_File Handle);

// Flush out reconstructed QEMT to disk.
// No need to find last known QEME offset.

35

WO 98/21654 PCT/US97/20561

MQEMT->next_avail_ block.segment =
(MQEMT->next_avail block.segment+1) $MQEMT->num_segs;

MQEMT->next_avail_ block.block = 0;

status
status

Gen_QEM_Seq_No (&MQEMT->gem_sn) ;

Write_ QEMT (Que_File Handle,
MQEMT->next_avail block.segment,
MQEMT) ;

// Reconstruct reservation table.
if (!Reconstruct_RST())

Diag("Recovery procedure failed: cannot reconstruct RST");
ReleaseMutex (hQEMT) ;

ReleaseMutex (hQHD) ;

ReleaseMutex (hQTL) ;

return;

MQEMT->qgget_state
MQEMT->gput_state

ENABLED;
ENABLED;

ReleaseMutex (hQEMT) ;
ReleaseMutex (hQHD) ;
ReleaseMutex (hQTL) ;

void QR_Resolve_ PTL(
{ HANDLE Que_File_ Handle)

1pQHANDLE ghandle;
1pMTLIST This_TXN;
1pTLIST This_TXN_ops;
1pQEME 1lpgeme;
MSGH msgh, msgh2;
int status;
This_TXN = Pending_ TXNs;
while (This TXN != NULL)
This_TXN_ops = This_TXN->ops;
status = Cycle QEME(This_TXN_ops->geme_no, &lpgeme) ;

status

Retrieve_Msg_Hdr (Que_File Handle, lpgeme->offset, &msgh) ;
// get buffer for communication with QNETD
if (!(ghandle = QopenReply (0, &msgh, 0, "QNETD", &status)))

Fail ("QS_QRecov: could not open connection to QNETD");

// check with Derek on proper use of inquiry msg

36

WO 98/21654 : PCT/US97/20561

if (QSUCCESS == QsendAndReceive (ghandle, ADMINREQ MODE,QNETD_TRAN_INQ,
0,0,0,0,0,0,&msgh2))
while (This_TXN_ops != NULL)
if (msgh2.sub_mode == Q COMMIT)

QR_Resolve TXN_Op (This_TXN_ops->geme_no, COMMIT) ;
else QR_Resolve_ TXN Op (This_TXN ops->geme_no, ABORT) ;

This_TXN ops = This_TXN_ops->next;

}

else

Fail ("QS_QRecov: no response from QNETD") ;
Fail ("QS_QRecov: Queue Server ABORTs Transaction %d",This_TXN->mid.tid);

while (This_TXN ops != NULL)

QR_Resolve_TXN_Op(This_TXN_ops->geme_no, ABORT) ;
This_TXN_ops = This_TXN_ops->next;

)

This_TXN = This_TXN->next;

)

void QR_Resoclve TXN_Op (
int geme_no,
short mode)

l1pQEME 1lpgeme, lpgeme2;
1pQEME hd_geme,tl_qgeme;
int geme_no2;
int status;
status = Cycle QEME (geme_no, &lpgeme) ;
lpgeme->txn state = mode;
lpgeme->vote = mode;
// if txn is ABORTed, we need to rollback either
// the queue head or tail pointer depending on
// whether it's a GET/PUT op
if (mode == COMMIT)
if (lpgeme->mode == GET_MODE)
lpgeme->txn_state = EMPTY;
lpgeme->vote = EMPTY;

else // mode == ABORT

37

WO 98/21654 PCT/US97/20561

if (lpgeme->mode == PUT_MODE)

lpgeme->txn_state = EMPTY;
lpgeme->vote = EMPTY;

if (geme_no == MQEMT->que_hd_ptr)
if (MQEMT->que_hd ptr == MQEMT->que_tl ptr)
MQEMT->que_hd ptr = NIL;
MQEMT->que_tl ptr = NIL;
else MQEMT->que_hd _ptr = (MQEMT->que_hd_ptr+1l) $MQEMT->max_entries;
else if (geme_no == MQEMT->que_tl ptr)
geme_no2 = qeme_nd;
lpgeme2 = lpgeme;
while ((lpgeme2->txn_state == EMPTY) &&

(geme_no2 != MQEMT->que_hd_ptr))
{
geme_no2 = (MQEMT->max_entries+geme_no2-1) $MQEMT->max_entries;
status = Cycle QEME (geme_no2, &lpgeme2) ;

}

if ((geme_no2 == MQEMT->que_hd ptr) &&
(lpgeme2->txn state == EMPTY))
MQEMT->que_hd_ptr = NIL;
MQEMT->que tl ptr = NIL;

else MQEMT->que_tl ptr = geme_no2;

else // failed GET operation

// reset the op flag to a PUT
lpgeme->mode = PUT_MODE;

lpgeme->txn_state = COMMIT;
lpgeme->vote = COMMIT;

if (MQEMT->que hd ptr == NIL)

MQEMT->que hd ptr

~hd_ geme_no;
MQEMT->que_tl ptr

MQEMT->que_hd ptr;

else

{

status = Cycle QEME (MQEMT->que_hd_ptr, &hd_geme) ;
status = Cycle QEME (MQEMT->que_tl ptr,&tl_geme);

if (lpgeme->timestamp < hd_geme->timestamp)
MQEMT->que hd ptr = geme_no;
else if (lpgeme->timestamp > tl geme->timestamp)
MQEMT->que_tl ptr = geme_no;

38

WO 98/21654 PCT/US97/20561

int Reconstruct_RST ()

1pRSTSEG lprstseg;
1pQEME lpgeme;

int *msg_block;
int geme_no;
int i,j,status;

// Initialize the reservation table first.
lprstseg = MQEMT->rst_ptr->seg ptr;
for (i=0; i<NUM_SEGS; i++)

{ .

msg_block = lprstseg->msg_block;

for (j=0; j<MQEMT->rst ptr-s>msgs_per_seg; Jj++) -

*msg_block = NIL;
msg_block++;

lprstseg++;

// Then, reconstruct it based on current QEMT state.
geme_no = MQEMT->que_hd_ptr;
while (geme _no != MQEMT->que tl ptr)

status = Cycle_ QEME (geme_no, &lpgeme) ;
if (!Add_RST_Entry(lpgeme-soffset.segment, lpgeme->oifset.block))

Diag("RST reconstruction phase failed: too many msgs in a segment");
return(0) ;

)

geme no = (geme_no+l)%MQEMT->max_entries;

status = Cycle QEME (geme_no, &lpgeme) ;
if (!Add_RST_Entry(lpgeme->offset.segment, lpgeme->offset.block))

(

Diag ("RST reconstruction phase failed: too many msgs in a segment");
return(0) ;

}

for (i=0; i<MQEMT->num_segs; i++)
Sort RST Entries(i);

return(l) ;

39

WO 98/21654

User: roc:
Host: bunny
Class: bunny
Job: stdin

40

PCT/US97/20561

H % o % o % ok o o ok o O o A+ * *

/

WO 98/21654 PCT/US97/20561

Copyright (C) 1995 MITSUBISHI ELECTRIC ITA. ALL RIGHTS RESERVED.
UNPUBLISHED -- RIGHTS RESERVED UNDER THE COPYRIGHT

LAWS OF THE UNITED STATES. USE OF A COPYRIGHT NOTICE

IS PRECAUTIONARY ONLY AND DOES NOT IMPLY PUBLICATION

OR DISCLOSURE.

THIS SOFTWARE CONTAINS CONFIDENTIAL INFORMATION AND

TRADE SECRETS OF MITSUBISHI ELECTRIC ITA. USE, DISCLOSURE,
OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR

EXPRESS WRITTEN PERMISSION OF MITSUBISHI ELECTRIC ITA.

OpenMQ
Module: gsadmin.c
Author: David Wong 10/15/95

// Include Files
#include "glib.h"
#include "gserv.h"
#include "gadmin.h"

extern 1pQEMT MQEMT;

extern 1pQSTR MQstate;
extern 1pOPSTATS MQops;
extern 1pMTLIST Pending_ TXNs;

extern int BLOCKS_PER_SEG;
extern int SEGMENT_SIZE;
extern int TOT_MSG_BLOCKS;
extern int QEMT_Size;
extern int QEMT_Seq_No;
extern int LREC_Seq_No;
extern int MAX ELMS;
extern int NUM_SEGS;
extern int shdn_flag;
extern int holey entries;

extern unsigned long QEME TS;

void QS_QAdmin (

{

1pTSTR thr_arg)

HANDLE Que File_Handle;
HANDLE OQue_State_Handle;
HANDLE hQHD, hQTL, hQEMT;
HANDLE hMQstate, hMQops, hQSHDN;
DWORD dwPointer;

DWORD dwBytesRead;

DWORD dwBytesWritten;
MSGH msgh;

1pQEME 1lpgeme;

BLAD tblad;

CHAR buffer (MAXMSGDATA] ;
BOOL Return_Status;

int done, found;

int i,cnt,status;

41

WO 98/2
8/21654 PCT/US97/20561

int geme_no;

int entry_num;

time_t temp_time;

CHAR *t0,*tl,*t2, *t3;
int *int0, *intl, *int2;
short *sh0, *shl, *sh2;
LONG Dist_to_Move;

QMSG qmsg?2;

1pMID mid;

1pQMSG qmsg;

1pQADMSEL seldat;
1pQADMSTATS lpstats;
1pQADMCTLS ctls;

1pCNTSTR cnt_ptr=NULL;
1pMLIST ml=NULL, m2=NULL, m3=NULL;
1pMID midstrl=NULL,midstr2=NULL;

Que_File_Handle = thr arg->Que_File Handle;

// Might have to fetched all locks if
// we do not assume a Quiescent state.

switch(thr arg->lpsmbuf->msgh.sub_mode)
{
case QADM REQ STATS:
lpstats = (QADMSTATS *)malloc(sizeof (QADMSTATS)) ;

strcpy(lpstats->logical _gname,thr arg-s>logical) ;
strcpy (lpstats->physical gname,thr arg-s>physical);

if (thr arg->ghandle != QUEUE_TEST_VALUE)

strcpy (lpstats->node name, SHAREDATA (hostname)) ;
lpstats->node_address = SHAREDATA (hostip) ;

lpstats->max_entries_limit = MQEMT->max_entries_limit;
lpstats->max_entries = MQEMT->max_entries;

lpstats->pending puts

MQops->pending_puts;
lpstats->pending_gets

MQops->pending_gets;

if (Check_ Queue Empty (MQEMT) == TRUE)

lpstats->committed_entries = 0;

lpstats->holey_entries = 0;

lpstats->num_free_entries = MQEMT->max_entries;
lpstats->amt_free_dspace = BLOCKS_PER_SEG*NUM_SEGS*BLOCK;

else

{

status = Find Num_Entries(&cnt_ptr) ;
lpstats-scommitted entries = cnt_ptr->committed;
if (holey_entries == 0)

lpstats->holey_entries = cnt_ptr->holey;

else lpstats->holey entries = holey_entries;

lpstats->num_free_ entries = MQEMT->max_entries-

42

WO 98/21654 PCT/US97/20561

(lpstats->committed_entries+lpstats->pending_gets+
lpstats->pending puts+lpstats->holey entries);

lpstats->amt_free_dspace =
(int) (((float)lpstats-s>num free _entries/(float)MQEMT->max_entries) *
TOT_MSG BLOCKS*BLOCK)

lpstats->gget_state
lpstats->gput_state

MQEMT->qget_state;
MQEMT->qgput_state;

lpstats->num_puts
lpstats->num_gets
lpstats->num_aborts
lpstats->num_commits

MQops->num_puts;
MQops->num_gets;
MQops->num_aborts;
MQops->num_commits;

nononon

lpstats->num restarts = MQstate->num restarts;
lpstats->first _start time = MQstate->first_start_time;
lpstats->last_restart_time = MQstate->last_restart_time;

if (thr arg->ghandle != QUEUE_TEST VALUE)
QreplyAfterListen(thr_arg- >ghandle, ADMINREP_MODE, SUB _MODE_OK,
(char *)lpstats,sizeof (QADMSTATS),0) ;

free(lpstats) ;

if (cnt_ptr (= NULL)
free(cnt_ptr);

break;

case QADM SET CONTROLS:
ctls = (1pQADMCTLS)thr arg->lpsmbuf->mdata;

// Enable/Disable QGETs and QPUTs
hQEMT = OpenMutex (SYNCHRONIZE, FALSE, QEMT_LOCK) ;
if (!hQEMT)
Diag("QS_Admin: Can't OpenMutex for QEM Table lock");
if ((status = WaitForSingleObject (hQEMT,QUE LOCK_TIMEOUT)) !=
WAIT_OBJECT_0)
Diag("QS_Admin: Synch wait for QEM Table lock failed");

if (ctls->enable gputs_flag)
MQEMT->gput_state = ENABLED;
else MQEMT->qput_state = DISABLED;

if (ctls->enable ggets flag)
MQEMT->qget state = ENABLED;
else MQEMT->gget state = DISABLED;

ReleaseMutex (hQEMT) ;

if (ctls->stats_reset_flag)

hMQops = OpenMutex (SYNCHRONIZE, FALSE,MQops_LOCK) ;
if (!'hMQops)
Diag ("QS Admin: Can't OpenMutex for MQops stats lock");
if ((status = WaitForSingleObject (hMQops,QUE_LOCK_TIMEOUT)) !=

43

WO 98/21654 PCT/US97/20561

WAIT OBJECT 0)
Diag("QS_Admin: Synch wait for MQops stats lock failed");

MQops->num_puts
MQops->num_gets
MQops->num_aborts ;
MQops->num_commits = 0;

nou

ReleaseMutex (hMQops) ;

// full reset: clear stat counters and gqueue entries
if (ctls->full reset_flag)
// Fetch all locks first.
hQHD = OpenMutex (SYNCHRONIZE, FALSE, QUE_HD PTR_LOCK) ;
if (!'hQHD)
Diag("QS_Admin: Can't OpenMutex for que head pointer lock");
if ((status = WaitForSingleObject (hQHD,QUE LOCK_TIMEOUT)) !=
WAIT OBJECT 0)
Diag ("QS_Admin: Synch wait for que head pointer lock failed");

hQTL = OpenMutex (SYNCHRONIZE, FALSE,QUE TL PTR_LOCK) ;
if (!'hQTL)
Diag ("QS_Admin: Can't OpenMutex for que tail pointer lock");
if ((status = WaitForSingleObject (hQTL,QUE_LOCK TIMEOUT)) !=
WAIT OBJECT 0)
Diag ("QS_Admin: Synch wait for que tail pointer lock failed");

hQEMT = OpenMutex (SYNCHRONIZE, FALSE, QEMT_LOCK) ;
1f£ (!'hQEMT)
Diag ("QS_Admin: Can't OpenMutex for QEM Table lock");
if ((status = WaitForSingleObject (hQEMT,QUE LOCK_TIMEOUT)) !=
WAIT_OBJECT_O0)
Diag("QS_Admin: Synch wait for QEM Table lock failed");

hQSHDN = OpenMutex(SYNCHRONIZE,FALSE,QSHDN_LOCK);
if (!'hQSHDN)
Diag("QS_Admin: Can't OpenMutex for QSHDN lock") ;
if ((status = WaitForSingleObject (hQSHDN,QUE LOCK TIMEOUT)) !=
WAIT OBJECT 0)
Diag("QS_Admin: Synch wait for QSHDN lock failed");

hMQstate = OpenMutex (SYNCHRONIZE, FALSE,MQstate_ LOCK) ;
if (!'hMQstate)
Diag ("QS_Admin: Can't OpenMutex for MQstate lock");
if ((status = WaitForSingleObject (hMQstate,QUE_LOCK_TIMEOUT)) !=
WAIT OBJECT 0)
Diag ("QS_Admin: Synch wait for MQstate lock failed") ;

hMQops = OpenMutex (SYNCHRONIZE, FALSE, MQops LOCK) ;
if (!'hMQops)
Diag("QS_Admin: Can't OpenMutex for MQops stats lock");
if ((status = WaitForSingleObject (hMQops,QUE_LOCK_TIMEOUT)) !'=
WAIT_OBJECT_0)
Diag("QS_Admin: Synch wait for MQops stats lock failed");

// Clear queue and pending txn list and

44

WO 98/21654 PCT/US97/20561

// write out initialized QEM table.
Del MTlist_All (&Pending_TXNs) ;

Init Active_LREC List();

status = Init_QEMT (MQEMT,6 MQEMT->max_entries,
MQEMT->max_entries_limit,
MQEMT - >num_segs) ;

status = Write QEMT(Que File Handle, 0, MQEMT) ;

// Reset all stat counters.

MQops->num_puts = 0;
MQops->num_gets = 0;
MQops->num_aborts = 0

MQops->num_commits, = 0
MQops->pending_puts
MQops->pending_gets

0;
0;

// Dump out queue state info.

MQstate->num_restarts = 0;
MQstate->num_recov_tries = 0;

temp_time = time(&MQstate->last_restart_time);
MQstate->last_recov_time = 0;

Que_State Handle = Open_Queue_ File(thr_arg->gstate);

dwPointer = SetFilePointer (Que_State_Handle,
0,NULL, FILE_BEGIN) ;

Return_Status = WriteFile(Que State_Handle,
MQstate,sizeof (QSTR),
&dwBytesWritten, NULL) ;

if ((Return_Status == FALSE) || (dwBytesWritten != sizeof (QSTR)))

printf ("QS_Admin: Problem writing out MQstate.\n");
printf ("BytesWritten = %d\n",dwBytesWritten) ;
if (Return_Status == FALSE)

printf ("status = FALSE\n");

Return Status = CloseHandle (Que_State_Handle) ;

QreplyAfterListen(thr_arg->ghandle, ADMINREP MODE,
SUB_MODE_OK,0,0,0) ;

ReleaseMutex (hMQops) ;
ReleaseMutex (hMQstate) ;
ReleaseMutex (hQSHDN) ;
ReleaseMutex (hQEMT) ;
ReleaseMutex (hQTL) ;
ReleaseMutex (hQHD) ;

if (ctls->shutdown_flag)

45

WO 98/21654 PCT/US97/20561

// Fetch all locks first.
hQHD = OpenMutex(SYNCHRONIZE,FALSE,QUE_HD_PTR_LOCK);
if (!'hQHD)
Diag("QS Admin: Can't OpenMutex for que head pointer lock");
if ((status = WaitForSingleObject (hQHD,QUE_LOCK_TIMEOUT)) !=
WAIT OBJECT 0)
Diag ("QS_Admin: Synch wait for que head pointer lock failed");

hQTL = OpenMutex (SYNCHRONIZE, FALSE,QUE_TL PTR_LOCK) ;
if (!'hQTL)
Diag ("QS_Admin: Can't OpenMutex for que tail pointer lock");
if ((status = WaitForSingleObject (hQTL,QUE_LOCK_TIMEOUT)) !=
WAIT_OBJECT_O0)
Diag("QS_Admin: Synch wait for que tail pointer lock failed");

hQEMT = OpenMutex(SYNCHRONIZE,FALSE,QEMT_LOCK);
if (!'hQEMT)
Diag ("QS_Admin: Can't OpenMutex for QEM Table lock");
if ((status = WaitForSingleObject (hQEMT,QUE_ LOCK TIMEOUT)) !=
WAIT OBJECT 0)
Diag ("QS_Admin: Synch wait for QEM Table lock failed");

hQSHDN = OpenMutex (SYNCHRONIZE, FALSE, QSHDN_LOCK) ;
if (!hQSHDN)
Diag ("QS_Admin: Can't OpenMutex for QSHDN lock");
if ((status = WaitForSingleObject (hQSHDN,QUE_LOCK_TIMEOUT)) !=
WAIT_OBJECT 0)
Diag("QS_Admin: Synch wait for QSHDN lock failed");

// Disable GETs/PUTs and set shutdown flag.
MQEMT->gget state = DISABLED;
MQEMT->gput_state = DISABLED;

shdn_flag = 1;

ReleaseMutex (hQSHDN) ;
ReleaseMutex (hQEMT) ;
ReleaseMutex (hQTL) ;
ReleaseMutex (hQHD) ;

break;
case QADM REQ COM DATA: // retrieve msg based on QEM entry#
case QADM REQ UNCOM DATA:
entry num = (int)*thr_arg->lpsmbuf->mdata;
found = 0;
if (Check_Queue_ Empty (MQEMT) == FALSE)
i=0;

geme_no = MQEMT->que_hd ptr;
status = Cycle_ QEME (geme_no, &lpgeme) ;

done = 0;
while (!done)

46

WO 98/21654 PCT/US97/20561

if (((chr_arg->lpsmbuf->msgh.sub_mode == QADM_REQ_COM_DATA)
&& (lpgeme->txn_state == COMMIT)) ||
((thr_arg->lpsmbuf->msgh.sub_mode == QADM_REQ UNCOM_DATA)
&& ((lpgeme->txn_state == ACTIVE) ||
(lpgeme->txn state == PENDING))))
{
if (i == entry num)
done = 1;
found = 1;
)
else if (i > entry num)
done = 1;
else if (i < entry num)
i++;

}
if (!done)

if (geme_no == MQEMT->que tl ptr)

done = 1;
else
geme_no = (geme_no+1l) %$MQEMT->max_entries;

status = Cycle QEME (geme_no, &lpgeme) ;

J
} // end while
} // end if Check_Queue_ Empty ()
if (found)
{

status = Retrieve Msg Hdr (Que File Handle, lpgeme-s>offset, &msgh) ;

tblad.segment = lpgeme->offset.segment;
tblad.block = lpgeme->offset.block+MSG_HDR_BLOCKS;

status = Retrieve Msg_Body(Que_File_Handle, tblad,msgh.size,buffer) ;
QreplyAfterListen(thr_arg-s>ghandle, ADMINREP MODE, SUB_MODE_OK,
buffer,msgh.size, &msgh) ;

else // bad queue entry number

Diag("QS_Admin: Queue Entry %d is Invalid",entry_ num);
QreplyAfterListen(thr_arg-s>ghandle, ADMINREP_MODE,0,0,0,0) ;

break;

case QADM REQ SEL DATA: // retrieve list of MIDs based on key search
seldat = (QADMSEL *)thr_arg->lpsmbuf->mdata;
t0 = (CHAR *)malloc (sizeof (QMSG)) ;

if (Check Queue Empty(MQEMT) == FALSE)

47

WO 98/21654 PCT/US97/20561

geme_no = MQEMT->que_hd_ptr;
status = Cycle_QEME (geme_no, &lpgeme) ;

ml = (MLIST *)malloc(sizeof (MLIST)) ;
ml->next = NULL;

ml->mid.host = 0;
ml->mid.tid = 0;
ml->mid.uid = 0;
m2 = ml;
done = 0;
while (!done)
found = 0;
if ((seldat->search_type == SEARCH_ALL ENT) ||
((seldat->search_type == SEARCH_COM_ENT) &&
(lpgeme->txn_state == COMMIT)) ||
((seldat->search_type == SEARCH UNCOM.ENT) &&
((lpgeme->txn_state == ACTIVE) ||
(lpgeme->txn_state == PENDING))))

Conv_Addr (&Dist_to_Move, &lpgeme->offset) ;

dwPointer = SetFilePointer (Que_ File Handle,
Dist_to_Move,
NULL, FILE BEGIN) ;

Return_Status = ReadFile(Que_File Handle,
t0,sizeof (QMSG) ,
&dwBytesRead, NULL) ;

tl = tO0;
tl += seldat->preds (0] .offset;
if (seldat->preds (0] .pred type == INT_SEARCH TYPE)
int0 = (int *)t1;
else if (seldat->preds(0].pred _type == SHORT_SEARCH_TYPE)
shO0 = (short *)t1l;

if (seldat->num_preds > 1)

t2 = t0;
t2 += seldat->preds[1l] .offset;
if (seldat->preds(l].pred_type == INT_SEARCH_TYPE)
intl = (int *)t2;
else if (seldat->preds(l] .pred_type == SHORT_ SEARCH_ TYPE)
shl = (short *)t2; :

if (seldat-s>num_preds > 2)

t3 = t0;
t3 += seldat->preds (2] .offset;
if (seldat->preds(2] .pred_type == INT_SEARCH_TYPE)
int2 = (int *)t3;
else if (seldat->preds(2].pred_type == SHORT_SEARCH_TYPE)
sh2 = (short *)t3;

48

WO 98/21654 PCT/US97/20561

switch (seldat->num_preds)

case 1:
if ((!seldat->preds[0].min_switch ||
(((seldat->preds (0] .pred type == INT_SEARCH_TYPE) &&
(*int0 >= seldat-s>preds(0] .min_int_val)) T|
((seldat->preds (0] .pred type == SHORT SEARCH TYPE) &&
(*sh0 >= seldat->preds[0].min_sh_val)) ||
((seldat->preds[0] .pred_type == STR_SEARCH TYPE) &&
(strncmp(tl,seldat->preds (0] .min_str_val,
seldat->preds (0] .min_str len) >= 0)))) &&
(tseldat->preds (0] .max_switch ||
(((seldat->preds[0] .pred_type == INT_SEARCH TYPE) &&
(*int0 <= seldat->preds[0]).max_int val)) T|
((seldat->preds (0] .pred type == " SHORT SEARCH _TYPE) &&
(*sh0 <= seldat->preds[0].max_sh val)) ||
((seldat->preds[0] .pred_type == STR_SEARCH TYPE) &&
(strncmp (tl, seldat->preds[0] .max. str val,
seldat->preds (0] max str len) <= 0)))))
found = 1;
break;
case 2:
if ((!seldat->preds[0].min switch ||
(((seldat->preds[0]. pred type == INT_SEARCH TYPE) &&
(*int0 >= seldat->preds(0].min_int_val)) T|
((seldat->preds (0] .pred type == SHORT SEARCH _TYPE) &&
(*sh0 >= seldat->preds(0]. min sh val)) ||
((seldat->preds[0] .pred_type == STR_SEARCH TYPE) &&
(strncmp (t1,seldat->preds[0) .min_str val,
seldat->preds[0] .min_str_ len) >= 0)))) &&

(!seldat->preds (0] .max_switch ||

(((seldat->preds (0] .pred _type == INT_SEARCH TYPE) &&
(*int0 <= seldat->preds(0] .max_int_val)) T|
((seldat->preds[0] .pred_type == SHORT_SEARCH TYPE) &&
(*sh0 <= seldat->preds (0] .max_sh_val)) ||
((seldat->preds (0] .pred_type == STR_SEARCH_TYPE) &&
(strncmp (tl,seldat->preds [0] .max_ str val,
seldat->preds (0] .max_str_len) <= 0)))) &&
(!seldat->preds (1] .min_switch ||
(((seldat->preds (1) .pred_type == INT_SEARCH_TYPE) &&
(*intl »>= seldat->preds[1].min_int_val)) T]
((seldat->preds (1] .pred type == SHORT_ SEARCH_TYPE) &&
(*shl >= seldat->preds(l].min_sh val))
((seldat->preds (1] .pred_type == STR_SEARCH _TYPE) &&
(

strncmp (t2,seldat->preds (1) .min_str_ val,
seldat->preds[1] .min_str_len) >= 0)))) &&

(!seldat->preds (1] .max_switch ||

(((seldat->preds(1]. pred type == INT_SEARCH TYPE) &&
(*intl <= seldat->preds(1].max_int_val)) T|
({seldat->preds (1] .pred_type == " SHORT SEARCH _TYPE) &&
(*shl <= seldat-spreds[l]).max_sh val)) |]
((seldat->preds[1] .pred_type == STR SEARCH_TYPE) &&
(strncmp (t2,seldat->preds (1] .max_str_val,

seldat->preds (1] .max_ str “len) <= 0)))))

49

WO 98/21654 PCT/US97/20561

found = 1;
break;
case 3:
if ((tseldat->preds(0].min_switch ||
((seldat->preds[0].pred_type == INT_SEARCH_TYPE) &&

(
(*int0 >= seldat->preds(0].min_int val))
((seldat->preds (0] .pred_type == " SHORT SEARCH_TYPE) &&
(*sho >= seldat->preds(0].min_sh val)) ||
(
(

((seldat->preds (0] .pred_type == STR_SEARCH_TYPE) &&
strncmp (t1,seldat->preds[0) .min_str_val,
seldat->preds (0] .min_str_len) >= 0)))) &&

(!seldat->preds (0] .max_switch ||

(((seldat->preds (0] .pred_type == INT_SEARCH_TYPE) &&
(*int0 <= seldat-s>preds[0].max_int_val))
((seldat->preds (0] .pred_type == SHORT_ SEARCH TYPE) &&
(*sh0 <= seldat->preds[0].max_sh._val)) ||
((seldat->preds (0] .pred_type == STR_SEARCH TYPE) &&
(strncmp (t1, seldat->preds (0] .max_ str val,
seldat->preds (0] .max_str len) <= 0)))) &&

(tseldat->preds (1) .min_switch ||

(((seldat->preds[l].predﬁtype == INT SEARCH TYPE) &&
(*intl >= seldat->preds(1).min_int_val)) T[]
((seldat->preds (1] .pred_type == “SHORT SEARCH TYPE) &&
(*shl >= seldat->preds(1].min_ sh _val)) ||

((seldat->preds (1) .pred_type == STR_SEARCH_TYPE) &&
(strncmp (t2, seldat->preds (1) .min_str val,
seldat->preds (1) .min_str_len) >= 0)))) &&
(tseldat->preds (1] .max_switch ||
(((seldat->preds[1) .pred_type == INT_SEARCH_TYPE) &%
(*intl <= seldat-s>preds(1l].max_int_val)) ||
((seldat->preds (1) .pred type == SHORT SEARCH _TYPE) &&
(*shl <= seldat-s>preds[1).max_sh val)) ||
((seldat->preds (1) .pred_type == STR_SEARCH_TYPE) &&
(strncmp (t2, seldat->preds (1] .max_ str _val,
seldat->preds (1] .max_str_ len) <= 0)))) &&
(1seldat->preds (2] .min_switch ||
(((seldat->preds(2) .pred_type == INT_SEARCH_TYPE) &&
(*int2 >= seldat->preds[2].min_int_val))
((seldat->preds (2] .pred_type == TSHORT SEARCH TYPE) &&
(*sh2 >= seldat-s>preds[2] .min_sh val)) ||-
((seldat->preds (2] .pred_type == STR_SEARCH_TYPE) &&
(strncmp (t3,seldat->preds (2] .min_str_val,
seldat->preds{2)] .min_str_len) >= 0)))) &&

(1seldat->preds (2] .max_switch ||

(((seldat->preds (2] .pred_type == INT_ SEARCH TYPE) &&
(*int2 <= seldat-spreds (2] .max_int_val)) T|
(({seldat->preds (2] .pred _type == “SHORT SEARCH_TYPE) &&
(*sh2 <= seldat-spreds[2].max_sh val)) ||
((seldat->preds (2] .pred type == STR_SEARCH TYPE) &&
(strncmp(t3,seldat—>preds[2] .max_ str val,

seldat->preds (2] .max_str_ “len) <= 0)))))
found =.71;
break;

S0

WO 98/21654 PCT/US97/20561

default:
break;
} // end switch
} // endif
1f (found)
{
m3 = (MLIST *)malloc(sizeof (MLIST)) ;
m3->next = NULL;
m2->next = m3;
m2 = m3;
amsg = (QMSG *)tO0;

m3->mid.host
m3->mid.tid
m3->mid.uid

gmsg->Msg_Hdr.mid.host; -
gmsg->Msg_Hdr.mid.tid;
gmsg->Msg Hdr.mid.uid;

o

——

if (geme_no == MQEMT->que_tl ptr)
aone = 1;
else
geme_no = (geme_no+l)%MQEMT->max_entries;

status = Cycle QEME(geme_ no, &lpgeme) ;
} // end while
} // end if Check_Queue Empty ()

if (ml1 != NULL)

{

m2 = ml;

ml = ml->next;
m2->next = NULL;
free (m2) ;

if (ml == NULL)

Diag("QS_Admin: No match on predicate");
QreplyAfterListen(thr_arg->ghandle, ACK_MODE, SUB_MODE_EMPTY,0,0,0) ;

else

{

cnt = 0;
m2 = ml;

while (m2 != NULL)

{

cnt++;
m2 = m2->next;

midstrl = (MID *)malloc(cnt*sizeof (MID));

91

WO 98/21654 PCT/US97/20561

m2 = ml;
midstr2 = midstrl;

while (m2 != NULL)
m2->mid. host;

m2->mid.tid;
m2->mid.uid;

midstr2-shost
midstr2->tid
midstr2->uid
m2 = m2->next;
midstr2++;

Wonon

QreplyAfterListen(thr_arg->ghandle, ADMINREP_MODE, SUB_MODE OK,
(char *)midstrl,cnt*sizeof (MID),0);
)

// free up memory to clean up memory leaks
free(t0) ;

if (midstrl != NULL)
free (midstrl) ;

while (ml1 != NULL)
m2 = ml;
ml = ml->next;
m2->next = NULL;

free (m2) ;
break;
case QADM_REQ MSG: // retrieve msg based on MID
mid = (MID *)thr arg->lpsmbuf->mdata;

status = Find_QEME (mid, &geme_no, &lpgeme) ;
if (status == QSUCCESS)
Conv_Addr (&Dist_to_Move, &lpgeme->offset) ;

dwPointer = SetFilePointer(Que File Handle,
Dist_to_Move,
NULL, FILE_BEGIN) ;

Return Status = ReadFile(Que File Handle,
&gmsg2,sizeof (QMSG) ,
&dwBytesRead, NULL) ;

QreplyAfterListen(thr_ arg->ghandle, ADMINREP MODE, SUB_MODE_OK,
gmsg2.Msg Body.text,gmsg2.Msg_Hdr.size,
&qmsg2.Msg Hdr) ;

)

else

Diag("QS_Admin: No msg with such MID");
QreplyAfterListen(thr_ arg->ghandle,ACK_MODE, SUB_MODE_EMPTY,0,0,0) ;

52

WO 98/21654 PCT/US97/20561

break;

default:
Diag ("QS_Admin: Option %d Not Valid",thr_ arg->lpsmbuf->msgh.sub _mode) ;

’

53

WO 98/21654 PCT/US97/20561

/*
* Copyright (C)1995 MITSUBISHI ELECTRIC ITA. ALL RIGHTS RESERVED.
* UNPUBLISHED -- RIGHTS RESERVED UNDER THE COPYRIGHT
* LAWS OF THE UNITED STATES. USE OF A COPYRIGHT NOTICE
* IS PRECAUTIONARY ONLY AND DOES NOT IMPLY PUBLICATION
* OR DISCLOSURE.
*
* THIS SOFTWARE CONTAINS CONFIDENTIAL INFORMATION AND
* TRADE SECRETS OF MITSUBISHI ELECTRIC ITA. USE, DISCLOSURE,
* OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR
* EXPRESS WRITTEN PERMISSION OF MITSUBISHI ELECTRIC ITA.
*
* OpenMQ
* Module: gscommit.c
* Author: David Wong 9/8/95
*/

// Include Files
#include "glib.h"
#include "gserv.h"
#include "gadmin.h"

extern 1pQEMT MQEMT;

extern 1pQSTR MQstate;
extern 1pOPSTATS MQops;
extern 1pMTLIST Pending_ TXNs;

extern int BLOCKS_PER_SEG;
extern int SEGMENT_SIZE;
extern int TOT_MSG_BLOCKS;
extern int QEMT_Size;
extern int QEMT_Seq_No;
extern int LREC_Seq_No;
extern int NUM_SEGS;
extern int MAX ELMS;

void QS _QCommit (
1pTSTR thr_arg)
{

HANDLE Que_File_Handle;
HANDLE hQEMT, hMQops;
BLAD tblad;

BOOL Return_Status;
1pMTLIST This TXN;
1pTLIST This_TXN ops;
1pSMBUF 1psmbuf;

LREC log_rec;

short mode;

int status;

int tgets=0,tputs=0;
int count=0;

Diag("Dist(%s): Termination for TID: %d from Host: %x",thr_arg->gname,
thr_arg->lpsmbuf-s>msgh.mid.tid, thr_arg->lpsmbuf->msgh.mid.host) ;

54

WO 98/21654 ' | PCT/US97/20561

/*

Diag(nn);

Diag ("MID.host
Diag ("MID.tid
Diag("MID.uid
Diag(" n) ;
print_ PTList () ;
Diag(llﬂ);

*

%¥x",thr_arg->lpsmbuf->msgh.mid.host) ;
%d",thr_arg->lpsmbuf->msgh.mid.tid) ;
%d",thr_arg->lpsmbuf->msgh.mid.uid);

lpsmbuf = thr_arg->lpsmbuf;

if (lpsmbuf->msgh.mode == COMMIT_ MODE)
mode = COMMIT;
else mode = ABORT;

Return_Status = Find_MTlist (Pending_TXNs, &This_TXN, lpsmbuf->msgh.mid) ;
if (Return_Status == FALSE)

Diag("QS_Commit: TXN %d from Host %x does not exist",
lpsmbuf->msgh.mid.tid, lpsmbuf->msgh.mid.host) ;
if (thr_ arg->ghandle != QUEUE_TEST_ VALUE)
QreplyAfterListen(thr_arg->ghandle, ACK_MODE, SUB_MODE_INV_TID,0,0,0);

else

// first, update the entries in the
// QEM Table for each op in txn
This_TXN_ops = This_TXN->ops;

while (This_TXN ops != NULL)

QS_Resolve_TXN Op(This_TXN_ops->geme_no,
&tgets, &tputs, mode) ;

This_TXN_ops = This_TXN_ops->next;
count++; ' // increment txn ops counter

// delete TID op list from pending txn list
Return_Status = Del MTlist (&Pending_TXNs, lpsmbuf->msgh.mid) ;
if (Return_Status == FALSE)
Diag("QS_Commit: error deleting TID %d from Host %d",
log_rec.mid.tid, log_rec.mid.host) ;

// then, write ABORT/COMMIT log record
Que_File_Handle = thr_arg->Que_File Handle;

hQEMT = OpenMutex (SYNCHRONIZE, FALSE, QEMT LOCK) ;
if (!hQEMT)
Diag("QS_QCommit: Can't OpenMutex for QEM Table lock");

if ((status = WaitForSingleObject (hQEMT,QUE_LOCK_TIMEOUT)) !=
WAIT_OBJECT_0)
Diag("QS_QCommit: Synch wait for QEM Table lock failed");

log_rec.marker
'status

LRMARK;
Gen_LREC_Seqg_ No(&log_rec.seq_no) ;

35

WO 98/21654 PCT/US97/20561

log_rec.mode mode ;

log_rec.flags lpsmbuf->msgh.flags;
log_rec.geme_no NIL;
log_rec.txn_state mode;

log_rec.vote mode ;

log_rec.mid.host
log_rec.mid.tid
log_rec.mid.uid
log_rec.offset.segment
log_rec.offset.block

lpsmbuf->msgh.mid.host;
lpsmbuf->msgh.mid.tid;
lpsmbuf->msgh.mid.uid;
NIL;

NIL;

Wowowononnn oo

// Fetch next available on-disk slot for log write.
if (!Get_Next BLAD(Que File Handle, LOG _WRITE, &tblad))

// queue data file is full or too fragmented.
Diag ("DiskQ(%s) is either full or too fragmented.",thr_arg-s>gname) ;
if (thr_arg->ghandle != QUEUE_TEST_ VALUE)
QreplyAfterLlsten(thr arg->ghandle, ACK_MODE,
SUB MODE FULL,0,0,0) ;

ReleaseMutex (hQEMT) ;
return;

}

status = Write_Log_Rec(Que_File_ Handle,tblad, &log_rec) ;

ReleaseMutex (hQEMT) ;

// send ACK msg back to client
if (thr_arg->qghandle != QUEUE_TEST VALUE)
QreplyAfterListen (thr _arg->ghandle, ACK_MODE, SUB MODE _OK,0,0,0);

// update RT stastical counters
hMQops = OpenMutex (SYNCHRONIZE, FALSE, MQops_LOCK) ;
if (!hMQops)
Diag("QS_QCommit: Can't OpenMutex for MQops stats lock");

if ((status = WaitForSingleObject (hMQops,QUE_LOCK_TIMEOUT)) !=
WAIT OBJECT 0)
Diag{("QS QCommit: Synch wait for MQops stats lock failed");

if (mode == ABORT)
MQops->num_aborts += count;
else MQops->num_commits += count;

MQops->pending_gets-tgets;

MQops->pending_gets
MQops->pending_puts-tputs;

MQops->pending_puts

ReleaseMutex (hMQops) ;

56

WO 98/21654 PCT/US97/20561

void QS_Resolve TXN_Op

int geme_no,
int *rgets,
int *tputs,

short mode)

1pQEME lpageme;
int status;

status = Cycle QEME (geme_no, &lpgeme) ;

// increment number of pending GET/PUT
// to decrement from MQops counter.

if (lpgem=->mode == GET_MODE)
(*tgets) ++;
else if (lpgeme->mode == PUT_MODE)

(*tputs) ++;

lpgeme->txn_state = mode;
lpgeme-s>vore = mode;

1f (mode == COMMIT)
if (lpgeme->mode == GET_MODE)
{

lpgems->txn_state = EMPTY;
lpgeme->vote = EMPTY;

1f (!Del RST_Entry(lpgeme->offset.segment, lpgeme->offset.block)
Diag ("QS_QCommit: Problem with deleting entry from reservation table", :

‘

Sort_RST_Entries(lpgeme->offset.segment);

else // ABORTed txn.
if (lpgeme->mode == PUT MODE) // aborted PUT operation
{
// set QEM entry to be a hole
lpgeme->txn_state = EMPTY;
lpgeme->vote = EMPTY;

if (!Del RST_Entry(lpgeme->offset.segment, lpgeme->ofiset.block))
Diag ("QS_QCommit: Problem with deleting entry from reservation table");

Sort_RST_Entries(lpgeme->offset.segment) ;
Fix_Que_Ptrs_on_Aborted_ Put (1lpgeme,geme_no) ;
else // aborted GET operation

{

// reset the op flag to a PUT
lpgeme->mode = PUT_MODE;

lpgeme->txn_state = COMMIT;
lpgems->vote = COMMIT;

Fix_Que_ Ptrs_on_Aborted_ Get (geme_no) ;

57

WO 98/21654 _ PCT/US97/20561

58

WO 98/21654

Userxr: root
Host: bunny
Class: bunny
Job: stdin

PCT/US97/20561

WO 98/21654 PCT/US97/20561

;;//

// Common definitions used by OpenMQ Qservers

//
[1177717777717177777777177777771777777777777777777777777771777777777777777777

// Synch objects for Queue Pointers
#define QEME_TS_GEN_LOCK "Q/QEME_TS_Gen"
#define LPG_TS_GEN_LOCK "Q/LPG_TS_Gen"
#tdefine QUE HD PTR LOCK "Q/Que Head Ptr"
#define QUE TL PTR LOCK "Q/Que “Tail Ptr"

#define QEMT LOCK "Q/QEM Table"
#define MQstate_ LOCK "Q/MQstate"

#define MQops_ LOCK "Q/MQops"

#define QSHDN_LOCK "Q/QS_Shutdown"
#define QSHDN_EVENT "Q/QS_Shutdown_Event"
// Queue server states

#define QUEUE_ACTIVE oL

#define QUEUE_SHUTDOWN 1L

// Other queue server attributes
#define QUE_LOCK_TIMEOUT 10000
#define MAX QSERV_THREADS 20

#define NIL -1L

#define FIFO oL

#define QUEUE_TEST VALUE (HANDLE)-111

// Log record attributes

#define LOG_WRITE oL
#define MSG_WRITE 1L
#define LRMARK -999
#define QEMTMARK -111

// Queue element size
// - disk block size is the larger of
// - log record or half a msg header

#define QUE_FILE_SIZE 50

#define QUE_EXTENT 0.0 // gueue file extent percentage
#define BLOCK 46 // size of a block on disk
#define MSG_HDR_BLOCKS 2 // number of blocks for msg header
#define MSG_BODY BLOCKS 177 // ceil((8192-sizeof (MSGH)) /BLOCK)
. // blocks for msg body

#define LOG_REC_BLOCKS 1 // 1 block required for log record
#define MSG_HDR_SIZE 2*BLOCK // msg header size

#define MSG_BODY SIZE 177*BLOCK // msg body size on disk

#define MSG ENTRY BLOCKS (MSG_HDR_BLOCKS+MSG_BODY_ BLOCKS+LOG_REC_BLOCKS)
#define GET_ LOG_REC_BLOCKS LOG_REC_BLOCKS; // log record for GETs
#idefine TERM LOG REC BLOCKS LOG REC BLOCKS; // ABORT/COMMOT log record
// Queue entry transactional states

#define INACTIVE oL

#define ACTIVE 1L

#define INITIAL 2L

#define PENDING 3L

#define PREPARED 4L

#define ABORT SL

#define COMMIT 6L

#define EMPTY 7L

60

WO 98/21654

// Queue server include files

#include <math.h>
#include <string.hs>

// Queue server type defs
typedef struct msgb

char text [MAXMSGDATA] ;

} MSGB, *1pMSGB;

typedef struct blad { /
int segment ; /
int block; /
} BLAD, *1pBLAD;
typedef struct geme {
int index;
unsigned long timestamp;
MID mid;
short mode ;
short priority;
short txn_state;
short vote;
int flags;
BLAD offset;
} QEME, *1pQEME;
typedef struct ptl
MID mid;
int geme_no;
} PTLIST, *1pPTLIST;
typedef struct sn {
time_t timestamp;
int counter;
} SN, *1psN;
typedef struct lrclst
int max_txns_per_seg;

int *address;
} LRCLST, *1pLRCLST;

typedef struct rstseg {
int seg_no;
int *msg_block;
} RSTSEG, *1pRSTSEG;

typedef struct rst |
int num_segs;
int msgs_per_seg;
1pRSTSEG seg ptr;

} RST, *1pRST;

typedef struct gemt

int marker;
SN gem_sn;
SN lrec_sn;

NN

PCT/US97/20561

Message body

msg block address
segment number
block offset in segment

QEM Table entry

QEM entry number

entry creation timestamp
needed to preserve order
unique msg ID

QGET/QPUT type

currently unused

TXN state

participant 2PC vote
flags for TXN/NOTXN

msg block offset on disk

NN N N NN NN NN NN NN
NN NN N NN NN

// pending TXN list on disk
// unique msg ID
// entry index in QEM Table

sequence number structure
timestamp based on time() call
counter that regenerates after each restart

NN
NN

list of active log records in segment
max number of active txns per segment
pointer to log record block values

NN
NN

// list msg block entry values in segment
// segment number
// pointer to msg block entry values

reservation table of msgs on disk
number of segments in queue data file
number of msgs in the segment

pointer to buffer of segment entries

NN
NN

// QEM Table

// QEM Table marker

// QEM sequence number

// beginning lrec timestamp in segment

61

WO 98/21654 PCT/US97/20561
int num_segs; // number of segments in datafile
int max_entries; // max number of entries on queue
int max_entries_limit; // limit on max entries value
int que_hd ptr; // QEM Table head pointer
int que_tl ptr; // QEM Table tail pointer
short gget_state; // ENABLED/DISABLED switch for GETs
short gput_state; // ENABLED/DISABLED switch for PUTs
int num_pts; // number of pending txns
BLAD next_avail block; // next available block byte offset
1pQEME geme_ptr; // pointer to QEM Table entries
1pRST rst_ptr; // pointer to reservation table
l1pPTLIST ptl ptr; // pointer to list of pending txns
} QEMT, *1pQEMT; :
typedef struct opstats | // RT operational statistics
int pending_gets; // pending gets only
int pending_puts; // pending puts only
int num_gets; // committed gets only
int num_puts; // committed puts only
int num_aborts;
int num_commits;
} OPSTATS, *1pOPSTATS;
typedef struct gstr | // used to record queue state
short svr_state; // designate clean shutdown
int num_restarts; // number of restarts
int num_recov_tries; // number of recovery attempts
time_t first_start_time; // time of fresh startup
time t last restart time; // time of last restart
time_t last recov_time; // time of last recovery attempt
} QSTR, *1pQSTR;
typedef struct msg { // Queue Msg Block on disk
MSGH Msg_Hdr; // Msg Header
MSGB Msg_Body; // Msg Body
} QMSG, *1pQMSG;
typedef struct lrec // Log Record
int marker; // log record marker
SN seq_no; // increasing sequence number
short mode; // QGET/QPUT flag
short txn_state; // TXN state
short vote; // participant 2PC vote
short dummy 1; // not used at this time
int flags; // Q_LOG|Q_TRAN flags
int geme_no; // QEM Table entry number
MID mid; // unique msg ID
BLAD offset; // msg block offset on disk
} LREC, *1pLREC;
typedef struct drec // dummy structure for retrieving
int field([11]); // records from disk at recovery
} DREC, *1pDREC;
typedef struct tstr
CHAR logical (NAMESIZE] ; // logical queue name
CHAR physical [NAMESIZE] ; // physical queue server name
CHAR gname [QUE_FILE SIZE]; // queue data file name
CHAR gstate [QUE_FILE SIZE}; // queue state file name
HANDLE Que_File_Handle; // queue datafile handle

62

WO 98/21654

1pQHANDLE ghandle;
1pSMBUF lpsmbuf;
} TSTR, *1pTSTR;

typedef struct mstr {
CHAR logical [NAMESIZE] ;
CHAR physical [NAMESIZE] ;
CHAR qname[QUE_FILE_SIZE];
CHAR qstate[QUE_FILE_SIZE];
int thr no;

} MSTR, *1pMSTR;

typedef struct tlist |
struct tlist “*next;
int geme_no;

} TLIST, *1pTLIST;

typedef struct mtlist {
struct mtlist *next;
1pTLIST ops;
MID mid;

} MTLIST, *1pMTLIST;

typedef struct cntstr
int committed;
int holey;

} CNTSTR, *1pCNTSTR;

typedef struct lpg ts {
int geme_no;
unsigned long timestamp;
} LPG_TS_STR, *1pLPG_TS_STR;

// Function prototypes.

void QS_QGet (
1pTSTR thr_arg);

void QS_QPut (
1pTSTR thr_arg);

void QS_QCommit (
1pTSTR thr_arg);

void QS_QAdmin (
1pTSTR thr arg) ;

void QRecov (
HANDLE Que_File_ Handle,
int seg_no) ;

void QR Resolve PTL(
HANDLE Que_File_ Handle) ;

void QR_Resolve_ TXN_ Op(
int geme_no,
short mode) ;

void QS_Resolve TXN_Op(

NN
NN

NN
NN

PCT/US97/20561

handle to SHM buffers
pointer to SMBUF

Structure for passing thread data
logical queue name
physical queue server
queue data file name
queue state file name
thread number

name

list of ops for a TID
chain to next entry index
entry index into QEM Table

list of pendi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>