
(19) United States
(12) Reissued Patent

Robinson
(10) Patent Number:
(45) Date of Reissued Patent:

USOORE45472E

US RE45,472 E
*Apr. 14, 2015

(54) REROUTING MEDIATO SELECTED MEDIA
APPLICATIONS

(75) Inventor: John Robinson, South Riding, VA (US)

(73) Assignee: Facebook, Inc., Menlo Park, CA (US)

(*) Notice: This patent is subject to a terminal dis
claimer.

(21) Appl. No.: 13/620,704

(22) Filed: Sep. 14, 2012
(Under 37 CFR 1.47)

Related U.S. Patent Documents

Reissue of:
(64) Patent No.: 7,797,442

Issued: Sep. 14, 2010
Appl. No.: 12/027,578
Filed: Feb. 7, 2008

U.S. Applications:
(63) Continuation of application No. 09/971,086, filed on

Oct. 5, 2001, now Pat. No. 7,343,419.

(60) Provisional application No. 60/237,697, filed on Oct.
5, 2000.

(51) Int. Cl.
G06F 15/16 (2006.01)
H04L 29/06 (2006.01)
HO)4N 7/173 (2011.01)
HO4N 7/16 (2011.01)

(52) U.S. Cl.
CPC H04L 29/06 (2013.01)

(58) Field of Classification Search
USPC 709/231, 232,217, 246; 725/86, 135,

725/136, 140, 141, 142
See application file for complete search history.

ISMIME
FILTER

REGISTEREFOR
METYPE OF

YES
530

STALISH
INSTANCE OF MIME

rtER

540

INTERNAL N

ACCSS ALTERNATEREGISTRY OF
MECA PLAYERST3BENWOKE)

FCRMEDIASTREAMS RECEIVED BY
NTERNAL INSTANC or THE

Browser BASE NIMTYPE

USEALTERNATERGISTRY TO
NITATE INSTANCE OFSRE)
MEDAPLAYER BASED ONMIME

TYPE OF DATASTREAM

880

ROUTEDATASTREAM To DESIRED,
MAPLAYER

(56) References Cited

U.S. PATENT DOCUMENTS

6,009,462 A * 12/1999 Birrell et al. TO9,206
6,035,330 A * 3/2000 Astiz et al. TO9.218
6,088,717 A * 7/2000 Reed et al. TO9,201
6,167,567 A 12/2000 Chiles et al.
6.212,574 B1 4/2001 O’Rourke et al.
6,263,363 B1* 7/2001 Rosenblatt et al. 709/217
6,292.824 B1 9, 2001 Siksa
6,314,501 B1 1 1/2001 Gulick
6,374,402 B1 * 4/2002 Schmeidler et al. 717/167

(Continued)
OTHER PUBLICATIONS

U.S. Appl. No. 09/971,086, mail date Feb. 9, 2005, Office Action.
(Continued)

Primary Examiner — David Lazaro
Assistant Examiner — Vitali Korobov
(74) Attorney, Agent, or Firm — Keller Jolley Preece

(57) ABSTRACT
A data stream may be processed using a computer system by
receiving the data stream using a browser application, detect
ing a content type of data in the data stream, temporarily
overriding a default rendering process otherwise associated
with the content type detected for the data in the data stream
by associating a particular rendering process with the data
stream based on the type of data in the data stream, and
routing the data stream to the particular rendering process.
The default rendering process may be identified in a registry
of the computer system. It may be temporarily overridden by
discriminating among internal and external instances of the
browser application used to receive the data stream, and tem
porarily overriding the default rendering process only if the
browser application is an internal instance.

22 Claims, 6 Drawing Sheets

20

RNERATA
STREAMUSINS
EFAULTRocess

550

RNRATASTREAM
USING MIME FILTER
RSSTERFOR

extRNAL BROWSER
NSTANCES

590

SINKMEDIA PLAYER CALL
ORDIMARILY GENERATED FORMIME
TYPEBY EXTERNAL INSTANCES OF

BROWSER

US RE45,472 E
Page 2

(56)

6,401,099
6,460,058
6,564,255
6,681,325
6,886,171
7,017,189
7,343,419
7,797.442

2002fO166038
2003/00371.78
2003/0202010
2005/0210412

References Cited

U.S. PATENT DOCUMENTS

6, 2002
10, 2002
5/2003
1, 2004
4, 2005
3, 2006
3, 2008
9, 2010

11, 2002
2, 2003

10, 2003
9, 2005

Koppolu et al. 1f1
Koppolu et al. ... 715.738
Mobini et al. TO9,219
Marsh et al. 713/2
MacLeod
DeMello et al. T26/26
Robinson
Robinson
MacLeod
Vessey
Kerby et al.
Matthews et al.

OTHER PUBLICATIONS

U.S. Appl. No. 09/971,086, mail date Jul 13, 2005, Office Action.
U.S. Appl. No. 09/971,086, mail date Mar. 30, 2006, Office Action.
U.S. Appl. No. 09/971,086, mail date May 11, 2007, Notice of Allow
aCC.

U.S. Appl. No. 09/971,086, mail date Oct. 17, 2007, Notice of Allow
aCC.

U.S. Appl. No. 12/027,578, mail date May 14, 2010, Notice of Allow
aCC.

* cited by examiner

U.S. Patent Apr. 14, 2015 Sheet 1 of 6 US RE45,472 E

COMPUTER

109

fC) UNIT
MEMORY

111

OPERATING
SYSTEM

APPLICATION
PROGRAM

COMMUNICATION
CARD

APPLICATION
PROGRAM

FIG. 1

US RE45,472 E Sheet 2 of 6 Apr. 14, 2015 U.S. Patent

ZOZ ZOZ ZOZ

U.S. Patent Apr. 14, 2015 Sheet 4 of 6 US RE45,472 E

410

DATA STREAM
REQUESTED BY
BROWSER

INTERNAL
INSTANCE OF
BROWSER2

DEFAULT
PROCESS FOR
DATA STREAM

RENDER DAA STREAM
USING MEDIA PLAYER
REGISTERED FOR
NTERNAL BROWSER

INSTANCES

FIG. 4

USE MIME FILTER TO CHANGE
MME TYPE PERCEIVED BY

URLMON

INITIATE INSTANCE OF
DUMMY MEDIA PLAYER TO

SINK RECUEST

ROUTE ALTERED MEDIA
STREAM TO DUMMY PLAYER

FIG. 6

U.S. Patent Apr. 14, 2015 Sheet 5 of 6 US RE45,472 E

510
520

S MIME
FILTER

REGISTERED FOR NO RENDER DATA
MIME TYPE OF STREAM USING

DEFAUL PROCESS

YES

530
ESTABLISH

INSTANCE OF MIME
FILTER

550

540

RENDER DATASTREAM
INTERNAL NO USING MIME FILTER
BROWSER
INSTANCE

REGISTERED FOR
EXTERNAL BROWSER

INSTANCES

YES

560
ACCESS ALTERNATE REGISTRY OF
MEDIA PLAYERS TO BEINVOKED

FOR MEDIA STREAMS RECEIVED BY
INTERNAL INSTANCE OF THE

BROWSER BASED ON MIME TYPE

570
USEALTERNATE REGISTRY TO
NITATE INSTANCE OF DES RED
MEDIA PLAYER BASED ON MIME

TYPE OF DATA STREAM

580 590

SNK MEDIA PLAYER CALL
ORDINARILY GENERATED FOR MIME
TYPE BY EXTERNAL INSTANCES OF

BROWSER

ROUTE DATA STREAM TO DESIRED
MEDIA PLAYER

FIG. 5

U.S. Patent Apr. 14, 2015 Sheet 6 of 6 US RE45,472 E

-4)
NON-DEFAULT BROWSER URLMON
FUNCTION FUNCTION FUNCTION

710

S THIS
AN INTERNAL

INSTANCE OF THE
BROWSER

?

NO
ADDITIONAL
ACTION

REQUIRED

NTERCEPT CALLS
INTENDED TO
CREATE BIND
CONTEXT

CREATE BIND
CONTEXT WITH
DESRED MEDIA

PLAYER
RFGSTERED FOR
TARGET MIME TYPE

USE BIND CONTEXT
REGISTERED
MEDIA PLAYER
INSTEAD OF
OPERATING
SYSTEM

REGISTERED
MEDIA PLAYER

BIND CONTEXT S
AVAILABLE TO
BROWSER

770
ROUTE DATA NITATE INSTANCE

OFALTERNATE STREAM TO
MEDIA PLAYER ALTERNATE

MEDIA PLAYER

FIG. 7

US RE45,472 E
1.

REROUTING MEDIATO SELECTED MEDIA
APPLICATIONS

Matter enclosed in heavy brackets appears in the
original patent but forms no part of this reissue specifica
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough indi
cates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica
tion Ser. No. 09/971,086, filed Oct. 5, 2001 now U.S. Pat. No.
7.343,419, and entitled “Rerouting Media to Selected Media
Applications, which claims priority from U.S. Provisional
Application No. 60/237,697, filed on Oct. 5, 2000, both of
which are incorporated herein by reference in their entirety.

TECHNICAL FIELD

The disclosure relates generally to the manipulation of
content being accessed by a computer, and more specifically
to rerouting multimedia content received by a computer hav
ing an operating system that maintains default settings for
specific data types of multimedia content.

BACKGROUND

A browser is often used to receive, process, and display
electronic media content made available through a computer
network or from the memory of a local computer. The
browser may include functionality for processing and dis
playing some types of media content to the user, but may need
to call upon and export data to external media players when
other types of media content need to be processed and dis
played to the user. The browser may access a registry of
alternate media players available for processing particular
types of media content, and certain alternate media players
may be designated as default players for certain media types.
If multiple instances of a single browser or several different
browsers are loaded, however, the media players specified by
the registry are applied to each of the browser loads.

SUMMARY

In one general aspect, a data stream may be processed
using a computer system by receiving the data stream using a
browser application, detecting a content type of data in the
data stream, temporarily overriding a default rendering pro
cess otherwise associated with the content type detected for
the data in the data stream by associating a particular render
ing process with the data stream based on the type of data in
the data stream, and routing the data stream to the particular
rendering process.

Implementations may include one or more of the following
features. For example, the data in the data stream may be a
Multipurpose Internet Mail Extension (MIME) data, which
may be received in response to a request from the browser
application.
The default rendering process may be identified in a reg

istry of the computer system. It may be temporarily overrid
den by discriminating among internal and external instances
of the browser application used to receive the data stream, and
temporarily overriding the default rendering process only if

10

15

25

30

35

40

45

50

55

60

65

2
the browser application is an internal instance. As such, the
data stream may be routed to the default rendering process if
the browser application is an external instance. The default
rendering process may be identified in a registry of the com
puter, which is Supplemented with the particular rendering
process in order to override the default rendering process if
the browser application is an internal instance. The data
stream may be processed using the temporary rendering pro
cess, which thereafter is disassociated with the type of data in
the data stream.

Furthermore, the content type may be redefined after rout
ing the data stream to prevent Subsequent processing of the
data stream by the default rendering.

In another general aspect, a data stream stored on a com
puter readable medium may be processed by receiving a data
stream using a browser application, identifying a stream type
for the data stream, and directing the data stream away from
a data process designated as a default by the computer system
based on the data type identified for the data stream.

Implementations may include one or more of the following
features. For example, the process may include determining
whether a browser is embedded as an internal instance of a
Software application, such that the data stream is directed
away from the data process designated as the default when
determined to be an internal instance. Furthermore, the data
type may be a Multipurpose Internet Mail Extensions
(MIME) data type.

In yet another general aspect, a data stream may be pro
cessed by calling a data stream using a browser running on a
computer system, detecting a first type of data associated with
the data stream called by the browser, and redefining the first
type of data as a second type of data.

Implementations may include one or more of the following
features. For example, the first and second types of data may
be Multipurpose Internet Mail Extensions (MIME) standard
types. When a MIME filter is loaded into an operating system
of the computer, the processing may include receiving noti
fication in the browser that a data stream is available for
filtering by the MIME filter, and/or activating a multimedia
Subsystem player running on the computer system to render
the data stream. In addition, the processing may include pass
ing the data stream to the player.

These general and specific aspects may be implemented
using a system, a method, or a computer program, or any
combination of systems, methods, and computer programs.
The details of one or more implementations are set forth in the
accompanying drawings and the description below. Other
features and advantages will be apparent from the description
and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram of a computer system.
FIG. 2 shows a typical graphical user interface (GUI) envi

rOnment.
FIG. 3 is a screenshot of a browser window.
FIG. 4 is a flow chart of a process for determining if a data

stream should be rendered with a desired alternate media
player.

FIG. 5 is a flow chart of a process for routing electronic
media content to a desired software application.

FIG. 6 is a flow chart of a process for sinking a data stream.
FIG. 7 is a flow chart of a process for routing electronic

media content to a desired software application.

US RE45,472 E
3

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

Referring to FIG. 1, a computer system 100 represents a
hardware setup for executing Software that allows a user to
perform tasks Such as communicating with other computer
users, accessing various computer resources, and viewing,
creating, or otherwise manipulating electronic media con
tent—that is, any combination of text, images, movies, music
or other Sounds, animations, 3D virtual worlds, and links to
other objects. The computer system 100 of FIG.1 also may be
programmed with computer-readable instructions to enable
content to be perceived (for example, viewed) without being
captured (for example, copied, saved, or printed).
The system includes various input/output (I/O) devices (for

example, mouse 103, keyboard 105, display 107) and a gen
eral purpose computer 110 having a central processor unit
(CPU) 121, an I/O unit 117 and a memory 109 that stores data
and various programs such as an operating system 111, and
one or more application programs 113. The computer system
100 also may include Some sort of communications card or
device 123 (for example, a modem or network adapter) for
exchanging data with a network 127 through a communica
tions link 125 (for example, a telephone line).
As shown in FIG.2, using network 127, a computer system

can access electronic content or other resources either stored
locally at a local client system 202 (for example, a personal or
laptop computer), remotely at one or more server systems
200, or at other client systems 202. An example of a server
system 200 is a host computer that provides subscribers with
online computer data and services such as e-mail, e-com
merce, chat rooms, Internet access, electronic newspapers
and magazines.

Users of a host computer's online services typically com
municate with one or more central server systems 200
through client software executing on their respective client
systems 202. In practice, a server system 200 typically is a
network of interconnected server computers rather than a
single monolithic entity. The servers may be physically dis
persed from each other, and each may be dedicated to its own
set of duties and/or to aparticular geographical region. Where
the server computers are physically dispersed, they may be
interconnected by a network of communication links

Each client system 202 runs client software that enables
communication with corresponding Software running on the
server system 200. The client systems 202 communicate with
the server system 200 through various channels 204 and lines
206, Such as a modem connected to a telephone line, a direct
Internet connection using a transfer protocol such as TCP/IP
(Transmission Control Protocol/Internet Protocol), a cable
modem and cable line(s), an integrated services digital net
work (ISDN), or some other transfer protocol. The server
system 200 is responsible for receiving input from the client
systems 202, manipulating the collective body of input infor
mation (and possibly information from other sources) into a
useful format, and retransmitting the formatted information
back to one or more clients 202 for output on an output device,
Such as a display screen.
A “browser is an example of client software that enables

access and viewing of electronic content stored either locally
or remotely, Such as in a network environment of intercon
nected computer systems (for example, local area network
(LAN), wide area network (WAN), intranet, Internet). A
browser typically is used for displaying documents described
in Hyper-Text Markup Language (HTML) and stored on

10

15

25

30

35

40

45

50

55

60

65

4
servers connected to a network Such as the Internet. A user
instructs a browser to access an electronic document (e.g., a
web page) by specifying a network address—or Uniform
Resource Locator (URL)—indicating the location of a
desired web page. In response, the browser contacts the cor
responding server 200 hosting the requested web page,
retrieves the one or more files that make up the web page, and
then displays the web page in a window on the user's com
puter screen.

FIG.3 is a screenshot of a browser application 300 display
ing a typical web page 302. As shown therein, a single web
page 302 may include several different files of similar or
different data types 304 (for example, text, graphics, images,
virtual worlds, sounds, and movies). The browser 300 may
display or play data content using its own internal function
ality or, if data content contained in web page 302 is a type
that cannot be displayed with the browser's internal function
ality, it may export the data content to an alternate media
player so that the data content may be processed and dis
played by the alternate media player.
Web page 302 can include links 306 pointing to other

resources (for example, other web pages or individual files)
available at the server system 200 or through the network 127.
Links 306 can take virtually any visual form. For example,
they can appear as a text string, as a graphical image, or as a
combination thereof. Each link 306 has an associated URL
pointing to a location on the network 127. When a user selects
a displayed link 306, the browser may retrieve the web page
(or other resources, such as, for example, movies or Sound
files) corresponding to the URL associated with the link auto
matically and may attempt to display and execute the elec
tronic information of the retrieved web page or resource. If
the browser cannot display and execute a data type contained
in the retrieved web page or resource with its internal func
tionality, it may export the data content to an alternate media
player application, so that the data content may be processed
and displayed by the alternate media player.
An example of a browser is Microsoft Internet ExplorerTM

(IE). IE typically may be used as a standalone application, but
it also may be used by other applications, for example, as an
ActiveXTM component to allow those applications to call
upon IE’s functionality and have IE's functionality blend in
with and appear as a component and integral part of those
applications. Some applications can embed IE functionality
using the ActiveX component to provide a web-browsing and
information display capability, but without the outward
appearance that IE presents to a user as a standalone applica
tion. For example, a Software application provided by an
Internet Service Provider (ISP) to enable its subscribers
access to the ISP's servers may use IE functionality as an
ActiveX component, but may display a non-IE graphical user
interface (GUI) to the subscriber, so that subscribers identify
the application with the ISP rather than with IE. Such an
embedded instance of IE may be referred to as an “internal
browser, as contrasted with using IE as a standalone appli
cation, in which case, IE as a standalone application may be
referred to as an “external browser.”
Whether IE is used as an internal browser or an external

browser to locate and access data from either a local or remote
location, it may be used to retrieve a stream of data. Examples
of data stream types include text, hypertext, graphics, sound
files, and multimedia. For IE to properly handle a stream of
data, IE generally receives information indicating the type of
data included in the stream, or otherwise gleans the type of
data from the stream. For this purpose, IE uses a content-type
encoding standard known as the MIME (Multipurpose Inter
net Mail Extensions) standard to specify the type of data

US RE45,472 E
5

included in the media stream. A MIME type includes a
<type/<subtype specifier. Some protocols, such as HTTP,
provide a mechanism for specifying the MIME type of a
stream. Examples include “text/html for an HTML type text
stream, “text/plain' for a plain text type stream, and “image/
jpeg forajpeg image stream. For other protocols that do not
explicitly identify the MIME type of a stream, the MIME type
of the stream may be identified using one or more diagnostic
tests or filters.
As a browser, IE can include and access built-in function

ality to reproduce or display Some types of media, Such as
HTML, plain text, and JPEG images, while including func
tionality to export those and other media types, such as Sound
files and video files, for reproduction by one or more alternate
media players, such as RealNetworks RealPlayerR) or
Microsoft Windows Media Player(R).
The MIME type associated with a data stream may be used

to determine whether the media stream should be reproduced
and displayed by the browser or whether the media stream
should instead be exported by the browser for reproduction
and display by an alternate player. IE allows for the registra
tion of media players that are capable of, and ultimately
responsible for, reproducing or displaying the media types
handled by IE internally, as well as those handled by IE
externally, so as to enable desired media players to be speci
fied for particular media types.

Specifically, a mapping from MIME type to media player
may be maintained within the operating system (OS). For
example, in the Windows(R operating system, a registry of
mappings (Windows(R registry) is maintained that associates
data stream types with media players. Under normal circum
stances, this mapping is used to resolve the appropriate media
player for an incoming data stream, whether IE is running as
an internal or external browser. Because the alternate media
player for reproducing or playing a type of data stream is
determined by the OS mapping, however, an application
using IE as an ActiveX component may modify the mapping
if media players other than those specified in the Windows.(R)
registry are desired. This modification may be performed by
changing the Windows(R registry itself, or by overriding or
supplementing the Windows(R) registry with other or addi
tional registrations. In this way, it is possible to control the
choice of media player, without modifying the Windows.(R)
registry by modifying the choice of the alternate media player
to which a data stream is directed when IE operates as an
external browser.

Referring to FIG. 4, analysis 400 of a data stream is per
formed to determine whether an alternate media player
should be called to play the data stream. After a data stream is
requested by or directed to a browser (step 410), analysis is
performed to determine whether the browser instance is inter
nal or external (step 420).

In one implementation, after the browser receives a data
stream (step 410), a MIME filter is applied to the data stream.
A MIME filter is an asynchronous pluggable protocol (APP)
that is implemented as a Component Object Model (COM)
used to implement a set of COM interfaces. The MIME filter
typically is invoked for a specified MIME type and is used to
perform some operation relative to that MIME type. In this
instance, it is used to discriminate between internal instances
and external instances of the browser, and to load temporary
Windows(R registrations for MIME types or to perform speci
fied functions for the MIME types upon the occurrence of an
internal browser instance (described later with respect to step
440).

IProtocolSink is an interface for pluggable MIME filters
that is used to receive notifications if/when data is available

10

15

25

30

35

40

45

50

55

60

65

6
for filtering. IProtocolSinkallows the APP to obtain a window
handle for the client performing the bind operation. Although
this window handle typically is used for other purposes, it can
be used to determine whether an instance of a MIME filter
originated from an internal browser by examining the class
name of the reported window handle.

If the browser is not an internal browser, the data stream
may be handled using the default process (step 430). How
ever, if the browser instance is internal, then action may be
taken to render the data stream using a media player accord
ing to mappings other than those maintained for external
instances of the browser (step 440), which media player may
or may not differ from the media player identified by the
mappings maintained for external instances (hereinafter “an
alternative media player') as described, for example, with
respect to FIGS. 5-7.

Referring to FIG. 5, a MIME filter may be used to identify
a media player to be used in rendering a data stream retrieved
or directed to an internal instance of the browser.

Specifically, the MIME type for a data stream is checked
against registrations or mappings that are maintained for
internal instances of the browser (step 510). For example,
MIME filters can be registered either permanently or tempo
rarily. Permanent MIME filters are registered within the Win
dows(R registry and tend to affect all instances of IE, unless
pre-empted by temporary MIME filters. Temporary MIME
filters are associated with a specific instance of IE and tend to
be given priority over permanent MIME filters when handling
a data stream. When multiple temporary MIME filters are
registered for a particular MIME type, the order of selection
among the multiple temporary MIME filters may be inverted
relative to the order used for their registration (e.g., the most
recently registered MIME filter is selected first), or otherwise.
In this instance, temporary MIME filters may be loaded when
an internal instance of the browser is detected/invoked and
removed when that internal instance of the browser is shut
down.

If a MIME filter is not registered for the MIME type of the
data stream, the data stream may be handled using some other
default process (step 520). If there is a temporary or perma
nent MIME filter that is registered for the data streams
MIME type, an instance of that MIME filter is established
(step 530).

Next, analysis is performed to determine whether the data
stream was requested by an internal instance of a browser
(step 540). This analysis may be performed as described
above in FIG. 4. If the data stream was not requested by an
instance of an internal browser, additional action may not be
required and the default media player may be called to render
the data (step 550).

If the data stream was requested by an instance of an
internal browser, the registry structure is modified to include
registrations of media players appropriate for internal
instances of the browser or some other list of alternate media
player registrations is accessed, and that modified or alternate
registry is analyzed to determine which media player is reg
istered for the MIME type (step 560). Then, an instance of an
appropriate alternate media player is established (step 570)
and the data stream is routed for rendering to the alternate
media player (step 580). Absent further processing, after the
media stream is rendered, the MIME filter returns the data
stream to URLMON. Therefore, to prevent invocation of a
second media player according to the modified Windows.(R)
registry, it may be desirable or necessary to sink the data
stream (step 590).

FIG. 6 illustrates one implementation for sinking a call for
a default media player ordinarily generated for data streams

US RE45,472 E
7

of similar MIME type by external instances of a browser (step
590). In this implementation, the MIME filter changes the
MIME type of the data stream returned to URLMON to a
predetermined MIME type (step 610) for which no media
player or a dummy media player has been registered. As a
result, when the browser detects the altered MIME type in the
data stream, the browser will initiate either no media player or
an instance of this dummy media player, as appropriate (step
620). Then, to complete the data sink, the modified data
stream is routed to this dummy media player, which receives
the data stream and either discards the data stream or per
forms some trivial or background function on the data stream.

Referring to FIG.7, a data stream also can be directed to an
alternate media player using an API hooking approach. This
alternate approach provides a similar result to the procedure
described above in FIGS. 5 and 6. However, using this
approach, it may be possible to eliminate the step of sinking
the data stream returned to an internal browser.

Similar to steps 420 and 540 described above, the instance
of the browser is analyzed to determine whether it is an
internal browser or an external browser (step 710). If the
browser is not an internal browser, no additional action is
required and the browser will function according to default
settings (step 720).

If the browser is an internal browser, then calls used to
initiate the creation of a default bind context that is ordinarily
created for each invocation of a browser are intercepted (step
730), preferably before the browser can create the bind con
text necessary to invoke the browser. More specifically, the
bind context is an object typically used to hold information
useful in overriding default information registered with the
operating system. Since a bind context ordinary is created for
each invocation of a browser, any override of default infor
mation is used only for the current transaction.

Specific calls typically are used for bind context creation.
For example, calls to CreateBindCtX or Create Asynch3indCtx
may be intercepted because they are used to create a bind
context via OLE32 or URLMON, respectfully. This typically
is referred to as ImportAddress Table (IAT) hooking. The IAT
is a special section within the Portable Executable (PE) file
format that is used to dispatch calls to imported functions
located within other modules. Functions that are imported for
use from other Dynamic Link Library (DLL) modules are not
called directly by the importing DLL or module, but rather are
called indirectly through a dispatch table of function pointers.
Thus, using this method, calls to imported functions may be
intercepted by manipulating the function pointers within a
dispatch table rather than calling the function directly. In this
implementation, the intercepted call may be used to provide a
pointer, IBindCtx, to the bind context that can be used later.

After the bind context is created, the alternate media player
is registered in the bind context (step 740). A pointer to the
bind context may be required for this registration. The
IBindCtX pointer (e.g., acquired during step 730) can be used
for this purpose. Additionally, the IBindCtX pointer can be
passed as a parameter to the function call RegisterMedi
aTypeClass to register the alternate media player.
The bind context is now available to the browser (step 750).

The browser uses settings from the bind context to override
the default media player registration with the alternate media
player. As a result, the browser calls the alternate media
player to render the data stream instead of the default media
player (step 760).
The browser then initiates an instance of the alternate

media player (step 770) and the data stream is routed to it for
rendering (step 780).

10

15

25

30

35

40

45

50

55

60

65

8
A number of implementations have been described. Nev

ertheless, it will be understood that various modifications
may be made which are within the scope of the following
claims. For instance, in the process shown by FIG. 5, it is
possible to rearrange the order of processing Such that a
pre-screening is performed to identify internal instances of
browser at the outset (step 540), rather than after a compari
son of the MIME type to stored MIME filters.
What is claimed is:
1. A method for temporarily overriding a default rendering

process associated with a data stream comprising:
receiving a data stream using a browser running on a com

puter system;
detecting an original Multipurpose Internet Mail Exten

sion (MIME) type of the data stream called by the
browser;

determining whether the browser is invoked within an
application environment of an internet service provider
to enable a subscriber of the internet service provider to
access an online resource

if it is determined that the browser is invoked within the
application environment of the internet service pro
vider changing the original MIME type of the data
stream to a different MIME type, wherein the original
MIME type associates the data stream with a first ren
dering process identified in a registry of the computer
system and the different MIME type associates the data
stream with a second rendering process identified in the
registry of the computer system; and

temporarily overriding the a default rending rendering
process identified in the registry of the computer by
handling the data stream with the second rendering pro
cess based on the different MIME type of the data stream
and thereby temporarily overriding the default rendering
process.

2. The method of claim 1 wherein the data stream is
received in response to the request from the browser.

3. The method of claim 1 further comprising loading a
MIME filter into an operating system of the computer system.

4. The method of claim 3 further comprising receiving
notification in the browser that the data stream is available for
filtering by the MIME filter.

5. The method of claim 3 further comprising activating a
multimedia Subsystem player running on the computer sys
tem to render the data stream.

6. The method of claim 5 further comprising passing the
data stream to the multimedia Subsystem player.

7. The method of claim 1 further comprising routing the
data stream to the default rendering process if the browser is
determined to have been invoked outside the application envi
ronment of the internet service provider

8. A method comprising:
calling a data stream using a browser running on a com

puter system,
detecting an Original Multipurpose Internet Mail Exten

Sion (MIME) type of the data stream called by the
browser,

changing the original MIME type of the data stream to a
different MIME type, wherein the original MIME type
associates the data stream with a first rendering process
identified in a registry of the computer system and the
different MIME type associates the data stream with a
second rendering process identified in the registry of the
computer system, and

temporarily overriding a default rendering process identi
fied in the registry of the computer by handling the data
stream with the second rendering process based on the

US RE45,472 E
9

different MIME type of the data stream and thereby
temporarily overriding the default rendering process.

9. The method of claim 8 further comprising loading a
MIME filter into an operating system of the computer system.

10. The method of claim 9 further comprising receiving
notification in the browser that the data stream is available
for filtering by the MIME filter.

11. The method of claim 9 filrther comprising activating a
multimedia subsystem player running on the computer system
to render the data stream.

12. The method of claim 11 filrther comprising passing the
data stream to the multimedia subsystem player.

13. The method of claim 8, wherein the registry comprises
a registry of available media players.

14. The method of claim 8, wherein the registry comprises
a Windows registry.

15. The method of claim 8, wherein the registry comprises
an association of MIME types with rendering processes.

16. A non-transitory computer program, stored on a com
puter readable medium, comprising instructions for:

calling a data stream using a browser running on a com
puter system,

detecting an Original Multipurpose Internet Mail Exten
Sion (MIME) type of the data stream called by the
browser,

changing the Original MIME type of the data stream to a
different MIME type, wherein the original MIME type
associates the data stream with a first rendering process
of the computer system and the different MIME type

10
associates the data stream with a second rendering pro
cess identified in the registry of the computer system,
and

temporarily overriding a default rendering process identi
fied in the registry of the computer by handling the data
stream with the second rendering process based on the
different MIME type of the data stream and thereby
temporarily overriding the default rendering process.

17. The non-transitory computer program of claim 16,
O fiurther comprising instructions for loading a MIME filter into

an operating system of the computer system.
18. The non-transitory computer program of claim 17,

fiurther comprising instructions for receiving notification in
the browser that the data stream is available for filtering by
the MIME filter.

19. The non-transitory computer program of claim 17,
fiurther comprising instructions for activating a multimedia
subsystem player running on the computer system to render
the data stream.

20. The non-transitory computer program of claim 19,
20 filrther comprising instructions for passing the data stream to

the multimedia subsystem player:
21. The non-transitory computer program of claim 16,

wherein the registry comprises a registry of available media
players.

22. The non-transitory computer program of claim 16,
wherein the registry comprises a Windows registry.

23. The non-transitory computer program of claim 16,
wherein the registry comprises an association of MIME types
with rendering processes.

k k k k k

