(54) Titre : PAIN DE DETERGENT SYNTHETIQUE
(54) Title: SYNTHETIC DETERGENT BARS

(57) Abrégé/Abstract:
The present invention relates to synthetic detergent bars comprising 10-60 % by wt. synthetic detergent surfactant; 10-60 % of a water-soluble structurant of melting point between 40 to 100 °C; and 5-50 % by wt. of a water-insoluble structurant of melting point between 40-100 °C. It has been found that addition of water-soluble starches yields processing and composition advantages.
PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:
C11D 17/00, 3/37, 3/20, 3/22

A1

(21) International Application Number:
PCT/EP96/00917

(22) International Filing Date:
1 March 1996 (01.03.96)

(30) Priority Data:
08/408,679 22 March 1995 (22.03.95) US

(71) Applicant (for AU BB CA GB IE KE LK LS MN MW NZ SD SG SZ TT UG only): UNILEVER PLC [GB/GB]; Unilever House, Blackfriars, London EC4P 4BQ (GB).

(71) Applicant (for all designated States except AU BB CA GB IE KE LK LS MN MW NZ SD SG SZ TT UG): UNILEVER N.V. [NL/NL]; Weena 455, NL-3013 AL Rotterdam (NL).

(72) Inventors: MASSARO, Michael; 39 Dover Road, Congers, NY 10920 (US). FARRELL, Terrence; 56 68th Street, Guttenberg, NJ 07093 (US). RATTINGER, Gail, Beth; 315 Edgewood Avenue, Teaneck, NY 07666 (US). PETKO, Michael; 247 Rich Avenue, Mount Vernon, NY 10552 (US).

(74) Agent: BRYANT, Tracey; Unilever plc, Patent Division, Colworth House, Shamrock, Bedford MK44 1LQ (GB).

(11) International Publication Number:
WO 96/29388

(43) International Publication Date:
26 September 1996 (26.09.96)


Published
With international search report.

(54) Title: SYNTHETIC DETERGENT BARS

(57) Abstract

The present invention relates to synthetic detergent bars comprising 10-60 % by wt. synthetic detergent surfactant; 10-60 % of a water-soluble structurant of melting point between 40 to 100 °C; and 5-50 % by wt. of a water-insoluble structurant of melting point between 40-100 °C. It has been found that addition of water-soluble starches yields processing and composition advantages.
SYNTHETIC DETERGENT BARS

FIELD OF THE INVENTION

The present invention relates to synthetic detergent bar compositions. In particular, the invention relates to bar compositions comprising specific water-soluble starches which unexpectedly have been found to provide superior bar properties (i.e., non-gritty surfaces when wetted under user conditions).

BACKGROUND OF THE INVENTION

Washing bars can be classified into three categories: (1) soap bars; (2) mixed active bars containing a significant proportion of soap; and (3) synthetic detergent bars containing only a small proportion of soap or none at all.

Conventional soap bars comprise a large proportion, typically 60-80% by weight, of a fatty acid soap. Fatty acid soaps are selected to provide a balance of soluble and insoluble soaps which provide the required functional properties as regards lather formation and bar structure. Conventional soap bars are manufactured by milling, plodding and stamping a semi-solid mass of soap and other components.

Bars known which contain a mixture of soap and synthetic detergent where the amount of soap may be less than the amount of synthetic detergent, but is nevertheless still a significant contributor to the content of the bar. In such bars, as in conventional soap bars, the content of soap, especially the insoluble soap, contributes to the structure and physical properties of the bar.
The third category is synthetic detergent bars, often known as "Syndet" bars, in which there is little or no soap and the detergent active is mostly or wholly a synthetic, non-soap, detergent. Generally such bars contain a substantial proportion of material which is not a detergent, but which serves to give structure to the bar. Such "structurants" are normal water-insoluble and include such materials as starch and kaolin. The bars frequently also contain a plasticizer: known plasticizers include stearic acid and cetyl alcohol. Known surfactants for syndet bars include primary alkyl sulphates, alkyl ether sulphates, betaines, sarcosinates, sulphonates and isethionates.

These syndet bars, containing no soap or only a small proportion of soap, are traditionally produced by energetic working of a physical mix of structurant (e.g., starch), plasticizer (e.g. stearic acid) and surfactant (e.g., acyl isethionate), i.e., both the soluble and insoluble components, in a high shear mixer to an end point at which the product is not gritty. The mix is then formed into 'syndet' bars.

The known process has several disadvantages in that the physical mixing step is performed batchwise and requires an energetic mixer.

In International Patent Application No. WO 94/21778 the known energetic working step was dispensed with by using a specific combination of ingredients comprising:

(a) 10-60 by wt. of a synthetic non-soap surfactant (e.g., isethionate or SLES);

(b) 10-60% by wt. of a water-soluble structurant having a melting point in the range of 40-100°C (e.g.,
polyethylene glycol);

(c) 5-50% by wt. of a water insoluble structurant having a melting point of 40-100°C by. wt.

(d) 0-20% by wt. water.

According to this reference water-insoluble structurant (component (c)) having a melting point above 100°C may also be used (i.e., to strengthen the bar and reduce smearing) but that it should comprise, if used at all, no more than 20% by wt. of the composition. Starches are one of the materials mentioned for possible use and it is noted that corn starches, for example, are preferred.

Unexpectedly, applicants have found not only that such starch materials are required (i.e., to increase mixer viscosity and billet hardness), but that not all starches are equal. That is, applicants have recognized that the starch must not be just a "partially soluble" material such as corn starch or potato starch but that it must be a "true" water-soluble material such as, for example, maltodextrin in order to obtain user benefits (i.e., smoother, non-grittier surface).

By "true" water-soluble is meant the starch should dissolve to a clear or a hazy/clear solution at 10% by wt. or greater of the starch in water at room temperature (in contrast to other starches such as corn or potato starch which, at room temperature, swell, but which do not dissolve).

U.S. Patent No. 2,987,484 to Lundberg, teaches a bar made by a closed die molding technique which bar comprises:

(1) about 35% to 70% of a normally solid, water-soluble, anionic synthetic surfactant; and

(2) about 22% to 50% normally solid fatty vehicle with melting point between 48.9°C (120°F) and 104.4°C
(220°F) selected from a group including higher fatty acids (e.g., stearic) and ethylene glycol.

In Lundberg, polyethylene glycol (PEG) is not used at all as a water-soluble structurant (only ethylene or di-ethylene glycol). Although used as additives (additives are used up to about 10% by wt according to column 12, line 72 and either 5% or 9.3% by wt in the Examples), they are not ordinarily used in an amount 10 to 60% as in the present invention.

Lundberg is not concerned with the problem of energetic mixing (since it is a closed die molding technique) and simply does not recognize the advantage of using the water soluble structurants (e.g., PEG) of the invention in the amounts required. Further, Lundberg certainly does not teach or suggest that use of particular types of starches are also required or that some starches are better than others.

U.S. Patent No. 5,225,097 to Kacher et al. teaches skin pH freezer bars comprising (1) 10 to 50% free fatty acids; (2) 15 to 65% of an anionic and/or nonionic bar firmness aid which may include PEG; and (3) 15 to 40% water; wherein the pH is about 4.8 to 6.0.

The bars of the present invention cannot contain this amount of water because the bars would simply become too soft to process. The bars of the invention cannot have more than 14%, preferably not more than 10% by wt water.

The reference also clearly does not appreciate the need of added starch, nor that some starches are superior to others (i.e., the starches must be "truly" water soluble).
The unique combination of ingredients of the invention yielded a bar which is firmly structured and yet has a smooth non-gritty surface without excessive smear properties.

BRIEF SUMMARY OF THE INVENTION

The present invention provides a detergent composition which is, or can be shaped into, a synthetic detergent bar, the composition comprising:

(a) 10-60% by weight of a synthetic, non-soap detergent;
(b) 20-60% by weight of a water soluble structurant which has a melting point in the range 40-100°C and which is selected from the group consisting of one or a mixture of polyalkylene oxides having a molecular weight in the range of 1,500 to 10,000; and block copolymers of polyethylene oxide and propylene oxide;
(c) 5-50% by weight of a water-insoluble structurant which has a melting point in the range 40-100°C and which is a fatty acid having a carbon chain length of 12 to 24 carbons;
(d) 1 to 25% of a water soluble starch; and
(e) 1-14% by weight water; wherein 10% or greater of said water soluble starch will dissolve in water to form a clear or translucent solution.

Water-soluble is defined as dissolving to a substantially clear solution (except for small amounts of insoluble residue which may impart a translucent haziness to the otherwise clear solution) at a level of at least 10% by wt. starch in water (i.e., at least 1 part in 10 should be soluble).

Suitable synthetic detergents (a) are: alkyl ether sulphates; alkylethoxylates; alkylethoxycarboxylates; alkyl glycerol ether sulphonates; alpha olefin sulphonates; acyl taurides; methyl acyl taurates; N-acyl glutamates; acyl isethionates; anionic acyl sarcosinates; alkyl phosphates; methyl glucose esters; protein condensates; ethoxylated alkyl sulphates; alkyl polyglucosides; alkyl amine oxides; betaines;
sultaines; alkyl sulphosuccinates, dialkyl sulphosuccinates, acyl lactylates and mixtures thereof. The above-mentioned detergents are preferably those based upon C₆ to C₃₄, more preferably those based upon C₁₀ to C₁₄, alkyl and acyl moieties.

For many embodiments of this invention, the amount of synthetic detergent (a) may preferably lie in the range from 10 to 40% wt, most preferably 10 to 35% by wt.

The water-soluble structurant (b) is required to melt in the temperature range from 40°C to 100°C so that it can be melted to form the bar composition but will be in a solid state at temperatures at which the bar will be used. Preferably it has a melting point of at least 50°C to 90°C.

Materials which are envisaged as the water-soluble structurant (b) are moderately high molecular weight polyalkylene oxides of appropriate melting point and in particular polyethylene glycols or mixtures thereof.

Polyethylene glycols (PEG's) which are used may have a molecular weight in the range 1,500-10,000. However, in some embodiments of this invention it is preferred to include a fairly small quantity of polyethylene glycol with a molecular weight in the range from 50,000 to 500,000, especially molecular weights of around 100,000. Such polyethylene glycols have been found to improve the wear rate of the bars. It is believed that this is because their long polymer chains remain entangled even when the bar composition is wetted during use.

If such high molecular weight polyethylene glycols (or any other water soluble high molecular weight polyalkylene oxides) are used, the quantity is preferably from 1% to 5%,
more preferably from 1% or 1.5% to 4% or 4.5% by weight of the composition. These materials will generally be used jointly with a larger quantity of other water-soluble structurant (b) such as the above mentioned polyethylene glycol of molecular weight 1,500 to 10,000.

Some polyethylene oxide polypropylene oxide block copolymers melt at temperatures in the required range of 40 to 100°C and may be used as part or all of the water soluble structurant (b). Preferred here are block copolymers in which polyethylene oxide provides at least 40% by weight of the block copolymer. Such block copolymers may be used, in mixtures with polyethylene glycol or other water soluble structurant.

Preferably the total quantity of water-soluble structurant (b) is from 20% to 50% by weight of the composition.

The water-insoluble structurants (c) are also required to have a melting point in the range 40-100°C, more preferably at least 50°C, notably 50°C to 90°C. Suitable materials which are particularly envisaged are fatty acids, particularly those having a carbon chain of 12 to 24 carbon atoms. Examples are lauric, myristic, palmitic, stearic, arachidonic, behenic acids and mixtures thereof. Sources of these fatty acids are coconut, topped coconut, palm, palm kernel, babassu and tallow fatty acids and partially or fully hardened fatty acids or distilled fatty acids. Other suitable water insoluble structurants include alkanols of 8 to 20 carbon atoms, particularly cetyl alcohol. These materials generally have a water solubility of less than 5g/litre at 20°C.

The relative proportions of the water-soluble structurants (b) and water insoluble structurants (c) govern the rate at
which the bar wears during use. The presence of the water insoluble structurant tends to delay dissolution of the bar when exposed to water during use and hence retard the rate of wear.

5

Preferably the total quantity of component (c) is from 10% to 40% by weight of the composition.

10

The present invention differs from WO 94/21778 in that the subject invention requires at least some material which does not melt below 100°C to function as additional bar structurant. This material i.e. the water-soluble starch is present in an amount of at least 1% to 25% by wt. of the composition, preferably 5 to 15% by wt.

15

This material must be a "true" water-soluble material and, as such, does not include partially soluble starches such as the corn or potato starches, but instead the fully soluble starches, such as maltodextrin.

20

By water-soluble is meant that a 10% by wt. or greater solution of the starch in water will dissolve to form a clear or substantially clear solution (except for small amounts of insoluble residue which may impart a translucent haziness to the otherwise clear solution).

25

Water is present in an amount of 1 to 14% by wt.

The ratio of water-soluble structurant (b) to the total of water insoluble structurants may possibly lie in a range from 2:3 or 1:1 up to 3:1 or 5:1.

30

Some soap, that is to say salts of monocarboxylic fatty acids having chain lengths of 8 to 22 carbon atoms may be included
in the bar compositions of this invention. The amount is desirably not greater than 10% by weight of the composition.

We have found that if water-insoluble soap is included, it is advantageous in reducing the wear rate of the bars. Such water-insoluble soaps are salts of saturated fatty acids having chain lengths of 16 to 22 carbon atoms, especially 16 to 18. Preferably these salts are sodium salts.

If water-insoluble soap is present in the composition, the amount of it desirably does not exceed 10% by wt of the composition, for example lying in a range from 3% to 9.5% by wt, more preferably 5% to 9% by wt.

Materials which may be included, but which do not melt at temperatures below 100°C can be classified as: non soap synthetic detergent which does not completely liquify at temperatures below 100°C, for example acyl isethionates; soap, especially water-insoluble soap, which does not melt below 100°C; and other water-insoluble materials which do not melt below 100°C.

All percentages mentioned are by weight unless otherwise noted.

The following examples are meant for illustrative purposes only and are not intended to limit the claims in any way.

EXAMPLE 1

The following two formulations were fielded in consumer tests. Consumers (approx. 20) used each bar for two weeks and then offered their assessments in focus groups. The first bar (Bar A) contained insoluble potato starch. Consumer readily reported an unpleasant feeling of drag
across the surface of the wetted bar, which was due to the presence of insoluble, swollen starch particulates. These starch particulates in the lather were clearly visible under the microscope. The second bar (Bar B) contained the fully soluble maltodextrin. Consumers did not detect any indication of drag or grit on the surface of the wetted bars. No starch particulates were visible in the lather under the microscope. In a later, larger test involving 150 consumers, no drag or grit was detected from Bar B.

<table>
<thead>
<tr>
<th>Component</th>
<th>Bar A</th>
<th>Bar B</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEG 8000</td>
<td>39.46</td>
<td>35.00</td>
</tr>
<tr>
<td>Na cocoyl isethionate</td>
<td>27.00</td>
<td>27.00</td>
</tr>
<tr>
<td>Palmitic-stearic acid</td>
<td>8.58</td>
<td>9.00</td>
</tr>
<tr>
<td>Coco amidopropyl betaine</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Potato starch</td>
<td>10.00</td>
<td>-</td>
</tr>
<tr>
<td>Maltodextrin</td>
<td>-</td>
<td>10.00</td>
</tr>
<tr>
<td>Na stearate</td>
<td>-</td>
<td>5.00</td>
</tr>
<tr>
<td>Dimethicone</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>EHDP</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>EDTA</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Fragrance</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Titanium dioxide</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Misc. salts</td>
<td>2.92</td>
<td>1.96</td>
</tr>
<tr>
<td>Water</td>
<td>6.00</td>
<td>6.00</td>
</tr>
</tbody>
</table>

These tests clearly show that, in a bar where the primary difference was the difference in starch used, use of a water soluble starch such as maltodextrin rather than a starch like potato starch unexpectedly provided tremendous advantages in the consumer perception of "grittiness" or drag.
CLAIMS

1. A detergent composition which is, or can be shaped into, a synthetic detergent bar, the composition comprising:

(a) 10-60% by weight of a synthetic, non-soap detergent;

(b) 20-60% by weight of a water soluble structurant which has a melting point in the range 40-100°C and which is selected from the group consisting of one or a mixture of polyalkylene oxides having a molecular weight in the range of 1,500 to 10,000; and block copolymers of polyethylene oxide and propylene oxide;

(c) 5-50% by weight of a water-insoluble structurant which has a melting point in the range 40-100°C and which is a fatty acid having a carbon chain length of 12 to 24 carbons;

(d) 1 to 25% of a water soluble starch; and

(e) 1-14% by weight water;

wherein 10% or greater of said water soluble starch will dissolve in water to form a clear or translucent solution.
2. A composition according to claim 1, which comprises 10-40% by wt. non-soap detergent.

3. A composition according to claim 1, which comprises 20-50% by wt. water soluble structurant (b).

4. A composition according to claim 1, which comprises 5 to 15% by wt. water soluble starch (d).