This invention relates to a combination bubbler and glass filler for use in dispensing drinking water from a refrigerator and by means of which the drinking water can be taken into the mouth directly from the bubbler from whence it flows in an upward stream, or by means of which the stream can be diverted into a downward flow of water in a manner capable of being caught in a glass or other receptacle.

With water coolers in use at the present time, more or less difficulty is experienced in filling any type of container on account of the proximity of the drainage basin to the dispensing outlets of the devices. It is desirable to place the drainage basin sufficiently close to the discharge outlet to satisfactorily catch overflow. This arrangement ordinarily does not permit the placing of a receptacle of any size in position to be filled.

It is an object of the present invention to provide a bubbler from which water can be taken directly into the mouth and to provide a drinking spout or gooseneck alternately usable with the bubbler and swingable from an inoperative bubbler unobstructing position to an operative flow diverting position which serves to divert the flow from the bubbler through the receptacle filling spout.

Other objects and advantages will be apparent from the following description taken in connection with the accompanying drawing, wherein:

Fig. 1 is a vertical section illustrating one application of the invention with the glass filler in inoperative position;

Fig. 2, a section on the line 2—2 of Fig. 1;

Fig. 3, a section on the line 3—3 of Fig. 1;

Fig. 4, a view similar to Fig. 1 with the glass filler in inoperative position; and

Fig. 5, a section on the line 5—5 of Fig. 4.

Referring to the drawing, a bubbler body 10 is provided with a threaded opening 11 for the attachment of a pipe (not shown) through which water is discharged from a water cooler. The body 10 is provided with a bubbler discharge nozzle 12 by means of which the stream of water is directed upwardly through the bubbler.

Between the threaded opening 11 and the bubbler discharge nozzle 12 is provided a chamber 13 in which is mounted a rotary plug or valve body 14. The valve chamber 13 and valve body 14 are tapered in order to provide a tight fit when the valve is moved axially in the valve chamber and in order to maintain this tight seat and yet permit the valve to be easily rotated a spring 15 is provided.

The bubbler body 10 is provided with a passage 16 which connects the threaded opening 11 and the chamber 13 and when the ports are in the position shown in Fig. 1, a port 17 in the valve body provides communication into the interior chamber 18 of the valve body 14 fixed to the hollow valve body 14 and serves as a rotating means therefor, the amount of rotation of which valve body being determined by a lug 14 in a semicircular recess 20. Pressure of the spring 15 binds the parts together.

The spring 15 is confined between a cap 20 and the upper end of the valve, said cap being secured in position by screws or other fastening means 21. The cap is further provided with a guard 22 for preventing contact of the lips or other parts of the person drinking with the bubbler nozzle. The cap 20 may be provided with a recess 23 for receiving the spring 15 if desired.

The bubbler nozzle 24 may be further provided with an auxiliary tip or nozzle 24, having orifices 25, so that water cannot be sprayed upon bystanders by obstructing the end of the nozzle. The valve 14 is chambered for the major portion of its circumference as at 26, the outer rim of the passage 17 forming a straight line with the upper portion of the valve body which closes the passage through the bubbler nozzle. The reason for this relatively large chamber or recess 28 which extends over the major portion of the circumference of the valve body is in order that at no time will the outlet from the cooling tank be closed whereby, should the controls fail to function properly and the water begin to freeze in the cooling tank, water displaced by the forming ice would have a free opening to discharge to the waste and consequently prevent bursting of the cooling tank.

Therefore, the circumferential recess in the valve body is extended sufficiently far so that the land on the body between this body and the recess and the port opening to the gooseneck is narrower than the width of the port 16, so that in making the change-over from the bubbler to the gooseneck, or vice versa, there is a point in the revolution of the valve body where both ports are connected. At the same time ports 16 and 17 are kept to a minimum width or diameter, in order that the connection to the gooseneck will not be made until the gooseneck is over the rim of the drain basin. It will be readily understood, therefore, that when the glass filler, or gooseneck 18, is in the position shown in Fig. 1, a glass or vessel may be filled. In the opposite
position shown in Fig. 4 the goose neck is in inoperative position and the bubbler is therefore usable.

It will be apparent to those skilled in the art that various other changes may be made in the construction and arrangement without departing from the spirit of the invention, and therefore the invention is not limited to that which is described in the specification and shown in the drawing, but only as indicated in the appended claim.

What is claimed is:

A combination bubbler and glass filler comprising a bubbler body having an inlet, an upwardly directed bubbler discharge passage and a chamber, a hollow valve body rotatably mounted in said chamber, constructed to direct liquid flow from said inlet alternatively to said bubbler discharge passage and to the interior of said valve body, a goose neck glass filler having its inlet end secured in communication with the interior of said valve body, said valve body being provided with a chamber extending substantially around the major portion of the same and having a passage from the interior through the unchambered portion, movable upon rotation of said valve body into or out of registration with said inlet, the relative circumferential extent of said inlet and chamber being such that an open discharge passage through the device will be provided at all times regardless of the relative positions of the parts.

JAMES M. CLARKE.