WO 20047027551 A2 ||| 080 0000 R A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date
1 April 2004 (01.04.2004)

AT Y00

(10) International Publication Number

WO 2004/027551 A2

(51) International Patent Classification’: GOOF (81)
(21) International Application Number:
PCT/US2003/028571
(22) International Filing Date:
11 September 2003 (11.09.2003)
(25) Filing Language: English
(26) Publication Language: English
(84)

(30) Priority Data:

10/251,317 19 September 2002 (19.09.2002) US

(71) Applicant: TRIPWIRE INC. [US/US]; 326 S.W. Broad-

way, Third Floor, Portland, OR 97205 (US).

(72) Inventors: GOOD, Thomas, E.; 5455 SW Ames Way,
Portland, OR 97223 (US). DIFALCO, Robert, A.; 2303
SE Tamarack Avenue, Portland, OR 97214 (US). KIM,
Gene, Ho; 1734 SW Vista Venue, Portland, OR 97201

Us).

(74) Agents: KLINDTWORTH, Jason, K. et al.; Schwabe,
Williamson & Wyatt, PC, Pacwest Center, Suites 1600-

1900, 1211 SW Fifth Avenue, Portland, OR 97204 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC,
SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, UZ, VC, VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii)) for all designations

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii)) for all designations

[Continued on next page]

(54) Title: COMPUTING APPARATUS WITH AUTOMATIC INTEGRITY REFERENCE GENERATION AND MAINTE-

NANCE

102

S
v

Software Product

- Components ~110
Q1 00 <10(-:.
104 \ Instalier File System
< - Read Product - Installed :
Description ~128 Products ~142
Product Description & - Read Product File ~130 - Executables ~144
Install Instr. | - Store Parts ~132 - Associated
- Feature List ~112 - Select Customization ~134 Resources ~146
- Part List ~114 / - Compile ~136
- Feature & Part - Link ~138 108
Association ~116 - Access Set Up ~140 Q
- Storage Instr. ~118
- Customization) /
Instr. ~120 Repository
- Compile Instr. ~122 -Produce Info~ ~148
- Link Instr. ~124
- Access Set Up
Instr. ~126 I <202 QZM

Integrity Manager

Integrity Reference
Data Structure

(57) Abstract: An apparatus is equipped to automatically update one or more integrity references of a software entity, when the
software entity is installed onto the apparatus. The apparatus is further equipped to periodically determine whether the integrity of
the apparatus has been compromised based at least in part on the one or more integrity references of the software entity that are

automatically updated during installation of the software entity.

WO 2004/027551 A2 I} N0 0800 0000 00

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished — ance Notes on Codes and Abbreviations” appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gagzette.

10

15

20

25

30

WO 2004/027551 PCT/US2003/028571

COMPUTING APPARATUS WITH AUTOMATIC INTEGRITY REFERENCE
GENERATION AND MAINTENANCE
FIELD OF THE INVENTION
The present invention relates to the field of computing. More specifically, the

present invention is related to trusted computing.
BACKGROUND OF THE INVENTION
With the proliferation of networked devices such as computers, digital

assistants, wireless phones and so forth, and the ubiquitous access afforded to
these devices by local, regional and wide area networks, such as the Internet, even
the most protected executables and data can be vulnerable to harm. Whether the
harm is due to damage caused by a virus, an unauthorized access, or simply due to
natural occurrences such as exposure to the elements, the importance of executable
and data integrity and security cannot be overstated.

Unfortunately, under the prior art, integrity and security issues have been
pretty much treated as post-installation issues. That is, denial of unauthorized
accesses, protection of executable and data integrity, and so forth have been
addressed with protocols, utilities and tools that are decoupled from the installation
process.

Figure 1 illustrates a typical prior art installation process for installing software
products or entities onto a computing apparatus. The terms “product” and “entity” as
used herein are substantively synonymous to convey the fact that for the purpose of
the application, the object of an install may be of a wide range of “entities”. These
“entities” may include, but are not limited to, simple “entities”, each having only a
handful of parts and generally not referred to as a “product” whether they have
commercial values or not, as well as complex “entities”, each having a large number
of parts and generally refers to as a “product”, as it typically has commercial value.

As illustrated, typically, a software product/entity 102 having a number of
components 110, has one or more associated description and installation instruction
files 104. Collectively, the associated description and installation instruction files 104
include e.g. the feature list of the software product/entity 102, the part list 114, the

association between features and parts 116, and instructions on how and/or where

-1-

10

15

20

25

30

WO 2004/027551 PCT/US2003/028571

to store the parts 118. Further, if applicable, the associated description and
installation instruction files 104 may also include customization instructions 120,
compilation instructions 122, linking instructions 124 and access set up instructions
126.

Generally, both components 110 and features are made up of parts.
Components 110 are collections of parts viewed from a structure perspective of the
product/entity 102, whereas features are collections of parts viewed from an external
user perspective. As used herein, the terms are not necessarily meant to be
mutually exclusive. The precise definition and delineation of these terms are not
essential to the understanding or practice of the present invention. Accordingly, they
are not to be read restrictively.

Continuing to refer to Fig. 1, typically an installer 100 reads 128 the product
description and installation instruction file(s) 112, then installs the product/entity 102
based substantially on the description and installation instructions provided.
Typically, the installation results in the components 110 of product/entity 102, made
up of executables 144 and associated resources 146, being stored into a file system
106 in a manner that allows executables 144 to be retrievable for execution. Various
product/entity related information 148, such as the installed parts, their usage of
shared functions, and so forth, may be stored in a system repository 108.

In addition to reading the product/entity description and install instructions
104, installer 100 typically reads 202 product/entity file 102 to obtain the parts, and
stores 132 the obtained parts as instructed. Upon storing the parts, installer 100
typically solicits 134 customization inputs from a user, then compiles 136 and links
138 the product together per the instructions provided and the customization inputs
received. Further, for products/entities 102 designed for interactive usage, typically,
the installation process may also include setting up the user access mechanism, e.g.
“start up” icons and so forth.

Accordingly, it is desirable if the installation process can be enhanced to
contribute to the safe guarding of the integrity of a computing apparatus, or simply, a
programmable apparatus.

10

15

20

25

WO 2004/027551 PCT/US2003/028571

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be described by way of exemplary embodiments,

but not limitations, illustrated in the accompanying drawings in which like references
denote similar elements, and in which:

Figure 1 illustrates an example installation process of the prior art;

Figure 2 illustrates another example installation process, incorporated with
the teachings of the present invention;

Figure 3 illustrates the integrity reference data structure of Fig. 2 in further
details, in accordance with one embodiment;

Figure 4 illustrates the operational flow of the relevant aspects of the integrity
manager of Fig. 2 for automatically updating the integrity reference data structure, in
accordance with one embodiment;

Figure 5 illustrates the operational flow of the relevant aspects of the integrity
manager of Fig. 2 for performing periodic post-installation integrity check, in
accordance with one embodiment; and

Figure 6 illustrates an example computer system suitable for use to practice
the present invention, in accordance with one embodiment.

DETAILED DESCRIPTION OF THE INVENTION

The present invention includes a method and apparatus for facilitating

interaction between software entities, through the employment of an abstraction

interface of a control type.

In the following description, various aspects of the present invention will be
described. However, it will be apparent to those skilled in the art that the present
invention may be practiced with only some or all aspects of the present invention.
For purposes of explanation, specific numbers, materials and configurations are set
forth in order to provide a thorough understanding of the present invention.
However, it will be apparent to one skilled in the art that the present invention may
be practiced without the specific details. In other instances, well-known features are

omitted or simplified in order not to obscure the present invention.

10

15

20

25

WO 2004/027551 PCT/US2003/028571

Terminology

Parts of the description will be presented in data processing terms, such as
data, selection, retrieval, generation, and so forth, consistent with the manner
commonly employed by those skilled in the art to convey the substance of their work
to others skilled in the art. As well understood by those skilled in the art, these
quantities take the form of electrical, magnetic, or optical signals capable of being
stored, transferred, combined, and otherwise manipulated through electrical and/or

optical components of a processor and its subsystems.

Part of the descriptions will employ various abbreviations, including but are

not limited to:
MD5 Message Digest
SHA-1 ‘Secure HASH Algorithm

Section ‘Headinqs, Order of Descriptions and Embodiments

Section headings are merely employed to improve readability, and they are

not to be construed to restrict or narrow the present invention.

Various operations will be described as multiple discrete steps in turn, in a
manner that is most helpful in understanding the present invention, however, the
order of description should not be construed as to imply that these operations are
necessarily order dependent. In particular, these operations need not be performed
in the order of presentation. \

The phrase “in one embodiment” is used repeatedly. The phrase generally
does not refer to the same embodiment, however, it may. The terms “comprising”,

“having” and “including” are synonymous, unless the context dictates otherwise.
Overview

Figure 2 illustrates an overview of the present invention, in accordance with
one embodiment, in the context of the example installation process of Fig. 1

enhanced with the teachings of the present invention. As illustrated, in accordance

10

15

20

25

30

WO 2004/027551 PCT/US2003/028571

with the present invention, installation manager 202 is provided to complement
installer 100.

Briefly, integrity manager 202 is equipped to assist installer 100 in associating
each part of a software product/entity 102 installed onto the host computing
apparatus with an integrity family and an integrity measure, as part of the installation
process, and store the information in integrity reference data structure 204. Further,
integrity manager 202 is equipped to perform periodic post-installation integrity check
on the host computing apparatus, using at least the information stored in the integrity
reference data structure 204.

Thus, integrity manager 202 may readily detect and report malicious
compromise of the computing apparatus, especially if all installation of software
products/entities onto the host computing apparatus are performed through installer
100.

The term “host computing apparatus” refers to the computing apparatus on
which integrity manager 202 executes at least in part, to verify the integrity of its
“relevant” components. Typically, integrity manager 202 executes in whole in the
“host computing apparatus”. However, the present invention contemplates that, in
alternate embodiments, portions of the verification process, e.g. part of the
computation of a signature, may be performed on another companion/supporting
computing device. Moreover, the “computing” apparatus may be just any
programmable apparatus.

Typically, what constitutes “compromised” is component dependent. For
example, for an executable, it may be the signature of the executable no longer
matching a known “good” signature, whereas for certain critical system data, it may
be the current value not matching a known “good” value or within a range of known
“good” values.

Similarly, what constitutes “goodness” may be application dependent, i.e.,
varies from one application of the present invention to another.

Data Organization

Figure 3 illustrate associated data structure 204 in further details, in

accordance with one embodiment. 'For the embodiment, data structure 204 includes

-5.

10

15

20

25

30

WO 2004/027551 PCT/US2003/028571

a root object 332 having a number of children Integrity Family objects 344, which in
turn have a number of children Integrity Family Member objects 352.

Each Integrity Family object 342 includes in particular Integrity Family attribute
344, and Level of Compromise 346. Integrity Family attribute 344 is employed to
identify a “family” of components, from the perspective of integrity assurance. One
example for organizing components of software product/entity 102 into integrity
families, for integrity assurance purpose, is organizing the components in terms of
whether the components are members of the kernel of the operating system, a
shared/non-shared library, whether the components have privileged access or not,
and so forth. That is, the components are organized into the families of “privileged

L {1

kernel components of the operating system”, “other privileged components of the
operating system”, “non-privileged components of the operating system”, “privileged
and non-shared library components”, “privileged and shared library components”,

b 11

“non-privileged and non-shared library components”, “non-privileged and shared
library components”, and so forth.

The term “privilege” as used herein refers to the “authority” of the component
in performing certain operations on the host computing apparatus, e.g. whether the
component may access certain registers and/or memory locations of the host
computing apparatus. Typically, the delineation between “privileged” and “non-
privileged” entities is operating system dependent.

In alternate embodiments, other manners of organization may be practiced
instead.

Level of Compromise 346 is employed to denote a risk level in the event a
member of the integrity family fails an integrity check. The risk level enables integrity
manager 202 or other security management entities to determine remedial actions,
based on the risk level. For example, in one embodiment, the risk level enables the
integrity manager 202 to determine whether soft fail over may still occur.

Integrity based soft fail over is the subject matter of co-pending application,
entitled “Computing Environment and Apparatuses with Integrity based Fail Over”,
filed contemporaneously, which is hereby fully incorporated by reference (for U.S.

version of the present application).

10

15

20

25

30

WO 2004/027551 PCT/US2003/028571

Each Integrity Family Member object 352 includes in particular Member ID
attribute 354, Member Type attribute 356 and Integrity Measure attribute 358.
Member ID attribute 354 is employed to specifically denote or identify a component,
e.g. the name of an executable, a system data,-and so forth, whereas Member Type
attribute 356 is employed to denote the type of the named component, i.e. whether it
is an executable, a system data, and so forth. Integrity Measure attribute 358
denotes the measure to be employed to determine whether the integrity family
member is to be considered compromised or not, e.g. a signature of an executable
or a system data value. Signatures may be in the form of MD5, SHA-1, or other
hashing values of like kind.

In alternate embodiments, other data organizations may be employed instead.

Integrity Manager

Figure 4 illustrates the operational flow of the relevant aspects of the integrity
manager of Fig. 2 for associating a component/part with an integrity family and an
integrity measure, in accordance with one embodiment. As illustrated, upon invoked
by installer 100 to associate a component/part with an integrity family and an
integrity measure, integrity manager 202 first determines if the developer of the
software product/entity 102 has provided an integrity family for the component/part
(e.g. via description/instructions 104), block 402.

If the developer of the software product/entity 102 has not provided an
integrity family for the component/part, integrity manager 202 determines an integrity
family for the component/part, e.g. based on the nature of the component/part, block
404.

Upon determining an integrity family for the component/part, integrity manager
202 determines if the developer of the software product/entity 102 has provided an
integrity measure for the component/part (e.g. via description/instructions 104), block
406.

If the developer of the software product/entity 102 has not provided an
integrity measure for the component/part, integrity manager 202 determines an
integrity measure for the component/part, e.g. by generating a hash value such as
MD5 or SHA-1, for the component/part, block 408.

-7 -

10

15

20

25

30

WO 2004/027551 PCT/US2003/028571

Next, integrity manager 202 determines if the corresponding integrity family
object has previously been created in integrity reference data structure 204, block
410. If the corresponding integrity family object has not been previously created,
integrity manager 202 creates the integrity family object 342 in integrity reference
data structure 204, block 412.

Then, upon either determining that the corresponding integrity family object
342 has previously been created, or creating corresponding integrity family object
342, the integrity manager 202 creates the integrity family member objects 352,
block 414.

Figures 5a-5b illustrate the operational flow of the relevant aspects of the
integrity manager of Fig. 2 for periodically performing integrity check on the
computing apparatus, in accordance with one embodiment. As illustrated, in
invocation, e.g. after initialization of the host computing apparatus, integrity manager
202 determines if it is time to perform an integrity check on the host computing
apparatus, block 502. If not, integrity manager 202 waits for the time to perform the
integrity check. [f it is time, integrity manager 202 proceeds to perform the integrity
check on the host computing apparatus, block 504.

In alternate embodiments, integrity manager 202 may perform the integrity
check continuously. That is, integrity manager 202 may perform an integrity check
on the host computing apparatus, as soon as an integrity check is finished, without
waiting.

Figure 5b illustrates the operational flow of the relevant part of integrity
manager 202 for performing an integrity check, in accordance with one embodiment.
As illustrated, integrity manager 202 first selects an integrity family to start verifying
its component, e.g. the privileged kernel of the operating system, block 512. Upon
selecting an integrity family, integrity manager 202 selects a member of the integrity
family, block 514. The selection may be made using the earlier described data and
function organization 204.

Upon selecting an integrity family member, integrity manager 202 verifies its
integrity, block 516. The action may include verifying the state of an executable
component conforms to an expected signature, e.g. MD5 or SHA-1,

-8-

10

15

20

25

30

WO 2004/027551 PCT/US2003/028571

{

or the state of a system data conforms to an expected value, and so forth.

At block 518, integrity manager 202 determines if the component/data passes
the verification check or not. If integrity manager 202 determines the
component/data fails the verification check, it further determines if the failure is to be
considered critical. The determination e.g. may be based on the severity of
comprise associated with the component/data’s integrity family, block 520.

If the failure is to be deemed as a critical failure, integrity manager 202
immediately terminates the verification process, and initiates a remedial operation,
which is application dependent. An example of an appropriate remedial operation
may include causing the host computing apparatus to shut down.

If the failure is not deemed to be a critical failure, integrity manager 130 may
merely log the non-critical integrity failure, block 522, and continues at block 524.

Back at block 518, if integrity manager 202 determines the component/data
passes the integrity verification, it also continues at block 524.

At block 524, integrity manager 202 determines whether there are additional
members of the selected integrity family remain to be verified. If so, integrity
manager 202 returns to block 514, and continues from there as earlier described.

If all members of the selected integrity family have been verified, integrity
manager 202 continues at block 526, and determines whether there are additional
integrity families remain to be verified. If so, integrity manager 202 returns to block
512, and continues from there as earlier described.

If all integrity families have been verified, the integrity verification is
completed.

Example Computer System

Figure 6 illustrates an example computer system suitable for use to practice
the present invention as a host of computing apparatus, in accordance with one
embodiment. As shown, computer system 600 includes one or more processors
602, and system memory 604. Additionally, computer system 600 includes mass
storage devices 606 (such as diskette, hard drive, CDROM and so forth),
input/output devices 608 (such as keyboard, cursor control and so forth) and

communication interfaces 610 (such as network interface cards, modems and so

-9-

10

15

20

WO 2004/027551 PCT/US2003/028571

forth). The elements are coupled to each other via system bus 612, which
represents one or more buses. In the case of multiple buses, they are bridged by
one or more bus bridges (not shown).

Each of these elements performs its conventional functions known in the art.
In particular, system memory 604 and mass storage 606 are employed to store a
working copy and a permanent copy of the progrémming instructions implementing
integrity manager 202. The permanent copy of the programming instructions may be
loaded into mass storage 606 in the factory, or in the field, through e.g. a distribution
medium (not shown) or through communication interface 610 (from a distribution
server (not shown)).

The constitution of these elements 602-612 are known, and accordingly will
not be further described.

Conclusion and Epilogue

Thus, it can be seen from the above descriptions, a novel computing
apparatus with enhanced computing integrity, including automatic generation and
maintenance of an integrity reference has been described.

While the present invention has been described in terms of the foregoing
embodiments, those skilled in the art will recognize that the invention is not limited to
the embodiments described. The present invention can be practiced with
modification and alteration within the spirit and scope of the appended claims. Thus,
the description is to be regarded as illustrative instead of restrictive on the present

invention.

-10 -

10

15

20

25

WO 2004/027551 PCT/US2003/028571

CLAIMS

What is claimed is:

1. In a computing apparatus, a method of operation comprising:
automatically updating one or more integrity references of a software entity
during installation of the software entity onto the computing apparatus; and
periodically determining whether integrity of the computing apparatus has
been combromised, based at least in part on said one or more integrity references of
the software entity that are automatically updated during installation of the software
entity.

2. The method of claim 1, wherein said automatic updating of the one or more
integrity references of the software entity during installation of the software entity
comprises automatically determining an integrity family for a component of the

software entity during installation of the software entity.

3. The method of claim 2, wherein said automatic determining of an integrity
family for a component of the software entity during installation of the software entity
comprises

automatically determining during installation of the software entity, whether an
integrity family is specified for the component of the software entity, and

if an integrity family is not specified for the component of the software entity,

automatically assigning an integrity family for the component of the software entity.

4. The method of claim 2, wherein said integrity family is a selected one of
privileged kernel of an operating system,

other privileged components of the operating system,

non-privileged components of the operating system,

privileged and non-shared library components,

privileged and shared library components,

-11 -

10

15

20

25

WO 2004/027551 PCT/US2003/028571

non-privileged and non-shared library components, and
non-privileged and shared library components”.

5. The method of claim 1, wherein said automatic updating of the one or more
integrity references of the software entity during installation of the software entity
comprises automatically determining a signature for a component of the software
entity during installation of the software installation.

6. The method of claim 5, wherein said automatic determining of a signature for
a component of the software entity during installation of the éoftware entity
comprises

automatically determining during installation of the software entity, whether a
signature is provided for the component of the software entity, and

if a signature is not specified for the component of the software entity,
automatically generating a signature for the component of the software entity.

7. The method of claim 5, wherein said signature is a selected one of MD5 and
SHA-1.
8. The method of claim 1, wherein said periodic determining of whether integrity

of the computing apparatus has been compromised comprises continuously
determining whether integrity of the computing apparatus has been compromised,
based at least in part on said one or more integrity references of the software entity

that are automatically updated during installation of the software entity.

9. The method of claim 1, wherein each of said periodic determining of whether
integrity of the computing apparatus has been compromised comprises verifying a
privileged kernel of an operating system of the computing apparatus has not been
comprised, based at least in part on an integrity reference of the privileged kernel of
the operating system that is automatically updated during installation of the
privileged kernel of the operating system.

-12 -

10

15

20

25

WO 2004/027551 PCT/US2003/028571

10. The method of claim 1, wherein each of said periodic determining of whether
integrity of the computing apparatus has been compromised comprises verifying
other privileged software components of the computing apparatus have not been
comprised, based at least in part on integrity references of the other privileged
software components that are automatically updated during installation of the other
privileged software components.

11. The method of claim 1, wherein each of said periodic determining of whether
integrity of the computing apparatus has been compromised comprises verifying
shared non-privileged software components of the computing apparatus have not
been comprised, based at least in part on integrity references of the shared non-
privileged software components that are automaticaily updated during installation of
the shared non-privileged software components. !

12. The method of claim 1, wherein each of said periodic determining of whether
integrity of the computing apparatus has been compromised comprises verifying
non-shared and non-privileged software components of the computing apparatus
have not been comprised, based at least in part on integrity references of the non-
shared and non-privileged software components that are automatically updated

during installation of the non-shared and non-privileged software components.

13. The method of claim 1, wherein each of said periodic determining of whether
integrity of the computing apparatus has been compromised comprises verifying
certain designated system data of the computing apparatus have not been
comprised, based at least in part on integrity references of the designated system
data that are automatically updated during installation of system software of the
computing apparatus.

14. A computing apparatus comprising:
storage medium having stored therein a plurality of programming instructions

designed to

-13-

10

15

20

25

WO 2004/027551 PCT/US2003/028571

automatically update one or more integrity references of a software entity
during installation of the software entity onto the computing apparatus,
and

periodically determine whether integrity of the computing apparatus has
been compromised, based at least in part on said one or more integrity
references of the software entity that are automatically updated during
installation of the software entity; and

a processor coupled to the storage medium to execute the programming

instructions.

15. The apparatus of claim 14, wherein said programming instructions are
designed to perform said automatic updating of the one or more integrity references
during installation of the software entityt by automatically determining an integrity
family for a component of the software entity during installation of the software entity.

16. The apparatus of claim 14, wherein said programming instructions are
designed to perform said automatic determining of an integrity family for a
component of the software entity during installation of the software entity by
automatically determining during installation of the software entity, whether an
integrity family is specified for the component of the software entity, and
if an integrity family is not specified for the component of the software entity,

automatically assigning an integrity family for the component of the software entity.

17. The apparatus of claim 15, wherein said integrity family is a selected one of
privileged kernel of an operating system,
other privileged components of the operating system,
non-privileged components of the operating system,
privileged and non-shared library components,
privileged and shared library components,
non-privileged and non-shared library components, and

non-privileged and shared library components”.

-14 -

10

15

20

25

WO 2004/027551 PCT/US2003/028571

18. The apparatus of claim 14, wherein said programming instructions are
designed to perform said automatic updating of the one or more integrity references
during installation of the software entity by automatically determining a signature for
a component of the software entity during installation of the software entity.

19. The apparatus of claim 18, wherein said programming instructions are
designed to perform said automatic determining of a signature for a component of
the software entity durin’Q installation of the software entity by

automatically determining during installation of the software entity, whether a
signature is provided for the component of the software entity, and

if a signature is not specified for the component of the software entity,
automatically generating a signature for the component of the software entity.

20. The apparatus of claim 18, wherein said signature is a selected one of MD5
and SHA-1.

21. The apparatus of claim 14, wherein said programming instructions are
designed to perform said periodic determining of whether integrity of the computihg
apparatus has been compromised by continuously determining whether integrity of
the computing apparatus has been compromised, based at least in part on the one
or more integrity references of the software entity that are automatically updated
during installation of the software entity.

22. The apparatus of claim 14, wherein said programming instructions are
designed to perform each of said periodic determining of whether integrity of the
computing apparatus has been compromised by verifying a privileged kernel of an
operating system of the computing apparatus has not been comprised, based at
least in part on one or more integrity references of the privileged kernel of the
operating system that are automatically updated during installation of the privileged
kernel of the operating system.

-15 -

10

15

20

25

WO 2004/027551 PCT/US2003/028571

23. The apparatus of claim 14, wherein said programming instructions are
designed to perform each of said periodic determining of whether integrity of the
computing apparatus has been compromised by verifying other privileged software
components of the computing apparatus have not been comprised, based at least in
part on one or more integrity references of the other privileged software components
that are automatically updated during installation of the other privileged software

components.

24. The apparatus of claim 14, wherein said programming instructions are
designed to perform each of said periodic determining of whether integrity of the
computing apparatus has been compromised by verifying shared non-privileged

software components of the computing apparatus have not been comprised.

25. The apparatus of claim 14, wherein said programming instructions are
designed to perform each of said periodic determining of whether integrity of the
computing apparatus has been compromised by verifying non-shared and non-
privileged software components of the computing apparatus have not been
comprised, based at least in part on one or more integrity references of the non-
shared and non-privileged software components that are automatically updated

during installation of the non-shared and non-privileged software components.

26. The apparatus of claim 14, wherein said programming instructions are
designed to perform each of said periodic determining of whether integrity of the
computing apparatus has been compromised by verifying certain designated system
data of the computing apparatus have not been comprised, based at least in part on
one or more integrity references of the designated system data that are automatically

updated during installation of system software of the computing apparatus.

27. An apparatus comprising:)
means for automatically updating one or more integrity references of a

software entity during installation of the software entity onto the apparatus; and

-16 -

WO 2004/027551 PCT/US2003/028571

means for periodically determining whether integrity of the apparatus has
been compromised, based at least in part on said one or more integrity references of
the software entity that are automatically updated during installation of the software

entity.

-17 -

PCT/US2003/028571

WO 2004/027551

117

8L~ Oju] ®dnpold -
Aioyisoday

/

(LYV Yordd)
L @anb14

>

801

ovL~ $92IN0S9Yy

pajeloossy -
L~ s9|qenosxy -
Zrl~ sjonpold
pajlejsyf -
ws)sAs o4

ovi~
8L~
oCl~
vel~
cel~
ocl~
8cl~

dn 198 sse09y -

I -

ajdwo) -

uoljeziwolsny 309JeS -

sued 210)S -

9] }oNpoIid Pedy -

uonduosaqg

Jonpoid pesy -

Jajeisuj

L

5

901

VAR

(0]0] 2

9cl~ Jsuj
dn 198 ss200Yy -
vel~ suj Ui -
ZZl~ “Jisu| opdwo) -
ocl~ Jysul

uopeziwoisny -
gLlL~ lsu| obeio)g -
oL~ uoneloossy

ued g ainjea] -

pli~ }sI7 ped -
Zli~ 1sreinjesd-
“11SU] jjejsuf

% uonduossaq 1onpoid

/4

12003

)

OlLl~ sjusuodwo) -
10Npold 91emyos
4

AV

)

PCT/US2003/028571

WO 2004/027551

2/7

ainjonis eleq
soupIojey fiBay| 4 —> thmcmS_ Aubayuj
vowfv Nowxv
8L~ Oju] @onpoid -
Aiojisoday
/
u ovl~ dn 1e3 ssa00y -
80l 8cl~ MuIT -
9gL~ Slidwoy -
oL~ $82JN0S9Yy S~ Uoneziwolsn) J09jes -
pejeloossy - cel~ sped aI0}g -
P~ so|qenoaxy - ocl~ 3[4 }ONPoId pesy -
i~ sjonpolid 8ClL~ uonduaseg
pajelsu| - Jonpoid peay -
wia)sAg 9ji4 19jeisuy|

Z ainbi4
9cl~ suj
dn 18 sseooy -
vel~ JIsuj jur -
Z2l~ “nsup 9jidwon -
ocl~ "1)suj

uonezjwolsny -
8L~ “ljsu| ebeioig -
9LL~ uoneidossy

Hed ¥ ainjea -

5

201

NN

001

c0l

pLi~ 1S Jed -
Zli~ 1sIeinjesd -
Jjsu] |lejsu
© uopduosaq Jonpoid
[
0 F/v

OLL~ sjusuodwo) -
jonpoid alemyos
4

>

PCT/US2003/028571

WO 2004/027551

3/7

o

¢ ainbi4

8Ge~ oanjep Ajubajuj -

0Ge~ odA] Jsquis -

PGe~ al lequisi -
/

,V @_onEos_
zce Awe4 Aubayu)

opS~ osiwoldwo) IO |ene] -
e~ Aweq Aubayuj -
/

/v saljwe Aubayu|
cre

Jooy
/

>

cee

alnjonig eleq aoualsiay Aluboyu)

WO 2004/027551 PCT/US2003/028571

417

<404
_ /
Integnty Determine
Family Integrity Family
Provided?

§408
7
Signature Determine
Provided? Signature
410 <4 12
/
Integrity Create Integrity
Family Family
Created?

414

N
Create Integrity
Family Member

Figure 4

WO 2004/027551

PCT/US2003/028571

5/7

Yes

(8}
o
o

|

Time To
Verify

Do Integrity
Check

Figure 5a

WO 2004/027551 PCT/US2003/028571

6/7

Do Integrity

Check

512

Select Next
Integrity Family

% 514

Select Next Integrity 1\~
Family Member

¢ 516
Ao

Check Integrity

Log
Failure 522

More
Member?

More
Family?

Figure 5b

PCT/US2003/028571

WO 2004/027551

717

(@)
©

9 ainbiy
IsbBeuepy Abaul
019 809 -
d41NJ ‘Wwod S80IN®
Hed ol abelo)g ssepy
cl9 _
209
Jebeuepy Ajubayu| (s)Jossaoold
¥09
Aowspy

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

