

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2018280272 C1

(54) Title
Multivalent conjugate vaccines with bivalent or multivalent conjugate polysaccharides that provide improved immunogenicity and avidity

(51) International Patent Classification(s)
A61K 39/09 (2006.01)

(21) Application No: **2018280272** (22) Date of Filing: **2018.06.11**

(87) WIPO No: **WO18/227177**

(30) Priority Data

(31) Number **62/517,905** (32) Date **2017.06.10** (33) Country **US**

(43) Publication Date: **2018.12.13**
(44) Accepted Journal Date: **2021.01.28**
(44) Amended Journal Date: **2021.05.06**

(71) Applicant(s)
Inventprise, LLC

(72) Inventor(s)
KAPRE, Subhash V.;DATTA, Anup K.

(74) Agent / Attorney
IP GATEWAY PATENT & TRADE MARK ATTORNEYS PTY LTD, PO Box 1321, SPRINGWOOD, QLD, 4127, AU

(56) Related Art
US 20070231340 A1
US 20090317412 A1
US 20080260773 A1
US 20110195086 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2018/227177 A1

(43) International Publication Date
13 December 2018 (13.12.2018)

(51) International Patent Classification:
A61K 39/09 (2006.01) *A61K 47/48* (2006.01)

(72) Inventors: **KAPRE, Subhash V.**; 11802 161st Ave., NE, Redmond, Washington 98052 (US). **DATTA, Anup K.**; 16243 SE 181st Street, Renton, Washington 98058 (US).

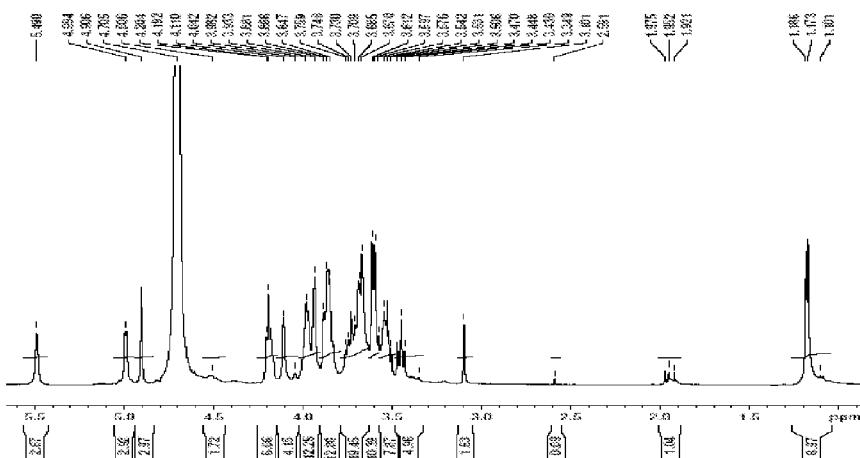
(21) International Application Number:

PCT/US2018/036868

(74) Agent: **REMENICK, James** et al.; 1025 Thomas Jefferson St., NW, Washington, District of Columbia 20007 (US).

(22) International Filing Date:

11 June 2018 (11.06.2018)


(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant: INVENTPRISE, LLC [US/US]; 18133 NW 68th Street d150, Redmond, Washington 98052 (US).

(54) Title: MULTIVALENT CONJUGATE VACCINES WITH BIVALENT OR MULTIVALENT CONJUGATE POLYSACCHARIDES THAT PROVIDE IMPROVED IMMUNOGENICITY AND AVIDITY

Figure 1A

6A PS (¹H NMR-30KD)

(57) Abstract: The disclosure describes compositions containing conjugates using novel linkers, bivalent polysaccharide conjugates, and methods of bivalent polysaccharide conjugation in the development of multivalent conjugate vaccines. Conjugation of capsular polysaccharides to carrier proteins is carried out using homo-bifunctional and/or hetero-bifunctional linkers of specific lengths. Incorporation of the linkers and their use in bifunctional linkers induces higher titers of functional antibodies with high avidity, eliciting higher immunologic memory, and reduced carrier protein effect. This provides immunochemically cross-reactive capsular polysaccharides wherein one or more cross-reactive capsular polysaccharides are conjugated sequentially or concurrently to carrier protein using bifunctional linkers bearing the same or different functional groups. Such a linker and the size of the capsular polysaccharides provides

(84) **Designated States** (*unless otherwise indicated, for every kind of regional protection available*): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- *with international search report (Art. 21(3))*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))*

**MULTIVALENT CONJUGATE VACCINES WITH BIVALENT OR
MULTIVALENT CONJUGATE POLYSACCHARIDES THAT PROVIDE
IMPROVED IMMUNOGENICITY AND AVIDITY**

5 **Reference to Related Applications**

This application claims priority to U.S. Provisional Application No. 62/517,905 filed June 10, 2017, the entirety of which is specifically incorporated by reference.

Background

10 **1. Field of the Invention**

The present invention is directed to multivalent conjugates, immunogenic compositions, and vaccines comprising carrier protein conjugated bacterial capsular polysaccharides and uses thereof. In particular, compositions of the invention comprise monovalent and multivalent bacterial capsular polysaccharide-protein conjugates, wherein the bacterial capsular polysaccharides and oligosaccharides are derived from serotypes 15 of *Streptococcus pneumoniae*. The carrier protein is conjugated to bacterial capsular polysaccharides through mono functional as well as bi-functional linkers, preferably of defined lengths and the mono-functional or bi-functional linkers may be homo-mono-functional, homo-bi-functional, hetero-mono-functional, or hetero-bifunctional.

20 **2. Description of the Background**

25 *Streptococcus pneumoniae* is a Gram-positive pathogen responsible for invasive pneumococcal diseases (IPDs) such as pneumonia, bacteremia, meningitis, and acute Otitis media. Pneumonia is the most common manifestation of invasive pneumococcal disease, whereas bacterial spread within the respiratory tract may result in middle-ear infection, sinusitis or recurrent bronchitis. Pneumococcus is encapsulated with a chemically linked polysaccharide which results in serotype specificity. At least 90 pneumococcal serotypes are known of which about 23 account for 90% of invasive diseases and capsular polysaccharide is a poor immunogen.

30 There are currently three PCV vaccines available on the global market: PREVNAR®, SYNFLORIX®, and PREVNAR-13®. There is a need to address remaining unmet medical need for coverage of pneumococcal disease due to serotypes not found in PREVNAR-13® and potential for serotype replacement over time. There is a need for immunogenic compositions that can be used to induce an immune response against additional *Streptococcus pneumoniae* serotypes in humans and in children less

than two years old.

A capsular polysaccharide (CPS) is a key virulence determinant and generally insufficiently immunogenic to induce a T cell-dependent immune response in infants and children. Conjugation of a carrier protein to CPS can induce an immune response that undergoes class switching. Accordingly, a 7-valent (PCV-7, Pfizer Inc., USA), a 10-valent (Synflorox-10, GSK Vaccines) and a 13-valent pneumococcal conjugate vaccine (PCV-13, Pfizer Inc., USA) have been developed to efficiently prevent the incidence of IPDs. Reductive amination chemistry and cyanylation chemistry has been widely used to prepare the conjugate vaccines.

10 In these conjugates, the short C-N linkage (2.1Å) between CPS and carrier protein leads to steric shielding of the CPS epitopes by the carrier protein and low CPS/protein ratio. Important parameters are needed to minimize disadvantages of the current vaccines.

15 U.S. Patent No. 9,492,559 discloses immunogenic compositions comprising conjugated capsular polysaccharide antigens and uses thereof. The immunogenic compositions disclosed include an 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20-valent pneumococcal conjugate composition. Also disclosed is a 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25-valent pneumococcal conjugate composition.

20 International Application Publication No. WO 2014/097099A2 discloses a glycoconjugation process directed to several serotypes in addition to Pneumococcal conjugates. New polysaccharide conjugates are added to formulation to increase efficacy of the vaccine.

25 U.S. Patent Application Publication No. 2011/023526 discloses a 15-valent pneumococcal polysaccharide-protein conjugate vaccine composition. This patent is directed to 15-valent conjugate vaccines made by adding two or more serotypes with currently available 1-3 vaccines.

International Application Publication No. WO 2016/207905 discloses multivalent pneumococcal conjugate vaccine. This application is directed to a 13 or greater valent conjugate vaccine and deletion of serotype 6A.

30 U.S. Patent Application Publication No. 2017/007713 discloses a linker containing ((2-oxoethyl) thio) with enhanced functionality.

International Application Publication No. WO 2014/092377 discloses a 13 valent composition wherein 12 serotypes were selected from the group consisting of serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, and 23F and one from 12 or 9N.

5 International Application Publication No. WO 2014/092378 discloses an immunogenic composition having 13 different polysaccharide-protein conjugates wherein each conjugate contained a capsular polysaccharide isolated from 12 serotypes selected from the group consisting of serotypes 1,3,4,5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F and 23F, and serotypes 22F or 33F.

10 Chinese Application Publication No. 101590224 discloses a 14-valent pneumococcal polysaccharide-protein conjugate vaccine containing serotypes 1, 2, 4, 5, 6A, 6B, 7F, 9N, 9V, 14, 18C, 19A, 19F and 23F.

Chinese Application Publication No. 104069488 discloses 14 valent polysaccharide protein conjugate wherein the 14 serotypes were 1,4,5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 22F, 23F and 33F.

15 International Application Publication No. WO 2016207905 discloses a multivalent Pneumococcal conjugate vaccine comprising conjugates of CRM 197 and at least 14 capsular polysaccharides selected from serotypes 1, 3, 4, 5, 6B, 7F, 9N, 9V, 14, 15B, 18C, 19A, 19F, 22F, 23F and 33F.U.S. Patent 8,192,746 disclosed a 15 valent immunogenic composition comprising capsular polysaccharides from serotypes 1,3,4,5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 20 19F,22F, 23F, and 33F conjugated to CRM197.

International Application Publication No. WO 2013/191459 discloses a 15 valent composition comprising S. pneumoniae capsular polysaccharides from serotypes of 1,2,3,4,5, 6A, 6B, 7F, 9N, 9V, 14, 18C, 19A, 19F and 23F.

25 Chinese Application Publication No. 103656632 discloses multi valent pneumococcal capsular polysaccharide composition containing serotype 6A and at least one extra serotype selected from the group consisting of 1, 2, 3, 4, 5, 6B, 7F, 8, 9N, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F and 33F which provided protection against 24 different pneumococci serotypes.

30 Chinese Application Publication No. 103656631 discloses a multivalent pneumococcus capsular polysaccharide-protein conjugate composition comprising capsular

polysaccharides of pneumococcus of 24 different serotypes viz. 1, 2,3, 4, 5, 6A, 6B,7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F and 33F.

U.S. Patent Application Publication No. 2016/0324950 discloses immunogenic polysaccharide-protein conjugates comprising a capsular polysaccharide (CP) from 5 *Streptococcus agalactiae*, also referred to as group B streptococcus (GBS), and a carrier protein, wherein the CP is selected from the group consisting of serotypes Ia, Ib, II, III, IV, V, VI, VII, VIII, and IX. This was meant for treatment of chronic diabetes mellitus, cancer, heart failure, neurologic, and urologic conditions. The carrier protein capsular polysaccharide conjugates varied.

10 U.S. Patent No. 5,360,897 discloses immunogenic conjugate comprising reductive amination product of an intact capsular polymer of the bacterial pathogen *S. pneumoniae* having at least two carbonyl groups and a bacterial toxin or toxoid, said conjugate comprising a cross-linked conjugate in which there is a direct covalent linkage between the capsular polymer and the toxin or toxoid.

15 U.S. Patent No. 7,862,823 describes a multivalent conjugate vaccine composition with at least two different carrier proteins.

U.S. Patent No. 8,808,708 discloses a 13-valent immunogenic composition consisting of Polysaccharide-protein conjugates where serotypes consist of 1,3,4,5, 6A, 6B, 7F, 9V,14, 18C, 19A, 19F and 23F, and wherein the carrier protein is CRMI97.

20 U.S. Patent Application Publication No. 2009/0017059 discloses an immunogenic composition where serotypes 19A and 19F were conjugated to different bacterial toxoids.

International Application Publication No. WO 2011/110241 describes pneumococcal conjugate immunogenic compositions or vaccines wherein different conjugation chemistries were used for different components of the immunogenic composition or vaccine. Reductive 25 amination was used for the conjugation of at least one serotype and a conjugation other than reductive amination was used for the conjugation of a different serotypes. The conjugation method selected for different serotypes allowed each serotype to be presented using a conjugation method that allowed the best presentation of the saccharide epitope. Some pneumococcal saccharides conjugated well using reductive amination, whereas other 30 pneumococcal saccharides were conjugated differently to allow the ring structure to remain unbroken and provide better results.

U.S. Patent No. 7,955,605 discloses a process of making carrier protein polysaccharide conjugate consisting serotype 19A where the activated serotype 19A polysaccharide and carrier protein are resuspended in dimethyl sulfoxide (DMSO) to form a conjugate.

5 U.S. Patent Application Publication No. 2010/0074922 discloses immunogenic composition containing 10 or more serotypes wherein 19F capsular saccharide was conjugated to diphtheria toxoid (DT), serotype 18C capsular saccharide is conjugated to tetanus toxoid and serotypes 1,4,5, 6B, 7F, 9V, 14 and 23F capsular saccharides are conjugated to Protein D from *Haemophilus influenza*.

10 U.S. Patent Application Publication No. 2010/0239604 discloses a composition comprising multivalent *S. pneumoniae* capsular saccharide conjugates wherein serotype 19A was conjugated to a first bacterial toxoid and 19F is conjugated to a second bacterial toxoid and 2-9 of the *S. pneumoniae* capsular saccharides are conjugated to protein D. Apart from increasing the scope of protection by developing vaccines which will offer protection against 15 a larger number of serotypes, efforts were focused on developing newer methods of synthesis.

U.S. Patent No. 7,709,001 describes a method of synthesis of carrier protein conjugate of capsular polysaccharide which consists of 1) reacting purified polysaccharide with a mild acid resulting in size reduction 2) reacting the polysaccharide of step 1 with an oxidizing agent in the presence of bivalent cations resulting in an activated polysaccharide; 20 3) compounding the activated polysaccharide with a carrier protein 4) reacting activated polysaccharide of step 3 and carrier protein with a reducing agent to form a polysaccharide - carrier protein conjugate; and 5) capping unreacted aldehydes in product of step 4 to yield an immunogenic polysaccharide - carrier protein conjugate.

International Application Publication No. WO 2014/097099 discloses a method of 25 synthesizing a carrier protein conjugate, which involves a) reacting a saccharide with 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and N-chlorosuccinimide (NCS) in an aqueous solvent to produce an activated saccharide; and b) reacting the activated saccharide with a carrier protein comprising one or more amine groups.

U.S. Patent Application Publication No. 2012/321658 discloses an immunogenic 30 composition wherein serotypes 1,3, 19A and 19F linked to protein carriers either directly or indirectly through a chemistry other than reductive amination, and one or more different

saccharides is/are selected from a second group consisting of serotypes 4, 5, 6A, 6B, 7F, 9V, 14, 18C and 23F which is/are linked to a protein carriers) by reductive amination.

Pneumococcal vaccines are based on 1) pneumococcal polysaccharide vaccine and 2) pneumococcal conjugate vaccines. PNEUMOVAX® marketed by Merck comprises of 5 unconjugated polysaccharides belonging to serotypes 1,2,3,4,5, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18e, 19F, 19A, 20, 22F, 23F and 33F. Infants and young children respond poorly to most pneumococcal polysaccharides. Immunogenicity of poor immunogens is enhanced by conjugating with carrier proteins. Polysaccharide protein conjugate vaccines are made using capsular polysaccharides linked to protein carriers. The conjugate induces T 10 cell dependent enhanced immune response against the specific serotype.

Conjugates are synthesized using various reagents, such as homo bifunctional, hetero bifunctional linkers of varying lengths. Three pneumococcal conjugate vaccines are available in market, PREVNAR®, SYNFLORIX®, and PREVNAR-13®. PREVNAR® is a heptavalent vaccine that contains the capsular polysaccharides from serotypes 4, 6B, 9Y, 14, 18C, 19F and 23F, each conjugated to a carrier protein designated CRM197. SYNFLORIX® is a deca-valent vaccine from GSK Biologicals that incorporates ten capsular polysaccharides conjugated to protein D from NTHi offering coverage against three additional pneumococcal strains, serotypes 1, 5 and 7F. PREVNAR-13® is a tri-deca-valent vaccine containing 13 capsular polysaccharide prepared from thirteen serotype of 20 *Streptococcus pneumoniae* (1, 3, 4, 5, 6A, 6B, 7F, 9Y, 14, 18C, 19 A, 19F, and 23F) conjugated to a carrier protein designated CRM197.

Increasing microbial resistance to antibiotics and the increasing number of immunocompromised persons have necessitated the development of pneumococcal vaccines with even broader protection, which leads to development of multivalent vaccines effective 25 against increasing number of serotypes especially for coverage of pneumococcal disease due to serotypes not found in PREVNAR-13®. The need for a specific serotype depends on the region and antibiotic resistance developed. Thus, US patent 8192746 reports a multivalent immunogenic composition having 15 distinct polysaccharide-protein conjugates. Each conjugate consists of a capsular polysaccharide prepared from serotype of *Streptococcus pneumoniae* (1, 3, 4, 5, 6A, 6B, 7F, 9\1, 14, 18C, 19A, 19F, 22F, 23F, or 33F) conjugated to 30

a carrier protein CRM197. There is a need for vaccines that induce an immune response against serotype 15B, 15C, and 15A.

The reference to prior art in the background above is not and should not be taken as an acknowledgment or any form of suggestion that the referenced prior art forms part of the common general knowledge in Australia or in any other country.

Summary of the Invention

With increasing number of polysaccharide antigens in the multivalent conjugate vaccine formulations, the carrier protein content increases. This increase leads to an increase of immune response to the carrier protein which can cause a systemic overload.

Thus, Applicant has recognized it would be beneficial to develop a pneumococcal vaccine that in some aspects provides protection against increasing number of serotypes. Although a higher valent vaccine is highly desirable with a conjugation, preferably the immune response to the carrier protein is also reduced. In the development of multivalent vaccines that extend the scope of protection to additional serotypes, there is a need to improve immunogenicity and avidity of the conjugate vaccine to accommodate the increased number of serotypes without compromising the immune responses to all, which is not possible with conventional conjugation methods. In addition to protection against increasing number of serotypes, Applicant has recognized it would also be beneficial to develop new linkers for conjugation that in some aspects may improve the immune response even with the increasing number of serotypes as well as a decrease in the carrier protein response (and also avoiding steric hindrance).

Although many references recite efficacy of currently available vaccines, when adding multiple new serotypes, the immune responses decrease with increase in numbers to the original serotypes. Applicant has recognized it would be beneficial to provide additional serotypes that in some aspects may increase the efficacy of the immune response. In addition, the greater efficacy should preferably include a reduction of the immune response to carrier protein. Thus, Applicant has recognized that it would be beneficial to provide higher valency pneumococcal conjugate vaccines that in some aspects may provide a barrier against infections throughout the world.

The present invention overcomes one or more of the problems and disadvantages associated with current strategies and designs and provides new immunogenic compositions comprising conjugated capsular saccharides and uses thereof.

According to one aspect of the invention there is provided an immunogenic composition comprising first and second group conjugates, wherein first group conjugates comprise a first collection of monovalent conjugates, wherein each monovalent conjugate comprises a carrier protein and a capsular polysaccharide of *Streptococcus pneumoniae* and the first collection includes capsular polysaccharides of *Streptococcus pneumoniae* serotypes 1, 2, 3, 4, 5, 7F, 8, 10A, 11A, 12F, 14, 17F, 18C, 20, 22F, 23F, 24F, 33F and 35B, and second group conjugates comprise a second collection of bivalent and/or multivalent conjugates, wherein each bivalent or multivalent conjugate comprises another carrier protein and at least two capsular polysaccharides of *Streptococcus pneumoniae*, wherein the second collection includes *Streptococcus pneumoniae* serotypes 6A, 6B, 6C, and/or 6D, *Streptococcus pneumoniae* serotypes 9V, 9N, 9A and/or 9B, *Streptococcus pneumoniae* serotypes 15B, 15A, and/or 15C, and *Streptococcus pneumoniae* serotypes 19A and 19F, wherein one or more of the capsular polysaccharides are coupled via a bifunctional linker, wherein the multivalent conjugate contains a quantity of carrier protein that is less than a quantity of capsular polysaccharide.

According to another aspect of the present invention, there is provided an immunogenic composition comprising a first group of monovalent capsular polysaccharides and a second group of bivalent or multivalent capsular polysaccharides wherein: the first group of monovalent capsular polysaccharides comprise polysaccharides of *Streptococcus pneumoniae* serotypes 1, 2, 3, 4, 5, 7F, 8, 10A, 11A, 12F, 14, 17F, 18C, 20, 22F, 23F, 24F, 33F and 35B; and the second group of bivalent or multivalent capsular polysaccharides comprising two or more polysaccharides selected from one or more of the groups consisting of *S. pneumoniae* serotypes 6A/6B/6C/6D, *S. pneumoniae* serotypes 9V/9N/9A/9B, *S. pneumoniae* serotypes 15B/15A/15C, and *S. pneumoniae* serotypes 19A/19F, wherein: the first group of monovalent capsular polysaccharides are each covalently coupled to a first PEG linker which is couple to a first carrier protein, and the second group of bivalent or multivalent capsular polysaccharides are each covalently coupled to a second PEG linker which is coupled to a second carrier protein.

According to another aspect of the invention, there is provided immunogenic composition comprising a first group of monovalent capsular polysaccharides and a second group of bivalent or multivalent capsular polysaccharides wherein: the first group of monovalent capsular polysaccharides comprise polysaccharides of *Streptococcus pneumoniae* serotypes 1, 2, 3, 4, 5, 7F, 8, 10A, 11A, 12F, 14, 17F, 18C, 20, 22F, 23F, 24F, 33F and 35B; and the second group of bivalent or multivalent capsular polysaccharides comprising two or more polysaccharides selected from one or more of the groups consisting of *S. pneumoniae* serotypes 6A, 6B, 6C, and 6D, *S. pneumoniae* serotypes 9A, 9B, 9N, and 9V, *S. pneumoniae* serotypes 15A, 15B, and 15C, and *S. pneumoniae* serotypes 19A and 19F; wherein, polysaccharides of *S. pneumoniae* serotypes 6A, 6B, 6C, 6D, 9A, 9B, 9N, 9V, 15A, 15B, 15C, 19A, and 19F that are not included in the second group are included in the first group: the first group of monovalent capsular polysaccharides are each covalently coupled to a first PEG linker which is coupled to a first carrier protein, and the second group of bivalent or multivalent capsular polysaccharides are each covalently coupled to a second PEG linker which is coupled to a second carrier protein.

According to another aspect of the invention there is provided an immunogenic composition comprising a therapeutically effective amount of bivalent and/or multivalent conjugate molecules comprises capsular polysaccharides derived from *Haemophilus influenzae*, non-typable *Haemophilus influenzae* (NTHi), *Neisseria meningitis*, *Moraxella catarrhalis*, and *Group B Streptococcus*, wherein the composition contains a quantity of carrier protein that is less than a quantity of capsular polysaccharide.

One embodiment of the invention is directed to multivalent *S. Pneumoniae* conjugate vaccines comprising two groups of conjugates, wherein group one comprises monovalent bacterial capsular polysaccharide conjugates and group two comprises multivalent conjugates containing conjugates of bivalent bacterial capsular polysaccharide having cross reactivity. Preferably, group one conjugates are composed of monovalent capsular polysaccharide conjugates of one or more *S. Pneumoniae* serotypes 1, 2, 3, 4, 5, 7F, 8, 10A, 11A, 12F, 14, 17F, 18C, 20, 22F, 23F, 24F, 33F and 35B. Preferably, group two conjugates are composed of a bivalent or multivalent capsular polysaccharide conjugate of cross reactive serotypes of one, two or more of *S. Pneumoniae* serotypes 6A/6B/6C/6D, one, two or more of *S. Pneumoniae* serotypes 9V/9N/9A/9B, one, two or more of *S. Pneumoniae* serotypes

15B/15A/15C, or *S. Pneumoniae* serotypes 19A/19F; and carrier proteins. Preferably, the second group constituting the multivalent *S. Pneumoniae* conjugate vaccine comprises multivalent conjugates of *S. Pneumoniae* cross reactive serotypes wherein the conjugates are bivalent unimolecular and are derived from bacterial capsular polysaccharides. Preferably, 5 the vaccine comprises capsular polysaccharide of two immunologically cross-reactive serotypes conjugated to the same carrier protein sequentially or concurrently. Preferably monovalent bacterial capsular polysaccharide conjugates of the first or second group are synthesized from native bacterial capsular polysaccharides with molecular weight ranges of 10 KDa to 50 KDa, 30 KDa-100 KDa, or 100 KDa-300 KDa.

10 Preferably, the bivalent capsular polysaccharide of two immunologically cross-reactive serotypes is represented by the formula PS1-Carrier Protein-PS2 and, also preferably, the conjugate comprises 6APS-CRM197-6BPS. Preferably the carrier protein comprises Tetanus Toxoid, Diphtheria Toxoid, CRM197, Tetanus Toxoid fragments (TTHc), *N. meningitidis* protein PorB, RSV virus proteins, *B. Pertussis* proteins, Pertussis toxoid 15 (PT), Adenylate cyclase Toxin (ACT), 69 KDa protein, Human Papilloma viral protein antigens, Human Papilloma virus VLP forms, Hepatitis *B* virus core antigen, Hepatitis *B* virus VLP forms, derivatives of HBsAg, or combinations thereof. Preferably a single dose of bivalent cross-reactive polysaccharide conjugates comprises less than 4 micrograms in comparison to monovalent conjugates of the same two polysaccharide vaccines which are 4 20 micrograms or more.

Preferably, total carrier protein quantity in the multivalent conjugate vaccine is significantly less than the quantity used in the mono conjugates of the individual polysaccharides of the same cross-reactive serotypes. Preferably, the vaccines of the present invention, the carrier protein amount being conjugated to a bivalent cross-reactive 25 polysaccharide has less protein per serotype in comparison to that of the monovalent conjugates of the same two polysaccharides thereby the carrier protein immune response generated by the vaccine is lower than the response to the carrier protein of vaccines made by others containing the mono conjugates of the individual polysaccharides. Preferably total carrier protein content in the multivalent conjugate vaccine is from 0.5 to 0.7 % by weight of 30 the mono conjugates of the individual polysaccharides of the same cross-reactive serotypes (which is 1:1 ratio between PS: Carrier Protein). Preferably, the conjugate vaccine further

comprises at least one adjuvant selected from the group consisting of aluminum or an aluminum salt, calcium phosphate, a liposome of monophosphoryl lipid A (MPLA), saponin QS-21, and/or a potent TLR7/8 agonist. Preferably the at least one adjuvant comprises an aluminum adjuvant selected from the group consisting of aluminum phosphate, aluminum sulfate and aluminum hydroxide. Preferably the bacterial polysaccharides are selected from the group consisting of cross reacting two or more serotypes from different bacterial capsular polysaccharides and/or the bacterial polysaccharides comprise: *S. pneumoniae* and *H. influenza* type a, b serotypes; *S. pneumoniae* and *Group B Streptococcus* serotypes, *H. influenza* type a, b serotypes, or *N. meningitis* serotypes. Preferably the capsular polysaccharides comprise polysaccharides derived from *Streptococcus pneumoniae*, *Haemophilus influenza*, *N. meningitis*, *Group B Streptococcus*, or *Moraxella catarrhalis* lipo-oligosaccharides (LOS). Also preferably, the *S. pneumoniae* capsular polysaccharide is immunochemically cross-reactive with serotypes selected from the group consisting of 6A/6B/6C/6D; 9V/9A/9B.9N; 15A/15B; 19A/19F and similar types of cross reactive polysaccharides. Preferably, the capsular polysaccharide is derived from *Haemophilus influenza* serotypes a/b/c/d/e/f, non-typeable *Haemophilus influenza* (NTHi) polysaccharides, or *Moraxella catarrhalis* Lipooligosaccharides(LOS), or *N. meningitis* serotypes A, B, C, Y, W-135 or X, or *Group B Streptococcus* serotypes Ia, Ib, II, III, IV, V, VI, VII, VIII. IX and N, and *N. meningitis* serotypes A, C, Y, X, and W-135.

Another embodiment of the invention is directed to conjugate vaccines for the treatment or prevention of infection by Gram-positive and Gram-negative pathogens comprising a therapeutically effective amount of the conjugate vaccine of the invention and, optionally, a pharmacologically acceptable carrier. Preferably the capsular polysaccharides are derived from *Haemophilus influenza*, *N. meningitis*, *Group B Streptococcus*, *N. meningitis*, *H. influenza*, *Moraxella catarrhalis* lipo-oligosaccharides (LOS), and combination thereof.

Another embodiment of the invention is directed to methods for coupling polysaccharides with carrier protein comprising: activating the polysaccharide; attaching a define length spacer arm of about 2.0-40Å to the activated polysaccharide; and attaching the activated polysaccharide attached spacer arm to a carrier protein.

Another embodiment of the invention is directed to methods coupling a carrier protein with polysaccharides comprising: activating the said carrier protein, reducing the carrier proteins disulfide to create sulphydryl groups, preferably creating a sulphydryl group using 2-iminothiolane (2-IT), SMPH like bi-functional linker; attaching a defined length spacer arm of 4-40Å to the activated carrier protein; and attaching the polysaccharide to a spacer arm attached to activated carrier protein. Preferably the activated carrier protein is selected from the group consisting of cross-reactive material (CRM197) obtained or derived from *C. diphtheriae*, or recombinant CRM197 obtained or derived from *P. fluorescens* or *E. coli*.

Another embodiment of the invention is directed to bifunctional linkers that are is 10 homo-bifunctional or hetero-bifunctional.

Another embodiment of the invention is directed to multivalent *S. Pneumoniae* conjugate vaccine wherein carrier protein is cross-reactive material (CRM197) obtained from *C. diphtheriae*, recombinant CRM197 obtained from *P. fluorescens*, or recombinant CRM197 obtained from *E. coli*.

15 Other embodiments and advantages of the invention are set forth in part in the description, which follows, and in part, may be obvious from this description, or may be learned from the practice of the invention.

Description of the Figures

Figure 1A Size reduced capsular polysaccharide of serotype 6A 1H-NMR spectra 20 (500MHz)-NMR data shows no loss of structural integrity compared to native PS.

Figure 1B Size reduced capsular polysaccharide of serotype 6B 1H-NMR spectra (500MHz)-NMR data shows no loss of structural integrity compared to native PS.

Figure 2A Capsular polysaccharide specific antibodies (total IgG) using multiplex bead based assay procedure (Polysaccharides used for these conjugates are in the range of 10-25 50KDa).

Figure 2B Capsular polysaccharide specific antibodies (total IgG) using multiplex bead based assay procedure wherein polysaccharides are in the range of 200-300 KDa or more.

Figure 2C Bi-valent conjugates of 6A and 6B capsular polysaccharide specific antibodies (total IgG) using multiplex bead based assay procedure wherein polysaccharides 30 are in the range of 10-50 KDa and 200-400KDa.

Figure 3A Monovalent conjugates synthesis work flow chart.

Figure 3B Flow chart of PS1 and PS2 activation with linkers.

Figure 4A Bivalent unimolecular conjugates and bi-valent conjugates synthesis workflow chart.

Figure 4B CRM chemical couplings.

5 **Figure 5** CDAP (1-cyano-4-dimethylaminopyridinium tetrafluoroborate, Cyanuric chloride (2,4,6-Trichloro-1,3,5-triazine), cyanogen bromide (CNBr).

Figure 6 Thiolation of CRM 197 with iminotiolene.

Description of the Invention

Streptococcus pneumoniae is a Gram-positive bacterium which can cause diseases 10 such as pneumonia, bacteraemia, meningitis, and acute Otitis media. Pneumococcus is encapsulated with a chemically linked polysaccharide which results in serotype specificity. At least 90 pneumococcal serotypes are known of which about 23 account for 90% of invasive diseases. The protection against invasive pneumococci disease is related to the antibody specific to the capsular polysaccharide, the protection is therefore serotype specific.

15 It was surprisingly discovered that multivalent *S. Pneumoniae* conjugate vaccine comprising of a linker between the carrier protein and the polysaccharide to form two groups of conjugates, wherein group one comprises monovalent bacterial capsular polysaccharide conjugates and the other group comprises multivalent carrier protein conjugates provides substantially improved results. Specifically, the bivalent conjugates and bivalent unimolecular conjugates are preferably synthesized by the reaction between carrier protein and 20 bifunctional linkers attached to cross reactive *S. Pneumoniae* serotypes. Results achieved are substantially improved compared to vaccines containing multivalent *S. Pneumoniae* conjugate vaccine containing monovalent bacterial capsular polysaccharide conjugates with the same number of serotypes with a direct conjugation between the two instead of a linker.

25 One embodiment of the invention is directed to multivalent conjugate vaccines comprised of bivalent-polysaccharide protein conjugates with enhanced immunogenicity. Bivalent conjugates with general structure PS1-carrier protein-PS2 have higher immunogenicity compared to similar monovalent conjugates wherein PS1 and PS2 are two different serotype polysaccharides from gram-negative and gram- 30 positive bacterial pathogens. By developing a bi-valent conjugate vaccine, the efficacy of the vaccine increases and carrier immunogenicity is reduced. The chemistry disclosed herein

substantially increases the conjugates immunogenicity, at the same time reduces carrier protein load.

Another embodiment of the invention is directed to vaccines with lower molecular weight polysaccharides and longer arm bifunctional linkers preferably with 5 enhanced immunogenicity. Another embodiment of the invention is directed to providing higher immunogenicity and avidity of bivalent conjugates as well as lower carrier protein immunogenicity. Another embodiment of the invention is directed to reducing conjugate vaccine dose with higher immunogenicity.

As disclosed herein, four parameters have been introduced to minimize the 10 disadvantages of conventional vaccines:

- Polysaccharide size is preferably 10-50KDa.
- Cross-reactive polysaccharides concurrent conjugation to carrier protein.
- Two or more cross reactive serotypes are conjugated concurrently with carrier proteins.
- A long hetero- or homo-bifunctional spacer arm preferably of from 2-40Å (also 2-40Å, 15 4-40Å, 10-40Å, 20-40Å, 9-20Å, 5-20Å, 5-30Å).

These four parameters taken together are profoundly effective to increase the conjugates polysaccharide/protein ratio, to reduce carrier protein load, and to provide several folds of increase in immunogenicity and avidity.

The present invention is directed to polysaccharide–protein conjugates with enhanced 20 immunogenicity displaying significantly high antibody titers. The carrier protein is obtained from, for example, tetanus toxoid, diphtheria toxoid, CRM197, tetanus toxoid fragments (TTHc), *N. meningitidis* protein PorB, RSV virus proteins, *B. Pertussis* proteins like pertussis toxoid (PT), adenylate cyclase toxin (ACT), 69KDa protein and Human Papilloma viral protein antigens or its VLP form, Hepatitis B core antigen or its VLP form or derivatives of 25 HBsAg, and other conventional carriers. Polysaccharide fragment is obtained from group of group of gram positive bacteria and gram-negative bacteria, preferably from immunochemically cross-reactive polysaccharides of *S. Pneumoniae*. The present invention is also directed to a process of preparing the polysaccharide–protein conjugates in which carrier protein reacts with cleaved and depolymerized polysaccharide fragments of optimum 30 chain length.

Immunogenic compositions of the present invention provide for appropriate level and improved protection against *S. pneumoniae* serotypes not found in PREVNAR-13®, and SYNFLORIX-10®.

5 Bivalent conjugates with cross-reactive polysaccharides of *S. Pneumoniae* serotypes (6A/6B, 9V/9N, 15A/15B and 19A/19F and similar cross-reactive serotypes) with short chain molecular size (10-50KDa) was used to prepare 16-26-valent pneumococcal CPS conjugate vaccine in the present study. *Pneumococcus* type 6A and 6B polysaccharide was used as the model cross-reactive CPSs. CRM197 was used as the carrier protein for its clinical acceptance.

10 Multivalent monoconjugates have also been prepared using shorter PS chain length (0-50KDa), long spacer arm (9-40Å) with homo or hetero-bifunctional PEG or non-PEG linker with carrier protein CRM197.

15 CPS was activated either by oxidation or by cyanylation chemistry and oxidized by sodium periodate and introduced with either -reactive aldehyde or isothiocyanate (-OCN) groups in CPS.

Two strategies (short and long linker, short and long CPSs) were used to introduce, respectively. Physicochemical and immunological characteristics of the bivalent conjugates vaccines were then investigated independently or combining with multivalent conjugate formulation.

20 The following examples illustrate embodiments of the invention, but should not be viewed as limiting the scope of the invention.

Examples

Example 1 Polysaccharide size reduction, activation and conjugation process for multiple *S. pneumoniae* serotypes -1, 2, 3, 4, 5, 6A, 6B, 7F, 8, 10A, 11A, 12F, 14, 15A,

25 **15B, 17F, 18C, 19A, 19F, 20, 22F, 23F, 33F and 35B**

6A and 6B Polysaccharide

100 mg each of capsular polysaccharides of *S. pneumoniae* 6A and 6B is dissolved in 10ml of aqueous solution containing 10mM of Acetic acid or 0.1 M HCl at pH 2.5-3.0 and hydrolysis is carried out by maintaining the solution at a temperature of 60-85°C for a period 30 of 60-120 mins. The so-obtained oligosaccharides after neutralization, diafiltered using 3-10KDa TFF Centricon filters. Upon ¹H NMR analysis (**Figures 1A and 1B**), the

oligosaccharides formed show no loss of structural integrity or loss of epitope or repeat unit structure. Polysaccharides were measured using Anthrone assay and molecular size distributions (KDa) obtained are in the range of 10-50KDa, 30-100KDa, and 100-300KDa.

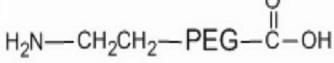
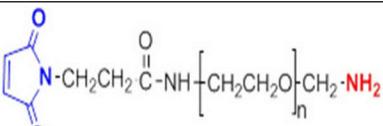
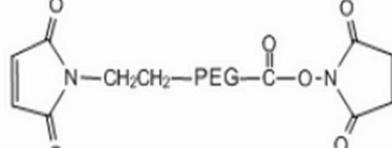
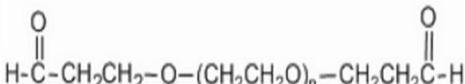
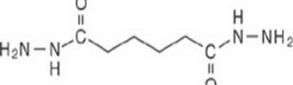
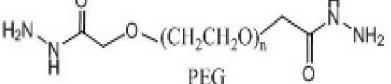
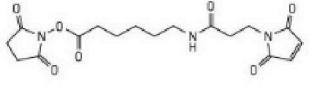
5 CPS (50 mg) moiety (native polysaccharides of size between \geq 200-500KDa or size-reduced polysaccharides of size between 10-50KDa) were activated cyanylation reagents commonly used in activation process (**Table 1**). Polysaccharide molecular size distributions were determined using SEC-HPLC (Shodex SB-405 and SB-406 SEC columns) with analysis using (10-1000KDa) Pollulan mixture as reference standard (Pollulan standards from Shodex, USA).

10 Short spacer arm was introduced to PS by reaction with 5-8-fold molar excess of ADH (Sigma) at pH 5.6-6.0 for 3-5 hr. Long spacer arm (bifunctional linker or long 4-arm linker) was introduced into PS by reaction with 5-10-fold molar excess of at pH 5.6-6.0 for 3-5 h.

Table 1

15 **Polysaccharide size distribution (KDa) used for conjugation**

PS	Polysaccharide KDa
6A	10-30KDa
6B	20-50KDa
15B	20-40KDa
18C	20-50KDa
22F	10-30KDa








Activated PS is further derivatized with short arm linker (adipic acid di-hydrazide, ADH, 174.2g/mole), one more spacer arm linkers with varying size from 2-4 \AA to 8-20 \AA (600g/mol-3.5g/mole).

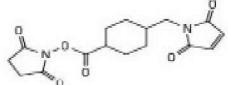
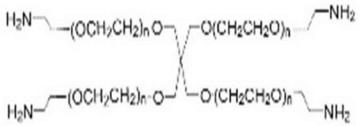


20 Homo or hetero-bifunctional PEG linkers with diamine functional groups attached, e.g. NH₂-PEG0.6K-NH₂, NH₂-PEG3.5K-COOH (**Table 2**).

Table 2

Short and long chain linker used for polysaccharide or carrier protein derivatization used (several other linkers either in pegylated form or non-pegylated form have also been used)

Linker No.	Linker Structure	Chemical Structures/KDa or \AA used

1	NH ₂ -PEG- NH ₂ /NHS	H ₂ N-(CH ₂ CH ₂ O) _n -CH ₂ CH ₂ -NH ₂ 1K and 3.5K
2	NHS/NH ₂ -PEG--COOH	 1K and 3.5K
3	Mal-PEG- NH ₂	 1K and 3.5K
4	Mal-PEG-NHS	 1K and 3.5K
5	CHO-PEG-CHO	 1K and 3.5K
6	SH-PEG-NH ₂	HS-(CH ₂ CH ₂ O) _n -CH ₂ CH ₂ -NH ₂ 1K and 3.5K
7	ADH	
8	HZ-PEG-HZ	
9	SMPH	 Succinimidyl 6-[β-maleimidopropionamido]hexanoate MW 379.36 Spacer Arm 14.2 Å

11	SMCC	<p style="text-align: center;">SMCC Succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate MW 334.32 Spacer Arm 8.3 Å</p>
12	4-Arm-PEG-NH ₂ or NHS	

Mal-Maleimide, NHS-Succinimide, PEG-Polyethylene glycol derivatives, ADH-Adipic acid di-hydrazide.

Two aliquots of 2 ml each of the derivatized CPS (10 mg/ml) were mixed with 1 ml aliquot of the two CRM197 protein samples (10 mg/ml) at 4°C for 8-12hrs. The conjugates with long and short spacer arm were purified by a 100-300 KDa Centricon filters (EMD Millipore) (**Table 3**).

Table 3

Physicochemical Characterization of mono-valent Conjugates

PS	Activated PS KDa by SEC-HPLC	Conjugate KDa by SEC-HPLC	PS: Protein ratio	Free PS%
6A	10-30KDa, 200-300KDa	>200-300, >2500	0.5-2, 1-2	<2
6B	20-50KDa, 200-400KDa	>300-500, >2500	0.5-2, 1-2	<1
15B	20-40KDa	>300-500	0.5-2, 1:1	<1
18C	20-50KDa	>300-500	0.5-2, 1:1	<2
22F	10-30KDa	>200-300	0.5-2, 1:1	<1

Note: Internal std. for KDa determination of PS for SEC-HPLC:Pullulan std. mixture (2 KDa-

10 2500 KDa).

Example 2 Activation of size reduced polysaccharides of different molecular weights Oligosaccharides of different molecular weights synthesized as described in example 1 were activated. Cyanylation reagents commonly used in activation process.

15 CDAP (1-Cyano-4-dimethylaminopyridinium tetrafluoroborate (Sigma Aldrich, USA)) cyanuric chloride (2,4,6-trichloro-1,3,5-triazine) or cyanogen bromide (CNBr) and coupling carrier protein (see **Figures 5 and 6**).

5 Polysaccharide solution (10 mg/ml) was incubated with 10mg/ml CDAP (100mg/ml in acetonitrile) in 2M NaCl or 200-300mM bicarbonate buffer at RT for 4-6 minutes. pH was maintained at 10-10.5 using either 1N NaOH or 1N HCl. Then, pH was adjusted to 8.1-8.2, pegylated linkers (Hz-PEG-HZ) were allowed to react with CDAP treated PS. For 8-12 hrs at RT. The reaction mixtures were depth filtered followed by 100-300KDa cutoff centricon filters 5-8 times using 150 mM NaCl.

Derivatization of activated size reduced Polysaccharides

10 Activated oligosaccharides were further derivatized with short chain homo-bifunctional hydrazide linker. Typical reagent was adipic Acid di-hydrazide, ADH, Molecular weight 174.2 g/mole). Homo or hetero-bifunctional PEG linkers bearing di-amine, di-hydrazide, or amine or hydrazide-carboxylic acid/aldehyde functional groups, e.g. NH2-PEG(1K-3.5K)-NH2, HZ-PEG(1-3.5K)-HZ, NH2-PEG3.5K-COOH were used. (Table 2). Several other homo-or hetero-bifunctional spacer arms can also be used for derivatization (Table 2). Short spacer arm was introduced to oligosaccharide by reaction with 5-8fold molar 15 excess of adipic acid di-hydrazide (Sigma) at pH 5.8-6.0 for 3-5 hr. long chain linker (bifunctional linker or long tetra functional linker (Table 2), No. 12 four arm linker) was introduced into Polysaccharide by reaction with 5-10-fold molar excess of the linker to the oligosaccharide at pH 5.8-6.0 for 3-5 hrs. at RT.

Derivatization of carrier protein with short or long-linkers

20 Carrier protein CRM197 was further derivatized with short chain homo-bifunctional hydrazide linker. Typical reagent was adipic Acid di-hydrazide, ADH, molecular weight 174.2 g/mole). Homo or hetero-bifunctional PEG linkers bearing di-amine, di-hydrazide, or amine or hydrazide-carboxylic acid/aldehyde functional groups, e.g., NH2-PEG(1K-3.5K)-NH2, HZ-PEG(1-3.5K)-HZ, NH2-PEG3.5K-COOH were used. (Table 2). Several other 25 homo-or hetero-bifunctional spacer arms can also be used for derivatization as listed in Table 2). Short spacer arm was introduced to carrier protein CRM197 by reaction with 5-8 fold molar excess of adipic Acid di-hydrazide (Sigma) at pH 5.8-6.2 in 300-600 mM MES buffer for 3-5 hr at RT. Long chain linker (bifunctional linker or long tetra functional linker (Table 2, No. 12 four arm linker) was introduced into carrier protein by reaction with 5-10-fold 30 molar excess of the linker to the oligosaccharide at pH 5.8-6.2 in 300-600mM MES buffer for 3-5 hr at RT (room temperature).

Example 3 Cross-reactive Polysaccharide serotypes activation and attachment of short or long-spacer arm linkers (serotypes of interest are 6A/6B, 9V/9N, 15A/15B and 19A/19F or any other cross-reactive serotypes).

Activation of the oligosaccharide derived from the capsular polysaccharide of *S. 5 Pneumoniae* Type 6A and 6B conjugation with CRM197 and introduction of the primary amino groups to the oligosaccharides concurrently.

Native or size reduced polysaccharide of serotype 6A and 6B (\geq 200-400KDa) were conjugated using the same procedure as described in Examples 1 and 2.

10 The oligosaccharides mixture thus obtained as reported in Example 1 are dissolved in WFI, to an end concentration of 10 mg/ml. At the end of the reaction, the Oligosaccharide are purified by diafiltration using 3-10 KDa Centricon filters.

15 The Oligosaccharides into which the amino groups have been introduced are diluted to a concentration of 10 mg/ml in an aqueous solution of DMSO (at 20-30% v/v) to DMSO containing ADH short linker or long spacer arm linkers in molar excess relatively to the amino groups introduced into the oligosaccharide (usually 5-10:1). The reaction was carried out by keeping the solutions at RT for a time of 4-12 hours. At the end of the period, oligosaccharide was again purified using 3-10 KDa Centricon filters.

Example 4 Synthesis of Pneumococcal polysaccharide monovalent conjugates

20 Two separate aliquots of same or differently size reduced and derivatized size reduced Polysaccharides (with short spacer arm ADH and Long spacer arm HZ-PEG-HZ) as synthesized in example 3 (10 mg/ml) were mixed with 1 ml aliquot of the CRM197 protein sample (10 mg/ml) at 4 °C for 8-12hrs. The conjugates containing both long and short chain linkers were purified using 100-300KDa centricon filters (EMD Millipore). Each monovalent conjugates were assayed for total polysaccharide content by either anthrone or uronic acid 25 assay, total protein content by BCA or Lowry assay (**Table 4**).

All other cross-reactive Polysaccharide conjugates are made using the same procedure as above.

Table 4

Physicochemical Characterization of Bi-valent Conjugate of general structure 6A-

30 **CRM197-6B**

PS	Activated Oligosaccharide KDa	Conjugate KDa	Oligosaccharide: Protein ratio (Weight ratio)	Free Oligosaccharide % by weight
6A	≥ 100 -300KDa	>200-300KDa, >2500KDa	0.5-2, 1-2	<2
6B	≥ 200 -400KDa	>300-500KDa, >2500KDa	0.5-2, 1-2	<1
6C	≥ 200 -400KDa	>300-500KDa, >2500KDa	0.5-2, 1-2	<1
15B	≥ 100 -300KDa	>300-500KDa, >1500KDa	0.5-2, 1:1	<1
15A	≥ 100 -300KDa	>300-500KDa, >1500KDa	0.5-2, 1:1	<1
18C	≥ 100 -300KDa	>300-500KDa, >1500KDa	0.5-2, 1:1	<2
22F	≥ 100 -300KDa	>200-300KDa, >1000KDa	0.5-2, 1:1	<1
1	≥ 100 -300KDa	>200-300KDa, >2500KDa	0.5-2, 1-2	<2
3	≥ 200 -400KDa	>300-500KDa, >2500KDa	0.5-2, 1-2	<1
4	≥ 100 -300KDa	>300-500KDa, >1500KDa	0.5-2, 1:1	<1
7F	≥ 100 -300KDa	>300-500KDa, >1500KDa	0.5-2, 1:1	<2
9V	≥ 100 -300KDa	>200-300KDa, >1000KDa	0.5-2, 1:1	<1
9N	≥ 100 -300KDa	>200-300KDa, >1000KDa	0.5-2, 1:1	<1
14	>100-300KDa	>200-300KDa, >2500KDa	0.5-2, 1-2	<2
18C	≥ 200 -400KDa	>800KDa, >2500KDa	0.5-2, 1-2	<1
19A	≥ 100 -300KDa	>300-500KDa, >1500KDa	0.5-2, 1:1	<1
19F	≥ 100 -300KDa	>300-500KDa, >1500KDa	0.5-2, 1:1	<2
23F	≥ 100 -300KDa	>200-300KDa, >1000KDa	0.5-2, 1:1	<1
33F	≥ 100 -300KDa	>200-300KDa, >2500KDa	0.5-2, 1-2	<2

Note: Internal std. for SEC-HPLC (KDa): Pollulan std mixture (2KDa-1200KDa)

Example 4 Investigational Formulation of 16V-or higher valent Pneumococcal Conjugate vaccine

Pneumo Polysaccharide -CRM197 conjugates for serotypes containing 1, 3, 5, 7F, 5 14, 15B, 18C, 22F, 23F, 33F, 35B and cross-reactive polysaccharide conjugates 6A, 6B, 9V, 9N, 15A, 15B, 19A, and 19F were combined to yield final antigen concentration of 4.0 μ g

PS/mL. Sodium chloride (150 mM) solution, 10-20 mM Histidine, Succinic acid and 0.001% Tween-20 was also used during the formulation process as diluent, and aluminum phosphate (Adju-Phos, Brenntag, USA) was used as investigational adjuvant. 16-V conjugate was aseptically filled in 2mL sterile vials. PNEUMOVAX® (Merck, USA) or PREVNAR-13® (Pfizer, USA) was used as two control commercial vaccine formulation.

Example 5 Immunogenicity studies of Conjugates

A New Zealand white rabbit model (NZW) was selected in this work to compare the immunogenicity of the Pneumo PS-CRM197 conjugates. Rabbits from all groups (16-V {valent}, PREVNAR-13®, and PNEUMOVAX®) were examined for clinical signs before and after immunization periods. For all groups, pre-immunization, booster dose (7 and 14-days) and terminal bleed (28 days) were collected and aliquoted and store at minus 80°C until use. Multiplexed Immunogenicity assay for the determination of Total IgG were performed according to the standard protocol using reference standard serum 007 (CBER, FDA, USA). Reference serum and rabbit serum were diluted and pre-adsorbed for cross-reacting antibodies by treatment with pneumococcal CWPS and either 22F PS or 25PS. Human monoclonal anti-polysaccharide antibodies (Pamlico Biopharma, USA) were used for total IgG estimation. Bio-Plex 200 (Bio-Rad). Multiplex reader was used as per manufacturer's instructions (see **Figures 2A, 2B and 2C**).

Example 5 *S. Pneumoniae* Cross-reactive capsular Polysaccharide serotypes activation

and attachment of short and long-spacer linkers

Serotypes of 6A/6B, 9V/9N, 15A/15B and 19A/19F which are cross-reactive serotypes are used for the synthesis of bi-valent conjugates containing capsular polysaccharides and carrier protein. Bivalent conjugates by definition contain two capsular polysaccharide attached to CRM 197 simultaneously or concurrently.

Activation of the size reduced polysaccharide derived from the capsular polysaccharide of *S. Pneumoniae* Type 6A and 6B, conjugation with CRM197 and introduction of the primary amino or hydrazide groups to the oligosaccharides carried out concurrently.

Native polysaccharides or size reduced oligosaccharide of serotype 6A and 6B (≥ 200 -500KDa) were conjugated using the same procedure as described in Example 1 -4.

The size reduced polysaccharides mixtures thus obtained were dissolved in water for injection, so that the final concentration was 10 mg/ml. The size reduced polysaccharides into which the amino or hydrazide groups were introduced were diluted to a concentration of 10 mg/ml in an aqueous solution of dimethyl sulfoxide (DMSO) so the percentage of DMSO 5 was in the range of 20-30% (v/v). This was added to DMSO containing short chain linker such as ADH or long chain linkers as described in **Table 2** in molar excess relatively to the amino/hydrazide groups introduced into the size reduced polysaccharides (usually 5:1 or 10:1), more specifically 8:1.

10 The reaction was carried out at room temperature for a duration of 4-12 hours. At the end of the reaction period, the reaction product was again purified using 3-10KDa Centricon filters.

Example 6 Simultaneous or concurrent Conjugation of *S. pneumoniae* oligosaccharides of Type 6A and Type 6B with CRM197 carrier Protein as bivalent conjugates manufacturing.

15 The aqueous solution containing 15 mg/ml of CRM197, was added to DMSO containing the linker attached oligosaccharide (20-30% in water) derived from the capsular polysaccharide of *S. pneumoniae* Type 6A. The ratio of linker attached oligosaccharide to CRM197 was selected from 1:1,2:1,1:2. The mixture so obtained was kept, under mild stirring, at room temperature for 8-12hrs. At the end of said time, the solution containing the 20 derivatized oligosaccharide derived from the capsular polysaccharide of *S. Pneumoniae* 6B was added. The molar ratio of capsular polysaccharide of *S. Pneumoniae* 6B to the CRM197, was selected from 1:1,2:1,1:2). The resulting mixture was kept for 8-12hrs at room temperature (**Table 5**). The conjugation reaction can also be carried out by adding, at the same time (concurrently), to the CRM197-containing solution, the two-activated 25 oligosaccharide respectively derived from the capsular polysaccharide of *S. pneumoniae* Type 6A and from the capsular polysaccharide of *S. pneumoniae* Type 6B. The oligosaccharide-protein conjugates so obtained were dialyzed using 100-300KDa dialysis membrane (Spectrum lab, USA), conditioned in 0.01 M phosphate buffer containing 0.2M NaCl (pH=6.6-7.0) and finally filtered through a 0.22 μ m filter.

30 All other cross-reactive Polysaccharide conjugates were made using the same procedure as used above. Reaction sequences are depicted in **Figures 3A, 3B, 4A, and 4B.**

Table 5
Comparisons of PS Contents

Bivalent Oligosaccharide	Activated oligosaccharide KDa	Conjugate KDa	Total Polysaccharide Protein ratio by weight	Free oligosaccharide % by weight
6A-6B	≥100-300	2.0:1.5	2-1.5 (1:0.75)	<2
6A-6B	≥100-300, ≥300	>1200-2500KDa	2-1.4 (1: 0.7)	<3
19A-19F	≥100-300	>500-800KDa	2-1.6 (1:0.8)	<2
15A-15B	≥100-300, ≥300	>500-1000KDa	2-1.3 (1: 0.65)	<3
9V-9N	≥100-300, ≥300	>500-1000KDa	2-1.3 (1: 0.65)	<3

**Example 7 Investigational Formulation of 18-Valent or higher valent Pneumococcal
5 Conjugate vaccine.**

Pneumococcal Polysaccharide-CRM197 conjugates for serotypes containing 1, 3, 5, 7F, 14, 18C, 22F, 23F, 33F, 35B (10 serotypes Polysaccharides) and cross-reactive polysaccharide conjugates of (6A, 6B), (9V, 9N), (15A, 15B) and (19A, 19F) (8 serotypes) were combined to yield final polysaccharide concentration of 2.2-4.4 µg PS/mL (1.1-2.2 µg/human dose, 0.5 mL). Sodium chloride (150mM) solution, 10-20 mM histidine, 20 mM HEPES or MOPS buffer and 0.001% Tween-20 was also used during the formulation process as diluent, and aluminum phosphate (Adju-Phos, Brenntag, USA) was used as investigational adjuvant.

18-valent or higher valent (>20V-24V) conjugate was aseptically filled in 2mL sterile vials. PNEUMOVAX® (Merck, USA) and/or PREVNAR-13® (Pfizer, USA) were used as controls.

Example 9 Immunogenicity studies of the Conjugates.

A New Zealand white rabbit model (NZW) was selected in this work to compare the immunogenicity of the Pneumococcal PS-CRM197 conjugates. Rabbits from all groups (18 or higher-Valent conjugates, PREVNAR-13®, Pfizer and PNEUMOVAX®-23 (Merck USA) were examined for serological titers before and after immunization periods. For all groups, pre-immunization, booster dose (7 and 14-days) and terminal bleed (28 days) were collected and aliquoted and store at -80°C until use. Immunogenicity assay for the determination of Total IgG were performed according to the standard protocol using

reference standard serum 007 (CBER, FDA, USA). Reference serum and Rabbit serum were diluted and pre-adsorbed for cross-reacting antibodies by treatment with Pneumococcal CWPS and non-vaccine serotype 25PS. Human/rabbit/mouse monoclonal anti-polysaccharide antibodies were used for total IgG estimation. Bio-Plex 200 (Bio-Rad) reader were used as per the manufacturer's instructions.

5 Immunogenicity of the conjugates, i.e. capsular polysaccharide specific antibodies (total IgG) were measured using bead-based ELISA assay method were given in **Table 6**. Total IgG values were compared head to head with PREVNAR-13® in rabbit immunogenicity data. 14- day data shows significant increase in titer in IVT-18V-1 vaccine 10 compared to PREVNAR-13® vaccine. Similarly, IVT-18V-1 data has significant booster on IgG values as compared to PREVNAR-13® (**Table 6**).

Table 6

Capsular Polysaccharides specific antibodies (Total IgG in µg/ml) using Multiplex bead-based ELISA assay for 18V-monovalent conjugate vaccines

PREVNAR-13® 2.2µg/dose	(IgG) 14day/zero day	(IgG) 28day /Zero day	IVT-18V-1 2.2µg/dose	(IgG) 14day /Zero day	(IgG) 28day /Zero day
1	45	350	1	375	1500
3	47	200	3	48	480
6A	188	560	6A	775	3775
6B	165	780	6B	662	3662
18C	50	280	18C	306	3560
19A	45	235	19A	233	2500
19F	29	290	19F	72	720
4	49	230	4	150	750
5	186	700	5	550	3550
7F	180	680	7F	332	3860
9V	52	520	9V	212	2400
9N	-	-	9N	200	2200
14	85	400	14	272	2890
15A	-	-	15A	672	3900

15B	-	-	15B	750	4000
18C	175	800	18C	550	5500
22F	-	-	22F	1000	8000
23F	53	450	23F	212	2420

Note: IVT-18V == 18-V conjugate vaccine (monovalent conjugates mixed together); 9N, 15A, 15B, 22F and 23F serotype are not present in PREVNAR-13®, so IgG values not measured; 18-V formulation as monovalent conjugates were prepared using 2.2 µg for each serotype except 4.4 µg of 6B conjugate. Sodium chloride (150mM) solution, 10-20 mM histidine, 20 mM HEPES or MOPS buffer and 0.001% Tween-20 was also used during the formulation process as diluent, and aluminum phosphate (Adju-Phos, Brenntag, USA) was used as investigational adjuvant; capsular polysaccharides antibodies (total IgG) using bead-based ELISA: 18-V conjugate vaccine formulation-2 (IVT-18V-2): 10-V formulation as monovalent conjugates and remaining 8-V added as bivalent-conjugates which includes

5 6A/6B, 9V/9N, 15A/15B and 19A/19F. (vaccine dose used as 2.2 µg for each serotype except 4.4 µg of 6B) 10-V formulation as monovalent conjugates and remaining 8-V added as bivalent-conjugates which includes 6A/6B, 9V/9N, 15A/15B and 19A/19F. 6A-6B bivalent unimolecular conjugates are used as 2.2 µg/dose, remaining bivalent conjugates are used as 2.2 µg/dose. Sodium chloride (150mM) solution, 10-20 mM histidine, 20 mM HEPES or 10 MOPS buffer and 0.001% Tween-20 was also used during the formulation process as diluent, and aluminum phosphate (Adju-Phos, Brenntag, USA) was used as investigational adjuvant.

15 Immunogenicity of the conjugates, capsular polysaccharide specific antibodies (total IgG) were measured using bead-based ELISA assay method were given in **Table 7**. Total IgG values were compared head to head with PREVNAR-13® in rabbit immunogenicity 20 data. 14-day data shows significant increase in titer in IVT-18V-2 vaccine compared to PREVNAR-13® vaccine. Interestingly, IVT-18V-2 total IgG data for bivalent conjugates serotypes (for example. 6A/6B, 9V/9N, 15A/15B, and 19A/19F) has significant booster on IgG values as compared to IVT-18V-1 formulation with monovalent conjugates. Therefore, it can be concluded that Bivalent conjugates has better immunogenicity in comparison to 25 monovalent conjugates (**Table 7**). Therefore, IVT-18V-2 conjugate vaccine formulation has superior immunogenicity not only against PREVNAR-13® but also against IVT-18V-1 formulation. Polysaccharide conjugated with either 1-3.5K linker (HZ-PEG-HZ) elicits much

higher immunogenicity in compared to short linker (ADH) or no linker conjugates as in PREVNAR-13®.

Table 7

Capsular Polysaccharides antibodies (total IgG) using Multiplex bead-based ELISA

PREVNAR-13® 2.2µg/dose	Ratio 14day/0day	Ratio 28day/0 day	IVT-18V-2 2.2µg/dose	Ratio 14day/0day	Ratio 28day/0 day
1	45	350	1	375	1500
3	47	200	3	50	530
6A	188	560	6A/6B	875/762	4375/4662
6B	165	780			
18C	50	280	18C	316	3600
19A	45	235	19A/19F	300/198	3500/2700
19F	29	290			
4	49	230	4	180	1000
5	186	700	5	550	3600
7F	180	680	7F	360	4100
9V	52	520	9V/9N	350/300	3400/3200
9N	-	-			
14	85	400	14	310	32000
15A	-	-	15A/15B	872/850	5900/5600
15B	-	-			
18C	175	800	18C	600	6800
22F	-	-	22F	1020	8150
23F	53	450	23F	300	3200

5 Note: 1VI-18V-2 = 10-monovalent conjugates and 4 bivalent conjugates mixed together; 18-V conjugate vaccine formulation (IVT-18V-3): 10-V formulation as monovalent conjugates used as 2.2 µg/dose and remaining 8-V added as bivalent-conjugates which includes 6A/6B, 9V/9N, 15A/15B and 19A/19F used as 1.1 µg/dose, except 6B 2.2 µg/dose.

10 Immunogenicity of the conjugates, i.e. capsular polysaccharide specific antibodies (total IgG) were measured using Multiplex bead-based ELISA assay method were given in **Table 8**. Total IgG values were compared head to head with PREVNAR-13® in rabbit immunogenicity data. 14-day data shows significant increase in titer in IVT-18V-3 vaccine compared to PREVNAR-13® vaccine. Interestingly, IVT-18V-3 formulations with lower dose (2.2 vs 1.1ug dose), total IgG data for bivalent conjugates serotypes (for example,

6A/6B, 9V/9N, 15A/15B, and 19A/19F) has comparable IgG values as compared to IVT-18V-2 formulations for bivalent conjugate serotypes. Therefore, it can be concluded that bivalent conjugates has better immunogenicity in comparison to monovalent conjugates with lower dose. Therefore, IVT-18V-2 conjugate vaccine formulation has superior immunogenicity not only against PREVNAR-13® but also against IVT-18V-1 formulation. Polysaccharide conjugated with either 1-3.5K linker (HZ-PEG-HZ) elicits much higher immunogenicity in compared to short linker (ADH) or no linker conjugates as in PREVNAR-13® (**Table 8**).

10

Table 8
Total IgG data for bivalent conjugates serotypes

PREVNAR-13® 2.2μg/dose	Ratio 14day/0day	Ratio 28day/0day	IVT-18V-2 2.2μg/dose	Ratio 14day/0	Ratio 28day/0day
1	45	350	1	375	1500
3	47	200	3	50	530
6A	188	560	6A/6B	825/860	4275/4900
6B	165	780			
18C	50	280	18C	316	3600
19A	45	235	19A/19F	275/250	3400/3000
19F	29	290			
4	49	230	4	180	1000
5	186	700	5	550	3600
7F	180	680	7F	360	4100
9V	52	520	9V/9N	320/380	3300/3800
9N	-	-			
14	85	400	14	310	32000
15A	-	-	15A/15B	790/900	5800/6200
15B	-	-			
18C	175	800	18C	600	6800
22F	-	-	22F	1020	8150
23F	53	450	23F	300	3200

Note: 1VI-18V-3 = 10-monovalent conjugates and 4 bivalent conjugates mixed together.

Other embodiments and uses of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. All references cited herein, including all publications, U.S. and foreign patents and patent 5 applications, are specifically and entirely incorporated by reference. It is intended that the specification and examples be considered exemplary only with the true scope and spirit of the invention indicated by the following claims. Furthermore, the term "comprising of" includes the terms "consisting of" and "consisting essentially of."

Claims

1. An immunogenic composition comprising:
first and second group conjugates, wherein:
first group conjugates comprise a first collection of monovalent conjugates,
5 wherein each monovalent conjugate comprises a carrier protein and a capsular polysaccharide of *Streptococcus pneumoniae* and the first collection includes capsular polysaccharides of *Streptococcus pneumoniae* serotypes 1, 2, 3, 4, 5, 7F, 8, 10A, 11A, 12F, 14, 17F, 18C, 20, 22F, 23F, 24F, 33F and 35B; and
second group conjugates comprise a second collection of bivalent and/or
10 multivalent conjugates, wherein each bivalent or multivalent conjugate comprises another carrier protein and at least two capsular polysaccharides of *Streptococcus pneumoniae*, wherein the second collection includes *Streptococcus pneumoniae* serotypes 6A, 6B, 6C, and/or 6D, *Streptococcus pneumoniae* serotypes 9V, 9N, 9A and/or 9B, *Streptococcus pneumoniae* serotypes 15B, 15A, and/or 15C, and *Streptococcus pneumoniae* serotypes 19A
15 and 19F, wherein one or more of the capsular polysaccharides are coupled via a bifunctional linker, wherein the multivalent conjugate contains a quantity of carrier protein that is less than a quantity of capsular polysaccharide.
2. The composition of claim 1, wherein the second group conjugates are bivalent conjugates.
- 20 3. The composition of claim 2, wherein the bivalent conjugates comprises two immunologically cross-reactive serotypes represented by the formula PS1-Carrier Protein-PS2, wherein PS1 and PS2 represent different polysaccharides.
4. The composition of claim 2 or claim 3, wherein the bivalent conjugates are conjugated to the same carrier protein sequentially or concurrently.
- 25 5. The composition of any one of claims 1 to 4, wherein the bifunctional linker further comprises a spacer arm of from 9-40Å .
6. The composition of any one of claims 1 to 5, wherein one or more of the monovalent conjugates comprise a linker.
7. The composition of any one of claims 1 to 6, wherein the one or more monovalent
30 conjugates comprises the capsular polysaccharide of *Streptococcus pneumoniae* serotype 22F.

8. The composition of any one of claims 1 to 7, wherein the second collection includes *Streptococcus pneumoniae* serotypes 6A, 6B, 6C, and 6D, *Streptococcus pneumoniae* serotypes 9V, 9N, 9A and 9B, *Streptococcus pneumoniae* serotypes 15B, 15A, and 15C, and *Streptococcus pneumoniae* serotypes 19A and 19F.

5 9. The composition of claim 8, further comprising capsular polysaccharides of one or more serotypes of *Haemophilus influenza* type a and/or b; *Group B Streptococcus*, *Moraxella catarrhalis* lipo-oligosaccharides (LOS), non-typable *Haemophilus influenzae* (NTHi) and/or *Neisseria meningitis*.

10. An immunogenic composition comprising a first group of monovalent capsular polysaccharides and a second group of bivalent or multivalent capsular polysaccharides wherein:

the first group of monovalent capsular polysaccharides comprise polysaccharides of *Streptococcus pneumoniae* serotypes 1, 2, 3, 4, 5, 7F, 8, 10A, 11A, 12F, 14, 17F, 18C, 20, 22F, 23F, 24F, 33F and 35B; and

15 the second group of bivalent or multivalent capsular polysaccharides comprising two or more polysaccharides selected from one or more of the groups consisting of *S. pneumoniae* serotypes 6A/6B/6C/6D, *S. pneumoniae* serotypes 9V/9N/9A/9B, *S. pneumoniae* serotypes 15B/15A/15C, and *S. pneumoniae* serotypes 19A/19F, wherein:

20 the first group of monovalent capsular polysaccharides are each covalently coupled to a first PEG linker which is couple to a first carrier protein, and

the second group of bivalent or multivalent capsular polysaccharides are each covalently coupled to a second PEG linker which is coupled to a second carrier protein.

11. The composition of claim 10, wherein the bivalent or multivalent capsular polysaccharides comprises two immunologically cross-reactive serotypes of *S. pneumoniae*.

25 12. The composition of claim 10 or claim 11, wherein the second group of bivalent or multivalent capsular polysaccharides comprises a structure polysaccharide-PEG-carrier protein-PEG-polysaccharide.

13. The composition of any one of claims 10 to 12, wherein the bivalent or multivalent capsular polysaccharides covalently coupled to the second PEG linker are covalently coupled 30 to the second carrier protein sequentially or concurrently.

14. The composition of any one of claims 10 to 13, wherein the second group of bivalent or multivalent capsular polysaccharides comprise the structure 6A-PEG-CRM197-PEG-6B.
15. The composition of any one of claims 10 to 14, further comprising one or more serotypes of *Haemophilus influenza* type a or b, *Group B Streptococcus*, *Neisseria meningitis* or combinations thereof.
16. The composition of any one of claims 10 to 14, further comprising monovalent capsular polysaccharides and/or bivalent or multivalent capsular polysaccharides derived from *Haemophilus influenzae* serotypes a/b/c/d/e/f, non-typeable *Haemophilus influenzae* (NTHi) polysaccharides, *Moraxella catarrhalis* Lipooligosaccharides (LOS) or combinations thereof.
17. The composition of any one of claims 10 to 16, further comprising monovalent capsular polysaccharides and/or bivalent or multivalent capsular polysaccharides comprises capsular polysaccharides of *N. meningitis* serotypes A, B, C, Y, W-135 or X.
18. The composition of any one of claims 10 to 16, further comprising monovalent capsular polysaccharides and/or bivalent or multivalent capsular polysaccharides comprise capsular polysaccharides of Group B *Streptococcus* serotypes Ia, Ib, II, III, IV, V, VI, VII, VIII, IX, or N.
19. The composition of any one of claims 10 to 18, further comprising capsular polysaccharides of *Haemophilus influenza*, *N. meningitis*, *Group B Streptococcus*, and/or combinations thereof.
20. An immunogenic composition comprising a first group of monovalent capsular polysaccharides and a second group of bivalent or multivalent capsular polysaccharides wherein:
 - 25 the first group of monovalent capsular polysaccharides comprise polysaccharides of *Streptococcus pneumoniae* serotypes 1, 2, 3, 4, 5, 7F, 8, 10A, 11A, 12F, 14, 17F, 18C, 20, 22F, 23F, 24F, 33F and 35B; and
 - 30 the second group of bivalent or multivalent capsular polysaccharides comprising two or more polysaccharides selected from one or more of the groups consisting of *S. pneumoniae* serotypes 6A, 6B, 6C, and 6D, *S. pneumoniae* serotypes 9A, 9B, 9N, and 9V, *S. pneumoniae* serotypes 15A, 15B, and 15C, and *S. pneumoniae* serotypes 19A and 19F; wherein,

polysaccharides of *S. pneumoniae* serotypes 6A, 6B, 6C, 6D, 9A, 9B, 9N, 9V, 15A, 15B, 15C, 19A, and 19F that are not included in the second group are included in the first group:

the first group of monovalent capsular polysaccharides are each 5 covalently coupled to a first PEG linker which is coupled to a first carrier protein, and

the second group of bivalent or multivalent capsular polysaccharides are each covalently coupled to a second PEG linker which is coupled to a second carrier protein.

21. The composition of claim 20, wherein the first group of monovalent capsular 10 polysaccharides comprise polysaccharides of *Streptococcus pneumoniae* serotypes 1, 2, 3, 4, 5, 7F, 8, 10A, 11A, 12F, 14, 15A, 15B, 15C, 17F, 18C, 19A, 19F 20, 22F, 23F, 24F, 33F and 35B, and the second group of bivalent or multivalent capsular polysaccharides comprises polysaccharides of *S. pneumoniae* serotypes 6A, 6B, 6C, 6D, 9A, 9B, 9N, and 9V.

22. The composition of claim 20, wherein the first group of monovalent capsular 15 polysaccharides comprise polysaccharides of *Streptococcus pneumoniae* serotypes 1, 2, 3, 4, 5, 7F, 8, 9A, 9B, 9N, 9V, 10A, 11A, 12F, 14, 17F, 18C, 19A, 19F, 20, 22F, 23F, 24F, 33F and 35B, and the second group of bivalent or multivalent capsular polysaccharides comprises polysaccharides of *S. pneumoniae* serotypes 6A, 6B, 6C, 6D, 15A, 15B, and 15C.

23. The composition of claim 20, wherein the first group of monovalent capsular 20 polysaccharides comprise polysaccharides of *Streptococcus pneumoniae* serotypes 1, 2, 3, 4, 5, 7F, 8, 9A, 9B, 9N, 9V, 10A, 11A, 12F, 14, 15A, 15B, 15C, 17F, 18C, 20, 22F, 23F, 24F, 33F and 35B, and the second group of bivalent or multivalent capsular polysaccharides comprises polysaccharides of *S. pneumoniae* serotypes 6A, 6B, 6C, 6D, 19A, and 19F.

24. The composition of claim 20, wherein the first group of monovalent capsular 25 polysaccharides comprise polysaccharides of *Streptococcus pneumoniae* serotypes 1, 2, 3, 4, 5, 6A, 6B, 6C, 6D, 7F, 8, 10A, 11A, 12F, 14, 17F, 18C, 19A, 19F, 20, 22F, 23F, 24F, 33F and 35B, and the second group of bivalent or multivalent capsular polysaccharides comprises polysaccharides of *S. pneumoniae* serotypes 9A, 9B, 9N, 9V, 15A, 15B, and 15C.

25. The composition of claim 20, wherein the first group of monovalent capsular 30 polysaccharides comprise polysaccharides of *Streptococcus pneumoniae* serotypes 1, 2, 3, 4, 5, 6A, 6B, 6C, 6D, 7F, 8, 10A, 11A, 12F, 14, 15A, 15B, 15C, 17F, 18C, 20, 22F, 23F, 24F,

33F and 35B, and the second group of bivalent or multivalent capsular polysaccharides comprises polysaccharides of *S. pneumoniae* serotypes 9A, 9B, 9N, 9V, 19A, and 19F.

26. The composition of claim 20, wherein the first group of monovalent capsular polysaccharides comprise polysaccharides of *Streptococcus pneumoniae* serotypes 1, 2, 3, 4, 5, 6A, 6B, 6C, 6D, 7F, 8, 9A, 9B, 9N, 9V, 10A, 11A, 12F, 14, 17F, 18C, 20, 22F, 23F, 24F, 33F and 35B, and the second group of bivalent or multivalent capsular polysaccharides comprises polysaccharides of *S. pneumoniae* serotypes 15A, 15B, 15C, 19A, and 19F.

27. The composition of claim 20, wherein the first group of monovalent capsular polysaccharides comprise polysaccharides of *Streptococcus pneumoniae* serotypes 1, 2, 3, 4, 5, 7F, 8, 10A, 11A, 12F, 14, 17F, 18C, 20, 22F, 23F, 24F, 33F and 35B, and the second group of bivalent or multivalent capsular polysaccharides comprises polysaccharides of *S. pneumoniae* serotypes 6A, 6B, 6C, 6D, 9A, 9B, 9N, 9V, 15A, 15B, 15C, 19A, and 19F.

28. The composition of claim 20, wherein the first group of monovalent capsular polysaccharides and/or the second group of bivalent or multivalent capsular polysaccharides comprise capsular polysaccharides of from about 10 kDa to about 50 kDa, from about 30 KDa to about 100 KDa, and/or from about 100 KDa to about 300 KDa.

29. The composition of any one of claims 10 to 28, which comprises about equal amount by weight of capsular polysaccharides to total carrier protein.

30. The composition of any one of claims 10 to 29, which comprises a greater amount by weight of capsular polysaccharides to total carrier protein.

31. The composition of any one of claims 10 to 30, which comprises about equal amount by weight of capsular polysaccharides to total carrier protein.

32. The composition of any one of claims 1 to 31, which comprises 4 micrograms or less of total polysaccharides per dose.

33. The composition of any one of claims 1 to 32, wherein the first carrier protein and the second carrier protein comprise from about 0.5% to about 0.8% by weight.

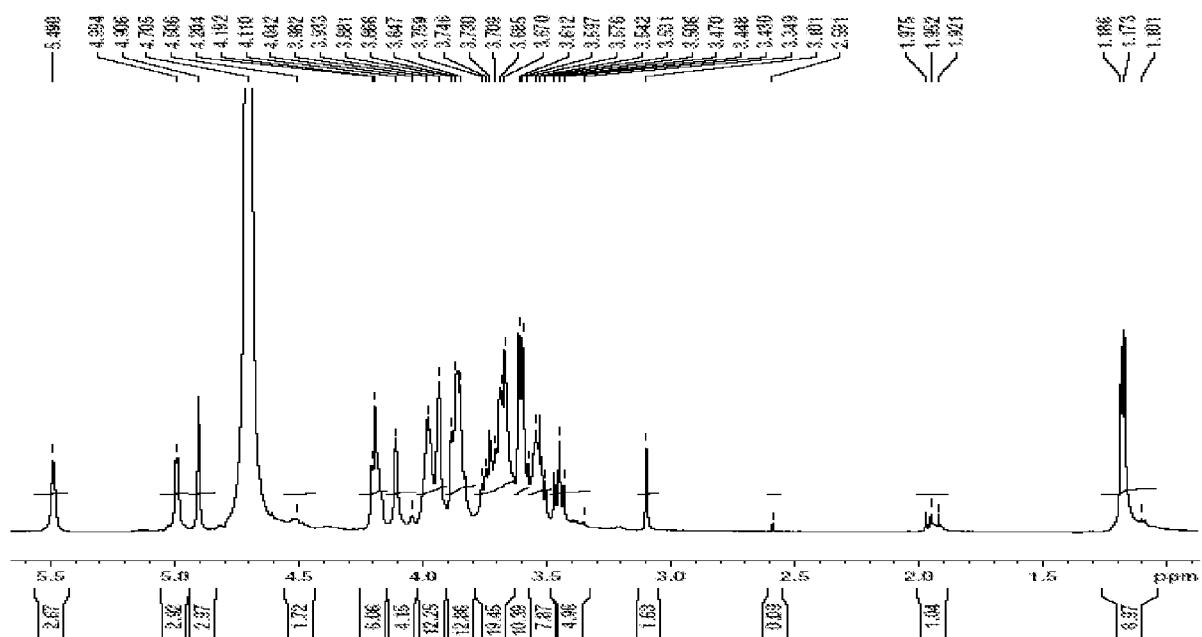
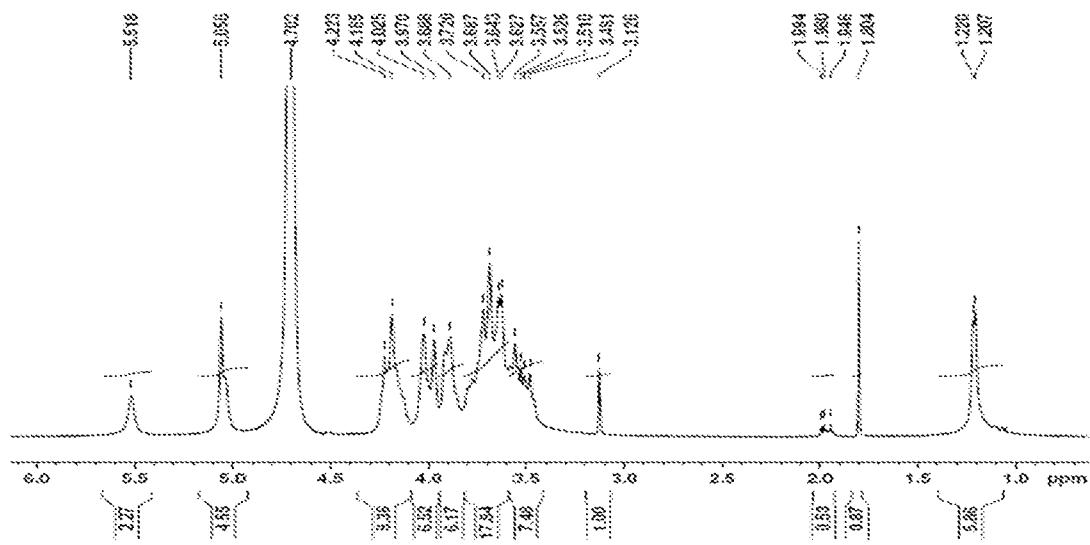
34. The composition of any one of claims 1 to 33, wherein the first group of monovalent capsular polysaccharides and/or the second group of bivalent or multivalent capsular polysaccharides comprise capsular polysaccharides of from about 10 kDa to about 50 kDa, from about 30 KDa to about 100 KDa, and/or from about 100 KDa to about 300 KDa.

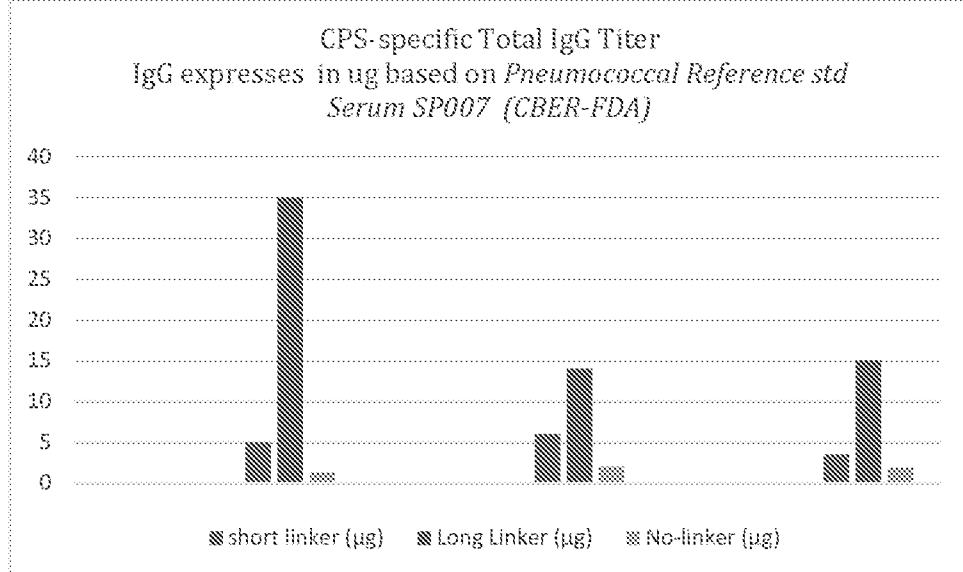
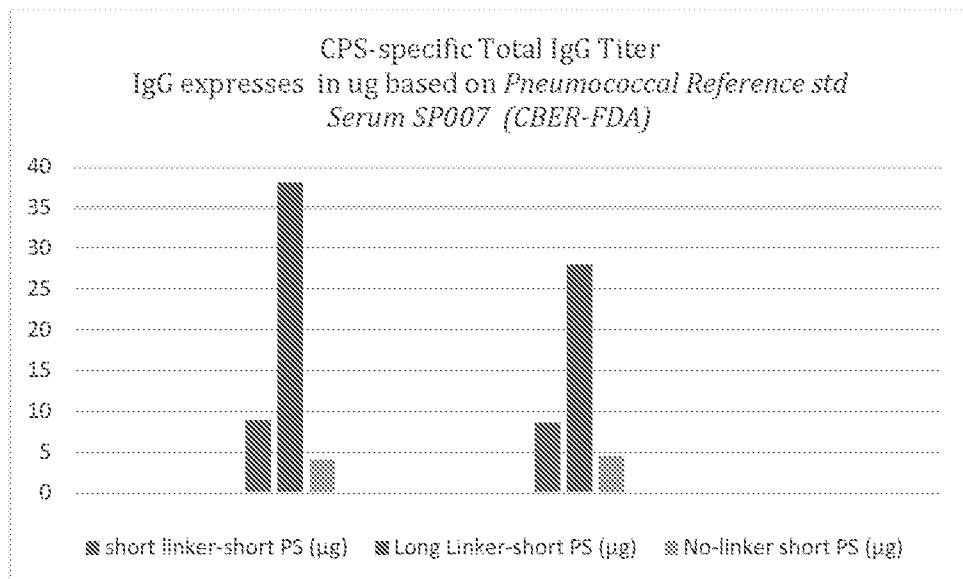
35. The composition of any one of claims 1 to 34, wherein the first carrier protein and/or the second carrier protein comprises tetanus toxoid, diphtheria toxoid, CRM197, tetanus toxoid fragments (TTHc), *Neisseria meningitidis* protein PorB, RSV virus proteins, *Bordetella pertussis* proteins, Pertussis toxoid (PT), adenylate cyclase toxin (ACT), 69 KDa protein of Hepatitis B virus, Human Papilloma viral protein antigens, Human Papilloma virus virus-like particle (VLP) forms, Hepatitis B virus core antigen, Hepatitis B virus VLP forms, Hepatitis B virus surface antigen (HBsAg), and/or combinations thereof.

5 36. The composition of any one of claims 1 to 35, further comprising at least one adjuvant.

10 37. The composition of claim 36, wherein the adjuvant is selected from the group consisting of aluminum salt, calcium phosphate, a liposome of monophosphoryl lipid A (MPLA), saponin QS-21, a TLR7/8 agonist, and combinations thereof.

38. The composition of claim 37, wherein the aluminum salt is selected from the group consisting of aluminum phosphate, aluminum sulfate and aluminum hydroxide.

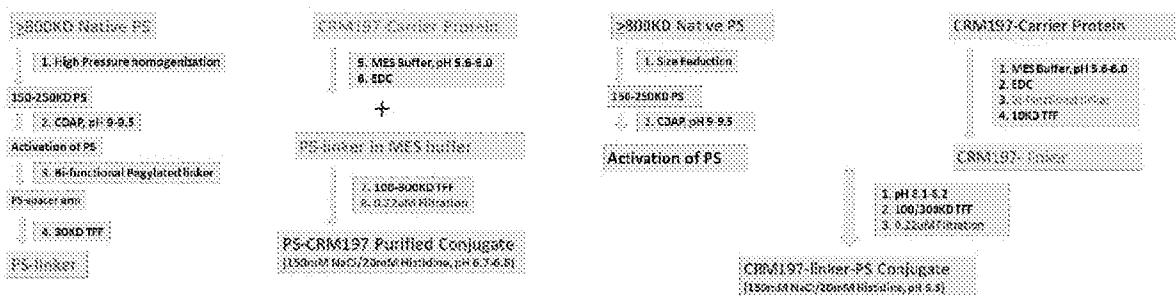
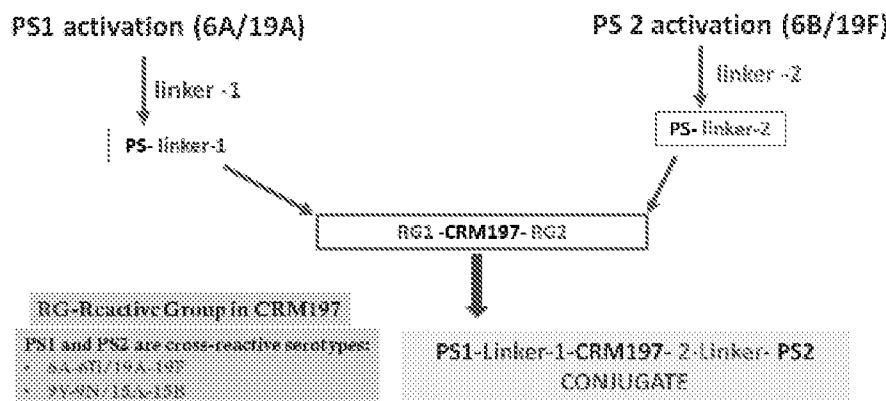


15 39. The composition of any one of claims 1 to 38, wherein the first group of monovalent capsular polysaccharides is approximately equivalent by weight to and/or the second group of bivalent or multivalent capsular polysaccharides.

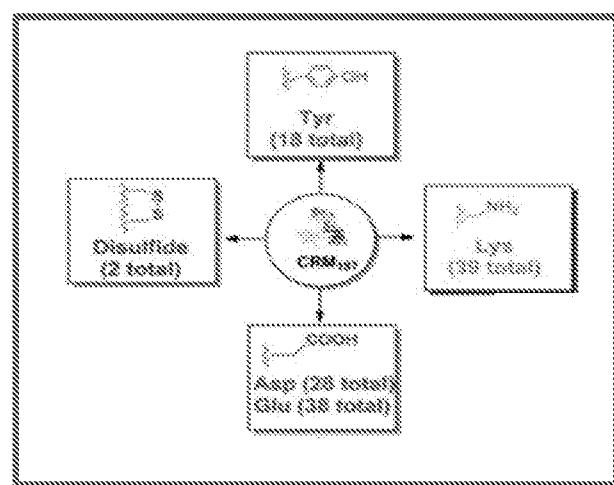
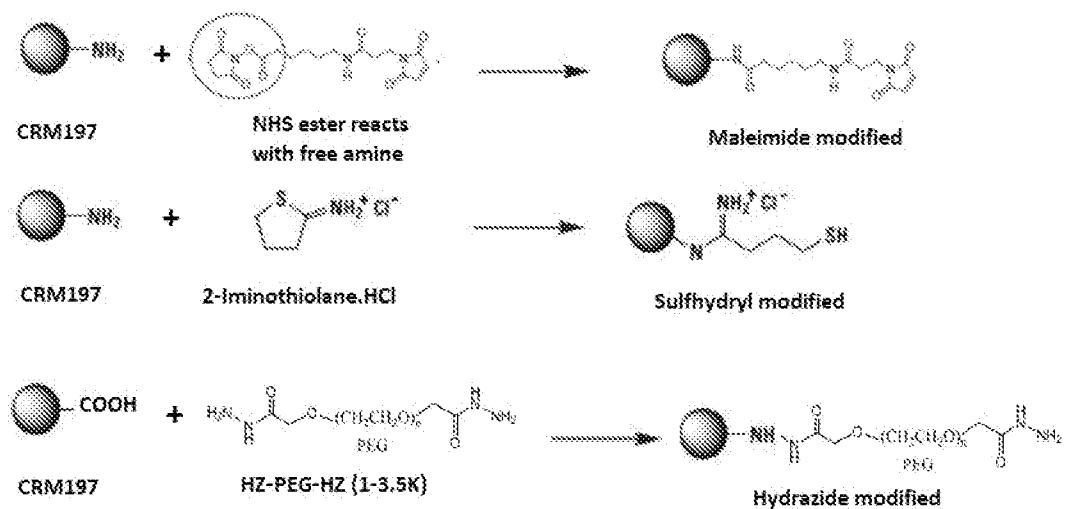


40. The composition of any one of claims 1 to 39, which, upon administration to a subject, generates a lower immune response to carrier protein in comparison to monovalent 20 conjugates comprised of the same capsular polysaccharides.

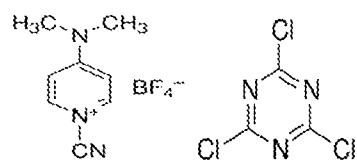
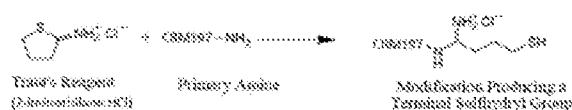
41. The composition of any one of claims 1 to 40, which provides effective treatment for infection by *Streptococcus* bacteria.

42. The composition of any one of claims 1 to 41, further comprising a pharmacologically acceptable carrier.

25



Figure 1A**6A PS (^1H NMR-30KD)****Figure 1B****6B PS (^1H NMR-30KD)**



Figure 2A**Figure 2B**



Figure 2C

6A-CRM197-6B Bi-valent CPS-specific Total IgG Titer
IgG expresses in ug based on *Pneumococcal Reference std*
Serum SP007 (CBER-FDA)

Figure 3A**Figure 3B**

Figure 4A**Figure 4B**

Figure 5**Figure 6****Thiolation of CRM197 with Iminothiolene**