
DE69731519T220051201
ß (19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt
(10) DE 697 31 519 T2 2005.12.01

(12) Übersetzung der europäischen Patentschrift

(97) EP 0 854 615 B1
(21) Deutsches Aktenzeichen: 697 31 519.3
(96) Europäisches Aktenzeichen: 97 310 666.9
(96) Europäischer Anmeldetag: 30.12.1997
(97) Erstveröffentlichung durch das EPA: 22.07.1998
(97) Veröffentlichungstag

der Patenterteilung beim EPA: 10.11.2004
(47) Veröffentlichungstag im Patentblatt: 01.12.2005

(51) Int Cl.7: H04L 12/44
H04L 29/04, H04L 12/40, H04L 12/56

(54) Bezeichnung: Mehrfachtor-Abfragesystem für ein Netzwerkkoppelfeld

(30) Unionspriorität:
774602 30.12.1996 US

(73) Patentinhaber:
Compaq Computer Corp., Houston, Tex., US

(74) Vertreter:
Grünecker, Kinkeldey, Stockmair &
Schwanhäusser, 80538 München

(84) Benannte Vertragsstaaten:
DE, FR, GB

(72) Erfinder:
Walker, William J., Houston, US; Kotzur, Gary B.,
Spring, Texas 77388, US; Witkowski, Michael L.,
Tomball, Texas 77375, US; Hareski, Patricia E.,
Houston, Texas 77070, US; Mayer, Dale J.,
Houston, Texas 77070, US

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europä-
ischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebühr entrichtet worden ist (Art. 99 (1) Europäisches Patentübereinkommen).

Die Übersetzung ist gemäß Artikel II § 3 Abs. 1 IntPatÜG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht geprüft.
1/130

DE 697 31 519 T2 2005.12.01
Beschreibung

[0001] Die vorliegende Erfindung betrifft das Gebiet von Netzwerk-Vorrichtungen und insbesondere ein Mul-
tiport-Abfragesystem für einen Netzwerkschalter.

[0002] Es gibt viele verschiedene Arten von Netzwerken und Netzwerksystemen, die sich in Dateien und Res-
sourcen teilen oder anderweitig eine Kommunikation zwischen zwei oder mehr Computern ermöglichen. Netz-
werke können auf der Basis verschiedener Merkmale und Funktionen kategorisiert werden, z. B. Nachrichten-
kapazität, Bereich, über den die Knoten verteilt sind, Knoten- oder Computertypen, Knotenbeziehungen, Ar-
chitektur oder Struktur basierend auf Kabeltyp und Datenpaketformat, Zugriffsmöglichkeiten usw. Zum Beispiel
bezieht sich der Bereich eines Netzwerks auf die Entfernung, über die die Knoten verteilt sind, z. B. Lokale
Netzwerke (LANs) in einem Büro oder einer Etage eines Gebäudes, Weitbereichs-Netzwerke (WANs), die eine
Hochschulanlage, eine Stadt oder einen Staat überspannen, Globale Netzwerke (GANs), die nationale Gren-
zen überspannen, usw.

[0003] Die Struktur eines Netzwerks bezieht sich im Allgemeinen auf die verwendete Verkabelung oder Me-
dien und Medienzugang sowie die Paketstruktur der über die Medien zu sendenden Daten. Verschiedene
Strukturen sind üblich, einschließlich Ethernet, das Koaxialkabel, verdrillte Kabelpaare oder faseroptische Ka-
bel zum Betrieb bei 10 Megabit pro Sekunde (Mbps) (z. B. 10Base-T, 10Base-F) verwendet, oder schnelles
Ethernet, das bei 100 Mbps (100Base-T, 100Base-FX) arbeitet. ARCnet (Attached Resource Computer Net-
work) ist eine relativ billige Netzwerkstruktur, die Koaxialkabel, verdrillte Kabelpaare oder faseroptische Kabel
zum Betrieb bei 2.5 Mbps verwendet. Tokenring-Topologien verwenden spezielles IBM-Kabel oder faseropti-
sches Kabel zum Betrieb bei 1–16 Mbps. Natürlich sind viele andere Arten von Netzwerken bekannt und ver-
fügbar.

[0004] Jedes Netzwerk enthält im Allgemeinen zwei oder mehr Computer, oft als Knoten oder Stationen be-
zeichnet, die durch ausgewählte Medien oder verschiedene andere Netzwerk-Vorrichtungen miteinander ver-
bunden sind, um die Daten zwischen den Knoten weiterzuleiten, zu übertragen, zu wiederholen, zu überset-
zen, zu filtern usw. Der Begriff "Netzwerk-Vorrichtung" betrifft gewöhnlich die Computer und ihre Netz-
werk-Schnittstellenkarten (NICs) sowie verschiedene andere Vorrichtungen auf dem Netzwerk, z. B. Repeater,
Brücken, Schalter, Router, Brouter, um einige Beispiele zu nennen. Ein Netzwerk, das entsprechend einem ge-
gebenen Kommunikationsprotokoll arbeitet, kann unter Verwendung von einem oder mehreren Repeatern,
Brücken oder Schaltern erweitert werden. Ein Repeater ist eine Hardware-Vorrichtung, die auf der physikali-
schen Schicht arbeitet und jedes empfangene Paket an jeden anderen Port weitersendet. Eine Brücke arbeitet
auf der Datenverbindungsschicht des OSI-Referenzmodells und erhöht die Effizienz durch Filtern von Paketen,
um die Menge an unnötiger Paketausbreitung auf jedem Netzwerksegment zu verringern.

[0005] Ein Netzwerkschalter funktioniert ähnlich, doch effizienter, wie eine Multiport-Brücke, die eine Vielzahl
von Ports zum Verbinden mit mehreren ähnlichen Netzwerken zum Dirigieren des Netzwerkverkehrs unter den
Netzwerken enthält. Ein Netzwerkschalter kann eine mit den Ports über einen Bus verbundene Schaltmatrix
oder dergleichen enthalten, um den Datenfluss zwischen den Ports zu steuern. Die Schaltmatrix muss irgend-
wie bestimmen, wenn ein Port Daten von einer Netzwerk-Vorrichtung empfangen hat, und wenn ein Port ver-
fügbar ist, um Daten zum Senden zu empfangen.

[0006] Es besteht der Wunsch, ein effizientes System bereitzustellen, um den Empfangs- und Sendestatus
der Ports eines Netzwerkschalters zu bestimmen.

[0007] Gemäß US-A-5274631 wird ein Netzwerkschalter bereitgestellt, der umfasst: eine Vielzahl von Netz-
werk-Ports, die konfiguriert sind, Daten von Netzwerk-Vorrichtungen zu empfangen bzw. Daten an diese zu
senden; einen Schalter-Manager, der mit der Vielzahl von Netzwerk Ports verbunden ist, um den Datenfluss
zwischen der Vielzahl von Netzwerk-Ports zu steuern, und eine Logik, die die Verfügbarkeit von Daten an den
jeweiligen Ports bestimmt.

[0008] Die vorliegende Erfindung ist dadurch gekennzeichnet, dass jeder der Vielzahl von Netzwerk-Ports mit
einer Logik verbunden ist, die konfiguriert ist, Statussignale bereitzustellen, die anzeigen, ob ein entsprechen-
der Netzwerk-Port Daten von einer Netzwerk-Vorrichtung empfangen hat, und ob ein entsprechender Netz-
werk-Port verfügbaren Raum hat, um Daten zum Senden an eine Netzwerk-Vorrichtung zu empfangen, und
eine Abfragelogik, die konfiguriert ist, die Port-Statuslogik jedes der Vielzahl von Netzwerk-Ports, der das Sta-
tussignal empfängt, periodisch abzufragen, sowie einen Speicher zum Speichern von Werten, die die Status-
signale für jeden der Vielzahl von Netzwerk-Ports anzeigen.
2/130

DE 697 31 519 T2 2005.12.01
[0009] Auf diese Weise werden alle Ports abgefragt, und der Empfangs- und Sendestatus jedes Ports wird in
dem Speicher bewahrt. Dies ermöglicht Arbitrations- und Steuerlogik, die den Speicher durchsieht, zu bestim-
men, wenn Daten von einem Quellen-Port zu empfangen sind, und wenn empfangene Daten an einen oder
mehrere Ziel-Ports zum Senden zu liefern sind.

[0010] Die Abfragelogik umfasst vorzugsweise Logik, die periodisch ein Abfragesignal geltend macht und ein
Sendestatussignal und ein Empfangsstatussignal von jedem der Nertzwerk-Ports empfängt. Ferner enthält die
Port-Statuslogik jedes Ports eine Logik zum Empfangen des Abfragesignals und zum Geltendmachen eines
Sendestatussignals, das angibt, ob ein Port Raum hat, um Daten von dem Schalter-Manager zu empfangen,
und zum Geltendmachen eines Empfangsstatussignals, das angibt, ob ein Port Daten von einer Netzwerk Vor-
richtung empfangen hat. Auf diese Weise macht die Abfragelogik periodisch das Abfragesignal geltend und
empfängt eine Vielzahl von Sende- und Empfangsstatussignalen zum gleichzeitigen Abfragen vielfacher Ports.

[0011] Der Netzwerkschalter kann mehrere Multiport-Vorrichtungen enthalten, wobei jede zwei oder mehr der
Netzwerk-Ports implementiert und jede Port-Statuslogik enthält. Die Port-Statuslogik für jede Multiport-Vorrich-
tung empfängt das Abfragesignal und stellt ein entsprechendes gemultiplextes Sendestatussignal und ein ent-
sprechendes gemultiplextes Empfangsstatussignal bereit, die den Status jedes ihrer Ports angeben. Die Ab-
fragelogik empfängt daher eine Vielzahl gemultiplexter Sendestatussignale und eine Vielzahl gemultiplexter
Empfangsstatussignale von den Multiport-Vorrichtungen. Vorzugsweise ist jede Multiport-Vorrichtung eine
Vierfach-Kaskaden-Multiport-Vorrichtung, die bis zu vier Ports einschließt. Es wird angemerkt, dass die
Port-Statuslogik für jede Multiport-Vorrichtung entweder zentralisiert oder unter ihnen verteilt sein kann.

[0012] Der Speicher des Netzwerkschalters kann eine pragrammierbare Sendeliste, die angibt, welcher der
Ports angezeigt hat, dass er Raum hat, um Daten zum Senden an eine Netzwerk-Vorrichtung zu empfangen,
und eine programmierbare Empfangsliste speichern, die angibt, welcher der Ports empfangene Daten von ei-
ner Netzwerk-Vorrichtung angezeigt hat. Die Abfragelogik kann eine Sende-Zustandsmaschine zum Überwa-
chen der Statussignale und zum periodischen Aktualisieren der Sendeliste enthalten. Die Abfragelogik kann
weiter eine Empfangs-Zustandsmaschine zum Überwachen der Statussignale und zum periodischen Aktuali-
sieren der Empfangsliste enthalten. Die Sendeliste enthält vorzugsweise ein Sende-Aktivbit für jeden der
Ports, wo die Sende-Zustandsmaschine ein entsprechendes Sende-Aktivbit setzt, wenn ein entsprechender
Netzwerk-Port anzeigt, dass er Raum zum Empfangen von Daten hat. Das entsprechende Sende-Aktivbit wird
gelöscht, wenn der entsprechende Netzwerk-Port mit Daten zum Senden versorgt wird. Ferner enthält die
Empfangsliste enthält ein Empfangs-Aktivbit für jeden der Ports, wo die Empfangs-Zustandsmaschine ein ent-
sprechendes Empfangs-Aktivbit setzt, wenn ein entsprechender Netzwerk-Port anzeigt, dass er Daten von ei-
ner Netzwerk-Vorrichtung empfangen hat. Das entsprechende Empfangs-Aktivbit wird gelöscht, wenn Daten
von dem entsprechenden Netzwerk-Port gelesen werden.

[0013] Die Sendeliste kann eine Sende-Prioritätszählung für jeden der Ports enthalten, wo die Sende-Zu-
standsmaschine eine entsprechende Sende-Prioritätszählung aktualisiert, wenn ein entsprechender Netz-
werk-Port anzeigt, dass er Raum zum Empfangen von Daten hat. Die Empfangsliste enthält eine Emp-
fangs-Prioritätszählung für jeden der Ports, wobei die Empfangs-Zustandsmaschine eine entsprehende Emp-
fangs-Prioritätszählung aktualisiert, wenn ein entsprechendes Netzwerk anzeigt, dass es Daten von einer
Netzwerk-Vorrichtung empfangen hat. Die Prioritätszählungen basieren vorzugsweise auf einem wer zuerst
kommt, mahlt zuerst (FCFS) Prioritätsschema oder einem vorbestimmten Gewichtsfaktor-Prioritätsschema.
Sobald eine Sende- und/oder Empfangs-Prioritätszählung einem Port zugewiesen ist, wird die Zählung mas-
kiert, um die Priorität zu bewahren, bis der Port bedient wird.

[0014] Die Arbitrations- und Steuerlogik überprüft vorzugsweise die Sende- und Empfangslisten, bedient die
Ports und löscht die entsprechenden Sende- und Empfangs-Aktivbits. Die Arbitrations- und Steuerlogik enthält
Sende- und Empfangslogikabschnitte zum Bestimmen des Ports mit der höchsten Priorität basierend auf den
Prioritätszählungen, und um die geeignete Übertragungsoperation durchzuführen.

[0015] Bei der bevorzugten Ausführung enthält jeder der Netzwerk-Ports einen Sendepuffer zum Speichern
von Daten zur Übertragung an eine Netzwerk-Vorrichtung und einen Empfangspuffer zum Speichern von einer
Netzwerk-Vorrichtung empfangener Daten. Die Port-Satuslogik jedes Ports enthält weiter Sendestatuslogik
zum Geltendmachen eines Sendestatussignals, das den Sendepuffer mit wenigstens einer Menge an verfüg-
barem Raum gleich einer vorbestimmten Übertragungsgröße angibt, und Empfangsstatuslogik zum Geltend-
machen eines Empfangsstatussignals, das den Empfangspuffer angibt, der wenigstens eine Menge an Daten
gleich der Busübertragungsgröße von einer Netzwerk-Vorrichtung empfangen hat.
3/130

DE 697 31 519 T2 2005.12.01
[0016] Ein erfindungsgemäßer Netzwerkschalter wird vorzugsweise in einem Netzwerksystem verwendet,
das eine Vielzahl von Netzwerk-Vorrichtungen zum Senden und Empfangen von Datenpaketen entsprechend
einem oder mehr Netzwerk-Protokollen umfasst. Der Netzwerkschalter umfasst eine Vielzahl von Ports zum
Verbinden mit einer oder mehreren Netzwerk-Vorrichtungen zum Übertragen der Datenpakete. Der Netzwerk-
schalter enthält ein Abfragesystem zum fortlaufenden Bestimmen des Empfangs- und Sendestatus jedes der
Ports, wobei jeder der Ports auf ein Abfragesignal durch Bereitstellen eines entsprechenden Empfangsstatus-
signals und Bereitstellen eines entsprechenden Sendestatussignals, das den Sendestatus dieses Ports an-
zeigt, antwortet.

[0017] Man wird nun anerkennen, dass das Abfragesystem nach der vorliegenden Erfindung ein effizientes
System bereitstellt, um den Sende- und Empfangsstatus der Ports eines Netwerkschalters zu bestimmen.

[0018] Die vorliegende Erfindung kann besser verstanden werden, wenn die folgende ausführliche Beschrei-
bung der bevorzugten Ausführung in Verbindung mit den folgenden Zeichnungen in Betracht gezogen wird.
Inhalt der Zeichnungen:

[0019] Fig. 1 ist ein vereinfachtes Schaltbild eines Netzwerksystems, das einen erfindungsgemäßen Netz-
werkschalter enthält.

[0020] Fig. 2 ist ein genaueres Blockschaltbild des Netzwerkschalters von Fig. 1.

[0021] Fig. 3A ist ein Blockschaltbild einer exemplarischen Vierfach-Kaskaden-Vorrichtung von Fig. 2 zur Im-
plementierung der Ports des Netzwerkschalters.

[0022] Fig. 3B ist ein Diagramm, das die Signale der in Fig. 3A gezeigten einzelnen Vierfach-Kaskaden-Vor-
richtung veranschaulicht.

[0023] Fig. 3C ist ein exemplarisches Timing-Diagramm, das das Prozessor Lesetiming der Vierfach-Kaska-
den-Vorrichtung von Fig. 3A veranschaulicht.

[0024] Fig. 3D ist ein exemplarisches Timing-Diagramm, das das Prozessor-Schreibtiming der Vierfach-Kas-
kaden-Vorrichtung von Fig. 3A veranschaulicht.

[0025] Fig. 3E ist ein exemplarisches Timing-Diagramm, das das Prozessor-Burst-Lesezugriffstiming der
Verfach-Kaskaden-Vorrichtung von Fig. 3A veranschaulicht.

[0026] Fig. 3F ist ein exemplarisches Timing-Diagramm, das eine Pufferstatusabfrage jedes der Ports von
Fig. 3A veranschaulicht.

[0027] Fig. 3G ist ein exemplarisches Timing-Diagramm, das einen gleichlaufenden Lese- und Schreibzyklus
auf dem HSB von Fig. 2 veranschaulicht.

[0028] Fig. 3H ist ein Flussdiagramm, das eine Prozedur zum Ausführen eines gleichlaufenden Lese- und
Schreibzyklusses auf dem HSB von Fig. 2 veranschaulicht.

[0029] Fig. 4 ist ein Blockschaltbild des Schaltar-Managers von Fig. 2.

[0030] Fig. 5A ist ausführlicheres Blockschaltbild des Bussteuerungsblocks von Fig. 4.

[0031] Fig. 5B ist ein Diagramm, das Puffer in dem Speicher des Bussteuerungsblocks von Fig. 5A veran-
schaulicht.

[0032] Fig. 5C ist ein Zustandsdiagramm, das die Arbeitsweise der Empfangsabfrage-Zustandsmaschine in
dem Bussteuerungsblock von Fig. 5A veranschaulicht.

[0033] Fig. 5D ist ein Zustandsdiagramm, das die Arbeitsweise der Sendeabfrage-Zustandsmaschine in dem
Bussteuerungsblock von Fig. 5A veranschaulicht.

[0034] Fig. 6 ist ein ausführlicheres Blockschaltbild des Speichersteuerungsblocks von Fig. 4.
4/130

DE 697 31 519 T2 2005.12.01
[0035] Fig. 7A–Fig. 7E sind ausführlichere Blockschaltbilder des Prozessorsteuerungsblocks von Fig. 4.

[0036] Fig. 8A ist ein vereinfachtes Blockschaltbild der Thunder-LAN-Portschnittstelle (TPI) von Fig. 2.

[0037] Fig. 8B ist ein ausführlicheres Blockschaltbild der TPI.

[0038] Fig. 8C ist ein Blockschaltbild, das die Konfiguration und Funktionalität jedes der Thunder-IANs
(TLANs) von Fig. 2 veranschaulicht.

[0039] Fig. 8D ist ein Diagramm, das das allgemeine Format einer Steuerliste zum Ausführen durch jedes der
TLANs veranschaulicht.

[0040] Fig. 8E ist ein Diagramm, das eine Definition von TPI-Peripheriekomponenten-Verbin-
dungs-(PCI)Konfigurationsregistern veranschaulicht, die von der mit dem PCI-Bus von Fig. 2 verbundenen TPI
verwendet werden.

[0041] Fig. 8F ist ein Diagramm, das die Definition der von der TPI verwendeten TPI-Steuerregister veran-
schaulicht.

[0042] Fig. 8G ist ein Flussdiagramm, das PCI-Initialisierungsoperationen der CPU von Fig. 2 veranschau-
licht.

[0043] Fig. 8H ist ein Flussdiagramm, das eine Empfangsoperation für jedes der TLANs veranschaulicht.

[0044] Fig. 8I ist ein Flussdiagramm, das einen Empfangsdaten-Übertragungsvorgang über den Hochge-
schwindigkeitsbus (HSB) von Fig. 2 veranschaulicht.

[0045] Fig. 8J ist ein Flussdiagramm, das einen Sendedaten-Übertragungsvorgang über den HSB veran-
schaulicht.

[0046] Fig. 8K ist ein Flussdiagramm, das einen Sendevorgang für jedes der TLANs veranschaulicht.

[0047] Fig. 9A–Fig. 9H sind Blockschaltbilder, die die Organisation des Speichers von Fig. 2 veranschauli-
chen.

[0048] Fig. 10 ist ein exemplarisches Blockschaltbild, das mehrere Sendepaketstrecken, die ein Rundsende-
paket einschließen, veranschaulicht.

[0049] Fig. 11A und Fig. 11B sind Blockschaltbilder, die die Organisation des statischen Speichers von Fig. 6
veranschaulichen.

[0050] Fig. 12A ist ein Flussdiagramm, das die allgemeine Arbeitsweise des Netzwerkschalters von Fig. 2
zum Empfangen von Datenpaketen im Speicher und zum Senden von Datenpaketen in einer Durchschalt-Be-
triebsart veranschaulicht.

[0051] Fig. 12B ist ein Flussdigaramm, das die allgemeine Arbeitsweise des Netzwerkschalters von Fig. 2
zum Senden von Datenpaketen aus dem Speicher veranschaulicht.

[0052] Fig. 13 ist ein Flussdiagramm, das eine Hash-Lookup-Operation des Schalter Managers von Fig. 2
veranschaulicht.

[0053] Fig. 14 ist ein Flussdiagramm, das eine Hash-Lookup-Operation zum Suchen von Hash-Tabellenein-
trägen im Speicher von Fig. 2 veranschaulicht.

[0054] Fig. 1 zeigt ein vereinfachtes Netzwerkdiagramm eines Netzwerks 100, das einen nach der vorliegen-
den Erfindung implementierten Netzwerkschalter 102 enthält. Der Netzwerkschalter 102 umfasst einen oder
mehr "A" Ports 104, jeweils zum Verbinden und Kommunizieren mit einem von mehreren "A" Netzwerken 106
durch ein geeignetes Mediensegment 108. Jedes Mediensegment 108 ist irgendeine Art von Medium, z. B. ein
verdrilltes Kabel oder faseroptisches Kabel usw. Die Ports 104 ermöglichen bidirektionale Kommunikation oder
Datenfluss zwischen dem Netzwerkschalter 102 und jedem der Netzwerke 106. Ein solcher bidirektionaler Da-
5/130

DE 697 31 519 T2 2005.12.01
tenfluss ist entsprechend einer von mehreren Betriebsarten, z. B. Halbduplex oder Vollduplex. Wie in Fig. 1
gezeigt, gibt es "j" + 1 Netzwerke 106, die einzeln mit A-Netzwerk0, A-Netzwerk1, ..., A-Netzwerkj bezeichnet
sind, wo jedes Netzwerk 106 mit dem Netzwerkschalter 102 durch einen entsprechenden der j + 1 Ports 104,
einzeln bezeichnet mit A-Port0, A-Port1, ..., A-Portj, verbunden ist. Der Netzwerkschalter 102 kann jede ge-
wünschte Zahl von Ports 104 zum Verbinden mit bis zu einer zugehörigen Zahl von Netzwerken 106 enthalten.
Bei der hier beschriebenen Ausführung ist j eine Ganzzahl gleich 23 für insgesamt 24 Ports zum Verbinden
von bis zu Netzwerken 106, wobei diese Ports kollektiv als Ports 104 oder einzeln als Ports Port0, Port1, Port2,
..., Port23 bezeichnet werden.

[0055] In ähnlicher Weise umfasst der Netzwerkschalter 102 weiter einen oder mehr "B" Ports 110, jeder zum
Koppeln an ein und Verbinden mit einem "B" Netzwerk 112 durch ein geeignetes Mediensegment 114. Jedes
Mediensegment kann wieder jede Art von Medium zum Verbinden von Netzwerk-Vorrichtungen sein, z. B. ein
verdrilltes Kabelpaar ein faseroptisches Kabel usw. Die Ports 110 sind ebenfalls bidirektional, um einen Daten-
fluss zwischen dem Netzwerkschalter 102 und den Netzwerken 112 in einer ähnlichen Weise wie für die Ports
104 beschrieben zu ermöglichen. In der gezeigten Ausführung gibt es "k" + 1 Ports 110, einzeln bezeichnet mit
B-Port0, B-Port1, ..., B-Portk, zum Verbinden von bis zu k + 1 Netzwerken, bezeichnet mit B-Netzwerk0,
B-Netzwerk1, ..., B-Netzwerkk. Der Netzwerkschalter 102 kann jede gewünschte Zahl von Ports 110 zum Ver-
binden mit bis zu einer zugehörigen Zahl von Netzwerken 112 enthalten. In der gezeigten spezifischen Aus-
führung ist k eine Ganzzahl gleich 3 für insgesamt 4 Ports 110 zum Verbinden von bis zu vier Netzwerken 112.
Die "A" Typ Ports und Netzwerke arbeiten bei einem unterschiedlichen Netzwerkprotokoll und/oder Geschwin-
digkeit als die "B" Typ Ports und Netzwerke. In der gezeigten spezifischen Ausführung arbeiten die Ports 104
und Netzwerke 106 entsprechend dem Ethernet-Protokoll bei 10 Megabit pro Sekunde (Mbps), während die
Ports 110 und Netzwerke 112 entsprechend dem Ethernet-Protokoll bei 100 Mbps arbeiten. Die Ports B-Port0,
B-Port1, ..., B-Port3 werden hier kollektiv als die Ports 104 und einzeln als Port24, Port25, ..., Port27 bezeich-
net.

[0056] Die Netzwerke 106 und 112 enthalten eine oder mehr Datenvorrichtungen oder Datenendgeräte
(DTE), die die Eingabe oder Ausgabe von Daten erlauben, oder jede Art von Netzwerk-Vorrichtung, um eine
oder mehr Datenvorrichtungen miteinander zu verbinden. Jedes der Netzwerke, z. B. A-Netzwerk0 oder
B-Netzwerk1, usw. kann daher einen oder mehr Computer, Netzwerk-Schnittstellenkarten (NICs), Worksta-
tions, Datei-Server, Modems, Drucker oder jede andere Vorrichtung enthalten, die Daten in einem Netzwerk
empfängt oder sendet, z. B. Repeater, Schalter, Router, Hubs, Konzentratoren usw. Zum Beispiel sind, wie in
Fig. 1 gezeigt, mehrere Computersysteme oder Workstations 120, 122 und 124 mit dem entsprechenden Seg-
ment 108 von A-Netzwerkj verbunden. Die Computersysteme 120, 122 und 124 können miteinander oder mit
anderen Vorrichtungen von anderen Netzwerken durch den Netzwerkschalter 102 kommunizieren. Jedes
Netzwerk 106 und 112 stellt daher eine oder mehrere durch ein oder mehrere Segmente verbundene Daten-
vorrichtungen dar, wobei der Netzwerkschalter 102 Daten zwischen irgendwelchen zwei oder mehr Datenvor-
richtungen in jedem der Netzwerke 106 und 112 überträgt.

[0057] Der Netzwerkschalter 102 empfängt gewöhnlich Information von Datenvorrichtungen, die mit jedem
der Ports 104 und 110 verbunden sind, und leitet die Information an einen oder mehr der anderen Ports 104
und 110. Der Netzwerkschalter 102 filtert auch die Information durch Wegwerfen oder sonstwie Ignorieren von
Information, die von einer Datenvorrichtung in einem Netzwerk 106 oder 112 empfangen wird und nur für Da-
tenvorrichtungen in diesem gleichen Netzwerk bestimmt ist. Die Daten oder Information sind in der Form von
Paketen, wo die einzelne Form jedes Pakets von dem durch ein gegebenes Netzwerk unterstützten Protokoll
abhängt. Ein Paket ist ein vordefinierter Block von Bytes, der gewöhnlich aus Vorspann, Daten und Nachspann
besteht, wobei das Format eines gegebenen Pakets von dem Protokoll abhängt, das das Paket erzeugte. Der
Vorspann enthält gewöhnlich eine Zieladresse, die die Zieldatenvorrichtung identifiziert, und Quellenadresse,
die eine Datenvorrichtung identifiziert, die das Paket hervorbringt, wobei die Adressen typisch Medienzugangs-
steuer-(MAC)Adressen sind, um die Einmaligkeit in der Industrie zu sichern. Ein für eine Zielvorrichtung be-
stimmtes Paket wird hierin als ein Unicast-Paket bezeichnet. Der Vorspann enthält weiter ein Gruppenbit, das
angibt, ob das Paket ein für mehrfache Zielvorrichtungen bestimmtes Multicast- oder Broadcast-(BC)Paket ist.
Wenn das Gruppenbit auf logisch eins (1) gesetzt wird, wird es als ein Multicast-Paket betrachtet, und wenn
alle Zieladressenbits auch auf logisch 1 gesetzt sind, ist das Paket ein BC-Paket. Zu Zwecken der vorliegenden
Erfindung werden jedoch Multicast- und BC-Pakete gleich behandelt und werden im Folgenden als BC-Pakete
bezeichnet.

[0058] Fig. 2 zeigt ein genaueres Blockschaltbild des Netzwerkschalters 102. In der gezeigten Ausführung
enthält der Netzwerkschalter 102 sechs ähnliche Vierfach-Steuerungs- oder Vierfach-Kaskaden-(QC)Vorrich-
tungen 202, wobei jede vier der Ports 104 einschließt. Die QC-Vorrichtungen 202 können in jeder gewünschten
6/130

DE 697 31 519 T2 2005.12.01
Weise implementiert werden, z. B. als in ein einziges ASIC-(anwendungsspezifische integrierte Schaltung)Ge-
häuse integriert oder als getrennte integrierte Schaltungs-(IC)Chips, wie gezeigt. In der gezeigten Ausführung
arbeitet jeder Port 104 bei 10 Mbps bei Halbduplex für einen Gesamtdurchsatz von 20 Mbps pro Port bei Voll-
duplex. Dies ergibt insgesamt 480 Mbps für alle sechs der QC-Vorrichtungen 202 bei Vollduplexbetrieb. Jede
der QC-Vorrichtungen 202 enthält vorzugsweise eine mit einem QC/CPU-Bus 204 verbundene Prozes-
sor-Schnittstelle und eine mit einem Hochgeschwindigkeitsbus (HSB) 206 verbundene Bus-Schnittstelle. Der
HSB 206 enthält einen Datenabschnitt 206a und verschiedene Steuer- und Statussignale 206b. Der HSB 206
ist ein 32-Bit 33 MHz Bus zum Übertragen von über ein Gigabit von Daten pro Sekunde.

[0059] Der HSB 206 und der QC/CPU-Bus 204 sind weiter mit einem Ethernet-Paketschalter-Manager (EP-
SM) 210 verbunden, der in der gezeigten Ausführung als ASIC implementiert ist, obwohl die vorliegende Erfin-
dung nicht auf eine bestimmte physikalische oder logische Implementierung begrenzt ist. Der EPSM 210 ist
weiter mit einem Speicher 212 durch einen 32-Bit Speicherbus 214 verbunden, der einen Daten- und Adres-
senabschnitt 214a und Steuersignale 214b enthält. Der Speicher 212 enthält vorzugsweise 4 bis 16 Megabyte
(MB) an dynamischem Direktzugriffspeicher (DRAM), obwohl, wenn gewünscht, mehr Speicher abhängig von
den Bedürfnissen der einzelnen Anwendung hinzugefügt wird. Der EPSM 210 unterstützt jede von wenigstens
drei verschiedenen Arten von DRAMs zur Implementierung des Speichers 212, einschließlich schneller Sei-
tenmodus-(FPM)Einzel-Inline-Speichermodule (SIMMs), die mit etwa 60 Nanosekunden (NS) arbeiten, Erwei-
terte Datenausgabe-(EDO)Modus DRAM SIMMs oder Synchronmodus-DRAM SIMMS. Synchrone DRAMs
benötigen gewöhnlich einen 66 MHz Takt zum Erreichen einer Stoßdatenrate von 66 MHz oder 266 MB pro
Sekunde. EDO DRAMs können mit entweder einem 33 oder 66 MHz Takt arbeiten, erreichen aber eine maxi-
male Stoßdatenrate von 33 MHz oder 133 MB pro mit jeder Taktrate. FPM DRAMs können auch mit einem 33
oder 66 MHZ Takt arbeiten und erreichen eine maximale Stoßrate von 16 MHZ oder 64 MB pro Sekunde mit
einem 33 MHz Takt und eine Stoßrate von 22 MHz oder 88 MB pro Sekunde mit einem 66 MHz Takt.

[0060] Der Speicherbus 214 umfasst einen Speicherdatenbus MD[31:0], Datenparitätssignale MD_PAR[3:0],
Reihen- und Spaltenadresssignale MA[11:0], ein Schreibfreigabesignal MWE*, Bankauswählsignate
RAS[3:0]*/SD_CS*[3:0], die entweder Reihensignale für FPM DRAM und EDO DRAM oder Chipauswahlen für
synchrone DRAM sind, Speicherbyte-Steuersignale CAS[3:0]*/SD_DQM[3:0], die Spaltensignale für FPM und
EDO oder DQM für synchrone DRAM sind, ein Reihensignal SD_RAS* nur für synchrone DRAM, ein Spalten-
signal SD_CAS* nur für synchrone DRAM, ein Serial-Eingang-SIMM/DIMM-Anwesenheits-Erfassungssignal
PD_SERIAL_IN und ein Parallel-Eingang-SIMM/DIMM-Anwesenheits-Erfassungssignal PD_LOAD*.

[0061] Der HSB 206 ist mit einer Thunder LAN (TLAN) Portschnittstelle (TPI) 220 verbunden, die weiter mit
einem Peripheriekomponenten-Verbindungs-(PCI)Bus 222 verbunden ist, der Daten und Adresssignale 222a
und zugehörige Statussignale 222b umfasst. Der PCI-Bus 222 ist mit vier TLANs 226 verbunden, die in jeder
gewünschten Weise implementiert werden können. Die TLANs 226 sind vorzugsweise die TNETE100 Thun-
derLANTM PCI EthernetTM Controller, hergestellt von Texas Instruments, Inc, (TI), wo jedes einen der Ports 110
einschließt. Für den EPSM 210 arbeitet die TPI 220 in einer ähnlichen Weise auf dem HSB 206 als eine andere
QC-Vorrichtung 202 zum Anschließen von vier Ports. Der EPSM 210 "sieht" daher effektiv sieben (7) Vier-
fach-Portvorrichtungen. In Bezug auf den PCI-Bus 220 emuliert die TPI 220 einen Standard-PCI-Bus in dem
erforderlichen Ausmaß zum richtigen Betrieb der TLANs 226, die normalerweise mit PCI-Speichervorrichtun-
gen verbunden sind. Der PCI-Bus 222 muss daher nicht voll PCI-kompatibel sein. Der PCI-Bus 222 ist mit ei-
nem Prozessor oder zentralen Verarbeitungseinheit (CPU) 230 verbunden, die mit einem lokalen Prozessor-
bus 232 zum Verbinden der CPU 230 mit dem lokalen RAM 234, einem lokakalen Flash-RAM 236 und, wenn
gewünscht, mit einer seriellen Portschnittstelle 238 verbunden ist. Die serielle Portschnittstelle 238 ist vorzugs-
weise ein UART oder dergleichen. In der gezeigten Ausführung ist die CPU eine 32-Bit, 33 MHz i960RP CPU
von Intel, obwohl die CPU 230 jeder andere geeignete Prozessor sein kann.

[0062] Die CPU 230 handhabt gewöhnlich die Initialisierung und Konfigurierung der TPI 220 und des EPSM
210 beim Einschalten des Netzwerkschalters 102. Die CPU 230 überwacht und gewinnt auch Statistiken und
verwaltet und steuert die Funktionen der verschiedenen Vorrichtungen des Netzwerkschalters 102 während
des Betriebs. Die CPU 230 aktualisiert ferner die Hash-Tabellendaten im Speicher 212 durch den EPSM 210.
Der EPSM 210 steuert jedoch den Zugriff auf den Speicher 212 und führt die DRAM-Auffrischungszyklen
durch, um dadurch Auffrischungsoperationen von der CPU 230 zu entfernen. Andernfalls würd die CPU 230
6–8 Buszyklen benötigen, um jeden Auffrichungszyklus durchzuführen, was wertvolle Prozessor-Ressourcen
verbrauchen würde. Die CPU 230 agiert auch als ein zusätzlicher Netzwerkport für verschiedene Zwecke und
wird hierin oft als Port28 bezeichnet. Die Ports 104, 110 und die CPU 230 schließen daher kollektiv die Ports
Port0–Port28 ein.
7/130

DE 697 31 519 T2 2005.12.01
[0063] Die CPU 230 ist weiter mit dem EPSM 210 durch einen CPU-Bus 218 verbunden, der einen Adress-
und Datenabschnitt 218a und zugehörige Steuer- und Statussignale 218b umfasst. Der Adress- und Datenab-
schnitt 218a wird vorzugsweise zwischen Adress- und Datensignale gemultiplext. Insbesondere umfasst der
CPU-Bus 218 einen Adress/Daten-Bus CPU_AD[31:0], einen Adress-Strobe CPU_ADS* von der CPU 230,
Datenbyte-Freigaben CPU_BE[3:0], ein Lese/Schreib-Auswählsignal CPU_WR*, einen Burst-Letzte-Da-
ten-Strobe CPU_BLAST*, ein Daten-Bereit-Signal CPU_RDY* und wenigstens ein CPU-Unterbrechungssig-
nal CPU_INT*. In dieser Offenbarung bezeichnen normale Signalnamen anders als Daten- und Adresssignale
positive Logik, wo das Signal als geltend gemacht betrachtet wird, wenn es hoch ist oder auf logisch eins (1)
ist, und Signalnamen gefolgt von einem Stern (*) bezeichnen negative Logik, wo das Signal als geltend ge-
macht betrachtet wird, wenn es tief ist oder auf logisch null (0) ist. Die Funktions-Definition ist im Allgemeinen
einfach und gewöhlich durch den Signalnamen bestimmbar.

[0064] Fig. 3A ist ein Blockschaltbild einer exemplarischen QC-Vorrichtung 202 zur Implementierung von vier
der Ports 104, wobei die Vorrichtung sechsmal dupliziert ist, um die 24 Ports Port0–Port23 zu implementieren.
Eine bestimmte Vorrichtung ist der L64381 Quad Cascade Ethernet Controller von LSI Logic Corporation (LSI).
Eine verbesserte Vorrichtung ist der QE110 Quad Cascade Ethernet Controller, auch von LSI, der zusätzliche
Merkmale und Fähigkeiten enthält, wie hierin beschrieben. Es wird jedoch angemerkt, dass die vorliegende
Erfindung nicht auf eine bestimmte Vorrichtung zum Implementieren der Ports 104 begrenzt ist. In der gezeig-
ten Ausführung enthält jede QC-Vorrichtung 202 einen Ethernet-Kern 300 für jeden der Ports 104, wo der
Ethernet-Kern 300 voll synchron ist und eine Medien-Zugriffssteuerung, einen Manchester-Coder/Decoder und
verdrillte Paar/AUI (Attachment Unit Interface) Transceiver enthält. Jeder Ethernet-Kern 300 ermöglicht bidi-
rektionale Kommunikation mit einem verbundenen Netzwerk 106 auf einem entsprechenden Segment 108,
und jeder ist mit einem entsprechenden 128-Bit Empfangs-FIFO (First-in-First-out) 302 und einem 128-Bit Sen-
de-FOFO 304 verbunden. Jeder Ethernet-Kern 300 ist auch mit einem Block von Statistik-Zählern 306 verbun-
den, wo jeder Block von Statistik-Zählern 306 25 Zähler zum Bereitstellen von On-Chip-Wartung enthält. Die
Zähler in jedem Block von Statistik-Zählern 306 erfüllen vorzugsweise die Forderungen des einfachen Netz-
werk-Verwaltungsprotokolls (SNMP). Jeder der FIFOs 302, 304 ist weiter mit Busschnittstellenlogik 308 ver-
bunden, die mit dem HSB 206 verbunden ist, um bidirektionalen Datenfluss zwischen jeder QC-Vorrichtung
202 und dem EPSM 210 zu ermöglichen. Jede QC-Vorrichtung 202 enthält Konfigurations- und Steuerlogik
310, die programmierbares Konfigurieren ermöglicht, wie z. B. Einfügen von Quellenadressen, Einfügen einer
Rahmenprüfsequenz (FCS), sofortiges Neusenden bei Kollision, Busübertragungsgröße und Sendepuf-
fer-Schwellengröße.

[0065] Die Konfigurations- und Steuerlogik 310 und alle Blöcke von Statistik-Zählern 306 und die FOFOs 302,
304 sind mit dem QC/CPU-Bus 204 verbunden. Der EPSM 210 stellt eine getrennte Schnittstelle zwischen
dem CPU-Bus 218 und dem QC/CPU-Bus 204 bereit. Auf diese Weise hat die CPU 230 vollen Zugang, um die
Aktivitäten jeder der QC-Vorrichtungen 202 und somit jedes der Ports 104 zu initialisieren, zu überwachen und
zu modifizieren. Der QE110 Quad Cascade Ethernet Controller enthält eine zusätzliche Verbindung 320 zwi-
schen der Konfigurations- und Steuerlogik 310 zum Erfassen eines Rückstau-Anzeichens, um eine Hem-
mungssequenz geltend zu machen, um ein grade gesendetes Paket zu beenden, wenn das Rückstau-Anzei-
chen rechtzeitig empfangen wird. Das Rückstau-Anzeichen ist vorzugsweise ein auf dem HSB 206 ausgeführ-
ter Rückstau-Zyklus, obwohl jedes von mehreren Verfahren benutzt werden kann, um einen Rückstau anzu-
zeigen, z. B. ein getrenntes Signal oder dergleichen.

[0066] Es wird angemerkt, dass die Hemmungssequenz während der ersten 64 Bytes des Datenpakets ge-
sendet werden sollte, das an einem Port empfangen wird, als "früh" oder rechtzeitig zu betrachten ist. Die ers-
ten 16 Byte (4 DWORDs) sind nötig, bevor eine später beschriebene Hash-Lookup-Prozedur durch den EPSM
210 durchgeführt wird. Jedes Datenbit wird in etwa 100 ns über Ethernet 10Base-T übertragen, sodass die ers-
ten 16 Byte in etwa 13 μs übertragen werden. 64 Byte werden in etwa 51 μs empfangen, sodas der Netzwerk-
schalter 102 etwa 38 μs hat, um die ersten 16 empfangenen Bytes zu übertragen, die Hashing-Prozedur durch-
zuführen, den Rückstau-Zyklus auszuführen und schließlich die Hemmungssequenz geltend zu machen. Da
ein Hash-Lookup etwa 1–2 μs braucht, um zu vollenden, ist fast immer genug Zeit vorhanden, um die Hem-
mungssequenz rechtzeitig zu senden. Das rechtzetige Geltendmachen der Hemmungssequenz ist jedoch
nicht garantiert, sodass die Möglichkeit besteht, dass Pakete infolge einer Schwellenverletzungsbedingung fal-
len gelassen werden. Wenn der Rückstau-Zyklus spät ausgeführt wird, weist der Port den Rückstau-Zyklus zu-
rück, und der Netzwerkschalter 102 lässt das Paket fallen, wenn er außerstande ist, das Paket anzunehmen.
Der Netzwerkschalter kann dieses Paket annehmen, da eine Schwellenbedingung ein frühes Anzeichen ist
und daher Speicher vorhanden sein kann, um das Paket zu speichern.

[0067] Wenn der Rückstau-Zyklus in einer rechtzeitigen Weise ausgeführt wird, und wenn der Port in Halb-
8/130

DE 697 31 519 T2 2005.12.01
duplex arbeitet, macht die Konfigurations- und Steuerlogik 310 als Reaktion einen Kollisionsbefehl an einem
der Ethernet-Kerne 300 eines angegebenen Ports 104 geltend. Der Ethernet-Kern 300, der den Kollisionsbe-
fehl empfängt, macht dann die Hemmungssequenz geltend, um ein Paket zu beenden, das durch diesen Port
104 empfangen wird. Wenn der Rückstau-Zyklus in dem 64-Byte Fenster ausgeführt wird, zeigt der Port dem
EPSM 210 an, dass der Rückstau-Zyklus für diesen Port ausgeführt wird, durch Geltendmachen eines Ab-
ort-Signals ABORT_OUT* auf dem HSB 206. Wenn der Rückstau-Zyklus außerhalb des 64-Byte Fensters liegt
und daher nicht rechtzeitig geltend gemacht wird, wird das ABORT_OUT* Signal nicht geltend gemacht, und
der EPSM 210 lässt das Paket fallen. EPSM 210 lässt das Paket meistens fallen, wenn ein Versuch, Rückstau
geltend zu machen, fehlschlägt. Obwohl erwünscht ist, so wenig Pakete wie möglich zur maximalen Effizienz
fallen zu lassen, wird ein fallen gelassenes Paket schließlich auf höheren Netzwerkstufen in der hervorbringen-
den Datenvorrichtung erfasst und ist daher für den Gesamtbetrieb des Netzwerksystems 100 nicht fatal. Die
hervorbringende Vorrichtung erkennt, dass das Paket fallen gelassen wurde und sendet ein oder mehr Pakete
einschließlich des fallen gelassenen Pakets neu.

[0068] Die Busschnittstellenlogik 308 enthält vorzugsweise Lese-Latches 324 und Schreib-Latches 326 zur
Implementierung eines gleichlaufenden Lese- und Schreibzyklusses auf dem HSB 206, wie weiter unten be-
schrieben. Diese Latches speichern PORT_NO[1:0] Signale, die auf dem HSB 206 bei bestimmten Zyklen ei-
nes ersten Taktsignals (CLK_1) geltend gemacht werden. Das Signal CLK_1 ist der Haupttakt für den HSB 206
und arbeitet in der gezeigten Ausführung typisch bei etwa 30–33 MHz. Da das Signal CLK_1 der Haupttakt ist,
wird es im Folgenden einfach als CLK-Signal bezeichnet. Ein zweites Taktsignal CLK_2 wird auch für die
Schnittstelle zum Speicher 212 verwendet und arbeitet bei der doppelten Frequenz des CLK-Signals oder bei
etwa 60–66 MHz.

[0069] Fig. 3B ist ein Diagramm, das die Signale der in Fig. 3A gezeigten einzelnen Vierfach-Kaskaden-Vor-
richtung 202 veranschaulicht. Die Signale sind in mehrere Funktions- und Busabschnitte geteilt, die mit dem
QC-Bus 204 verbundene Prozesso Schnittstellensignale, mit den vier Ports 104 verbundene Netzwerk-Schnitt-
stellensignale, Statussignale, Takt- und Prüfsignale, mit dem HSB-Bus 206 verbundene Busschnittstellensig-
nale und gemischte Signale umfassen.

[0070] Den QC-Bus 204 betreffend schreibt der EPSM 210 Daten in die Register und Zähler 306, 310 der
QC-Vorrichtung 202 durch Datensignale PDATA[15:0] und liest Daten daraus aus. Das Signal READ* wird für
einen Schreibvorgang hoch und für einen Lesevorgang tief gesetzt. Das einzelne Register in der QC-Vorrich-
tung 202 durch eine auf ADR[5:0] Signalen geltend gemachte Adresse bestimmt. Geltendmachen eines
Adress-Strobesignals ADRS_STROBE* zusammen mit dem entsprechenden der mehreren Chipauswählsig-
nale CHIP_SELECTm* veranlasst die QC-Vorrichtung 202, die ADRS-Signale zu speichern. Ein an den Sig-
nalnamen angehängtes "m" bezeichnet gewöhnlich mehrfache Signale eines einzelnen Typs. Zum Beispiel
gibt es sechs getrennte CHIP_SELCT[5:0]* Signale, jedes zum Adressieren einer betreffenden der sechs
QC-Vorrichtungen 202. Ein Signal PREADY* wird durch die QC-Vorrichtung 202 für einen Zyklus eines CLK-Si-
gnals während eines Schreibzyklusses nach der steigenden CLK-Flanke, auf der die verlangten Daten gespei-
chert werden, tief geltend gemacht. Für einen Schreibzyklus macht die QC-Vorrichtung 202 PREADY* für ei-
nen CLK-Zyklus tief geltend, nachdem sie Daten auf den PDATA-Bus gelegt hat.

[0071] Fig. 3C ist ein exemplarisches Timing-Diagramm, das einen Prozessor-Lesezyklus für eine QC-Vor-
richtung 202 veranschaulicht, und Fig. 3D ist ein exemplarisches Timing-Diagramm, das einen Prozes-
sor-Schreibzyklus veranschaulicht. Fig. 3D ist ein exemplarisches Timing-Diagramm, das einen Prozes-
sar-Stoßlesezugriffszyklus für eine QC-Vorrichtung 202 veranschaulicht. Diese Timing-Diagramme sind nur
exemplarisch und werden gezeigt, um eine allgemeine Funktionalität und nicht ein bestimmtes Timing oder be-
stimmte Signaleigenschaften zu veranschaulichen.

[0072] Zurück auf Fig. 3B verweisend umfassen die Netzwerk-Schnittstellensignale die negativen und posi-
tiven Kollisionsschwellensignale, das Kollisionsbezugssignal, das serielle Daten-Ein-Signal, die negativen und
positiven Manchester-codierten Datensignale, die positiven und negativen Datenschwellensignale, das Daten-
schwellenbezugssignal, die positiven und negativen Präemphasesignale und die Verdrillte-Paar/AUI-Modus-
auswählsignale für jeden der mit [3:0] bezeichneten vier Ports der QC-Vorrichtung 202. Jede QC-Vorrichtung
empfängt das CKL-Signal und hat einen CLOCK_20 MHz Eingang, der ein 20 MHz Taktsignal empfängt, um
80, 20 und 10 MHz interne Taktsignale zur Verwendung durch die Ports 104 zu erzeugen. Jeder Ethernet-Kern
300 erfasst eine auf dem entsprechenden Segment 108 auftretende Kollision und sendet eine Hemmungsse-
quenz entprechend dem Ethernet CSMA/CD-(Carrier Sense Multiple Access/Collision Detect)Verfahren.

[0073] Die mit dem HSB 206 verbundenen Busschnittstellensignale betreffend beendet eine QC-Vorrichtung
9/130

DE 697 31 519 T2 2005.12.01
vorzeitig ein ganzes Paket durch Geltendmachen des Signals ABORT_OUT*. Der EPSM 210 beendet vorzeitig
den laufenden Buszyklus durch Geltendamchen eines Abortsignals ABORT_IN*. In einer Ausführung sind die
QC-Vorrichtungen 202 QE110 Vorrichtungen, die ersonnen sind, dem EPSM 210 zu ermöglichen, ein Paket,
das empfangen wird, vorzeitig zu beenden, durch Ausführen eines Rückstau-Zyklusses auf dem HSB 206. Die-
ser einzelne Typ von Rückstau-Fähigkeit ist ein "Paket für Paket" oder dynamischer "pro Port" Rückstau, der
das Rückweisen eines Pakets erlaubt, das an einem Port empfangen wird. L64381-Vorrichtungen umfassen
ein Selbseinfügungs-Rahmenprüfsequenzsignal (AI_FCS_IN*), das weiter unten beschrieben wird.
QE110-Vorrichtungen ersetzen das AI_FCS_IN* Signal mit einem Signal FBPN*, das benutzt wird, um die glei-
chen Funktionen wie das Siggnal AI_FCS_IN* auszuführen, aber auch benutzt wird, um einen Rückstau-Zy-
klus und eine erhöhte Paketflut anzuzeigen. Natürlich können alternative Verfahren verwendet werden, um den
hierin beschriebenen dynamischen Rückstau zu implementieren. Das heißt, der EPSM 210 macht das Signal
FBPN* während eines Lesezyklusses geltend, um einen Rückstau-Anforderungszyklus auszuführen. Wenn
das Signal ABORT_OUT* durch die entsprehende QC-Vorrichtung 202 während der Datenphase des Lese-
zyklusses geltend gemacht wird, dann wurde die Rückstau-"Anforderung" durch die QC-Vorrichtung 202 ge-
währt, die dann eine Hemmungssequenz geltend macht, um das Paket vorzeitig zu beenden. Wenn das Signal
ABORT_OUT* nicht geltend gemacht wird, lässt der EPSM 210 das Paket fallen.

[0074] Der EPSM 210 macht ein Status-Strobesignal STROBE* an allen QC-Vorrichtungen 202 und der TPI
220 geltend, die alle mit dem Status ihrer vier Ports 104 oder 110 (im Fall der TPI 220) in gemultiplexter Weise
auf Signale PKT_AVAILm* und BUF_AVAILm* antworten, wenn das Signal STROBE* auf der steigenden Flan-
ke des CLK-Signals geltend gemacht wird. Es gibt ein getrenntes Signal für jede QC-Vorrichtung 202, einen
Satz für die TPI 220 und einen ähnlichen Satz für die CPU 230, die für einige Operation als ein weiterer Port
agiert. Das heißt, die Signale PKT_AVAILm* und BUF_AVAILm* enthalten Signale PKT_AVAIL[5:0]* und
BUF_AVAIL[5:0]* für die QC-Vorrichtungen, Signale TPI_PKT_AVAIL* und TPI_BUF_AVAIL*, andernfalls als
PKT_AVAIL[6]* und BUF_AVAIL[6]* bezeichnet, für die TPI 220 und Signale PCB_PKT_AVAIL* und
PCB_BUF_AVAIL*, andernfalls als PKT_AVAIL[7]* und BUF_AVAIL[7]* bezeichnet, die der CPU 230 entspre-
chen, für insgesamt 8 Signale pro Signaltyp.

[0075] Auf diese Weise umfasst der HSB 206 Signale PKT_AVAIL[0]* und BUF_AVAIL[0]* für die erste
QC-Vorrichtung 202, um auf die vier Ports Port0–Port3 zuzugreifen, der HSB 206 umfasst Signale
PKT_AVAIL[1]* und BUF_AVAIL[1]* für die nächste QC-Vorrichtung 202, um auf die nächsten vier Ports
Port0–Port7 zuzugreifen, usw., die TPI 220 umfasst Signale PKT_AVAIL[6]* und BUF_AVAIL[6]*, um auf die
Ports Port24–Port27 zuzugreifen, und der EPSM 210 enthält interne Signale PKT_AVAIL[7]* und
BUF_AVAIL[7]* für die CPU 230. Bis zu vier Bits werden auf jedem der Signale entsprechend den vier Parts,
getrennt durch jeweilige Zyklen des CLK-Signals, gemultiplext.

[0076] Als Reaktion auf das STROBE* Signal enthält die Busschnittstellenlogik 308 Portstatuslogik 303 zum
Multiplexen von vier Statusbits auf einem betreffenden der BUF_AVAIL[5:0]* Signale, um anzuzeigen, ob jeder
von ihren entsprechenden Sende-FIFOs 304 für den betreffenden Port genug freien Raum zur Verfügung hat,
um Daten zu speichern. Die Portstatuslogik 303 ist entweder für alle vier Ports, wie gezeigt, zentralisiert oder
ist unter den Ports verteilt. Die Bestimmung von freiem Raum erfolgt entsprechend einem Konfigurationsregis-
ter in der Busschnittstellenlogik 308, das eine Busübertragungsfeldgröße (TBUS) speichert, die vorzugsweise
durch die CPU 230 zu 16, 32 oder Bytes konfiguriert wird. In ähnlicher Weise enthält als Reaktion auf das
STROBE* Signal die TPI 220 ähnliche Portstatuslogik 820 (Fig. 8B), die mit dem HSB 206 zum Multiplexen
von vier Statusbits auf dem BUF_AVAIL[6]* Signal, um anzuzeigen, ob jeder ihrer internen Sende-FIFOs, unten
beschrieben, genug freien Raum hat, um Daten für die entsprechenden der TLANs 226 für die jeweiligen Ports
Port24–Port27 zu speichern. Für die CPU 230 oder Port28 macht ein PCB 406 (Fig. 4) in dem EPSM 210 ein
einzelnes Statusbit auf dem BUF_AVAIL[7]* Signal geltend, um anzuzeigen, ob ein interner PCB-Sende-FIFO
in dem EPSM 210 verfügbaren Raum hat, um Daten für die CPU 230 zu speichern.

[0077] In einer ähnlichen Weise multiplext als Reaktion auf das STROBE* Signal die Portstatuslogik 303 der
Busschnittstellenlogik 308 in jeder QC-Vorrichtung 202 vier Statusbits auf einem entsprechenden der
PKT_AVAIL[5:0]* Signale, die anzeigen, ob jeder ihrer Empfangs-FIFOs 302 für den betreffenden Port genug
Daten entsprechend dem TBUS-Wert hat, um empfangene Daten für eine Busübertragung auf dem HSB 206
zu übertragen. Desgleichen multiplext die TPI 220 vier Statusbits auf dem PKT_AVAIL[6]* Signal, das anzeigt,
ob ihre internen Empfangs-FIFOs genug Daten von den betreffenden Ports Port23–Port27 empfangen haben,
um sie auf dem HSB 206 zu übertragen. Für die CPU 230 macht der PCB 406 im EPSM 210 ein einzelnes
Statusbit auf dem PKT_AVAIL[7]* Signal geltend, um anzuzeigen, ob ein interner PCB-Empfangs-FIFO im
EPSM 210 genug Daten von von der CPU 230 für eine HSB 206 Busübertragung empfangen hat.
10/130

DE 697 31 519 T2 2005.12.01
[0078] Fig. 3F ist ein exemplarisches Timing-Diagramm, das eine Pufferstatusabfrage der QC-Vorrichtung
202 und der TPI 220, einscließlich Geltendmachung des STROBE* Signals durch den EPSM 210 und Antwort
durch jede der QC-Vorrichtungen 202 auf das Geltendmachen jeweiliger PKT_AVAILm* und BUF_AVAILm* Si-
gnale durch die TPI 220 veranschaulicht. Die Verweise auf Port0, Port1, Port2 und Port3 in Fig. 3F sind die
vier betreffenden Ports einer bestimmten QC-Vorrichtung 202 oder der TPI 220. Der PCB 406 antwortet in ei-
ner ähnlischen Weise, außer dass sein Port für alle vier Phasen aktiv ist. Das STROBE* Signal ist pegelget-
riggert und daher auf der ersten steigenden Flanke des CLK-Signals tief gesamplet. Es wird angemerkt, dass
das Timing-Diagramm von Fig. 3F nur exemplarisch ist und gezeigt wird, um die allgemeine Funktionalität und
nicht ein bestimmtes Timing oder bestimmte Signaleigenschaften zu veranschaulichen. Zum Beispiel ist das
STROBE* Signal periodisch und wird typischerweise für mehr als einen CLK-Zyklus im Betrieb der gezeigten
Ausführung tief geltend gemacht.

[0079] Wieder auf Fig. 3B verweisend wird das PORT_BUSY* Signal benutzt, um anzuzeigen, ob der jewei-
lige Port im Halbduplexmodus sendet oder empfängt, oder wenn der Port im Vollduplexmudus sendet. Lese-
datensignale READ_OUT_PKT[5:0]* werden von dem EPSM 210 geltend gemacht, um eine betreffende
QC-Vorrichtung 202 zu informieren, Daten von einem betreffenden Empfangs-FIFO 302 auf die Datensignale
DATA[31:0] zu legen. In einer ähnlichen Weise werden Schreibdatensignale WRITE_IN_PKT[5:0] durch den
EPSM 210 geltend gemacht, um eine betreffende QC-Vorrichtung 202 zu informieren, Daten von den Daten-
signalen DATA[31:0] in einen betreffenden Sende-FIFO 304 zurückzugewinnen. Auch werden ähnliche Signale
PCG_RD_OUT_PKT*, PVB_WR_IN_PKT* und TPI_READ_OUT_PKT*, TPI_WRITE_IN_PKT* für die TPI
220 bzw. die CPU 230 eingeschlossen. Alle Lese- und Schreibsignale werden kollektiv als
READ_OUT_PKTm* bzw. WRITE_IN_PKTm* bezeichnet. Die PORT_NO[1:0] Bits geben an, welcher einzelne
Port 104 für einen auf dem HSB 206 ausgeführten Zyklus adressiert wird.

[0080] Ein Signal SOP* gibt den Start des Pakets an, wenn der Anfang oder Vorspann eines Pakets auf dem
HSB 206 übertragen wird. Das AI_FCS_IN* Signal wird typischerweise mit dem SOP* und einem der
WRITE_IN_PKTm* Signale geltend gemacht, um eine L64381-Vorrichtung (für eine Implementierung der
QC-Vorrichtungen 202) zu veranlassen, automatisch einen CRC-(zyklische Redundanzprüfung)Wert aus den
Daten in dem Paket zu berechnen und den CRC in das FCS-Feld des Pakets einzufügen. Eine QE110 Vorrich-
tung ersetzt das AI_FCS_IN* Signal mit dem FBPN* Signal, wie früher beschrieben, für zusätzliche Funktio-
nen. Ein Signal EOP* bezeichnet das Ende des Pakets, wenn die letzte Datenübertragung eines Datenpakets
auf dem HSB 206 übertragen wird. BYTE_VALID[3:0]* Signale geben an, welche Bytes in dem gegenwärtigen
Wort auf den DATA-Signalen gültig sind. Es wird angemerkt, dass ein Datenpaket für ein einzelne Übertragung
auf dem HSB 206 gewöhnlich zulang ist, sodass jeder Buszyklus eine Datenmenge kleiner als oder gleich dem
TBUS-Wert überträgt.

[0081] Man wird erkennen, dass jede QC-Vorrichtung 202 jeden ihrer vier Port als 10Base-T Ethernet-Ports
betreibt. Man wird weiter erkennen, dass der EPSM 210 Zugang hat, um alle Register der QC-Vorrichtungen
202 durch den QC-Bus 204 zu lesen und zu beschreiben. Ferner liest der EPSM 210 Daten aus allen Emp-
fangs-FIFOs 320 und schreibt Daten in alle Sende-FIFOs 304 durch den HSB 206.

[0082] Fig. 3G ist ein exemplarisches Timing-Diagramm, das einen gleichzeitigen Lese- und Schreibzyklus
auf dem HSB 206 veranschaulicht. Der obere Teil des Timing-Diagramms bezeichnet den Zyklustyp, wo zwei
gleichlaufende Lese- und Schreibzyklen einer nach dem anderen ausgeführt werden. Die Signale CLK,
CLK_2, STROBE*, READ_OUT_PKTm*, WRITE_IN_PKTm*, PORT_NO[1:0], DATA[31:0] und ABORT_OUT*
sind auf einer Y-Achse (oder Vertikalachse) über Zeit geplottet, die auf einer X Achse (oder Horizontalachse)
des Timing-Diagramms geplottet ist. Es gibt zwei verschiedene Typen von gleichzeitigen Lese- und Schreib-
zyklen, die abhängig von der einzelnen Ausführung durchgeführt werden. Für den ersten, allgemeinen Typ von
gleichzeitigen Zyklen werden, wenn die QC-Vorrichtungen 202 mit den QE110 Vorrichtungen, die die Latches
324, 326 enthalten, implementiert sind, gleichzeitige Lese- und Schreibzyklen ohne weitere Verbesserung
durchgeführt. Alternativ, wenn die QC-Vorrichtungen 202 mit den L64381 Vorrichtungen implementiert sind,
werden externe Latches und Auswähllogik (nicht gezeigt) hinzugefügt, um die PORT_NO Signale zu spei-
chern, wenn auf dem HSB 206 geltend gemacht. Ein zweiter, spezieller Typ von gleichzeitigen Lese- und
Schreibzyklen wird mit den L64381 Vorrichtungen ohne weitere Verbesserung durchgeführt, aber nur, wenn
die PORT_NO Signale gleich sind und nur, wenn die QC-Vorrichtungen 202 verschieden sind.

[0083] Der EPSM 210 bestimmt den Typ des auszuführenden Zyklusses, z. B. Lesen, Schreiben, gleichzeiti-
ges Lesen und Schreiben, Rückstau usw. Ein Lesezyklus wird gewöhnlich durch Geltendmachung eines der
READ_OUT_PKTm* Signale angegeben, und ein Schreibzyklus wird gewöhnlich durch Geltendmachung ei-
nes der WRITE_IN_PKTm* Signale angegeben. Ein gleichzeitiger Lese- und Schreibzyklus wird durch gleich-
11/130

DE 697 31 519 T2 2005.12.01
zeitige Geltendmachung eines READ_OUT_PKTm* Signals und eines WRITE_IN_PKTm* Signals angege-
ben. Der EPSM 210 führt einen gleichzeitigen Lese- und Schreibzyklus zwischen Ports unter bestimmten Be-
dingungen durch, z. B. nur wenn beide Ports konfiguriert sind, um im Durchschalt-(CT)Modus, unten ausführ-
licher beschrieben, zu arbeiten.

[0084] Während des gleichzeitigen Zyklusses macht der EPSM 210 eines der READ_OUT_PKTm* Signale
am Anfang des dritten CLK-Zyklusses tief geltend, um eine der QC-Vorrichtungen oder die TPI 220 anzugeben,
und macht die geeignete Portnummer auf den PORT_NO[1:0] Signalen während des dritten CLK-Zyklusses
geltend, um einen der vier Ports der durch das geltend gemachte READ_OUT_PKTm* Signal identifizierten
QC-Vorrichtung 202 anzugeben. Die durch das bestimmte READ_OUT_PKTm* Signal identifizierte QC-Vor-
richtung 202 speichert die PORT_NO[1:0] Signale im dritten CLK-Zyklus, um den einzelnen Port, der gelesen
wird, zu bestimmen. Zum Beispiel sind die QE110 Vorrichtungen, die die QC-Vorrichtungen 202 implementie-
ren, mit den Lese-Latches 324 konfiguriert, um die Signale PORT_NO[1:0] zu speichern. Außerdem enthält die
TPI 220 ähnliche Lese-Latches 819b (Fig. 8B), um die PORT_NO[1:0] Signale im dritten CLK-Zyklus zu spei-
chern, wenn durch das READ_OUT_PKT[6]* Signal angegeben. Alternativ werden externe Latches für diesen
Zweck verwendet, wenn die QC-Vorrichtungen 202 mit den L64381 Vorrichtungen implememtiert sind. An die-
sem Punkt ist der identifizierte einzelne Port PORT0–PORT27 als der Quellenport für einen Lesezyklus auf
dem HSB 206 bezeichnet worden.

[0085] Der EPSM 210 macht eines der WRITE_IN_PKTm* Signale am Anfang des vierten CLK-Zyklusses tief
geltend, um die gleiche oder irgendeine andere der QC-Vorrichtungen 202 oder die TPI 220 zu bezeichnen,
und macht die geeignete Portnummer auf den PORT_NO[1:0] Signalen während des vierten CLK-Zyklusses
geltend, um einen der vier Ports der Vorrichtung zu bezeichnen, die durch das geltend gemachte
WRITE_IN_PKTm* Signal bezeichnet wird. Die durch das einzelne WRITE_IN_PKTm* Signal identifizierte
QC-Vorrichtung speichert die PORT_NO[1:0] Signale im vierten CLK-Zyklus, um den einzelnen Port, in den
geschrieben wird, zu bestimmen. Zum Beispiel sind die QE110 Vorrichtungen, die die QC-Vorrichtungen 202
implementieren, mit den Schreib-Latches 326 konfiguriert, um die Signale PORT_NO[1:0] im vierten CLK-Zy-
klus zu speichern. Außerdem enthält die TPI 220 ähnliche Schreib-Latches 819b, (Fig. 8B), um die
PORT_NO[1:0] Signale im vierten CLK-Zyklus zu speichern, wenn durch das WRITE_IN_PKT[6]* Signal an-
gegeben. In dieser Weise wird irgendein anderer der Ports Port0–Port27 als der Zielport für einen Schreibzy-
klus auf dem HSB 206 bezeichnet, wobei der Schreibzyklus zur der gleichen Zeit wie der gerade angegebene
Lesezyklus stattfindet. Die Quellen- und Zielports können auf der gleichen QC-Vorrichtung oder zwei Ports der
TPI 220 sein, oder können zwischen verschiedenen QC-Vorrichtungen 202 liegen. Ein gleichzeitiger Lese- und
Schreibzyklus wird jedoch zwischen einem der Ports 104 der QC-Vorrichtungen 202 und einem der Ports 110
der TPI 220 in der gezeigten Ausführung wegen der Unterschiede in der Datenübertragungsgeschwindigkeit
nicht durchgeführt.

[0086] In den folgenden Zyklen des CLK-Signals werden Paketdaten gleichzeitig übertragen oder aus dem
Quellenport gelesen und über den HSB 206 direkt in den Zielport geschrieben, ohne in dem EPSM 210 oder
dem Speicher 212 gespeichert zu werden. Die Datenübertragung erfolgt in Zyklen 5, 6, 7 und 8 zum Übertra-
gen mehrerer Bytes abhängig von der Ausführung. Zum Beispiel werden bis zu 64 Bytes für L64381 Vorrich-
tungen übertragen, und bis zu 256 Bytes werden für QE110 Vorrichtungen übertragen. Obwohl vier CLK-Zy-
klen für die Datenübertragung gezeigt werden, kann die Datenübertragung mit einem, zwei oder vier CLK-Zy-
klen abhängig davon stattfinden, wie viele Daten übertragen werden. Für neue Pakete wird zuerst ein normaler
Lesezyklus durchgeführt, um die Quellen- und Ziel-MAC-Adressen in den EPSM 210 au bringen, der dann eine
weiter unten beschriebene Hashig-Prozedur durchführt, um die Zielportnummer, wenn bekannt, zu bestimmen.
Sobald die Zielportnummer bekannt ist, und wenn es nur einen Zielport gibt, kann eine gleichzeitige Lese- und
Schreib-Operation für jeden Abschnitt oder den ganzen Rest des Pakets, wie gewünscht, durchgeführt wer-
den.

[0087] Der spezielle Typ des gleichzeitigen Lese- und Schreibzyklusses wird durchgeführt, wenn die
PORT_NO Signale gleich sind, aber zwischen zwei verschiedenen Ports und daher zwischen zwei verschie-
denen QC-Vorrichtungen 202. Fig. 3G zeigt auch diesen Fall, außer dass die PORT_NO Signale während des
ganzen Zyklusses unverändert bleiben. Die Latches 324, 326 sind nicht erforderlich, da die PORT_NO Signale
unverändert bleiben, sodass dieser Typ von gleizeitigem Zyklus zwischen zwei verschiedenen L64391 Vorrich-
tungen ohne externe Latches oder Auswähllogik durchgeführt werden kann. Der EPSM 210 bestimmt, dass
die PORT_NO Signale zwischen den Quellen- und Zielports gleich sind, und dass zwei verschiedene QC-Vor-
richtungen 202 involviert sind, und lässt dann den gleichzeitigen Zyklus, wie gezeigt, laufen.

[0088] Wie in Fig. 3G gezeigt, findet eine zweite, gleichzeitige Lese- und Schreibübertragung im sechsten
12/130

DE 697 31 519 T2 2005.12.01
CLK-Zyklus statt, wo die PORT_NO[1:0] Signale dann im siebten, achten und neunten Zyklus mit dem Lese-
modus, der Leseportnummer und der Schreibportnummer geltend gemacht werden. Als Reaktion wird ein
READ_OUT_PKTm* Signal für den siebten Zyklus deaktiviert. Desgleichen wird ein WRITE_IN_PKTm* Signal
für den achten Zyklus deaktiviert. Dieser zweite, gleichzeitige Zyklus ist entweder eine Fortsetzung des ersten
gleichzeitigen Zyklusses zum Bereitstellen von fortlaufenden und aufeinanderfolgenden Daten des gleichen
Pakets, oder kann der Beginn eines gänzlich verschiedenen Pakets sein. Die Quellen- und Zielports sind für
fortgesetzte Daten für das gleiche Paket die gleichen. Entweder der Quellenport, der Zielport oder beide kön-
nen jedoch im zweiten, gleichzeitigen Zyklus zum Übertragen von Daten für ein unterschiedliches Paket ver-
schieden sein.

[0089] Fig. 3H ist ein Flussdiagramm, das eine Prozedur zum Ausführen eines gleichzeitigen Leseund
Schreibzyklusses auf dem HSB 206 veranschaulicht. In einem ersten Schritt 330 stellt der EPSM 210 fest, ob
ein gleichzeitiger Lese- und Schreibzyklus auf dem HSB 206 zwischen einem Quellenport und einem Zielport
ausgeführt werden kann. Im nächsten Schritt 332 macht dann der EPSN 210 die geeigneten Signale geltend,
um den Quellenport zu identifizieren. Dies wird durch Geltendmachung der Quellen- oder "Lese"-Portnummer
mittels der PORT_NO Signale auf dem HSB 206 und durch Geltendmachung des geeigneten
READ_OUT_PKTm* Signals durchgeführt. Im nächsten Schritt 334 erfasst oder speichert die identifizierte
Quellenport-Vorrichtung die Identifikationssignale. In dem speziellen gleichzeitigen Zyklus ohne Latches er-
fasst die QC-Vorrichtung 202 das READ_OUT_PKTm* Signal und dann die PORT_NO Signale auf dem HSB
206 und beginnt, sich auf einen Lesezyklus vorzubereiten. In den allgemeinen gleichzeitigen Zyklen, die Lat-
ches verwenden, speichert die angegebene QC-Vorrichtung 202 oder die TPI 220 in Schritt 334 die Leseport-
nummer und beginnt, sich auf einen Lesezyklus vorzubereiten.

[0090] Im nächsten Schritt 336 macht der EPSM 210 die geeigneten Signale geltend, um den Zielport zu iden-
tifizieren. Für den speziellen gleichzeitigen Zyklus macht der EPSM 210 das geeignete WRITE_IN_PKTm* Si-
gnal geltend und bewahrt die gleichen PORT_NO Signale. Für den allgemeinen Fall macht der EPSM 210
auch die Ziel- oder "Schreib"-Portnummer auf dem HSB 206 zusammen mit dem geeigneten
WRITE_IN_PKTm* Signal im nächsten Schritt 336 geltend. Im nächsten Schritt 338 erfasst oder speichert die
identifizierte Zielport-Vorrichtung die Identifikationssignale. In dem speziellen Zyklus ohne Latches erfasst die
angegebene QC-Vorrichtung 202 das WRITE_IN_PKTm* Signal und dann die PORT_NO Signale auf dem
HSB 206 und beginnt, sich auf einen Schreibzyklus vorzubereiten. Für den allgemeinen Fall speichert die an-
gegebene QC-Vorrichtung 202 oder die TPI 220 die Ziel- oder Schreibportnummer im nächsten Schritt 338.
Schließlich stellt im nächsten Schritt 340 der angegebene Quellenport die Daten auf dem HSB 206 bereit, wäh-
rend der angegebene Zielport die Daten aus dem HSB 206 in einem gleichzeitigen Lese- und Schreibzyklus
liest.

[0091] Die gleichzeitige Lese- und Schreib-Operation ist der schnellste Typ von Datenübertragungszyklus, da
nur ein einziger Buszyklus für jede Übertragung von Paketdaten benötigt wird.

[0092] Wie weiter unten beschrieben, benötigt eine normale CT-Betriebsart wenigstens zwei Übertragungen,
eine von dem Quellenport zu dem EPSM 210 und eine andere von dem EPSM 210 zu dem Zielport, was zwei
getrennte Zyklen auf dem HSB 206 für die gleichen Daten benötigt. Ein gleichzeitiger Lese- und Schreibzyklus
benötigt eine einzige direkte Übertragung auf dem HSB 206 für die gleichen Daten, wodurch die Bandbreite
des HSB 206 erhöht wird. Andere, langsamere Modi werden bereitgestellt, einschließlich mehrerer Interim-CT-
und Speichern-und-Weiterleiten-(SnF)Modi, wo Paketdaten in den Speicher 212 geschrieben werden, bevor
sie zu dem Zielport übertragen werden.

[0093] Fig. 4 zeigt ein vereinfachtes Blockschaltbild des EPSM 210, das den Datenfluss und Konfigurations-
register veranschaulicht. Der EPSM 210 enthält drei Hauptabschnitte, einschließlich eines HSB-Steuerungs-
blocks (HCB) 402, eines Speicher-Steuerungsblocks (MCB) 404 und eines Prozessor-Steuerungsblocks
(PCB) 406. Eine QC-Schnittstelle 410 verbindet den HSB 206 und den HCB 402 des EPSM 210. Ein Satz von
Puffern oder FIFOs 412 ist mit der anderen Seite der QC-Schnittstelle 410 verbunden, wo die FIFOs 412 weiter
unten beschriebene Empfangs-, Sende- und Durchschalt-FIFOs umfassen. Die andere Seite der FIFOs (aus-
schließlich eines CT-Puffers, Fig. 5A) ist mit dem MCB 404 durch eine MCB-Schnittstelle 414 verbunden, die
mit einer HCB-Schnittstelle 418 in dem MCB 404 durch einen geeigneten Bus 420 verbunden ist. Die
HCB-Schnittstelle 418 ist weiter mit einer Speicherschnittstelle 422 verbunden, die mit dem Speicher 212 durch
den Speicherbus 214 verbunden ist. Die Speicherschnittstelle 422 ist weiter mit einer Seite einer PCB-Schnitt-
stelle 424 verbunden, deren andere Seite mit einer Seite einer MCB-Schnittstelle 426 in dem PCB 406 durch
einen geeigneten MCB-Bus 428 verbunden ist. Die andere Seite der MCB-Schnittstelle 426 ist mit einer Seite
eines Satzes von FIFOs 430 verbunden, die weiter mit einer CPU-Schnittstelle 432 in dem PCB 406 verbunden
13/130

DE 697 31 519 T2 2005.12.01
sind. Die CPU-Schnittstelle 432 ist mit dem QC/CPU-Bus 204 und mit dem CPU-Bus 218 verbunden. Die
CPU-Schnittstelle 432 ist weiter mit einer Seite eines zweiten Satzes FIFOs 434 in dem PCB 406 verbunden,
deren andere Seite mit einer QC/HCB-Schnittstelle 436 verbunden ist. Die andere Seite der QC/HCB-Schnitt-
stelle 436 ist mit der QC-Schnittstelle 410 über einen geeigneten HCB-Bus 438 verbunden.

[0094] Es wird angemerkt, dass die Signale PCB_BUF_AVAIL*, PCG_PKT_AVAIL*, PCB_RD_OUT_PKT*
und PCB_WR_IN_PKT* des HCB-Busses 438, die mit dem PCB 406 und der CPU 230 verbunden sind, in den
Signalen BUF_AVAILm*, PKT_AVAILm*, READ_OUT_PKTm* und WRITE_IN_PKTm* enthalten sind. In der
gezeigten Ausführung ist der HCB-Bus 438 ähnlich dem HSB 206 und ist im Wesentlichen eine interne Version
des HSB 206 im EPSM 210. Der PCB 406 verhält sich in ähnlicher Weise wie jeder der Ports 104 und die TPI
220 zu dem HCB 402. Auf diese Weise arbeitet die CPU 230, durch die Funktion des PCB 406, als ein zusätz-
licher Port (Port28) zu dem HCB 402.

[0095] Die CPU-Schnittstelle 432 ist mit einer Registerschnittstelle 440 durch einen Bus 442 verbunden, wo
die Registerschittstelle 440 weiter mit einem Registerbus 444 verbunden ist. Der Registerbus 444 ist mit einem
Satz von HCB-Konfigurationsregistern 446 in dem HCB 401 und einem Satz von MCB-Konfigurationsregistern
448 in dem MCB 404 verbunden. In dieser Weise initialisiert und programmiert die CPU 230 die Register in
den HCB- und MCB-Konfigurationsregistern 446 und 448 durch die CPU-Schnittstelle 432 und die Register-
schnittstelle 440.

[0096] Die MCB-Konfigurationsregister 448 werden benutzt, eine wesentliche Menge mit den Ports und dem
Speicher 212 verbundener Konfigurationsinformation zu speichern. Zum Beispiel enthalten die MCB-Konfigu-
rationsregister 448 Port-Statusinformation, die angibt, ob jeder in einem lernenden (LRN), weiterleitenden
(FWD), blockierten (BLK), zuhörenden (LST) oder abgeschalteten (DIS) Zustand ist, Speichersektorinformati-
on, Busbenutzungsinformation des Speicherbusses 214, Zahl fallen gelassener Pakete, Hash-Tabelleninfor-
mation, Speicherschwellen, BC-Schwellen, Identifikation von sicheren Ports, wenn vorhanden, Speichersteu-
erinformation, MCB-Unterbrechungsquellenbits, Unterbrechungsmaskierungsbits und Abfragequellenbits usw.

[0097] Die Beschreibung des EPSM 210 veranschaulicht, dass die CPU 230 Zugriff auf die QC-Vorrichtungen
und den Speicher 212 für Konfigurations- und Steuerzwecke hat. Obwohl der Hauptdatenfluss mit dem HSB
206 mit dem EPSM 210 durch die FIFOs 412 und den Speicher 212 ist, findet ein Datenfluss auch zwischen
dem HSB 206 und der CPU 230 durch den HCB-Bus 438 und zugehörige FIFOs und Schnittstellen des EPSM
210 statt.

[0098] Fig. 5A zeigt ein ausführlicheres Blockschaltbild des HCB 402. Der HCB-Bus 438 ist eine interne Ver-
sion des HSB 206 zum Verbinden des PCB 406, wo beide Busse 206, 438 kollektiv als der HSB 206 bezeichnet
werden. Eine Abfragelogik 501 ist mit dem HSB 206, mit einem Satz von lokalen Registern 506 und mit
HCB-Konfigurationsregistern 446 verbunden. Die Abfragelogik 501 empfängt das CLK-Signal und macht peri-
odisch das STROBE* Signal an den QC-Vorrichtungen 202 und der TPI 220 zum Abfragen der Ports 104, 110
und des PCB 406 geltend. Die Abfragelogik 501 überwacht dann die gemultiplexten PKT_AVAIL_m* und
BUF_AVAILm* Signale von den QC-Vorrichtungen und der TPI 220, wobei die jede QC-Vorrichtung 202 und
die TPI 220 den Status ihrer vier Ports 104 bzw. 110 liefert, wie vorher beschrieben. Die TPI 220 antwortet mit
den Signalen PKT_AVAIL[6]* und BUF_AVAIL[6]*, und der PCB 406 antwortet mit den Signalen PKT_AVAIL[7]*
und BUF_AVAIL[7]*.

[0099] Die Abfragelogik 501 enthält eine Empfangs-(RX)Abfragezustandsmaschine 502, die die
PKT_AVAILm* Signale durchsieht und eine Empfangsliste 509 in den Registern 506 aktualisiert. In einer ähn-
lichen Weise enthält die Abfragelogik 501 eine Sende-(TX) Abfragezustandsmaschine 503, die die
BUF_AVAILm* Signale durchsieht und eine Sendeliste 510 in den Registern 506 aktualisiert. Wenn ein WT-
PRIORITY-Flag in den HCB-Konfigurationsregistern 446 durch die CPU 230 gesetzt wird, verwenden die
RX-Abfagezustandsmaschine 502 und die TX-Abfragezustandsmaschine 503 einen Satz von Gewichtsfakto-
ren 508 in den HCB-Konfiguationsregistern 446 zum Programmieren der Empfangsliste 509 bzw. der Sende-
liste 510, wie weiter unten beschrieben. Die HCB-Konfigurationsregister 446 enthalten auch einen Satz von
CT_SnF-Registern 507, die von der CPU 230 programmiert werden, um die gewünschte Betriebsart zwischen
CT und SnF zu bestimmen, wenn der entsprechende Port entweder ein Quellen- oder ein Zielport ist.

[0100] Die Register 506 werden in jeder gewünschten Weise abhängig von der Implementierung des EPSM
210 implementiert, z. B. als Latches, Flipflops, statische RAMs (SRAM), DRAMs usw., und umfassen eine Viel-
zahl von Status- und Steuerregistern oder Puffern. Die Empfangsliste 509 enthält eine Vielzahl von Register-
werten, die den relativen Empfangsstatus und die Priorität jedes Ports anzeigen. Desgleichen enthält die Sen-
14/130

DE 697 31 519 T2 2005.12.01
deliste 510 ein Vielzahl von Registerwerten, die den relativen Sendestatus und die Priorität jedes Ports anzei-
gen. Ein PRCOUNT-Register 511a speichert eine PRCOUNT-Nummer, die von der RX-Abfragezustandsma-
schine 502 verwendet wird, um jedem Port eine relative Empfangspriorität zuweisen, wenn Paketdaten durch
diesen Port von einer externen Netzwerk-Vorrichtung empfangen werden. Alternativ verwendet die RX-Abfra-
gezustandsmaschine 502 einen entsprechenden Gewichtsfaktor von den Gewichtsfaktoren 508. Desgleichen
speichert ein TP-COUT-Register 511b eine TPCOUNT-Nummern die von der TX-Abfragezustandsmaschine
503 verwendet wird, um jedem Part eine relative Sendepriorität zuzuweisen, wenn Paketdaten zum Senden
durch diesen Port an eine externe Netzwerk-Vorrichtung vorhanden sind und der Port Raum hat, um Daten
zum Senden zu empfangen. Alternativ verwendet die TX-Abfragezustandsmaschine 502 einen entsprechen-
den Gewichtsfaktor von den Gewichtsfaktoren 508. Relative Arbitrations-Zählwerte RXNEWCNT, RXACTCNT,
TXNEWCNT und TXCTCNT werden in Registern RXNEWCNT 511c, RXACTCNT 511d, TXNEWCNT 511e
und TXCTCNT 511f gespeichert.

[0101] Der HCB 402 enthält Arbitrationslogik 504, die die Daten in den Registern 506 und 446 durchsieht, um
die Typen der auf dem HSB 206 ausgeführten Zyklen zu bestimmen. Eine HSB-Steuerung 505 steuert jeden
auf dem HSB 206 ausgeführten Zyklus zum Steuern des Datenflusses zwischen dem EPSM 210 und dem HSB
206. Die HSB-Steuerung 505 ist mit den Registern 506 zum Modifizieren von Statusbits verbunden. Die
HSB-Steuerung 505 empfängt eine Angabe des Typs jedes Zyklusses von der Arbitrationslogik 504. Die Arbi-
trationslogik 504 enthält eine Haupt-Arbiter 512, der mit vier Arbitern verbunden ist, die einen Neupaketemp-
fangs-(RX NW)Arbiter 513, einen Empfangaktiv(RX ACT)Arbiter 514, einen Neupaketsende-(TX NW)Arbiter
515 und einen Sende-Durchschalt-(TX CT)Arbiter 516 umfassen. Der Hauptarbiter 512 wählt gewöhnlich zwi-
schen dem RX NW-Arbiter 513, dem RX ACT-Arbiter 514, dem TX NW-Arbiter 515 und dem TX CT-Arbiter 516
aus, wo jeder Arbiter schlichtet, um den nächsten Zyklus zu definieren. Der Hauptarbiter 512 verwendet nach
Wunsch jedes annehmbare Prioritätsschema. In der gezeigten Ausführung verwendet der Hauptarbiter 512 z.
B. ein Umlauf-Prioritätsschema.

[0102] Die FIFOs 412 werden in jeder gewünschten Weise implementiert. In der gezeigten Ausführung imp-
lementieren zwei Empfangspuffer RX BUFs 529, 522 einen RXFIFO, wo Daten aus einem Puffer gelesen wer-
den, während sie in den anderen geschrieben werden, und umgekehrt. Auch werden zwei Sendepuffer TX-
BUFs 524, 526 bereitgestellt und arbeiten in einer ähnlichen Weise wie die RXBUFs 510, 522. Die FIFOs 412
enthalten auch wenigstens einen Durchschalt-Puffer CTBUF 528. Die RXBUFs 520 und 522 sind beide
64-Byte Puffer, die je eine bidirektionale Datenschnittstelle mit dem HSB 206 zum Datenfluss in jeder Richtung
und eine unidirektionale Schnittstelle zum Liefern von Daten an den MCB 404 durch eine RXMCB-Schnittstelle
530 enthalten. Die TXBUFs 524, 526 sind beide 64-Byte Puffer, die zwischen den HSB 206 und eine TXM-
CB-Schnittstelle 531 geschaltet sind. Die TXBUFs 524, 526 empfangen Daten von dem MCG 404 durch die
TXMCB-Schnittstelle 531 und liefern Daten an den HSB 206. Der CTBUF 528 ist ein 64-Byte Puffer mit einer
bidirektionalen Schnittstelle mit dem HSB 206. Ein FIFO-Steuerblock 529 ist mit den Registern 506, der
HSB-Steuerung 505, den RXBUFs 520m 522, den TXBUFs 524, 526, dem CTBUF 528, der RXMCB-Schnitt-
stelle 530 und der TXMCB-Schnittstelle 513 zum Steuern des Datenflusses durch die FIFOs 520, 522, 524,
526 verbunden, um bestimmte durch die RX, TXMCB-Schnittstellen 530 und 531 geltend gemachte Statussi-
gnale zu erfassen und bestimmte Bits in den Registern 506 zu setzen, wie unten weiter beschrieben.

[0103] Der Bus 420 enthält eine Vielzahl von Daten- und Steuersignalen zum Verbinden des HSB 402 mit
dem MCB 404 durch die RX, TXMCB-Schnittstellen 530, 531, Hash-Anforderungslogik und MCB-Schnittstelle
(bezeichnet als HASH REQ LOGIC) 532 und Sende-Arbiter-Anforderungslogik und MCB-Schnittstelle (be-
zeichnet als TX ARB REQ LOGIC) 533. Die HSB-Steuerung 505 kopiert den Vorspann jedes neuen Pakets
von einem der Ports Port0–Port28 in einen der RXBUFs 520, 522 und auch in die HASH REG LOGIC 532. Der
Vorspann beträgt wenigstens drei DWORDs (je 32 Bit), die sowohl die Quellen- als auch Ziel-MAC-Adressen
enthalten. Die HASH REQ LOGIC 532 verlangt, dass die Hashing-Prozedur durch den MCB 404 ausgeführt
wird, und setzt geeignete Bits in den Registern 506. Die Hashing-Prozedur wird durchgeführt, um die geeignete
Aktion zu bestimmen, die für das Paket zu ergreifen ist.

[0104] In der gezeigten Ausführung macht nach Empfangen des Vorspanns eines neuen Pakets die HASH
REG LOGIC 532 ein Signal HASH_REQ* am MCB 404 geltend und muttiplext die 48-Bit MAC-Ziel- und Quel-
lenadressen und eine 8-Bit Quellenportnummer auf HASH_DA_SA[15:9] Signale. Der MCB 404 erfasst das
HASH_REQ* Signal, führt die Hashing-Prozedur durch und macht ein Signal HASH_DONE an der HASH REQ
LOGIC 532 geltend. Der MCB 404 macht auch Signale HASH_DSTPRT[4:0], HASH_STATUS[1:9] und ein Si-
gnal HASH_BP*, wenn angebracht, geltend. Die HASH_STATUS[1:0] Signale bezeichnen eines von vier Er-
gebnissen, die 00b (b bezeichnet eine Binärzahl) = DROP_PKT, um das Paket fallen zu lassen, 01b =
GROUP_BC für ein Rundsende-(BC)Paket, 10b = MISS_BC für einen unbekannten Zielport und daher ein
15/130

DE 697 31 519 T2 2005.12.01
BC-Paket, und 11b = FORWARD_PKT, das ein Unicast-Paket an einen einzelnen Zielport bezeichnet, umfas-
sen. Wenn HASH_STATUS[1:0] = FORWARD_PKTn werden die HASH_DSTPRT[4:0] Signale geltend ge-
macht, wobei eine binäre Portnummer den Zielport für das Paket bezeichnet. Das HASH_BP* Signal wird gel-
tend gemacht, um Rückstau anzuzeigen, wenn Rückstau freigegeben und anwendbar ist, infolge einer Schwel-
lenüberlaufbedingung im Speicher 212, wie durch den MCB 404 festgestellt.

[0105] Bestimmte Schwellenwerte werden für den ganzen Speicher 212, für einzelne Typen von Paketen (z.
B. BC-Pakete) und auf einer Port-für-Port-Basis festgelegt. Wenn ein Schwellenwert erreicht wird, sodass ein
anderes an den Speicher 212 geliefertes Paket eine Schwellenbegingung verletzen würde, entscheidet der
Netzwerkschalter 102, ob das Paket fallen zu lassen ist. Die sendende Vorrichtung erkennt schließlich, dass
das Paket fallen gelassen wird, und sendet das Paket neu. Wenn bestimmte Schwellenbedingungen verletzt
werden, wird Rückstau freigegeben, und wenn der Quellenport im Halbduplexmodus arbeitet, wird das
HASH_BP* Signal geltend gemacht.

[0106] Die HASH REQ LOGIC 532 erfasst das HASH_BP* SIGNAL und stellt fest, ob HASH_STATUS[1:0] =
DROP_PKT, z. B. die Quellen- und Zielports sind die gleichen. Wenn HASH_STATUS[1:0] = DROP_PKT, ist
keine weitere Aktion nötig, da das Paket fallen zu lassen ist. Wenn HASH_STATUS[1:0] nicht gleich
DROP_PKT ist, stellt die HASH REQ LOGIC 532 fest, ob HASH_STATUS[1:0] = FORWARD_PKT und das Pa-
ket im CT-Modus durch den CT BUF 528 zu übertragen ist, um dadurch möglicherweise den Speicher 212 zu
umgehen. Wenn der Zielport beschäftigt ist, oder wenn HASH_STATUS[1:0] nicht angibt, das Paket fallen zu
fassen oder das Paket weiterzuleiten, weist die HASH REQ LOGIC 532 die HSB-Steuerung an, einen Rück-
stau-Zyklus auf dem Port, der Daten empfängt, auszuführen.

[0107] Während des SnF-Betriebs empfängt der EPSM 210 das ganze Paket und speichert es im Speicher
212, bevor jeder Teil des Pakets an einen Zielport gesendet wird. Nachdem das Paket gesendet ist, und wenn
der Zielport bekannt ist, wird das Paket an den Zielport, wenn vorhanden, entsprechend dem einzelnen be-
nutzten Arbitrationsschema gesendet. Um CT-Betrieb anzuwenden, werden beide Ports für den CT-Modus in
den CT_SNF-Registern 507 voreingestellt, beide Ports arbeiten bei der gleichen Geschwindigkeit, und die
TBUS-Einstellung für den Zielport ist größer als die oder gleich der TBUS-Einstellung für den Quellenport. Für
die einzelne gezeigte Ausführung, die die TLANs 226 verwendet, um die 100 Mbps Ethernet-Ports
Port24–Port27 zu implementieren, wird der CT-Modus für die Ports Port24–Port27 nicht durchgeführt, da die
TLANs vor dem Senden die Größe des ganzen Pakets benötigen. Außerdem verlangt die gezeigte Ausfüh-
rung, dass die TBUS-Werte gleich sind. Die vorliegende Erfindung wird durch diese verschiedenen Erwurfser-
wägungen nicht begrenzt. Während der CT-Betriebsart liefert der EPSM 210 die Daten an die geeignete
QC-Vorrichtung 202 zum Senden auf dem angegebenen Zielport, wenn er nicht beschäftigt ist. Die Paketdaten
werden durch die FIFOs 412 zwischen den Quellen- und Zielports gepuffert, ohne in den Speicher 212 über-
tragen zu werden.

[0108] Wenn der Zielport am Anfang eines empfangenen Pakets beschäftigt ist, werden die Daten im Spei-
cher 212 zwischen den Quellen- und Zielports entsprechend der Interim-CT-Betriebsart gepuffert. Der Paket-
abschnitt steht jedoch sofort zum Senden an einen Zielport zur Verfügung, sodass der Zielport nicht auf das
ganze zu empfangende Paket warten muss. Als ein Sicherheitsmechanismus kann die Interim-CT-Betriebsart
aufgehoben und der Betrieb für dieses einzelne Paket in den SnF-Modus für das nächste Paket umgeschaltet
werden.

[0109] Wenn aus irgendeinem Grund der Zielport außerstande ist, mehr Daten während der Übertragung ei-
nes Pakets im CT-Modus anzunehmen, z. B. wenn der Zielport stehen bleibt, wird der Betrieb auf den Mittel-
paket-Interim-CT-Modus umgeschaltet. Während des Mittelpaket-Interim-CT-Modus werden die Paketdaten in
den FIFOs 412 an den Speicher 212 gesendet und dann an die Zielport gesendet, wenn er verfügbar ist, um
mehr Daten zu empfangen. Es wird angemerkt, dass, da andere nachfolgend empfangene Pakete durch an-
dere Ports zum Senden an den gleichen stehen gebliebenen Port empfangen werden können, wobei diese
nachfolgenden Pakete in eine entsprechende Sendekette für den Port gestellt werden, der restliche Paketab-
schnitt des auf den Mittelpaket-Interim-CT-Modus umgeschalteten Pakets zuerst in die Sendekette gestellt
wird, um die richtige Reihenfolge zu sichern.

[0110] Ein anderer Modus wird als der adaptive SnF-Modus bezeichnet. Während ein Paket entsprechend
dem CT-Betrieb übertragen wird, überwacht und verfolgt die CPU 230 die Aktivität der Ports 104, 110 und des
PCB 406, um festzustellen, ob einer oder mehrere der Ports eine bedeutsame Zahl von Fehlern erfährt, z. B.
"Runts", "Overruns", "Jabbers", Spätkollision, FCS-Fehler usw. Ein Runt ist ein Paket kleiner als eine bestimm-
te Mindestdatenmenge, wobei das Minimum in der gezeigten Ausführung 64 Byte beträgt. Ein Overrun ist ein
16/130

DE 697 31 519 T2 2005.12.01
Paket, das größer ist als eine bestimmte Maximaldatenmenge, die in der gezeigten Ausführung 1,518 Byte ent-
sprechend dem Ethernet-Standard beträgt. Ein Jabber ist ein Paket größer als die Maximalgröße (1,518 Bytes
für Ethernet) und enthält einen ungültigen CRC-Wert. Gewöhnlich werden Pakete mit solchen Fehlern fallen
gelassen und durch das System nicht verbreitet. Entsprechend dem adaptiven SnF-Modus schaltet, wenn ein
Port 104 im CT-Betrieb arbeitet und eine bedeutsame Zahl solcher Fehler erfahren werden, wie durch die CPU
230 bestimmt, die CPU 230 den voreingestellten Modus für den gewünschten Port von CT- auf SnF-Betrieb
um, bis alle Fehler korrigiert oder sonstwie beseitigt sind.

[0111] Die Arbeitsweise der Ports 110 jedes TLAN 226 ist ähnlich, außer dass Paketdaten durch die TPI 220
über den HSB 206 zu dem EPSM 210 laufen und vor dem Senden im Speicher 212 gespeichert werden. Die
TPI 220 arbeitet effektiv als eine Brücke zwischen dem PCI-Bus 222 und dem HSB 206. Die TLANs 226 be-
nötigen die Länge des ganzen Pakets, bevor das Pa-ket an ein externes Netzwerk gesendet wird, sodass jedes
Paket in seiner Gesamtheit empfangen und im Speicher 212 gespeichert wird, bevor es an eines der TLANs
226 neu gesendet wird. Außerdem, Daten, die durch ein TLAN 226 zum Senden durch eine QC-Vorrichtung
202 empfangen werden, und Daten die durch eine QC-Vorrichtung 202 zum Senden durch ein TLAN 226 emp-
fangen werden, werden infolge des grollen Geschwindigkeitsunterschieds zwischen den Vorrichtungen 202,
226 in der gezeigten Ausführung im SnF-Modus betrieben und im Speicher 212 gespeichert.

[0112] Die RXMCB-Schnittstelle 530 macht ein Signal RX_PKT_AVAIL* an dem MCB 404 geltend, wenn Pa-
ketdaten in einem der RXBUFs 520, 522 liegen und zum Übertragen in den Speicher 212 bereit sind. Paket-
daten werden von dem HCB 402 an den MCB 404 auf einem Speicherdaten-Ausgangsbus MemDataOut oder
MDO[31:0] übertragen. Ein statisches Signal MEM_EDO wird geltend gemacht, wenn der Typ des Speichers
212 entweder EDO oder Synchron-DRAM ist, und wird für FPM-DRAM nicht geltend gemacht. Die RXMCB
Schnittstelle 530 macht auch, wenn angebracht, mehrere andere Signale geltend, während das Signal
RX_PKT_AVAIL* geltend gemacht wird. Das heißt, die RXMCB-Schnittstelle 530 multiplext die Quellenport-
nummer auf RX_SRC_DST[4:0] Signale für einen CLK-Zyklus gefolgt von der Zielportnummer, wenn bekannt,
während des nächsten CLK-Zyklusses, während das RX_PKT_AVAIL* Signal gehend gemacht wird. Ferner
macht die RXMCB-Schnittstelle 530 die Zahl von DWORDs (minus einem DWORD) auf RX_CNT[5:0] geltend,
die sich in dem ausgewählten RXBUF 520 oder 522 befinden.

[0113] Die RXMCB-Schnittstelle 530 macht ein Signal RX_SOP* mit dem RX_PKT_AVAIL* Signal geltend,
wenn die Daten der Beginn eines Pakets sind, oder macht ein Signal RX_EOP* mit dem RX_PKT_AVAIL* Si-
gnal geltend, wenn die Daten das Ende des Pakets sind. Die RX-MCB-Schnittstelle 530 macht ein Signal
RX_CUT_THRU_SOP* mit den RX_PKT_AVAIL* und RX_SOP* Signalen geltend, wenn das Paket im CT Mo-
dus übertragen, aber durch den Speicher 212 gepuffert wird, z. B. für Interim-CT- oder Mittelpaket-CT-Modi.
Das heißt, Interim-CT (volles Paket) wird angegeben, wenn (!RX_CUT_THRU_SOP* & IRX_PKT_AVAIL* &
!RX_SOP*), und Interim-CT-Mittelpaket wird angegeben, wenn (!RX_CUT_THRU_SOP* & !RX_PKT_AVAIL*
& RX_SOP*). Die RXMCB-Schnittstelle 530 macht ein Signal RX_MISS_BC* mit den RX_PKT_AVAIL* und
RX_SOP* Signalen geltend, wenn die Zieladresse unbekannt war, und daher das Paket ein BC-Paket ist. Die
RXMCB-Schnittstelle 530 macht ein Signal RX_GROUP_BC* mit den Signalen RX_PKT_AVAIL* und
RX_SOP* geltend, wenn das GROUP-Bit in dem Paketvorspann gesetzt ist, sodass das Paket wiederum ein
BC-Paket ist. Die RXMCB-Schnittstelle 530 macht ein Signal RX_END_BYTE[0:1] mit den RX_PKT_AVAIL*
und RX_EOP* Signalen geltende, um den Bytepfad des letzten Bytes in dem Paket anzuzeigen.

[0114] Die RXMCB-Schnittstelle 530 macht ein Signal RX_ERROR* mit den Signalen RX_PKT_AVAIL* und
RX_EOP* geltend, wenn der Quellenport während des Übertragens in dem Paket einen Fehler erfasst und
durch Geltendmachung des Signals ABORT_OUT* anzeigt. Verschiedene Fehlerbedingungen werden durch
die Ports 104, 110 geprüft, z. B. Erfassen eines FIFO-Overrun, eines Runt-Pakets, eines übergroßen Pakets,
eines Rahmenprüfsequenz-(FCS)Fehlers oder eines Phasenverriegelungsschleifen-(PLL)Fehlers. Wenn das
Signal RX_ERROR* geltend gemacht wird, lässt der Netzwerkschalter 102 das Paket fallen, wenn es im
SnF-Modus übertragen wird.

[0115] Der MCB 404 macht ein Signal RX_ACK* an dem HCB 401 nach Erfassen des geltend gemachten
Signals RX_PKT_AVAIL* geltend und nach Speichern der mit dem RX_PKT_AVAIL* Signal geltend gemachten
zugehörigen Signale, wie oben beschrieben. Der MCB 404 macht ein Signal RX_STB* geltend, wenn er bereit
ist, das nächste DWORD von Daten anzunehmen. Der MCB 404 macht ein Signal RX_PKT_COMPLETE* gel-
tend, wenn er bestimmt, dass der HCB 402 die Daten anfordern kann. Das heißt, der MCB 404 macht das Si-
gnal RX_PKT_COMPLETE* geltend nach Erfassen des durch den HCB 402 für CT-Moduspakete geltend ge-
machten Signals RX_SOP*. Außerdem macht der MCB 404 das RX_PKT_COMPLTE* Signal geltend nach Er-
fassen des durch den HCB 402 für SnF-Moduspakete geltend gemachten Signals RX_EOP*. Der MCB 404
17/130

DE 697 31 519 T2 2005.12.01
macht das Signal RX_PKT_COMPLETE* nicht geltend, wenn das Signal RX_ERROR* für ein SnF-Paket gel-
tend gemacht war (dadurch angezeigt, dass das Signal RX_CUT_THRU* nicht mit dem _SOP* geltend ge-
macht wird). Der MCB 404 macht ein Signal RX_PKT_ABORTED* an dem HCB 402 anstelle des Signals
RX_PKT_COMPLETE* geltend, wenn das Paket infolge einer Überlaufbedingung des Speichers 212, wie
durch den MCB 404 festgestellt, fallen gelassen wird.

[0116] Die TX ARB REQ LOGIC 533 empfängt eine Anforderung von der Arbitrationslogik 504, um Paketda-
ten aus dem Speicher 212 zum Senden durch einen verfügbaren Zielport zurückzugewinnen, wobei die Anfor-
derung typischerweise durch den TXNW Arbiter 515 hervorgebracht wird. Die TX ARB REQ LOGIC 533 macht
folglich ein Sendeanforderungssignal TX_ARB_REQ* an dem MCB 404 geltend, während auch die Zielport-
nummer auf Signalen TX_ARB_PORT[4:0] und eine maximale Übertragungslänge für jeden Datenabschnitt
auf Signalen TX_ARB_XSIZE[2:0] geltend gemacht werden. Die maximale Übertragungslänge ist für die TX-
BUFs 524, 526 als 000b = 16 Byte, 001b = 32 Byte, 010b = 64 Byte, 011 = 128 Byte und 100 = 256 Byte defi-
niert. Der MCB 404 speichert diese Werte und macht ein Bestätigungssignal TX_ARB_ACK* an der TX ARB
REQ LOGIC 533 geltend. Der MCB 404 gewinnt dann die verlangten Daten aus dem Speicher 212 zurück und
schreibt die Daten in einen der TXBUFs 524, 526.

[0117] Daten werden an die TXBUFs 524, 526 in den HCB 402 über einen Speicherdateneingangsbus Mem-
DataIn oder MDI[31:0] übertragen. Die TXMCB-Schnittstelle 531 gibt ein Signal TX_BUF_AVAIL* aus, wenn
der FIFO-Steuerblock 529 feststellt, dass einer der TXBUFs 524, 526 verfügbar ist, um Daten von dem MCB
404 zu empfangen. Der MCB 404 gibt ein Strobesignal TX_STB* aus, wenn Daten verfügbar sind, um durch
die TXMCB-Schnittstelle 531 des HCB 402 zur Speicherung in dem verfügbaren TXBUF 524 oder 526 abge-
tastet zu werden. Der MCB 404 gibt mehrere Signale gleichzeitig mit dem TX_STB* Signal zum Identifizieren
von Eigenschaften der Daten aus. Das heißt, der MCB 404 macht ein Signal TX_SOP* mit dem TX_STB* Si-
gnal für den Beginn oder Start eines Pakets von dem Speicher 212 geltend. Der MCB 404 macht ein Signal
TX_AIFCS* mit dem TX_STB* Signal geltend, wenn der Quellenport der PCB 406 ist, der die CPU 230 angibt.
Der MCB 404 macht eine Binärzahl auf Signalen TX_CNT[5:0] mit dem TX_STB* Signal geltend, wo die
TX_CNT[5:0] Signale die Zahl von DWORDS (minus ein DWORD) angeben, um in den ausgewählten TX FIFO
zu schreiben. Der MCB 404 macht ein Signal TX_EOP* mit dem TX_STB* Signal für das Ende des Pakets von
dem Speicher 212 geltend. Der MCB 404 macht auch ein Pufferkettenendesignal TX_EOBC* mit den Signalen
TX_EOP* und TX_STB* geltend, wenn es für den einzelnen Zielport im Speicher 212 keine Daten mehr gibt.
Der MCB 404 macht auch Byteendesignale TX_END_BYTE[1:0] mit den Signalen TX_EOP* und TX_STB*
geltend, um den Bytepfad des letzten Bytes in dem Paket anzuzeigen.

[0118] Für BC-Pakete macht der MCB 404 ein Signal BC_PORT_STB* geltend, während eine BC-Bitmap auf
den MDI[31:0] Signalen geltend gemacht wird. Der FIFO-Steuerblock 529 erfasst die Geltendmachung des
BC_PORT_STB* Signals, verriegelt die MDI[31:0] Signale und speichert das Ergebnis in einem internen BC-
BITMAP[28:0] Register. Der FIFO-Steuerblock benutzt die Werte in dem BCBITMAP-Register, wenn Bits in ein
Feld von Speicherbits TXMEMCYC[28:0] in der Sendeliste 510 gestellt werden.

[0119] Fig. 5B ist ein Diagramm, das mehrere der Register in den Registern 506 veranschaulicht. Die
CT_SNF-Register 507 enthalten eine Anordnung von programmierbaren Quellenportmodusbits
SRC_CT_SNF[28:0], wobei jedes einem der Ports Port28–Port0 entspricht und durch die CPU 230 program-
miert wird, um die gewünschte Betriebsart zwischen CT und SnF zu identifizieren, wenn der entsprechende
Port ein Quellenport ist. Das heißt, wenn das SRC CT_SNF Bit für einen gegebenen Port gesetzt wird, wird
gewünscht, diesen Port im CT-Modus zu betreiben, wenn der Port als ein Quellenport agiert. Wenn das SRC
CT_SNF Bit gelöscht wird, wird gewünscht, diesen Port im SnF-Modus zu betreiben, wenn der Port als ein
Quellenport agiert. Desgleichen enthalten die CT_SNF-Register 507 eine Anordnung von programmierbaren
Zielportmodusbits DEST CT_SNF[28:0], wobei jedes einem der Ports Port28 bis Port0 entspricht und durch
die CPU 230 programmiert wird, um die gewünschte Betriebsart zwischen CT und SnF zu identifizieren, wenn
der entsprechende Port als ein Zielport für ein Unicast-Paket agiert. Der CT-Modus wird nur gewünscht, wenn
sowohl der Quellen- als auch der Zielport für den CT-Modus in den CT_SNF-Registern 507 bezeichnet sind.

[0120] Die Empfangsliste 509 umfasst eine Vielzahl von Registern zum Speichern von entsprechenden Emp-
fangsprioritätszählwerten, bezeichet als RXPORTBUFx[4:0] Zählwerte, wo "x" die Portnummer widerspiegelt.
Jeder RXPORTBUFx Zählwert ist in der gezeigten Ausführung fünf Bits zum Priorisieren von bis zu 32 Ports.
Die Empfangsliste 509 enthält eine entsprechende Anordnung von Portmaskenbits RXPRTMSK[28:0], wo je-
des RXPRTMSK-Bit durch die RX-Abfragezustandsmaschine 502 gesetzt wird, wenn dieses RXPRTMSK-Bit
anfangs auf logisch 0 ist, um anzuzeigen, dass momentan keine Priorität zugewiesen ist, und wenn das betref-
fende PKT_AVAILm* Signal dann geltend gemacht wird. Zu dieser Zeit weist die RX-Abfragezustandsmaschi-
18/130

DE 697 31 519 T2 2005.12.01
ne 502 eine Prioritätsnummer in dem entsprechenden RXPORTBUFx Register zu. Die Prioritätsnummer bleibt
gültig, bis der Port bedient wird. Während das RXPRTMSK-Bit gesetzt ist, ignoriert die RX-Abfragezustands-
maschine 502 weitere Anforderungen durch Maskieren nachfolgender Geltendmachungen des entsprechen-
den PKT_AVAILm* Signals. Die HSB-Steuerung 505 löscht das RXPRTMSK-Bit während jeder Lesezxklusü-
bertragung von dem betreffenden Port für dieses Paket außer für die erste Übertragung für ein neues Paket.
Die HASH REQ LOGIC 532 löscht das RXPRTMSK-Bit während der ersten Lesezyklusübertragung, wenn das
Paket entsprechend der SnF-Betriebsart zu übertragen ist. Die HSB-Steuerung 505 löscht das RXPRTMSK-Bit
während der ersten Schreibzyklusübertragung an den Zielport, wenn das Paket im CT-Modus übertragen wird.

[0121] Die Empfangsliste 509 enthält eine Anordnung von In-Queue-Bit RXINQUE[28:0], die jeweils gesetzt
werden, wenn das entsprechende RXPRTMSK-Bit gesetzt wird. Jedes RXINQUE-Bit zeigt an, ob der Priori-
tätswert gültig ist, und, wenn ja, dass der entsprechende Port durch die Arbitrationslogik 504 in die Arbitration
einzuschließen ist. Das RXINQUE-Bit wird durch einen Arbiter in der Arbitrationslogik 504 gelöscht, wenn der
befreffende Port an den Haupt-Arbiter 512 übergeben wird, um als der nächste Port zum Übertragen von Daten
für ein neues Paket oder für ein sich fortsetzendes SnF-Paket bedient zu werden.

[0122] Die Empfangsliste 509 enthält eine Anordnung von Speicherbits RXMEMCYC[28:0], die anzeigen, ob
der befreffende Port Daten im Speicher 212 empfangen soll. Dies kommt für die SnF-, Interim-CT- und die In-
terim-Mittelpaket-CT-Betriebsart vor. Die HASH REQ LOGIC 532 setzt ein entsprechendes RXMEMCYC-Bit,
wenn der SnF- oder Interim-CT-Modus bestimmt wird. Der Haupt-Arbiter 512 setzt das RXMEMCYC-Bit für Mit-
telpaket-Interim-CT-Moduspakete, wenn der Zielport nicht anzeigt, dass während des normalen CT-Modus
Pufferplatz verfügbar ist. Die HSB-Steuerung 505 löscht das RXMEMCYC-Bit bei der letzten Lesezyklusüber-
tragung von Daten für den betreffenden Port.

[0123] Die Empfangsliste 509 enthält eine Anordnung von aktiven oder CT-Bits RXACTCYC[28:0], die ange-
ben, ob der betreffende Port ein Datenpaket entsprechend der normalen CT-Betriebsart überträgt. Die HASH
REQ LOGIC 532 setzt ein entsprechendes RXACTCYC-Bit für CT-Moduspakete. Die HSB-Steuerung 505
löscht das RXACTCYC-Bit bei einem Lesezyklus der letzten Datenübertragung eines Pakets für den entspre-
chenden Port. Der Haupt-Arbiter 512 löscht das RXACTCYC-Bit, wenn das Bit für den CT-Modus gesetzt ist,
und wandelt das Paket in ein Mittelpaket-CT-Paket um.

[0124] Die Sendeliste 510 enthält eine Vielzahl von Registern zum Speichern von entsprechenden Sendepri-
oritätszählwerten, bezeichnet als die TXPORTBUFx[4:0] Zählwerte, wo "x" die Portnummer widerspiegelt. TX-
PORTBUFx Zählwert ist in der gezeigten Ausführung fünf Bits zum Priorisieren von bis zu 32 Ports. Die Sen-
deliste 510 enthält eine entsprechende Anordnung von Portmaskenbits TXPRTMSK[28:0], wo jedes TX-
PRTMSK-Bit durch die TX-Abfragezutandsmaschine 503 gesetzt wird, wenn dieses TXPRTMSK-Bit anfangs
auf logisch 0 ist, um anzuzeigen, dass momentan keine Priorität zugewiesen ist, und wenn das betreffende
BUF_AVAILm* Signal dann geltend gemacht wird. Zu dieser Zeit weist die TX-Abfragezustandsmaschine 503
eine Prioritätsnummer in dem entsprechenden TXPORTBUFx Register zu. Die Prioritätsnummer bleibt gültig,
bis der Port bedient wird. Während das TXPRTMSK-Bit gesetzt ist, ignoriert die TX-Abfragezustandsmaschine
503 weitere Anforderungen durch Maskieren nachfolgender Geltendmachungen des entsprechenden
BUF_AVAILm* Signals. Die HSB-Steuerung 505 löscht das TXPRTMSK-Bit während jeder Lesezxklusübertra-
gung von dem betreffenden Port für dieses Paket außer für die erste Übertragung für ein neues Paket. Die
HSB-Steuerung 505 löscht das TXPRTMSK-Bit während jeder Schreibzyklusübertragung von Paketdaten an
den Zielport.

[0125] Die Sendeliste 510 enthält eine Anordnung von In-Queue-Bit TXINQUE[28:0], die jeweils gesetzt wer-
den, wenn das entsprechende TXPRTMSK-Bit gesetzt wird. Jedes TXINQUE-Bit zeigt an, ob der Prioritätswert
gültig ist, und, wenn ja, dass der entsprechende Port durch die Arbitrationslogik 504 in die Arbitration einzu-
schließen ist. Das TXINQUE-Bit wird durch einen Arbiter in der Arbitrationslogik 504 gelöscht, wenn der befref-
fende Port an den Haupt-Arbiter 512 übergeben wird, um als der nächste Port zum Übertragen von Daten für
ein neues Paket oder für ein sich fortsetzendes SnF-Paket bedient zu werden.

[0126] Die Sendeliste 510 enthält die Anordnung von Speicherbits TXMEMCYC[28:0], die angeben, ob der
befreffende Port von dem Speicher 212 empfangene Daten senden soll. Dies kommt für die SnF-, Interim-CT-
und die Interim-Mittelpaket-CT-Betriebsart vor. Der FIFO-Steuerblock 529 setzt ein oder mehr TXMEM-
CYC-Bits als Reaktion auf die Geltendmachung des RX_PKT_COMPLETE* Signals durch den MCB 404 nach
Empfangen von Daten von dem HCB-402. Für Unicast-Pakete wird nur eines der TXMEMCYC-Bits gesetzt.
Für BC-Pakete verwendet der FIFO-Steuerblock 529 sein BCBITMAP-Register, um zu bestimmen, welches Bit
zu setzen ist. Für SnF-Moduspakete werden die TXMEMCYC-Bits gesetzt, nachdem das ganze Paket an den
19/130

DE 697 31 519 T2 2005.12.01
MCB 404 zur Speicherung im Speicher 212 übertragen ist. Für Interim-CT-Moduspakete, einschließlich Mittel-
paket-Interim-Modus-CT-Paketen wird ein TXMEMCYC-Bit während der ersten Übertragung von Daten an den
MCB 404 gesetzt. Die HSB-Steuerung 505 löscht ein TXMEMCYC-Bit bei der letzten Schreibzyklusübertra-
gung von Daten an einen betreffenden Port. Dies kommt vor, wenn der MCB 404 auch das Signal TX_EOBC*
geltend macht, um anzuzeigen, dass für diesen Port im Speicher 212 keine Daten mehr vorhanden sind.

[0127] Die Sendeliste 510 enthält eine Anordnung von Sende-CT-Bits TXCTCYC[28:0], die angeben, ob es
Daten in einem der RXBUFs 520, 522 zum direkten Senden an den betreffenden Zielport entsprechend der
normalen CT-Betriebsar gibt. Die HASH REQ LOGIC 532 setzt ein entsprechendes TXCTCYC-Bit bei der ers-
ten Datenübertragung des Pakets. Die HSB-Steuerung 505 löscht das TXCTCYC-Bit bei der ersten Schreib-
zyklusübertragung von Daten an den entsprechenden Zielport.

[0128] Die Sendeliste 510 enthält eine Anordnung von aktiven CT-Bits TXACTCTCYC[28:0], die angeben, ob
der betreffende Port beim Übertragen eines Pakets entsprechend der CT-Betriebsart involviert ist. Die HASH
REQ LOGIC 532 setzt ein entsprechendes TXACTCYC-Bit, wenn sie feststellt, dass das Paket entsprechend
dem CT-Modus zu übertragen ist. Der FIFO-Steuerblock 529 löscht das TXACTCYC-Bit während der ersten
Übertragung von Daten an den MCB 404 zur Speicherung im Speicher 212, wenn das Paket vom CT-Modus
in den Mittelpaket-Interim-CT-Modus umgewandelt wird. Die HSB-Steuerung 505 löscht auch das TXACT-
CYC-Bit während der letzten Datenübertragung eines Pakets.

[0129] Die Gewichtsfaktoren 508 umfassen eine Anordnung von Port-Gewichtsfaktoren PORTWTx[4:0] für
jeden der Ports Port0–Port28, wo "x" die einzelne Portnummer angibt. Die PORTWT-Gewichtsfaktoren sind
bevorzugt einmalig und vom Benutzer vorgrammiert, um benutzerprogrammierbare Priorität der Ports bereit-
zustellen. In der gezeigten Ausführung wird der gleiche Gewichtsfaktor jedem Port für den Empfangs- und den
Sendefall zugewiesen, obwohl verschiedene Gewichtsfaktoren für den Sende- und den Empfangsvorgang de-
finiert werden könnten.

[0130] Fig. 5C ist ein Zustandsdiagramm, das die Empfangsabfrageoperation der RX-Abfragezustandsma-
schine 502 veranschaulicht. Die Hauptfunktion der RX-Abfragezustandsmaschine 502 ist das Überwachen der
PKT_AVAILm* Signale, Zuweisen von Prioritätszählungen RXPORTBUFx und Setzen der RXPRTMSK-Bits in
der Empfangsliste 509. Übergänge zwischen Zuständen basieren auf Übergangen oder Zyklen des CLK-Sig-
nals und dem Status des STROBE* Signals. Zu Anfang nach Einschalten und Konfiguration wird die Emp-
fangsprioritäts-Zählzahl RPCOUNT auf null gesetzt, und die RX-Abfragezustandsmaschine 502 wird in einen
anfänglichen Leerlaufzustand 550 gebracht. Ferner werden RXINCCNTBY[7:0] Logikbits, die PKT_AVAILm*
Signalen entsprechen, gelöscht. Die RX-Abfragezustandsmaschine 502 bleibt im Zustand 550, während das
Signal STROBE* nicht geltend gemacht ist, was der Fall ist, wenn das STROBE* Signal hoch oder auf logisch
1 ist. Wenn das STROBE* Signal tief geltend gemacht wird, geht die Operation in einen CLK-Wartezustand
(RxPollWait) 552 über.

[0131] Als Reaktion auf das Abtasten des geltend gemachten STROBE* Signals entworten die QC-Vorrich-
tungen 202, die TPI 220 und der PCB 406 jeweils durch Gettendmachen eines entsprechenden der
PKT_AVAILm* Signale, sonst als PKT_AVAIL[7:0]* Signale bezeichnet, nach einem CLK-Zyklus. Der Vorgang
geht daher nach einem CLK-Zyklus zu Zustand 554, um das Abfragen aller PKT_AVAIL[7:0]* Signale zu be-
ginnen. Der Vorgang geht bei aufeinanderfolgenden Zyklen des CLK-Signals vom Zustand 554 zum Zustand
556, dann zum Zustand 558 und dann zum Zustand 560 über. Der Vorgang kehrt vom Zustand 560 zum Zu-
stand 554 zurück und fährt in einer Schleife fort, während das STROBE* Signal geltend gemacht bleibt. Das
STROBE* Signal ist jedoch vorzugsweise periodisch und wird für einen CLK-Tyklus negiert und dann für die
nächsten drei CLK-Zyklen erneut geltend gemacht. Der Vorgang kehrt daher zum Zustand 550 zurück, wenn
das STROBE* Signal in Schritt 560 ungeltend gemacht wird. in jedem der Zustände 554, 556, 558 und 560
wird eine anfängliche Arbitrations-Zähllogik-Operation basierend auf einen Zuwachs der RXNEWCNT- und
RXACTCNT-Zahlen verglichen mit der RPCOUNT-Zahl durchgeführt, um festzustellen, ob irgendwelche der
übrigen Logikoperationen durchgeführt werden.

[0132] Wenn die anfängliche Arbitrations-Zähllogik-Operation in Schritt 554 wahr ist, werden neun logische
Operationen, bezeichnet 1–9, durchgeführt, wo die ersten acht Operationen den Ports Port0, Port4, Por8,
Port16, Port20, Port24 bzw. Port28 für den ersten Port jeder der QC-Vorrichtungen 202, der TPI 220 und des
PCB 406 entsprechen. Für jede der acht logischen Portoperationen, 1–8, wird ein entsprechendes der
PKT_AVAILm* Signale mit einem entsprechenden RXPRTMSK-Bit verglichen, um festzustellen, ob die Anfor-
derung anzunehmen ist. Wenn die Anforderung für einen Port angenommen wird, was vorkommt, wenn das
RXPRTMSK-Bit nicht vorher gesetzt wurde, wird diesem Port eine RXPORTBUFx Prioritätsnummer zugewi-
20/130

DE 697 31 519 T2 2005.12.01
sen. Ferner wird das entsprechende RXPRTMSK-Bit auf logisch 1 gesetzt, um weitere Anforderungen durch
diesen Port zu maskieren, und ein entsprerechendes RXINCCNTBY-Bit wird auf logisch 1 gesetzt. Die neunte
logische Operation wird durchgeführt, um RPCOUNT zu inkrementieren.

[0133] Wenn für Port0 PKT_AVAIL[0]* nicht geltend gemacht ist oder wenn RXPRTMSK logisch 1 ist, ist die
Priorität bereits errichtet worden und wird erst geändert, wenn Port0 bedient wird. Wenn jedoch das
PKT_AVAIL[0]* Signal tief geltend gemacht ist und wenn RXPRTMSK[0] logisch 0 ist, wird die entsprechende
Prioritätsnummer RXPORTBUD0 gleich dem entsprechenden Gewichtsfaktor RXPORTWT0 gesetzt, wenn ein
WTPRIORITY-Flag Priorität entsprechend den Gewichtsfaktoren anzeigt. Wenn jedoch das WTPRIORI-
TY-Flag unwahr ist, wird die Prioritätsnummer RXPORTBUF0 gleich RPCOUNT gesetzt. Dann werden die RX-
PRTMSK[0]- und RXINCCNTBY[0]-Bits beide auf logisch 1 gesetzt. Das Setzen von RXPRTMSK[0] maskiert
weitere Empfangsabfrage-Anforderungen für Port0. Das RXINCCNTBY[0]-Bit entspricht dem PKT_AVAIL[0]*
Signal und wird in den übrigen logischen Operationen im Zustand 554 benutzt, um anzuzeigen, dass der Pri-
oritätswert für Port0 gesetzt wurde.

[0134] Wenn in der zweiten logischen Operation, die Port0 entspricht, PKT_AVAIL[1]* nicht tief geltend ge-
macht ist oder wenn RXPRTMSK[4] logisch 1 ist, ist die Priorität bereits festgelegt worden und wird erst geän-
dert, wenn Port0 bedient wird. Wenn jedoch das PKT_AVAIL[1]* Signal tief geltend gemacht ist und wenn RX-
PRTMSK[4] logisch 0 ist, wird die entsprechende Prioritätsnummer RXPORTBUF4 gleich dem entsprechen-
den Gewichtsfaktor RXPORTWT4 gesetzt, wenn ein WTPRIORITY-Flag Priorität entsprechend den Gewichts-
faktoren anzeigt. Wenn jedoch das WTPRIORITY-Flag unwahr ist, wird die Prioritätsnummer RXPORTBUF4
gleich RPCOUNT plus RXINCCNTBY[0] gesetzt. Auf diese Weise wird, wenn WTPRIORITY unwahr ist,
RXPORTBUF4 eine Prioritätsnummer von RPCOUNT erteilt, wenn Port0 keine Prioritätsnummer erteilt wurde,
oder eine Prioritätsnummer RPCOUNT + 1 erteilt, wenn Port0 eine Priorität erteilt wurde. Dies stellt sicher,
dass Port0 und Port0 nicht die gleiche Prioritätsnummer erhalten. Das RXPORTMSK[4]-Bit wird dann auf lo-
gisch 1 gesetzt, um weitere Abfrageanforderungen zu maskieren. Auf diese Weise ist die jedem Port erteilte
Prioritätsnummer entweder der vorbestimmte Gewichtsfaktor für diesen Port, oder die Prioritätsnummer ist
gleich RPCOUNT plus der Zahl von Ports, die eine niedrigere Portnummer haben und eine Prioritätsnummer
zur gleichen Zeit erhalten haben.

[0135] Die nächsten sechs logischen Operation sind ähnlich der zweiten logischen Operation. Wenn in der
achten logischen Operation, die dem PCB 406 entspricht, PKT_AVAIL[7]* nicht tief gesetzt ist, oder wenn RX-
PRTMSK[28] gleich logisch 1 ist, ist die Priorität bereits festgelegt worden und wird erst geändert, wenn der
PCB 406 bedient wird. Wenn jedoch das PKT_AVAIL[7]* Signal tief geltend gemacht ist und wenn RX-
PRTMSK[28] logisch 0 ist, wird die entsprechende Prioritätsnummer RXPORTBUF28 für den PCB 406 gleich
dem entsprechenden Gewichtsfaktor RXPORTWT28 gesetzt, wenn ein WTPRIORITY Flag Priorität entspre-
chend den Gewichtsfaktoren anzeigt. Wenn jedoch das WTPRIORITY-Flag unwahr ist, wird die Prioritätsnum-
mer RXPORTBUF28 gleich RPCOUNT plus die "Bitsumme" von RXINCCNTBY[6:0] gesetzt. Die Bitsumme
von RXINCCNTBY[6:0] ist gleich der Zahl von Prioritätswerten, die in den vorherigen sieben logischen Opera-
tionen zugewiesen wurden. Dem PCB 406 wird daher eine Prioritätsnummer gleich dem vorbestimmten Ge-
wichtsfaktor erteilt, oder die Prioritätsnummer ist RPCOUNT plus die Zahl von Ports, die eine niedrigere Port-
nummer haben und gleichzeitig eine Prioritätsnummer erhalten haben. Eine neunte logische Operation wird im
Zustand 554 durchgeführt, um RPCOUNT um die Bitsumme von RXINCCNTBY[7:0] zu erhöhen, die gleich der
Zahl von Ports ist, denen im Zustand 554 eine Priorität zugewiesen wurde. Diese Operation stellt sicher, dass
RPCOUNT für den nächsten Satz von logischen Operationen im Zustand 556 inkrementiert wird.

[0136] Wenn z. B. alle mit dem ersten gemultiplexten Bit der PKT_AVAIL[7:0]* Signalen verbundenen Ports
oder Ports Port0, Port0, Por8, Port12, Port16, Port20, Port24 und Port28 im Zustand 554 gleichzeitig anfordern
und RPCOUNT anfangs null ist und keines der entsprechenden RXPTRMSK-Bits vorher gesetzt wurde, und
wenn WTPRIORITY unwahr ist, werden den entsprechenden Prioritätswerten RXPORTBUFx (X = 0, 4, 8, 12,
16, 20, 24 und 28) Prioritätsnummern von 0, 1, 2, 3, 4, 5, 6, und 7 im Zustand 554 zugewiesen. Dann wird
RPCOUNT gleich 8 gesetzt. Wenn als anderes Beispiel die Ports Port0, Port12 und Port20 die einzigen Ports
sind, die Service anfordern, werden den Prioritätsnummern RXPORTBUFx (x = 4, 12, 20) Prioritätsnummern
von 0, 1 bzw. 2 zugewiesen, wenn WTPRIORITY unwahr ist, und dann wird RPCOUNT gleich 4 gesetzt. Die
Bitsummenoperation stellt sicher, dass jedem Port eine einmalige Prioritätsnummer gegeben wird, wenn meh-
rere Ports gleichzeitig Service anfordern. Auf diese Weise sind die Prioritätsnummern entsprechend einem
'wer zuerst kommt, mahlt zuerst' (FCFS) Prioritätsschema, aber eine bestimmte Reihenfolge ist vorbestimmt,
um Priorität festzulegen, um gleichzeitige Zuweisungen zu handhaben.

[0137] Die logischen Operationen in den Zuständen 556, 558 und 560 sind ähnlich den im Zustand 554 durch-
21/130

DE 697 31 519 T2 2005.12.01
geführten. Im Zustand 556 werden, wenn die anfängliche logische Arbitrationszähloperation wahr ist, acht lo-
gische Operationen durchgeführt, einschließlich sieben Operationen, die mit dem zweiten Port jeder der
QC-Vorrichtungen 202 und der TPI 220 verbunden sind, basierend auf den PKT_AVAIL[6:0]* Signalen, was die
Ports Port1, Port5, Port9, Port13, Port17, Port21 und Port25 einschließt, und die achte logische Operation von
Zustand 554 wird für den Port Port28 für die CPU 230 wiederholt. Im Zustand 558 werden sieben mit dem drit-
ten Port jeder der QC-Vorrichtungen 202 und der TPI 220 verbundene logische Operationen basierend auf den
PKT_AVAIL[6:0]* Signalen durchgeführt, die die Ports Port2, Port6, Port10, Port14, Port18, Port22 und Port26
einschließen, und die achte logische Operation von Zustand 554 wird für den Port Port28 für die CPU 230 wie-
derholt. Im Zustand 560 werden sieben mit dem vierten Port jeder der QC-Vorrichtungen 202 und der TPI 220
verbundene logische Operationen basierend auf den PKT_AVAIL[6:0]* Signalen durchgeführt, die die Ports
Port3, Port7, Port11, Port13, Port15, Port19, Port23 und Port27 einschließen, und die achte logische Operation
von Zustand 554 wird für den Port Port28 für die CPU 230 wiederholt. In jedem der Zustände 556, 558 und 560
wird eine letzte logische Operation durchgeführt, um RPCOUNT mit die Bitsumme der RXINCCNTBY-Bits in
einer ähnlichen Weise wie vorher beschrieben zu aktualisieren.

[0138] Fig. 5D ist ein Zustandsdiagramm, das die Sendeabfrage-Operation der TX-Abfragezustandsmaschi-
ne 503 veranschaulicht. Die TX-Abfragezustandsmaschine 503 arbeitet in einer ähnlichen Weise wie die
RX-Abfragezustandsmaschine 502 und umfasst Zustände 561, 562, 564, 566, 568 und 570, die analog zu den
Zuständen 550, 552, 554, 556, 558 und 560 sind. RPCOUNT ist jedoch durch TPCOUNT ersetzt, und die
änfängliche logische Arbitrationszähloperation wird basierend auf einem Zuwachs der TXNEWCNT und
TXTACTCNT-Nummern verglichen mit der TPCOUNT-Nummer durchgeführt, um festzustellen, ob irgendwel-
che der restlichen logischen Operation durchgeführt werden. Die BUF_AVAILm* Signale ersetzen die
PKT_AVAILm* Signale, und TXPRTMSK-Bits ersetzen die RXPRTMSK-Bits. Ferner wird für jede Portglei-
chung jedes TXPRTMSAK-Bit mit einem logischen Ausdruck UND-verknüpft, der auf entsprechenden Bits der
TXMEMCYC-, TXCTACTCYC- und TXCTCYC-Bitanordnungen basiert. Das heißt, die entsprechenden Bits
der TXMEMCYC-, TXCTACTCYC- und TXCTCYC-Bitanordnungen werden miteinander ODER-verknüpft, so-
dass die Priorität einem Zielport nur zugewiesen wird, wenn Daten in dem EPSM 210 oder dem Speicher 212
zum Senden durch diesen Port vorhanden sind. Ferner ersetzen TXPORTBUFx Prioritätsnummern die RX-
PORTBUFx Prioritätsnummern. TXPORTWT-Gewichtsfaktoren ersetzen die RXPORTWT-Gewichtsfaktoren,
und TXINCCNTBY-Bits ersetzen die RXINCCNTBY-Bits. Auf diese Weise bezeichnet jeder Port und der PCB
406 ein betreffendes der BUF_AVAIL* Signale als Reaktion auf das STROBE* Signal, und die TX-Abfragezu-
standsmaschine 503 weist eine Prioritätsnummer basierend auf den Gewichtsfaktoren oder FCFS mittels TP-
COUNT zu und legt die Priorität entsprechend fest.

[0139] Man wird einsehen, dass die Abfragelogik 501 das STROBE* Signal periodisch oder kontinuierlich um-
schaltet und die PKT_AVAILm* und BUF_AVAILm* Signale für jeden der Ports 104, 110 und den PCB 406
überwacht, um jedem der anfordernden Ports Priorität zuzuweisen und die entsprechenden Abfragemasken-
bits zu setzen. Die zugewiesene Priorität basiert auf den vorprogrammierten Gewichstfaktoren, wenn WTPRI-
ORITY wahr ist, oder auf FCFS, wenn WTPRIORITY unwahr ist. Die Priorität bleibt statisch, bis der Port be-
dient wird. Schließlich wird der Port bedient, und das Maskenbit wird gelöscht, wie unten beschrieben.

[0140] Die Arbiter 513–516 wählen zwischen den Ports 104, 110, und dem PCB 406 basierend auf mehreren
Arbitrationsschemas aus, wo das einzelne Arbitrationsschema benutzerprogrammierbar ist. Das erste ist ein
Umlauf-Schema, wo die Ports in jeder beliebigen Reihenfolge, z. B. Port0, Port1, ..., Port28 oder dergleichen
überprüft werden, oder die Reihenfolge wird durch die in den PORTWTx Registern vorprogrammierten Ge-
wichtsfaktoren 508 ausgewählt. In der gezeigten Ausführung werden die Gewichtsfaktoren 508 benutzt, um
die umlaufende Reihenfolge zuzuweisen, und werden in die betreffenden RXPORTBUFx und TXPORTBUFx
Zählungen programmiert. Der RX NW Arbiter 513 benutzt und inkrementiert die RXNEWCNT-Prioritätsnum-
mer, der RX ACT Arbiter 514 benutzt und inkrementiert die RXACTCNT-Prioritätsnummer, der TX NW Arbiter
515 benutzt und inkrementiert die TXNEWCNT-Prioritätsnummer, und der TX CT Arbiter 516 benutzt und in-
krementiert TXCTCNT-Prioritätsnummer. Für das Umlauf-Schema überprüfen die Arbiter 513, 514 jeweils die
RXINQUE⌷ Werte, um die aktiven Empfangsports, die Servive anfordern, zu bestimmen, und vergleichen ihre
jeweilige Prioritätsnummer (RXNEWCNT, RXACTNT) mit den Werten in den RXPORTBUFx Zählungen der ak-
tiven Ports, um den nächsten zu bedienenden Port zu bestimmen. Ferner überprüfen die Arbiter 515, 516 je-
weils die TXINQUE⌷ Werte, um die aktiven Empfangsports, die Servive anfordern, zu bestimmen, und verglei-
chen dann ihre jeweilige Priortätsnummer (TXNEWCNT, TXACTNT) mit den Werten in den TXPORT_BUFx
Zählungen der aktiven Ports, um den nächsten zu bedienenden Port zu bestimmen. Da die Gewichtsfaktoren
eine bestimmte Reihenfolge bestimmen, werden die Ports in einer umlaufenden Weise geordnet.

[0141] Das zweite Arbitrationsschema ist FCFS, wo WTPRIORITY unwahr ist und die Ports basierend auf der
22/130

DE 697 31 519 T2 2005.12.01
Reihenfolge, in der sie Service angefordert haben, bedient werden, wie durch RXPORTBUFx unf TXPORT-
BUFx Prioritätsnummern angegeben. Das FCFS-Schema arbeitet in ähnlicher Weise wie das Umlauf-Verfah-
ren, außer dass die RXPORTBUFx und TXPORTBUFx Zählungen entsprechend den RPCOUNT- und TP-
COUNT-Werten programmiert werden, wie vorher beschrieben. Dann überprüfen die RX-Arbiter 513, 514 je-
weils die RXINQUE⌷ Werte, um die aktiven Empfangsports, die Service anfordern, zu bestimmen, und verglei-
chen dann ihre jeweilige Prioritätsnummer (RXNEWCNT, RXACTCNT) mit den Werten in den RXPORTBUFx
Zählungen der aktiven Ports, um den nächsten zu bedienenden Port zu bestimmen. Ferner überprüfen die
TX-Arbiter 515, 516 jeweils die TXINQUE⌷ Werte, um die aktiven Empfangsports, die Service anfordern, zu
bestimmen, und vergleichen dann ihre jeweilige Priortätsnummer (TXNEWCNT, TXACTCNT) mit den Werten
in den TXPORTBUFx Zählungen der aktiven Ports, um den nächsten zu bedienenden Port zu bestimmen. Da
die RPCOUNT- und TPCOUNT-Werte die Reihenfolge bestimmen, werden die Ports in der FCFS-Weise ge-
ordnet.

[0142] Ein anderes Schema ist das gewichtete Prioritätsschema, wo WTPRIORITY wahr ist und die RX-
PORTWTx- und TXPORTWTx-Nummern in entsprechende der RXPORTBUFx und TXPORTBUFx_Register
kopiert und zum Bestimmen der Priorität benutzt werden. Jedoch bestimmen die RX-Arbiter 513, 514 die Pri-
orität aus einer RX HIGH PRIORITY Nummer, und die TX-Arbiter bestimmen die Priorität aus einer TX HIGH
PRIORITY Nummer. Die RX HIGH PRIORITY Nummer wird durch Identifizieren der höchsten Prioritätsnum-
mer (oder der niedrigsten Nummer) in den RXPORTBUFx-Zählungen der aktiven Empfangsports bestimmt, wo
die aktiven Empfangsports aus den RXINQUE-Werten bestimmt werden. Desgleichen wird die TX HIGH PRI-
ORITY Nummer durch Idenfifizieren der höchsten Prioritätsnummer (oder der niedrgsten Nummer) in den TX-
PORTBUFx-Zählungen der aktiven Sendeports bestimmt, wo die aktiven Sendeports aus den TXINQUE-Wer-
ten bestimmt werden. In dieser Weise wird ein aktiver (Service anfordernder) Port mit dem höchsten Gewichts-
faktor jedes Mal ausgewählt, um so das gewichtete Prioritätsschema zu implementieren.

[0143] Der RX NW Arbiter 513 behandelt alle an den Ports Port0–Port28 empfangenen neuen Paketvor-
spanndaten und sich fortsetzende SnF-Moduspaketdaten, die an einen der RX BUFs 520, 522 übertragen wer-
den. Der RX NW Arbiter 513 aktualisiert die RXNEWCNT-Nummer und überprüft die Empfangsliste 509, um
festzustellen, welche der Ports Port0–Port28 sein Empfangskriterium erfüllen. Das Empfangskriterium für den
RX NW Arbiter 513 wird durch die Ports erfüllt, deren jeweiliges RXINQUE-Bit gesetzt und deren RXACT-
CYC-Bit nicht gesetzt ist. Das Empfangskriterium für den RX NW Arbiter 513 schließt auch Ports ein, deren
jeweilige RXINQUE- und RXMEMCYC-Bits beide gestzt sind. Der RX NW Arbiter 513 schlichtet dann zwischen
den Ports, die sein Empfangskriterium erfüllen, und entsprechend einem gewählten Arbitrationsschema, wie
vorher beschrieben. Nach Wählen eines Ports und Definieren eines Zyklusses fordert der RX NW Arbiter 513
den Haupt-Arbiter 512 auf, einen Lesezyklus auszuführen. Wenn der RX NW Arbiter 513 das nächste Mal
durch den Haupt-Arbiter 512 ausgewählt wird, löscht er das RXINQUE-Bit des zu bedienenden ausgewählten
Ports. Der RX NW Arbiter 513 wiederholt fortlaufend diesen Prozess.

[0144] Der TX CT Arbiter 516 überträgt Daten in den RX BUFs 520, 522 an einen Zielport im normalen CT-Be-
trieb. Der TX CT Arbiter 516 aktualisiert die TXCTNT-Nummer und überprüft die Sendeliste 510, um festzustel-
len, welche der Ports Port0–Port28 sein Sendekriterium erfüllen. Das Sendekriterium für den TX CT Arbiter 516
wird von den Ports erfüllt, deren jeweilige TXINQUE- und TXCTCYC-Bits beide gesetzt sind. Der TX CT Arbiter
516 schlichtet dann zwischen den Ports die sein Sendekriterium erfüllen, und entsprechend dem gewählten
Sendekriterium, wie oben beschrieben. Nach Wählen eines Ports und Definieren eines Zyklusses fordert der
TX NW Arbiter 516 den Haupt-Arbiter 512 auf, einen Schreibzyklus von dem ausgewählten RX BUF 520 oder
522 an den gewinnenden Zielport auszuführen. Wenn der TX NW Arbiter 516 das nächste Mal durch den
Haupt-Arbiter 512 ausgewählt wird, löscht er das TXINQUE-Bit des zu bedienenden ausgewählten Ports. Der
TX NW Arbiter 516 wiederholt fortlaufend diesen Prozess.

[0145] Der RX ACT Arbiter 514 überträgt aufeinanderfolgende Paketdaten an den CT BUF 528 von einem
Quellenport, der in der normalen CT-Betriebsart arbeitet, außer dem ersten Lesezyklus (der durch den RX NW
Arbiter 513 gehandhabt wird). Der RX ACT Arbiter 514 aktualisiert die RXACTCNT-Nummer und überprüft die
Empfangsliste 509, um festzustellen, welche der Ports Port0–Port28 sein Empfangskriterium erfüllen. Das
Empfangskrierium für den RX ACT Arbiter 514 wird von den Ports erfüllt, deren jeweilige RXINQUE- und
RXACTCYC-Bits gesetzt sind und deren jeweiliges RXMEMCYC-Bit nicht gesetzt ist. Der RX ACT Arbiter 514
schlichtet dann zwischen den Ports, die sein Empfangskriterium erfüllen, und entsprechend dem gewählten
Arbitrationsschema, wie oben beschrieben. Nach Wählen eines Ports und Definieren eines Zyklusses fordert
der RX ACT Arbiter 514 den Haupt-Arbiter 512 auf, einen Lesezyklus auszuführen, um Daten von dem ausge-
wählten Quellenport an den CT BUF 528 zu übertragen. Wenn der RX ACT Arbiter 514 das nächste Mal durch
den Haupt-Arbiter 512 ausgewählt wird, löscht er das RXINQUE-Bit des zu bedienenden ausgewählten Ports.
23/130

DE 697 31 519 T2 2005.12.01
Der RX ACT Arbiter 514 wiederholt fortlaufend diesen Prozess.

[0146] Der Haupt-Arbiter 512 folgt jedem CT-Modus-Lesezyklus in den CT BUF 528 mit einem Schreibzyklus,
um Daten in dem CT BUF 528 an den durch die HASH REQ LOGIC 532 angegebenen Zielport zu übertragen.
Der Haupt-Arbiter 512 stellt fest, ob der Zielport beschäftigt ist, bevor er dem RX ACT Arbiter 514 erlaubt,
CT-Daten an den CT BUF 528 zu übertragen. Wenn der Haupt-Arbiter 512 feststellt, dass der Zielport beschäf-
tigt ist, wandelt er die Quellen- und Zielports in den Mittelpaket-Interim-CT-Modus um, indem er das betreffen-
de RX-MEMCYC-Bit setzt und das betreffende RXACTCYC-Bit für den Quellenport löscht.

[0147] Der TX NW Arbiter 515 überträgt Daten von jedem der TX BUFs 524, 526 an den HSB 206 entspre-
chend der SnF-Betriebsart. Der TX NW Arbiter 515 aktualisiert die TXNEWCNT-Nummer und überprüft die
Sendeliste 510, um festzustellen, welche der Ports Port0–Port28 sein Sendekriterium erfüllen. Das Sendekri-
terium für den TX NW Arbiter 515 wird von den Ports erfüllt, deren jeweilige TXINQUE- und TXMEMCYC-Bits
gesetzt sind und deren jeweiliges TXACTCTCYC-Bit nicht gesetzt ist. Der TX NW Arbiter 515 schlichtet dann
zwischen den Ports, die sein Sendekriterium erfüllen entsprechend dem gewählten Arbitrationsschema. Nach
Wählen eines Ports und Definieren eines Schreibzyklusses von einem der TX BUFs 524, 526 zu dem ausge-
wählten Zielport fordert der TX NW Arbiter 515 den Haupt-Arbiter 512 auf, den Schreibzyklus auszuführen.
Wenn der TX NW Arbiter 151 das nächste Mal durch den Haupt-Arbiter 512 ausgewählt wird, löscht er das
TXINQUE-Bit des zu bedienenden ausgewählten Ports. Der TX NW Arbiter 515 wiederholt fortlaufend diesen
Prozess.

[0148] Fig. 6 zeigt ein ausführlicheres Blockschaltbild des MCB 404 in dem EPSM 210. Die MCB-Konfigura-
tionsregister 448 sind in Fig. 6 nicht gezeigt, obwohl sie vorhanden sind und bei Bedarf für viele der Funktions-
blöcke, die nun beschrieben werden, zugänglich sind. Der MCB 404 enthält eine Hash-Steuerung 602, die mit
der MCB-Schnittstelle 414 durch einen Bus 420 verbunden ist. Die Hash-Steuerung 602 enthält optional eine
Hash-Speichertabelle 603, die aus dem Speicher 212 zurückgewonnene Daten speichert. Der Hash-Speicher
603 bietet schnelleren Zugriff auf kürzlich aus dem Speicher 212 gezogene Daten, anstatt einen weiteren Spei-
cherzyklus zu benötigen, um kürzlich erlangte Information zurückzugewinnen. Die Hash-Steuerung 602 um-
fasst Adresse/Länge/Status-(AD/LN/ST)Ausgänge, die mit einem Mehrleitungs-Eingang eines Vierein-
gang-Adress-Multiplexers (Mux) 630 über einen Bus 610 verbunden sind. Die AD/LN/ST-Ausgänge definieren
eine Länge für den Speicher 212, eine Länge der Übertragung zum Bestimmen, ob ein Burst-Zyklus durchzu-
führen ist oder nicht, und verschiedene Statussignale, z. B. ein Lese/Schreib-(R/W)Signal, Bytefreigaben, ein
Seitentreffersignal, eine Sperrsignal usw. DRAM-Anforderung/Gewährung/Strobe/Steuer-(DRAM
RQ/GT/STB/CTL)Signale 628 sind mit einem DRAM-Speicherarbiter 638 und mit DRAM RQ/GT/STB/CTL-Ein-
gängen der Hash-Steuerung 602 verbunden. Der Ausgang des Mux 630 wird an AD/LN/ST-Eingänge einer
DRAM-Speichersteuerung 636 geliefert, die weiter mit dem Speicher 212 durch den Speicherbus 214 verbun-
den ist. Die Hash-Steuerung 602 hat einen Dateneingang (DIN) zum Empfangen von Daten von einem Mem-
DataIn-Ausgang der DRAM-Steuerung 636 über einen Datenbus 618.

[0149] Eine RX HCB-Schnittstelle 601 ist dem Bus 420 verbunden, die die MDO[31:0]-Signale einschließt,
und enthält einen Datenausgang zum Liefern von Daten an einen ersten Mehrleitungs-Eingang eines Vierein-
gang-Daten-Mux 632 über einen Bus 620, wo der Mux 632 seinen Ausgang an MemDataOut-Ausgänge der
DRAM-Steuerung 636 liefert. Die RX HCB-Schnittstelle 601 enthält STB/CTL-Eingänge zum Empfangen der
Strobe- und Steuersignale der DRAM RQ/GT/STB/CTL-Signale 628. Eine RX-Steuerung 604 ist mit dem Bus
420 verbunden und hat AD/LN/ST-Ausgänge, die über einen Bus 612 mit dem zweiten Eingang des Mux 630
verbunden sind. Die RX-Steuerung 604 hat einen Datenausgang DOUT, der mit dem zweiten Eingang des Mux
632 über einen Bus 622 verbunden ist, einen Dateneingang DIN, der mit dem Bus 618 verbunden ist, SRAM
RQ/GT/STB/CTL-Eingänge zum Empfangen von SRAM RQ/GT/STB/CTL-Signalen, die mit einem statischen
RAM/DRAM) verbunden sind, und DRAM RQ/GT/STB/CTL-Eingänge zum Empfangen der DRAM
RQ/GT/STB/CTL-Eingänge zum Empfangen der RAM RQ/GT/STB/CTL-Signale 628.

[0150] Eine TX HCB-Schnittstelle 605 ist mit dem Bus 420 verbunden, der die MDI[31:0]-Signale umfasst, und
hat einen Dateningang DIN, der mit dem Bus 618 verbunden ist, und STB/CTL-Eingänge, die Strobe- und
Steuersignale der DRAM RQ/GT/STB/CTL-Signale 628 empfangen. Eine TX-Steuerung 606 ist mit dem Bus
420 verbunden und hat AD/LN/ST-Ausgänge, die über einen Bus 614 an den dritten Eingang des Mux 630 ge-
liefert werden, einen Datenausgang DOUT, der mit dem dritten Eingang des Mux 632 über einen Bus 624 ver-
bunden ist, einen Dateneingang DIN, der mit dem Bus 618 verbunden ist, SRAM RQ/GT/STB/CTL-Eingänge
zum Empfangen der SRAM RQ/GT/STB/CTL-Signale 654 und DRAM RQ/GT/STB/CTL-Eingänge zum Emp-
fangen der DRAM RQ/GT/STB/CTL-Signale 628. Die PCB-Schnittstelle 424 hat AD/LN/ST-Ausgänge, die mit
dem vierten Eingang des Mux 630 über einen Bus 616 verbunden sind, einen Datenausgang DOUT, der mit
24/130

DE 697 31 519 T2 2005.12.01
dem vierten Eingang des Mux 626 über einen Bus 626 verbunden ist, einen Dateneingang, der mit dem Bus
618 verbunden ist, SRAM RQ/GT/STB/CTL-Eingänge zum Empfangen der SRAM RQ/GT/STB/CTL-Signale
654 und DRAM RQ/GT/STB/CTL-Eingänge zum Empfangen der DRAM RQ/GT/STB/CTL-Signale 628.

[0151] Die Hash-Steuerung 602, die RX-Steuerung 604, die TX-Steuerung 606, die PCB-Schnittstelle 424,
die RX HCB-Schnittstelle 601 und die TX HCB-Schnittstelle 605 verwenden jeweils das STB-Signal zum Syn-
chronisieren des Datenflusses, wo die Geltendmachung des Strobe-Signals bestimmt, wenn Daten für einen
Lesezyklus gültig sind, oder wenn Daten für einen Schreibzyklus zurückgewonnen werden. Die CTL-Signale
sind verschiedenartige Steuersignale, wie z. B. ein Signal, das anzeigt, wenn ein Datenzyklus vollendet ist.

[0152] Der DRAM-Arbiter 638 ist weiter mit der DRAM-Steuerung 636 durch Speichersteuersignale
(MEMCTL) verbunden und liefert Mux-Steuersignale (MUXCTL) an die Auswähleingänge der Multiplexer 630,
632. Die MEMCTL-Signale geben gewöhnlich den Anfang und das Ende jedes Speicherzyklusses an. Auf die-
se Weise schlichten die Hash-Steuerung 602, die RX-Steuerung 604, die TX-Steuerung 606 und die
PCB-Schittstelle 424 den Zugriff auf die DRAM-Steuerung 636, um einen Speicherzyklus in dem Speicher 212
auszuführen, indem betreffende Anforderungssignale geltend gemacht werden. Der DRAM-Arbiter 638 emp-
fängt die Anforderungssignale und macht ein entsprechendes Gewährungs-(GT)Signal an einer der anfordern-
den Vorrichtungen 602, 604, 606 oder 424 gültig, um so Zugriff auf diese Vorrichtung zu gewähren. Sobald
Zugriff gewährt ist, macht der DRAM-Arbiter 638 die MUXCTL-Signale an den Multiplexern 630, 632 geltend
und ermöglicht Zugriff der DRAM-Steuerung 636 durch die ausgewählte der Vorrichtungen 602, 604, 606 oder
424, um, wenn gewünscht, Speicherzyklen durchzuführen, und eines der MEMCTL-Signale wird geltend ge-
macht, um der DRAM-Steuerung 636 den Beginn des Zyklusses anzuzeigen. Die DRAM-Steuerung 636 setzt
oder negiert eines der MEMCTL-Signale, um die Vollendung eines Speicherzyklusses anzuzeigen.

[0153] Die Hash-Steuerung 602 kommuniziert mit der HASH REQ LOGIC 532, um die Hashing-Prozedur
durchzuführen, um zu bestimmen, wie ein in der HASH REQ LOGIC 532 gespeicherter neuer Paketvorspann
zu behandeln ist. Die Hash-Steuerung 602 erfasst das gesetzte HASH_REQ* Signal, gewinnt die Quellen- und
Ziel-Medienzugangssteuer-(MAC)Adressen aus den HASH_DA_SA[15:0] Signalen zurück und führt die Has-
hing-Prozedur zum Bestimmen der HASH_STATUS[1:0] Signale und zum Bereitstellen der Zielportnummer
auf den HASH_DSTPRT[4:0] Signalen durch, wenn vorher im Speicher 212 gespeichert. Die RX-Steuerung
604 und die RX HCB-Schnittstelle 601 steuern und übertragen Daten von den RX BUFs 520, 522 in den Spei-
cher 212. Die TX-Steuerung 606 und die TX HCB-Schnittstelle 605 steuern und übertragen hauptsächlich Da-
ten von dem Speicher 212 an die TX BUFs 524, 526. Die PCB-Schnittstelle 424 ermöglicht der CPU 230 einen
direkteren Zugriff auf Daten im Speicher, einschließlich des Speichers 212 und des SRAM 650.

[0154] Das SRAM 650 ist mit einer SRAM-Steuerung 652 verbunden, die weiter mit der RX-Steuerung 604,
der TX-Steuerung 606 und der PCB-Schnittstelle 424 über einen Bus 653 verbunden ist. Ein SRAM-Arbiter
651 ist mit der SRAM-Steuerung 652 durch Steuersignale SCTL verbunden ist auch mit den SRAM
RQ/GT/STB/CTL-Signalen 654 zum Steuern des Zugriffs auf das SRAM 650 durch die PCB-Schnittstelle 424
verbunden. Die TX-Steuerung 606 und die RX-Steuerung 604 steuern über den Bus 653 den Zugriff auf die
DRAM-Steuerung 636 in ähnlicher Weise wie der DRAM-Arbiter 638.

[0155] Der MCB 404 umfasst das SRAM 650 zum Speichern von Paketsteuerregistern und anderen Daten,
wie unter weiter beschrieben. Die Paketsteuerregister enthalten einen Satz von Zeigern auf eine RECEIVE
SECTOR CHAIN pro Port, eine TRANSMIT PACKET CHAIN pro Port und eine FREEPOOL CHAIN von freien
Speichersektoren im Speicher 212. Die Paketsteuerregister enthalten weiter Steuerinformation und Parameter
zum Ermöglichen der Steuerung des Flusses von Paketdaten in dem Netzwerkschalter 102. Der Speicher 212
enthält einen Paketspeicherabschnitt, der als eine Vielzahl von zusammenhängenden und gleich großen Sek-
toren organisiert ist. Die Sektoren werden anfangs mit Adresszeigern und dergleichen miteinander verbunden,
um die FREEPOOL CHAIN zu bilden. Sobald Paketdaten von einem Port empfangen werden, werden die Sek-
toren aus der FREEPOOL CHAIN gezogen und der RECEIVE SECTOR CHAIN für diesen Port hinzugefügt.
Ferner werden die Paketdaten zu einer oder mehr TRANSMIT PACKET CHAINs für einen oder mehr Zielports
verbunden, an die das Paket zum Übertragen zu senden ist. Der Bus 653 ermöglicht der RX-Steuerung 604,
der TX-Steuerung 606 und der CPU-Schnittselle 436, auf die Paketsteuerregister zuzugreifen, die die Zeiger
auf die Paketketten von Daten im Speicher 212 enthalten.

[0156] Die DRAM-Steuerung 636 enthält weiter eine Speicher-Auffrischungslogik 660 zum Bewahren der Da-
ten im Speicher 212. Die Auffrischungslogik 660 kann entsprechend dem mit dem Speicherbus 214 verbunde-
nen Speichertyp arbeiten, einschließlich FPM DRAM, EDO DRAM oder Synchron-DRAM. Auf diese Weise
werden Auffrischungsfunktionen von der CPU 230 zum effizienteren Betrieb und zur verbesserten Leistung
25/130

DE 697 31 519 T2 2005.12.01
entfernt. Ein 10-Bit Speicher-Auffrischungszähler (MRC), der sich in den MCB-Konfigurationsregistern 448 be-
findet, definiert die Zahl von Taktzyklen zwischen Auffrischungsanforderungen. Es ist erwünscht, dass die Pe-
riode kleiner als oder gleich 15.625 μs ist. Die Vorgabe ist 208h, wo "h" einen Hexadezimalwert bezeichnet,
der eine Auffrischungsperiode von etwa 15.60 μs für einen 30 ns CLK-Zyklus liefert. Bei Timeout macht der
MRC-Zähler ein Signal REFREQ an dem DRAM-Arbiter 638 geltend, der eines der MEMCTL-Signale an der
DRAM-Steuerung 636 geltend macht, das der Speicher-Auffrischungslogik 660 anzeigt, die Auffrischungszyk-
len durchzuführen. Die MCB-Konfigurationsregister 448 umfassen ein Speichersteuerregister (MRC), das den
Speichertyp, die Geschwindigkeit und Konfiguration des Speichers 212 definiert. Zum Beispiel definieren 2 Bits
des MRC, ob der Speichertyp FPM, EDO oder Synchron-DRAM ist. Ein weiteres Bit definiert die Speicherge-
schwindigkeit als entweder 50 oder 60 ns. Andere Bits definieren bestimmte Betriebsarten des gewählten
DRAM-Typs und zeigen auch Fehler, z. B. Paritätsfehler, an.

[0157] Fig. 7A zeigt ein ausführlicheres Blockschaltbild des PCB 406. Der CPU-Bus 218 ist mit CPU-Schnitt-
stellenlogik 700 in der CPU-Schnittstelle 432 verbunden, wo die CPU-Schnittstellenlogik 700 weiter durch den
Bus 701 mit einer QC/CPU-Schnittstelle 702 zum Anschließen des QC/CPU-Busses 204 verbunden ist. Die
CPU-Schnittstellenlogik 700 liefert Daten an einen 16-Byte Empfangspuffer RX BUF 706 in den FIFOs 430,
der Daten auf dem MCB-Bus 428 geltend macht. Der MCB-Bus 428 liefert Daten an einen 16-Byte Sendepuffer
TX BUF 708, ebenfalls in den FIFOs 430, zum Liefern von Daten an die CPU-Schnittstellenlogik 700. Die
MCB-Schnittstelle 426 steuert den Datenfluss zwischen der CPU-Schnittstellenlogik 700 und dem MCB-Bus
428. Die CPU-Schnittstellenlogik 700 ist dem RX BUF 706, dem TX BUF 708 und der MCB-Schnittstelle 426
durch Bussignale 703 verbunden.

[0158] Die CPU-Schnittstellenlogik 700 ist mit der Register-Schnittstelle 440 durch den Bus 442 verbunden,
wo die Register-Schnittstelle 440 den Zugriff auf andere Konfigurationsregister in dem EPSM 210 ermöglicht.
Die CPU-Schnittstellenlogik 700 ist auch mit einem Satz von PCB-Registern 704 durch den Bus 442 verbun-
den, zum Definieren des Eingabe/Ausgabe-(E/A)Raumes der CPU 230, z. B. Unterbrechungsregister, Konfi-
gurationsregsiter, Paketinformationsregister, speicherbezogene Register, Setup- und Statusregister, Schnitt-
stellen- und Überwachungsregister, Statistikregister, Modusregister, Arbitrationsregister usw.

[0159] Während des Einschaltens und Konfigurierens programmiert die CPU 230 Anfangs- oder Vorgabewer-
te in den PCB-Registern 704. Zum Beispiel programmiert die CPU 230 ein PORT SPEED REGISTER in den
PCB-Registern 705, das eine Bitmap ist, die die Geschwindigkeit jedes Ports definiert, die in der gezeigten
Ausführung entweder 10 oder 100 MHz beträgt. Ferner wird ein PORT TYP REGISTER programmiert, das
eine Bitmap ist, die den Typ von Port zwischen QC und TLAN definiert. Diese Register werden typischerweise
während des Betriebs nicht geändert, können aber, wenn gewünscht, umprogrammiert werden.

[0160] Andere Register in den PCB-Registern 704 werden während des Betriebs verwendet. Zum Beispiel
enthalten die PCB-Register 704 ein INTERRUPT SOURCE Register und ein POLLING SOURCE Register.
Das INTERRUPT SOURCE Register enhält einen Satz von Unterbrechungsbits MCB_INT, MEM_RDY,
PKT_AVAIL, BUF_AVAIL, ABORT_PKT und STAT_RDY. Die PKT_AVAIL- und BUF_AVAIL-Unterbrechungs-
bits entsprechen den PCB_PKT_AVAIL- und PCB_BUF_AVAIL*-Signalen. Wenigstens ein Unterbrechungssi-
gnal CPU_INR* wird an die CPU 230 geliefert, die das INTERRUPT SOURCE Register liest, um die Quelle der
Unterbrechung zu bestimmen, wenn das CPU_INT* Signal geltend gemacht wird. Das MCB_INT-Unterbre-
chungsbit zeigt der CPU 230 an, dass in dem MCB 404 eine Unterbrechung aufgetreten ist. Das
MEM_RDY-Unterbrechungsbit informiert die CPU 230, dass die verlangten Daten im Speicher 212 in den
FIFOs 430 verfügbar sind. Das PKT_AVAIL-Unterbrechungsbit informiert die CPU 230, dass Paketdaten für
die CPU 230 vorhanden sind. Das BUF_AVAIL-Unterbrechungsbit informiert die CPU 230, dass Pufferplatz für
die CPU 230 vorhanden ist, um Paketdaten zu senden. Das ABORT_PKT-Unterbrechungsbit informiert die
CPU 230, dass das ABORT_IN*-Signal geltend gemacht wurde. Das STAT_RDY-Unterbrechungssignal infor-
miert die CPU 230, dass die verlangte statistische Information von den QC-Vorrichtungen 202 sich in den
FIFOs 430 befindet. Das POLLING SOURCE Register enthält eine Kopie jedes Unterbrechungsbits, falls die
Unterbrechungen maskiert werden und der Abfragemodus verwendet wird.

[0161] Die CPU-Schnittstellenlogik 700 liefert Daten an einen 64-Byte Empfangspuffer RX BUF 710 in den
FIFOs 434, die Daten auf dem HCB-Bus 438 geltend machen. Ein Sendepuffer TX BUF 712 in den FIFOs 434
empfängt von dem HCB-Bus 438 zum Liefern der Daten an die CPU-Schnittstellenlogik 700. Die CPU-Schnitt-
stellenlogik 700 ist mit dem RX BUF 710, dem TX BUF 712 und der QC/HCB-Schnittstelle 436 durch Bussig-
nale 705 verbunden. Die QC/HCB-Schnittstelle 436 ist mit der CPU-Schnittstellenlogik 700, den RX und TX
BUFs 710, 712 und dem HCB-Bus 438 zum Steuern von Datenübertragungen zwischen dem HCB 402 und
dem PCB 406 verbunden.
26/130

DE 697 31 519 T2 2005.12.01
[0162] Fig. 7B ist ein ausführlicheres Blockschaltbild der CPU-Schnittstelle 700. Die CPU-Steuer- und Sta-
tussignale 218B werden durch eine Steuerlogik 713 geltend gemacht, die mit einer CPU-Tracker-Zustandsma-
schine 717 und einer Alternativspeichersteuer-Zustandsmaschine 718 verbunden ist. Der Adress- und Daten-
abschnitt 218a des CPU-Busses 218 ist ein gemultiplexter Bus, wo Daten von anderen Abschnitten des PCB
406 an eine Datenbus-Freigabelogik 716 zur Geltendmachung auf dem CPU-Adress- und Datenabschnitt
218a geliefert werden. Dir CPU 230 macht Adressen an einer Adressendecodier/Anforderungs-Erzeugungslo-
gik 714 geltend, die eine Vielzahl von Anforderungssignalen an andere Abschnitte des PCB 406 liefert, ein-
schließlich der CPU-Tracker Zustandsmaschine 717 und der Alternativspeichersteuer-Zustandsmaschine 718.
Ein Satz von Informations-Latches 715 emügängt Adressen und Daten von der CPU 230 und macht verriegelte
Adressen und verriegelte Daten an anderen Abschnitten des PCB 406 geltend, wie unten weiter beschrieben.
CPU-Steuersignale werden zwischen der Adressendecodier/Anforderungs-Erzeugungslogik 714, der
CPU-Tracker-Zustandsmaschine 717 und der Alternativspeichersteuer-Zustandsmaschine 718 zum Überwa-
chen und Steuern von CPU-Zyklen bereitgestellt.

[0163] Fig. 7C ist ein ausführlicheres Blockschaltbild der QC/CPU-Schnittstellenlogik 702. Die
QC/CPU-Schnittstellenlogik 702 arbeitet allgemein, um eine relativ transparente Schnittstelle zwischen der
CPU 230 und den QC-Vorrichtungen 202 herzustellen, z. B. Umwandlung zwischen dem 32-Bit Format der
CPU 230 und dem 16-Bit Format der QC-Vorrichtungen 202. Ein QC REGISTER REQUEST Signal wird von
der Adressendecodier/Anforderungs-Erzeugungslogik 714 an eine CPU-Tracker-Zustandsmaschine 720 ge-
liefert, die mit einer Zerlegungs/Zusammensetzungs-Zustandsmaschine 722 zum Umwandeln zwischen 16-Bit
und 32-Bit Formaten verbunden ist. Die Zerlegungs/Zusammensetzungs-Zustandsmaschine 722 ist mit einem
Satz von Daten, Adressen- und Steuersignaltreibern und Empfängern 724 zum Verbinden mit der
CPU-Schnittstelle 700 über den Bus 701 und mit den QC-Vorrichtungen 202 durch den QC/CPU-Bus 204 ver-
bunden. Ein Statistikpuffer 726 empfängt Statistikdaten und andere Information von dem QC/CPU-Bus 204
zum Liefern der Daten an die CPU-Schnittstelle 700 über den Bus 701. Ein STATISTICS REQUEST Signal
wird von der Adressendecodier/Anforderungd-Erzeugungslogik 714 an eine Statistikanforderungs-Zustands-
machine geliefert, die mit der Zerlegungs/Zusammensetzungs-Zustandsmachine 722 und einer CPU-Bus-Zu-
standsmaschine 730 verbunden ist. Die CPU-Bus-Zustandsmachine 730 ist weiter mit der Zerlegungs/Zusam-
mensetzungs-Zustandsmachine 722 und dem Satz von Daten-, Adressen- und Steuersignaltreibem und Emp-
fängern 724 verbunden. Auf diese Weise hat die CPU 230 eine relativ vollständigen und unabhängigen Zugriff
auf die QC-Vorrichtungen 202 zum zu Gewinnen von Statistik und anderer Information der Ports 105 und auch
zum Modifizieren der Konfiguration der Ports 104, ohne den Datenfluss und den Betrieb des HSB 206 zu stö-
ren.

[0164] Die CPU 230 fordert den EPSM 210 auf, Statistik- und Statusinformation von den QC-Vorrichtungen
202 durch Schreiben in ein QC STATISTICS INFORMATION Register in den PCB-Registern 704 zu empfan-
gen. Die CPU 230 fordert Statistik-Information an, durch Bereitstellen einer Nummer, die einer der QC-Vorrich-
tungen 202 entspricht, einer Portnummer, der Nummer des Anfangsregisters für den angegebenen Port und
der Zahl für den angegebenen Port zu lesender Register. Wie in Fig. 7C gezeigt, bewirkt das Schreiben in das
QC STATISTICS INFORMATION Register, dass das QC STATISTICS REQUEST Signal geltend gemacht wird,
wo die Statistikanforderungs-Zustandsmachine 728 die angegebenen Anforderungen auf dem QC/CPU-Bus
204 durch den Satz von Daten-, Adressen- und Steuersignaltreibern und Empfängern 724 vornimmt. Die
CPU-Schnittstelle 700 führt die gewünschten Lesezyklen auf der geeigneten QC-Vorrichtung(en) 202 unter
Verwendung der geeigneten CHIP_SELECTm* Signale durch und schreibt dann die Information in den Statis-
tikpuffer 726.

[0165] Sobald alle angeforderten Daten zurückgewonnen und im Statistikpuffer 726 gespeichert sind, aktua-
lisiert die CPU 230 das STAT_RDY-Bit in dem POLLING SOURCE Register in den PCB-Registern 704 und
setzt das STAT_RDY-Unterbrechungsbit im INTRERUPT SOURCE Register. Der EPSM 210 macht das
CPU_INT* Signal an der CPU 230 gehend, die durch Lesen des INTERRUPT SOURCE Registers 720 rea-
giert, um die Quelle der Unterbrechung zu bestimmen. Wenn Unterbrechungen maskiert werden, erfasst die
CPU 230 das STAT_RDY-Bit im POLLING SOURCE Register während einer Abfrage-Routine. Auf diese Wei-
se stellt die CPU 230 fest, dass die Anforderung durch entweder eine Unterbrechung oder einen Abfrageme-
chanismus, wenn die Unterbrechungen maskiert werden, vollendet ist. Die STA_RDY-Unterbrechung wird,
wenn gewünscht, programmatisch unterbrochen, wenn der Abfragemechanismus zu verwenden ist. Die CPU
230 gewinnt als Reaktion die ganze Statistikinformation aus dem Statistikpuffer in einem oder mehr aufeinan-
derfolgenden Prozessorzyklen zurück. Die Prozessorzyklen über den CPU-Bus 218 können reguläre Prozes-
sorzyklen sein, sind aber vorzugsweise Burst-Zyklen zum Übertragen größerer Datenmengen.

[0166] Natürlich können mehrere alternative Ausführungen erwogen werden. In einer ersten alternativen Aus-
27/130

DE 697 31 519 T2 2005.12.01
führung gibt die CPU 230 einfach eine Nummer aus, die einer der QC-Vorrichtungen 202 entspricht, und der
EPSM 210 sammelt entsprechend alle Daten aller Register 306 aller Ports der QC-Vorrichtungen 202. In einer
zweiten alternativen Ausführung gibt die CPU 230 einfach eine globale Statistikanforderung aus, und die Daten
aller Register 306 aller QC-Vorrichtungen 202 werden gesammelt. Es ist jedoch anzumerken, dass die CPU
230 typischerweise Statistikinformation für einen der Ports 104 zu einer Zeit benötigt.

[0167] Man wird einsehen, dass die CPU 230 nur eine einzige Anforderung an den EPSM 210 richten muss,
um die ganze Statistikinformation für jeden der Ports zurückzugewinnen. Das heißt, das QC STATISTICS IN-
FORMATION Register wird durch die CPU 230 in einem einzigen Befehl beschrieben, um die Anforderung vor-
zunehmen. Die CPU 230 ist daher frei für andere Aufgaben, antstatt auf Antworten von den QC-Vorrichtungen
202 zu warten. Statt dessen führt der EPSM 210 alle einzelnen Statistik-Leseanforderungen über den
QC/CPU-Bus 204 aus und gewinnt alle Daten. Die CPU 230 wird durch ein Unterbrechungssignal oder einen
Abfragemechanismus informiert und ist in der Lage, alle angeforderte Information zurückzugewinnen. Dies re-
sultiert in einer effizienteren Nutzung der Prozessorzeit der CPU 230.

[0168] Fig. 7D ist ein ausführlicheres Blockschaltbild der Schnittstelle zwischen der CPU-Schnittstelle 700
und dem MCB 404. Ein Speicheranforderungssignal von der Adressendecodier/Anforderungs-Erzeugungslo-
gik 714 wird einer Speicher-FIFO-Zugriffs-Zustandsmachine 740 zugeführt, die mit Adressenerzeugungslogik
746 und FIFO-Status- und Unterbrechungs-Erzeugungslogik 742 verbunden ist. Ein FIFO-Block 748, der den
RX BUF 706 und den TX BUF 708 enthält, ist mit der Adressenerzeugungslogik 746 und der FIFO-Status- und
Unterbrechungs-Erzeugungslogik 742 verbunden. Die Adressenerzeugungslogik 746 und die FIFO-Status-
und Unterbrechungs-Erzeugungslogik 742 sind beide mit einem Satz von Daten-, Adressen- und Steuersignal-
treibern und Empfängern 744 zum Verbinden mit der CPU-Schnittstelle 700 über den Bus 703 und mit dem
MCB 404 durch den MCB-Bus 428 verbunden.

[0169] Fig. 7E ist ein ausführlicheres Blockschaltbild der Schnittstelle zwischen der CPU-Schnittstelle 700
und dem HCB 402. Ein Paketlese-Anforderungssignal von der Adressendecodier/Anforderungs-Erzeugungs-
logik 714 wird einer Sendepaket-Zustandsmaschine 760 zugeführt, die mit einem Sendepuffer 762 verbunden
ist, der den TX BUF 712 enthält. Ein Paketschreib-Anforderungssignal von der Adressendecodier/Anforde-
rungs-Erzeugungslogik 714 wird einer Empfangspaket-Zustandsmachine 770 zugeführt, die den RX BUF 710
enthält. Der Sendepuffer 762 und der Empfangspuffer 770 sind beide mit einem Satz von Daten-, Adressen-
und Steuersignaltreibern und Empfängern 764 zum Verbinden mit der CPU-Schnittstelle 700 über den Bus 705
und mit dem HCB 402 durch den HCB-Bus 438 verbunden.

[0170] Fig. 8A zeigt ein vereinfachtes Blockschaltbild, das die TPI 220 ausführlicher veranschaulicht. Die TPI
220 überträgt Daten zwischen dem HSB 206 und dem PCI-Bus 222, um Netzwerkdaten zwischen den TLANs
226 und dem EPSM 210 zu übermitteln. Die TPI 220 arbeitet als ein Slave auf dem HSB 206, antwortet auf
Abfragen des EPSM 210 und überträgt Daten an den und von dem EPSM 210 in einer ähnlichen Weise wie
die QC-Vorrichtungen 202. Auf der Seite des PCI-Busses 222 überträgt die TPI 220 Netzwerkdaten an jedes
der vier TLANs 226 (Port24, Port25, Port26 und Port27) über den PCI-Bus 222 und empfängt Netzwerkdaten
von denselben.

[0171] Die TPI 220 umfasst eine HSB-Steuerung 804, eine PCI-Bussteuerung 802 und einen Speicher 806.
Die PCI-Bussteuerung 802 verbindet den PCI-Bus 222 entsprechend den PCI-Standards und ermöglicht Da-
tenübertragungen zwischen der TPI 220 und dem PCI-Bus 222. Die PCI-Standards sind von dem 'Inter Ar-
chitecture Lab' zusammen mit seinen Industriepartnern definiert. Die HSB-Steuerung 804 verbindet den HSB
206 entsprechend der definierten Operation des HSB 206 und ermöglicht Datenübertragungen zwischen der
TPI 220 und dem EPSM 210. Der Speicher 806 kann zentralisiert oder verteilt sein und umfasst eine Vielzahl
von Datenpuffern 807 und einen Steuerlistenspeicher 808. Die Datenpuffer 807 liefern vorübergehende Spei-
cherung, um die Datenübertragung zwischen dem PCI-Bus 222 und dem HSB 206 zu erleichtern. Der Steuer-
listenspeicher 808 ermöglicht den Busmasterbetrieb der TLANs auf dem PCI-Bus 222.

[0172] Fig. 8B zeigt ein ausführlicheres Bockschaltbild der TPI 220. Die TPI 220 enthält eine
PCI-Bus-Schnittstellenlogik 810, die weiter Puffer, Treiber und verwandte Schaltungen enthält, um den
PCI-Bus 222 schnittstellenmäßig zu verbinden. Der PCI-Bus 222 der vorliegenden Ausführung hat eine Daten-
breite von 32 Bits und arbeitet bei einer Takfrequenz von 33 MHz. Es versteht sich jedoch, dass der PCI-Bus
eine andere Datenbreite haben kann und bei jeder gewünschten oder verfügbaren Taktfrequenz, wie z. B. 66
MHz, arbeiten kann. Die TPI 220 enthält einen PCI-Arbiter 811, der zwischen jedem der TLANs 226, der TPI
220 und der CPU 230 für Zugriff und Steuerung des PCI-Busses 222 schlichtet. Das heißt, jedes der TLANs
226, die TPI 220 und die CPU 230 machen ein betreffendes von mehreren Anforderungssignalen REQm gel-
28/130

DE 697 31 519 T2 2005.12.01
tend, um die Steuerung des PCI-Busses 222 zu verlangen, wo die REQm Signale durch den PCI-Arbiter 811
empfangen werden. Als Reaktion gewährt der PCI-Arbiter 811 einer der anfordernden Vorrichtungen die Steu-
erung, indem er ein betreffendes Gewährungssignal GNTm geltend macht. Der PCI-Arbiter 811 führt in der ge-
zeigten Ausführung eine Umlauf-Schlichtung durch, obwohl der PCI-Arbiter 811 jedes andere gewünschte Ar-
bitrationsschema verwenden kann. Der PCI-Arbiter 811 macht TLAN-Auswählsignale (TSELm) geltend, um ein
bestimmtes TLAN 226 zu identifizieren, nachdem ihm die Steuerung des PCI-Busses 222 gewährt wurde.

[0173] Die TPI 220 enthält eine HSB-Datenübertragungs-Schnittstellenlogik 819, die Puffer, Treiber und zu-
gehörige Schaltungen enthält, um die TPI 220 schnittstellenmäßig mit dem HSB 206 zu verbinden. Die
HSB-Datenübertragungs-Schnittstellenlogik 819 enthält Lese-Latches 819a und Schreib-Latches 819b zum
Durchführen von gleichzeitigen Lese- und Schreibzyklen auf dem HSB 206. Die HSB-Datenübertra-
gungs-Schnittstellenlogik 819 enthält eine Portstatuslogik 820 zum Antworten auf EPSM 210 Abfragen und
zum Überwachen der auf dem HSB 206 ausgeführten Zyklen. Das heißt, die Portstatuslogik 820 empfängt und
erfasst Gelmachungen des STROBE* Signals durch den EPSM 210 und antwortet durch Geltendmachen der
PKT_AVAIL[6]* und BUF_AVAIL[6]* Signale in einer gemuttiplexten Weise basierend auf dem Datenstatus der
TPI 220. Die Portstatuslogik 820 erfasst auch Lese- und Schreibzyklen auf dem HSB 206, die für die TPI 220
bestimmt sind, durch Erfassen der READ_OUT_PKT[6]* und WRITE_IN_PKT[6]* Signale. Während Übertra-
gungen von Paketdaten von der TPI 220 an den EPSM 210 über den HSB 206 macht die Portstatuslogik 820
die SOP* und EOP* Signale während des HSB 206 Buszyklusses geltend, wenn der Anfang oder das Ende
eines Pakets übertragen wird. Während Übertragungen von Paketdaten von dem EPSM 210 an die TPI 220
über den HSB 206 liest die Portstatuslogik 820 die Signale SOP* und EOP*, um festzustellen, ob die empfan-
genen Daten der Anfang eines Pakets oder das Ende eines Pakets sind.

[0174] Die Datenpuffer 807 umfassen mehrere bidirektionale FIFO-Datenpuffer 807a, 807b, 807c und 807d
(807a–d), die jeweils sowohl einen 32 Bit breiten Sendepuffer (TPI TX FOFO) als auch einen 32 Bit breiten
Empfangspuffer (TPI RX FIFO) enthalten. In der gezeigten Ausführung entsprechen die Datenpuffer 807a,
807b, 807c und 807d den Ports Port24, Port25, Port26 bzw. Port27. Jeder TPI RX FIFO empfängt Daten von
einem betreffenden TLAN 226 über den PCI-Bus 222, wo die Daten von der TPI 220 an den EPSM 210 über
den HSB 206 gesendet werden. Jeder TPI TX FIFO empfängt Daten von dem EPSM 210 über den HSB 206,
wobei die Daten von der TPI 220 an ein betreffendes TLAN 226 über den PCI-Bus 222 gesendet werden.

[0175] Empfangslisten-Decodierlogik 812 ist mit der PCI-Bus-Schnittstellenlogik 810 verbunden und spei-
chert wenigstens eine Empfangssteuerliste in einem Empfangssteuerlistenspeicher (RX CNTL LIST) 808a, der
Teil des Steuerlistenspeichers 808 ist. Die Empfangslisten-Decodierlogik 812 reagiert auf die Geltendmachung
einer RECEIVE LIST MEMORY ADDRESS, die als eine Adresse auf dem PCI-Bus 222 geltend gemacht ist,
durch Schreiben einer Empfangssteuerliste aus der RX CNTL LIST 808a als Daten in den PCI-Bus 222. In der
gezeigten Ausführung hält die RX CNTL LIST 808a eine Empfangssteuerliste zu einer Zeit. Das heißt, jeder
TLAN 226 erlangt die Steuerung des PCI-Busses 222 und macht die RECEIVE LIST MEMORY ADDRESS auf
dem PCI-Bus 222 geltend und empfängt eine entsprechende Empfangssteuerliste von der RX CNTL LIST
808a. Die Empfangssteuerliste enthält eine PACKET DATA MEMORY BASE ADDRESS zur Verwendung
durch das TLAN 226, die eine Adresse ist, die angibt, wo die empfangenen Daten zu speichern sind. Als Re-
aktion auf den Empfang eines Datenpakets von seinem betreffenden Port 110 erlangt das TLAN 226 die Steu-
erung des PCI-Busses 222 zurück, um Daten aus dem empfangenen Datenpaket unter Verwendung der ge-
speicherten Adresse in der vorher geholten Empfangssteuerliste an die TPI 220 zu übertragen. Wie weiter un-
ten beschrieben, schlichtet das TLAN 226 und erhält die Steuerung des PCI-Busses 222 und macht die PA-
CKET DATA MEMORY ADDRESS während eines Schreibzyklusses auf dem PCI-Bus 222 geltend.

[0176] Eine Empfangsdaten-Decodierlogik 813, eine PCI RX FIFO Steuerlogik 817, der PCI-Arbiter 811 und
eine FIFO-Synchronisationslogik 818 steuern den Fluss von empfangenen Daten von der PCI-Bus-Schnittstel-
lenlogik 810 in den entsprechenden TPI TX FIFO. Die PCI RX FIFO Steuerlogik 817 enthält einen Eingang,
um Daten von der PCI-Bus-Schnttstellenlogik 810 zu empfangen, und mehrere wählbare Ausgänge, die je-
weils mit dem Eingang eines entsprechenden TPI RX FIFO verbunden sind. Der PCI-Arbiter 811 liefert die
TSELm Signale an die FIFO-Synchronisationslogik 818, die entsprechende PCI-Pufferauswählsignale (PB-
SELm) an der PCI RX FIFO Steuerlogik 817 geltend macht, um den geeigneten TPI RX FIFO basierend auf
dem einzelnen TLAN 226, dem die Steuerung des PCI-Busses 222 gewährt wurde, auszuwählen. Die Emp-
fangsdaten-Decodierlogik 813 empfängt und decodiert die PACKET DATA MEMORY ADDRESS, die durch
Ausführen eines Schreibzyklusses auf dem PCI-Bus 222 durch das TLAN 226 geltend gemacht wurde, und
macht als Reaktion ein Empfangsfreigabesignal (REN) an der PCI RX FIFO Steuerlogik 817 geltend, um der
PCI RX FIFO Steuerlogik 817 zu ermöglichen, Daten zu dem ausgewählten TPI RX FIFO zu leiten.
29/130

DE 697 31 519 T2 2005.12.01
[0177] Es wird angemerkt, dass ein bidirektionaler Datenfluss zwischen dem PCI-Bus 222 und dem HSB 206
durch die Datenpuffer 807 stattfindet. Der PCI-Bus 222 und der HSB 206 arbeiten in einer Ausführung bei der
gleichen Geschwindigkeit, z. B. bei einem 33 MHz Takt, können aber in alternativen Ausführungen bei ver-
schiedenen Taktfrequenzen arbeiten. Zum Beispiel arbeitet in einer anderen Ausführung der HSB 206 bei 33
MHz, während der PCI-Bus 222 bei 66 MHz arbeitet. Die TPI 220 ist so implementiert, dass sie den Datenfluss
trotz der unterschiedlichen Taktgeschwindigkeiten handhaben und synchronieren kann. Jeder TPI RX FIFO
und TPI TX FIFO der Datenpuffer 807a–d wird vorzugsweise als ein Ringpuffer implementiert, wobei Zeiger
auf beiten Seiten zum Schreiben und Lesen von Daten unterhalten werden. Die FIFO-Synchronisationslogik
818 abeitet allgemein, um die Zeiger auf beiden Seiten jedes FIFO zu synchronisieren, zu unterhalten und zu
aktualisieren, um sicherzustellen, dass Daten richtig in den geeigneten TPI FIFO geschrieben oder daraus ge-
lesen werden.

[0178] Wie oben erwähnt, ist jeder TPI RX FIFO als ein Ringpuffer implementiert. Die PCI RX FIFO Steuer-
logik 817 enthält mehrere PCI-Empfangszeiger (PCI RX PTRs), einen Zeiger für jeden TPI RX FIFO, um auf
die nächste Stelle zu zeigen oder sie zu adressieren, um ein DWORD (32 Bit) in dem ausgewählten TPI RX
FIFO zu empfangen. In ähnlicher Weise enthält die HSB RX FIFO Steuerlogik 821, die sich auf der anderen
Seite jedes TPI RX FIFO befindet, mehrere "synchronisierte" PCI Empfangszeiger (PCI RX SPTRs), von de-
nen jeder eine synchronisierte Kopie eines entsprechenden PCI RX PTR ist. Zusammen mit den PBSELm Si-
gnalen, um den geeigneten TPI RX FIFO auszuwählen, macht die FIFO-Synchronisationslogik 818 auch ein
entsprechendes einer Vielzahl von PCI-Zählsignalen (PCNTm) geltend, um den geeigneten PCI RX PTR in der
PCI RX FIFO Steuerlogik 817 synchron zu aktualisieren oder zu inkrementieren. Die FIFO-Synchronisations-
logik 818 macht weiter ein entsprechendes einer Vielzahl von HSB-Zählsignalen (HCNTm) geltend, um einen
entsprechenden PCI RX SPTR in der HSB RX FIFO-Steuerlogik 821 synchron zu aktualisieren oder zu inkre-
mentieren. Auf diese Weise wird ein Zeiger auf beiden Seiten jedes TPI RX FIFO bereitgestellt, um anzuzei-
gen, wo Daten einzufügen sind.

[0179] Ein PCI TX FIFO Steuerlogik 816 erfasst Daten in jedem der TPI TX FIFOs und veranlasst die TPI 220,
den PCI-Bus 222 aufzufordern und die Steuerung desselben zu erlangen, einen Befehl an ein TLAN 226 ent-
sprechend dem TPI TX FIFO, der Daten zum Senden hat, zu senden. Die PCI TX FIFO Steuerlogik 816 greift
auf die Adressen des geeigneten TLAN 226 aus einem Satz von TPI-Steuerregistern 846 zu. Die TPI 220
schreibt einen Befehl in das geeignete TLAN 226 und stellt eine TRANSMIT LIST MEMORY BASE ADDRESS
bereit, um das TLAN 226 zu veranlassen, anschließend eine Sendesteuerliste von der TPT 220 unter Verwen-
dung der TRANSMIT LIST MEMORY BASE ADDRESS anzufordern.

[0180] Eine Sendelisten-Decodierlogik 814 ist mit der PCI-Bus-Schnittstellenlogik 810 verbunden und spei-
chert wenigstens eine Sendesteuerliste in einem Sendesteuerlistenspeicher (TX CNTL LIST) 808b, der Teil
des Steuerlistenspeichers 808 ist. Die Sendelisten-Decodierlogik 814 reagiert die auf Geltendmachung der als
eine Adresse auf dem PCl-Bus 222 geltend gemachten TRANSMIT LIST MEMORY BASE ADDRESS durch
Schreiben einer Sendesteuerliste aus der TX CNTL LIST 808b als Daten in den PCI-Bus 222. In der gezeigten
Ausführung hält die TX CNTL LIST 808b eine Sendesteuerliste zu einer Zeit. Auf diese Weise erlangt jedes
TLAN 226 die Steuerung des PCI-Busses 222 und macht die TRANSMIT LIST MEMORY BASE ADDRESS
auf dem PCI-Bus 222 geltend und empfängt eine entsprechende Sendesteuerliste von der TX CNTL LIST
808b. Nach Rückgewinnung der Sendesteuerliste führt das TLAN 226 die Sendesteuerung durch, indem es
den PCI-Bus 222 auffordert und die Steuerung desselben erlangt, einen Lesezyklus durchzuführen, um die Da-
ten aus dem entsprechenden TPI TX FIFO der TPI 220 mittels der TRANSMIT LIST MEMORY BASE
ADDRESS zurückzugewinnen.

[0181] Eine Sendedaten-Decodierlogik 815, die PCI TX FIFO Steuerlogik 816, der PCI-Arbiter 811 und die
FIFO-Synchronisationslogik 818 steuern den Fluss von Daten von jedem TPI TX FIFOs der Datenpuffer 807
auf den PCI-Bus 222. Die PCI TX FIFO Steuerlogik 816 enthält einen Ausgang, um Daten an die
PCI-Bus-Schnittstellenlogik 810 zu liefern, und mehrere Eingänge, die jeweils mit einem Ausgang eines ent-
sprechenden der TPI TX FIFOS verbunden sind. Wenn ein TLAN 226 einen Lesezyklus auf dem PCI-Bus 222
durchführt, um Daten zu lesen, liefert der PCI-Arbiter 811 die TESLm Signale an die FIFO-Synchronisations-
logik 818, die die PBSELm Signale an der PCI TX FIFO Steuerlogik 816 geltend macht, um den entsprechen-
den TPI TX FIFO basierend auf dem einzelnen TLAN 226, das die Steuerung des PCI-Busses 222 hat, aus-
zuwählen. Die Sendedaten-Decodierlogik 815 empfängt und decodiert die durch das TLAN 226 geltend ge-
machte PACKET DATA MEMORY BASE ADDRESS und macht als Reaktion ein Freigabesignal TEN an der
PCI TX FIFO Steuerlogik 816 geltend, um die Übertragung von Daten an den ausgewählten TPI TX FIFO zu
ermöglichen. Es wird angemerkt, dass die PBSELm Signale sowohl an die PCI RX FIFO Steuerlogik 817 als
auch an die PCI TX FIFO Steuerlogik 816 angelegt werden, und dass die Signale TEN und REN zwischen der
30/130

DE 697 31 519 T2 2005.12.01
PCI RX FIFO Steuerlogik 817 und der PCI TX FIFO Steuerlogik 816 abhängig von dem Typ des Zyklusses und
der Richtung des Datenflusses auswählen.

[0182] Jeder TPI TX FIFO ist in der gezeigten Ausführung als ein Ringpuffer implementiert. Die PCI TX FIFO
Steuerlogik 816 enthält mehrere PCI-Sendezeiger (PCI TX PTRs), einen Zeiger für jeden TPI TX FIFO, um auf
die nächste Stelle zu zeigen oder sie zu adressieren, von der ein DWORD von Daten zu lesen ist. In ähnlicher
Weise enthält die HSB TX FIFO Steuerlogik 822, weiter unten beschrieben, die sich auf der anderen Seite je-
des TPI TX FIFO befindet, mehrere "synchronisierte" PCI Sendezeiger (PCI TX SPTRs), von denen jeder eine
synchronisierte Kopie eines entsprechenden PCI TX PTR ist. Die FIFO-Synchronisationslogik 818 macht ein
entsprechendes der PCNTm Signale geltend, um den geeigneten PCI TX PTR zu inkrementieren, und ein ent-
sprechendes der HCNTm Signale, um den geeigneten PCI TX SPTR jedes Mal zu inkrementieren, wenn ein
DWORD von Daten von der PCI TX FIFO Steuerlogik 816 an den PCI-Bus 222 angelegt wird. Auf diese Weise
wird ein Zeiger auf beiden Seiten jedes TPI TX FIFO bereitgestellt, um anzuzeigen, wo Daten zu lesen sind.

[0183] Die HSB RX FIFO Steuerlogik 821 hat mehrere wählbare Eingänge, die jeweils mit einem Ausgang
eines entsprechenden der TPI RX FIFOs verbunden sind. Die HSB RX FIFO Steuerlogik 821 hat einen Aus-
gang zum Liefern der Daten an die HSB-Datenübertragungs-Schnittstellenlogik 819 zur Geltendmachung auf
dem HSB 206. Die HSB TX FIFO Steuerlogik 822 hat mehrere wählbare Ausgänge, die jeweils mit einem Ein-
gang eines entsprechenden der TPI TX FIFOS verbunden sind. Die HSB TX FIFO Steuerlogik 822 hat einen
Eingang zum Empfangen von Daten der HSB-Datenübertragungs-Schnittstellenlogik 819 von dem HSB 206.

[0184] Die HSB RX FIFO Steuerlogik 821, die Portstatuslogik 820 und die FIFO-Synchronisationslogik 818
steuern den Datenfluss zwischen den TPI RX FIFOs und den Datenpuffern 807a–d und dem HSB 206 während
der Datenübertragungen von der TPI 220 an den EPSM 210. Die Portstatuslogik 820 erfasst die Geltendma-
chung des READ_OUT_PKT[6]* Signals, das einen Lesezyklus auf dem HSB 206 anzeigt, und decodiert die
PORT_NO[1:0] Signale, um den entsprechenden TPI TX FIFO des gewählten Ports zu identifizieren. Das
heißt, der EPSM 210 macht PORT_NO[1:0] Signale 00, 01, 10 oder 11 geltend, um den TPI RX FIFO eines
der Datenpuffer 807a, 807b, 807c oder 807d für den Port Port24, PORT25, PORT26 oder PORT27 auszuwäh-
len. Die Portstatuslogik 802 macht Portauswählsignale (PSELm) an der FIFO-Synchronisationslogik 818 gel-
tend, die als Reaktion entsprechende HSB-Auswählsignale (HBSELm) geltend macht, um einen Ausgang der
mit dem entsprechenden TPI RX FIFO verbundenen HSB RX FIFO Steuerlogik 821 auszuwählen. Ferner
macht die Portstatuslogik 820 ein HSB-Freigabesignal (HREN) geltend, um der HSB RX FIFO Steuerlogik 821
zu ermöglichen, die Daten an die HSB-Datenübertragungs-Schnittstellenlogik 819 zur Geltendmachung auf
dem HSB 206 auszugeben.

[0185] Die HSB RX FIFO Steuerlogik 821 enthält einen HSB-Empfangszeiger (HSB RX PTR) für jeden TPI
RX FIFO, um die einzelnen Daten in dem TPI RX FIFO zu lokalisieren. Die FIFO-Synchronisationslogik 818
macht ein entsprechendes der HCNTm Signale geltend, um den entsprechenden HSB RX PTR des ausge-
wählten TPI RX FIFO für jedes aus dem TPI RX FIFO gelesene DWORD zu aktualisieren oder zu dekremen-
tieren. Die PCI RX FIFO Steuerlogik 817 enthält auch einen entsprechenden "synchronisierten" HSB-Emp-
fangszeiger (HSB RX SPTR), der durch die FIFO-Synchronisationslogik 818 durch Geltendmachen eines ent-
sprechenden der PCNTm Signale dekrementiert wird. Auf diese Weise hat die HSB RX FIFO Steuerlogik 821
zwei Zeiger für jeden TPI RX FIFO, einschließlich des PCI RX SPTR, der anzeigt, wo Daten zu schreiben sind,
und des HSB RX PTR, der anzeigt, wo Daten zu lesen sind. Die Portstatuslogik 820 greift auch auf diese Zeiger
zu, um die Menge an gültigen Daten oder die Zahl gültiger Datenbytes in jedem TPI RX FIFO zu gewinnen.
Diese Anzahl wird mit einer entsprechenden RBSIZE (entsprechend dem TBUS-Wert) für dem HSB 206 ver-
glichen, um zu bestimmen, wie die PKT_AVAIL[6]* Signale als Reaktion auf das STROBE* Signal geltend zu
machen sind.

[0186] Die HSB TX FIFO Steuerlogik 822, die Portstatuslogik 820 und die FIFO-Synchronisationslogik 818
steuern den Datenfluss zwischen jedem TPI TX FIFO und dem HSB 206 während Datenübertragungen von
der EPSM 210 an die TPI 220. Die Portstatuslogik 820 erfasst die Geltendmachung des WRITE_IN_PKT[6]*
Signals und bestimmt die Portnummer aus den PORT_NO[0:1] Signalen während eines von dem EPSM 210
auf dem HSB 206 ausgeführten Schreibzyklusses. Die Portstatuslogik 820 macht entsprechend die PSELm
Signale und ein HSB-Sendefreigabesignal (HTEN) geltend, um den geeigneten TPI TX FIFO zu bezeichnen.
Die FIFO-Synchronisationslogik 818 macht als Reaktion die HBSELm Signale geltend, um den entsprechen-
den Eingang der HSB TX FIFO Steuerlogik 822 zu dem geeigneten TPI TX FIFO auszuwählen. Das HTEN-Si-
gnal ermöglicht der HSB TX FIFO Steuerlogik 822, die Daten von der HSB-Datenübertragungs-Schnittstellen-
logik 819 zur Geltendmachung an dem ausgewählten TPI TX FIFO zu empfangen.
31/130

DE 697 31 519 T2 2005.12.01
[0187] Die HSB TX FIFO Steuerlogik 822 enthält einen HSB-Sendezeiger (HSB TX PTR) für jeden TPI TX
FIFO, um die einzelne Datenstelle in dem TPI TX FIFO aufzufinden, um Daten zu schreiben. Die FIFO-Syn-
chronisationslogik 818 macht ein entsprechendes der HCNTm Signale geltend, um den entsprechenden HSB
TX PTR des gewählten TPI TX FIFO für jedes in den gewählten TPI TX FIFO geschriebene DWORD zu aktu-
alisieren oder zu inkrementieren. Ferner enthält die PCI TX FIFO Steuerlogik 816 einen entsprechenden "syn-
chronisierten" HSB-Sendezeiger (HSB TX SPTR), der durch die FIFO-Synchronisationslogik 818 durch Gel-
tendmachen eines der PCNTm Signale inkrementiert wird. Auf diese Weise hat die HSB TX FIFO Steuerlogik
822 zwei Zeiger für jeden TPI TX FIFO, einschließlich des PCI TX SPTR, der anzeigt, wo Daten zu lesen sind,
und des HSB TX PTR, der anzeigt, wo Daten zu schreiben sind. Die Portstatuslogik 820 greift auch auf diese
Zeiger zu, um die Menge an verfügbarem Platz oder die Zahl in jedem TPI TX FIFO vorhandener leerer Da-
tenbytes zu gewinnen. Dieser Wert wird mit einer entsprechenden XBSIZE (entsprechend den TBUS-Wert) für
den HSB 206 verglichen, um zu bestimmen, wie die BUF_AVAIL[6]* Signale als Reaktion auf das STROBE*
Signal geltend zu machen sind.

[0188] Ein Satz von TPI PCI Konfigurationsregistern 835 ist in der TPI 220 bereitgestellt und mit der
PCI-Bus-Schnittstellenlogik 810 zum Zugriff über den PCI-Bus 222 verbunden. Ferner sind die TPI-Steuerre-
gister 846 bereitgestellt und mit verschiedenen Vorrichtungen in der TPI 220 und der PCI-Bus-Schnittstellen-
logik 810 zum Zugriff über den PCI-Bus 222 verbunden. Der Inhalt und die Struktur dieser Register 846 und
835 werden unten weiter beschrieben. Die HSB-Datenübertragungs-Schnittstellenlogik 819 enthält auch ein
PACKET SIZE Anhängerregister 819c. Die HSB-Datenübertragungs-Schnittstellelogik 819 erfasst und spei-
chert das erste DWORD jedes von dem EPSM 210 gesendeten Datenpakets in dem PACKET SIZE Anhän-
gerregister 819c und schreibt dann den Inhalt des PACKET SIZE Registers 819c in die TX CNTL LIST 808b
der Sendelisten-Decodierlogik 814.

[0189] Fig. 8C ist ein Blockschaltbild, das die Konfiguration und Funktionalität jedes der TLANs 226 veran-
schaulicht. Das TLAN 226 enthält einen Ethernet-Port 110, eine PCI-Busschnittstelle 824 und einen zwischen
den Ethernet-Port 110 und die PCI-Busschnittstelle 824 geschalteten Speicher 825. Der Ethernet-Port 110 ent-
hält eine geeignete Buchse, um einen kompatiblen Stecker eines 100 Mb Ethernet-Segments 114 aufzuneh-
men, um Paketdaten von einem entsprechenden Netzwerk 112 zu empfangen und Paketdaten an dasselbe zu
senden. Der Ethernet-Port 110 liefert empfangene Paketdaten an Datenpuffer 826 im Speicher 825. Der Ether-
net-Port 110 gewinnt Paketdaten aus den Datenpuffern 826 zurück und sendet die Paketdaten an ein Ether-
net-Segment 114.

[0190] Das TLAN 226 enthält einen Satz von Registern 828 in dem Speicher 825 zum Steuern seines Be-
triebs. Die Register 828 umfassen ein Befehlsregister 828a zum Ermöglichen einer externen Vorrichtung, Be-
fehle durch den PCI-Bus 222 einzuführen. Die Register 828 umfassen weiter ein Kanalparameterregister 828b
zum Speichern einer Adresse, um auf eine Befehlsliste von einem externen Speicher durch den PCI-Bus 222
zuzugreifen. Das Befehlsregister 828a enthält ein GO-Bit (nicht gezeigt), das das TLAN 226 anweist, eine Be-
fehlsliste zurückzugewinnen und auszuführen. Das Befehlsregister 828a enthält auch ein RX/TX-Bit (nicht ge-
zeigt), das das TLAN 226 anweist, eine Empfangsbefehlsliste (für den RX-Fall) oder eine Sendebefehlsliste
(für den TX-Fall) zurückzugewinnen und auszuführen. Der Speicher 825 enthält einen Listenpuffer 827 zum
Speichern gegenwärtiger Steuerlisten, wo der Listenpuffer 827 weiter einen Empfangssteuerlistenpuffer 827a
zum Speichern der gegenwärtigen Empfangssteuerliste und einen Sendesteuerlistenpuffer 827b zum Spei-
chern der gegenwärtigen Sendesteuetrliste enthält.

[0191] Die PCI-Busschnittstelle 824 enthält geeignete Logik zum Verbinden mit dem PCI-Bus 222, um Daten-
übertragungen zwischen der TPI 220 und dem TLAN 226 durch Arbeiten als ein Busmaster des PCI-Busses
222 während der Datenübetragung zu steuern. Eine externe Vorrichtung, z. B. die TPI 220 oder die CPU 230,
schreibt eine Adresse in das Kanalparametenegister 828b und schreibt einen Befehl in das Befehlsregister
828a. Das TLAN 226 macht als Reaktion ein REQm Signal geltend, um für den PCI-Bus 222 zu schlichten.
Wenn ein GNTm Signal empfangen wird, führt das TLAN 226 einen Zyklus auf dem PCI-Bus 222 aus, um eine
angegebene Befehlsliste zurückzugewinnen und im Listenpuffer 827 zu speichern. Der Befehl wird als ein Sen-
debefehl angesehen, wenn das RX/TX-Bit für TX gesetzt ist, und als Empfangsbefehl, wenn ds RX/TX-Bit für
RX gesetzt ist.

[0192] Um Empfangsvorgänge einzuleiten, schreibt die CPU 230 die RECEIVE LIST MEMORY BASE
ADDRESS in das Kanalparameterregister 828b und einen Empfangsbefehl in das Befehlsregister 828a jedes
TLAN 226. Das TLAN 226 fordert als Reaktion den PCI-Bus 222 auf, eine Empfangssteuerliste mittels der RE-
CEIVE LIST MEMORY BASE ADDRESS zurückzugewinnen. Die TPI 220 liefert eine Empfangssteuerliste an
das TLAN 226, und das TLAN 226 wartet dann, um Daten zu empfangen, bevor die Empfangssteuerliste aus-
32/130

DE 697 31 519 T2 2005.12.01
geführt wird. Die Empfangssteuerliste enthält einen Vorwärtszeiger als die nächste Adresse für das TLAN 226,
die es benutzt, um die nächste Empfangssteuerliste zurückzugewinnen, um eine Steuerlistenverkettung zu er-
richten. In der bevorzugten Ausführung lädt jedoch die TPI 220 den Vorwärtszeiger jeder Empfangssteuerliste
mit der gleichen RECEIVE LIST MEMORY BASE ADDRESS. Wenn Daten von dem Port 110 an die TPI 220
empfangen werden, schlichtet die PCI-Busschnittstelle 824 und erlangt die Steuerung des PCI Busses 222 und
führt die Empfangssteuerliste in ihrem Empfangssteuerlistenpuffer 827a aus, um Daten über den PCI-Bus 222
an die TPI 220 zu übertragen. Sobald die Übertragung eines ganzen Datenpakets vollendet ist, verwendet das
TLAN 226 die RECEIVE LIST MEMORY BASE ADDRESS in dem Vorwärtszeigter der momentanen Emp-
fangssteuerliste, um eine weitere Empfangssteuerliste anzufordern.

[0193] Für Sendevorgänge erfasst die TPI 220 zu sendende Daten von einem ihrer TPI TX FIFOs und schlich-
tet und erlangt als Reaktion die Steuerung des PCI-Busses 222. Die TPI 220 schreibt dann die TRANSMIT
LIST MEMORY BASE ADDRESS in das Kanalparameterregister 828b und einen Sendebefehl in das Befehls-
register 828a jedes TLAN 226. Das TLAN 226 fordert als Reaktion den PCI-Bus 222 auf, eine Sendesteuerliste
mittels der TRANSMIT LIST MEMORY BASE ADDRESS zurückzugewinnen. Sobald die Sendesteuerliste
empfangen ist, speichert das TLAN 226 die Sendesteuerliste in seinem Sendesteuerlistenpuffer 828b und führt
dann die gespeicherte Sendesteuerliste aus, um Paketdaten zu empfangen. Die Sendesteuerliste enthält auch
einen Vorwärtszeiger, der normalerweise als die nächste Adresse für das TLAN 226 benutzt wird, um die
nächste Sendesteuerliste zurückzugewinnen, um eine Steuerlistenverkettung zu errichten. In der gezeigten
Ausführung lädt jedoch die TPI 220 den Vorwärtszeiger jeder Sendesteuerliste mit einem Nullwert. Nach Aus-
führen der Sendesteuerliste in seinem Sendesteuerlistenpuffer 827a wartet daher das TLAN 226, bis die TPI
220 einen weiteren Sendebefehl schreibt.

[0194] Fig. 8D zeigt ein Diagramm, das eine Steuersignalliste 830 veranschaulicht, die das Format für Sen-
de- und Empfangssteuerlisten ist und auch das Format für die RX CNTL LIST 808a und die TX CNTL LIST
808b ist. Die Steuerliste 830 enthält ein FORWARD_POINTER Feld 831, ein PACKET_SIZE Feld 832a, ein
CSTAT Feld 832b, ein COUNT Feld 833 und ein DATA_POINTER Feld 834. Jedes Feld ist 32 Bits mit Ausnah-
me des PACKET_SIZE Feldes 832a und des CSTAT Feldes 832b, die 16-Bit Felder sind.

[0195] Das FORWARD_POINTER Feld 832 wird gewöhnlich benutzt, um Steuerlisten miteinander zu verket-
ten. Für Empfangsvorgänge führt das TLAN 226 durch die TPI 220 von der RX CNTL LIST 808a bereitgestellte
Steuerlisten wieder und wieder aus, da das FORWARD_POINTER Feld 831 in jedem Fall die gleiche RECEI-
VE LIST MEMORY BASE ADDRESS ist. Auf diese Weise verwendet jedes TLAN 226 die RECEIVE LIST ME-
MORY BASE ADDRESS in dem FORWARD_POINTER Feld 831 seiner momentanen Empfangssteuerliste,
um die nächste Empfangssteuerliste anzufordern, wenn das nächste Datenpaket von einem Netzwerk 112
empfangen wird. Die TPI 220 muss daher für Empfangsvorgänge keine Vorgangsstartbefehle an die TLANS
226 ausgeben. Für Sendevorgänge führt das TLAN 226 jedes Mal Sendesteuerlisten aus der gleichen TX
CNTL LIST 808b aus. Die TPI 220 setzt jedoch das FORWARD_POINTER Feld 831 auf einen Nullwert
(0000h), sodass die TPI 220 und ein betreffendes TLAN 226 einen Sendevorgang ausführen, wenn durch die
TPI 220 eingeleitet. Wenn Daten in einem der TPI TX FIFOs erfasst werden und die TPI 220 gegenwärtig keine
Sendevorgänge auf dem betreffenden TLAN-Port eines TPI TX FIFOs durchführt, gibt die TPI 220 einen Sen-
debefehl an ein betreffendes TLAN 226 aus, um einen Sendevorgang einzuleiten. Das betreffende TLAN 226
gewinnt die Sendesteuerliste aus der TX CNTL LIST 808b zurück, führt die Sendesteuerliste aus und kehrt
dann in einen Vorgabezustand zurück, wenn der Nullwert in dem FORWARD_POINTER Feld 831 angetroffen
wird.

[0196] Das PACKET_SIZE Feld 832a gibt gewöhnlich die Größe eines Datenpakets an. Für Empfangsvor-
gänge setzt die TPI 220 anfangs das PACKET_SIZE Feld 832a in der RX CNTL LIST 808a auf null. Nachdem
das TLAN 226 eine Übertragung eines vollständigen Datenpakets an die TPI 220 vollendet hat, führt das TLAN
226 einen letzten Ein-DWORD-Schreibvorgang in das PACKET_SIZE Feld 832a und das CSTAT Feld 832b
der RX CNTL LIST 808a durch. Das PACKET_SIZE Feld 832a wird mit der tatsächlichen Paketdatengröße ge-
laden, und ein Rahmen-Vollendet-Bit in dem CSTAT Feld 832b wird gesetzt. Für Sendevorgänge wird das
PACKET_SIZE Feld 832a der TX CNTL LIST 808b mit der Größe eines von der TPI 220 an ein TLAN 226 zu
sendenden Datenpakets geladen. Die HSB-Datenübertragungs-Schnittstellenlogik 819 schreibt die Paketgrö-
ße DWORD im PACKET_SIZE Registeranhänger 819c in die TX CNTL LIST 808b in der Sendelisten-Deco-
dierlogik 814. Die TPI 220 schreibt dann den Sendebefehl in das entsprechende TLAN 226, wie vorher be-
schrieben, und der Inhalt der TX CNTL LIST 808b wird an ein TLAN 226 als eine Sendesteuerliste, wenn ver-
langt, geliefert.

[0197] Das CSTAT Feld 832b wird verwendet, um Befehls- und Statusinformation zwischen der TPI 220 und
33/130

DE 697 31 519 T2 2005.12.01
den TLANs 226 zu übermitteln. Die TPI 220 setzt anfangs das CSTAT Feld 832b der CNTL LIST 808a auf null.
Wenn eine Paketdatenübertragung von einem TLAN 226 in einen betreffenden TPI RX FIFO vollendet wurde,
setzt die TPI 220 das Rahmen-Vollendet-Bit des CSTAT Feldes 832b (Bit 14) in der RX CNTL LIST 808a, um
darzustellen, dass die Paketdatenübertragung vollendet wurde. Die TPI 220 informiert die Portstatuslogik 820,
dass das Paket vollständig ist, um eine Übertragung über den HSB 206 an den EPSM 210 einzuleiten. Die
Portstatuslogik 820 zeigt dann an, dass Daten in einem betreffenden TPI RX FIFO zur Übertragung an den
EPSM 210 als Reaktion auf eine Abfrage durch den EPSM 210 verfügbar sind. Dies gilt, selbst wenn die Men-
ge an Paketendedaten nicht den RBSIZE- oder TBUS-Wert erfüllt, da das Ende des Pakets übertragen werden
muss.

[0198] Die TPI 220 setzt das CRC-(zyklische Redundanzprüfung)Bit in dem CSTAT Feld 832b der TX CNTL
LIST 808b basierend auf dem Sataus des AI_FCS_IN* (oder FBPN) Signals während des Empfangs eines Da-
tenpakets von dem EPSM 210. Die TPI 220 setzt das CRC-Bit, um anzuzeigen, ob das Datenpaket in einer
CRC benutzte Daten enthält. Ein Ethernet-Datenpaket, das CRC einschließt, enthält zusätzlich zu den Paket-
daten vier Bytes von CRC-Daten, die zur Fehlerprüfung verwendet werden.

[0199] Das DATA_POINTER Feld 834 spezifiziert die durch ein TLAN 226 während eines Datenübertra-
gungsvorgangs geltend zu machende PCI-Adresse. Die Adresse ist vorzugsweise für Sende- und Empfangs-
vorgänge die gleiche und ist die PACKET DATA MEMORY BASE ADDRESS.

[0200] Während eines Empfangsvorgangs macht ein TLAN 226 die PACKET DATA MEMORY BASE
ADDRESS geltend, und die Empfangsdaten-Decodierlogik 813 decodiert die Adresse, und ein Schreibzyklus
auf dem PCI-Bus 222 ermöglicht der PCI RX FIFO Steuerlogik 817, den Empfang von Paketdaten in einem
ausgewählten TPI RX FIFO zu erlauben. Während eines Sendevorgangs macht ein TLAN 226 die PACKET
DATA MEMORY BASE ADDRESS geltend, und die Sendedaten-Decodierlogik 815 decodiert die Adresse, und
ein Lesevorgang ermöglicht der PCI TX FIFO Steuerlogik 816, die Übertragung von Paketdaten aus einem
ausgewählten TPI TX FIFO durchzuführen.

[0201] Das COUNT Feld 833 spezifiziert eine vorhandene Datenmenge oder die Menge an verfügbarem Puf-
ferplatz bei dem momentanen Wert des DATA_POINTER Feldes 834. Während eines Datenempfangsvor-
gangs setzt die Empfangslisten-Decodierlogik 812 das COUNT Feld 833 auf einen in ein RCV_DATA_COUNT
Register 847b (Fig. 8F) der TPI-Steuerregister 846 geschriebenen Wert. Der Wert von dem
RCV_DATA_COUNT Register 847b bestimmt die größte durch die TPI 220 zu empfangende Paketgröße. Als
Vorgabe beträgt dieser Wert 1518 Bytes, was die größte ETHERNET-Datenpaketgröße mit vier Bytes von CRC
ist. Während eines Datensendevorgangs setzt die TPI 220 das COUNT Feld 833 auf den gleichen Wert wie
das PACKET_SIZE Feld 832a.

[0202] Fig. 8E ist ein Diagramm, das eine Definition der von der TPI 220 eingesetzten TPI-PCI-Konfigurati-
onsregister 835 veranschaulicht. Die TPI-PCI-Konfigurationsregister 835 umfassen Register, die allen
PCI-Busarchitekturen gemeinsam sind, sowie für die TPI 220 einmalige, zusätzliche Register. Register, die al-
len PCI-Bussen gemeinsam sind, umfassen ein DEVICE_ID Register 836a, ein VENDOR_ID Register 836b,
ein STATUS Register 837a, ein COMMAND Register 837b, ein CLASS_CODE Register 838a, ein REV_ID Re-
gister 838b, ein BIST Register 839a, ein HDR_TYPE Register 839b, ein LATENCY Register 839c, ein CA-
CHELSZ Register 839d, ein MAXLAT Register 845a, ein MINGNT Register 845b, ein INTPIN Register 845c
und ein INTLINE Register 845d. Für die TPI 220 einmalige Register umfassen ein TPI CONTROL IO BASE
ADDRESS Register 840 ein TPI CONTROL MEMORY BASE ADDRESS Register 841, ein TRANSMIT LIST
MEMORY BASE ADDRESS Register 842, ein RECEIVE LIST MEMORY BASE ADDRESS Register 843 und
ein PACKET DATA MEMORY BASE ADDRESS Register 844.

[0203] Nach Initialisierung enthält das TPI CONTROL IO BASE ADDRESS Register 840 eine TPI CONTROL
10 BASE ADDRESS für die TPI-Steuerregister 846. Das TPI CONTROL MEMORY BASE ADDRESS Register
841 enthält eine TPI CONTROL MEMORY BASE ADDRESS für die TPI-Steuerregister 846. Auf diese Weise
sind die TPI-Steuerregister 846 sowohl im I/O- als auch im Speicherraum des PCI-Busses 220 zugänglich. Das
TRANSMIT LIST MEMORY BASE ADDRESS Register 842 enthält die TRANSMIT LIST MEMORY BASE
ADDRESS für die TX CNTL LIST 808b, die von der Sendelisten-Decodierlogik 814 decodiert wird. Das RE-
CEIVE LIST MEMORY BASE ADDRESS Register 843 enthält die RECEIVE LIST MEMORY BASE ADDRESS
für die RX CNTL LIST 808a, die von der Empfangslisten-Decodierlogik 812 decodiert wird. Das PACKET DATA
MEMORY BASE ADDRESS Register 844 enthält die PACKET DATA MEMORY BASE ADDRESS, die den Da-
tenpuffern 807 der TPI 220 entspricht. Die PACKET DATA MEMORY BASE ADDRESS wird sowohl von der
Sendedaten-Decodierlogik 815 als auch der Empfangsdaten-Decodierlogik 813 decodiert.
34/130

DE 697 31 519 T2 2005.12.01
[0204] Fig. 8F ist ein Diagramm, das die Definition der durch die PTI 220 verwendeten TPI-Steuerregister 846
veranschaulicht. Die TPI-Steueregister 846 umfassen ein RCV_DATA_COUNT Register 847b, ein XBSIZE3
Register 848a, ein XBSIZE2 Register 848b, ein XBSIZE1 Register 848c, ein XBSIZE0 Register 848d, ein
RBSIZE3 Register 849a, ein RBSIZE2 Register 849b, ein RBSIZE1 Register 849c, ein RBSIZE0 Register
849d, ein NET_PRI3 Register 850a, ein NET_PRI2 Register 850b, ein NET_PRI1 Register 850c, ein
NET_PRI0 Register 850d, ein TLAN0 MEMORY BASE ADDRESS Register 851, ein TLAN1 MEMORY BASE
ADDRESS Register 852, ein TLAN2 MEMORY BASE ADDRESS Register 853 und ein TLAN3 MEMORY
BASE ADDRESS Register 845.

[0205] Das RCV_DATA_COUNT Register 847b speichert die von der TPI 220 behandelte Maximalgröße von
empfangenen Datenpaketen. Die TPI 220 gewinnt diesen Wert zurück und legt ihn in das COUNT Feld 833
der RX CNTL LIST 808a. Jedes der XBSIZE Register 848a–d hält eine Sendestoßgröße in DWORDs für be-
treffende Ports, nämlich XBSIZE0 für Port24, XBSIZE1 für Port25, XBSIZE2 für Port26, XBSIZE3 für Port27.
Die XBSIZE Sendestoßgrößenwerte werden von der HSB TX FIFO Steuerlogik 822 und der Portstatuslogik
820 der TPI 220 verwendet, wenn festgestellt wird, ob genug Paketpufferplatz in einem betreffenden TPI TX
FIFO vorhanden ist, um Daten von dem EPSM 210 für den betreffenden Port anzufordern. Jedes der RBSIZE
Register 849a–d hält betreffende HSB-Empfangsstoßgrößen in DWORDs für die betreffenden Ports, nämlich
RBSIZE0 für Port24, RBSIZE1 für Port25, RBSIZE2 für Port26 und RBSIZE3 für Port27. Die RBSIZE Emp-
fangsstoßgrößenwerte werden von der HSB RX FIFO Steuerlogik 821 und der Portstatuslogik 820 verwendet,
wenn festgestellt wird, ob genug Paketdaten in einem betreffenden TPI RX FIFO vorhanden sind, um eine
Übertragung von empfangenen Daten von dem betreffenden Port an den EPSM 210 anzufordern. In der ge-
zeigten Ausführung sind die in den XBSIZE- RBSIZE-Registern 848, 849 gespeicherten Werte einander gleich
und gleich dem TBUS-Wert. Die XBSIZE Register 848 und die RBSIZE Register 849 werden jedoch, abhängig
von der Ausführung, mit jedem gewünschten Stoßübertragungswert programmiert.

[0206] Die NET_PRI Register 850 halten betreffende Netzwerk-Prioritätswerte für die Ports, nämlich
NET_PRI0 für Port24, NET_PRI1 für Port25, NET_PRI2 für Port26 und NET_PRI3 für Port27. Diese Werte
werden von der Sendelisten-Decodierlogik 814 verwendet, um die Sendepriorität der betreffenden Ports fest-
zulegen. Das TLAN0 MEMORY BASE ADDRESS Register 851 hält eine PCI-Speicheradresse, bezeichnet als
TLAN0 MEMORY BASE ADDRESS, für Port24. Das TLAN1 MEMORY BASE ADDRESS Register 852 hält
eine PCI-Speicheradresse, bezeichnet als TLAN1 MEMORY BASE ADDRESS, für Port25. Das TLAN2 ME-
MORY BASE ADDRESS Register 853 hält eine PCI-Speicheradresse, bezeichnet als TLAN2 MEMORY BASE
ADDRESS, für Port26. Das TLAN3 MEMORY BASE ADDRESS Register 854 hält eine PCI-Speicheradresse,
bezeichnet als TLAN3 MEMORY BASE ADDress für Port27. Jedes dieser Register wird beim Einschalten
durch die CPU 230 nach Bestimmen der Adressen jedes der TLANs 226 initialisiert. Diese Werte werden an
die PCI TX FIFO Steuerlogik 816 geliefert und von dieser verwendet, um jeden Sendebefehl auf dem PCI-Bus
222 auszugeben, um Paketsendevorgänge zu starten.

[0207] Fig. 8G ist ein Flussdiagramm, das PCI-Initialisierungsoperationen der CPU 230 beim Initialisieren,
Starten oder Rücksetzen des Netzwerkschalters 102 veranschaulicht. Im ersten Schritt 855 konfiguriert die
CPU 230 den PCI-Bus 222, bildet die TLANs 226 in den PCI-Speicherraum ab und schreibt diese Konfiguration
über den PCI-Bus 222 in die TPI-PCI-Konfigurationsregister 835. Die Schritte zum Konfigurieren des PCI-Bus-
ses 222 sind bekannt und werden nicht weiter beschrieben.

[0208] Insbesondere ist das DEVICE_ID Register 836a das Standard-PCI-Geräte-ID-Register und sein Wert
wird auf 0x500h gesetzt. Das VENDOR_ID Register 836b ist das Standard-PCI-Lieferanten-ID-Register und
sein Wert wird auf 0x0E11h gesetzt. Das STATUS-Register 837a ist das Standard-PCI-Gerätestatusregister.
Das COMMAND-Register 837b ist das Standard-PCI-Gerätebefehlsregister. Das CLASS_CODE Register
838a ist das Standard-PCI-Geräteklassencoderegister und sein Wert wird auf 0x060200h gesetzt. Das
REV_ID Register 838b ist das Standard-PCI-Geräterevisions-ID-Register und sein Wert wird auf 0x00h ge-
setzt. Das BIST-Register 839a ist das Standard-PCI-BIST-Statusregister und sein Wert wird auf 0x00h gesetzt.
Das HDR_TYPE Register 839b ist das Standard-PCI-Vorspanntypregister und sein Wert wird auf 0x80h ge-
setzt. Das LATENCY-Register 839c ist das Standard-PCI-Latenztypregister und wird durch die CPU 230 initi-
alisiert. Das CACHELST-Register 839d ist das Standard-PCI-Cachelinegrößenregister und wird durch die
CPU 230 initialisiert. Das MAXLAT_register 845a ist das Standard-PCI-Gerätemaximallatenzregister und sein
Wert wird auf 0x00h gesetzt. Das MINGNT-Register 846b ist das Standard-PCI-Geräteminimalgewährungsre-
gister und sein Wert wird auf 0x00h gesetzt. Das INTPIN-Register 845c ist das Standard-PCI-Geräteunterbre-
chungspinregister und sein Wert wird auf 0x00h gesetzt. Das INTLINE-Register 845d ist das Stan-
dard-PCI-Geräteunterbrechungsleitungsregister und wird von der CPU 230 eingerichtet.
35/130

DE 697 31 519 T2 2005.12.01
[0209] Ferner schreibt in Schritt 855 die CPU 230 einen Wert von 0xFFFFFFFFh in jedes der folgenden Re-
gister: das TPI CONTROL IO BASE ADDRESS Register 840, das TPI CONTROL MEMORY BASE ADDRESS
Register 841, das TRANSMIT LIST MEMORY BASE ADDRESS Register 842, das RECEIVE LIST MEMORY
BASE ADDRESS Register 843 und das PACKET DATA MEMORY BASE ADDRESS Register 844. Nach je-
dem Schreiben ersetzt die TPI 220 den Wert in jedem Register durch einen Wert, der die Menge an I/O- oder
Speicherplatz angibt, der von dem einzelnen angegebenen Register benötigt wird. Die CPU 230 liest als Re-
aktion jeden neuen Wert in jedem Register und schreibt dann eine Basisadresse in jedes Register zurück, um
die Wesenheit in den PCI-I/O- oder Speicherraum abzubilden.

[0210] Das heißt, nach Bestimmen der benötigten Menge an Platz schreibt die CPU 230 die TPI CONTROL
IO BASE ADDRESS in das TPI CONTROL IO BASE ADDRESS Register 840, um den I/O-Raumzugriff der
TPI-Steuerregister 846 zu ermöglichen, die CPU 230 schreibt die TPI CONTROL MEMORY BASE ADDRESS
in das TPI CONTROL MEMORY BASE ADDRESS Register 841, um den Speicherraumzugriff der TPI-Steu-
erregister 846 zu ermöglichen, die CPU 230 schreibt die TRANSMIT LIST MEMORY BASE ADDRESS in das
TRANSMIT LIST BASE ADDRESS Register 842, das der Adresse des TX CNTL LIST 808b Speicherblocks
entspricht, die CPU 230 schreibt die RECEIVE LIST MEMORY BASE ADDRESS in das RECEIVE LIST ME-
MORY BASE ADDRESS Register 843, das der Adresse der RX CNTL LIST 808a entspricht, und die CPU 230
schreibt die PACKET DATA MEMORY BASE ADDRESS in das PACKET DATA MEMORY BASE ADDRESS
Register 844, das der PCI-Adresse des Datenpuffers 807 entspricht.

[0211] Im nächsten Schritt 856a fragt die CPU 230 jedes TLAN 226, eines nach dem anderen, auf dem
PCI-Bus 222 ab, um die Zahl vorhandener TLANs und ihre entsprechenden PCI-Adressen zu bestimmen. Im
nächsten Schritt 856b initialisiert die CPU 230 die abgefragten TLANs 226 in einen bekannten Ruhezustand.
Die CPU 230 stellt dann im nächsten Schritt 857 fest, ob noch mehr TLANs 226 vorhanden sind, und kehrt,
wenn ja, zu Schritt 856a zurück, um das nächste TLAN abzufragen, bis alle TLANs 226 auf dem PCI-Bus 222
initialisiert sind. Zu dieser Zeit sind die Werte der TLAN0 MEMORY BASE ADDRESS, der TLAN1 MEMORY
BASE ADDRESS, der TLAN2 MEMORY BASE ADDRESS und der TLAN3 MEMORY BASE ADDRESS be-
kannt.

[0212] Im nächsten Schritt 858 initialisiert die CPU 230 die TPI-Steuerregister 846 auf die geeigneten Werte,
wie oben mit Verweis auf Fig. 8F beschrieben. Dies schließt die Werte der TLAN0 MEMORY BASE
ADDRESS, der TLAN1 MEMORY BASE ADDRESS, der TLAN2 MEMORY BASE ADDRESS und der TLAN3
MEMORY BASE ADDRESS ein. Im nächsten Schritt 859 beginnt die CPU 230 die Einleitung des Empfangs-
vorgangs für jedes TLAN 226 durch Schreiben der RECEIVE LIST MEMORY BASE ADDRESS in das Kanal-
parametenegister 828b. Die Einleitung des Empfangsvorgangs wird in Schritt 860 vollendet, wo die CPU 230
in das Befehlsregister 828a jedes TLANs 226 schreibt. In dieser Weise initialisiert, beginnt jedes TLAN 226
sofort einen Empfangsvorgang, indem es den PCI-Bus 222 auffordert, eine Empfangssteuerliste anzufordern.

[0213] Fig. 8H ist ein Flussdiagramm, das den Empfangsvorgang des Netzwerkschalters 102 für jedes der
TLANs 226 veranschaulicht. Der Vorgang beginnt im ersten Schritt 861a, wo ein TLAN 226 den PCI-Bus 222
von dem PCI-Arbiter 811 anfordert und die Steuerung erhält. Im nächsten Schritt 861b macht das TLAN 226
die RECEIVE LIST MEMORY ADDRESS auf dem PCI-Buss 222 geltend, um eine Empfangssteuerliste anzu-
fordern, und die CPU 230 liefert im nächsten Schritt 861c eine Empfangssteuerliste an das TLAN 226. Die
Empfangssteuerliste enthält die PACKET DATA MEMORY BASE ADDRESS, um das TLAN 226 zu informie-
ren, wohin oder wie ein empfangenes Datenpaket zu senden ist. Im nächsten Schritt 861d gibt das TLAN 226
die Steuerung des PCI-Busses 222 frei.

[0214] Ein TLAN 226 empfängt ein Datenpaket von einem Netzwerk 112, wie im nächsten Schritt 862a ange-
geben, und verlangt und erhält dann im nächsten Schritt 862b die Steuerung des PCI-Busses 222. Das TLAN
226 schreibt dann im nächsten Schritt 862c einen Datenstoß unter Verwendung der PACKET DATA MEMORY
BASE ADDRESS als die Adresse auf den PCI-Bus 222, während die TPI 220 Daten in einen ausgewählten
TPI RX FIFO schreibt, wie im nächsten Schritt 862d angegeben. Nach Vollendung des Schreibstoßes gibt das
TLAN im nächsten Schritt 862e den PCI-Bus 222 frei. Im nächsten Schritt 865 stellt das TLAN 226 fest, ob das
ganze Datenpaket an die TPI 220 gesendet worden ist, was durch eine letzte DWORD-Schreiboperation an-
gezeigt wird. Wenn nicht, kehrt der Vorgang zu Schritt 862b zurück, wo das TLAN 226 erneut den PCI-Bus 222
auffordert, einen weiteren Datenstoß zu senden.

[0215] Nachdem das TLAN 226 den letzten Teil des Datenpakets gesendet hat, führt es eine letzte Iteration
durch, um die TPI 220 über das Ende des Pakets zu informieren. Das heißt, das TLAN 226 führt eine letzte
DWORD-Übertragung an das PACKET_SIZE Feld 832a und das CSTAT Feld 832b in der RX CNTL LIST 808a
36/130

DE 697 31 519 T2 2005.12.01
der TPI 220 aus. Diese DWORD-Übertragung aktualisiert die RX CNTL LIST 808a mit der Paketgröße des ge-
rade vollendeten Datenpakets und aktualisiert das Rahmen-Vollendet-Bit in dem CSTAT Feld 832b. Die TPI
220 erfasst diese Schreiboperation, wie in Schritt 865 angegeben, und setzt interne Flags, um anzuzeigen,
dass der Vorgang abgeschlossen ist, und übergibt den geeigneten Status an die Portstatuslogik 820, wie in
Schritt 866 angegeben.

[0216] Fig. 8I ist ein Flussdiagramm, das einen Empfangsdaten-Übertragungsvorgang von der TPI 220 an
den EPSM 210 über den HSB 206 veranschaulicht. Der Vorgang beginnt in einem ersten Schritt 876, wo die
Portstatuslogik 820 der TPI 220 eine Datenmenge in jedem der TPI RX FIFOs, die gleich oder größer ist als
die betreffende RBSIZE, wie in den TPI-Steuerregistern 846 bereitgestellt, oder das durch ein TLAN 226 an-
gezeigte EOP für diesen Port erfasst.

[0217] Wie im nächsten Schritt 877 angegeben, antwortet die TPI 220 auf Abfragen des EPSM 210, indem
sie geeignete PKT_AVAIL[6]* Signale in gemultiplexter Form geltend macht, die angeben, ob in jedem der TPI
RX FIFOs genug Daten verfügbar sind. Das Abfragen erfolgt unabhängig und wird zur Klärung eingeschlos-
sen. Wenn das PKT_AVAIL[6]* Signal anzeigt, dass in jedem TPI RX FIFO der TPI 220 genug Daten vorhan-
den sind, leitet schließlich der EPSM 210 im nächsten Schritt 878 einen Lesezyklus auf dem HSB 206 an den
spezifizierten Port ein, wenn es genug Pufferplatz in einem verfügbaren Empfangspuffer des EPSM 210 gibt.

[0218] Im nächsten Schritt 879 erfasst die Portstatuslogik 820 der TPI 220 den Lesezyklus auf dem HSB 206
und wählt den geeigneten TPI RX FIFO aus, um Daten bereitzustellen. In Schritt 880 sendet dann die TPI 220
den Datenstoß an den EPSM 210. Wenn während der Datenübertragung von Schritt 880 die Portstatuslogik
820 feststellt, dass die momentane Datenübertragung über den HSB 206 der Beginn eines Pakets ist, wie im
nächsten Schritt 881a angegeben, macht die TPI 220 in Schritt 881b das SOP* Signal auf dem HSB 206 wäh-
rend der Datenübertragung geltend. Desgleichen, wenn während der Datenübertragung im Schritt 880 die
Portstatuslogik 820 feststellt, dass die momentane Datenübertragung über den HSB 206 das Ende eines Pa-
kets ist, wie im nächsten Schritt 882a angegeben, macht die TPI 220, wie durch Schritt 881b angegeben, das
EOP* Signal auf dem HSB 206 während der Datenbertragung geltend. Von Schritt 882a oder 882b kehrt der
Vorgang zu Schritt 876 zurück.

[0219] Fig. 8J ist ein Flussdiagramm, das einen Sendedaten-Übertragungsvorgang zum Übertragen von Pa-
ketdaten von dem EPSM 210 über den HSB 206 an die TPI 220 veranschaulicht. Der Vorgang beginnt beim
ersten Schritt 890, wo die Portstatuslogik 820 der TPI 220 feststellt, dass einer der TPI TX FIFOs ein Menge
an verfügbarem Pufferplatz hat, der gleich oder größer ist als die entsprechende XBSIZE. Der Vorgang geht
dann zum nächsten Schritt 891, wo die Portstatuslogik 820 auf eine Abfrage des EPSM 210 durch geeignetes
Geltendmachen des BUF_AVAIL[6]* Signals in gemultiplexter Form antwortet, um verfügbaren Pufferplatz in
dem entsprechenden TPI TX FIFO anzuzeigen. Wie oben beschrieben, erfolgt die Abfrage unabhängig und
wird zur Klärung eingeschlossen. Im nächsten Schritt 892 leitet der EPSM 210 einen Schreibzyklus auf dem
HSB 206 an einen Port ein, der dem TPI TX FIFO entspricht, ein, wenn für diesen Port genug Daten zum Sen-
den durch den EPSM 210 verfügbar sind. Im nächsten Schritt 893 erfasst die Portstatuslogik 820 der TPI 220
den Schreibzyklus auf dem HSB 206 und wählt den geeigneten TPI TX FIFO für den angegebenen Port aus.
Im nächsten Schritt 894 sendet der EPSM 210 einen Stoß von Daten über den HSB 206 an die TPI 220, und
die TPI 220 schreibt die Daten in den entsprechenden TPI TX FIFO in der TPI 220.

[0220] Wenn, wie in Schritt 895a angegeben, die TPI 220 die Geltendmachung des SOP* Signals während
des Datenstoßes von Schritt 894 erfasst, wird in Schritt 895b das erste DWORD von Daten, das die Paketgrö-
ße hält, in das PACKET SIZE Anhängerregister 819c gelegt. Wenn, wie in Schritt 896a angegeben, die TPI
220 die Geltendmachug des EOP* Signals während des Datenstoßes von Schritt 894 erfasst, setzt die TPI 220
in Schritt 896b ein Flag in der TPI 220, um das Ende des Datenpakets anzuzeigen. Von Schritt 896a oder 896b
kehrt der Vorgang zurück zu Schritt 890.

[0221] Fig. 8K ist ein Flussdiagramm, das einen Sendevorgang des Netzwerkschalters 102 für jedes der
TLANs 226 veranschaulicht. Im ersten Schritt 867 erfasst die TPI 220 Daten in jedem der TPI TX FIFOs und
verlangt und erhält als Reaktion die Steuerung des PCI-Busses 222 von dem PCI-Arbiter 811. Im nächsten
Schritt 868 schreibt die TPI 220 einen Sendebefehl in das Befehlsregister 828a des entsprechenden TLAN
226. In Schritt 869 gibt dann die TPI 220 den PCI-Bus 222 frei.

[0222] Im nächsten Schritt 870a verlangt und erhält das TLAN 226, das den Sendebefehl empfängt, die Steu-
erung des PCI-Busses 222 vom PCI-Arbiter 811 und verlangt dann eine Sendesteuerliste von der TPI 220. Im
nächsten Schritt 870b liefert die TPI 220 die Sendesteuerliste an das TLAN 226, das die Steuerung des
37/130

DE 697 31 519 T2 2005.12.01
PCI-Busses 222 innehat, wo das TLAN 226 die Sendesteuerliste an seinen Sendesteuerlistenpuffer 827b lie-
fert. Im nächsten Schritt 870c gibt das TLAN 226 den PCI-Bus 222 frei, fordert aber sofort den PCI-Bus 222
wieder an, wie in Schritt 870d angegeben. Sobald das TLAN 226 wieder die Steuerung des PCI-Busses 222
erhält, beginnt es die Ausführung der Sendesteuerliste, wie in Schritt 871a angegeben, durch Anfordern eines
Stoßes von Daten von der TPI 220. Das heißt, das TLAN 226 macht in Schritt 871a die PACKET DATA ME-
MORY BASE ADDRESS auf dem PCI-Bus 222 geltend. Im nächsten Schritt 871b antwortet die TPI 220 durch
Auswählen und Freigeben des entsprechenden TPI TX FIFO und liefert Daten über den PCI-Bus 222 an das
TLAN 226. Nach jedem Datenstoß gibt das TLAN 226 die Steuerung des PCI-Busses 222 frei, wie im nächsten
Schritt 871a angegeben. Wenn die Übertragung eines vollständigen Pakets von Daten nicht vollendet wurde,
wie im nächsten Schritt 872 angegeben, kehrt der Vorgang zu Schritt 870d zurück, wo das TLAN 226 wieder
die Steuerung des PCI-Busses 222 anfordert und schließlich zurückgewinnt.

[0223] Wenn die Übertragung des Pakets vollendet war, wie in Schritt 872a bestimmt, geht der Ablauf zu
Schritt 873a, wo das TLAN 226 an die TPI 220 schreibt, dass die Datenübertragung vollendet ist, und die TPI
220 signalisiert, dass der Vorgang abgeschlossen ist. Das heißt, das TLAN 226 führt einen letzten
Ein-DWORD-Schreibvorgang in das CSTAT Feld 832b der TX CNTL LIST 808b aus, um ein Rahmen-Vollen-
det-Bit in dem CSTAT Feld 832 zu setzen. Ferner wird das PACKET_SIZE Feld 832a der TX CNTL LIST 808b
mit der Größe eines von der TPI 220 an ein TLAN 226 zu sendenden Pakets geladen. Sobald das TLAN 226
den Schreibvorgang vollendet hat, gibt es in Schritt 873b den PCI-Bus 222 frei. Von Schritt 873b kehrt der Vor-
gang zu Schritt 867 für den nächsten Sendevorgang zurück.

[0224] Es ist nun zu erkennen, dass nach Initialisierung durch die CPU 230 die TPI 220 konfiguriert ist, um
mit den TLANs 226 zusammenzuarbeiten, um der CPU 230 zu gestatten, andere wichtige Aufgaben und Funk-
tionen des Netzwerkschalters 102 durchzuführen. Die CPU 230 initialsiert PCI-Speicher und I/O-Raum durch
Bestimmen des Typs und der Zahl von Vorrichtungen auf dem PCI-Bus 222 und Zuweisen von entsprechenden
Adressenwerten. Die CPU 230 liefert Anfangsadressenwerte der TPI 220 an jedes der TLANs 226 und fügt
einen Befehl ein, um Vorgänge einzuleiten. Die TLANs 226 werden konfiguriert, um eine Steuerliste anzufor-
dern und dann die Steuerliste auszuführen, um Daten aus einem Speicher, der sich an einer Adresse in der
Steuerliste befindet, zu lesen bzw. in denselben zu schreiben. Die TPI 220 wird konfiguriert, um jede Steuerliste
zu aktualisieren und jedem anfordernden TLAN 226 zur Verfügung zu stellen. Ferner wird die TPI 220 konfigu-
riert, um Sendevorgänge durch Schreiben eines Befehls in das geeignete TLAN 226 einzuleiten, und dann die
entsprechende Sendesteuerliste bereitzustellen, wenn anschließend angefordert. Auf diese Weise ist die CPU
230 nach Durchführen der Initialisierung frei, um andere Funktionen des Netzwerkschalters 102 durchzufüh-
ren.

[0225] Fig. 9A ist ein Blockschaltbild, das die Organisation des Speichers 212 zeigt. In der gezeigten Ausfüh-
rung liegt die Größe des Speichers 212 zwischen 4 und 16 MB, obwohl die Speichergroße variieren kann und
so groß oder so klein wie gewünscht sein kann. Die Breite der in Fig. 9A–Fig. 9G gezeigten Speicherab-
schnittsblöcke und daher die Breite jeder Speicherzeile beträgt ein DWORD oder 32 Bit. Der Speicher 212 ist
in zwei Hauptabschnitte geteilt, einschließlich eines Hash-Speicherabschnitts 902 und eines Paketspeicherab-
schnitts 904. Der Hash-Speicherabschnitt 902 dient als ein Netzwerkgeräte-Identifikationsabschnitt zum Iden-
tifizieren eines oder mehr der Netzwerkgeräte in den mit dem Netzwerkschalter 102 verbundenen Netzwerken
106, 112. Die Größe des Hash-Speicherabschnitts 902 ist basierend auf der Zahl von Vorrichtungen und zu-
gehöriger Adressen und der gewünschten Einträge programmierbar. In der gezeigten Ausführung enthält der
Hash-Speicherabschnitt 902 256 kB an Speicher zum Unterstützen von wenigstens 8k (k = 210 = 1,024) Adres-
sen bis zu 16k Adressen. Der Hash-Speicherabschnitt 902 kann irgendwo in dem Speicher 212 liegen, und
befindet sich in der gezeigten Ausführung am Anfang des Speichers 212. Die Größe des Paketspeicherab-
schnitts 904 ist der Rest des Speichers 212, der nicht für den Hash-Speicherabschnitt 902 verwendet wird.

[0226] Fig. 9B ist ein Blockdiagramm der Organisation des Hash-Speicherabschitts 902 des Speichers 212.
Der Hash-Speicherabschnitt 902 ist mit einer Länge von 16 kB gezeigt, wobei zu verstehen ist, dass die
Hash-Speicherabschnittsgröße, wie gewünscht, entweder fest oder programmierbar ist. Der Hash-Speicher-
abschnitt 902 ist in zwei 128 kB Abschnitte geteilt, einschließlich eines ersten 128 kB Haupt-Hash-Speicher-
abschnitts 905 für Haupt-Hash-Einträge und eines zweiten 128 kB verketteten Hash-Eintragsabschnitts 908
für verkettete Hash-Einträge. Jeder der Abschnitte 908, 908 enthält 8k Einträge, je 16 Bytes lang.

[0227] Fig. 9C ist ein Diagramm, das die Organisation eines Hash-Tabelleneintrags 910 zeigt, der für die Ein-
träge in dem Hash-Speicherabschnitt 902, einschließlich des Haupt-Hash-Eintragsabschnitts 906 und des ver-
ketteten Hash-Eintragsabschnitts 908, repräsentativ ist. Jeder Eintrag 910 entspricht einer Netzwerkvorrich-
tung der mit dem Netzwerkschalter 102 verbundenen Netzwerke 106, 112. Jeder der Haupteinräge befindet
38/130

DE 697 31 519 T2 2005.12.01
sich an einer Hash-Adresse, die durch "Haschieren" der MAC-Adresse für diese Vorrichtung bestimmt wird.
Das heißt, jeder Netzwerkvorrichtung wird eine 48-Bit Hardware-Adresse, auch bekannt als physikalische
Adresse oder MAC-Adresse, zugewiesen, die ein einmaliger nummerischer Wert ist, der jeder Netzwerkvor-
richtung während des Herstellungsprozesses oder durch Setzen von Brücken oder Schaltern während der
Netzwerkinstallation zugewiesen wird. Ein Teil dieser MAC-Adresse wird dem Hersteller durch das IEEE (Ins-
titute of Electrical and Electronics Engineers) zugewiesen und ist allen Komponenten von diesem Hersteller
gemeinsam, und der zweite Teil der Hardwre-Adresse ist ein einmalger Wert, der durch den Hardware-Herstel-
ler zugeteilt wird. Die ersten 6 Bytes, oder Bytes 5–0, des Hash-Tabelleneintrags 910 enthalten die
MAC-Adresse der mit diesem Eintrag verbundenen Vorrichtung. Der Netzwerkschalter 102 fügt daher einen
Hash-Tabelleneintrag für jede Netzwerkvorrichtung hinzu, die ein Datenpaket einschließlich seiner Quel-
len-MAC-Adresse sendet.

[0228] Jedes von jeder Netzwerkvorrichtung in den Netzwerken 106, 112 gesendete Datenpaket enthält typi-
scherweise eine Quellen- und eine Ziel-MAC-Adresse, die entsprechend einem oder mehreren Algorithmen
haschiert werden. In der gezeigten Ausführung werden zwei Teile jeder MAC-Adresse logisch kombiniert oder
verglichen, um eine entsprechende Hash-Adresse zu berechnen. Jeder Teil ist 13 bis 16 Bits, die durch Exklu-
siv-ODER-(XOR)Logik bitweise kombiniert werden, um 13 bis 16 Bit Hash-Adressen zu bilden. Zum Beispiel
werden die ersten 16 Bits einer MAC-Adresse, oder MA[15:0], bitweise mit den nächsten 16 Bits der
MAC-Adresse MA[31:16] XOR-verknüpft, um die Hash-Adresse HA[15:0] zu erhalten. In einer Ausführung wer-
den die ersten 13, 14, 15 oder 16 Bits des haschierten Ergebnisses als die Hash-Adresse HA verwendet. Al-
ternativ werden die ersten 13 Bits der MAC-Adresse MA[12:0] mit den nächsten 13 Bits MA[25:13] haschiert,
um eine 13-Bit Hash-Adresse MA[12:0] zu erhalten. Oder die ersten 14 Bits der MAC-Adressen MA[13:0] wer-
den mit den nächsten 14 Bits MA[27:14] haschiert, um eine 14-Bit Adresse MA[13:0] zu erhalten, usw. Es ver-
steht sich, dass viele andere verschiedene Hash-Algorithmen bekannt sind und verwendet werden können, um
alle bestimmten Kombinationen von Adressenbits zu kombinieren, wie den Fachleuten in der Technik bekannt
ist, und dass die vorliegende Erfindung nicht auf ein bestimmtes Hash-Schema begrenzt ist.

[0229] Die Hash-Adresse wird als die wirkliche Adresse oder als eine Offsetadresse verwendet, um jeden der
Hash-Einträge des Haupt-Hash-Eintragsabschnitts 906 aufzufinden. Obwohl die MAC-Adressen einmalig sind,
kann die Hash-Adresse nicht einmalig sein, sodass zwei verschiedene MAC-Adressen zu der gleichen
Hash-Adresse haschieren. Der verkettete Hash-Eintragsabschnitt 908 wird bereitgestellt, um doppelte
Hash-Adressen für verschiedene Vorrichtungen zu speichern, wie unten weiter beschrieben. Die Organisation,
die einen durch die Hash-Adressen zugänglichen Haupt-Hash-Eintragsabschnitt 906 und einen durch eine im
ersten Eintrag des Hauptabschnitts 906 gelegene Link-Adresse zugänglichen verketteten Hash-Eintragsab-
schnitt 908 umfasst, beseitigt wenigstens eine Verzweigungsoperation. Anstatt eine Liste von Zeigern zu ver-
wenden, um auf die Tabelleneinträge zuzugreifen, wird der erste Eintrag im Speicher 212 in einer einzigen Ver-
zweigungsoperation zurückgewonnen, der zweite Eintrag in einer zweiten Verzweigungsoperation usw. Auf
diese Weise liefert die Organisation des Speichers 212 einen effizienteren Zugriff der Hash-Einträge durch Be-
seitigen wenigstens einer Verzweigungsoperation pro Zugriff.

[0230] Das nächste Byte (6) des Hash-Tabelleneintrags 910 enthält eine binäre Portnummer (Port-Num), die
die zugehörige Portnummer identifiziert, mit der die Vorrichtung verbunden ist, wo die Portnummer für Port0
null ist, die Portnummer für Port1 eins ist, die Portnummer für Port28 (für die CPU 230) 28 ist usw. Das nächste
Byte (7) ist ein Steuer- und Alters-Informationsbyte (Control/Age), das ein Gültig-Bit (VALIDENTRY) enthält,
das identifiziert, ob der Eintrag gültig ist oder nicht, wo logisch "1" anzeigt, dass der Eintrag gültig ist, und lo-
gisch "0" anzeigt, dass der Eintrag nicht gültig ist, ansonsten ein leerer Eintrag genannt. Das Control/Age-Byte
enthält eine binäre Attersnummer (AGE), die die vergangene Zeit seit dem letzten mit dieser Vorrichtung ver-
bundenen Quellenzugriff darstellt. Eine Vorrichtung kann betagt sein und durch die CPU 230 aus dem
Hash-Eintrag gelöscht werden, nachdem sie für einen vorbestimmten Zeitraum seit dem letzten Quellenzugriff
nicht verwendet wurde. Die Messung der vergangenen Zeit wird mit einem von mehreren Verfahren durchge-
führt und kann in Sekunden oder Teilen davon, Minuten, Stunden usw. gemessen werden. Der vorbestimmte
Zeitraum, bevor eine Vorrichtung betagt ist, ist auch programmierbar. In einer alternativen Ausführung ist die
AGE-Nummer ein einzelnes Bit, das benutzt wird, um anzuzeigen, ob die Vorrichtung für "alt" gehalten wird
oder nicht, was durch einen Laufzeit-Timer oder dergleichen festgelegt wird.

[0231] Die nächsten vier Bytes (B:8) definieren einen 29-Bit Virtual-LAN-(VLAN)Bitmap-Wert, der Portgrup-
pierungen, wenn verwendet, darstellt. Jedes Bit des VLAN-Wertes entspricht einem betreffenden der Ports und
wird gesetzt, wenn die Vorrichtung oder Port mit diesem Port gruppiert wird. Der VLAN-Wert identifiziert daher,
mit welchem der anderen Ports die Vorrichtung gruppiert ist. Dies ermöglicht den Netzwerken 106, 112, in jeder
gewünschten Kombination kombiniert zu werden, um eine Vielzahl verschiedener, mit dem Netzwerkschalter
39/130

DE 697 31 519 T2 2005.12.01
102 verbundener LANs zu bilden. Wenn z. B. die ersten fünf Ports Port0 bis Port4 miteinander gruppiert wer-
den, ist der VLAN-Wert für jeden 0000001fFh, wo "h" einen Hexadezimalwert bezeichnet. Ein von einer mit
Port Port2 verbundenen Vorrichtung gesendetes BC-Paket wird an die Ports Port0, Port1, Port3 und Port0 wie-
derholt, anstatt an alle anderen Ports des Netzwerkschalters 102 wiederholt zu werden. Ein VLAN-Wert von
nur Einsen oder 1FFFFFFFh bezeichnet keine Gruppierungen für diese Vorrichtung. Es wird angemerkt, dass
es für eine Vorrichtung möglich ist, mit mehr als einer Gruppe verbunden zu werden. In einer alternativen Aus-
führung kann ein VLAN-Feld eingeschlossen werden, um mehr als eine von mehreren VLAN-Gruppen, zu de-
nen jede Vorrichtung gehört, so vorhanden, zu identifizieren.

[0232] Die letzten vier Bytes (F:C) jedes Hash-Tabelleneintrags 910 ist eine Link-Adresse (Link A[31:0] oder
Link-Adresse), die auf den nächsten Eintrag mit einer identischen Hash-Adresse, so vorhanden, in dem ver-
ketteten Hash-Eintragsabschnitt 908 zeigt. Der nächste Eintrag wird an der nächsten verfügbaren Stelle in dem
verketteten Hash-Eintragsabschnitt 908 gespeichert. Auf diese Weise wird, wenn zwei MAC-Adressen von
zwei verschiedenen Vorrichtungen zu der gleichen Hash-Adresse haschieren, der erste oder "Haupt"-Eintrag
in dem Haupt-Hash-Eintragsabschnitt 906 gespeichert, und der zweite Eintrag wird in dem verketteten
Hash-Eintragsabschnitt 908 gespeichert, und die Link-Adresse des Haupteintrags zeigt auf den zweiten Ein-
trag. Wenn eine andere MAC-Adresse zu der gleichen Hash-Adresse wie die ersten zwei haschieren, wird je-
der zusätzliche Eintrag im verketteten Hash-Eintragsabschnitt 908 gespeichert und in aufeinanderfolgender
Reihenfolge oder mit Link-Adressen miteinander verbunden. Jeder Eintrag folgt dem Format des Hash-Tabel-
leneintrags 910. Das Format der Link-Adresse kann in jeder genehmen Weise definiert werden. Die
Link-Adresse enthält typischerweise einen Basisadressteil, der auf den Hash-Speicherabschnitt 902 im Spei-
cher 212 zeigt, und einen Offsetteil, der auf den tatsächlichen Eintrag in dem Hash-Speicherabschnitt 902
zeigt. Die unteren Adressbits können, wenn gewünscht, zum Byteabgleich auf null gesetzt werden. Der letzte
Eintrag in jeder Kette wird identifiziert, indem ein Teil der Link-Adresse auf null gesetzt wird. Zum Beispiel kann
der letzte Eintrag bezeichnet werden, indem die Link-Adressenbits [A31:28] auf null gesetzt werden.

[0233] Fig. 9D ist ein Blockdiagramm, das die Organisation des Paketspeicherabschnitts 904 des Speichers
212 veranschaulicht. In der gezeigten Ausführung ist der Paketspeicherabschnitt 904 als eine Vielzahl von an-
einandergrenzenden und gleich großen Sektoren 912 organisiert, wo jeder Sektor 912 einen Sektorinformati-
onsabschnitt, genannt Sektorpräfix 914, und einen Paketabschnitt 916 mit einem oder mehr Paketdatenblö-
cken umfasst. Jeder der Sektoren 912 hat vorzugsweise eine Größe von 2 KByte, um so der Seitengröße der
Speichervorrichtungen, die den Speicher 212 implementieren, zu entsprechen, um Entwurf und Overhead zu
vereinfachen. In der gezeigten Ausführung sind FPM DRAM SIMMs mit 4 KByte Seitengrenzen organisiert,
und synchrone DRAM SIMMs sind in 2 KByte Seitengrenzen organisiert. Eine 2 KByte Sektorgröße ist daher
für die unterstützten Speichervorrichtungstypen ausreichend. Die Sektoren 912 sind anfangs leer, aber mit
Link-Adressen miteinander verkettet, um die FREEPOOL CHAIN von freien Speichersektoren zu bilden.

[0234] Wenn neue Informationspakete von jedem der Ports 104, 110 empfangen werden, werden ein oder
mehr Sektoren 912 von der FREEPOOL CHAIN getrennt und in einer RECEIVE SECTOR CHAIN pro Port mit-
einander verbunden. Ferner wird jedes Paket mit anderen Paketen in der gleichen oder anderen RECEIVE
SECTOR CHAINs verbunden, um eine getrennte TRANSMIT PACKET CHAIN pro Port zu bilden. Auf diese
Weise wird eine RECEIVE SECTOR CHAIN für einen Port auch in eine TRANSMIT PACKET CHAIN für einen
anderen Port gelegt. Wenn alle Daten im Paketabschnitt 816 eines Sektors 912 an einen Zielport gesendet
sind, wird der Sektor von seiner RECEIVE SECTOR CHAIN befreit und wieder mit der FREEPOOL CHAIN ver-
bunden. Die RECEIVE SECTOR und FREEPOOL Chaims werden mittels Link-Adressen oder Zeigern von ei-
nem Sektor zu dem nächsten in einer unten weiter beschriebenen Weise implementiert. Alle TRANSMIT PA-
CKET CHAINs werden von einem Paketdatenblock zu dem nächsten für jeden Port mittels Link-Adressen oder
Zeigern miteinander verbunden, wie unten beschrieben.

[0235] Fig. 9E ist ein Diagramm, das die Organisation jedes der Sektorpräfixe 914 für jeden Sektor 912 des
Paketspeicherabschnitts 904 zeigt. Das Sektorpräfix 914 enthält Information eines entsprechenden Sektors
912 und fungiert weiter als ein Link zu einem nächsten Sektor 912. Es wird angemerkt, dass, obwohl ein Präfix
angegeben ist, dieser Informationsteil irgendwo in dem Sektor 912 platziert werden kann. Das erste Byte (0)
definiert eine binäre Sektorpaketzählung (SecPktCnt), die die Zahl von Paketen oder Paketstücken im gegen-
wärtigen Sektor 912 angibt. Die Sektorpaketzählung wird inkrementiert, wenn Paketdaten in den Sektor ge-
speichert werden, und dekrementiert, wenn die Daten zum Senden durch den Zielport gelesen werden. Der
Sektor wird an die FREEPOOL CHAIN zurückgegeben, wenn die Sektorpaketzählung SecPktCnt auf null de-
krementiert, und wenn der Sektor nicht am Ende der RECEIVE SECTOR CHAIN liegt. Das nächste Byte (1)
ist ein Sektorquellenwert (SecSource), der den Quellenport des empfangenen Pakets spezifiziert. Dieser Wert
soll eine geeignete Empfangsport-Sektorzählung (RxSecCnt) identifizieren und dekrementieren, wenn der
40/130

DE 697 31 519 T2 2005.12.01
Sektor an die FREEPOOL CHAIN zurückgegeben wird. Die nächsten zwei Bytes (3:2) sind reserviert oder nicht
benutzt.

[0236] Die nächsten vier Bytes (7:4) in jedem Sektorpräfix 914 bilden eine nächste Link-Adresse (NextSec-
Link) zum nächsten Sektor in einer entsprechenden RECEIVE SECTOR CHAIN oder FREEPOOL CHAIN. Die
gleiche Link-Adresse wird für beide Zwecke verwendet, obwohl eine andere Link-Adresse auch benutzt wer-
den könnte. In der gezeigten Ausführung ist die NextSecLink-Adresse 32 Bits, einschließlich Basis- und Off-
setteilen. Die niedrigstwertigen "n" Bits können auf null gesetzt werden, um die Bytes der NextSecLink-Adresse
entsprechend der Sektorgröße anzupassen. Die Ganzzahl "n" ist 12 für 4 KByte Sektoren, 11 für 2 KByte Sek-
toren, 10 für 1 KByte Sektoren und 9 für 512 Byte Sektoren. In der gezeigten Ausführung ist n 11 für 2 KByte
Sektoren usw. Auf diese Weise wird, wenn ein oder mehr Pakete von einem Port 104, 110 empfangen werden,
eine RECEIVE SECTOR CHAIN von Sektoren 912 zugeteilt, um ein oder mehr durch diesen Port empfangene
Pakete zu speichern. Die Sektoren 912 werden in einer Kettenform unter Verwendung der NextSecLink-Adres-
se in dem Sektorpräfix 914 jedes Sektors 912 in der Kette miteinander verbunden. Die Paketdaten werden se-
quenziell im Paketabschnitt 916 jedes Sektors 912 in jeder RECEIVE SECTOR CHAIN gespeichert. Es wird
angemerkt, dass Paketdaten für ein einzelnes Paket Sektorgrenzen in einer RECEIVE SECTOR CHAIN kreu-
zen können. Die letzten acht Bytes (15:8) des Sektorpräfixes 914 sind reserviert oder unbenutzt.

[0237] Fig. 9F ist ein Diagramm, das die Organisation eines exemplarischen Paketdatenblocks 917 zeigt, der
jeden Paketdatenblock im Paketabschnitt 916 repräsentiert. Der Paketdatenblock 917 ist in zwei Teile geteilt,
einen Paketblockvorspann 918 und einen Paketdatenabschnitt 920. Der Paketblockvorspann 918 wird vor-
zugsweise jedem Paket durch den MCB 404 vorangestellt, um einen Paketdatenblock 917 zu bilden. Die ers-
ten zwei Bytes (1:0) im Paketblockvorpsnn 918 bilden einen 15-Bit binären Paketlängen-(PktLength) Wert, der
die Paketlänge in Bytes definiert, und einen 1-Bit Mittelpaket-CT-WERT (MidPktCT), der gesetzt wird, wenn
ein CT-Moduspaket infolge eine stehen gebliebenen Ports an der Speicher 212 geleitet wird. Der MCB 404
hängt das erste DWORD, das die PktLength enthält, an das Paket an, wenn es an Ports Port24–Port27 für die
TLANs 226 und an Port28 für die CPU 230 gesendet wird. Das nächste Byte (2) des Paketblockvorspanns 918
identifiziert die Quellenport-(SourcePort)Nummer des Pakets, die eine binäre 8-Bit Port-ID-Nummer ist, die die
Nummer des mit der Quellenadresse verbundenen Ports identifiziert. Der Quellenport wird auch durch die ein-
zelne RECEIVE SECTOR CHAIN identifiziert, in der das Paket gespeichert ist. Das nächste Byte (4) identifi-
ziert die Zielport-(DestPort)Nummer, die eine binäre 8-Bit Port-ID-Nummer ist, die die Nummer des Zielport in
einer ähnlichen Weise wie der SourcePort-Wert identifiziert. Der Ziel wird auch durch die einzelne TRANSMIT
PACKET CHAIN identifiziert, zu der das Paket gehört.

[0238] Die Bytes (11:8) des Paketblockvorspanns 918 definieren eine 32-Bit nächste Link-Adresse (NextTx-
Link) zu dem nächsten Paket oder Paketdatenblock 917 in einer TRANSMIT PACKET CHAIN. Das Ende der
TRAMSMIT PACKET CHAIN wird angezeigt, wenn eine Sendepaketzählung (TxPktCnt) auf null dekrementiert
ist. Das niedrigstwertige Bit A0 der Next-TxLink-Adresse wird als ein BC-Paketbit (NextPktBC) benutzt, das
angibt, ob das nächste Paket rundgesendet wird oder nicht. Wenn NextPktBC = 1, ist das nächste Paket im
Rundsendeformat, unten beschrieben, und wenn NextPktBC = 0, ist das Nächste Nicht-Rundsenden. Das
zweitniedrigstwertige Bit A1 der NextTxLink-Adresse wird als ein SnF-Paketbit (NextPktSnF) benutzt, das an-
gibt, ob das nächste Paket SnF ist oder nicht. Es wird angemerkt, dass das niedrigstwertige Nibbel (vier Bits)
der NextTxLink-Adresse für Byteabgleichzwecke ungeachtet des tatsächlichen Werte des Nibbels als null an-
genommen werden kann. Wenn z. B. die NextTxLink-Adresse gelesen wird, werden daher die Bits A[3:0] un-
geachtet ihres tatsächlichen Werts, z. B. NextPktBC = 1, als null angenommen. Dies erlaubt diesen Bits, für
andere Zwecke benutzt zu werden. In der gezeigten Ausführung werden die Datenstrukturen 16-Byte-ausge-
richtet, sodass die niedrigstwertigen Bits A[3:0] als null angenommen werden.

[0239] In der gezeigten Ausführung folgt der Paketdatenabschnitt 920 sofort dem Paketblockvorspann 918,
wo die Länge des Datenfeldes im Paketvorspann definiert wird. Es wird jedoch angemerkt, dass die einzelne
Reihenfolge jedes Sektors und die einzelnen Stellen von Werten in der gezeigten Ausführung willkürlich sind
und der Veranschaulichung dienen, und daher in jeder gewünschten Weise organisiert werden können, ohne
den Umfang der vorliegenden Erfindung zu verlassen.

[0240] Wie vorher beschrieben, werden Pakete aus jedem der Ports Port0–Port28 zurückgewonnen und in
entsprechenden RECEIVE SECTOR CHAINs der Sektoren 912, eine RECEIVE SECTOR CHAIN pro Port, ge-
speichert. Wie in Fig. 9H gezeigt, wird eine erste Empfangssektorkette 930 für Port0 gezeigt, wo ein erster
Sektor 931 mit einem anderen Sektor 932 mittels des NextSecLink im Sektorpräfix 914 des Sektors 931 ver-
bunden ist. Weitere Sektoren können, wenn gewünscht, mittels der Link-Adressen in den Sektorpräfixen 914
verbunden werden. Ferner wird eine zweite Empfangssektorkette 940 für Port1 gezeigt, wo ein erster Sektor
41/130

DE 697 31 519 T2 2005.12.01
941 mit einem anderen Sektor 942 mittels des NextSecLink im Sektorpräfix 914 des Sektors 941 verbunden
ist. Für jedes an einem gegebenen Port empfangene Paket wird der Paketblockvorspann 918 direkt hinter dem
vorher empfangenen Paketdatenblock 917 in dem Paketabschnitt 916 des momentanen Sektors 912 der ent-
sprechenden RECEIVE SECTOR CHAIN platziert, und der Paketblockvorspann 918 wird von seinem Paket-
datenabschnitt 920 gefolgt. Wenn der Paketabschnitt 916 des momentanen Sektors 912 voll wird, während ein
Paketdatenblock 917 gespeichert wird, wird ein weiterer Sektor 912 aus der FREEPOOL CHAIN zugewiesen
und mit der RECEIVE SECTOR CHAIN für den Port verbunden. Auf diese Weise werden die von einem Port
empfangenen Paketdatenblöcke 917 in der entsprechenden RECEIVE SECTOR CHAIN für diesen Port anei-
nandergrenzend platziert. Ferner kann der Paketabschnitt eines Sektors 912 ganze Pakete und/oder Pakettei-
le enthalten.

[0241] Wie in Fig. 9H gezeigt, werden daher am Port0 empfangene Paketdatenblöcke 934, 935 und 936 in
den Sektoren 931 und 932, wie gezeigt, platziert. Man beachte, dass der Paketdatenblock 935 die Sektoren
931 und 932 überspannt. In ähnlicher Weise werden am Port1 empfangene Paketdatenblöcke 944 und 945 in
den Sektoren 941 und 942, wie gezeigt, platziert, wo der Paketdatenblock 945 die Sektoren 941 und 942 über-
spannt.

[0242] Jedes Paket ist auch mit der TRANSMIT PACKET CHAIN von Paketen für jeden Zielport verbunden,
wo die Pakete mittels der NextTxLink-Adresse miteinander verbunden sind. Pakete in jeder TRANSMIT PA-
CKET CHAIN werden gewönlich basierend darauf geordnet, wann sie durch den Netzwerkschalter 102 emp-
fangen werden, sodass die Reihenfolge bewahrt wird, wenn sie an den zugehörigen Zielport gesendet werden.
Wenn z. B., wie in Fig. 9H gezeigt, die Paketdatenblöcke 934 und 944 vom Port10 zu senden sind, und der
Paketdatenblock 934 direkt vor dem Paketdatenblock 944 zu senden ist, zeigt die NextTxLink-Adresse des Pa-
ketblockvorspanns 918 des Paketdatenblocks 934 auf den Paketdatenblock 944. Die NextTxLink-Adresse des
Paketblockvorspanns 918 des Paketdatenblocks 944 zeigt auf den als Nächstes zu sendenen Paketdaten-
block usw. Die tatsächliche Reihenfolge zum Senden wird bestimmt, wenn ein Paket in eine TRANSMIT PA-
CKET CHAIN eingebunden wird. CT-Moduspakete werden verkettet, wenn der Anfang des Pakets empfangen
wird, und SnF-Moduspakete werden verkettet, nachdem das ganze Paket gespeichert ist. Mittelpaket-Inte-
rim-CT-Moduspakete werden mit dem Anfang der entsprechenden TRANSMIT PACKET CHIN verkettet, um
die richtige Reihenfolge zu sichern.

[0243] Fig. 9G ist ein Blockdiagramm, das einen für BC-Pakete benutzten 128-Byte Paketvorspann 922 zeigt,
der den normalen Paketblockvorspann 918 ersetzt. Für BC-Pakete wird der NextPktBC-Wert im vorherigen Pa-
ket gesetzt, um anzuzeigen, dass das momentane Paket ein BC-Paket ist. Es wird angemerkt, dass jede
TRANSMIT PACKET CHAIN für alle Ports unterhalten werden sollte, die das BC-Paket zum Senden enthalten.
Der BC-Paketvorspann 922 enthält daher eine 4-Byte Link-Adresse (Port# NextTxLink) für jeden Port von
Nummer 0–28 (einschließlich Ports 104, 110 und CPU 230), wo jede NextTxLink-Adresse auf das nächste Pa-
ket in der TRANSMIT PACKET CHAIH zeigt, die mit dem entsprechenden Port verbunden ist, der durch die
Stelle in der Liste (Port#) identifiziert wird. NextTxLink-Adressen beginnen daher bei Bytes (11:8) und enden
bei Bytes (123:120). Der erste NextTxLink-Adresseneintrag (11:8) entspricht dem nächsten Paket im Speicher
212 für den ersten Port Port0, der zweite Eintrag (15:12) ist eine NextTxLink-Adresse zum nächsten Paket im
Speicher 212 für den zweiten Port Port1 usw. bis zum letzten Eintrag (Bytes 123:120), der ein NextTxLink zum
nächsten Paket für die CPU 230 ist. Jede BC-Link-Adresse enthält auch ein nächstes BC-Paket-(NextP-
ktBC)Bit, das anzeigt, ob das nächste Paket in der betreffenden Sendepaketkette ein BC-Paket ist oder nicht,
und ein nächstes SnF-Paket-(NextPktSnF)Bit, das anzeigt, ob das nächste Paket in der betreffenden Sende-
paketkette ein SnF-Paket ist oder nicht.

[0244] Die ersten vier Bytes (3:0) des BC-Paketvorspanns 922 sind ähnlich den letzten vier Bytes des norma-
len Paketblockvorspanns 918, einschließlich der Werfe für PktLength, MidPktCT, SourcePort und DestPort, au-
ßer dass der MidPktCT-Wert für BC-Pakete null ist. Die nächsten vier Bytes (7:4) des BC-Paketvorspanns 922
ist eine Rundsendeport-Bitmap (BC_Ports), in der jedes der Bits 28:0 einem Port entspricht, der die BC-Paket-
daten empfangen wird. Jedes Bit wird gelöscht, wenn das Paket an einen entsprechenden Port gesendet wird.
Wenn alle BC_Ports-Bits gelöscht sind, wird die vorher beschriebene SecPktCnt-Zählung folglich auch dekre-
mentiert.

[0245] Fig. 10 ist ein exemplarisches Blockdiagramm, das mehrere Sendepaketlinks zeigt, die jeweils das
gleiche BC-Paket 1010 einschließen. In diesem Beispiel sind Ports 1, 5, 11 und 12 unter Verwendung der
VLAN-Funktion oder dergleichen zusammengruppiert, sodass die Daten des an einem Quellenport, z. B. Port
12, empfangenen BC-Pakets 1010 in die restlichen Ports 1, 5 und 11 in dieser Gruppe dupliziert werden. Vier
Sendepaketketten 1002, 1004, 1006 und 1008 werden für Ports 1, 5, 11 und 12 gezeigt. Die Sendepaketketten
42/130

DE 697 31 519 T2 2005.12.01
1002, 1004 und 1006 verbinden mehrere generische Nicht-Rundsendepakete 1000 mit dem BC-Paket 1010.
Da Port 12 der Quellenport ist, wird das BC-Paket 1010 auf Port 12 nicht gesendet, sodass es in der Sende-
paketkette 1008 nicht enthalten ist. Das BC-Paket 1010 enthält einen BC-Paketvorspann 1012, der eine Liste
von Link-Adressen, eine für jeden Port, enthält, einschließlich einer Link-Adresse 1016, die auf das nächste
Paket 1000 in der Sendepaketkette 1002 von Port 1 zeigt, einer Link-Adresse 1018, die auf das nächste Paket
1000 in der Sendepaketkette 1004 von Port 5 zeigt, und einer Link-Adresse 1002, die auf das nächste Paket
1000 in der Sendepaketkette 1006 von Port 11 zeigt. Auf diese Weise wird jede der Sendepaketketten 1002,
1004 und 1006 aufrechterhalten. Es wird auch angemerkt, dass jede Sendepaketkette ein oder mehr BC-Pa-
kete enthalten kann, die, wie gewünscht, nicht-aufeinanderfolgend oder aufeinanderfolgend vorkommen kön-
nen.

[0246] Fig. 11A ist ein Blockdiagramm, das MCB-Paketsteuerregister 1102 zeigt, wobei der Satz von Regis-
tern im SRAM 650 bereitgestellt und für jeden der 29 Ports 104, 110, einschließlich der CPU 230, des Netz-
werkschalters 102 dupliziert wird. Die CPU 230 wird als ein "Port" für bestimmte Zwecke behandelt, z. B. zum
Senden und Empfangen von Brückenprotokoll-Dateneinheiten (BPDUs) zu Zwecken der Überspannungs-
baum-Prozedur. Jedes MCB-Paketsteuerregister 1102 enthält einen Empfangsabschnitt 1104 und einen Sen-
deabschnitt 1106. Im Empfangsabschnitt 1104 ist ein 28-Bit Empfangspaketvorspann-Basiszeiger (RxBasePtr)
ein Zeiger auf die Basis des momentanen Empfangspaketvorspanns für den entsprechenden Port, der der An-
fang der RECEIVE SECTOR CHAIN für diesen Port ist. Wie vorher für den Speicher 212 beschrieben, sind die
Datenstrukturen für das SRAM 650 16-Byte-ausgerichtet, sodass die niedrigstwertigen Bits A[3:0] alter Zeiger
als null angenommen werden. Ein 28-Bit momentaner Empfangszeiger (RxCurPtr) ist ein Zeiger auf die mo-
mentane Datenspeicherstelle für die RECEIVE SECTOR CHAIN dieses Ports. Die niedrigstwertigen vier Bits
des RxCurPtr-Werts sind Steuerbits, einschließlich eines Empfangs-BC-Paketanzeigebits (RxBC), eines Emp-
fangsübertragung-im-Gange-(RxIP)Bits, das als ein Paketanfang-(SOP)Flag benutzt wird, eines Mehrsektor-
paket-(MultisecPkt)Bits 1, das angibt. ob das momentane Paket eine Sektorgrenze kreuzt, und eines SnF-Bits
0, das anzeigt, dass der Sende-Link am Ende des Pakets aktualisiert wird. Der Empfangsabschnitt 1104 um-
fasst weiter ein Mittelpaket-CT-Bit (MidCT), einen 16-Bit Empfangspaketlängen-(RxPktLn)Wert gleich der Län-
ge des momentan empfangenen Pakets in Bytes bis zu dem RxCurPtr, eine 16-Bit Empfangsportsektorzählung
(RxSecCnt), die die Zahl von gegenwärtig durch den entsprechenden Port benutzten Sektoren angibt, und ei-
nen 16-Bit Empfangssektorschwellen-(RxSecThreshold)Wert, der eine CPU-programmierte maximale Zahl
von Sektoren identifiziert, die für jeden Port oder jede RECEIVE SECTOR CHAIN erlaubt ist. Der RxSecThres-
hold-Wert wird benutzt, um zu bestimmen, ob Rückstau für diesen Port anzuwenden ist, indem RxSecThres-
hold mit RcSecCnt verglichen wird. Wenn Rückstau unterbunden ist, wird der RXSecThreshold-Wert verwen-
det, um alle weiteren an dem entsprechenden Port empfangenen Pakete fallen zu lassen.

[0247] Der Empfangsabschnitt 1104 umfasst weiter einen Sendeende-Queue-Zeiger (EndOfTxQPtr), der ein
28-Bit Zeiger auf die Basis des letzten Pakets in der TRANSMIT PACKET CHAIN für den entsprechenden Port
ist. Schließlich wird ein Sendeende-Queue-BC-(EOQ_BC) Bit gesetzt, um ein Rundsendeformat für das letzte
Paket in der TRANSMIT PACKET CHAIN für den entsprechenden Port anzugeben.

[0248] Der Sendeabschnitt 1106 liefert Information für die TRANSMIT PACKET CHAIN für den entsprechen-
den Port. Ein Sendebasiszeiger (TxBasePtr) ist ein 28-Bit Zeiger auf die Basis des momentanen Sendepaket-
vorspanns, und ein anderer 28-Bit Momentan-Sendezeiger (TxCurPtr) zeigt auf die momentane Datenrückge-
winnungsstelle für den entsprechenden Port. Ein Sende-Broadcast-(TxBC)Bit wird gesetzt, um anzuzeigen,
dass der Paketvorspann im Rundsendeformat ist. Ein Senden-im-Gange-(TxIP)Bit wird auf logisch 1 gesetzt,
um anzuzeigen, dass ein Senden momentan für den Port im Gange ist, und wird benutzt, SPO anzuzeigen.
Eine 8-Bit Sendequellenport-(TxSrcPort)Nummer ist die Quellenportnummer des momentanen Sendepakets,
die bei SOP aus dem Paketvorspann gelesen wird. Ein 16-Bit Sendepaketlängen-(TxPktLn)Wert ist gleich den
restlichen zu sendenden Bytes für das momentane Sendepaket. Wenn ein Paket zu senden ist, wird der Pkt-
Length-Wert im Paketblockvorspann 918 des Pakets in den TxPktLn-Wert im Sendeabschnitt 1106 kopiert, und
dann wird der TxPktLn-Wert durch die TX-Steuerung 606 dekrementiert, wenn das Paket gesendet wird. Wenn
der TxPktLn auf null dekrementiert ist, erzeugt der EPSM 210 das entsprechende EOP* Signal, um das Ende
des Pakets anzuzeigen. Ein 16-Bit Maximal-Paketzahl-(TxPktThreshold)Wert ist gleich der CPU-programmier-
ten maximalen Zahl von Paketen, die für jeden Port in einer Warteschlange eingereiht werden darf. Es wird
angemerkt, dass für die CPU 230 bestimmte Pakete nicht der TxPktThreshold- oder TxPktThreshold-Grenze
unterliegen. Schließlich ist eine 16-Bit Sendepaketzählung (TxPktCnt) gleich der Zahl von Paketen, die mo-
mentan für den entsprechenden Port in einer Warteschlange eingereiht sind.

[0249] Fig. 11B ist ein Blockdiagramm, das in dem SRAM 650 gelegene Freepool-Paketsteuerregister 1108
zeigt, die mit der FREEPOOL CHAIN von Registern verbunden sind. Jedes Freepool-Register 1108 enthält ei-
43/130

DE 697 31 519 T2 2005.12.01
nen Zeiger (NextFreeSecPtr) auf den nächsten freien Sektor in der FREEPOOL CHAIN, einen Zeiger (Last-
FreeSecPtr) auf den letzten Sektor in der FREEPOOL CHAIN, eine freie Sektor Zählung (FreeSecCnt) gleich
der Zahl von momentan verfügbaren freien Sektoren, einen Freisektor-Schwellen-(FreeSecThreshold)Wert
gleich der CPU-programmierten Mindestzahl von Sektoren, die erlaubt ist, bevor ein Speicherüberlauf-Flag
(MOF) für Rückstau- oder Filterungs-(Pakete fallen lassen)Zwecke gesetzt wird, eine BC-Paketzählung
(BC_PktCnt) gleich der Zahl von BC-Paketen, die momentan im Speicher 212 sind, und eine BC-Paketschwel-
len-(BC_PKThreshold)Zählung gleich einer CPU-programmierten Maximalzahl im Speicher 212 erlaubter
BC-Pakete.

[0250] Fig. 12A ist ein Flussdiagramm, das die Arbeitsweise des Netzwerkschalters 102 zum Empfangen von
Datenpaketen in dem Speicher 212 und zum Senden von Datenpaketen in der CT-Betriebsart veranschaulicht.
Daten werden typischerweise durch die Ports Port0–Port27 des Netzwerkschalters 102 in der Form von Pake-
ten in Echtzeit oder in ihrer Gesamtheit empfangen und gesendet und werden nicht unterteilt während sie über
die Segmente 108, 114 gesendet werden. Die FIFOs im Netzwerkschalter 102 sind jedoch typischerweise nicht
groß genug, um ein ganzes Paket zu speichern. Paketdaten werden daher im Netzwerkschalter 102 von einem
FIFO zu einem anderen in Paketabschnitten oder Unterteilungen von Paketen übertragen.

[0251] In einem ersten Schritt 1200 erfasst der EPSM 210 ein neues Paket, das durch einen der Ports 104,
110 gesendet wird, durch Anzeigen der PKT_AVAILm* Signale. Im nächsten Schritt 1202 wird der Anfangsteil
oder Vorspann des Pakets aus dem Quellenport zurückgewonnen und in die HASH REQ LOGIC 532 gelesen,
wo der Vorspann die Ziel- und Quellen-MAC-Adressen enthält. Die HASH REQ LOGIC 532 stellt die Ziel- und
Quellenadressen und die Quellenportnummer auf den HASH_DA_SA[15:0] Signalen bereit und macht das
HASH_REQ* Signal am MCB 404 geltend. Der MCB 404 ruft als Reaktion die die Hashing-Prozedur zum Be-
stimmen der geeigneten Aktion für das Paket auf, wo die Quellen- und Zieladressen haschiert werden, um zu
bestimmen, ob jede der Adressen vorher im Speicher 212 gespeicher wurde. Der MCB 404 macht das
HASH_DONE* Signal geltend, wenn genug Information für den HCB 404 verfügbar ist, um die für das Paket
geeignete zu ergreifenden Aktion zu bestimmen. Das in Fig. 12A gezeigte Flussdiagramm umfasst zwei
Hauptabschnitte für die Ziel- und die Quellenadressen, die getrennt erörtert werden. In der gezeigten Ausfüh-
rung wird zuerst die Zieladresse haschiert, gefolgt von der Quellenadresse, obwohl die Prozeduren gleichzeitig
oder in jeder gewünschten Reihenfolge durchgeführt werden können.

[0252] Für die Zieladresse geht der Vorgang zu Schritt 1204, wo die Haschierungsprozedur aufgerufen wird,
um die Zieladresse zu haschieren. Der Vorgang geht als Reaktion auf das HASH_DONE* Signal von Schritt
1204 zu Schritt 1208, um die Schwellenbedingung für Unicast- und BC-Pakete zu prüfen. In Schritt 1208 wird
festgestellt, ob eine relevante Schwellenbedingung durch das neue Paket verletzt werden würde. Das heißt,
wenn die FreSecCnt-Zahl gleich oder kleiner ist als die FreeSecThreshold-Zahl, kann nicht genug Platz vor-
handen sein, um das Paket im Speicher 212 zu speichern. Ferner, wenn die RxSecCnt-Zahl größer oder gleich
der RxSecThreshold-Zahl ist, kann der Netzwerkschalter 102 bestimmen, das Paket fallen zu lassen. Für
BC-Pakete wird die BC_PktThreshold-Zahl mit der BC_PktCnt-Zahl, die die tatsächlichen Zahl von BC-Pake-
ten ist, verglichen, um festzustellen, ob die Maximalzahl von BC-Paketen bereits empfangen wurde. Für Uni-
cast-Pakete wird die TxSecThreshold-Zahl mit der TxSecCnt-Zahl für den Zielport verglichen.

[0253] Von Schritt 1208 geht der Vorgang zu Schritt 1205, wo der HCB 404 aus den HASH_STATUS[1:0] Si-
gnalen und aus dem Vergleichen von jeder der Schwellenbedingungen bestimmt, ob das Paket fallen zu lassen
ist. Das Paket kann aus einer Vielfalt anderer Gründe, wie vorher beschrieben, fallen gelassen werden, z. B.,
wenn die Quellen- und Zielports gleich sind. Wenn das Paket fallen zu lassen ist, geht der Vorgang von Schritt
1205 zu Schritt 1207, wo das Paket entweder fallen gelassen oder Rückstau angewandt wird. Rückstau wird
angewandt, wenn die FreeSecThreshold- oder RxSecThreshold-Bedingungen verletzt werden, und wenn
Rückstau freigegeben ist und der Quellenport im Halbduplex-Modus arbeitet. Andernfalls wird das Paket fallen
gelassen. Für Rückstau führt der EPSM 210 einen Rückstau-Zyklus auf dem HSB 206 aus, was den Quellen-
port veranlasst, eine Hemmungssequenz in der sendenden Vorrichtung geltend zu machen. Das Paket wird
fallen gelassen, wenn die Rückstau-Anzeige durch den Quellenport nicht angenommen wird (wie durch das
ABORT_ OUT* Signal angezeigt), weil sie zu spät bereitgestellt wird, um die Hemmungssequenz geltend zu
machen. Ferner wird das Paket fallen gelassen, wenn die BC_PktThreshold-Bedingung die einzige Schwellen-
bedingung ist, die verletzt wird. Der Netzwerkschalter 102 fährt fort, den Rest des fallen gelassenen Pakets zu
empfangen, aber das Paket wird nicht gespeichert oder an einen anderen Port gesendet. Von Schritt 1207 geht
der Vorgang zu Schritt 1214, wo die geeigneten Statistikregister in den MCB-Konfigurationsregistern 448 ba-
sierend auf der in Schritt 1207 ergriffenen Aktion aktualisiert werden. Die Statistikregister zeigen an, ob das
Paket infolge von Überlaufbedingungen fallen gelassen oder rückgestaut wurde. Zum Beispiel wird eine pro
Port "fallen gelassenes Paket – kein Puffer" Zählung für den Port inkrementiert, um anzuzeigen, dass ein Paket
44/130

DE 697 31 519 T2 2005.12.01
infolge von Überlaufbedingungen fallen gelassen wird, oder eine "Paket zurückgestaut" Zählung wird inkre-
mentiert, wenn das Paket rückgestaut wird.

[0254] Wenn das Paket nicht fallen gelassen wird, geht der Vorgang von Schritt 1205 zu Schritt 1206, wo fest-
gestellt wird, ob die Zieladresse im Hash-Speicherabschnitt 902 gefunden wurde, und ob das Paket rundzu-
senden ist oder nicht. Das Paket wird rundgesendet, wenn die Zieladresse nicht erkannt wird und daher der
Zielport nicht bekannt ist, oder wenn das GROUP-Bit in dem Paket gesetzt ist. Wenn die Zieladresse nicht ge-
funden wird, oder wenn das Paket andernfalls ein BC-Paket ist, wie in Schritt 1206 bestimmt, ist das Paket
rundzusenden, und der Vorgang geht zu Schritt 1210, wo der MCB 404 des EPSM 210, wenn nötig, einen wei-
teren Sektor im Speicher 212 für das neue Paket zuteilt. Ein neuer Sektor ist nicht nötig, wenn der gegenwär-
tige Sektor genug Platz für das Paket hat. Der Vorgang geht zu Schritt 1216, der angibt, dass der Rest des
Pakets, Stoß für Stoß, durch den EPSM 210 gepuffert und in den Speicher 212 übertragen wird. Ungeachetet
Porteinstellungen werden BC-Pakete mit SnF-Modus gehandhabt, wo das ganze Paket im Speicher 212 ge-
speichert wird, bevor es gesendet wird. Von Schritt 1216 geht der Vorgang zu Schritt 1217, um festzustellen,
ob das ABORT_OUT* Signal während des Empfangens des Pakets infolge eines Pakeffehlers geltend ge-
macht wurde. Mehrere Fehlerbedingungen werden durch die Ports Port0–Port27 geprüft, z. B. Erfassen eines
FIFO-Überlaufs, eines Runt-Pakets, eines übergroßen Pakets, das Paket hatte eine schlechte FCS (Rahmen-
prüfsequenz) oder ein PLL-Fehler wurde erfasst. Wenn in Schritt 1217 ein Paketfehler erfasst wird, geht der
Vorgang zu Schritt 1219, wo das Paket aus dem Speicher 212 entfernt wird.

[0255] Wenn in Schritt 1217 keine Paketfehler erfasst werden, geht der Vorgang zu Schritt 1218, wo die
Rundsendeport-Bitmap BC_Ports im Paketvorspann 922 des BC-Pakets mit den aktiven Ports, von denen das
BC-Paket zu senden ist, aktualisiert wird. Das BC-Paket wird an alle Ports außer den folgenden Ports gesen-
det: der Quellenport; jeder Port, der nicht im FORWARDING-Status ist, wenn der Quellenport die CPU 230 ist,
oder jeder Port im DISABLED-Status, wenn der Quellenport die CPU 230 ist, und alle Ports mit einer TxP-
ktCnt-Zahl größer oder gleich der entsprechenden TxPktThreshold-Zahl. Wenn VLAN freigegeben ist, wird
auch der VLAN-Bitmapwert im Hash-Tabelleneintrag 910 untersucht, was die Ports weiter auf aktive, zugehö-
rige Ports in der VLAN-Gruppe begrenzt. Ferner werden Fehl-BC-Pakete, wo das Paket infolge einer unbe-
kannten Zieladresse rundgesendet wird, entsprechend einem MissBCBitMap-Register befördert. Es wird an-
gemerkt, dass, wenn die resultierende BC_Ports-Bitmap alles Nullen sind, sodass das Paket an keinen Port
zu senden ist, diese Entscheidung entweder in Schritt 1205 getroffen und das Paket in Schritt 1207 fallen ge-
lassen wird, oder das Paket in Schritt 1218 aus dem Speicher 212 entfernt wird.

[0256] Der Vorgang geht von Schritt 1218 au Schritt 1220, wo das Paket zu der TRANSMIT PACKET CHAIN
für jeden Port in der resultierenden BC_port-Bitmap hinzugefügt wird. Das heißt, jede der NextTx-
Link-Link-Adressen für jeden in der BC_port-Bitmap bezeichneten Port im Paketvorspann 922 wird aktualisu-
ert, um das BC-Paket in die TRANSMIT PACKET CHAINs der geeigneten Ports einzufügen. Alle anderen zu-
gehörigen Register- oder Zählwerte und Statistiken im Netzwerkschalter 102 werden folglich auch aktualisiert,
z. B. die BC_PktCnt-Zählung.

[0257] Zurück auf Schritt 1206 verweisend geht, wenn die Zieladresse gefunden ist und das Paket kein
BC-Paket ist, der Vorgang zu Schritt 1222, wo die Hash-Cache-Tabelle 603 aktualisiert wird. Der Vorgang geht
dann zum nächsten Schritt 1224, wo abgefragt wird, ob entweder der Quellenport oder der Zielport für den
SnF-Modus eingerichtet ist. Wenn beide Ports für den CT-Modus eingerichtet sind und die anderen CT-Bedin-
gungen erfüllt sind, z. B. gleiche Portgeschwindigkeit, und die TBUS-Einstellung für den Zielport gleich der
TBUS-Einstellung für den Quellenport ist, geht der Vorgang zu Schritt 1225, wo abgefragt wird, ob der Zielport
tätig ist. Wenn der Vorgang für den SnF-Modus bezeichnet ist, wie in Schritt 1224 bestimmt, oder wenn für den
CT-Modus bezeichnet, aber der Zielport tätig ist, wie in Schritt 1225 bestimmt, sodas der Interim-CT-Modus
eingeleitet wird, geht der Vorgang zu Schritt 1226, wo der MCB 404 des EPSM 210, wenn nötig, Platz im Spei-
cher 212 für das neue Paket zuweist. Von Schritt 1226 geht der Vorgang zu Schritt 1228, wo der restliche Teil
des Pakets in den EPSM 210 zurückgewonnen und in den Speicher 212 übertragen wird. Wenn ein Paketfehler
während des Empfangs des Pakets auftritt, wie in Schritt 1229, der dem Schritt 1217 ähnlich ist, angedeutet,
geht der Vorgang zu Schritt 1219, um das Paket aus dem Speicher 212 zu entfernen. Andernfalls geht der Vor-
gang zu Schritt 1230, wo das Paket zu der TRANSMIT PACKET CHAIN des Zielports hinzugefügt wird und die
geeigneten Link-Adressen, Zählungen und CHAINs aktualisiert werden.

[0258] Wenn, wieder auf Schritt 1225 verweisend, der Zielport nicht tätig ist, geht der Vorgang zu Schritt 1231,
wo die Quellen- und Zielports für normalen CT-Betrieb für das momentane Paket bezeichnet werden. Für den
normalen CT-Modus wird jeder restliche Paketteil nicht an den Speicher 212 gesendet, sondern wird stattdes-
sen durch den CT BUF 528 zu dem Zielport gepuffert. Der Vorspann des Pakets wird von dem RX FIFO des
45/130

DE 697 31 519 T2 2005.12.01
EPSM 210 direkt zu dem Zielport übertragen. Der nächste Schritt 1232 gibt das Empfangen von Datenpaket-
teilen im CT BUF 528 und das Übertragen der Paketteile zu dem Zielport an. Während des CT-Betriebs fragt
der nächste Schritt 1233, ob der Zielport oder -Weg tätig oder unverfügbar wird. Die in Schritt 1233 angegebe-
ne Abfrage wird ausgeführt, bevor Daten im CT BUF 528 durch den Haupt-Arbiter 512 empfangen werden.
Während der Zielport für mehr Daten verfügbar bleibt, verzweigt der Vorgang zu Schritt 1234 um zu fragen, ob
das ganze Paket zu dem Zielport übertragen wurde, und geht, wenn nicht, zurück zu Schritt 1232, um mehr
Daten zu senden. Wenn das ganze Paket im CT-Modus übertragen wurde, wie in Schritt 1234 festgestellt, ist
der Vorgang für dieses Paket abgeschlossen.

[0259] Wenn der Zielport während der normalen CT-Modusübertragung tätig oder unverfügbar wird, wie in
Schritt 1233 festgestellt, geht der Vorgang zu Schritt 1235, um den restlichen Teil des Pakets im Speicher 212
zu empfangen, um den Mittelpaket-Interim-CT-Modus einzuleiten. Während des Mittelpaket-Interim-CT-Modus
wird der restliche Teil des Pakets durch den Speicher 212 gepuffert. Da das Paket mitten in der Übertragung
war, werden die restlichen an den Speicher 212 gesendeten Paketdaten am Anfang der TRANSMIT PACKET
CHAIN für diesen Port platziert, um die richtige Paketreihenfolge zu sichern, wie im nächsten Schritt 1236 an-
gegeben. Wie in der normalen CT-Betriebsart ist jeder an den Speicher 212 während des Mittelpaket-Inte-
rim-CT-Modus gelieferte Datenpaketteil zur Übertragung zu dem Zielport, sobald empfangen, verfügbar.

[0260] Wieder auf Schritt 1202 verweisend geht der Vorgang zu Schritt 1240, um die Quellenadresse zu ha-
schieren. Der Vorgang geht dann zu Schritt 1242, wo abgefragt wird, ob die Quellenadresse im Hash-Spei-
cherabschnitt 902 gefunden wurde, und ob das GROUP-Bit im Paket gesetzt wurde. Wenn die Quellenadresse
gefunden wurde und das GROUP-Bit nicht gesetzt war, geht der Vorgang zu Schritt 1244, wo das AGE-Feld
des Hash-Speicherabschnitts 902 mit der AGE-Information aktualisiert wird. Zum Beispiel wird der AGE-Wert
auf null gesetzt. Es wird angemerkt, dass die Quellen-MAC-Adresse und die Quellenportnummer nicht mehr
einem vorherigen Eintrag entsprechen können. Dies könnte z. B. vorkommen, wenn eine Netzwerk- oder Da-
tenvorrichtung von einem Port zu einem anderen bewegt wird. Diese Information wird in Schritt 1244 verglichen
und aktualisiert.

[0261] Wenn, zurück auf Schritt 1242 verweisend, die Quellenadresse nicht gefunden wurde, oder wenn das
GROUP-Bit gesetzt war, geht der Vorgang zu Schritt 1246, wo eine Unterbrechung an der CPU 230 erzeugt
wird, die die folgenden Schritte durchführt. In Schritt 1248 weist die CPU 230 einen Hash-Tabelleneintrag im
Hash-Speicherabschnitt 902 des Speichers 212 oder einen am wenigsten kürzlich benutzten (LRU) Abschnitt
der Hash-Cache-Tabelle 603 für die neue Quellenadresse zu. Der Vorgang geht dann zu Schritt 1250, wo die
Werte in dem zugewiesenen Hash-Eintrag, z. B. die Quellen-MAC-Adresse, die Quellenportnummer und die
AGE-Information, aktualisiert werden.

[0262] Fig. 12B ist ein vereinfachtes Flussdiagram, das die allgemeine Arbeitsweise des Netzwerkschalters
102 zum Übertragen von Daten aus dem Speicher 212 zu einem oder mehreren Zielports veranschaulicht. Die
Übertragungsprozedur gilt allgemein für SnF- und Mitteipaket-Interim-CT-Betriebsarten und für BC-Pakete, wie
unten qualifiziert. Ein erster Schritt 1260 stellt allgemein dar, dass Paketdaten entsprechend den vorher be-
schriebenen Prozeduren im Speicher 212 in einer Warteschlange eingereiht sind. Der Vorgang geht dann zum
nächsten Schritt 1262, wo der MCB 404 dem HCB 402 anzeigt, dass Paketdaten verfügbar sind.

[0263] Für den Mittelapket-Interim-CT-Modus wird diese Anzeige bereitgestellt, sobald das erste DWORD
von Daten an den MCB 404 zur Speicherung im Speicher 212 gesendet wird, da die Daten fast sofort zur Über-
tragung an einen Zielport zur Verfügung stehen. Für den SnF-Modus wird diese Anzeige jedoch nur bereitge-
stellt, nachdem das letzte DWORD von Daten für ein Datenpaket an den MCB 404 gesendet ist, da das ganze
Paket vor der Übertragung gespeichert wird. Sobald Paketdaten zum Senden verfügbar sind, geht der Vorgang
zu Schritt 1264, wo festgestellt wird, ob der Zielport Pufferplatz zur Verfügung hat, um Paketdaten zum Senden
zu empfangen. Schritt 1264 stellt allgemein die durch den EPSM 210 durchgeführte Abfrageprozedur zum Ab-
fragen jedes der Ports 104, 110 dar, die mit entsprechenden BUF_AVAILm* Signalen antworten, wie vorher
beschrieben. Der Vorgang bleibt bei Schritt 1264, bis der Zielport anzeigt, dass er Pufferplatz zur Verfügung
hat, um Paketdaten zu empfangen.

[0264] Wenn der Zielport in Schritt 1264 anzeigt, dass er Pufferplatz besitzt, geht der Vorgang zu Schritt 1266,
wo der HCB 402 die Übertragung von Daten für den Zielport anfordert. Im nächsten Schritt 1268 wird ein Stoß
von Daten vom Speicher 212 an den Zielport zum Senden übertragen. Der Vorgang geht zum nächsten Schritt
1270, wo abgefragt wird, ob alle Daten im Speicher 212 an den Zielport übertragen wurden. Wenn nicht, geht
der Vorgang zu Schritt 1264, um zu warten, bis der Zielport mehr Pufferplatz für eine weitere Datenübertragung
zur Verfügung hat. Schließlich wird das ganze Datenpaket, im Fall des SnF- und Interim-CT-Modus, oder die
46/130

DE 697 31 519 T2 2005.12.01
restlichen Paketdaten im Fall des Mittelpaket-Interim-CT-Modus übertragen, wie in Schritt 1270 festgestellt.

[0265] Der Vorgang geht dann zu Schritt 1272, wo festgestellt wird, ob das Paket ein BC-Paket ist oder nicht.
Wenn das Paket ein BC-Paket ist, geht der Vorgang zu Schritt 1274, um festzustellen, ob das ganze Paket an
alle aktiven Ports übertragen wurde. Wenn nicht, wird der Vorgang für das momentane Paket vollendet. Die
Prozedur wird für jeden Port wiederholt, bis das Paket an alle aktiven Ports übertragen ist. Es wird angemerkt,
dass die Schritte 1272 und 1274 gezeigt werden, um darzustellen, dass die Schritte 1264 bis 1270 für jeden
Zielport für jedes BC-Paket durchgeführt werden. Das ganze BC-Datenpaket bleibt daher im Speicher 212, bis
es an alle aktiven Zielports zum Übertragen gesendet ist. Wenn das Paket kein BC-Paket ist, oder nachdem
das ganze Paket an alle aktiven Ports für BC-Pakete gesendet ist, wie in Schritt 1274 angegeben, geht der
Vorgang zu Schritt 1276, wo der Pufferplatz im Speicher 212, der das BC-Paket hält, freigesetzt wird. Das
heißt, die Sektoren, die die Paketdaten halten, werden an die FREEPOOL CHAIN von freien Speichersektoren
im Speicher 212 zurückgegeben.

[0266] Fig. 13 ist ein Flussdiagramm, das den Hash-Nachseh-Vorgang des EPSM 210 veranschaulicht. Die
Schritte im Flussdiagramm von Fig. 13 werden durch den MCB 404 ausgeführt. Ein Anfangsschritt 1302 er-
fasst eine Hash-Anforderung, wie durch Geltendmachung des HASH_REQ* Signals angezeigt. Der HCB 402
identifiziert den Vorspann des Pakets als ein neues Paket, bestimmt die Quellen- und Zieladressen und die
Quellenportnummer und macht die HASH_DA_SA[15:0] Signale an der Hash-Steuerung 602 des MCB 404
geltend. Der MCB 404 gewinnt dann die Quellen- und Ziel-MAC-Adressen und die Quellenportnummer zurück
und führt die Haschierungs-Prozedur durch, die die geeignete Aktion für das Paket bestimmt.

[0267] Der MCB 404 ergreift gewöhnlich eine von vier Aktionen, wobei jede Aktion auf der Quellenportnum-
mer und der Quellen- und Ziel-MAC-Adresse basiert. Das heißt, die Hash-Steuerung 602 bestimmt die
HASH_STATUS[1:0] Signale, die auf FORWARD_PKT, um das Paket an den Zielport zu befördern,
DROP_PKT, um das Paket fallen zu lassen und zu ignorieren, MISS_BC, wenn die Ziel-MAC-Adresse neu und
unbekannt ist, sodass das Paket an alle anderen Ports rundgesendet wird, oder GROUP_BC gesetzt werden,
wenn das Paket in eine Untermenge verbundener Ports zu duplizieren und durch diese zu senden ist. Von
Schritt 1302 geht der Vorgang zu Schritt 1304, um festzustellen, ob das Paket fallen zu lassen ist, was durch
die folgende Gleichung (1) bestimmt wird:

DropPkt := (SrcState = DIS) oder (!FilterHit & SrcState != FWD) (1)

wo SrcState den Überspannungsbaum-Zustand des Quellenports identifiziert, FilterHit ein Bit ist, das gesetzt
wird, wenn die Quellen-MAC-Adresse in einen vorbestimmten Bereich fällt, das Etzeichen "&" die logische
UND-Operation darstellt, das Ausrufezeichen "!" eine logische Verneinung bezeichnet, das Symbol "!=" die
Funktion "nicht gleich" bezeichnet, und das Symbol ":=" die Funktion "setzen gleich" bezeichnet. Jeder Port hat
einen von fünf in den HSB-Konfigurationsregistern 448 bereitgestellten Zuständen, und wie durch die Über-
spannungsbaum-Funktion der IEEE 802.1 Spezifikation bestimmt, einschließlich Lernen (LRN), Befördern
(FWD), Gesperrt (BLK), Hören (LST) und Abgeschaltet (DIS). In der gezeigten Ausführung werden die Zustän-
de BLK UND LST gleich behandelt. Das Paket wird daher fallen gelassen, wenn der Quellenport abgeschaltet
ist, oder wenn die Quellen-MAC-Adresse nicht in dem vorbestimmten Filterbereich liegt und der Zustand des
Quellenports nicht Befördernd ist.

[0268] Wenn DropPkt wahr ist, wie in Schritt 1304 bestimmt, geht der Vorgang zu Schritt 1305, wo
HASH_STATUS[1:0] Signale auf 00b = DROP_PKT gesetzt werden, um den HCB 402 anzuweisen, das Paket
zu ignorieren oder andernfalls fallen zu lassen. Wenn DropPkt unwahr ist, geht der Vorgang zu Schritt 306, wo
das FilterHit-Bis untersucht wird, um festzustellen, ob die Quellen-MAC-Adresse in dem vorbestimmten Be-
reich liegt. Der vorbestimmte Bereich identifiziert Pakete, die von der CPU 230 stammen oder dafür bestimmt
sind, einschließlich Brückenprotokoll-Dateneinheiten (BPDUs), die an die CPU 230 gesendet werden. Wenn
FilterHit wahr ist, wie in Schritt 1306 bestimmt, geht der Vorgang zu Schritt 1308, um den Zielport (DstPrt) zu
identifizieren. Wenn das Paket von der CPU 230 kommt (SrcPrt = CPU =, wird der Zielport gleich einem durch
die CPU 230 in einem vorherigen Vorgang (Dst := FltrPrt) gesetzten Wert FltrPrt gesetzt. Andernfalls wird das
Paket an die CPU 230 gesendet (DstPrt := PORT28). Der Vorgang geht dann von Schritt 1308 zu Schritt 1310,
um nach der folgenden Formel (2) zu bestimmen, ob das Paket zu befördern (FwdPkt) ist.

FwdPkt := (DstPrt != SrcPrt) & ((DstState = FWD) oder (SrcPrt = CPU & DstState != DIS)) (2)

wo DstState der Überspannungsbaum-Zustand des Zielports (DstPrt) ist und "&" die logische UND-Operation
bezeichnet. Das Paket wird daher an den Zielport befördert, wenn der Ziel- und Quellenport nicht der gleiche
47/130

DE 697 31 519 T2 2005.12.01
nicht, und wenn der Status des Zielports Befördern ist, oder wenn der Quellenport die CPU 230 und der Status
des Zielports nicht Abgeschaltet ist. Der Zielport ist auch ohne Hash-Nachsehen bekannt, da er entweder die
CPU 230 ist oder durch die CPU 230 als FltrPrt bestimmt wird. Wenn FwdPkt unwahr ist, geht der Vorgang zu
Schritt 1305, um das Paket fallen zu lassen. Andernfalls, wenn FwdPkt wahr ist, geht der Vorgang zu 1312, wo
die HASH_STATUS[1:0] Signale auf 11b = FORWARD_PKT gesetzt werden, um anzuzeigen, dass das Paket
an den Zielport zu berfördern ist. Ferner werden die HASH_DSTPRT[4:0] Signale mit der DstPrt-Zielportnum-
mer geltend gemacht.

[0269] Wenn, wieder auf Schritt 1306 verweisend, die Quellenandresse nicht in dem vorbestimmten Bereich
und daher außerhalb der gefilterten MAC-Adressen liegt, geht der Vorgang zu Schritt 1314, um das
GROUP-Bit in dem empfangenen Paket zu untersuchen, das angibt, ob das Paket ein BC-Paket ist oder nicht.
Wenn GROUP unwahr ist (GROUP-Bit = logisch 0), geht der Vorgang zu Schritt 1316, um ein Hash-Nachsehen
der Ziel-MAC-Adresse (DA) durchzuführen. Die MAC-Adresse wird zuerst haschiert, indem zwei verschiedene
Sätze von Bits aus der Adresse genommen werden die zwei Sätze Bit für Bit logisch kombiniert oder verglichen
werden, um eine entsprechende 13–16 Bit Hash-Adressee zu bilden, wie vorher beschrieben. Alle Bits der
MAC-Adresse können für die Zwecke der Haschierungs-Prozedur gewählt werden. Die tatsächliche Nach-
schlag-Prozedur wird von einer getrennten Routine oder Funktion durchgeführt, die unten mit Verweis auf das
Flussdiagramm von Fig. 14 beschrieben wird.

[0270] Die Nachschlag-Prozedur in Schritt 1316 gibt, wenn gewünscht, einen oder mehr Werte zurück, ein-
schließlich eines HIT bezeichneten Bits, das als DA_Hit für die Zieladresses oder SA_Hit für die Quellenadres-
se zurückgegeben wird. Das HIT-Bit bestimmt, ob die haschierte Adresse im Hash-Speicherabschnitt 902 ge-
funden wurde. Von Schritt 1316 geht der Vorgang zu Schritt 1318, wo der DA_Hit-Wert untersucht wird, um
festzustellen, ob die Adresse gefunden wurde oder nicht. Die Adresse wird im Speicher 212 gefunden werden,
wenn die der Ziel-MAC-Adresse entsprechende Vorrichtung vorher ein Paket hervorgebracht hat. Wenn
DA_Hit wahr ist, geht der Vorgang zu Schritt 1310, um festzustellen, ob das Paket zu befördern ist, wie vorher
beschrieben. Wenn die Hash-Adresse nicht gefunden wurde und DA_Hit unwahr ist, geht der Vorgang zu
Schritt 1320, wo die HASH_STATUS[1:0] Signale auf 10b = MISS_BC gesetzt werden, um eine neue
MAC-Adresse anzuzeigen. Da die mit der Zielvorrichtung verbundene Portnummer noch nicht bekannt ist, wird
das Paket an alle anderen aktiven (und wie durch VLAN und andere Logik qualifizierte) Ports rundgesendet,
um sicherzustellen, dass das Paket an die geeignete Zielvorrichtung gesendet wird. Schließlich antwortet die
Zielvorrichtung auf das Paket mit einem neuen Paket, das die gleiche MAC-Adresse als eine Quellenadresse
enthält. Der Netzwerkschalter 102 ist dann in der Lage, die MAC-Adresse mit einem Port und einer Portnum-
mer zu verbinden und den Hash-Speicherabschnitt 902 entsprechend zu aktualisieren. Wenn, wieder auf
Schritt 1314 verweisend, das GROUP-Bit wahr (oder logisch 1) ist, geht der Vorgang zu Schritt 1322, wo die
HASH_STATUS[1:0] Signale auf 01 b = GROUP_BC gesetzt werden, um anzuzeigen, dass das Paket an alle
anderen Ports oder an eine durch die VLAN-Funktion spezifizierte Gruppe von Ports rundzusenden ist.

[0271] Von jedem der Schritte 1305, 1312, 1320 oder 1322 geht der Vorgang zu Schritt 1324, um durch Un-
tersuchen eines SrcLookUp-Wertes festzustellen, ob der Hash-Speicherabschnitt 902 nach der Quel-
len-MAC-Adresse abzusuchen ist. Der SrcLookUp-Wert wird nach der folgenden Gleichung (3) bestimmt:

SrcLookUp := (SrcState = (LRN oder FWD)) & SrcPrt != CPU (3)

die anzeigt, dass die MAC-Quellenadresse gesucht wird, wenn der Quellenport im Lernen- oder Befördern-Mo-
dus ist und nicht die CPU 230 ist. Wenn SrcLookUp wahr oder gesetzt ist, wie in Schritt 1324 bestimmt, geht
der Vorgang zu Schritt 1326, wo zwei Werte VLAN und SecurePort untersucht werden. Das VLAN-Bit ist wahr,
wenn einer der VLAN-Modi freigegeben ist, aber andernfalls unwahr. SecurePort ist wahr, wenn der Quellen-
port sicher ist, wo keine neuen Adressen zu dem Hash-Speicherabschnitt 902 hinzugefügt werden und Pakete
von unbekannten Quellenadressen fallen gelassen werden. Wenn VLAN nicht wahr ist, und wenn der Port
nicht sicher ist, geht der Vorgang zu Schritt 1328, wo das HASH_DONE* Signal geltend gemacht und vorüber-
gehend geltend gemacht gelassen wird. An diesem Punkt werden die HASH_STATUS- und
HASH_DSTPRT-Signale durch den HCB 402 ergriffen.

[0272] Wenn VLAN wahr ist, oder wenn SecurePort wahr ist, wie in Schritt 1326 bestimmt, oder nachdem
Schritt 1328 ausgeführt ist, wird die Geltendmachung des HASH_DONE* Signals bis nach dem nächsten Quel-
lenadressen-Nachschlagen verzögert. Der Vorgang geht dann zu Schritt 1330, wo ein Hash-Nachschlagen auf
der Quellen-MAC-Adresse (SA) in der gleichen Weise wie oben für die Ziel-MAC-Adresse beschrieben durch-
geführt wird. In Schritt 1330 wird ein Wert SA_Hit wahr zurückgegeben, wenn die Hash-Adresse für die ent-
sprechende Vorrichtung gefunden ist. Von Schritt 1330 geht der Vorgang zu Schritt 1332, wo ein Wert Src_Hit
48/130

DE 697 31 519 T2 2005.12.01
untersucht wird. Src_Hit ist mit SA_Hit durch die folgende Gleichung (4) verknüpft:

Src_Hit := SA_Hit & (HshPrt = SrcPort) (4)

wo Src_Hit wahr ist, wenn ein Source-Treffer vorkam (SA_Hit ist wahr), und wenn die in dem Eintrag in dem
Hash-Speicherabschnitt 902 gefundene Portnummer gleich der tatsächlichen Quellenportnummer ist, wo das
Paket empfangen wurde. Wenn die gespeicherte Quellenportnummer nicht gleich der tatsächlichen Qellen-
portnummer ist, wurde die Vorrichtung wahrscheinlich zu einem anderen Port bewegt, und der Hash-Speicher-
abschnitt 902 wird durch die CPU 230 aktualisiert, wie unten beschrieben. Wenn Src_Hit wahr ist, geht der Vor-
gang zu Schritt 1334, wo das HASH_DONE* Signal geltend gemacht wird, wenn VLAN unwahr ist. Der Vor-
gang geht dann zu Schritt 1336, wo die AGE-Zahl der Vorrichtung mit null verglichen wird. Wenn AGR nicht
gleich null ist, wird die AGE-Zahl in Schritt 1338 auf Null gesetzt. Wenn die AGE-Zahl null ist, wie in Schritt
1336 bestimmt, oder nachdem sie in Schritt 1338 auf null gesetzt wurde, geht der Vorgang zu Schrit 1340, wo
das VLAN-Bit erneut untersucht wird. Wenn VLAN wahr ist, geht der Vorgang zu Schrit 1342, wo eine
HASH-VLAN-Routine oder Prozedur ausgeführt wird, um in Beziehung stehende Ports zu identifizieren, wie
aus dem entsprechenden VLAN-Bitmap-Wert im Hash-Tabelleneintrag 910 bestimmt. Wenn VLAN nicht wahr
ist, wie in Schritt 1340 bestimmt, geht der Vorgang zu Schritt 1344, wo das HASH_DONE* Signal geltend ge-
macht oder für eine Zeitperiode gepulst, wenn nicht bereits geltend gemacht, und dann negiert wird. Von Schritt
1344 wird der Vorgang für diese Prozedur abgeschlossen. Die Negation des HASH_DONE* Signals beendet
das Hash-Nachschlagen des HCB 402.

[0273] Wenn, wieder auf Schritt 1332 verweisend, Src_Hit unwahr ist, geht der Vorgang zu Schritt 1350, wo
durch Untersuchen eines LearnDisPrt-Wertes festgestellt wird, ob das Lernen des Quellenports abgeschaltet
ist. Wenn nicht, geht der Vorgang zu Schritt 1352, wo neue Information des Pakets in geeignete Register ge-
laden und die CPU 230 unterbrochen wird. Als Reaktion aktualisiert die CPU 230 den Hash-Speicherabschnitt
902 mit einem neuen Hash-Tabelleneintrag 910. Wenn das Lernen des Quellenports abgeschaltet ist, wie in
Schritt 1350 festgestellt, oder nachdem der Hash-Speicherabschnitt 902 in Schritt 902 akualisiert wurde, geht
der Vorgang zu Schritt 1354, um das SecurePort-Bit zu untersuchen. Wenn SecurePort wahr ist, geht der Vor-
gang zu Schritt 1356, wo die HASH_STATUS[1:0] Signale in 00b = DROP_PKT geändert werden. In diesem
Fall wird das neue Paket fallen gelassen, da die Adresse neu ist und neue Adressen auf sicheren Ports nicht
erlaubt sind. Ferner wird, wenn gewünscht, eine Sicherheitsverletzungs-Unterbrechung an der CPU 230 gel-
tend gemacht, um geeignete Maßnahmen als Reaktion auf die Sicherheitsverletzung zu ergreifen. Von Schritt
1356 geht der Vorgang zu Schritt 1344. Wenn, wieder auf Schritt 1354 verweisend, das SecurePort-Bit unwahr
ist, um einen nicht-sicheren Port anzuzeigen, geht der Vorgang zu Schritt 1340. Wenn, wieder auf Schritt 1324
verweisend, SrcLookUp unwahr ist, geht der Vorgang direkt zu Schritt 1344.

[0274] Fig. 14 ist ein Flussdiagramm, das eine Hash-Nachschlag-Prozedur zum Suchen aller Hash-Tabellen-
einträge 910 im Hash-Speicherabschnitt 902 veranschaulicht. Im ersten Schritt 1402 wird ein Adresswert A
gleich der empfangenen Hash-Adresse gesetzt, wie sie z. B. von Schritten 1316 oder 1330 gesendet würde.
Der Vorgang geht zu Schritt 1404, wo der Hash-Tabelleneintrag 910 in dem mit der empfangenen Hash-Adres-
se verbundenen Haupt-Hash-Eintragsabschnitt 906 gelesen wird. Der Vorgang geht zu Schritt 1406, wo das
VALIDENTRY-Bit gelesen und die MAC-Adresse des neuen Pakets mit der gespeicherten MAC-Adresse ver-
glichen wird. Wenn der Eintrag gültig ist und eine genaue Übereinstimmung zwischen den MAC-Adressen vor-
kommt, geht der Vorgang zu Schritt 1408, wo das HIT-Bit auf wahr gesetzt wird, um einen Hash-Treffer anzu-
zeigen, und der Vorgang kehrt zur aufrufenden Prozedur oder Routine zurück. Andemfalls, wenn der Eintrag
nicht gültig ist oder keine Adressübereinstimmung vorkam, geht der Vorgang zu Schritt 1410, wo das VALI-
DENTRY-Bit und der EOC-(Kettenende)Wert des Eintrags untersucht werden. Wenn der Eintrag ungültig oder
das EOC erreicht ist, kehrt der Vorgang mit HIT-Bit unwahr zurück. Andernfalls wird in Schritt 1412 die
Hash-Adresse gleich der Link-Adresse im Hash-Eintrag (Bytes F:C) gesetzt, und der Vorgang kehrt zu Schritt
1404 zurück, um den nächsten verketteten Eintrag im verketteten Hash-Eintragsabschnitt 908 zu versuchen.
Der Vorgang wiederholt die Schritte 1404, 1406, 1410 und 1412, bis ein gültiger Eintrag mit einer MAC-Adress-
übereinstimmung oder ein ungültiger Eintrag gefunden ist oder der EOC-Wert angetroffen wird.

[0275] Die folgende Tabelle (1) zeigt die CPU 230 Eingabe/Ausgabe-(E/A)Raum-Register für eine bestimmte,
erfindungsgemäß implementierte Ausführung. Tabelle (1) wird nur als Beispiel bereitgestellt, wo die einzelnen
Register in einzelnen Ausführungen implementiert werden können oder nicht, oder ähnliche Register verschie-
dene Nomenklatur aufweisen können.
49/130

DE 697 31 519 T2 2005.12.01
TABELLE 1: E/A-Raum-Register der CPU 230
50/130

DE 697 31 519 T2 2005.12.01
51/130

DE 697 31 519 T2 2005.12.01
52/130

DE 697 31 519 T2 2005.12.01
53/130

DE 697 31 519 T2 2005.12.01
54/130

DE 697 31 519 T2 2005.12.01
55/130

DE 697 31 519 T2 2005.12.01
56/130

DE 697 31 519 T2 2005.12.01
[0276] Die folgenden Registerdefinitionen werden bereitgestellt, um die Register von Tabelle (1) zu erklären.

Unterbrechungsinformation

[0277] Es gibt drei Unterbrechungspins von dem EPSM 210 an die CPU 230: CPUINTHASHL, CPUINTPKTL
und CPUINTL. Der CPUINTHASHL wird nur geltend gemacht, wenn ein Hash-Miss aufgetreten ist, und wird
durch Lesen des Hash-Adresse-Tief-Registers (bei Offset'hcc) gelöscht. Der CPUINTPKTL wird geltend ge-
57/130

DE 697 31 519 T2 2005.12.01
macht, wenn entweder ein Paket in dem Paketschnittstellen-FIFO verfügbar ist oder wenn der Paketschnitt-
stellen-FIFO freien Pufferplatz zum Senden von mehr Paketdaten hat. Der CPUINTL wird für vier mögliche
Quellen geltend gemacht: Eine dieser Quellen betrifft acht mögliche Quellen im MCB 404. Die Unterbrechungs-
quellen werden eine Unterbrechung der CPU 230 bewirken, wenn sie nicht maskiert werden. Damit die Infor-
mation der Unterbrechungsquelle verfügbar werden kann, ohne die CPU 230 zu unterbrechen, ist ein Abfra-
gemechanismus verfügbar. Das Maskieren einer Unterbrechungsquelle bewirkt, dass die Unterbrechungen
von der CPU 230 ferngehalten werden, aber die Information noch in dem Abfragequellenregister verfügbar ist.
Wenn z. B. das STAT_RDY-Maskenbit gesetzt ist, wird, wenn die verlangte Statistik verfügbar ist, keine Unter-
brechung auftreten, aber die CPU 230 kann noch bestimmen, dass die Statistik bereit ist, durch Lesen des Ab-
frageregisters gelesen zu werden. Man beachte: Das Unterbrechungsquellenregister wird durch Lesen dessel-
ben gelöscht, aber das Abfragequellenregister muss beschrieben werden, um es zu löschen.

[0278] Unterbrechungsquelle 1 Reg. – (Offset = 'h00) Quelle der an die CPU 230 gesendeten Unterbrechung.
Dieses Register wird durch den EPSM 210 aktualisiert, und dann wird die Unterbrechung an die CPU 230 ge-
sendet. Wenn die CPU dieses Register liest, wird der Inhalt gelöscht. Ein Wert von 1 in einem Bit zeigt an, dass
eine Unterbrechung aufgetreten ist. Die Vorgabe ist 32'h0000_0000.

[0279] Bit 0 (W/R) – MCB_INT ist die Unterbrechung, die der CPU 230 sagt, dass eine Unterbrechung im MCB
404 aufgetreten ist, und dass das MCB-Unterbrechungsquellenregister gelesen werden muss, um die Unter-
brechung weiter zu verstehen. Vorgabe ist 0.

[0280] Bit 1 (W/R) – MEM_RDY ist die Unterbrechung, die der CPU 230 sagt, dass die verlangten Speicher-
daten im Pufferraum vorhanden sind. Vorgabe ist 0.

[0281] Bit 2 (W/R) – ABORT_PKT ist die Unterbrechung, die der CPU 230 zeigt, dass das ABORT_IN* Signal
in den PCB 406 geltend gemacht wurde. Vorgabe ist 0.

[0282] Bit 3 (W/R) – STAT_RDY ist die Unterbrechung, die der CPU 230 sagt, dass die verlangte Statistikin-
formation im PCB 406 Pufferraum bereit ist. Vorgabe ist 0.

[0283] Bits 4–31 (RO) – RESERVIERT. Immer als 0 gelesen.

[0284] Unterbrechungsmaske 1 Reg. – (Offset = 'h04) Unterbrechungen, die durch die CPU 230 zu maskieren
sind. Ein Wert von 1 in einem Bit zeigt an, dass die Unterbrechung maskiert ist. Vorgabe = 32'h0000_001f.

[0285] Unterbrechungsquelle 2 Reg. – (Offset = 'h18) Quelle der an die CPU 230 gesendeten CPUINTP-
KTL-Unterbrechung. Dieses Register wird durch den EPSM 210 aktualisiert, und dann wird die Unterbrechung
an die CPU 230 gesendet. Wenn die CPU 230 dieses Register liest, wird der Inhalt gelöscht. Ein Wert von 1

PCB-Registerschnittstelle für Unterbrechungsquellenregister

McbInt (in) – Eingabe vom MCB, die Bit 0 bestimmt.
MemRdy (in) – Eingabe vom FIFO, die Bit 1 bestimmt.
AbortPktInt (in) – Eingabe von der HCB 402 Schnittstelle, die Bit 4 be-

stimmt.
StatRdyInt (in) – Eingabe von der QC-Schnittstelle, die Bit 5 be-

stimmt.
CpuInt_(out) – das Signal an die CPU 230, das anzeigt, dass eine

Unterbrechung stattgefunden hat

Bit 0 (W/R) – Maskiert die McbInt-Unterbrechung an die CPU
230. Vorgabe ist 1.

Bit 1 (W/R) – Maskiert die MemRdy-Unterbrechung an die CPU
230. Vorgabe ist 1.

Bit 2 (W/R) – Maskiert die AbortPktInt-Unterbrechung an die CPU
230. Vorgabe ist 1.

Bit 3 (W/R) – Maskiert die StatRdyInt-Unterbrechung an die CPU
230. Vorgabe ist 1.

Bit 4 (W/R) – Maskiert die Hash-Miss-Unterbrechung an die CPU
230. Vorgabe ist 1.

Bit 5–31 (RO) – RESERVIERT. Immer als 0 gelesen.
58/130

DE 697 31 519 T2 2005.12.01
in einem Bit zeigt an, dass eine Unterbrechung aufgetreten ist. Vorgabe = 32'h0000_0000.

[0286] Unterbrechungsmaske 2 Reg. – (Offset = 'h1c) Unterbrechungen, die von der CPU 230 zu maskieren
sind. Ein Wert von 1 in einem Bit zeigt an, dass die Unterbrechung maskiert ist. Vorgabe ist 32'h0000_0003.

[0287] Abfragequellen 1 & 2 Reg. – (Offest = 'h14) Dieses Register enthält die maskierte Unterbrechungsin-
formation und wird durch die CPU 230 gelöscht, die Einsen schreibt, um die gewünschten Bits zu löschen. Dies
erlaubt der CPU 230, abzufragen anstatt unterbrochen zu werden. Die CPU 230 wird jede Unterbrechungs-
quelle zu maskieren haben, die sie stattdessen abzufragen wünschen würde.

Bit 0 (W/R) – PKT-AVAIL ist die Unterbrechung, die der CPU 230
sagt, dass Paketdaten für die CPU 230 vorhanden
sind. Vorgabe ist 0.

Bit 1 (W/R) – BUF_AVAIL ist die Unterbrechung, die der CPU 230
sagt, dass Pufferplatz für die CPU 230 verfügbar ist,
um Paketdaten zu senden. Vorgabe ist 0.

Bits 2–13 (RO) – RESERVIERT. Immer als 0 gelesen.

PCB-Registerschnittstelle für Unterbrechungsquellenregister

PktAvailInt (in) – Eingabe vom TX FIFO, die Bit 2 bestimmt.
BufAvailInt (in) – Eingabe vom RX FIFO, die Bit 3 bestimmt.

CpuInt_Pkt (out) – das Signal an die CPU 230, das anzeigt, dass eine
Paketunterbrechung aufgetreten ist.

Bit 0 (W/R) – Maskiert die PktAvailInt-Unterbrechung an die CPU
230. Vorgabe ist 1.

Bit 1 (W/R) – Maskiert die BufAvailInt-Unterbrechung an die CPU
230. Vorgabe ist 1.

Bits 2–31 (RO) – RESERVIERT. immer als 0 gelesen.

Bit 0 (W/R) – MCB_INT ist die Unterbrechung, die der CPU 230
sagt, dass eine Unterbrechung im MCB 404 aufgetre-
ten ist, und dass das Unterbrechungsquellenregister
gelesen werden muss, um die Unterbrechung weiter
zu verstehen. Vorgabe ist 0.

Bit 1 (W/R) – MEM_RDY ist die Unterbrechung, die der CPU 230
sagt, dass die verlangten Speicherdaten im Puffer-
raum vorhanden sind. Vorgabe ist 0.

Bit 2 (W/R) – PKT_AVAIL ist die Unterbrechung, die der CPU 230
sagt, dass Paketdaten für die CPU 230 vorhanden
sind. Vorgabe ist 0.

Bit 3 (W/R) – BUF_AVAIL ist die Unterbrechung, die der CPU 230
sagt, dass Pufferplatz für die CPU 230 verfügbar ist,
um Paketdaten zu senden. Vorgabe ist 0.

Bit 4 (W/R) – ABORT_PKT ist die Unterbrechung, die der CPU
230 sagt, dass das Abort In Signal in den PCB 406
geltend gemacht wurde. Vorgabe ist 0.

Bit 5 (W/R) – STAT_RDY ist die Unterbrechung, die der CPU 230
sagt, dass die verlangte Statistikinformation im PCB
406 Pufferplatz bereit ist. Vorgabe ist 0.

Bit 6 (W/R) – HASH_MISS ist die Unterbrechung, die der CPU
230 sagt, dass ein Hash-Miss aufgetreten ist.

Bits 7–31 (RO) – RESERVIERT. Immer als 0 gelesen.

PCB-Schnittstelle für Abfragequellenregister

McbInt (in) – Eingabe vom MCB, die Bit 0 bestimmt.
MemRdy (in) – Eingabe vom Speicher-FIFO, die Bit 1 bestimmt.
59/130

DE 697 31 519 T2 2005.12.01
Paketdatenkonfiguration

[0288] Es gibt drei für Paketdatenübertragungen verwendete Reister: Eines für empfangene Pakete und zwei
für Sendepakete. Die empfangenen Pakete sind mit dem ReadOutPkt Signal vom HSB 206 verbunden. Die
Sendepakete sind mit dem WriteInPkt Signal vom HSB 206 verbunden. Beachte: Die Begriffe Empfangen und
Senden sind auf den HSB 206 bezogen. Die CPU 230 sollte auf das geeignete Register zugreifen, bevor auf
den Paketdatenpuffer zugegriffen wird.

[0289] Paketinformations RdPkt Reg. – (Offset = 'h08) Die benötigte Information für das durch die CPU 230
empfangene Datenpaket. Empfange Pakete beziehen sich auf den HSB 206. Vorgabe = 32'h0000_0000.

[0290] Paketinformations WrPkt Reg. – (Offset = 'h0c) Die benötigte Information für das durch den HSB 206
gesendete Datenpaket. Sendepaket bezieht sich auf den HSB 206. Vorgabe ist 32'h0000_0000.

[0291] Gesamtpaket-Info – (Offset = 'h24) Dies ist die Information, die der MCB 404 dem Paket hinzufügt, be-
vor es an die CPU 230 gesendet wird. Dieser Wert wird gesetzt, wenn es ein SOP für ein an die CPU gerich-
tetes Paket gibt. Vorgabe = 32'h0000_0000.

PktAvailInt (in) – Eingabe vom TX FIFO, die Bit 2 bestimmt.
BufAvailInt (in) – Eingabe vom RX FIFO, die Bit 3 bestimmt.
AbortPktInt (in) – Eingabe von HCB 402 Schnittstelle, die Bit 4 be-

stimmt.
StatRdyInt (in) – Eingabe von QC-Schnittstelle, die Bit 5 bestimmt.
m_HashInt (in) – Eingabe vom MCB 404, die Bit 6 bestimmt.

Bit 0 (W/R) – SOP. Start von Paket von der CPU 230. 1 = SOP.
Bit 1 (W/R) – EOP. Ende von Paket von der CPU 230. 1 = EOP.
Bits 2–15 (RO) – RESERVIRET. Immer als 0 gelesen.
Bits 16–23 (W/R) – Länge von Daten im FIFO, wenn EOP geltend ge-

macht ist (Zahl von Bytes.
Bits 24–31 (RO) – RESERVIERT. Immer als 0 gelesen.

PCB-Registerschnittstelle für Paketinformations RdPkt Register.

r_Sop (out) – Paketstartanzeiger, gegeben an die HSB 206
Schnittstelle.

r_Eop (out) – Paketendeanzeiger, gegeben an die HSB 206
Schnittstelle.

r_Iength (out) – Länge in Bytes von Daten im Puffer, wenn EOP an-
gezeigt wird.

Bit 0 (W/R) – SOP. Start von Paket vom HSB 206. 1 = SOP.
Bit 1 (W/R) – EOP. Ende von Paket vom HSB 206. 1 = EOP.
Bits 2–5 (W/R) – Bytefreigaben für mit SOP oder EOP verbundenes

DWORD. Gewöhnlich sind alle Bytes freigegeben. 1 =
freigegeben.

Bits 6–15 (R/O) – RESRVIERT. Immer als 0 gelesen.
Bits 16–23 (W/R) – Länge von Daten im FIFO (Zahl von Bytes)
Bits 24–31 (RO) – RESERVIERT. Immer als 0 gelesen.

PCB-Registerschnittstelle für Paketinformations WrPkt Register.

h_SopIn_ (in) – SOP-Anzeiger von der HSB 206 Schnittstelle
h_EopIn_ (in) – EOP-Anzeiger von der HSB 206 Schnittstelle
h_ByteAalIn_ (in) – Bytefreigbaben von der HSB 206 Schnittstelle

Bits 0–15 (RO) – Paketlänge
Bits 16–23 (RO) – Quellenport
Bits 24–31 (RO) – Zielport
60/130

DE 697 31 519 T2 2005.12.01
Speicheranwesenheits-Erfassung

[0292] SIMM/DIMM-Anwesenheits-Erfassungsregister – (Offset = 'h10) Enthält die Information über die
SIMMs in dem System. Diese Information wird kurz nach Rücksetzen aus einem Schieberegister auf der Pla-
tine geladen.

Vierfach-Kaskaden-Statistik-Einstellung

[0293] QC-Statistik-Informationsregister – (Offset = 'h20). Einstellinformation zum Lesen der Vierfach-Kaska-
den-Statistikregister. Die CPU schreibt dieses Register, das die Statistik-Lesungen einleitet. Vorgabe =
32'h000b_8000.

Bits 0–3 (RO) – simm1_pd[0...3].
Bits 4–7 (RO) – simm2_pd[0...3].
Bits 8–11 (RO) – simm3_pd[0...3].
Bits 12–15 (RO) – simm4_pd[0...3].
Bits 16–31 (RO) – RESERVIERT. Immer als 0 gelesen.

PCB-Registerschnittstelle für Anwesenheits-Erfassungsregister

i_PDSerIn (in) – Serielle Eingabe von Anwesenheitserfas-
sungs-Schieberegistern.

Bits 0–1 (W/R) – Portnummer. Dies ist die Portnummer, dessen Sta-
tistik gelesen wird. Der zu lesende Port wird durch die-
se Nummer und die spezifizierte Vierfach-Kaskade
bestimmt.

Bits 2–4 (W/R) – QC-Nummer. Bezeichnet die Vierfach-Kaskade, auf
die zuzugreifen ist. Reservierte Kombinationen 3'b110
und 3'b111.

Bits 5–9 (W/R) – Registernummer. Dies ist die Nummer des ersten für
den spezifizierten Port zu lesenden Registers.

Bits 10–14 (W/R) – Zahl von Registern. Die ist die Zahl zu lesender Re-
gister. Beachte: Software ist nötig, um diese Zahl zu-
sammen mit der Registernummer im Bereich zu le-
sender, verfügbarer Register zu halten.

Bits 15–19 (W/R) – Maximale Zahl von Registern. Dies ist die maximale
Zahl von Statistikregisterrn, die den Vierfach-Kaska-
den verfügbar sind. Vorgabe = 6'h17.

Bits 20–31 (RO) – RESERVIERT. Immer als 0 gelesen.

PCB-Registerschnittstelle für Vierfach-Kaskaden-Statistik-Einstellregister

r_QcStatPortNo (out) – Portnummer zum Statistik-Lesen. Dies ist ein Wert
zwischen 0 und 3. Er wird zusammen mit der
QC-Nummer benutzt, um zu bestimmen, welcher Port
in dem Schalter beobachtet wird.

r_QcStatQcNo (out) – Qc-Nummer. Wird mit der obigen Portnummer ver-
wendet.

r_StatRegNo (out) – Anfangsregisternummer. Dies ist die Nummer des
ersten zu lesenden Statistikregisters.

r_NoStatRegs (out) – Zahl zu lesender Statistikregister.
r_Maxregs (out) – Maximalzahl von Statistikregistern, die existieren.

Diese steht besonders für künftigen Gebrauch zur
Verfügung, wenn die Zahl von Statistiken, die unter-
halten werden, geändert wird.
61/130

DE 697 31 519 T2 2005.12.01
EPSM 210 Einstellung

[0294] EPSM-Einstellregister – (Offset = 'h30) Allgemeine Einstellparameter für dem EPSM 210. Vorgabe =
32'h0007_000 oder 32'h0007_3000, abhängig von clk1sel-Eingabe.

Bit 0 (W/R) – TPI installiert. 1 = TPI 220 installiert. Vorgabe = 0.
Dieses Bit kann nur geschrieben werden, wenn Mas-
ter Switch Enable (Bit 2) negiert ist.

Bit 1 (W/R) – EXP installiert. 1 = Erweiterung installiert. Vorgabe
= 0. Dieses kann nur geschrieben werden, wenn Mas-
ter Switch Enable (Bit 2) negiert ist.

Bit 2 (W/R) – Master Switch Enable. 1 = ermöglicht Paketverkehr.
Vorgabe = 0.

Bits 3–4 (W/R) – QcXferSize[1:0]. Diese Bits können nur geschrie-
ben werden, wenn Master Switch Enable (Bit 2) ne-
giert ist.
00 = 16 Byte Übertragungsgröße auf dem HSB 206.
01 = 32 Byte Übertragungsgröße auf dem HSB 206.
10 = 64 Byte Übertragungsgröße auf dem HSB 206.
11 = Ungültige Kombination.

Bits 5–6 (W/R) – PTIXferSize[1:0]. Diese Bits können nur geschrie-
ben werden, wenn Master Switch Enable (Bit 2) ne-
giert ist.
00 = 16 Byte Übertragungsgröße auf dem HSB 206.
01 = 64 Byte Übertragungsgröße auf dem HSB 206.
10 = 128 Byte Übertragungsgröße auf dem HSB 206.
11 = 256 Byte Übertragungsgröße auf dem HSB 206.

Bit 7 (W/R) – AIFCS. Dieses Bit wird benutzt, um den Vier-
fach-Kaskaden zu ermöglichen, die FCS-Bits automa-
tisch einzufügen. Dies wird nur für die Pakete von der
CPU 230 verwendet.

Bit 8 (W/R) – DramWrDis. Dies wird, wenn gesetzt, Schreiben von
der CPU 230 in das DRAM unterbinden. Vorgabe = 0.

Bit 9 (W/R) – SramWrDis. Dies wird, wenn gesetzt, Schreiben von
der CPU 230 in das interne SRAM unterbinden. Vor-
gabe = 0.

Bits 10–12 (W/R) – EPSM 210 Adressdecodierung. Diese Bits werden
benutzt, um den EPSM 210 Registerraum und die
Speicherschnittstelle zu decodieren.

Bit 13 (RO) – clk1sel.
1 = CLK2 Frequenz ist 1 × CLK1 Frequenz.
0 = CLK2 Frequenz ist 2 × CLK1 Frequenz.

Bits 14–21 (RO) – CPU Portnummer. Bezeichnet die CPU Portnum-
mer. Vorgabe = 8'h1c.

Bits 22–31 (RO) – RESERVIERT. Immer als 0 gelesen.

PCB-Registerschnittstelle für EPSM-Einstellregister

clk1sel (in) – Eingabe von Pin, um zu bestimmen, ob clk1 und
clk2 gleiche Raten haben.

r_DramWrDis (out) – Lässt CPU 230 wissen, dass Schreibungen in das
DRAM unterbunden sind.

r_SramWrDis (out) – Lässt CPU 230 wissen, dass Schreibungen in das
interne SRAM unterbunden sind.

r_EPSMAdrDcd (out) – Diese 3-Bit Zahl wird mit Adressbits 31:29 auf dem
CPU 230 Bus verglichen.
62/130

DE 697 31 519 T2 2005.12.01
[0295] EPSM-Revisionsregister – (Offset = 'h40) Die Revisionsnummer des EPSM 210.

PCB-Registerschnittstelle für EPSM-Revisionsregister

Keine

Porteinstellung

[0296] Portgeschwindigkeitsregister – (Offset = 'h34) Bitmap, die die Geschwindigkeit jedes Ports enthält. 1
= 100 Mhz, 0 = 10 MHz. Vorgabe = 32'h0f00_0000.

[0297] Porttyp-Register- (Offset = 'h38) Bitmap, die den Typ jedes Ports enthält. 1 = TLAN, 0 = Vierfach-Kas-
kade. Vorgabe = 32'h0100_000.

HCB-Registerschnittstelle für EPSM-Einstellregister

r_MstrSwEn (out) – Sagt dem Arbiter usw., dass der Schalter für Paket-
verkehr freigegeben ist.

r_TpiInst (out)
r ExpInst (out)
r_NonULBCMode[1:0] (out)
r_ULBCMode[1:0] (out)
r_AIFCS (out)

MCB-Registerschnittstelle für EPSM-Einstellregister

r_DramWrDis (out) – Unterbindet CPU-Anforderungen für DRAM-Schrei-
bungen.

r_SramWrDis (out) – Unterbindet CPU-Anforderungen für Schreibungen
in das interne SRAM.

Bits 0–7 (RO) – Die Revisionsnummer des EPSM 210.
Bits 8–31 – RESERVIERT. Immer als 0 gelesen.

Bit 0 (W/R) – Port 0 Geschwindigkeit.
Bit 1 (W/R) – Port 1 Geschwindigkeit.
Bit 27 (W/R) – Port 27 Geschwindigkeit.
:
:
Bits 28–31 (RO) – RESERVIERT. Immer als 0 gelesen.

HCB-Registerschnittstelle für Portgeschwindigkeitsregister

r_PortSpd[27:0] (out) – Portgeschwindigkeits-Bitmap für HCB 402 Blöcke.

Bit 0 (W/R) – Port 0 Typ
Bit 1 (W/R) – Port 1 Typ
:

:
Bit 27 (W/R) – Port 27 Typ
Bit 28–31 (RO) – RESERVIERT. Immer als 0 gelesen.

MCB-Register- & HCB-Registerschnittstelle für Porttyp-Register

r_PortType[27:0] (out) – Porttyp-Bitmap für den MCB-Bus 404 & HCB-Bus
402.
63/130

DE 697 31 519 T2 2005.12.01
CPU-Speicheranforderung

[0298] Die Speicheranforderungen durch die CPU 230 können auf zwei Wegen erfolgen. Das folgende Re-
gister wird in beiden Verfahren verwendet; die CPU greift auf das Register nur direkt zu, wenn das Anfangsre-
gister/FIFO-Speicheranforderungsverfahren verwendet wird.

[0299] Speicheranforderungsregister – (Offset = 'h3c) Die CPU schreibt in dieses Register, um Speicher-Le-
sen oder Schreiben anzufordern. Dieser Anforderungsmechanismus wird benutzt, um entweder auf das exter-
ne DRAM oder das interne SRAM zuzugreifen.

Bits 0–23 (W/R) – Anfangsadresse[25:0] der Übertragung. Für
SRAM-Zugriffe sind Bits 23–8 reserviert. Bits 7:0
adressieren die 256 24-Bit Wörter.

Bits 24 (W/R) – Speicherauswahl.
0 = Zugriff auf externes DRAM (d. h. Paket- &
Hash-Speicher).
1 = Zugriff auf linternes SRAM (d. h. Paketsteuerre-
gister).

Bit 25 (W/R) – Übertragungslänge.
0 = 1 Übertragung (4 Bytes)
1 = 4 Übertragungen (16 Bytes).
Anmerkung: Die Startadresse & Übertragungslänge
sollten nicht so eingestellt sein, dass die Übertragung
eine 2K Seitengrenze kreuzen würde. Ein Weg, dies
zu garantieren, ist, sicherzustellen, dass alle Daten-
strukturen (wie Hash-Einträge) 16-Byte-ausgerichtet
sind.

Bits 26–29 (W/R) – Bytefreigabe[3:0]. (1 = geltend gemacht). Nützlich
zum Schreiben von Teilwörtern. Wird auch im
EDO-Testmodus benutzt, um ohne CAS zu lesen.
Zum Schreiben mit Übertragungslänge größer als 1,
müssen Bytefreigaben 1111 sein. Diese sind beim Le-
sen ohne Bedeutung, sofern nicht der EDO-Testmo-
dus eingestellt ist.

Bit 30 (W/R) – Schreiben/Lesen. 0 = Lesen. 1 = Schreiben.
Bit 31 (W/R) – Treffer auf gesperrte Seite. Zeigt an, dass eine an-

dere CPU-Anfordederung in der gleichen Speicher-
seite folgen wird. Der DRAM-Speicher-Arbiter wird
dem anderen Anforderer das Speichersystem nicht
gewähren, und RAS wird nach dem momentanen Zy-
klus geltend gemacht bleiben. Wird nur im EDO-Test-
modus benutzt. Kein anderer Anforderer, einschließ-
lich Auffrischung, hat Zugriff auf den Speicher, wäh-
rend gesetzt. Sollte niemals in SRAM-Zugriffen (au-
ßer für Hardware-Fehlersuche) benutzt werden, da
ankommender Paketspeicherverkehr aufhören wird,
während das SRAM gesperrt ist.
64/130

DE 697 31 519 T2 2005.12.01
[0300] Anmerkung: Die Folgende Sequenz sollte benutzt werden, um auf EDO-Speicher zu prüfen:
1: EDO-Testmodusbit im Speichersteuerregister setzen.
2: Ein DWORD in die zu prüfende Bank mit 0000h schreiben.
3: Das gleiche DWORD mit gesetztem Gesperrte-Seite-Treffer-Bit und Bytefreigaben = 1111b lesen. Nach
diesem Lesen werden EDO-DRAMs MD tief halten, während FPM-DRAMs MD schweben lassen, und ein
Pull-Up-Widerstand auf MD[0] diese Leitung nach etwa 100 ns hoch ziehen wird.
4: Das DWORD mit gelöschtem Gesperrte-Seite-Treffer-Bit und den Bytefreigaben = 0000b erneut lesen.
Dies ist ein Lesen ohne CAS geltend gemacht. MD[0] wird für EDO-DRAM tief und für FPM hoch sein.
5: Schritte 1–4 für jede installierte Speicherbank wiederholen. Speichertyp kann nur auf EDO-DRAM ge-
setzt werden, wenn alle Bänke EDO-DRAM enthalten.
6: EDO-Testmodusbit löschen und den Speichertyp setzen. EDO-Testmodus nicht gesetzt lassen.

Gemischter Port

[0301] Gemischter-Port-Register – (Offset = 'h148) Die Steuerungen und welcher Port im gemischten Modus
beobachtet wird, ist in dem Register enthalten. Vorgabe = 32'h0000_0000. Dieses Register kann nur geschrie-
ben werden, wenn Master Switch Enable (EPSM-Einstellregister) negiert ist.

Hochgeschwindigkeits-Busmonitor

[0302] HSB-Benutzungs-Einstellregister – (Offset = 'h54) Die Steuerungen und welcher Port für HSB 206 Be-
nutzung überwacht werden wird. Vorgabe = 32'h0000_0000.

MCB-Registerschnittstelle für Speicheranforderungsregister

CpuAdr[25:2] (out) – Übergibt Startadresse Memctl & Mcbsram Modul.
CpuBE[3:0] (out) – Übergibt Bytefreigaben an Memctl & Mcbsram Mo-

dul.
CpuLn[1:0] (out) – Übergibt Übertragungslänge an Memctl & Mcbsram

Modul (00, wenn In = 1, 11, wenn In = 4).
CpuMemSel (out) – Steuert Mux zwischen externen DRAM (0) 6 inter-

nen SRAM (1) Daten.
CpuWr (out) – an Memctl & Mcbsram Modul geltend gemacht,

wenn Schreib/Lese-Bit = 1.
CpuPgHit (out) – an Memctl & Mcbsram Modul geltend gemacht,

wenn Gesperrte-Seite-Treffer-Bit = 1.
CpuReq (out) – an Memctl & Mcbsram geltend gemacht, wenn das

Speicheranforderungsregister geschrieben wird und
Speicherauswahl = 0. Muss geltend gemacht bleiben,
bis CpuAck geltend gemacht wird.

CpuAck (in) – wird von Memctl Modul an Mcb-Registern geltend
gemacht, wenn CpuReq angenommen wird.

CpuInternalReq (out) – An McbSram geltend gemacht, wenn das Speicher-
anforderungsregister geschrieben wird und Speicher-
auswah = 1. Muss geltend gemacht bleiben, bis
CpuInternalAck geltend gemacht wird.

CpuInternalAck (in) – wird vom Mcbsram Modul an Mcb-Registern geltend
gemacht, wenn CpuInternalReq angenommen wird.

Bits 0–7 (W/R) – Portnummer, die im gemischten Modus beobachtet
wird.

Bits 8–15 (W/R) – Der Port, der Daten, die empfangen werden, zeigen
wird.

Bits 16–23 (W/R) – Der Port, der Daten, die an den beobachteten Port
gesendet werden, zeigen wird.

Bits 24–31 (RO) – RESERVIERT. Immer als 0 gelesen.

Bits 0–7 (W/R) – Portnummer oder Total.
Bits 8–9 (W/R) – Modus.
Bits 10–31 (RO) – RESERVIERT. immer als 0 gelesen.
65/130

DE 697 31 519 T2 2005.12.01
[0303] HSB-Benutzungsregister – (Offset = 'b58) HSB 206 Benutzung ist die mittlere Zeit, die der ausgewähl-
te Port auf dem HSB 206 ist. Vorgabe = 32'h0000_0000:

CUT-THRU/STORE-N-FORWARD INFORMATION

[0304] Quellen-CT_SNF-Register – (Offset = 'h5c) Bitmap, die den CT/SnF-Status des Quellenports enthält.
0 = CT, 1 = SNF. Vorgabe = 32'h0000_0000.

[0305] Ziel-CT_SNF-Register – (Offset = 'h60) Bitmap, die den CT/SnF-Status des Zielports enthält. 0 = CT;
1 = SNF. Vorgabe = 32'h0000_0000.

Arbitrationsinformation

[0306] Arbitrationsmodusregister – (Offset = 'h74) Enthält den Arbitrationsmoduswert. Vorgabe =
32'h0000_0000. Dieses Register kann nur geschrieben werden, wenn Master Switch Enable (EPSM-Einstell-
register) negiert ist.

[0307] Arbitrationsgewichtsregister #1 – (Offset = 'h64) Das Gewicht für Ports 0–7 für Arbitrationsmodus mit

Bits 0–31 (RO) – Mittlere Zeit, die der ausgewählte Port auf dem HSB
206 ist.

Bit 0 (W/R) – Port 0 Quelle CT_SNF.
Bit 1 (W/R) – Port 1 Quelle CT_SNF.
:

:
Bit 27 (W/R) – Port 27 Quelle CT_SNF.
Bits 28–31 (RO) – RESERVIERT. Immer als 0 gelesen.

HCB-Registerschnittstelle für Quellen-CT_SNF-Register

TblSrcPrt (in) – Der momentane Paketquellenport. 8-Bit Eingabe.
r_RxPortCtSnf (out) – Der CT_SNF-Status für TblSrcPrt. 1-Bit Ausgabe.

Bit 0 (W/R) – Port 0 Ziel CT_SNF.
Bit 1 (W/R) – Port 1 Ziel CT_SNF.
:
:
Bit 27 (W/R) – Port 27 Ziel CT_SNF.
Bits 28–31 (RO) – RESERVIERT. Immer als 0 gelesen.

HCB-Registerschnittstelle für Quellen-CT_SNF-Register

TblDstPrt (in) – Der momentane Paketzielport. (8-Bit Eingabe).
r_TxPortCtSnf (out) – Der CT_SNF-Satus für TblDstPrt. 1-Bit Ausgabe).

Bits 0–1 (W/R) – Arbitrationsmodus.
2'b00: Wer-zuerst-kommt, -mahlt-zuerst-Arbitrations-
modus.
2'b01: Arbitationsmodus mit gewichteter Priorität.
2'b10: Umlauf-Arbitrationsmodus.
2'b11: Bewirkt auch Wer-zuerst-kommt, -mahlt-zu-
erst-Modus.

Bits 2–31 (RO) – RESERVIERT. Immer als 0 gelesen.

HCB-Registerschnittstelle für Arbitrationsmodusregister

r_ArbMode (out) – Der oben gezeigte 2-Bit Wert, der in Arbitrationsmo-
dulen im HCB 402 benötigt wird.
66/130

DE 697 31 519 T2 2005.12.01
gewichteter Priorität.

[0308] Arbitrationsgewichtsregister #2 – (Offset = 'h68) Das Gewicht für Ports 8–15 für Arbitrationsmodus mit
gewichteter Priorität.

Bits 0–3 (W/R) – Port 0 Arbitrationsgewicht für Modus mit gewichte-
ter Priorität.

Bits 4–7 (W/R) – Port 1 Arbitrationsgewicht für Modus mit gewichte-
ter Priorität.

Bits 8–11 (W/R) – Port 2 Arbitrationsgewicht für Modus mit gewichteter
Priorität.

Bits 12–15 (W/R) – Port 3 Arbitrationsgewicht für Modus mit gewichteter
Priorität.

Bits 16–19 (W/R) – Port 4 Arbitrationsgewicht für Modus mit gewichte-
ter Priorität.

Bits 20–23 (W/R) – Port 5 Arbitrationsgewicht für Modus mit gewichteter
Priorität.

Bits 24–27 (W/R) – Port 6 Arbitrationsgewicht für Modus mit gewichteter
Priorität.

Bits 28–31 (W/R) – Port 7 Arbitrationsgewicht für Modus mit gewichteter
Priorität.

HCB-Registerschnittstelle für Arbitrationsgewichtsregister #1

r_ArbWt0 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 0 im gewichteten Arbitrationsmodus
verwendet.

r_ArbWt1 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 1 im gewichteten Arbitrationsmodus
verwendet.

r_ArbWt2 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 2 im gewichteten Arbitrationsmodus
verwendet.

r_ArbWt3 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 3 im gewichteten Arbitrationsmodus
verwendet.

r_ArbWt4 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 4 im gewichteten Arbitrationsmodus
verwendet.

r_ArbWt5 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 5 im gewichteten Arbitrationsmodus
verwendet.

r_ArbWt6 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 6 im gewichteten Arbitrationsmodus
verwendet.

r_ArbWt7 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 7 im gewichteten Arbitrationsmodus
verwendet.
67/130

DE 697 31 519 T2 2005.12.01
[0309] Arbitrationsgewichtsregister #3 – (Offset ='h6c) Das Gewicht für Ports 16–23 für Arbitrationsmodus mit
gewichteter Priorität.

Bits 0–3 (W/R) – Port 8 Arbitrationsgewicht für Modus mit gewichteter
Priorität.

Bits 4–7 (W/R) – Port 9 Arbitrationsgewicht für Modus mit gewichte-
ter Priorität.

Bits 8–11 (W/R) – Port 10 Arbitrationsgewicht für Modus mit gewichte-
ter Priorität.

Bits 12–15 (W/R) – Port 11 Arbitrationsgewicht für Modus mit gewichte-
ter Priorität.

Bits 16–19 (W/R) – Port 12 Arbitrationsgewicht für Modus mit gewichte-
ter Priorität.

Bits 20–23 (W/R) – Port 13 Arbitrationsgewicht für Modus mit gewichte-
ter Priorität.

Bits 24–27 (W/R) – Port 14 Arbitrationsgewicht für Modus mit gewichte-
ter Priorität.

Bits 28–31 (W/R) – Port 15 Arbitrationsgewicht für Modus mit gewichte-
ter Priorität.

HCB-Registerschnittstelle für Arbitrationsgewichtsregister #2

r_ArbWt8 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 8 im gewichteten Arbitrationsmodus
verwendet.

r_ArbWt9 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 9 im gewichteten Arbitrationsmodus
verwendet.

r_ArbWt10 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 10 im gewichteten Arbitrationsmo-
dus verwendet.

r_ArbWt11 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 11 im gewichteten Arbitrationsmo-
dus verwendet.

r_ArbWt12 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 12 im gewichteten Arbitrationsmo-
dus verwendet.

r_ArbWt13 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 13 im gewichteten Arbitrationsmo-
dus verwendet.

r_ArbWt14 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 14 im gewichteten Arbitrationsmo-
dus verwendet.

r_ArbWt15 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 15 im gewichteten Arbitrationsmo-
dus verwendet.
68/130

DE 697 31 519 T2 2005.12.01
[0310] Arbitrationsgewichtsregister #4 – (Offset = 'h70) Das Gewicht für Ports 24–28 für Arbitrationsmodus
mit gewichteter Priorität.

Bits 0–3 (W/R) – Port 16 Arbitrationsgewicht für Modus mit gewich-
teter Priorität.

Bits 4–7 (W/R) – Port 17 Arbitrationsgewicht für Modus mit gewich-
teter Priorität.

Bits 8–11 (W/R) – Port 18 Arbitrationsgewicht für Modus mit gewichte-
ter Priorität.

Bits 12–15 (W/R) – Port 19 Arbitrationsgewicht für Modus mit gewichte-
ter Priorität.

Bits 16–19 (W/R) – Port 20 Arbitrationsgewicht für Modus mit gewichte-
ter Priorität.

Bits 20–23 (W/R) – Port 21 Arbitrationsgewicht für Modus mit gewichte-
ter Priorität.

Bits 24–27 (W/R) – Port 22 Arbitrationsgewicht für Modus mit gewichte-
ter Priorität.

Bits 28–31 (W/R) – Port 23 Arbitrationsgewicht für Modus mit gewich-
teter Priorität.

HCB-Registerschnittstelle für Arbitrationsgewichtsregister #3

r_ArbWt16 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 16 im gewichteten Arbitrationsmo-
dus verwendet.

r_ArbWt17 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 17 im gewichteten Arbitrationsmo-
dus verwendet.

r_ArbWt18 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 18 im gewichteten Arbitrationsmo-
dus verwendet.

r_ArbWt19 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 19 im gewichteten Arbitrationsmo-
dus verwendet.

r_ArbWt20 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 20 im gewichteten Arbitrationsmo-
dus verwendet.

r_ArbWt21 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 21 im gewichteten Arbitrationsmo-
dus verwendet.

r_ArbWt22 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 22 im gewichteten Arbitrationsmo-
dus verwendet.

r_ArbWt23 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 23 im gewichteten Arbitrationsmo-
dus verwendet.

Bits 0–3 (W/R) – Port 24 Arbitrationsgewicht für Modus mit gewichte-
ter Priorität.

Bits 4–7 (W/R) – Port 25 Arbitrationsgewicht für Modus mit gewichte-
ter Priorität.

Bits 8–11 (W/R) – Port 26 Arbitrationsgewicht für Modus mit gewichte-
ter Priorität.

Bits 12–15 (W/R) – Port 27 Arbitrationsgewicht für Modus mit gewichte-
ter Priorität.

Bits 16–19 (W/R) – Port 28 Arbitrationsgewicht für Modus mit gewichte-
ter Priorität.

Bits 20–31 (RO) – RESERVIERT. Immer als 0 gelesen.
69/130

DE 697 31 519 T2 2005.12.01
HCB 402 Gemischte Steuerung

[0311] HCB Gemischte Steuerung – (Offset = 'h78) Gemischte Steuerungen für den HCB 402. Vorgabe =
32'h0000_0000.

Port-Abschalten

[0312] Port-Abschalten – (Offset = 'h7c) Bitmap für welche Ports abgeschaltet sind. Vorgabe =
32'h0000_0000.

Portstatus-Einstellung

[0313] Um den Status eines Ports einzustellen oder zu ändern, müssen zwei Register geschrieben werden.
Das erste zu schreibende Register ist das Portstatus-Bitmapregister, das die Bitmap des Ports enthält, der ge-
ändert werden wird. Das zweite zu schreibende Register ist das Programm-Portstatusregister, das den Wert
des Status enthält und die Programmierung der zwei Portstatusregister einleitet. Der Portstatus der CPU ist
immer Befördern und kann niemals geändert werden.

[0314] Portstatus-Bitmapregister – (Offset = 'h90) Bitmap von Ports, deren Staus sich ändern wird. 1 = Ändern
dieses Portstatus in einen Wert im Programm-Portstatusregister. Vorgabe = 32'h0000_0000.

HCB-Registerschnittstelle für Arbitrationsgewichtsregister #4

r_ArbWt24 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 24 im gewichteten Arbitrationsmo-
dus verwendet.

r_ArbWt25 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 25 im gewichteten Arbitrationsmo-
dus verwendet.

r_ArbWt26 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 26 im gewichteten Arbitrationsmo-
dus verwendet.

r_ArbWt27 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 27 im gewichteten Arbitrationsmo-
dus verwendet.

r_ArbWt28 (out) – Diese vier Bits werden durch den HCB 402 zum Ge-
wichten von Port 28 im gewichteten Arbitrationsmo-
dus verwendet.

Bit 0 (W/R) – CT FIFO freigeben. 1 = CT FIFO freigegeben.
Bit 1 (W/R) – Extra Lesewartezustände freigeben. 1 = Wartezu-

stände freigegeben.
Bit 2 (W/R) – Gleichzeitiges Lesen und Schreiben für Vier-

fach-Kaskade freigeben.

Bit 3 (W/R) – Gleichzeitiges Lesen und Schreiben für QE110 frei-
geben.

Bit 4 (W/R) – Frühe Adresse freigeben.
Bits 5–31 (RO) – RESERVIERT. Immer als 0 gelesen.

Bits 0–27 (W/R) – Bitmap für Ports 0 bis 27.1 = Port ist abgeschaltet.
Bits 28–31 (RO) – RESERVIERT. Immer als 0 gelesen.
70/130

DE 697 31 519 T2 2005.12.01
[0315] Programm-Portstatusregister – (Offset = 'h80) Portstatus. Die CPU schreibt dieses Register, das die
Programmierung der Portstatusregister einleitet. Das Portstatus-Bitmapregister muss zuerst beschrieben wer-
den. Vorgabe = 32'h0000_0000.

[0316] Portstatus #1 Register – (Offset = 'h94) Zustände von Ports 0 bis 15. Programmiert durch das Pro-
gramm-Portstatus- und das Portstatus-Bitmapregister. Vorgabe = 32'h0000_0000.

[0317] Portstatus #2 Register – (Offset = 'h98) Zustände von Ports 16 bis 28. Programmiert durch das Pro-
gramm-Portstatus- und das Portstatus-Bitmapregister. Vorgabe = 32'h0300_0000.

Bit 0 (W/R) – Port 0. Setzen dieses Bits ermöglicht das Ändern
des Status von Port 0.

Bit 1 (W/R) – Port 1. Setzen dieses Bits ermöglicht das Ändern
des Status von Port 1.

:
:
Bit 27 (W/R) – Port 27. Setzen dieses Bits ermöglicht das Ändern

des Status von Port 27.
Bits 28–31 (RO) – RESERVIERT. Immer als 0 gelesen.

Bits 0–1 (W/R) – Statuswert. Dieser Wert wird bei Offset 30 in die in
der Bitmap angegebenen Ports gelegt.

Statuswert Bedingung
00b Abgeschaltet
01b Gesperrt/Hören

10b Lernen
11b Befördern
Bits 2–31 (RO) – RESERVIERT. Immer als 0 gelesen.

Statuswert Bedingung
00b Abgeschaltet
001b Gesperrt/Hören
10b Lernen
11b Befördern
Bits 0–1 (RO) – Port_0_st[1:0]
Bits 2–3 (RO) – Port_1_st[1:0]
Bits 4–5 (RO) – Port_2_st[1:0]
Bits 67 (RO) – Port_3_st[1:0]
Bits 8–9 (RO) – Port_4_st[1:0]
Bits 10–11 (RO) – Port_5_st[1:0]
Bits 12–13 (RO) – Port_6_st[1:0]
Bits 14–15 (RO) – Port_7_st[1:0]
Bits 16–17 (RO) – Port_8_st[1:0]
Bits 18–19 (RO) – Port_9_st[1:0]
Bits 20–21 (RO) – Port_10_st[1:0]
Bits 22–23 (RO) – Port_11_st[1:0]
Bits 24–25 (RO) – Port_12_st[1:0]
Bits 26–27 (RO) – Port_13_st[1:0]
Bits 28–29 (RO) – Port_14_st[1:0]
Bits 30–21 (RO) – Port_15_st[1:0]

Statuswert Bedingung
00b Abgeschaltet
01b Gesperrt/Hören
10b Lernen
11b Befördern
71/130

DE 697 31 519 T2 2005.12.01
Paketspeicherdefinition

[0318] Speichersektor-Informationsregister – (Offset = 'ha0) Paketspeicher besteht aus einer festen Zahl von
Sektoren. Dieses Register definiert die Sektorgröße. Die minimale Sektorgröße von 2 KByte stellt sicher, dass
das größte Paket (1518 Bytes + Overhead) nicht mehr als eine Sektorgrenzenkreuzung machen kann. Gegen-
wärtig wird nur die Sektorgröße von 2 KByte unterstützt. Dieses Register kann nur geschrieben werden, wenn
Master Switch Enable (EPSM-Einstellregister) negiert ist.

Speicherbus-Bandbreitenmonitor

[0319] Speicherbus-Monitorsteuerregister – (Offset = 'ha8) Es gibt zwei unabhängige durch das Register ge-
steuerte Busmonitoren. Das Monitorauswählbit (24) wird benutzt, um zu wählen, auf welchen Monitor zugegrif-
fen wird. Dieses Bit steuert auch den Zugriff auf das Speicherbusmonitor-Schwellenregister und das Speicher-
benutzungsregister. Das Monitorbit kann durch Schreiben nur des hohen Bytes dieses Registers unabhängig
gesetzt werden.

Bits 0–1 (RO) – Port_16_st[1:0]
Bits 2–3 (RO) – Port_17_st[1:0]
Bits 4–5 (RO) – Port_18_st[1:0]
Bits 6–7 (RO) – Port_19_st[1:0]
Bits 8–9 (RO) – Port_20_st[1:0]
Bits 10–11 (RO) – Port_21_st[1:0]
Bits 12–13 (RO) – Port_22_st[1:0]
Bits 14–15 (RO) – Port_23_st[1:0]
Bits 16–17 (RO) – Port_24_st[1:0]
Bits 18–19 (RO) – Port_25_st[1:0]
Bits 20–21 (RO) – Port_26_st[1:0]
Bits 22–23 (RO) – Port_27_st[1:0]
Bits 24–25 (RO) – Port_28_st[1:0] CPU-Port ist immer Befördernd (11)
Bits 26–31 (RO) – RESERVIERT. Immer als 0 gelesen.

MCB-Registerschnittstelle für Portstatus-Einstellregister

SourcePort[7:0] (in) – Quellenportnummer vom Mcb-Hash-Modul.
m_HashDstprt[7:0] (in) – Zielportnummer vom Mcb-Hash-Modul.
SrcPrtState[1:0] (out) – Kombinierte Ausgabe an Mcb-Hash basierend auf

Quellenport- und Portstatusregistern.
DstPrtState[1:0] (out) – Kombinierte Ausgabe an Mcb-Hash basierend auf

m_HashDstPrt- und Portstatusregistern.

Bits 0–1 (W/R) – Sektorgröße. Gegenwärtig wird nur die Sektorgrö-
ße von 2 KByte unterstützt.
00 = 2 KByte (Vorgabe)
01 = 4 KByte
10 = 8 KByte
11 = 16 KByte

Bits 2–31 (RO) RESERVIERT. Immer als 0 gelesen.
72/130

DE 697 31 519 T2 2005.12.01
Bits 0–9 (W/R) – Monitormodus [9:0]. Definiert den Typ der zu über-
wachenden Busaktivtät. Vorgabe ist 10'h3FF (alles
überwachen).
Zyklustyp (ein oder mehr Bits setzen).
Bit 0 – Paket (gesetzt, um paketbezogenen Verkehr
zu überwachen).
Bit 1 – Hash (gesetzt, um Hash-Lookup-Verkehr zu
überwachen).
Bit 2 – CPU (gesetzt, um CPU-Zugriffe auf Speicher
zu überwachen).
Bit 3 – Auffrischung (gesetzt, um Auffrischungszyklen
zu überwachen).
Pakettyp (muss ein oder beide Bits setzen, wenn Pa-
ketbit (0) gesetzt ist).
Bit 4 – Unicast (gesetzt, um bekannte Einzel-Adress-
moduspakete zu überwachen.
Bit 5 – Broadcast (gesetzt, um Pakete mit gesetztem
Gruppenbit oder Hash-Miss zu überwachen).
Paket Tx/Rx (muss ein oder beide Bits setzen, wenn
Paketbit (0) gesetzt ist).
Bit 6 – Senden (gesetzt, um sendebezogenen Verkehr
zu überwachen).
Bit 7 – Empfangen (gesetzt, um empfangsbezogenen
Verkehr zu überwachen).
Paketdaten/Overhead (muss ein oder beide Bits set-
zen, wenn Paketbit (0) gesetzt ist).
Bit 8 – Daten (gesetzt, um den Datenteil von Paketü-
bertragungen zu überwachen).
Bit 9 – Overhead (gesetzt, um den nicht-datenbezo-
genen Teil von Paketübertragungen zu überwachen,
d. h. Bus-Arbitration, Paketspeicherwartung, unbe-
nutzbare Zyklen).

Bits 10–15 (RO) – Reserviert. Immer als 0 gelesen.
Bits 16–19 (W/R) – Filterzeitmaßstab. Stellt ungefähre Zeitkonstante

für LP-Filterung ein:
0h = 75 ms 4h = 300 ms 8h = Res. Ch = Res. 1h = 600
ms 5h = 2.5 Sek 9h = Res. Dh = Res. 2h = 5 ms 6h =
20 Sek Ah = Res. Eh = Res. 3h = 40 ms 7h = 2.5 Min
Bh = Res. Fh = Res. Vorgabe = 0h. Gilt nur im Filter-
modus.
73/130

DE 697 31 519 T2 2005.12.01
[0320] Speicherbusmonitor-Schwellen-BW-Register – (Offset ='hac). Das Monitorauswählbit muss vor dem
Zugriff auf dieses Register gesetzt werden.

[0321] Speicherbus-Benutzungsregister – (Offset = 'hb0). Das Monitorauswählbit muss vor dem Zugreifen auf
dieses Register gesetzt werden.

Bit 20 (W/R) – Zähl/Filter-Modus (Vorgabe = 0, Filtermodus).
0 = Monitor arbeitet als ein Tiefpassfilter, wie durch
Filtermaßstab definiert. Lesen des Busbenutzungsre-
gisters beeinflusst seinen Wert im Filtermodus nicht.
1 = Monitor zählt Buszyklen, filtert aber nicht. Wenn im
Zählmodus, wird das Busbenutzungsregister ge-
löscht, wenn gelesen.

Bit 21 (W/R) – Timermodus. Gilt nur, wenn im Zählmodus. (Vorga-
be = 0).
0 = Nur durch Monitormodusbits definierte Zyklen
zählen.
1 = Zähler bei jedem Taktzyklus inkrementieren.

Bit 22 (W/R) – Rückstau-Freigabe. 1 = Alarm von diesem Monitor
verwenden, um Rückstau auf allen Ports freizugeben.
Vorgabe = 0, abgeschaltet.

Bit 23 (W/R) – Broadcast-Steuerfreigabe. 1 = Den Alarm von die-
sem Monitor verwenden, um von einem Port empfan-
gene Broadcast-Pakete fallen zu lassen. Vorgabe = 0,
abgeschaltet.

Bit 24 (W/R) – Monitorauswahl. 0 = Monitor1 (Vorgabe). 1 =
Monitor2.

Bits 25–31 (RO) – Reserviert. Immer als 0 gelesen.

Bits 0–7 (W/R) – Alarm-Einstellschwelle. Wenn die Busbenutzung
diesen Wert erreicht oder übersteigt, wird das Alarm-
flag gesetzt und eine CPU-Unterbrechung erzeugt.
Rückstau- oder Broadcast-Steuerung wird ange-
wandt, wenn freigegeben. (Vorgabe 0 8'h00).

Bits 8–15 (W/R) – Alarm-Löschschwelle. Wenn die Busbenutzung un-
ter diesen Wert fällt, wird das Alarmflag gelöscht und
eine CPU-Unterbrechung erzeugt. Rückstau- und
Broadcast-Steuerung werden losgelassen (Vorgabe =
8'h00.

Bits 16–23 (RO) – Spitzen-BW. Max. erfasste Bandbreite seit letztem
Lesen. Gelöscht, wenn gelesen.

Bits 24–31 (RO) – Momentane BW. Momentaner Wert des Busband-
breiten-Benutzungsfilters. Ein Wert von 00h stellt 0%
Benutzung dar, und ein Wert von FFh stellt 100% Be-
nutzung dar.
74/130

DE 697 31 519 T2 2005.12.01
Bits 0–31 (RO) – Busbenutzung [31:0]. Speicherbusbenutzungszäh-
ler.
–Im Zählmodus ist dieser Wert eine Zählung von akti-
ven Buszyklen seit dem letzten Starten des Zählers.
Gelöscht, wenn gelesen. Zähler von beiden Filtern
starten gleichzeitig, wenn das Busbenutzungsregister
für beide gelesen wurde.
– Im Filtermodus ist es nicht nötig, dieses Register zu
lesen, da die oberen 8 Bits als momentane BW in das
Schwellen-BW-Register kopiert werden. Es ist er-
wünscht, mehr als 8 Bits für BW zu verwenden. Man
beachte, dass der Maximalbandbreitenwert immer
32'hFF00_0000 ist und der Minimalwert abhängig von
dem gewählten Zeitmaßstab zwischen
32'h0000-0000 und 32'h00FF_FFFF sein wird. Nicht
gelöscht, wenn im Filtermodus gelesen.

MCB-Registerschnittstelle für Speicherbandbreitenmonitore

Ausgewählte Bandbreite [31:0] (in) – Speicherbus-Benutzungsregister [31:0] für ausge-
wählten Monitor. Ferner sind Bits 24–31 momentane
BW im Schwellen-BW-Register.

SelectedMaxBW [7:0] (in) – Spitzen-BW in Schwellen-BW-Registerbits 16–23.
Alarm0 (in) – Alarmflag für Monitor0. MCB-Register werden Un-

terbrechungen BWALARMSET0 und
BWALARMCLR0 erzeugen, wenn dieses Flag ge-
setzt oder gelöscht wird.

Alarm1 (in) – Alarmflag für Monitor1. MCB-Register werden Un-
terbrechungen BWALARMSET1 und
BWALARMCLR1 erzeugen, wenn dieses Flag ge-
setzt oder gelöscht wird.

r_MonMode0 [9:0] (out) – Monitormodus für Monitor0.
r_MonMode1 [9:0] (out) – Monitormodus für Monitor1.
r_BwSacle0 [2:0] (out) – Filter-Zeitmaßstab für Monitor0.
r_BwSacle1 [2:0] (out) – Filter-Zeitmaßstab für Monitor1.
r_CountOnly0 (out) – Zähl/Filtermodusbit für Monitor0.
r_CountOnlyl (out) – Zähl/Filtermodusbit für Monitor1.
r_Timermode0 (out) – Timermodusbit für Monitor0.
r_Timermode1 (out) – Timermodusbit für Monitor1.
r_BackPresOnAlarm0 (o) – Rückstau-Freigabebit für Monitor0.
r_BackPresOnAlarm1 (o) – Rückstau-Freigabebit für Monitor1.
r_DropBcPktsOnAlarm0 (o) – Broadcast-Steuerfreigabebit für Monitor0.
r_DropBcPktsOnAlarm1 (o) – Broadcast-Steuertreigabebit für Monitor1.
r_FilterSelect (out) – Monitorauswählbit.
r_AlarmSet0 [7:0] (out) – Alarmeinstellschwelle für Monitor0.
r_AlarmSet1 [7:0] (out) – Alarmeinstellschwelle für Monitor1.

r_AlarmClr0 [7:0] (out) – Alarm-Löschschwelle für Monitor0.
r_AlarmClr1 [7:0] (out) – Alarm-Löschschwelle für Monitor1.
ClrBwCtr0 (out) – Gesetz für einen Takt, wenn das Benutzungsregister

für Monitor0 gelesen wird.
ClrBwCtr1 (out) – Gesetz für einen Takt, wenn das Benutzungsregister

für Monitor1 gelesen wird.
ClrMaxBW0 (out) – Gesetzt für einen Takt, wenn das Schwel-

len-BW-Register für Monitor0 gelesen wird.
ClrMaxBW1 (out) – Gesetzt für einen Takt, wenn das Schwel-

len-BW-Register für Monitor 1 gelesen wird.
75/130

DE 697 31 519 T2 2005.12.01
Statistik für abgeworfene Pakete

[0322] Pakete, die infolge von Speicherüberlauf, Broadcast-Überlauf, Empfangssektor-Überlauf und Sende-
sektor-Überlauf abgeworfen werden, werden gezählt. Diese Zählungen und die Bitmaps für den Empfangssek-
tor-Überlauf und Sendesektor-Überlauf werden behalten. Diese Bedingungen bewirken auch Unterbrechun-
gen an der CPU 230. Die Unterbrechungsinformation wird im MCB-Unterbrechungsquellenregister aufbe-
wahrt.

[0323] Abwertpaket-Speicherüberlaufregister – (Offset = 'hb8) Dieses Register enthält die Zahl von Paketen,
die infolge von Speicherüberlauf abgeworfen wurden, der durch zwei Bedingungen verursacht wird. Diese Be-
dingungen sind Schwellenüberschreitung während Hash-Lookup und tatsächlicher Speicherüberlauf, wenn ein
Paket gespeichert wird, dieser verursacht ein abgebrochenes Paket.

[0324] Abwertpaket-Broadcast-Überlaufregister – (Offset = 'hbc) Dieses Register enthält die Zahl von Pake-
ten, die infolge von Broadcast-Schwellenüberlauf abgeworfen wurfen.

[0325] Abwertpaket-Empfangssektor-Überlaufregister – (Offset = 'hd4) Dieses Register enthält die Zahl von
Paketen, die infolge von Empfangssektor-Überlauf abgeworfen wurden.

[0326] Abwerfpaket-Sendesektor-Überlaufregister- (Offset = 'hd8) Dieses Register enthält die Zahl von Pake-
ten, die infolge von Sendesektor-Überlauf abgeworfen wurden.

[0327] Abwerfpaket-Empfangssektor-Bitmapregister – (Offset = 'hdc) Dieses Register enthält die Bitmap von
Ports, die Pakete infolge von Empfangssektor-Überlauf abgeworfen haben.

[0328] Abwerfpaket-Sendesektor-Bitmapregister – (Offset = 'he0) Dieses Register enthält die Bitmap von
Ports, die Pakete infolge von Sendesektor-Überlauf abgeworfen haben.

Bits 0–31 (W/R) – Zahl infolge Speicherüberlaufs abgeworfener Pake-
te.

Bits 0–31 (W/R) – Zahl infolge Broadcast-Schwellenüberlaufs abge-
worfener Pakete.

Bits 0–31 (W/R) – Zahl infolge Empfangssektor-Überlaufs abgeworfe-
ner Pakete.

Bits 0–31 (W/R) – Zahl infolge Sendesektor-Überlaufs abgeworfener
Pakete.

Bits 0–28 (W/R) – Bitmap von Ports, die Überlauf von Empfangssek-
torgebrauch melden.

Bits 0–28 (W/R) – Bitmap von Ports, die Überlauf von Sendesektorge-
brauch melden.

MCB-Registerschnittstelle für Abwerfpaket-Statistik

r_rxPktAbortet_ – Strobe vom XCB, der sagt, wenn Paket ein infolge
Speicherüberlaufs abgebrochen wurde.

DropPktStb_MemOF – Strobe, der sagt, wenn ein Paket abgeworfen wird,
weil es den Speicher zum Überlaufen bringt.

DropPktStb_BCOF – Strobe, der sagt, wenn ein Paket abgeworfen wird,
weil die Broadcast-Schwelle überlaufen wird.

DropPktStb_RxOF – Strobe, der sagt, wenn ein Paket abgeworfen wird,
weil die Empfangssektor-Schwelle überlaufen wird.

DropPktStb_TxOF – Strobe, der sagt, wenn ein Paket abgeworfen wird,
weil die Sendesektor-Schwelle überlaufen wird.
76/130

DE 697 31 519 T2 2005.12.01
Hash-Tabellendefinition

[0329] Hash-Tabellen-Definitionsregister – (Offset = 'hc0) Definiert die Basisadresse und Größe der
Haupt-Hash-Eintragstabelle. Wenn mehrfache Kopien der Hash-Tabelle im Speicher gehalten werden, kann
dieses Register benutzt werden, um den EPSM 210 zwischen ihnen schalten zu lassen.

Quellenport-Lernen

[0330] Hash-Quellen-Miss-Register-Tief – (Offset = 'hcc) Bytes 3:0 der neuen Quellenadresse sind der
Hash-Tabelle hinzufügen. Diese Register werden geladen und eine Unterbrechung wird ausgegeben, wenn
eine Hash-SA unbekannt ist oder der Port sich geändert hat und der Quellenport nicht Lernen-Unwirksam ge-
macht ist. Die Register sind gesperrt, bis das Hash-Quellen-Miss-Reg-Hoch-Register gelesen wird (Tief-Reg
muss zuerst gelesen werden). Unbekannte SA's oder Portänderungen, die angetroffen werden, während Re-
gister gesperrt sind, werden ignoriert.

Bits 0–14 (RO) – Primär-Hash-Tabellen-Basisadresse [16:2]. Immer
0.

Bits 15–23 (RO) – Primär-Hash-Tabellen-Basisadresse [25:17]. Immer
0

Bits 24–25 (W/R) – Primär-Hash-Tabellengröße [1:0]. (Vorgabe ist 00).
00 = Schlüsselgröße 13 Bits, Tabellengröße 128 KB
(8K 16-Byte Einträge.
01 = Schlüsselgröße 14 Bits, Tabellengröße 256 KB
(16K 16-Byte Einträge. (Basisadressbit 17 wird igno-
riert und intern auf 0 gezwungen).
10 = Schlüsselgröße 15 Bits, Tabellengröße 512 KB
(32K 16-Byte Einträge. (Basisadressbits 18–17 wer-
den ignoriert und intern auf 0 gezwungen).
11 = Schlüsselgröße 16 Bits, Tabellengröße 1 MB (64K
16-Byte Einträge. (Basisadressbits 19–17 werden ig-
noriert und intern auf 0 gezwungen).

Bit 26 (W/R) – Hash-Zyklen sperren. Setzen dieses Bits bewirkt,
dass Speicherzyklen während eines Hash-Lookup
gesperrt werden. Dies minimiert die
Hash-Lookup-Zeit auf Kosten des Verzögerns von
Paket-Lese- und Schreibübertragungen an den Spei-
cher. Vorgabe ist 0.

Bits 31:27 (RO) – Reserviert. Immer als 0 gelesen.

MCB-Registerschnittstelle für Hash-Tabellendefinitionsregister

r_HashBaseAdr[25:17] (out) – Übergibt Basisadresse an Mem-Hash-Modul.
r_HashKeySize[1:0] (out) – Übergibt Schlüsselgröße an Mem-Hash-Modul.
r_LockHashCycs (out) – An Mcb-Hash-Modul geltend gemacht, wenn

Lock-Hash-Cycles-Bit gesetzt ist.
HashLookupIP (indass ein – Gesetzt durch Mcb-Hash-Modul, um anzuzeigen,

dass ein Hash-Lookup im Gange ist und alle Schrei-
bungen in das Hash-Tabellendefinitionsregister auf-
geschoben werden sollen, bis negiert. MCB-Register
können das Register auf jeder steigenden Taktflanke
aktualisiern, wenn HashLookUpIP negiert ist.
77/130

DE 697 31 519 T2 2005.12.01
[0331] Hash-Quellen-Miss-Register-Hoch – (Offset = 'hd0) Bytes 5:4 der neuen Quellenadresse und Quellen-
port-ID.

[0332] Lernen-Unwirksam-Portregister – (Offset = 'he4) Bitmapped Lernen-Unwirksam-Portregister. Gilt nicht
für CPU.

Portsicherheit

[0333] Sicherer-Port-Register – (Offset = 'he8) Bitmapped Sicherer-Port-Register. (Es kann auch erwünscht
sein, Lernen-Unwirksam-Bits für Ports mit Sicherheit-Freigegeben zu setzen).

Bits 0–7 (RO) – Byte 0 der der Hash-Tabelle hinzufügenden
MAC-Adresse. (Hochwertiges Adressbyte. Gruppen-
bit = Bit 0).

Bits 8–15 (RO) – Byte 1 der der Hash-Tabelle hinzufügenden
MAC-Adresse.

Bits 16–23 (RO) – Byte 2 der der Hash-Tabelle hinzufügenden
MAC-Adresse.

Bits 24–31 (RO) – Byte 3 der der Hash-Tabelle hinzufügenden
MAC-Adresse.

Bits 0–7 (RO) – Byte 4 der der Hash-Tabelle hinzufügenden
MAC-Adresse.

Bits 8–15 (RO) – Byte 5 der der Hash-Tabelle hinzufügenden
MAC-Adresse.

Bits 16–23 (RO) – Die der Hash-Tabelle hinzufügende Quellenport-ID.
Bits 24–31 (RO) – Reserviert. Immer als 0 gelsen.

Bit 0 (W/R) – Port 0 Lernen Unwirksam. 1 = Unwirksam. Vorgabe
= 0.

Bit 1 (W/R) – Port 1 Lernen Unwirksam. 1 = Unwirksam. Vorgabe
= 0.

...
Bit 28 (W/R) – Port 28 Lernen Unwirksam. 1 = Unwirksam. Vorga-

be = 0.
Bits 29–31 (RO) – Reserviert. Immer als 0 gelesen.

MCB-Registerschnittstelle für Quellenport-Lernen

SelectedAdr[47:0] (in) – Quellenadresse vom Mem-Hash-Modul.
SourcePort[7:0] (in) – Quellenportnummer vom Mem-Hash-Modul.
SrcMissStb (in) – Gesetzt durch Mem-Hash-Modul, wenn

Hash-SA-Miss aufgetreten ist und SelectedAdr und
SourcePort gültig sind. Sollte als Tor zu den
Hash-Quellen-Miss-Registern benutzt werden. Mem-
hash wird Haltezeit garantieren.

SrcMissLock (out) – Geltend gemacht an Memhash, um zu verhindern,
dass SrcMissStb geltend gemacht wird.

LearnDisPort (out) – Geltend gemacht, wenn Lernen-Umwirksam für Port
gesetzt. Dies ist eine kombinatorische Ausgabe an
MemHash basierend auf dem SourcePort-Eingang
und dem Lernen-Umwirksam-Register und wird dau-
ernd bewertet. MemHash weiß, wenn abzutasten ist.
78/130

DE 697 31 519 T2 2005.12.01
[0334] Sicherheits-Verletzungsregister – (Offset = 'hf0) Bitmapped Sicherheitsverletzung durch Port.

[0335] Gelöscht, wenn gelesen. Initialisiert auf 0. Eine Unterbrechung wird ausgegeben, wenn das erste Bits
gesetzt ist, und gelöscht, wenn gelesen.

[0336] Sicherheitsverletzungs-Statistikregister – (Offset = 'hec) Zählung aller Sicherheitsverletzungen auf al-
len Ports. Gelöscht, wenn gelesen. Initialisiert auf 0.

Speicherkonfiguration

[0337] Speichersteuerregister – (Offset = 'hf4) Gemischte Speichersteuerfunktionen. Dieses Register kann
nur geschrieben werden, wenn Master Switch Enable (EPSM-Einstellregister) negiert ist.

Bit 0 (W/R) – Port 0 Sicherheit freigegeben. 1 = Freigegeben. Vor-
gabe = 0.

Bit 1 (W/R) – Port 1 Sicherheit freigegeben. 1 = Freigegeben. Vor-
gabe = 0.

Bit 28 (W/R) – Port 28 Sicherheit freigegeben. 1 = Freigegeben.
Vorgabe = 0.

Bits 29–31 (RO) – Reserviert. Immer als 0 gelesen.

Bit 0 (RO) – Sicherheitsverletzung Port 0. 1 = Verletzung aufge-
treten.

Bit 1 (RO) – Sicherheitsverletzung Port 1. 1 = Verletzung aufge-
treten.

...
Bit 28 (RO) – Sicherheitsverletzung Port 28. 1 = Verletzung aufge-

treten.
Bits 29–31 (RO) – Reserviert. Immer als 0 gelesen.

Bits 0–31 (RO) – Sicherheitsverletzungszählung [31:0].

MCB-Registerschnittstelle für Portsicherheit

SourcePort[7:0] (in) – Quellenportnummer vom Mem-Hash-Modul.
SecurePort (out) – Geltend gemacht, wenn sicherer Modus für Port ge-

setzt ist. Dies ist ein kombinatorischer Ausgang basie-
rend auf der SourcePort-Eingabe und dem Siche-
rer-Port-Register und wird ständig bewertet.
Mem-Hash weiß, wenn abzutasten ist.

SecViolationStb (in) – Strobe, der anzeigt, dass eine Sicherheitsverlet-
zung auf dem angegebenen Port aufgetreten ist. Soll-
te als ein Tor zu dem durch SourcePort angegebenen
Sicherheitsverletzungsregisterbit benutzt werden.
Mem-Hash wird Haltezeit garantieren.

Bits 0–1 (W/R) – Speichertyp
00 = Schnelles Seitenmodus-DRAM (Vorgabe).
01 = EDO-DRAM.
10 = Synchron-DRAM.
11 = Reserviert.

Bit 2 (W/R) – Speichergeschwindigkeit (0 = 60 ns, 1 = 50 ns). Vor-
gabe ist 0.

Bit 3 (W/R) – EDO-Testmodus (1 = Freigabe). Vorgabe ist 0.
Bit 4 (W/R) – Doppel-Link-Modus. Vorgabe = 0.
Bit 5 (W/R) – Empfangsseitentreffer unwirksam machen. Vorgabe

ist 0.
Bit 6 (W/R) – Sendeseitentreffer unwirksam machen. Vorgabe ist

0.
79/130

DE 697 31 519 T2 2005.12.01
[0338] Speicher-RAS-Auswählregister – (Offset = 'hf8) Definiert, welche RAS-Leitung für jeden 4M Block an
Speicher geltend zu machen ist. Dieses Register kann nur geschrieben werden, wenn Master Switch Enable
(EPSM-Einstellregister) negiert ist.

[0339] RAS-Auswahlen sind wie folgt codiert: 00 = RAS0, 01 = RAS1, 10 = RAS2, 11 = RAS3. Vorgaben sind
immer 00.

[0340] Speicherauffrischungs-Zählregister – (Offset = 'hfc) Definiert die Zahl von CLK-Zyklen zwischen Auf-
frischungsanforderungen.

MAC-Adressfilterung

[0341] Filterung basierend auf Zieladresse wird bereitgestellt, um Pakete an die und von der CPU 230 zu lei-
ten. Vier Filter werden bereitgestellt, obwohl gegenwärtig nur zwei benötigt werden.

[0342] Maskieren ist verfügbar, um 'nicht kümmern' in den Adressvergleich einzuschließen, obwohl gegen-
wärtig kein Bedarf dafür besteht. Zwei Filter sollten eingerichtet werden, eines mit der individuellen Adresse
der CPU 230 und das andere mit der BPDU-Multicast-Adresse (für Überspannungsbaum). Wenn ein von ei-
nem Port, der nicht die CPU 230 ist, empfangenes Paket eine Filteradresse trifft, wird das Paket an die CPU
230 und nur die CPU 230 befördert (selbst wenn BC oder MC). Wenn ein von der CPU 230 stammendes Paket
eine Filteradresse (BPDU-Adresse) triff, wird das Paket an den im Filteradressregister spezifizierten Zielport
befördert. Hash-Tabellen-Lookups werden umgangen, wenn ein Paket eine Filteradresse trifft.

Bits 7–31 (RO) – Reserviert. Immer als 0 gelesen.

MCB-Registerschnittstelle für Speichersteuerregister

r_MemEDO (out) – Durch mcbregs an memctl-Modul geltend gemacht,
wenn Speichertyp 01 ist.

r_MemSync (out) – Durch mcbregs an memctl-Modul geltend gemacht,
wenn Speichertyp 10 ist.

r_Mem50 ns (out) – Durch mcbregs an memctl-Modul geltend gemacht,
wenn Speichergeschwindigkeit 1 ist.

r_TestForEDO out) – Durch mcbregs an memctl-Modul geltend gemacht,
wenn EDO-Testmodus 1 ist.

Bits 0–1 (W/R) – RAS-Auswahl für 0000000h–03FFFFFh (4M)
Bits 2–3 (W/R) – RAS-Auswahl für 0400000h–07FFFFFh (8M)
Bits 4–5 (W/R) – RAS-Auswahl für 0800000h–0BFFFFFh (12M)
Bits 6–8 (W/R) – RAS-Auswahl für 0C00000h–0FFFFFFh (16M)
...
Bits 30–31 (W/R) – RAS-Auswahl für 3C00000h–3FFFFFFh (64M)

MCB-Registerschnittstelle für Speicher-RAS-Auswählregister

r_RasSelReg[31:0] (out) – Übergibt die Daten von mcbregs an memctl-Modul.

Bits 0–9 (W/R) – Auffrischungszählung [9:0]. Auffrischungszählung
mal CLK-Periode muss kleiner oder gleich 15.625 ms
sein. Vorgabe ist 208h. (15.60 ms für 30 ns CLK).

Bits 10–31 (RO) – Reserviert. Immer als 0 gelesen.

MCB-Registerschnittstelle für Speicherauffrischungszählregister

RefReg (out) – Auffrischungs-Anforderungsstrobe an memctl-Mo-
dul. Strobe kann jede Länge haben, da memctl die
Anforderung auf der positiven Flanke erfasst. Es wird
kein ack zurückgegeben.
80/130

DE 697 31 519 T2 2005.12.01
Filteradressregister 1 Tief – (Offset = 'h114) siehe oben.
Filteradressregister 1 Hoch – (Offset = 'h118) siehe oben.
Filteradressregister 2 Tief – (Offset = 'h11c) siehe oben.
Filteradressregister 2 Hoch – (Offset = 'h120) siehe oben.
Filteradressregister 3 Tief – (Offset = 'h124) siehe oben.
Filteradressregister 3 Hoch – (Offset = 'h128) siehe oben.

Filtersteuerregister – (Offset = 'h100) Steuert MAC-Zieladressenfilterung

Bits 0–3 (W/R) – Adressfilter-Freigaben [3:0]. 1 = Einzel-Zieladres-
senfilterung für entsprechendes Adressfilterregister
[3:0] freigeben. Vorgabe 0.

Bits 4–7 (W/R) – Adressmasken-Freigaben [3:0]. 1 = Maskieren frei-
geben, wenn das Adressfilterregister [3:0], mit dem
Adressfilter-Maskenregister. Vorgabe 0.

Filtermaskenregister Tief – (Offset = 'h104) Vorgabe = 0

Bits 0–7 (W/R) – Byte 0 der MAC-Adressmaske (1 = Adressbit mas-
kieren).

Bits 8–15 (W/R) – Byte 1 der MAC-Adressmaske (1 = Adressbit mas-
kieren).

Bits 16–23 (W/R) – Byte 2 der MAC-Adressmaske (1 = Adressbit mas-
kieren).

Bits 24–31 (W/R) – Byte 3 der MAC-Adressmaske (1 = Adressbit mas-
kieren).

Filtermaskenregister Hoch – (Offset = 'h108) Vorgabe 0

Bits 0–7 (W/R) – Byte 4 der MAC-Adressmaske (1 = Adressbit mas-
kieren).

Bits 8–15 (W/R) – Byte 5 der MAC-Adressmaske (1 = Adressbit mas-
kieren).

Bits 16–31 (RO) – Reserviert. Immer als 0 gelesen.

Filteradressregister 0 Tief – (Offset = 'h10c)

Bits 0–7 (W/R) – Byte 0 der zu befördernden MAC-Adresse.
Bits 8–15 (W/R) – Byte 1 der zu befördernden MAC-Adresse.
Bits 16–23 (W/R) – Byte 2 der zu befördernden MAC-Adresse.
Bits 24–31 (W/R) – Byte 3 der zu befördernden MAC-Adresse.

Filteradressregister 0 Hoch – (Offset = 'h110)

Bits 0–7 (W/R) – Byte 4 der zu befördernden MAC-Adresse.
Bits 8–15 (W/R) – Byte 5 der zu befördernden MAC-Adresse.
Bits 16–23 (W/R) – Zielport. Wenn der Quellenport die CPU 230 ist,

spezifiziert dieses Feld, an welchen Port das Paket
befördert werden soll, wenn die MAC-Adresse mit der
Filteradresse übereinstimmt. Wenn der Quellenport
nicht die die CPU 230 ist, wird dieses Feld ignoriert,
und Treffer auf die Filter-MAC-Adresse werden an die
CPU 230 befördert.

Bits 24–31 (RO) – Reserviert. Immer als 0 gelesen.
81/130

DE 697 31 519 T2 2005.12.01
MCB-Unterbrechungsinformation

[0343] Es gibt acht Unterbrechungsquellen in dem MCB 404. Die Unterbrechungsquellen werden bewirken,
dass die CPU 230 unterbrochen wird, wenn sie nicht maskiert werden. Damit die Information der Unterbre-
chungsquelle verfügbar sein kann, ohne die CPU 230 zu unterbrechen, steht ein Abfragemechanismus zur
Verfügung. Die Maskierung einer Unterbrechungsquelle bewirkt, dass die Unterbrechungen von der CPU 230
ferngehalten werden, aber die Information noch in dem Abfragequellenregister verfügbar ist.

[0344] MCB-Unterbrechungsquellenregister- (Offset = 'h12c) Quelle der an die CPU 230 gesendeten Unter-
brechung. Dieses Register wird durch den EPSM 210 aktualisiert, und dann wird eine Unterbrechung an die
CPU 230 gesendet. Wenn die CPU 230 dieses Register liest, wird der Inhalt gelöscht. Ein Wert von 1 in einem
Bit zeigt an, dass eine Unterbrechung aufgetreten ist. Vorgabe = 32'h0000_0000.

MCB-Registerschnittstelle für Adressfilterung

SelectedAdr[47:0] (in) – Zieladresse von Memhash-Modul.
FilterHit (out) – Geltend gemacht, wenn ein Filteradresstreffer auf-

tritt. Dies ist ein kombinatorischer Ausgang an Mem-
hash basierend auf der SelectedAdr und den Filterre-
gistern und wird ständig bewertet. Memhash weiß,
wenn abzutasten ist.

FilterPort[7:0] (out) – Wenn der Quellenport die CPU 230 ist, ist FilterPort
gleich dem Zielportfeld von dem Filterregister, das ei-
nen Filtertraffer erzeugt. Wenn der Quellenport nicht
die CPU 230 ist, ist FilterPort gleich CpuPort (von dem
EPSM-Einstellregister).

SourcePort[7:0] (in) – Quellenportnummer von Memhash-Modul.
SrcPrtIsCpu – Geltend gemacht, wenn SourcePort mit Cpu-

Port-Nummer im EPSM-Einstellregister überein-
stimmt.

Bit 0 (W/R) – Sicherheitsunterbrechung. Wenn eine Sicherheits-
verletzung stattfindet, erscheint diese Unterbre-
chung.

Bit 1 (W/R) – Speicherüberlauf gesetzt. Wenn der Speicher sich
mit Paketen füllt und die Überlaufschwelle durch-
schritten wird, erscheint diese Unterbrechung.

Bit 2 (W/R) – Speicherüberlauf gelöscht. Wenn der Speicher sich
leert und die Überlaufschwelle durchschritten wird,
erscheint diese Unterbrechung.

Bit 3 (W/R) – Broadcast-OF gesetzt. Wenn die Broadcast-Pakete
den Speicher füllen und die Broadcast-Schwelle
durchschritten wird, erscheint diese Unterbrechung.

Bit 4 (W/R) – Broadcast-OF gelöscht. Wenn die Broadcast-Pake-
te aus dem Speicher ausgeleert werden und die
Broadcast-Schwelle durchschritten wird, erscheint
diese Unterbrechung.

Bit 5 (W/R) – Empfangs-OF. Wenn ein Port seinen zugeteilten
Platz zum Empfangen von Paketen überschreiten
wird, erscheint diese Unterbrechung.

Bit 6 (W/R) – Sende-OF. Wenn ein Port, der Pakete sendet, sei-
nen zugeteilten Platz überschreiten wird, erscheint
diese Unterbrechung.

Bit 7 (W/R) – Rx-Paket abgebrochen. Wenn ein Paket begonnen
hat, gespeichert zu werden und festgestellt wird, dass
der Speicher überschritten wird, wird das Paket abge-
brochen und diese Unterbrechung erscheint.

Bits 8–31 (RO). – Reserviert. Immer als 0 gelesen.
82/130

DE 697 31 519 T2 2005.12.01
MCB-Registerschnittstelle für Unterbrechungsquellenregister

[0345] Unterbrechungs-Maskierungsregister – (Offset = 'h130) Unterbrechungen, die durch die CPU 230 zu
maskieren sind. Ein Wert von 1 in einem Bit zeigt an, dass eine Unterbrechung maskiert ist. Vorgabe =
32'h0000_0000.

[0346] Abfragequellenregister – (Offset = 'h134) Dieses Register enthält die maskierte Unterbrechungsinfor-
mation und wird durch die CPU 230 gelöscht, die eine eins schreibt, um die gewünschten Bits zu löschen. Dies
erlaubt der CPU 230, abzufragen, anstatt unterbrochen zu werden. Die CPU wird jede Unterbrechungsquelle
zu maskieren haben, die sie stattdessen abzufragen wünschen würd.

Bit 0 (W/R) – Maske für die Sicherheitsunterbrechung.
Bit 1 (W/R) – Maske für die Speicherüberlauf-Gesetzt-Unterbre-

chung.
Bit 2 (W/R) – Maske für die Speicherüberlauf-Gelöscht-Unterbre-

chung.
Bit 3 (W/R) – Maske für die Broadcast-OF-Gesetzt-Unterbre-

chung.

Bit 4 (W/R) – Maske für die Broadcast-OF-Gelöscht-Unterbre-
chung.

Bit 5 (W/R) – Maske für die Empfangs-OF-Unterbrechung.
Bit 6 (W/R) – Maske für die Sende-OF-Unterbrechung.
Bit 7 (W/R) – Maske für die Rx-Paket-Abgebrochen-Unterbre-

chung.
Bits 8–31 (RO) – Reserviert. Immer als 0 gelesen.

Bit 0 (W/R) – Sicherheitsunterbrechung. Wenn eine Sicherheits-
verletzung stattfindet, erscheint diese Unterbrechung.

Bit 1 (W/R) – Speicherüberlauf gesetzt. Wenn der Speicher sich
mit Paketen füllt und die Überlaufschwelle durch-
schritten wird, erscheint diese Unterbrechung.

Bit 2 (W/R) – Speicherüberlauf gelöscht. Wenn der Speicher sich
leert und die Überlaufschwelle durchschritten wird, er-
scheint diese Unterbrechung.

Bit 3 (W/R) – Broadcast-OF gesetzt. Wenn die Broadcast-Pakete
den Speicher füllen und die Broadcast-Schwelle
durchschritten wird, erscheint diese Unterbrechung.

Bit 4 (W/R) – Broadcast-OF gelöscht. Wenn die Broadcast-Pake-
te aus dem Speicher ausgeleert werden und die
Broadcast-Schwelle durchschritten wird, erscheint
diese Unterbrechung.

Bit 5 (W/R) – Empfangs-OF. Wenn ein Port seinen zugeteilten
Platz zum Empfangen von Paketen überschreiten
wird, erscheint diese Unterbrechung.

Bit 6 (W/R) – Sende-OF. Wenn ein Port, der Pakete sendet, sei-
nen zugeteilten Platz überschreiten wird, erscheint
diese Unterbrechung.

Bit 7 (W/R) – Rx-Paket abgebrochen. Wenn ein Paket begonnen
hat, gespeichert zu werden und festgestellt wird, dass
der Speicher überschritten wird, wird das Paket abge-
brochen und diese Unterbrechung erscheint.

Bits 8–31 (RO) – Reserviert. Immer als 0 gelesen.
83/130

DE 697 31 519 T2 2005.12.01
Port-Bondierung

[0347] Es gibt zwei Sätze von bondierten Ports. Daher gibt es zwei Register, um zu sagen, welche Ports mit-
einander bondiert sind. Anmerkung: Nur zwei Bits in jedem Register sollten gesetzt werden, das heißt, nicht
mehr als zwei Port sollten miteinander bondiert werden.

[0348] Bondierter Portsatz 0 – (Offset = 'h13c) Diese Bitmap sagt, welche Ports in diesem Statz miteinander
bondiert sind.

[0349] Bondierter Portsatz 1 – (Offset = 'h140) Diese Bitmap sagt, welche Ports in diesem Statz miteinander
bondiert sind.

VLAN

Vorgabe VLAN-Register- (Offset = 'h144).

[0350] Nun ist einzusehen, dass ein Multiport-Abfragesystem für einen Netzwerkschalter ein effizientes Sys-
tem zum Bestimmen des Empfangs- und Sendestatus für eine Vielzahl von Netzwerkports bereitstellt. Eine Ab-
fragelogik macht periodisch ein einziges Abfragesignal geltend und empfängt eine Vielzahl von Sende- und
Empfangsstatussignalen, um so den Status von mehrfachen Ports zu einer Zeit zu empfangen. Die Abfrage-
logik aktualisiert Sende- und Empfangslisten entsprechend einer fortlaufenden Verfolgung des Statusses aller
Parts. Dies ermöglicht einer Arbitrations- und Steuerlogik, die die Listen durchsieht, zu bestimmen, wenn Daten
von einem Quellenport zurückzugewinnen sind und wenn Daten an einen Port zum Senden zu liefern sind.

[0351] Obwohl ein erfindungsgemäßes System und Verfahren in Verbindung mit der bevorzugten Ausführung
beschrieben wurde, ist es nicht gedacht, auf die hierin dargelegte Form begrenzt zu sein, sondern ist im Ge-
genteil gedacht, solche Alternativen, Modifikationen und Gleichwertigkeiten einzuschließen, wie sie vernünfti-
gerweise im Umfang der Erfindung, wie in den anliegenden Ansprüchen definiert, enthalten sein können.

Patentansprüche

1. Netzwerk-Switch (102), der umfasst:
eine Vielzahl von Netzwerk-Ports (104), die zum Empfangen und Senden von Daten von Netzwerk-Vorrichtun-
gen (120, 122, 124) bzw. zu ihm konfiguriert sind;
einen Switch-Manager (210), der mit der Vielzahl von Netzwerk-Ports (104) gekoppelt ist, um Datenstrom zwi-
schen der Vielzahl von Netzwerk-Ports (104) zu steuern; und
eine Logik (303), die so betrieben werden kann, dass sie Datenverfügbarkeit an den jeweiligen Ports bestimmt,
dadurch gekennzeichnet, dass:
jeder der Vielzahl von Netzwerk-Ports (104) mit einer Port-Status-Logik (303) verbunden ist, die so konfiguriert
ist, dass sie Status-Signale bereitstellt, die anzeigen, ob ein entsprechender Netzwerk-Port (104) Daten von
einer Netzwerk-Vorrichtung (120, 122, 124) empfangen hat und ob ein entsprechender Netzwerk-Port (104)
verfügbaren Raum hat, um Daten zum Senden zu einer Netzwerk-Vorrichtung (120, 122, 124) zu empfangen;
und
eine Abfrage-Logik (501), die so konfiguriert ist, dass sie periodisch die Port-Status-Logik jedes der Vielzahl

MCB-Registerschnittstelle für Abfragequellenregister
Rückstau

Rückstau-Freigabe – (Offset = 'h138) Bitmap zum Freigeben von Rück-
stau.

Bits 0–23 (RO) – Reserviert. Immer als 0 gelesen.
Bits 24–27 (W/R) – Bitmap.

Bits 28–31 (RO) – Reserviert. Immer als 0 gelsen.

Bits 0–27 (W/R) – Bitmap für Satz 0.
Bits 28–31 (RO) – Reserviert. Immer als 0 gelesen.

Bits 0–27 (W/R) – Bitmap für Satz 1.
Bits 28–31 (RO) – Reserviert. Immer als 0 gelesen.
84/130

DE 697 31 519 T2 2005.12.01
von Netzwerk-Ports (104) abfragt, der das Status-Signalempfängt; sowie einen Speicher (212), der Werte spei-
chert, die die Status-Signale für jeden der Vielzahl von Netzwerk-Ports (104) anzeigen.

2. Netzwerk-Switch nach Anspruch 1, des Weiteren dadurch gekennzeichnet, dass:
die Abfrage-Logik (501) eine Logik enthält, die periodisch ein Abfragesignal aktiviert und ein Sendestatus-Si-
gnal sowie ein Empfangsstatus-Signal von jedem der Vielzahl von Netzwerk-Ports (104) empfängt; und
die Port-Status-Logik (303) jedes der Vielzahl von Netzwerk-Ports (104) eine Logik enthält, die so konfiguriert
ist, dass sie das Abfragesignal empfängt und ein Sendestatus-Signal aktiviert, das anzeigt, ob ein entspre-
chender Netzwerk-Port (104) Raum zum Empfangen von Daten von dem Switch-Manager (210) hat, und ein
Empfangsstatus-Signal aktiviert, das anzeigt, ob der entsprechende Netzwerk-Port (104) Daten von einer
Netzwerk-Vorrichtung (120, 122, 124) empfangen hat.

3. Netzwerk-Switch nach Anspruch 2, des Weiteren gekennzeichnet durch:
eine Vielzahl von Multiport-Vorrichtungen (202), die jeweils so betrieben werden können, dass sie eine Unter-
gruppe der Vielzahl von Netzwerk-Ports (104) implementieren, und die jeweils eine Port-Status-Logik (303)
enthalten, die so konfiguriert ist, dass sie das Abfragesignal empfängt und ein entsprechendes multiplexiertes
Sendestatus-Signal sowie ein entsprechendes multiplexiertes Empfangsstatus-Signal bereitstellt, die den Sta-
tus jedes der Untergruppe der Vielzahl von Netzwerk-Ports (104) jeder der Vielzahl von Multiport-Vorrichtun-
gen (202) anzeigen; und
wobei die Abfrage-Logik (501) so konfiguriert ist, dass sie eine Vielzahl multiplexierter Sendestatus-Signale
und eine Vielzahl multiplexierter Empfangsstatus-Signale von der Vielzahl von Multiport-Vorrichtungen (202)
empfängt, um den Status jedes der Vielzahl von Netzwerk-Ports (104) zu bestimmen.

4. Netzwerk-Switch nach Anspruch 3, des Weiteren dadurch gekennzeichnet, dass jede der Vielzahl von
Multiport-Vorrichtungen (202) eine Vierfach-Cascad-Multiport-Vorrichtung zum Integrieren von bis zu vier der
Vielzahl von Netzwerk-Ports (104) umfasst.

5. Netzwerk-Switch nach einem der Ansprüche 1 bis 4, des Weiteren dadurch gekennzeichnet, dass der
Speicher (212) enthält:
eine Sende-Liste (510), die anzeigt, welche der Vielzahl von Netzwerk-Ports (104) angezeigt haben, dass sie
Raum haben, um Daten zum Senden zu einer Netzwerk-Vorrichtung (120, 122, 124) zu empfangen; und
eine Empfangs-Liste (509), die anzeigt, welche der Vielzahl von Netzwerk-Ports (104) angezeigt haben, dass
sie Daten von einer Netzwerk-Vorrichtung (120, 122, 124) empfangen haben; und dadurch, dass die Abfra-
ge-Logik (501) enthält:
eine Sende-Zustandsmaschine (503), die so konfiguriert ist, dass sie die Status-Signale überwacht und die
Sende-Liste periodisch aktualisiert; und
eine Empfangs-Zustandsmaschine (502), die so konfiguriert ist, dass sie die Status-Signale überwacht und die
Empfangs-Liste periodisch aktualisiert.

6. Netzwerk-Switch nach Anspruch 5, des Weiteren dadurch gekennzeichnet, dass:
die Sende-Liste (510) ein Sende-Aktiv-Bit für jeden der Vielzahl von Netzwerk-Ports (104) enthält, wobei die
Sende-Zustandsmaschine (503) so betrieben werden kann, dass sie ein entsprechendes Sende-Aktiv-Bit
setzt, wenn ein entsprechender Netzwerk-Port (104) anzeigt, dass er Raum hat, um Daten zum Senden zu
einer Netzwerk-Vorrichtung (120, 122, 124) zu empfangen, und wobei das entsprechende Sende-Aktiv-Bit
rückgesetzt wird, wenn dem entsprechenden Netzwerk-Port (104) Daten zum Senden bereitgestellt werden;
und
die Empfangs-Liste (509) ein Empfangs-Aktiv-Bit für jeden der Vielzahl von Netzwerk-Ports (104) enthält, wo-
bei die Empfangs-Zustandsmaschine (502) so betrieben werden kann, dass sie ein entsprechendes Emp-
fangs-Aktiv-Bit setzt, wenn ein entsprechender Netzwerk-Port (104) anzeigt, dass er Daten von einer Netz-
werk-Vorrichtung (120, 122, 124) empfangen hat, und wobei das entsprechende Empfangs-Aktiv-Bit rückge-
setzt wird, wenn Daten aus dem entsprechenden Netzwerk-Port (104) gelesen werden.

7. Netzwerk-Switch nach Anspruch 5, des Weiteren dadurch gekennzeichnet, dass:
die Sende-Liste (510) einen Sende-Prioritätszählwert für jeden der Vielzahl von Netzwerk-Ports (104) enthält
und so betrieben werden kann, dass sie einen entsprechenden Sende-Prioritätszählwert aktualisiert, wenn ein
entsprechender Netzwerk-Port (104) anzeigt, dass er Raum hat, um Daten zum Senden zu einer Netz-
werk-Vorrichtung (120, 122, 124) zu empfangen; und
die Empfangs-Liste (509) einen Empfangs-Prioritätszählwert für jeden der Vielzahl von Netzwerk-Ports (104)
enthält und so betrieben werden kann, dass sie einen entsprechenden Empfangs-Prioritätszählwert aktuali-
siert, wenn ein entsprechender Netzwerk-Port (104) anzeigt, dass er Daten von einer Netzwerk-Vorrichtung
85/130

DE 697 31 519 T2 2005.12.01
(120, 122, 124) empfangen hat.

8. Netzwerk-Schalter nach einem der Ansprüche 1 bis 7, des Weiteren dadurch gekennzeichnet, dass je-
der der Vielzahl von Netzwerk-Ports (104) enthält:
einen Sende-Puffer (304), der Daten zum Senden zu einer Netzwerk-Vorrichtung (120, 122, 124) speichert;
und
einen Empfangs-Puffer (302), der von einer Netzwerk-Vorrichtung (120, 122, 124) empfangene Daten spei-
chert.

9. Netzwerk-Schalter nach Anspruch 8, des Weiteren dadurch gekennzeichnet, dass die Port-Status-Logik
(303) jedes der Vielzahl von Netzwerk-Ports (104) des Weiteren enthält:
eine Sende-Status-Logik, die so betrieben werden kann, dass sie ein Sende-Status-Signal aktiviert, das an-
zeigt, dass der Sende-Puffer (304) wenigstens ein Maß an verfügbarem Raum hat, das einer vorgegebenen
Bustransfer-Feldgröße entspricht; und
eine Empfangs-Statuslogik, die so betrieben werden kann, dass sie ein Empfangs-Status-Signal aktiviert, das
anzeigt, dass der Empfangs-Puffer (302) wenigstens eine Menge an Daten von einer Netzwerk-Vorrichtung
(120, 122, 124) empfangen hat, die der Bustransfer-Feldgröße entspricht.

10. Netzwerk-System (100), das umfasst: eine Vielzahl von Netzwerk-Vorrichtungen (120, 122, 124), die
zum Senden und Empfangen von Datenpaketen eingerichtet sind, sowie einen Netzwerk-Switch (102) nach
Anspruch 8 oder Anspruch 9, wobei die Netzwerk-Ports (104) mit den Netzwerk-Vorrichtungen (120, 122, 124)
gekoppelt sind.

Es folgen 44 Blatt Zeichnungen
86/130

DE 697 31 519 T2 2005.12.01
Anhängende Zeichnungen
87/130

DE 697 31 519 T2 2005.12.01
88/130

DE 697 31 519 T2 2005.12.01
89/130

DE 697 31 519 T2 2005.12.01
90/130

DE 697 31 519 T2 2005.12.01
91/130

DE 697 31 519 T2 2005.12.01
92/130

DE 697 31 519 T2 2005.12.01
93/130

DE 697 31 519 T2 2005.12.01
94/130

DE 697 31 519 T2 2005.12.01
95/130

DE 697 31 519 T2 2005.12.01
96/130

DE 697 31 519 T2 2005.12.01
97/130

DE 697 31 519 T2 2005.12.01
98/130

DE 697 31 519 T2 2005.12.01
99/130

DE 697 31 519 T2 2005.12.01
100/130

DE 697 31 519 T2 2005.12.01
101/130

DE 697 31 519 T2 2005.12.01
102/130

DE 697 31 519 T2 2005.12.01
103/130

DE 697 31 519 T2 2005.12.01
104/130

DE 697 31 519 T2 2005.12.01
105/130

DE 697 31 519 T2 2005.12.01
106/130

DE 697 31 519 T2 2005.12.01
107/130

DE 697 31 519 T2 2005.12.01
108/130

DE 697 31 519 T2 2005.12.01
109/130

DE 697 31 519 T2 2005.12.01
110/130

DE 697 31 519 T2 2005.12.01
111/130

DE 697 31 519 T2 2005.12.01
112/130

DE 697 31 519 T2 2005.12.01
113/130

DE 697 31 519 T2 2005.12.01
114/130

DE 697 31 519 T2 2005.12.01
115/130

DE 697 31 519 T2 2005.12.01
116/130

DE 697 31 519 T2 2005.12.01
117/130

DE 697 31 519 T2 2005.12.01
118/130

DE 697 31 519 T2 2005.12.01
119/130

DE 697 31 519 T2 2005.12.01
120/130

DE 697 31 519 T2 2005.12.01
121/130

DE 697 31 519 T2 2005.12.01
122/130

DE 697 31 519 T2 2005.12.01
123/130

DE 697 31 519 T2 2005.12.01
124/130

DE 697 31 519 T2 2005.12.01
125/130

DE 697 31 519 T2 2005.12.01
126/130

DE 697 31 519 T2 2005.12.01
127/130

DE 697 31 519 T2 2005.12.01
128/130

DE 697 31 519 T2 2005.12.01
129/130

DE 697 31 519 T2 2005.12.01
130/130

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

