

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
2 August 2007 (02.08.2007)

PCT

(10) International Publication Number
WO 2007/087429 A2(51) International Patent Classification:
A61K 31/497 (2006.01)

(74) Agents: HSI, Jeffrey, D. et al.; Edwards Angell Palmer & Dodge LLP, P.O. Box 55874, Boston, MA 02205 (US).

(21) International Application Number:
PCT/US2007/002129

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

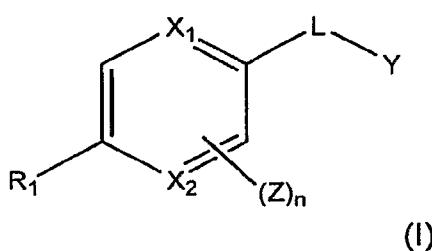
(22) International Filing Date: 25 January 2007 (25.01.2007)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/761,931 25 January 2006 (25.01.2006) US
60/762,015 25 January 2006 (25.01.2006) US

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).


(71) Applicant (for all designated States except US): SYNTA PHARMACEUTICALS CORP. [US/US]; 45 Hartwell Ave., Lexington, MA 02421 (US).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PHENYL AND PYRIDYL COMPOUNDS FOR INFLAMMATION AND IMMUNE-RELATED USES

(57) Abstract: The invention relates to compounds of structural formula (I) or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein R₁, X₁, X₂, Y, Z, L, and n are defined herein. The compounds are useful as immunosuppressive agents and for treating and preventing inflammatory conditions, allergic disorders, and immune disorders.

PHENYL AND PYRIDYL COMPOUNDS FOR INFLAMMATION AND IMMUNE-RELATED USES

5 CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/762,015, filed January 25, 2006 and U.S. Provisional Application No. 60/761,931, filed on January 25, 2006. The entire teachings of each of these applications are incorporated herein by reference.

10

FIELD OF THE INVENTION

This invention relates to biologically active chemical compounds, namely phenyl and pyridinyl derivatives that may be used for 15 immunosuppression or to treat or prevent inflammatory conditions, allergic disorders and immune disorders.

BACKGROUND OF THE INVENTION

20 Inflammation is a mechanism that protects mammals from invading pathogens. However, while transient inflammation is necessary to protect a mammal from infection, uncontrolled inflammation causes tissue damage and is the underlying cause of many illnesses. Inflammation is typically initiated by binding of an antigen to T-cell antigen receptor. Antigen binding by a T-cell 25 initiates calcium influx into the cell via calcium ion channels, such as Ca^{2+} -release-activated Ca^{2+} channels (CRAC). Calcium ion influx in turn initiates a signaling cascade that leads to activation of these cells and an inflammatory response characterized by cytokine production.

30 Interleukin 2 (IL-2) is a cytokine that is secreted by T cells in response to calcium ion influx into the cell. IL-2 modulates immunological effects on many cells of the immune system. For example, it is a potent T cell mitogen that is required for T cell proliferation, promoting their progression from G1 to S

phase of the cell cycle; it stimulates the growth of NK cells; and it acts as a growth factor to B cells and stimulates antibody synthesis.

5 IL-2, although useful in the immune response, can cause a variety of problems. IL-2 damages the blood-brain barrier and the endothelium of brain vessels. These effects may be the underlying causes of neuropsychiatric side effects observed under IL-2 therapy, e.g. fatigue, disorientation and depression. It also alters the electrophysiological behaviour of neurons.

10 Due to its effects on both T and B cells, IL-2 is a major central regulator of immune responses. It plays a role in inflammatory reactions, tumour surveillance, and hematopoiesis. It also affects the production of other cytokines, inducing IL-1, TNF- α and TNF- β secretion, as well as stimulating the synthesis of IFN- γ in peripheral leukocytes.

15 T cells that are unable to produce IL-2 become inactive (anergic). This renders them potentially inert to any antigenic stimulation they might receive in the future. As a result, agents which inhibit IL-2 production can be used for immunosuppression or to treat or prevent inflammation and immune disorders.

20 This approach has been clinically validated with immunosuppressive drugs such as cyclosporin, FK506, and RS61443. Despite this proof of concept, agents that inhibit IL-2 production remain far from ideal. Among other problems, efficacy limitations and unwanted side effects (including dose-dependant nephrotoxicity and hypertension) hinder their use.

25 Over production of proinflammatory cytokines other than IL-2 has also been implicated in many autoimmune diseases. For example, Interleukin 5 (IL-5), a cytokine that increases the production of eosinophils, is increased in asthma. Overproduction of IL-5 is associated with accumulation of eosinophils in the

30 asthmatic bronchial mucosa, a hall mark of allergic inflammation. Thus, patients with asthma and other inflammatory disorders involving the accumulation of

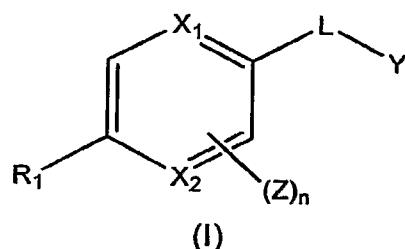
eosinophils would benefit from the development of new drugs that inhibit the production of IL-5.

5 Interleukin 4 (IL-4) and interleukin 13 (IL-13) have been identified as mediators of the hypercontractility of smooth muscle found in inflammatory bowel disease and asthma. Thus, patients with asthma and inflammatory bowel disease would benefit from the development of new drugs that inhibit IL-4 and IL-13 production.

10

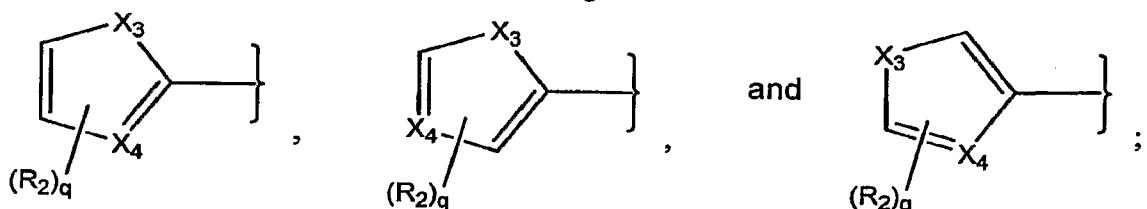
Granulocyte macrophage-colony stimulating factor (GM-CSF) is a regulator of maturation of granulocyte and macrophage lineage population and has been implicated as a key factor in inflammatory and autoimmune diseases. Anti-GM-CSF antibody blockade has been shown to ameliorate autoimmune 15 disease. Thus, development of new drugs that inhibit the production of GM-CSF would be beneficial to patients with an inflammatory or autoimmune disease.

There is a continuing need for new drugs which overcome one or more of the


20 shortcomings of drugs currently used for immunosuppression or in the treatment or prevention of inflammatory disorders, allergic disorders and autoimmune disorders. Desirable properties of new drugs include efficacy against diseases or disorders that are currently untreatable or poorly treatable, new mechanism of action, oral bioavailability and/or reduced side 25 effects.

SUMMARY OF THE INVENTION

This invention meets the above-mentioned needs by providing certain phenyl and pyridinyl derivatives that inhibit the activity of CRAC ion channels and inhibit the production of IL-2, IL-4, IL-5, IL-13, GM-CSF, TNF- α , and IFN γ . These compounds are particularly useful for immunosuppression and/or to treat or prevent inflammatory conditions, allergic disorders and immune disorders.


10

In one embodiment, the invention relates to compounds of formula (I):

15 or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein:

R_1 is selected from the group consisting of:

20 X_1 and X_2 are CH, CZ, or N, provided that at least one of X_1 or X_2 is CH or CZ;

X_3 is O or S;

X_4 is CH, CR₂, or N;

R_2 is a substituent;

25 L is a linker selected from the group consisting of -NR₅CR^aR^b-, -CR^aR^bNR₅-, -C(O)-, -NR₅-C(O)-, -C(O)-NR₅-, -C(S)-, -C(NR₈)-, -NR₅-C(S)-, -C(S)-NR₅-, -NR₅-C(NR₈)-, -C(NR₈)-NR₅-, -NR₅C(O)NR₅-, -NR₅C(S)NR₅-, -NR₅C(NR₈)NR₅-, -S(O)₂NR₅-, -NR₅S(O)₂-, -NR₅S(O)₂NR₅-, -NR₅CR^aR^bNR₅-, -

$CR^a=CR^b$ -, $-C\equiv C-$, $-N=CR^a$ -, $-CR^a=N-$, $-NR_5-N=CR^a$ -, or $-CR^a=N-NR_5$;

Y is an optionally substituted phenyl or an optionally substituted heteroaryl;

5 each Z is independently selected from the group consisting of a lower alkyl, a lower haloalkyl, a halo, a lower alkoxy, a lower alkyl sulfanyl, cyano, nitro, or lower haloalkoxy;

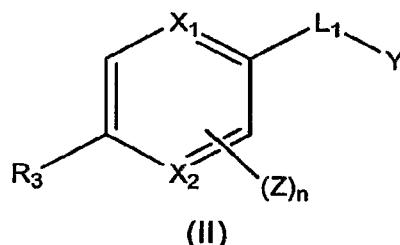
R^a and R^b , for each occurrence, are independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclil, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, cyano, nitro, halo, $-OR_5$, $-SR_5$, $-NR_6R_7$, $-C(O)NR_6R_7$, $-NR_5C(O)R_5$, $-C(O)R_5$, $-C(O)OR_5$, $-OC(O)R_5$, $-C(O)SR_5$, $-SC(O)R_5$, $-C(S)NR_6R_7$, $-NR_5C(S)R_5$, $-C(S)R_5$, $-C(S)OR_5$, $-OC(S)R_5$, $-C(S)SR_5$, $-SC(S)R_5$, $-C(NR_8)NR_6R_7$, $-NR_5C(NR_8)R_5$, $-C(NR_8)R_5$, $-C(NR_8)OR_5$, $-OC(NR_8)R_5$, $-C(NR_8)SR_5$, $-SC(NR_8)R_5$, $-OC(O)OR_5$, $-OC(O)NR_6R_7$, $-NR_5C(O)OR_5$, $-NR_5C(O)NR_6R_7$, $-SC(O)OR_5$, $-SC(O)NR_6R_7$, $-SC(O)SR_5$, $-NR_5C(O)SR_5$, $-OC(O)SR_5$, $-OC(S)OR_5$, $-OC(S)NR_6R_7$, $-NR_5C(S)OR_5$, $-NR_5C(S)NR_6R_7$, $-SC(S)OR_5$, $-SC(S)NR_6R_7$, $-SC(S)SR_5$, $-NR_5C(S)SR_5$, $-OC(S)SR_5$, $-OC(NR_8)OR_5$, $-OC(NR_8)NR_6R_7$, $-NR_5C(NR_8)OR_5$, $-NR_5C(NR_8)NR_6R_7$, $-SC(NR_8)OR_5$, $-SC(NR_8)NR_6R_7$, $-SC(NR_8)SR_5$, $-NR_5C(NR_8)SR_5$, or $-OC(NR_8)SR_5$;

R_5 , for each occurrence, is independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclil, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

25 R_6 and R_7 , for each occurrence are, independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclil, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

30

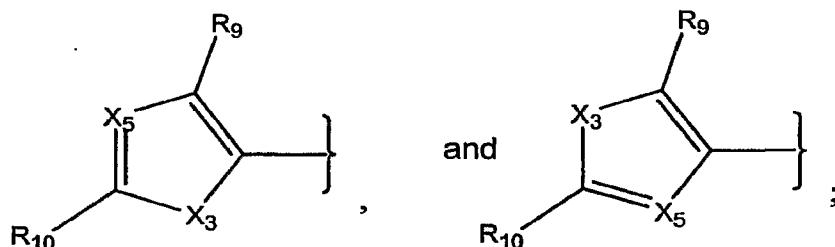
R_6 and R_7 , for each occurrence are, independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclil, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;


aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl; or R_6 and R_7 taken together with the nitrogen to which they are attached are an optionally substituted heterocycl or optionally substituted heteroaryl;

5 R_8 , for each occurrence, is independently $-H$, a halo, an

alkyl, $-OR_5$, $-NR_6R_7$, $-C(O)R_5$, $-C(O)OR_5$, or $-C(O)NR_6R_7$;
 q is 0, 1, or 2; and
 n is 0, 1 or 2.

10


In another embodiment, the invention relates to compounds of formula (II):

or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug

15 thereof, wherein:

R_3 is selected from the group consisting of:

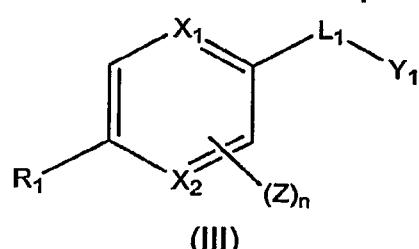
X_5 is CH or N;

L_1 is a linker selected from the group consisting of $-NRC(R)_2-$, $-$

20 $C(R)_2NR-$, $-C(O)-$, $-NR-C(O)-$, $-C(O)-NR-$, $-C(S)-$, $-C(NR_8)-$, $-NR-C(S)-$, $-$
 $C(S)-NR-$, $-NR-C(NR_8)-$, $-C(NR_8)-NR-$, $-NRC(O)NR-$, $-NRC(S)NR-$, $-$
 $NRC(NR_8)NR-$, $-S(O)_2NR-$, $-NRS(O)_2-$, $-NRS(O)_2NR-$, $-NRC(R)_2NR-$, $-CR=CR-$,
 $-C\equiv C-$, $-N=CR-$, $-CR=N-$, $-NR-N=CR-$, or $-CR=N-NR-$;

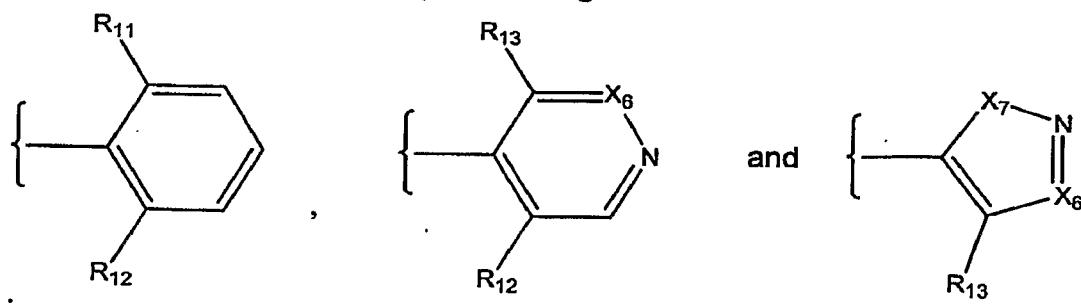
R is H or a lower alkyl;

25 R_9 is a halo, $-OR_5$, $-SR_5$, $-NR_6R_7$, an optionally substituted alkyl, an
 optionally substituted alkenyl, an optionally substituted alkynyl, an optionally


substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

5 R_{10} is a halo, nitro, cyano, a haloalkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, $-C(O)NR_6R_7$, $-C(O)R_5$, $-C(O)OR_5$, $-C(O)SR_5$, $-C(S)NR_6R_7$, $-C(S)R_5$, $-C(S)OR_5$, $-C(S)SR_5$, $-C(NR_8)NR_6R_7$, $-C(NR_8)R_5$, $-C(NR_8)OR_5$, $-C(NR_8)SR_5$, $-S(O)_pR_5$, $-S(O)_pNR_6R_7$, $-P(O)(OR_5)_2$, $-P(S)(OR_5)_2$, $-P(O)(OR_5)(SR_5)$, $-P(S)(OR_5)(SR_5)$, $-P(O)(SR_5)_2$, or $-P(S)(SR_5)_2$; and

X_1 , X_2 , X_3 , R_5 , R_6 , R_7 , R_8 , Y , Z , and n are defined as above.

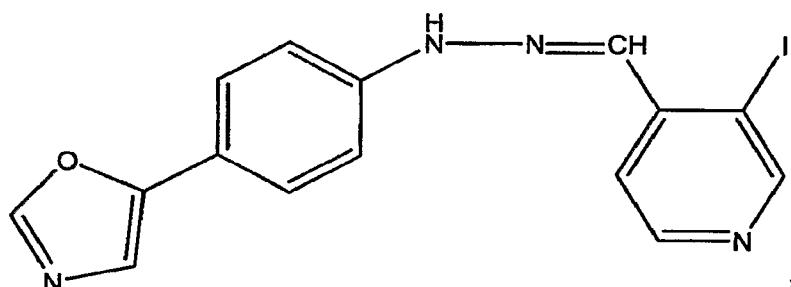

15

In another embodiment, the invention relates to compounds of formula (III):

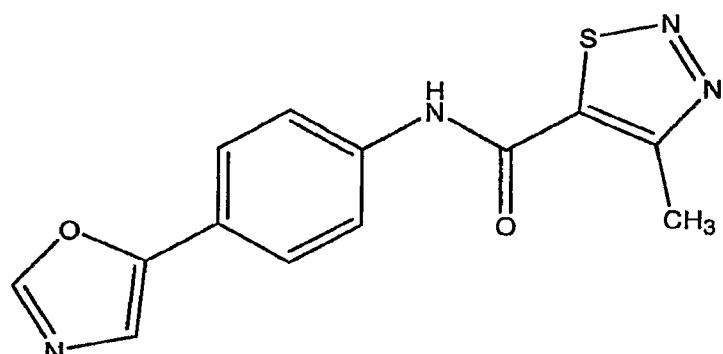
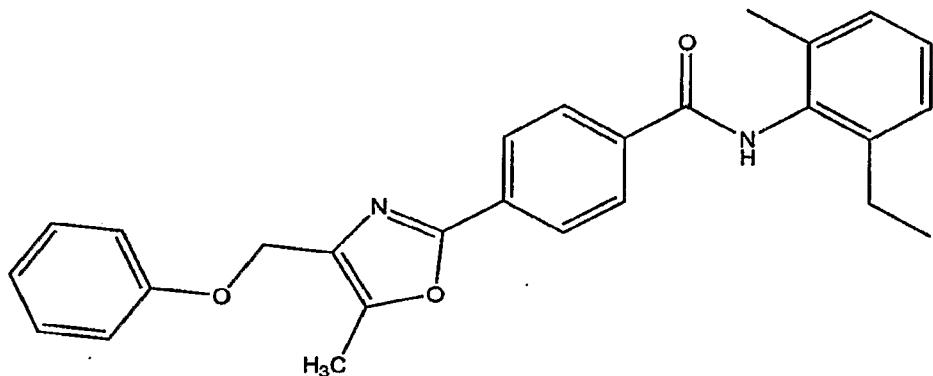
20 or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein:

Y_1 is selected from the group consisting of:

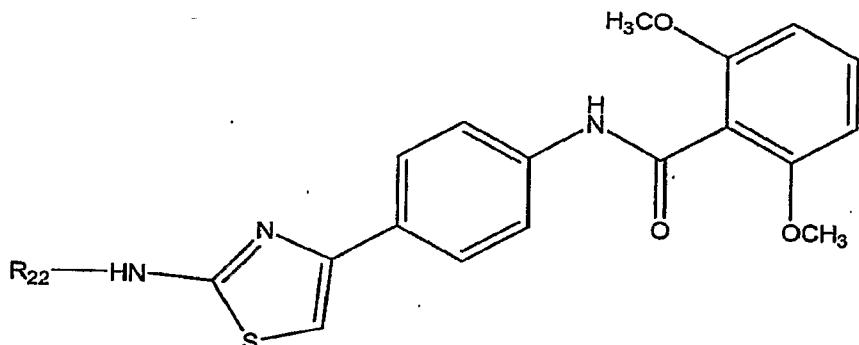
X_6 is CH or N;

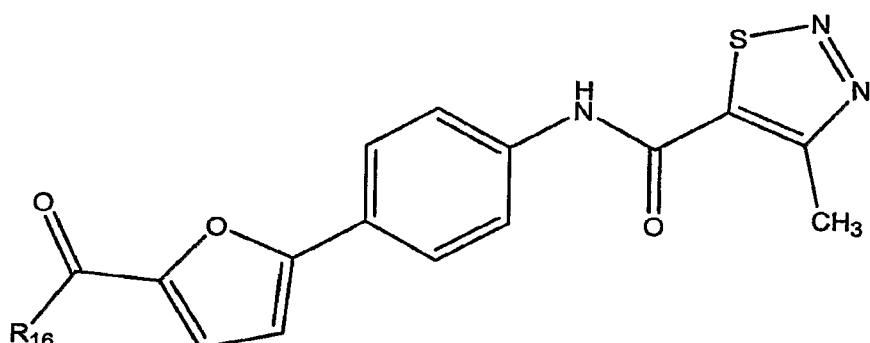

25 X_7 is O or S;

R_{11} and R_{12} are each, independently, a substituent, provided that R_{11}

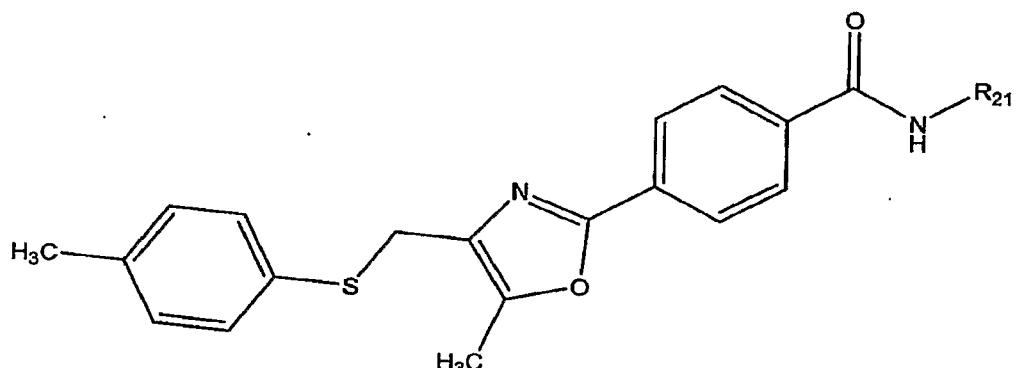


and R_{12} are not both halo when L_1 is $-NRS(O)_2-$;
 R_{13} is H or a substituent;
 q is 0, 1, or 2; and
 R_1 , X_1 , X_2 , L_1 , Z , and n are defined as above.

5

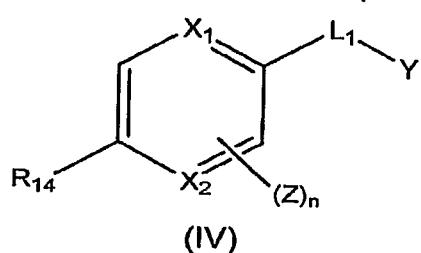

In some embodiments, compounds of formula (III) do not include compounds selected from the group consisting of:


10

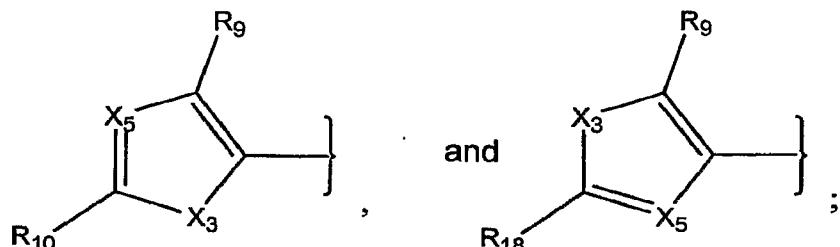
15



wherein R_{22} is allyl, 2-chloro-phenyl, or 3-methyl-phenyl;


5

wherein R_{16} is $-\text{NH}_2$, 2-amino-ethylamino, or [1,4]diazepan-1-yl; and

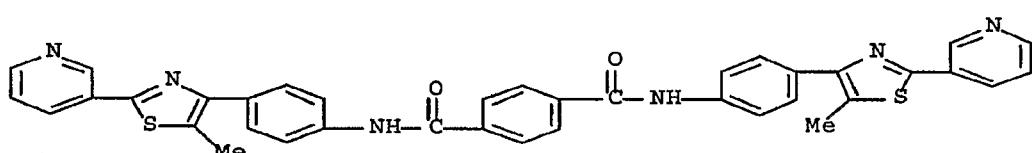
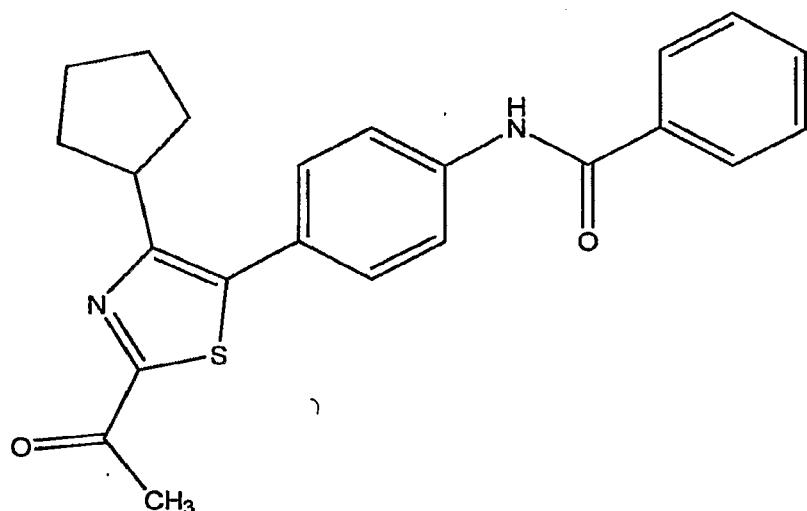

wherein R_{21} is 2-methyl-6-ethyl-phenyl or 2,6-dimethyl-phenyl.

10 In another embodiment, the invention relates to compounds of formula (IV):

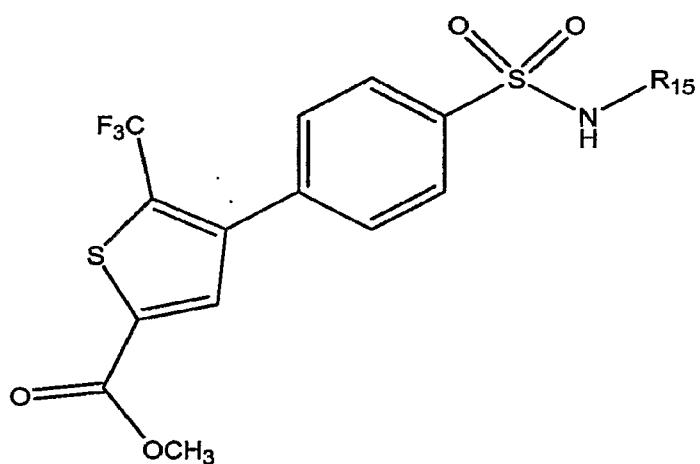
or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein:

R_{14} is selected from the group consisting of:

5 R_{18} is a halo, nitro, cyano, a haloalkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted heteroaryl, an optionally substituted heteraralkyl, -
 $C(O)NR_6R_7$, - $C(O)R_5$, - $C(O)OR_5$, - $C(O)SR_5$, - $C(S)NR_6R_7$, - $C(S)R_5$, - $C(S)OR_5$, -
10 $C(S)SR_5$, - $C(NR_8)NR_6R_7$, - $C(NR_8)R_5$, - $C(NR_8)OR_5$, - $C(NR_8)SR_5$, - $S(O)_pR_5$, -
 $S(O)_pNR_6R_7$, - $P(O)(OR_5)_2$, - $P(S)(OR_5)_2$, - $P(O)(OR_5)(SR_5)$, - $P(S)(OR_5)(SR_5)$, -
 $P(O)(SR_5)_2$, or - $P(S)(SR_5)_2$; and

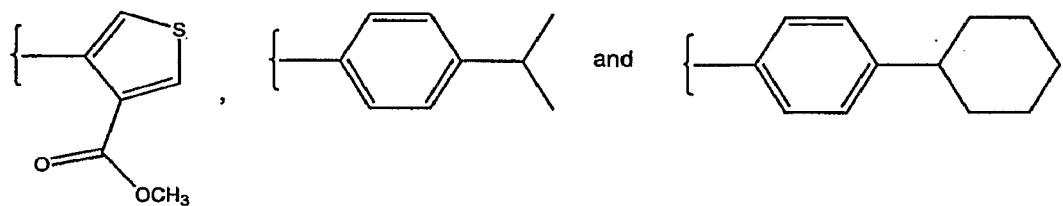


X_1 , X_2 , X_3 , X_5 , Y , L_1 , Z , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , and n are defined as above.

15

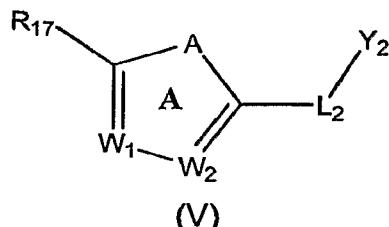

In some embodiments of the compounds represented by formula (IV), one or more of the the following applies:

when L_1 is $-C(O)-$, $-NH-C(O)-$, $-S(O)_2NH-$, $-CH=CH-$, or $-C\equiv C-$, R_{10} is not an optionally substituted aryl;

20 when L_1 is $-S(O)_2NH-$, R_{10} is not a haloalkyl; and/ or
the compound is not a compound represented by one of the following formulas:



, or



wherein:

5

R₁₅ is selected from the group consisting of:

In another embodiment, the invention relates to compounds of formula (V):

or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug

5 thereof, wherein:

A is $-O-$, $-S-$, $-NR^e-$, $-CR^c=CR^d-$, $-N=CR^c-$, $-CR^c=N-$, or $-N=N-$;

W₁ and W₂ are each, independently, CR^c or N;

L₂ is a linker;

Y₂ is an optionally substituted alkyl, an optionally substituted alkenyl,

10 an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, or an optionally substituted heteroaryl;

15 R₁₇ is an optionally substituted heteroaryl, provided that R₁₇ is not an optionally substituted triazolyl, an optionally substituted pyridinyl, an optionally substituted indolizinyl, an optionally substituted benzamidazolyl, imidazo[4,5-c]pyridyl, an optionally substituted imidazo[4,5-b]pyridyl), an optionally substituted tetrahydroindolizinyl, an optionally substituted imidazo[1,2-a]pyridyl, or an optionally substituted pyrazolyl;

20 R^e is H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, -OR₅, -SR₅, -NR₆R₇, -C(O)NR₆R₇, -C(O)R₅, -C(O)OR₅, -C(O)SR₅, -C(S)NR₆R₇, -C(S)R₅, -C(S)OR₅, -C(S)SR₅, -C(NR₈)NR₆R₇, -C(NR₈)R₅, -C(NR₈)OR₅, or -C(NR₈)SR₅;

25 R^c and R^d, for each occurrence, are independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an

optionally substituted heteraralkyl, cyano, nitro, halo, -OR₅, -SR₅, -NR₆R₇, -C(O)NR₆R₇, -NR₅C(O)R₅, -C(O)R₅, -C(O)OR₅, -OC(O)R₅, -C(O)SR₅, -SC(O)R₅, -C(S)NR₆R₇, -NR₅C(S)R₅, -C(S)R₅, -C(S)OR₅, -OC(S)R₅, -C(S)SR₅, -SC(S)R₅, -C(NR₈)NR₆R₇, -NR₅C(NR₈)R₅, -C(NR₈)R₅, -C(NR₈)OR₅, -

5 OC(NR₈)R₅, -C(NR₈)SR₅, -SC(NR₈)R₅, -OC(O)OR₅, -OC(O)NR₆R₇, -NR₅C(O)OR₅, -NR₅C(O)NR₆R₇, -SC(O)OR₅, -SC(O)NR₆R₇, -SC(O)SR₅, -NR₅C(O)SR₅, -OC(O)SR₅, -OC(S)OR₅, -OC(S)NR₆R₇, -NR₅C(S)OR₅, -NR₅C(S)NR₆R₇, -SC(S)OR₅, -SC(S)NR₆R₇, -SC(S)SR₅, -NR₅C(S)SR₅, -OC(S)SR₅, -OC(NR₈)OR₅, -OC(NR₈)NR₆R₇, -NR₅C(NR₈)OR₅, -

10 NR₅C(NR₈)NR₆R₇, -SC(NR₈)OR₅, -SC(NR₈)NR₆R₇, -SC(NR₈)SR₅, -NR₅C(NR₈)SR₅, -OC(NR₈)SR₅, -S(O)_pR₅, -S(O)_pNR₆R₇, -NR₅S(O)_pR₅, -NR₅S(O)NR₆R₇, -S(O)_pOR₅, -OS(O)_pR₅, or -OS(O)OR₅;

p is 1 or 2; and

R₅, R₆, R₇, and R₈ are defined as above.

15

A compound of the invention or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof is particularly useful inhibiting immune cell (e.g., T-cells and/or B-cells) activation (e.g., activation in response to an antigen). In particular, a compound of the invention or a pharmaceutically acceptable

20 salt, solvate, clathrate, or prodrug thereof can inhibit the production of certain cytokines that regulate immune cell activation. For example, a compound of the invention or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof can inhibit the production of IL-2, IL-4, IL-5, IL-13, GM-CSF, TNF- α , INF- γ or combinations thereof. Moreover, a compound of the

25 invention or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof can modulate the activity of one or more ion channel involved in activation of immune cells, such as CRAC ion channels.

30 In one embodiment, compounds of the invention or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof are particularly useful for inhibiting mast cell degranulation. Mast cell degranulation has been implicated in allergic reactions.

A compound of the invention or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof is particularly useful for immunosuppression or for treating or preventing inflammatory conditions, allergic disorders, and immune disorders.

5

The invention also encompasses pharmaceutical compositions comprising a compound of the invention or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof; and a pharmaceutically acceptable carrier or vehicle. These compositions may further comprise additional agents. These compositions are useful for immunosuppression and treating or preventing inflammatory conditions, allergic disorders and immune disorders.

10

The invention further encompasses methods for treating or preventing inflammatory conditions, allergic disorders, and immune disorders, comprising administering to a subject in need thereof an effective amount of a compound of the invention or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, or a pharmaceutical composition comprising a compound of the invention or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof. These methods may also comprise administering to the subject an additional agent separately or in a combination composition with the compound of the invention or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof.

20

The invention further encompasses methods for suppressing the immune system of a subject, comprising administering to a subject in need thereof an effective amount of a compound of the invention or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, or a pharmaceutical composition comprising a compound of the invention or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof. These methods may also comprise administering to the subject an additional agent separately or in a combination composition with the compound of the invention or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof.

25

The invention further encompasses methods for inhibiting immune cell activation, including inhibiting proliferation of T cells and/or B cells, *in vivo* or *in vitro* comprising administering to the cell an effective amount of a compound of the invention or a pharmaceutically acceptable salt, solvate, 5 clathrate, or prodrug thereof or a pharmaceutical composition comprising a compound of the invention or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof.

The invention further encompasses methods for inhibiting cytokine production

10 in a cell (e.g., IL-2, IL-4, IL-5, IL-13, GM-CSF, TNF- α , and/or INF- γ production) *in vivo* or *in vitro* comprising administering to a cell an effective amount of a compound of the invention or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof or a pharmaceutical composition comprising a compound of the invention or a pharmaceutically acceptable 15 salt, solvate, clathrate, or prodrug thereof.

The invention further encompasses methods for modulating ion channel activity (e.g., CRAC) *in vivo* or *in vitro* comprising administering an effective amount of a compound of the invention or a pharmaceutically acceptable salt,

20 solvate, clathrate, or prodrug thereof or a pharmaceutical composition comprising a compound of the invention or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof.

All of the methods of this invention may be practice with a compound of the

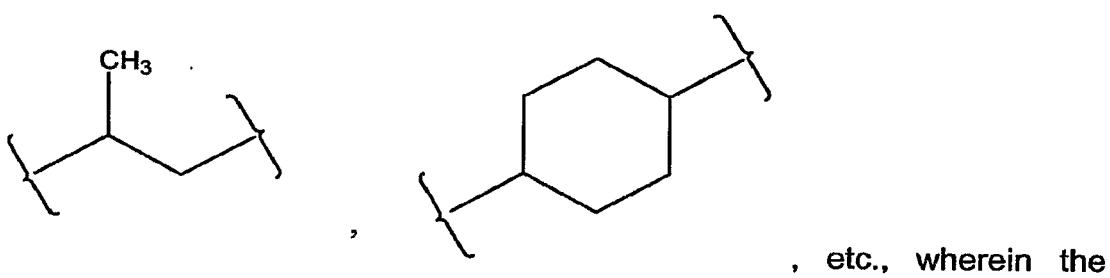
25 invention alone, or in combination with other agents, such as other immunosuppressive agents, anti-inflammatory agents, agents for the treatment of allergic disorders or agents for the treatment of immune disorders.

DETAILED DESCRIPTION OF THE INVENTION

DEFINITIONS

5 Unless otherwise specified, the below terms used herein are defined as follows:

As used herein, the term an "aromatic ring" or "aryl" means a monocyclic or polycyclic-aromatic ring or ring radical comprising carbon and hydrogen


10 atoms. Examples of suitable aryl groups include, but are not limited to, phenyl, tolyl, anthacenyl, fluorenyl, indenyl, azulenyl, and naphthyl, as well as benzo-fused carbocyclic moieties such as 5,6,7,8-tetrahydronaphthyl. An aryl group can be unsubstituted or substituted with one or more substituents (including without limitation alkyl (preferably, lower alkyl or alkyl substituted

15 with one or more halo), hydroxy, alkoxy (preferably, lower alkoxy), alkylsulfanyl, cyano, halo, amino, and nitro. In certain embodiments, the aryl group is a monocyclic ring, wherein the ring comprises 6 carbon atoms.

As used herein, the term "alkyl" means a saturated straight chain or branched
20 non-cyclic hydrocarbon typically having from 1 to 10 carbon atoms. Representative saturated straight chain alkyls include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl and n-decyl; while saturated branched alkyls include isopropyl, sec-butyl, isobutyl, *tert*-butyl, isopentyl, 2-methylbutyl, 3-methylbutyl, 2-methylpentyl, 3-methylpentyl, 4-
25 methylpentyl, 2-methylhexyl, 3-methylhexyl, 4-methylhexyl, 5-methylhexyl, 2,3-dimethylbutyl, 2,3-dimethylpentyl, 2,4-dimethylpentyl, 2,3-dimethylhexyl, 2,4-dimethylhexyl, 2,5-dimethylhexyl, 2,2-dimethylpentyl, 2,2-dimethylhexyl, 3,3-dimethylpentyl, 3,3-dimethylhexyl, 4,4-dimethylhexyl, 2-ethylpentyl, 3-ethylpentyl, 2-ethylhexyl, 3-ethylhexyl, 4-ethylhexyl, 2-methyl-2-ethylpentyl, 2-
30 methyl-3-ethylpentyl, 2-methyl-4-ethylpentyl, 2-methyl-2-ethylhexyl, 2-methyl-3-ethylhexyl, 2-methyl-4-ethylhexyl, 2,2-diethylpentyl, 3,3-diethylhexyl, 2,2-diethylhexyl, 3,3-diethylhexyl and the like. Alkyl groups included in compounds of this invention may be optionally substituted with one or more

substituents. Examples of substituents include, but are not limited to, amino, alkylamino, alkoxy, alkylsulfanyl, oxo, halo, acyl, nitro, hydroxyl, cyano, aryl, alkylaryl, aryloxy, arylsulfanyl, arylamino, carbocyclyl, carbocyclyoxy, carbocyclylthio, carbocyclylamino, heterocyclyl, heterocyclyoxy, heterocyclylamino, heterocyclylthio, and the like. In addition, any carbon in the alkyl segment may be substituted with oxygen (=O), sulfur (=S), or nitrogen (=NR²², wherein R²² is -H, an alkyl, acetyl, or aralkyl). Lower alkyls are typically preferred for the compounds of this invention.

5 The term alkylene refers to an alkyl group or a cycloalkyl group that has two points of attachment to two moieties (e.g., {-CH₂-}, -(CH₂CH₂}-),

15

An aralkyl group refers to an aryl group that is attached to another moiety via an alkylene linker. Aralkyl groups can be substituted or unsubstituted with one or more substituents.

20

The term "alkoxy," as used herein, refers to an alkyl group which is linked to another moiety through an oxygen atom. Alkoxy groups can be substituted or unsubstituted with one or more substituents.

25

The term "alkylsulfanyl," as used herein, refers to an alkyl group which is linked to another moiety through a divalent sulfur atom. Alkylsulfanyl groups can be substituted or unsubstituted with one or more substituents.

The term "arylsulfanyl," as used herein, refers to an aryl group which is linked to another moiety through a divalent sulfur atom. Arylsulfanyl groups can be substituted or unsubstituted with one or more substituents.

- 5 The term "alkyl ester" as used herein, refers to a group represented by the formula $-C(O)OR_{32}$, wherein R_{32} is an alkyl group. A lower alkyl ester is a group represented by the formula $-C(O)OR_{32}$, wherein R_{32} is a lower alkyl group.
- 10 The term "heteroalkyl," as used herein, refers to an alkyl group which has one or more carbons in the alkyl chain replaced with an $-O-$, $-S-$ or $-NR_{27}-$, wherein R_{27} is H or a lower alkyl. Heteroalkyl groups can be substituted or unsubstituted with one or more substituents.
- 15 The term "alkylamino," as used herein, refers to an amino group in which one hydrogen atom attached to the nitrogen has been replaced by an alkyl group. The term "dialkylamino," as used herein, refers to an amino group in which two hydrogen atoms attached to the nitrogen have been replaced by alkyl groups, in which the alkyl groups can be the same or different. Alkylamino groups and dialkylamino groups can be substituted or unsubstituted with one or more substituents:
- 20

As used herein, the term "alkenyl" means a straight chain or branched, hydrocarbon radical typically having from 2 to 10 carbon atoms and having at least one carbon-carbon double bond. Representative straight chain and branched alkenyls include vinyl, allyl, 1-butenyl, 2-butenyl, isobutylenyl, 1-pentenyl, 2-pentenyl, 3-methyl-1-butenyl, 1-methyl-2-butenyl, 2,3-dimethyl-2-butenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 1-heptenyl, 2-heptenyl, 3-heptenyl, 1-octenyl, 2-octenyl, 3-octenyl, 1-nonenyl, 2-nonenyl, 3-nonenyl, 1-decenyl, 2-decenyl, 3-decenyl and the like. Alkenyl groups can be substituted or unsubstituted with one or more substituents.

As used herein, the term "alkynyl" means a straight chain or branched, hydrocarbonon radical typically having from 2 to 10 carbon atoms and having at lease one carbon-carbon triple bond. Representative straight chain and branched alkynyls include acetylenyl, propynyl, 1-butynyl, 2-butynyl,

5 1-pentynyl, 2-pentynyl, 3-methyl-1-butynyl, 4-pentynyl,-1-hexynyl, 2-hexynyl, 5-hexynyl, 1-heptynyl, 2-heptynyl, 6-heptynyl, 1-octynyl, 2-octynyl, 7-octynyl, 1-nonyl, 2-nonyl, 8-nonyl, 1-decynyl, 2-decynyl, 9-decynyl and the like. Alkynyl groups can be substituted or unsubstituted with one or more substituents.

10

As used herein, the term "cycloalkyl" means a saturated, mono- or polycyclic alkyl radical typically having from 3 to 14 carbon atoms. Representative cycloalkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, adamantly,

15 decahydronaphthyl, octahdropentalene, bicyclic[1.1.1]pentanyl, and the like. Cycloalkyl groups can be substituted or unsubstituted with one or more substituents.

As used herein, the term "cycloalkenyl" means a cyclic non-aromatic alkenyl radical having at least one carbon-carbon double bond in the cyclic system and typically having from 5 to 14 carbon atoms. Representative cycloalkenyls include cyclopentenyl, cyclopentadienyl, cyclohexenyl, cyclohexadienyl, cycloheptenyl, cycloheptadienyl, cycloheptatrienyl, cyclooctenyl, cyclooctadienyl, cyclooctatrienyl, cyclooctatetraenyl, cyclononenyl, 25 cyclononadienyl, cyclodecyl, cyclodecadienyl and the like. Cycloalkenyl groups can be substituted or unsubstituted with one or more substituents.

As used herein, the term "heterocycle" or "heterocycl" means a monocyclic or polycyclic heterocyclic ring (typically having 3- to 14-members) which is 30 either a saturated ring or an unsaturated non-aromatic ring. A 3-membered heterocycle can contain up to 3 heteroatoms, and a 4- to 14-membered heterocycle can contain from 1 to about 8 heteroatoms. Each heteroatom is independently selected from nitrogen, which can be quaternized; oxygen; and

sulfur, including sulfoxide and sulfone. The heterocycle may be attached via any heteroatom or carbon atom. Representative heterocycles include morpholinyl, thiomorpholinyl, pyrrolidinyl, pyrrolidinyl, piperidinyl, piperazinyl, hydantoinyl, valerolactamyl, oxiranyl, oxetanyl, tetrahydrofuranyl, 5 tetrahydropyranyl, 4H-pyranyl, tetrahydropyrindinyl, tetrahydropyrimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, and the like. A heteroatom may be substituted with a protecting group known to those of ordinary skill in the art, for example, the hydrogen on a nitrogen may be substituted with a tert-butoxycarbonyl group. Furthermore, the heterocyclyl may be optionally 10 substituted with one or more substituents (including without limitation a halo, an alkyl, a haloalkyl, or aryl). Only stable isomers of such substituted heterocyclic groups are contemplated in this definition.

As used herein, the term "heteroaromatic" or "heteroaryl" means a monocyclic 15 or polycyclic heteroaromatic ring (or radical thereof) comprising carbon atom ring members and one or more heteroatom ring members (such as, for example, oxygen, sulfur or nitrogen). Typically, the heteroaromatic ring has from 5 to about 14 ring members in which at least 1 ring member is a heteroatom selected from oxygen, sulfur and nitrogen. In another 20 embodiment, the heteroaromatic ring is a 5 or 6 membered ring and may contain from 1 to about 4 heteroatoms. In another embodiment, the heteroaromatic ring system has a 7 to 14 ring members and may contain from 1 to about 7 heteroatoms. Representative heteroaryls include pyridyl, furyl, thienyl, pyrrolyl, oxazolyl, imidazolyl, indolizinyl, thiazolyl, isoxazolyl, pyrazolyl, 25 isothiazolyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, triazolyl, pyridinyl, thiadiazolyl, pyrazinyl, quinolyl, isoquinolyl, indazolyl, benzoxazolyl, benzofuryl, benzothiazolyl, indolizinyl, imidazopyridinyl, isothiazolyl, tetrazolyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, benzothiadiazolyl, 30 benzoxadiazolyl, indolyl, tetrahydroindolyl, azaindolyl, imidazopyridyl, quinazolinyl, purinyl, pyrrolo[2,3]pyrimidyl, pyrazolo[3,4]pyrimidyl or benzo(b)thienyl and the like. Heteroaryl groups may be optionally substituted with one or more substituents

A heteroaralkyl group refers to a heteroaryl group that is attached to another moiety via an alkylene linker. Heteroaralkyl groups can be substituted or unsubstituted with one or more substituents.

As used herein, the term "halogen" or "halo" means -F, -Cl, -Br or -I.

5

As used herein, the term "haloalkyl" means an alkyl group in which one or more -H is replaced with a halo group. Examples of haloalkyl groups include -CF₃, -CHF₂, -CCl₃, -CH₂CH₂Br, -CH₂CH(CH₂CH₂Br)CH₃, -CHICH₃, and the like.

10

As used herein, the term "haloalkoxy" means an alkoxy group in which one or more -H is replaced with a halo group. Examples of haloalkoxy groups include -OCF₃ and -OCHF₂.

15 A "linker," as used herein, means a diradical having from 1-6 atoms in contiguous linear connectivity that covalently connects the Y₂ group of a compound of this invention to ring A, as illustrated in formula (V). The atoms of the linker in contiguous linear connectivity may be connected by saturated or unsaturated covalent bonds. Linker includes, but are not limited to,

20 diradicals of alkyl, alkenyl, alkynyl, heteroalkyl, carbonyl, thiocarbonyl, amino, amide, thioamide, ester, imino, ureido, guanadino, hydrazinyl, and sulfonylamino.

25 The term "contiguous linear connectivity" means connected together so as to form an uninterrupted linear array or series of atoms. For example, a linker of the compounds described herein having a specified number of atoms in contiguous linear connectivity has at least that number of atoms connected together so as to form an uninterrupted chain, but may also include additional atoms that are not so connected (e.g., branches or atoms contained within a

30 ring system).

The terms "bioisostere" and "bioisosteric replacement" have the same meanings as those generally recognized in the art. Bioisosteres are atoms,

ions, or molecules in which the peripheral layers of electrons can be considered substantially identical. The term bioisostere is usually used to mean a portion of an overall molecule, as opposed to the entire molecule itself. Bioisosteric replacement involves using one bioisostere to replace

5 another with the expectation of maintaining or slightly modifying the biological activity of the first bioisostere. The bioisosteres in this case are thus atoms or groups of atoms having similar size, shape and electron density. Preferred bioisosteres of esters, amides or carboxylic acids are compounds containing two sites for hydrogen bond acceptance. In one embodiment, the ester,

10 amide or carboxylic acid bioisostere is a 5-membered monocyclic heteroaryl ring, such as an optionally substituted 1H-imidazolyl, an optionally substituted oxazolyl, 1H-tetrazolyl, [1,2,4]triazolyl, or an optionally substituted [1,2,4]oxadiazolyl.

15 As used herein, the terms "subject", "patient" and "animal", are used interchangeably and include, but are not limited to, a cow, monkey, horse, sheep, pig, mini pig, chicken, turkey, quail, cat, dog, mouse, rat, rabbit, guinea pig and human. The preferred subject, patient or animal is a human.

20 As used herein, the term "lower" refers to a group having up to four carbon atoms. For example, a "lower alkyl" refers to an alkyl radical having from 1 to 4 carbon atoms, and a "lower alkenyl" or "lower alkynyl" refers to an alkenyl or alkynyl radical having from 2 to 4 carbon atoms, respectively. A lower alkoxy or a lower alkylsulfanyl refers to an alkoxy or an alkylsulfanyl having from 1 to 25 4 carbon atoms. Lower substituents are typically preferred.

Where a particular substituent, such as an alkyl substituent, occurs multiple times in a given structure or moiety, the identity of the substituent is independent in each case and may be the same as or different from other

30 occurrences of that substituent in the structure or moiety. Furthermore, individual substituents in the specific embodiments and exemplary compounds of this invention are preferred in combination with other such substituents in the compounds of this invention, even if such individual

substituents are not expressly noted as being preferred or not expressly shown in combination with other substituents.

The compounds of the invention are defined herein by their chemical structures and/or chemical names. Where a compound is referred to by both a chemical structure and a chemical name, and the chemical structure and chemical name conflict, the chemical structure is determinative of the compound's identity.

5 Suitable substituents for an alkyl, alkoxy, alkylsulfanyl, alkylamino, dialkylamino, alkylene, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, heterocyclyl, aryl, aralkyl, heteroaryl, and heteroaralkyl groups include any substituent which will form a stable compound of the invention. Examples of substituents for an alkyl, alkoxy, alkylsulfanyl, alkylamino, dialkylamino, alkylene, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, heterocyclyl, aryl, aralkyl, heteroaryl, and heteroaralkyl include an alkyl, an alkoxy, an alkylsulfanyl, an alkylamino, a dialkylamino, an alkenyl, an alkynyl, a cycloalkyl, a cycloalkenyl, a heterocyclyl, an aryl, a heteroaryl, an aralkyl, a heteraralkyl, a haloalkyl, $-C(O)NR_{23}R_{24}$, $-NR_{25}C(O)R_{26}$, halo, $-OR_{25}$, cyano, nitro, 10 haloalkoxy, $-C(O)R_{25}$, $-NR_{23}R_{24}$, $-SR_{25}$, $-C(O)OR_{25}$, $-OC(O)R_{25}$, $-NR_{25}C(O)NR_{23}R_{24}$, $-OC(O)NR_{23}R_{24}$, $-NR_{25}C(O)OR_{26}$, $-S(O)_pR_{25}$, or $-S(O)_pNR_{23}R_{24}$, 15 wherein R_{23} and R_{24} , for each occurrence are, independently, H, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, a cycloalkenyl, a heterocyclyl, an aryl, a heteroaryl, an aralkyl, or a heteraralkyl; or R_{23} and R_{24} taken together with the 20 nitrogen to which they are attached is a heterocyclyl or a heteroaryl; and R_{25} and R_{26} for each occurrence are, independently, H, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, a cycloalkenyl, a heterocyclyl, an aryl, a heteroaryl, an aralkyl, or a heteraralkyl; 25 nitrogen to which they are attached is a heterocyclyl or a heteroaryl; and R_{25} and R_{26} for each occurrence are, independently, H, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, a cycloalkenyl, a heterocyclyl, an aryl, a heteroaryl, an aralkyl, or a heteraralkyl;

30 In addition, alkyl, cycloalkyl, alkylene, a heterocyclyl, and any saturated portion of a alkenyl, cycloalkenyl, alkynyl, aralkyl, and heteroaralkyl groups, may also be substituted with $=O$, $=S$, $=N-R_{22}$.

When a heterocyclyl, heteroaryl, or heteroaralkyl group contains a nitrogen atom, it may be substituted or unsubstituted. When a nitrogen atom in the aromatic ring of a heteroaryl group has a substituent the nitrogen may be a quaternary nitrogen.

5

Choices and combinations of substituents and variables envisioned by this invention are only those that result in the formation of stable compounds. The term "stable", as used herein, refers to compounds which possess stability sufficient to allow manufacture and which maintains the integrity of the

10 compound for a sufficient period of time to be useful for the purposes detailed herein (e.g., therapeutic or prophylactic administration to a subject). Typically, such compounds are stable at a temperature of 40°C or less, in the absence of excessive moisture, for at least one week. Such choices and combinations will be apparent to those of ordinary skill in the art and may be determined
15 without undue experimentation.

Unless indicated otherwise, the compounds of the invention containing reactive functional groups (such as, without limitation, carboxy, hydroxy, and amino moieties) also include protected derivatives thereof. "Protected

20 derivatives" are those compounds in which a reactive site or sites are blocked with one or more protecting groups. Suitable protecting groups for carboxy moieties include benzyl, tert-butyl, and the like. Suitable protecting groups for amino and amido groups include acetyl, tert-butoxycarbonyl, benzyloxycarbonyl, and the like. Suitable protecting groups for hydroxy
25 include benzyl, trimethyl silyl (TMS) and the like. Other suitable protecting groups are well known to those of ordinary skill in the art and include those found in T. W. Greene, Protecting Groups in Organic Synthesis, John Wiley & Sons, Inc. 1981, the entire teachings of which are incorporated herein by reference.

30

As used herein, the term "compound(s) of this invention" and similar terms refers to a compound of any one of formulas (I) through (V), or Table 1, or a

pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof and also include protected derivatives thereof.

As used herein and unless otherwise indicated, the term "prodrug" means a derivative of a compound that can hydrolyze, oxidize, or otherwise react under biological conditions (*in vitro* or *in vivo*) to provide a compound of this invention. Prodrugs may only become active upon such reaction under biological conditions, but they may have activity in their unreacted forms. Examples of prodrugs contemplated in this invention include, but are not limited to, analogs or derivatives of compounds of any one of formulas (I) through (V), or Table 1 that comprise biohydrolyzable moieties such as biohydrolyzable amides, biohydrolyzable esters, biohydrolyzable carbamates, biohydrolyzable carbonates, biohydrolyzable ureides, and biohydrolyzable phosphate analogues. Other examples of prodrugs include derivatives of compounds of any one of formulas (I) through (V), or of Table 1 that comprise -NO, -NO₂, -ONO, or -ONO₂ moieties. Prodrugs can typically be prepared using well-known methods, such as those described by 1 BURGER'S MEDICINAL CHEMISTRY AND DRUG DISCOVERY (1995) 172-178, 949-982 (Manfred E. Wolff ed., 5th ed), the entire teachings of which are incorporated herein by reference.

As used herein and unless otherwise indicated, the terms "biohydrolyzable amide", "biohydrolyzable ester", "biohydrolyzable carbamate", "biohydrolyzable carbonate", "biohydrolyzable ureide" and "biohydrolyzable phosphate analogue" mean an amide, ester, carbamate, carbonate, ureide, or phosphate analogue, respectively, that either: 1) does not destroy the biological activity of the compound and confers upon that compound advantageous properties *in vivo*, such as uptake, duration of action, or onset of action; or 2) is itself biologically inactive but is converted *in vivo* to a biologically active compound. Examples of biohydrolyzable amides include, but are not limited to, lower alkyl amides, α -amino acid amides, alkoxyacyl amides, and alkylaminoalkylcarbonyl amides. Examples of biohydrolyzable esters include, but are not limited to, lower alkyl esters, alkoxyacyloxy esters,

alkyl acylamino alkyl esters, and choline esters. Examples of biohydrolyzable carbamates include, but are not limited to, lower alkylamines, substituted ethylenediamines, aminoacids, hydroxyalkylamines, heterocyclic and heteroaromatic amines, and polyether amines.

5

As used herein, the term "pharmaceutically acceptable salt," is a salt formed from an acid and a basic group of one of the compounds of any one of formulas (I) through (V) or of Table 1. Illustrative salts include, but are not limited, to sulfate, citrate, acetate, oxalate, chloride, bromide, iodide, nitrate,

10 bisulfate, phosphate, acid phosphate, isonicotinate, lactate, salicylate, acid citrate, tartrate, oleate, tannate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucuronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzenesulfonate, *p*-toluenesulfonate, and pamoate (i.e.,

15 1,1'-methylene-bis-(2-hydroxy-3-naphthoate)) salts. The term "pharmaceutically acceptable salt" also refers to a salt prepared from a compound of any one of formulas (I) through (V) or Table 1 having an acidic functional group, such as a carboxylic acid functional group, and a pharmaceutically acceptable inorganic or organic base. Suitable bases

20 include, but are not limited to, hydroxides of alkali metals such as sodium, potassium, and lithium; hydroxides of alkaline earth metal such as calcium and magnesium; hydroxides of other metals, such as aluminum and zinc; ammonia, and organic amines, such as unsubstituted or hydroxy-substituted mono-, di-, or trialkylamines; dicyclohexylamine; tributyl amine; pyridine;

25 N-methyl,N-ethylamine; diethylamine; triethylamine; mono-, bis-, or tris-(2-hydroxy-lower alkyl amines), such as mono-, bis-, or tris-(2-hydroxyethyl)- amine; 2-hydroxy-tert-butylamine, or tris-(hydroxymethyl)methylamine, N, N,-di-lower alkyl-N-(hydroxy lower alkyl)-amines, such as N,N-dimethyl-N-(2-hydroxyethyl)- amine, or

30 tri-(2-hydroxyethyl)amine; N-methyl-D-glucamine; and amino acids such as arginine, lysine, and the like. The term "pharmaceutically acceptable salt" also refers to a salt prepared from a compound of any one of formulas (I) through (V) or Table 1 having a basic functional group, such as an amino

functional group, and a pharmaceutically acceptable inorganic or organic acid. Suitable acids include, but are not limited to, hydrogen sulfate, citric acid, acetic acid, oxalic acid, hydrochloric acid, hydrogen bromide, hydrogen iodide, nitric acid, phosphoric acid, isonicotinic acid, lactic acid, salicylic acid, tartaric acid, ascorbic acid, succinic acid, maleic acid, besylic acid, fumaric acid, gluconic acid, glucaronic acid, saccharic acid, formic acid, benzoic acid, glutamic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, and *p*-toluenesulfonic acid.

5 10 As used herein, the term "pharmaceutically acceptable solvate," is a solvate formed from the association of one or more solvent molecules to one or more molecules of a compound of any one of formulas (I) through (V) or Table 1. The term solvate includes hydrates (e.g., hemi-hydrate, mono-hydrate, dihydrate, trihydrate, tetrahydrate, and the like):

15 20 As used herein, the term "clathrate" means a compound of the present invention or a salt thereof in the form of a crystal lattice that contains spaces (e.g., channels) that have a guest molecule (e.g., a solvent or water) trapped within.

25 30 As used herein, the term "asthma" means a pulmonary disease, disorder or condition characterized by reversible airway obstruction, airway inflammation, and increased airway responsiveness to a variety of stimuli.

"Immunosuppression" refers to impairment of any component of the immune system resulting in decreased immune function. This impairment may be measured by any conventional means including whole blood assays of lymphocyte function, detection of lymphocyte proliferation and assessment of the expression of T cell surface antigens. The antisheep red blood cell (SRBC) primary (IgM) antibody response assay (usually referred to as the plaque assay) is one specific method. This and other methods are described in Luster, M.I., Portier, C., Pait, D.G., White, K.L., Jr., Gennings, C., Munson, A.E., and Rosenthal, G.J. (1992). "Risk Assessment in Immunotoxicology I: Sensitivity and Predictability of Immune Tests." *Fundam. Appl. Toxicol.*, 18,

200-210. Measuring the immune response to a T-cell dependent immunogen is another particularly useful assay (Dean, J.H., House, R.V., and Luster, M.I. (2001). "Immunotoxicology: Effects of, and Responses to, Drugs and Chemicals." In *Principles and Methods of Toxicology*: Fourth Edition (A.W. 5 Hayes, Ed.), pp. 1415-1450, Taylor & Francis, Philadelphia, Pennsylvania).

The compounds of this invention can be used to treat subjects with immune disorders. As used herein, the term "immune disorder" and like terms means a disease, disorder or condition caused by the immune system of an animal, 10 including autoimmune disorders. Immune disorders include those diseases, disorders or conditions that have an immune component and those that are substantially or entirely immune system-mediated. Autoimmune disorders are those wherein the animal's own immune system mistakenly attacks itself, thereby targeting the cells, tissues, and/or organs of the animal's own body. 15 For example, the autoimmune reaction is directed against the nervous system in multiple sclerosis and the gut in Crohn's disease. In other autoimmune disorders such as systemic lupus erythematosus (lupus), affected tissues and organs may vary among individuals with the same disease. One person with lupus may have affected skin and joints whereas another may have affected 20 skin, kidney, and lungs. Ultimately, damage to certain tissues by the immune system may be permanent, as with destruction of insulin-producing cells of the pancreas in Type 1 diabetes mellitus. Specific autoimmune disorders that may be ameliorated using the compounds and methods of this invention include without limitation, autoimmune disorders of the nervous system (e.g., 25 multiple sclerosis, myasthenia gravis, autoimmune neuropathies such as Guillain-Barré, and autoimmune uveitis), autoimmune disorders of the blood (e.g., autoimmune hemolytic anemia, pernicious anemia, and autoimmune thrombocytopenia), autoimmune disorders of the blood vessels (e.g., temporal arteritis, anti-phospholipid syndrome, vasculitides such as Wegener's 30 granulomatosis, and Behcet's disease), autoimmune disorders of the skin (e.g., psoriasis, dermatitis herpetiformis, pemphigus vulgaris, and vitiligo), autoimmune disorders of the gastrointestinal system (e.g., Crohn's disease, ulcerative colitis, primary biliary cirrhosis, and autoimmune hepatitis),

autoimmune disorders of the endocrine glands (e.g., Type 1 or immune-mediated diabetes mellitus, Grave's disease, Hashimoto's thyroiditis, autoimmune oophoritis and orchitis, and autoimmune disorder of the adrenal gland); and autoimmune disorders of multiple organs (including connective

5 tissue and musculoskeletal system diseases) (e.g., rheumatoid arthritis, systemic lupus erythematosus, scleroderma, polymyositis, dermatomyositis, spondyloarthropathies such as ankylosing spondylitis, and Sjogren's syndrome). In addition, other immune system mediated diseases, such as graft-versus-host disease and allergic disorders, are also included in the

10 definition of immune disorders herein. Because a number of immune disorders are caused by inflammation, there is some overlap between disorders that are considered immune disorders and inflammatory disorders. For the purpose of this invention, in the case of such an overlapping disorder, it may be considered either an immune disorder or an inflammatory disorder.

15 "Treatment of an immune disorder" herein refers to administering a compound or a composition of the invention to a subject, who has an immune disorder, a symptom of such a disease or a predisposition towards such a disease, with the purpose to cure, relieve, alter, affect, or prevent the autoimmune disorder, the symptom of it, or the predisposition towards it.

20

As used herein, the term "allergic disorder" means a disease, condition or disorder associated with an allergic response against normally innocuous substances. These substances may be found in the environment (such as indoor air pollutants and aeroallergens) or they may be non-environmental

25 (such as those causing dermatological or food allergies). Allergens can enter the body through a number of routes, including by inhalation, ingestion, contact with the skin or injection (including by insect sting). Many allergic disorders are linked to atopy, a predisposition to generate the allergic antibody IgE. Because IgE is able to sensitize mast cells anywhere in the

30 body, atopic individuals often express disease in more than one organ. For the purpose of this invention, allergic disorders include any hypersensitivity that occurs upon re-exposure to the sensitizing allergen, which in turn causes the release of inflammatory mediators. Allergic disorders include without

limitation, allergic rhinitis (e.g., hay fever), sinusitis, rhinosinusitis, chronic or recurrent otitis media, drug reactions, insect sting reactions, latex reactions, conjunctivitis, urticaria, anaphylaxis and anaphylactoid reactions, atopic dermatitis, asthma and food allergies.

5

The compounds of this invention can be used to prevent or to treat subjects with inflammatory disorders. As used herein, an "inflammatory disorder" means a disease, disorder or condition characterized by inflammation of body tissue or having an inflammatory component. These include local

10 inflammatory responses and systemic inflammation. Examples of such inflammatory disorders include: transplant rejection, including skin graft rejection; chronic inflammatory disorders of the joints, including arthritis, rheumatoid arthritis, osteoarthritis and bone diseases associated with increased bone resorption; inflammatory bowel diseases such as ileitis, 15 ulcerative colitis, Barrett's syndrome, and Crohn's disease; inflammatory lung disorders such as asthma, adult respiratory distress syndrome, and chronic obstructive airway disease; inflammatory disorders of the eye including corneal dystrophy, trachoma, onchocerciasis, uveitis, sympathetic ophthalmitis and endophthalmitis; chronic inflammatory disorders of the gums, 20 including gingivitis and periodontitis; tuberculosis; leprosy; inflammatory diseases of the kidney including uremic complications, glomerulonephritis and nephrosis; inflammatory disorders of the skin including scleroderma, psoriasis and eczema; inflammatory diseases of the central nervous system, including chronic demyelinating diseases of the nervous system, multiple 25 sclerosis, AIDS-related neurodegeneration and Alzheimer's disease, infectious meningitis, encephalomyelitis, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and viral or autoimmune encephalitis; autoimmune disorders, immune-complex vasculitis, systemic lupus and erythematoses; systemic lupus erythematosus (SLE); and inflammatory 30 diseases of the heart such as cardiomyopathy, ischemic heart disease hypercholesterolemia, atherosclerosis; as well as various other diseases with significant inflammatory components, including preeclampsia; chronic liver failure, brain and spinal cord trauma, and cancer. There may also be a

systemic inflammation of the body, exemplified by gram-positive or gram negative shock, hemorrhagic or anaphylactic shock, or shock induced by cancer chemotherapy in response to pro-inflammatory cytokines, e.g., shock associated with pro-inflammatory cytokines. Such shock can be induced,

5 e.g., by a chemotherapeutic agent used in cancer chemotherapy. "Treatment of an inflammatory disorder" herein refers to administering a compound or a composition of the invention to a subject, who has an inflammatory disorder, a symptom of such a disorder or a predisposition towards such a disorder, with the purpose to cure, relieve, alter, affect, or prevent the inflammatory disorder,

10 the symptom of it, or the predisposition towards it.

An "effective amount" is the quantity of compound in which a beneficial outcome is achieved when the compound is administered to a subject or alternatively, the quantity of compound that possess a desired activity in-vivo or in-vitro. In the case of inflammatory disorders and autoimmune disorders, a beneficial clinical outcome includes reduction in the extent or severity of the symptoms associated with the disease or disorder and/or an increase in the longevity and/or quality of life of the subject compared with the absence of the treatment. The precise amount of compound administered to a subject will

15 depend on the type and severity of the disease or condition and on the characteristics of the subject, such as general health, age, sex, body weight and tolerance to drugs. It will also depend on the degree, severity and type of inflammatory disorder, autoimmune disorder, allergic disorder, or the degree of immunosuppression sought. The skilled artisan will be able to determine

20 appropriate dosages depending on these and other factors. Effective amounts of the disclosed compounds typically range between about 1 mg/mm² per day and about 10 grams/mm² per day, and preferably between 10 mg/mm² per day and about 1 gram/mm².

25

30 The compounds of the invention may contain one or more chiral centers and/or double bonds and, therefore, may exist as stereoisomers, such as double-bond isomers (i.e., geometric isomers), enantiomers, or diastereomers. According to this invention, the chemical structures depicted

herein, including the compounds of this invention, encompass all of the corresponding compounds' enantiomers and stereoisomers, that is, both the stereomerically pure form (e.g., geometrically pure, enantiomerically pure, or diastereomerically pure) and enantiomeric, diastereomeric, and geometric isomeric mixtures. In some cases, one enantiomer, diastereomer, or geometric isomer will possess superior activity or an improved toxicity or kinetic profile compared to others. In those cases, such enantiomers, diastereomers, and geometric isomers of a compound of this invention are preferred.

10

The term "inhibit production of IL-2" and like terms means inhibiting IL-2 synthesis (e.g. by inhibiting transcription (mRNA expression), or translation (protein expression)) and/or inhibiting IL-2 secretion in a cell that has the ability to produce and/or secrete IL-2 (e.g., T lymphocyte). Likewise, the term 15 "inhibiting production of IL-4, IL-5, IL-13, GM-CSF, TNF- α or INF- γ means inhibiting the synthesis (e.g. by inhibiting transcription, or translation) and/or inhibiting the secretion in a cell that has the ability to produce and/or secrete these cytokines.

20

As used herein, a composition that "substantially" comprises a compound means that the composition contains more than about 80% by weight, more preferably more than about 90% by weight, even more preferably more than about 95% by weight, and most preferably more than about 97% by weight of the compound.

25

As used herein, a composition that is "substantially free" of a compound means that the composition contains less than about 20% by weight, more preferably less than about 10% by weight, even more preferably less than about 5% by weight, and most preferably less than about 3% by weight of the 30 compound.

As used herein, a reaction that is "substantially complete" means that the reaction contains more than about 80% by weight of the desired product,

more preferably more than about 90% by weight of the desired product, even more preferably more than about 95% by weight of the desired product, and most preferably more than about 97% by weight of the desired product.

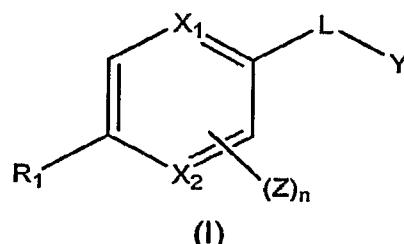
5 As used herein, a racemic mixture means about 50% of one enantiomer and about 50% of is corresponding enantiomer relative to all chiral centers in the molecule. The invention encompasses all enantiomerically-pure, enantiomerically-enriched, diastereomerically pure, diastereomerically enriched, and racemic mixtures of the compounds of any one of formulas (I) 10 through (V) or Table 1.

Enantiomeric and diastereomeric mixtures can be resolved into their component enantiomers or stereoisomers by well known methods, such as chiral-phase gas chromatography, chiral-phase high performance liquid 15 chromatography, crystallizing the compound as a chiral salt complex, or crystallizing the compound in a chiral solvent. Enantiomers and diastereomers can also be obtained from diastereomerically- or enantiomerically-pure intermediates, reagents, and catalysts by well known asymmetric synthetic methods.

20 When administered to a patient, e.g., to a non-human animal for veterinary use or for improvement of livestock, or to a human for clinical use, the compounds of the invention are typically administered in isolated form or as the isolated form in a pharmaceutical composition. As used herein, "isolated" 25 means that the compounds of the invention are separated from other components of either (a) a natural source, such as a plant or cell, preferably bacterial culture, or (b) a synthetic organic chemical reaction mixture. Preferably, via conventional techniques, the compounds of the invention are purified. As used herein, "purified" means that when isolated, the isolate 30 contains at least 95%, preferably at least 98%, of a single compound of the invention by weight of the isolate.

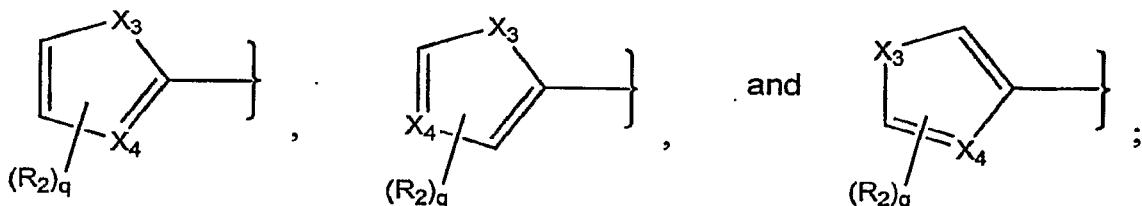
Only those choices and combinations of substituents that result in a stable structure are contemplated. Such choices and combinations will be apparent to those of ordinary skill in the art and may be determined without undue experimentation.

5


The invention can be understood more fully by reference to the following detailed description and illustrative examples, which are intended to exemplify non-limiting embodiments of the invention.

10 SPECIFIC EMBODIMENTS

The invention relates to compounds and pharmaceutical compositions that are particularly useful for immunosuppression or to treat or prevent inflammatory conditions, immune disorders, and allergic disorders.


15

In one embodiment, the invention relates to compounds of formula (I):

20 or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein:

R₁ is selected from the group consisting of:

25 X₁ and X₂ are CH, CZ, or N, provided that at least one of X₁ or X₂ is CH or CZ;

X₃ is O or S;

X₄ is CH, CR₂, or N;

R₂ is a substituent;

L is a linker selected from the group consisting of -NR₅CR^aR^b-, -

CR^aR^bNR₅-, -C(O)-, -NR₅-C(O)-, -C(O)-NR₅-, -C(S)-, -C(NR₈)-, -NR₅-C(S)-, -

, -C(S)-NR₅-, -NR₅-C(NR₈)-, -C(NR₈)-NR₅-, -NR₅C(O)NR₅-, -NR₅C(S)NR₅-, -

5 NR₅C(NR₈)NR₅-, -S(O)₂NR₅-, -NR₅S(O)₂-, -NR₅S(O)₂NR₅-, -NR₅CR^aR^bNR₅-, -

CR^a=CR^b-, -C≡C-, -N=CR^a-, -CR^a=N-, -NR₅-N=CR^a-, or -CR^a=N-NR₅-,

Y is an optionally substituted phenyl or an optionally substituted heteroaryl;

each Z is independently selected from the group consisting of a lower

10 alkyl, a lower haloalkyl, a halo, a lower alkoxy, a lower alkyl sufanyl, cyano, nitro, or lower haloalkoxy;

R^a and R^b, for each occurrence, are independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted

15 cycloalkenyl, an optionally substituted heterocyclil, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, cyano, nitro, halo, -OR₅, -SR₅, -NR₆R₇, -C(O)NR₆R₇, -NR₅C(O)R₅, -C(O)R₅, -C(O)OR₅, -OC(O)R₅, -C(O)SR₅, -

SC(O)R₅, -C(S)NR₆R₇, -NR₅C(S)R₅, -C(S)R₅, -C(S)OR₅, -OC(S)R₅, -C(S)SR₅,

20 -SC(S)R₅, -C(NR₈)NR₆R₇, -NR₅C(NR₈)R₅, -C(NR₈)R₅, -C(NR₈)OR₅, -

OC(NR₈)R₅, -C(NR₈)SR₅, -SC(NR₈)R₅, -OC(O)OR₅, -OC(O)NR₆R₇, -

NR₅C(O)OR₅, -NR₅C(O)NR₆R₇, -SC(O)OR₅, -SC(O)NR₆R₇, -SC(O)SR₅, -

NR₅C(O)SR₅, -OC(O)SR₅, -OC(S)OR₅, -OC(S)NR₆R₇, -NR₅C(S)OR₅, -

NR₅C(S)NR₆R₇, -SC(S)OR₅, -SC(S)NR₆R₇, -SC(S)SR₅, -NR₅C(S)SR₅, -

25 OC(S)SR₅, -OC(NR₈)OR₅, -OC(NR₈)NR₆R₇, -NR₅C(NR₈)OR₅, -

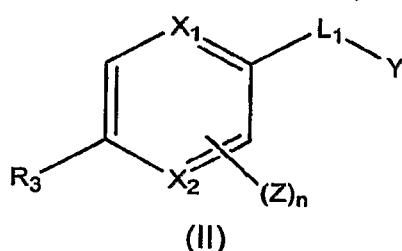
NR₅C(NR₈)NR₆R₇, -SC(NR₈)OR₅, -SC(NR₈)NR₆R₇, -SC(NR₈)SR₅, -

NR₅C(NR₈)SR₅, or -OC(NR₈)SR₅;

R₅, for each occurrence, is independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an

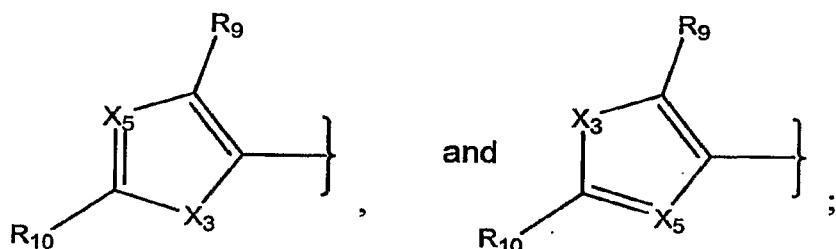
30 optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclil, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

R_6 and R_7 , for each occurrence are, independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted 5 aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl; or R_6 and R_7 taken together with the nitrogen to which they are attached are an optionally substituted heterocyclyl or optionally substituted heteroaryl;


R_8 , for each occurrence, is independently $-H$, a halo, an

10 alkyl, $-OR_5$, $-NR_6R_7$, $-C(O)R_5$, $-C(O)OR_5$, or $-C(O)NR_6R_7$;

q is 0, 1, or 2; and


n is 0, 1 or 2.

In another embodiment, the invention relates to compounds of formula (II):

or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein:

R_3 is selected from the group consisting of:

X_5 is CH or N;

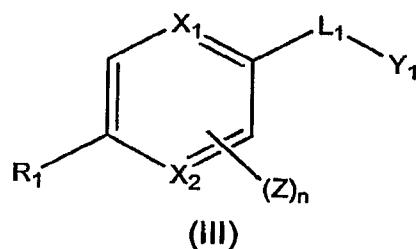
L_1 is a linker selected from the group consisting of $-NRC(R)_2-$, $-$

$C(R)_2NR-$, $-C(O)-$, $-NR-C(O)-$, $-C(O)-NR-$, $-C(S)-$, $-C(NR_8)-$, $-NR-C(S)-$, $-$

$C(S)-NR-$, $-NR-C(NR_8)-$, $-C(NR_8)-NR-$, $-NRC(O)NR-$, $-NRC(S)NR-$, $-$

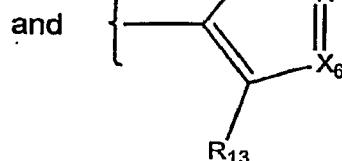
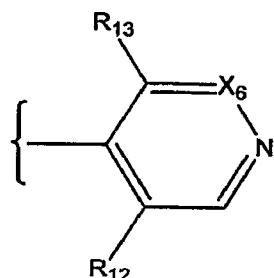
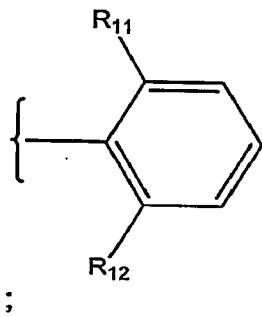
25 $NRC(NR_8)NR-$, $-S(O)_2NR-$, $-NRS(O)_2-$, $-NRS(O)_2NR-$, $-NRC(R)_2NR-$, $-CR=CR-$, $-C\equiv C-$, $-N=CR-$, $-CR=N-$, $-NR-N=CR-$, or $-CR=N-NR-$;

R is H or a lower alkyl;


R₉ is a halo, -OR₅, -SR₅, -NR₆R₇, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl⁵l, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

R₁₀ is a halo, nitro, cyano, a haloalkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an

10 optionally substituted cycloalkenyl, an optionally substituted heterocycl¹⁰l, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, -C(O)NR₆R₇, -C(O)R₅, -C(O)OR₅, -C(O)SR₅, -C(S)NR₆R₇, -C(S)R₅, -C(S)OR₅, -C(S)SR₅, -C(NR₈)NR₆R₇, -C(NR₈)R₅, -C(NR₈)OR₅, -C(NR₈)SR₅, -S(O)_pR₅, -S(O)_pNR₆R₇,
15 -P(O)(OR₅)₂, -P(S)(OR₅)₂, -P(O)(OR₅)(SR₅), -P(S)(OR₅)(SR₅), -P(O)(SR₅)₂, or -P(S)(SR₅)₂; and




X₁, X₂, X₃, R₅, R₆, R₇, R₈, Y, Z, and n are defined as above.

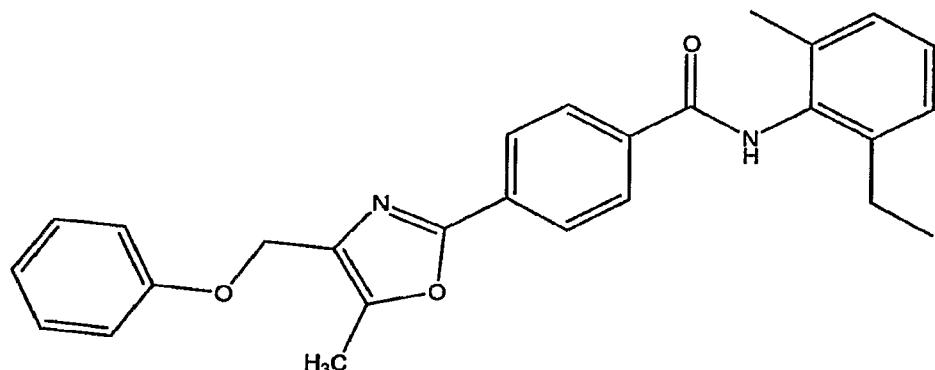
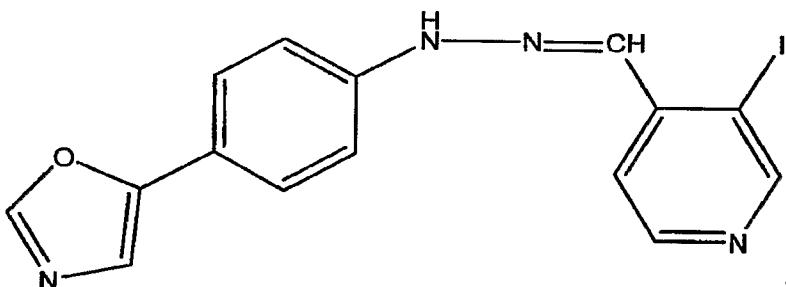
In another embodiment, the invention relates to compounds of formula (III):

or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein:

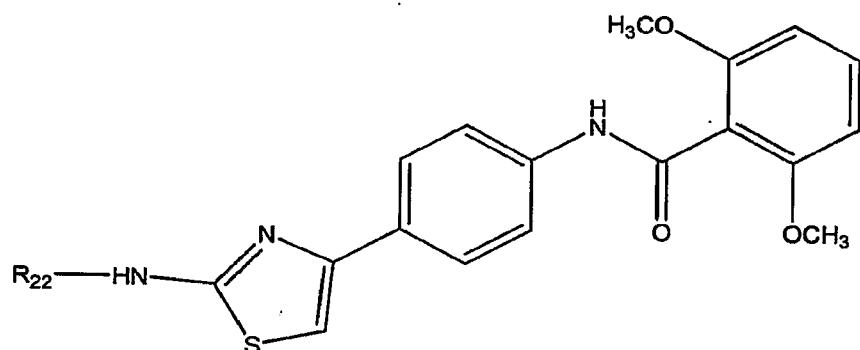
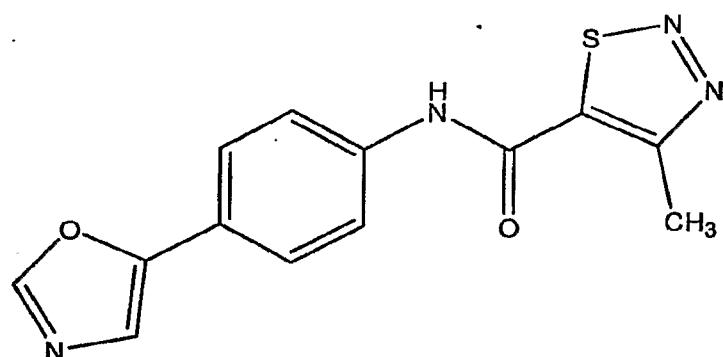
Y₁ is selected from the group consisting of:

X₆ is CH or N;

X₇ is O or S;

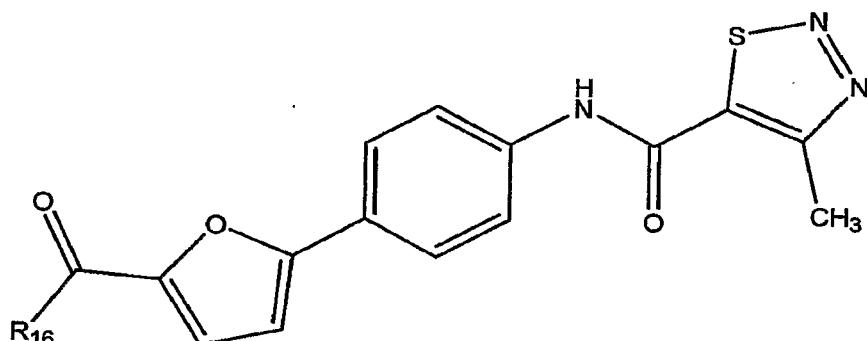


R₁₁ and R₁₂ are each, independently, a substituent, provided that R₁₁ and R₁₂ are not both halo when L₁ is -NRS(O)₂-;

5 R₁₃ is H or a substituent;

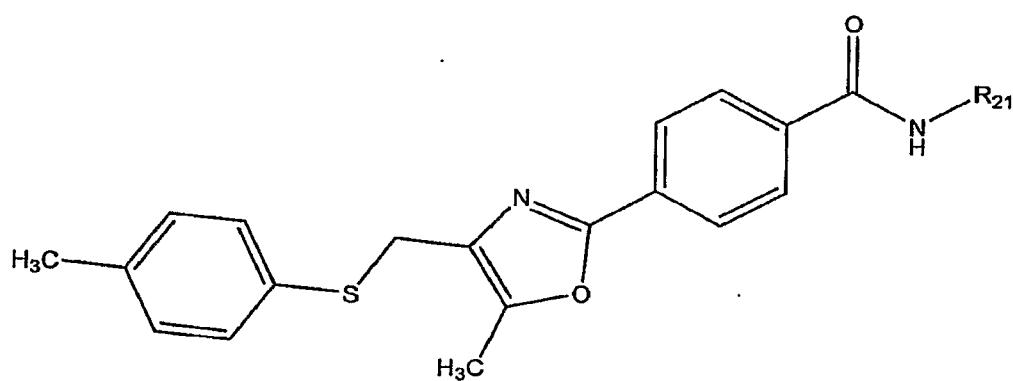


q is 0, 1, or 2; and

R₁, X₁, X₂, L₁, Z, and n are defined as above.

In some embodiments, compounds of formula (III) do not include
10 compounds selected from the consisting of:

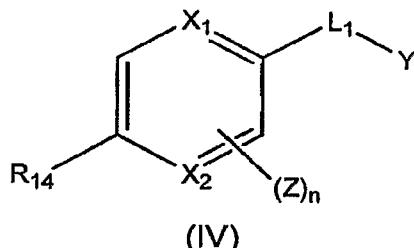


15

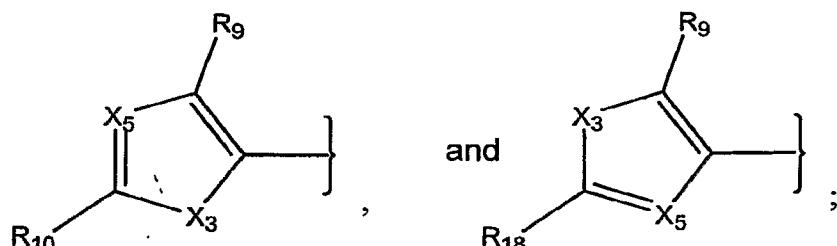


wherein R₂₂ is allyl, 2-chloro-phenyl, or 3-methyl-phenyl;

5.



wherein R₁₆ is $-\text{NH}_2$, 2-amino-ethylamino, or [1,4]diazepan-1-yl; and


wherein R₂₁ is 2-methyl-6-ethyl-phenyl or 2,6-dimethyl-phenyl.

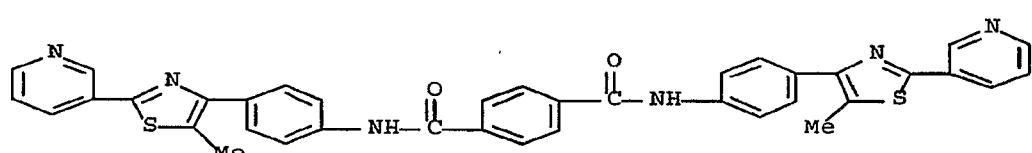
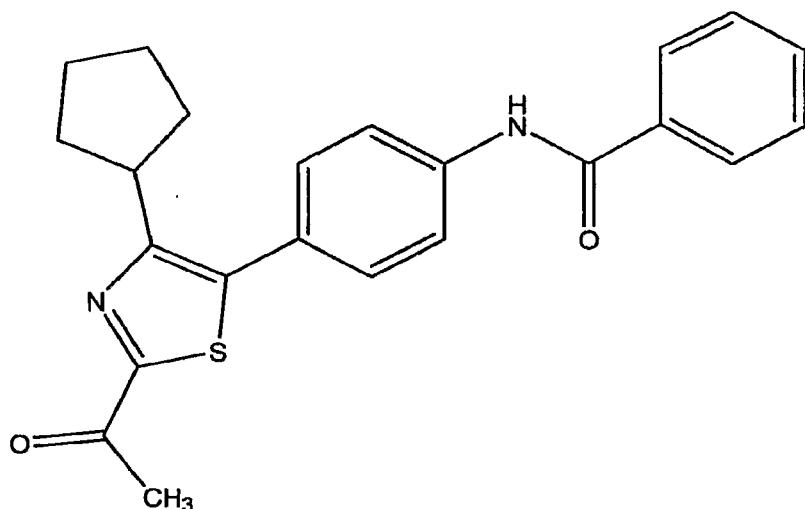
In another embodiment, the invention relates to compounds of formula (IV):

5 or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein:

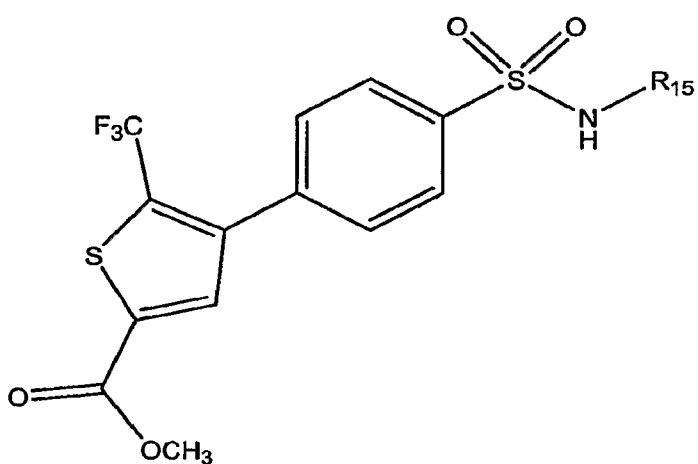
R_{14} is selected from the group consisting of:

10 R_{18} is a halo, nitro, cyano, a haloalkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted heteroaryl, an optionally substituted heteraralkyl, -
 $C(O)NR_6R_7$, - $C(O)R_5$, - $C(O)OR_5$, - $C(O)SR_5$, - $C(S)NR_6R_7$, - $C(S)R_5$, - $C(S)OR_5$, -
 $C(S)SR_5$, - $C(NR_8)NR_6R_7$, - $C(NR_8)R_5$, - $C(NR_8)OR_5$, - $C(NR_8)SR_5$, - $S(O)_pR_5$, -
 $S(O)_pNR_6R_7$, - $P(O)(OR_5)_2$, - $P(S)(OR_5)_2$, - $P(O)(OR_5)(SR_5)$, - $P(S)(OR_5)(SR_5)$, -
 $P(O)(SR_5)_2$, or - $P(S)(SR_5)_2$; and

15 X_1 , X_2 , X_3 , X_5 , Y , L_1 , Z , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , and n are defined as above.

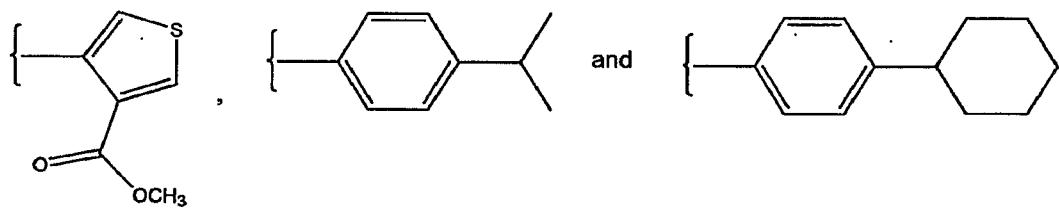


20 In some embodiments of the compounds represented by formula (IV), one or more of the the following applies:

when L_1 is $-C(O)-$, $-NH-C(O)-$, $-S(O)_2NH-$, $-CH=CH-$, or $-C\equiv C-$, R_{10} is not an optionally substituted aryl;

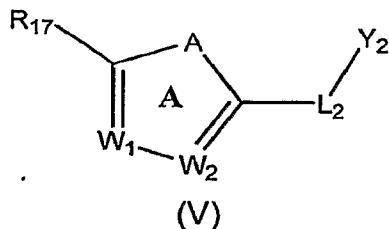

when L_1 is $-S(O)_2NH-$, R_{10} is not a haloalkyl; and/ or

the compound is not a compound represented by one of the following formulas:

25



, or



wherein:

5

R₁₅ is selected from the group consisting of:

In another embodiment, the invention relates to compounds of formula (V):

or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein:

5 A is $-O-$, $-S-$, $-NR^e-$, $-CR^c=CR^d-$, $-N=CR^c-$, $-CR^c=N-$, or $-N=N-$;

W₁ and W₂ are each, independently, CR^c or N;

L₂ is a linker;

Y₂ is an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an

10 optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, or an optionally substituted heteroaryl;

R₁₇ is an optionally substituted heteroaryl, provided that R₁₇ is not an optionally substituted triazolyl, an optionally substituted pyridinyl, an optionally substituted indolizinyl, an optionally substituted benzamidazolyl, imidazo[4,5-c]pyridyl, an optionally substituted imidazo[4,5-b]pyridyl, an optionally substituted tetrahydroindolizinyl, an optionally substituted imidazo[1,2-a]pyridyl, or an optionally substituted pyrazole;

R^e is H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl,

20 an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, $-OR_5$, $-SR_5$, $-NR_6R_7$, $-C(O)NR_6R_7$, $-C(O)R_5$, $-C(O)OR_5$, $-C(O)SR_5$, $-C(S)NR_6R_7$, $-C(S)R_5$, $-C(S)OR_5$, $-C(S)SR_5$, $-C(NR_8)NR_6R_7$, $-C(NR_8)R_5$, $-C(NR_8)OR_5$, or $-C(NR_8)SR_5$;

R^c and R^d, for each occurrence, are independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, cyano, nitro, halo, $-OR_5$, $-SR_5$, $-NR_6R_7$, $-$

C(O)NR₆R₇, -NR₅C(O)R₅, -C(O)R₅, -C(O)OR₅, -OC(O)R₅, -C(O)SR₅, -SC(O)R₅, -C(S)NR₆R₇, -NR₅C(S)R₅, -C(S)R₅, -C(S)OR₅, -OC(S)R₅, -C(S)SR₅, -SC(S)R₅, -C(NR₈)NR₆R₇, -NR₅C(NR₈)R₅, -C(NR₈)R₅, -C(NR₈)OR₅, -OC(NR₈)R₅, -C(NR₈)SR₅, -SC(NR₈)R₅, -OC(O)OR₅, -OC(O)NR₆R₇, -

5 NR₅C(O)OR₅, -NR₅C(O)NR₆R₇, -SC(O)OR₅, -SC(O)NR₆R₇, -SC(O)SR₅, -NR₅C(O)SR₅, -OC(O)SR₅, -OC(S)OR₅, -OC(S)NR₆R₇, -NR₅C(S)OR₅, -NR₅C(S)NR₆R₇, -SC(S)OR₅, -SC(S)NR₆R₇, -SC(S)SR₅, -NR₅C(S)SR₅, -OC(S)SR₅, -OC(NR₈)OR₅, -OC(NR₈)NR₆R₇, -NR₅C(NR₈)OR₅, -NR₅C(NR₈)NR₆R₇, -SC(NR₈)OR₅, -SC(NR₈)NR₆R₇, -SC(NR₈)SR₅, -

10 NR₅C(NR₈)SR₅, -OC(NR₈)SR₅, -S(O)_pR₅, -S(O)_pNR₆R₇, -NR₅S(O)_pR₅, -NR₅S(O)NR₆R₇, -S(O)_pOR₅, -OS(O)_pR₅, or -OS(O)OR₅;

p is 1 or 2; and

R₅, R₆, R₇, and R₈ are defined as above.

15 In some embodiments of the compounds represented by formula (I), (II), (III), or (IV), L or L₁ is a linker selected from the group consisting of -NHCH₂-, -CH₂NH-, -C(O)-, -NH-C(O)-, -C(O)-NH-, -C(S)-, -NH-C(S)-, -C(S)-NH-, -NHC(O)NH-, -NHC(S)NH-, -S(O)₂NH-, -NHS(O)₂-, -CH=CH-, -NH-N=CH-, or -CH=N-NH-.

20

In some embodiments of the compounds represented by formula (I), (II), (III), or (IV), L or L₁ is -NH-C(O)-, -C(O)-NH-, -NHCH₂-, or -CH₂NH-.

25 In some embodiments of the compounds represented by formula (V), L₂ is selected from the group consisting of -NRC(R)₂-, -C(R)₂NR-, -C(O)-, -NR-C(O)-, -C(O)-NR-, -C(S)-, -C(NR₈)-, -NR-C(S)-, -C(S)-NR-, -NR-C(NR₈)-, -C(NR₈)-NR-, -NRC(O)NR-, -NRC(S)NR-, -NRC(NR₈)NR-, -S(O)₂NR-, -NRS(O)₂-, -NRS(O)₂NR-, -NRC(R)₂NR-, -CR=CR-, -C≡C-, -N=CR-, -CR=N-, -NR-N=CR-, or -CR=N-NR-; wherein R is H or a lower alkyl.

30

In some embodiments of the compounds represented by formula (V), L₂ is -NRCH₂-, -CH₂NR-, -C(O)-, -NR-C(O)-, -C(O)-NR-, -C(S)-, -NR-C(S)-, -

C(S)-NR-, -NRC(O)NR-, -NRC(S)NR-, -NRS(O)₂-, -NRC(R)₂NR-, -CR=CR-, or -NR-N=CR-.

5 In some embodiments of the compounds represented by formula (II), (III) or (VI), R is H.

In another embodiment, in the compounds represented by formula (II), (III) or (VI), R is a lower alkyl, such as methyl.

10

In some embodiments of the compounds represented by formula (I), (II), (III), or (IV), n is 0.

15 In some embodiments of the compounds represented by formula (I), (II), (III), or (IV), n is 1. In one aspect of this embodiment, Z, for each occurrence, is independently, is a halo or a lower alkyl. Preferably, Z is a halo or methyl.

20 In some embodiments of the compounds represented by formula (I), (II), (III), or (IV), n is 2. In one aspect of this embodiment, Z, for each occurrence, is independently, a halo or a lower alkyl. Preferably, Z is a halo or methyl.

25 In some embodiments of the compounds represented by formula (I), (II), (III), or (IV), X₁ and X₂ are each independently, CH or CZ. In one aspect of this embodiment, Z, for each occurrence, is independently, is a halo or a lower alkyl. Preferably, Z is a halo or methyl.

In some embodiments of the compounds represented by formula (I), (II), (III), or (IV), X₁ and X₂ are both CH.

30 In some embodiments of the compounds represented by formula (I), (II), (III), or (IV), X₁ is N and X₂ is CH or CZ. In one aspect of this embodiment, Z, for each occurrence, is independently, is a halo or a lower alkyl. Preferably, Z is a halo or methyl.

In some embodiments of the compounds represented by formula (I), (II), (III), or (IV), X_1 is N and X_2 is CH.

In some embodiments of the compounds represented by formula (V), Y_2 is an

5 optionally substituted cycloalkyl. In some embodiments, Y_2 is an optionally substituted cyclohexanyl or an optionally substituted cyclopentanyl.

In some embodiments of the compounds represented by formula (V), Y_2 is an optionally substituted aryl or an optionally substituted heteroaryl.

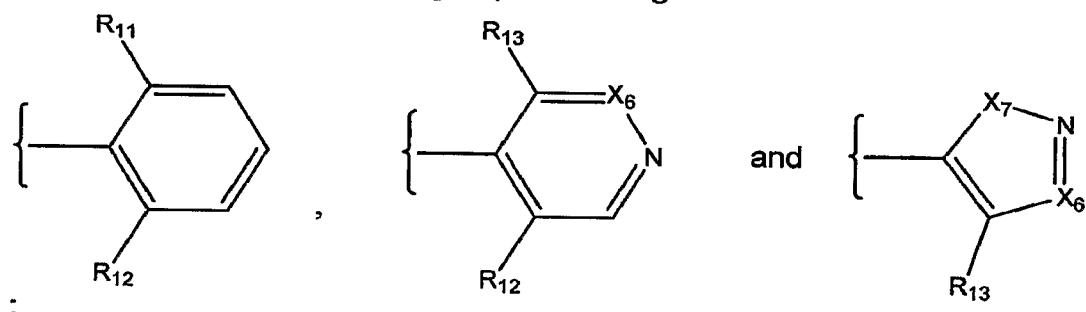
10

In some embodiments of the compounds represented by formula (I), (II), (IV), or (V), Y or Y_2 is selected from the group consisting of an optionally substituted phenyl, an optionally substituted naphthyl, an optionally substituted anthracenyl, an optionally substituted pyridyl, an optionally

15 substituted furyl, an optionally substituted thienyl, an optionally substituted pyrrolyl, an optionally substituted oxazolyl, an optionally substituted imidazolyl, an optionally substituted indolizinyl, an optionally substituted thiazolyl, an optionally substituted isoxazolyl, an optionally substituted pyrazolyl, an optionally substituted isothiazolyl, an optionally substituted

20 pyridazinyl, an optionally substituted pyrimidinyl, an optionally substituted pyrazinyl, an optionally substituted triazinyl, an optionally substituted triazolyl, an optionally substituted thiadiazolyl, an optionally substituted pyrazinyl, an optionally substituted quinolinyl, an optionally substituted isoquinolinyl, an optionally substituted indazolyl, an optionally substituted benzoxazolyl, an

25 optionally substituted benzofuryl, an optionally substituted benzothiazolyl, an optionally substituted indolizinyl, an optionally substituted imidazopyridinyl, an optionally substituted isothiazolyl, an optionally substituted tetrazolyl, an optionally substituted benzoxazolyl, an optionally substituted benzothiazolyl, an optionally substituted benzothiadiazolyl, an optionally substituted


30 benzoxadiazolyl, an optionally substituted indolyl, an optionally substituted tetrahydroindolyl, an optionally substituted azaindolyl, an optionally substituted imidazopyridyl, an optionally substituted quinazolinyl, an optionally substituted purinyl, an optionally substituted pyrrolo[2,3]pyrimidyl, an

optionally substituted pyridopyrimidyl, an optionally substituted pyrazolo[3,4]pyrimidyl or an optionally substituted benzo(b)thienyl.

In some embodiments of the compounds represented by formula (I), (II), (IV),

5 or (V), Y or Y₂ is an optionally substituted phenyl, an optionally substituted pyridinyl, an optionally substituted pyridazinyl, an optionally substituted isothiazolyl, an optionally substituted isoxazolyl, an optionally substituted oxadiazolyl, or an optionally substituted thiadiazolyl.

10 In some embodiments of the compounds represented by formula (I), (II), (IV), or (V), Y or Y₂ is selected from the group consisting of:

X₆ is CH or N; X₇ is O or S; R₁₁ and R₁₂ are each, independently, a

15 substituent; and R₁₃ is H or a substituent. Preferably, R₁₁ and R₁₂ are each, independently, selected from the group consisting of a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl; and R₁₃ is H, a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl.

20 In some embodiments of the compounds represented by formula (III), R₁₁ and R₁₂ are each, independently, selected from the group consisting of a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl; and R₁₃ is H, a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl.

25 In some embodiments of the compounds represented by formula (II) or (IV), R₉ is a halo, an optionally substituted alkoxy, an optionally substituted alkyl, an optionally substituted heterocycl, or an optionally substituted heteroaryl; and R₁₀ or R₁₈ is a halo, a haloalkyl, an optionally substituted heterocycl, an optionally substituted heteroaryl, -C(O)NR₆R₇, -C(O)R₅, -C(O)OR₅, -

$C(NR_8)NR_6R_7$, $-S(O)_pR_5$, or $-S(O)_pNR_6R_7$. Preferably, R_9 is a halo, a lower alkoxy, or a lower alkyl; and R_{10} or R_{18} is an oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, a thiadiazolyl, $-C(O)N(R_{19})_2$, $-C(O)R_{20}$, $-C(O)OR_{20}$, wherein the

5 oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, and a thiadiazolyl are optionally substituted with one or more substituents, independently, selected from a halo or a lower alkyl; wherein R_{19} and R_{20} , for each occurrence are each, independently, a lower alkyl.

10

In some embodiments of the compounds represented by formula (II) or (IV), X_3 is O and X_5 is CH.

15 In some embodiments of the compounds represented by formula (II) or (IV), X_3 is S and X_5 is CH.

In some embodiments of the compounds represented by formula (II) or (IV), X_3 is O and X_5 is N.

20 In some embodiments of the compounds represented by formula (II) or (IV), X_3 is S and X_5 is N.

In some embodiments of the compounds represented by formula (I) or (III), X_3 is O and X_4 is CH or CR_2 . Preferably, R_2 , for each occurrence, is

25 independently selected from the group consisting of a halo, a lower alkoxy, or a lower alkyl, an oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, a thiadiazolyl, $-C(O)N(R_{19})_2$, $-C(O)R_{20}$, $-C(O)OR_{20}$, wherein the oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an

30 oxadiazolyl, a tetrazolyl, an isothiazolyl, and a thiadiazolyl are optionally substituted with one or more substituents, independently, selected from a halo or a lower alkyl; wherein R_{19} and R_{20} , for each occurrence are, independently, a lower alkyl.

In some embodiments of the compounds represented by formula (I) or (III), X_3 is O and X_4 is CH.

5 In some embodiments of the compounds represented by formula (I) or (III), q is 0.

In some embodiments of the compounds represented by formula (I) or (III), q is 1.

10

In some embodiments of the compounds represented by formula (I) or (III), q is 2.

15 In some embodiments of the compounds represented by formula (I) or (III), X_3 is S and X_4 is CH or CR_2 . Preferably, R_2 , for each occurrence, is independently selected from the group consisting of a halo, a lower alkoxy, or a lower alkyl, an oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, a thiadiazolyl, $-C(O)N(R_{19})_2$, $-C(O)R_{20}$, $-C(O)OR_{20}$, wherein the oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, and a thiadiazolyl are optionally substituted with one or more substituents, independently, selected from a halo or a lower alkyl; wherein R_{19} and R_{20} , for each occurrence are each, independently, a lower alkyl.

20

25 In some embodiments of the compounds represented by formula (I) or (III), X_3 is S and X_4 is CH.

30 In some embodiments of the compounds represented by formula (I) or (III), X_3 is O and X_4 is N.

In some embodiments of the compounds represented by formula (I) or (III), X_3 is S and X_4 is N.

In some embodiments of the compounds represented by formula (I) or (III), q is 1; and R₂, for each occurrence, is independently, selected from the group consisting of a halo, nitro, cyano, a haloalkyl, -OR₅, -SR₅, -NR₆R₇, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally

5 substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, -C(O)NR₆R₇, -C(O)R₅, -C(O)OR₅, -C(O)SR₅, -C(S)NR₆R₇, -C(S)R₅, -C(S)OR₅, -C(S)SR₅, -C(NR₈)NR₆R₇, -C(NR₈)R₅, -C(NR₈)OR₅, -C(NR₈)SR₅, -S(O)_pR₅, -S(O)_pNR₆R₇, -P(O)(OR₅)₂, -P(S)(OR₅)₂, -P(O)(OR₅)(SR₅), -P(S)(OR₅)(SR₅), -P(O)(SR₅)₂, or -P(S)(SR₅)₂, -OC(O)NR₆R₇, -OC(O)R₅, -OC(O)OR₅, -OC(O)SR₅, -NR₅C(O)NR₆R₇, -NR₅C(O)R₅, -NR₅C(O)OR₅, -NR₅C(O)SR₅, -SC(O)NR₆R₇, -SC(O)R₅, -SC(O)OR₅, -SC(O)SR₅, -OC(S)NR₆R₇, -OC(S)R₅, -OC(S)OR₅, -OC(S)SR₅, -NR₅C(S)NR₆R₇, -NR₅C(S)R₅, -NR₅C(S)OR₅, -NR₅C(S)SR₅, -SC(S)NR₆R₇, -SC(S)R₅, -SC(S)OR₅, -SC(S)SR₅, -OC(NR₈)NR₆R₇, -OC(NR₈)R₅, -OC(NR₈)OR₅, -OC(NR₈)SR₅, -NR₅C(NR₈)NR₆R₇, -NR₅C(NR₈)R₅, -NR₅C(NR₈)OR₅, -NR₅C(NR₈)SR₅, -OS(O)_pR₅, -NR₅S(O)_pR₅, -OP(O)(OR₅)₂, or -OP(S)(OR₅)₂.

10

15

20

In some embodiments of the compounds represented by formula (I) or (III), q is 2; and R₂, for each occurrence, is independently, selected from the group consisting of a halo, nitro, cyano, a haloalkyl, -OR₅, -SR₅, -NR₆R₇, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally

25 substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, -C(O)NR₆R₇, -C(O)R₅, -C(O)OR₅, -C(O)SR₅, -C(S)NR₆R₇, -C(S)R₅, -C(S)OR₅, -C(S)SR₅, -C(NR₈)NR₆R₇, -C(NR₈)R₅, -C(NR₈)OR₅, -C(NR₈)SR₅, -S(O)_pR₅, -S(O)_pNR₆R₇, -P(O)(OR₅)₂, -P(S)(OR₅)₂, -P(O)(OR₅)(SR₅), -P(S)(OR₅)(SR₅), -P(O)(SR₅)₂, or -P(S)(SR₅)₂, -OC(O)NR₆R₇, -OC(O)R₅, -OC(O)OR₅, -OC(O)SR₅, -NR₅C(O)NR₆R₇, -NR₅C(O)R₅, -NR₅C(O)OR₅, -NR₅C(O)SR₅, -SC(O)NR₆R₇, -

30

SC(O)R₅, -SC(O)OR₅, -SC(O)SR₅, -OC(S)NR₆R₇, -OC(S)R₅, -OC(S)OR₅, -OC(S)SR₅, -NR₅C(S)NR₆R₇, -NR₅C(S)R₅, -NR₅C(S)OR₅, -NR₅C(S)SR₅, -SC(S)NR₆R₇, -SC(S)R₅, -SC(S)OR₅, -SC(S)SR₅, -OC(NR₈)NR₆R₇, -OC(NR₈)R₅, -OC(NR₈)OR₅, -OC(NR₈)SR₅, -NR₅C(NR₈)NR₆R₇, -NR₅C(NR₈)R₅,

5 -NR₅C(NR₈)OR₅, -NR₅C(NR₈)SR₅, -OS(O)_pR₅, -NR₅S(O)_pR₅, -OP(O)(OR₅)₂, or -OP(S)(OR₅)₂.

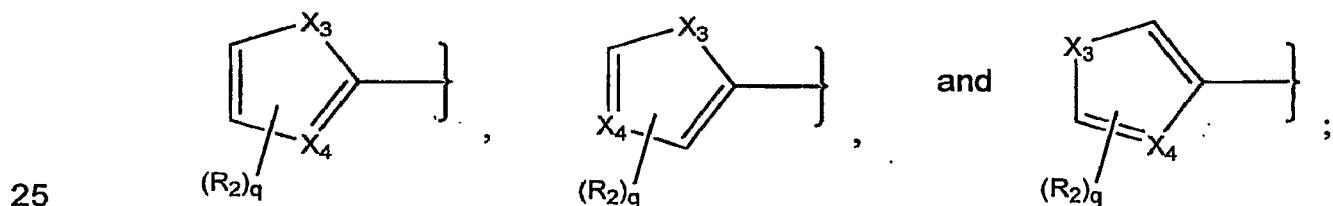
In some embodiments of the compounds represented by formula (I) or (III), q is 1; and R₂, for each occurrence, is independently selected from the group

10 consisting of a halo, a lower alkoxy, or a lower alkyl, an oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, a thiadiazolyl, -C(O)N(R₁₉)₂, -C(O)R₂₀, -C(O)OR₂₀, wherein the oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, and a thiadiazolyl are optionally substituted with one or more substituents, independently, selected from a halo or a lower alkyl; wherein R₁₉ and R₂₀, for each occurrence are, independently, a lower alkyl.

In some embodiments of the compounds represented by formula (I) or (III), q

20 is 2; and R₂, for each occurrence, is independently selected from the group consisting of a halo, a lower alkoxy, or a lower alkyl, an oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, a thiadiazolyl, -C(O)N(R₁₉)₂, -C(O)R₂₀, -C(O)OR₂₀, wherein the oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, and a thiadiazolyl are optionally substituted with one or more substituents, independently, selected from a halo or a lower alkyl; wherein R₁₉ and R₂₀, for each occurrence are, independently, a lower alkyl.

30 In some embodiments of the compounds represented by formula (V), R₁₇ is selected from the group consisting of an optionally substituted furyl, an optionally substituted thienyl, an optionally substituted pyrrolyl, an optionally substituted oxazolyl, an optionally substituted imidazolyl, an optionally


substituted thiazolyl, an optionally substituted isoxazolyl, an optionally substituted pyrazolyl, an optionally substituted isothiazolyl, an optionally substituted pyridazinyl, an optionally substituted pyrimidinyl, an optionally substituted pyrazinyl, an optionally substituted triazinyl, an optionally

5 substituted thiadiazolyl, an optionally substituted pyrazinyl, an optionally substituted quinolinyl, an optionally substituted isoquinolinyl, an optionally substituted indazolyl, an optionally substituted benzoxazolyl, an optionally substituted benzofuryl, an optionally substituted benzothiazolyl, an optionally substituted isothiazolyl, an optionally substituted tetrazolyl, an optionally substituted benzoxazolyl, an optionally substituted benzothiazolyl, an 10 optionally substituted benzothiadiazolyl, an optionally substituted indolyl, an optionally substituted tetrahydroindolyl, an optionally substituted azaindolyl, an optionally substituted quinazolinyl, an optionally substituted purinyl, an optionally substituted pyrrolo[2,3]pyrimidyl, an optionally substituted pyridopyrimidyl, an 15 optionally substituted pyrazolo[3,4]pyrimidyl or an optionally substituted benzo(b)thienyl.

In some embodiments of the compounds represented by formula (V), R₁₇ is

20 selected an optionally substituted thienyl, an optionally substituted furanyl, an optionally substituted thiazolyl, or an optionally substituted oxazolyl.

In some embodiments of the compounds represented by formula (V), R₁₇ is selected from the group consisting of:

wherein X₃ is O or S; X₄ is CH, CR₂, or N; R₂ is a substituent; and q is 0, 1 or

2. In some aspects of this embodiment, R₂, for each occurrence, is independently, selected from the group consisting of a halo, nitro, cyano, a 30 haloalkyl, -OR₅, -SR₅, -NR₆R₇, an optionally substituted alkyl, an optionally

substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted

5 heteraralkyl, -C(O)NR₆R₇, -C(O)R₅, -C(O)OR₅, -C(O)SR₅, -C(S)NR₆R₇, -C(S)R₅, -C(S)OR₅, -C(S)SR₅, -C(NR₈)NR₆R₇, -C(NR₈)R₅, -C(NR₈)OR₅, -C(NR₈)SR₅, -S(O)_pR₅, -S(O)_pNR₆R₇, -P(O)(OR₅)₂, -P(S)(OR₅)₂, -P(O)(OR₅)(SR₅), -P(S)(OR₅)(SR₅), -P(O)(SR₅)₂, or -P(S)(SR₅)₂, -OC(O)NR₆R₇, -OC(O)R₅, -OC(O)OR₅, -OC(O)SR₅, -NR₅C(O)NR₆R₇, -NR₅C(O)R₅, -

10 NR₅C(O)OR₅, -NR₅C(O)SR₅, -SC(O)NR₆R₇, -SC(O)R₅, -SC(O)OR₅, -SC(O)SR₅, -OC(S)NR₆R₇, -OC(S)R₅, -OC(S)OR₅, -OC(S)SR₅, -NR₅C(S)NR₆R₇, -NR₅C(S)R₅, -NR₅C(S)OR₅, -NR₅C(S)SR₅, -SC(S)NR₆R₇, -SC(S)R₅, -SC(S)OR₅, -SC(S)SR₅, -OC(NR₈)NR₆R₇, -OC(NR₈)R₅, -OC(NR₈)OR₅, -OC(NR₈)SR₅, -NR₅C(NR₈)NR₆R₇, -NR₅C(NR₈)R₅, -

15 NR₅C(NR₈)OR₅, -NR₅C(NR₈)SR₅, -OS(O)_pR₅, -NR₅S(O)_pR₅, -OP(O)(OR₅)₂, or -OP(S)(OR₅)₂. In some aspects of this embodiment, R₂, for each occurrence, is independently selected from the group consisting of a halo, a lower alkoxy, or a lower alkyl, an oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, a

20 thiadiazolyl, -C(O)N(R₁₉)₂, -C(O)R₂₀, -C(O)OR₂₀, wherein the oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, and a thiadiazolyl are optionally substituted with one or more substituents, independently, selected from a halo or a lower alkyl; wherein R₁₉ and R₂₀, for each occurrence are,

25 independently, a lower alkyl. In some aspects of this embodiment, q is 0. In some aspects of this embodiment, q is 1. In some aspects of this embodiment, q is 2.

30 In some embodiments of the compounds represented by formula (V), ring A is an optionally substituted phenyl. In one embodiment, W₁ and W₂ are CH; and A is -CH=CH-.

In some embodiments of the compounds represented by formula (V), ring A is an optionally substituted pyridinyl. In one embodiment, W₁ and W₂ are CH; and A is –CH=N- or –N=CH-.

5 In some embodiments of the compounds represented by formula (V), ring A is an optionally substituted pyrazinyl or pyrimidinyl. In one embodiment, one of W₁ or W₂ are CH and the other is N; and A is –CH=N- or –N=CH-.

10 In some embodiments of the compounds represented by formula (V), ring A is an optionally substituted pyradazinyl. In one embodiment, W₁ or W₂ are N; and A is –CH=CH-.

15 In some embodiments of the compounds represented by formula (V), ring A is an optionally substituted thiophenyl. In one embodiment, W₁ or W₂ are CH; and A is S.

20 In some embodiments of the compounds represented by formula (V), ring A is an optionally substituted furanyl. In one embodiment, W₁ or W₂ are CH; and A is O.

25 In some embodiments of the compounds represented by formula (V), ring A is an optionally substituted thiazolyl. In one embodiment, one of W₁ or W₂ are CH and the other is N; and A is S.

30 In some embodiments of the compounds represented by formula (V), ring A is an optionally substituted oxazolyl. In one embodiment, one of W₁ or W₂ are CH and the other is N; and A is O.

In some embodiments, the invention relates to compounds selected from the group consisting of:

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-thiophene-2-carboxylic acid methyl ester;

4-{4-[(3-Methyl-pyridine-4-carbonyl)-amino]-phenyl}-thiophene-2-carboxylic

acid methyl ester;

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-thiophene-2-carboxylic acid propyl ester;

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-thiophene-2-carboxylic acid 2-methoxy-ethyl ester;

2,6-Difluoro-N-[4-(5-oxazol-2-yl-thiophen-3-yl)-phenyl]-benzamide;

2,6-Difluoro-N-[4-(5-oxazol-5-yl-thiophen-3-yl)-phenyl]-benzamide;

2,6-Difluoro-N-[4-(5-furan-3-yl-thiophen-3-yl)-phenyl]-benzamide;

2,6-Difluoro-N-[4-(4-methyl-thiazole-5-yl)-phenyl]-benzamide; and

pharmaceutically acceptable salts, solvates, clathrates, or prodrugs thereof.

In some embodiments, the invention relates to compounds selected from the

5 group consisting of:

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-5-methyl-thiophene-2-carboxylic acid methyl ester;

5-Methyl-4-[4-[(3-methyl-pyridine-4-carbonyl)-amino]-phenyl]-thiophene-2-carboxylic acid methyl ester;

2,6-Difluoro-N-[4-(2-methyl-5-oxazol-5-yl-thiophen-3-yl)-phenyl]-benzamide;

5-[4-(2,6-Difluoro-benzoylamino)-phenyl]-4-methyl-thiophene-2-carboxylic acid methyl ester;

2,6-Difluoro-N-[4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-benzamide;

3-Methyl-N-[4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-5-methyl-furan-2-carboxylic acid methyl ester;

2,6-Difluoro-N-[4-(4-methyl-2-morpholin-4-yl-thiazol-5-yl)-phenyl]-benzamide;

3-Methyl-N-[4-(4-methyl-2-morpholin-4-yl-thiazol-5-yl)-phenyl]-

isonicotinamide;

5-[4-(2,6-Difluoro-benzoylamino)-phenyl]-4-methyl-thiophene-2-carboxylic acid methyl ester;

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-5-methyl-thiazole-2-carboxylic acid methyl ester;

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-5-methyl-oxazole-2-carboxylic acid methyl ester;

5-[4-(2,6-Difluoro-benzoylamino)-phenyl]-4-methyl-thiazole-2-carboxylic acid methyl ester;

5-[4-(2,6-Difluoro-benzoylamino)-phenyl]-4-methyl-oxazole-2-carboxylic acid methyl ester;

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-5-methyl-thiophene-2-carboxylic acid ethyl ester;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(4-methyl-2-oxazol-2-yl-thiazol-5-yl)-phenyl]-amide;

2,6-Difluoro-N-[4-(4-methyl-2-oxazol-2-yl-thiazol-5-yl)-phenyl]-benzamide;

3-Fluoro-N-[4-(4-methyl-2-oxazol-2-yl-thiazol-5-yl)-phenyl]-isonicotinamide;

3-Methyl-N-[4-(4-methyl-2-oxazol-2-yl-thiazol-5-yl)-phenyl]-isonicotinamide;

5-Methyl-4-{4-[(3-methyl-pyridine-4-carbonyl)-amino]-phenyl}-furan-2-carboxylic acid methyl ester;

5-Methyl-4-{4-[(4-methyl-isothiazole-5-carbonyl)-amino]-phenyl}-thiophene-2-carboxylic acid methyl ester;

5-Chloro-4-[4-(2,6-difluoro-benzoylamino)-phenyl]-thiophene-2-carboxylic acid methyl ester;

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-5-methoxy-thiophene-2-carboxylic acid methyl ester;

2,6-Difluoro-N-[4-(2-methyl-5-oxazol-2-yl-thiophen-3-yl)-phenyl]-benzamide;

3-Methyl-N-[4-(2-methyl-5-oxazol-2-yl-thiophen-3-yl)-phenyl]-isonicotinamide;

2,6-Difluoro-N-[4-(5-furan-3-yl-2-methyl-thiophen-3-yl)-phenyl]-benzamide;

2,6-Difluoro-N-[4-(5-furan-2-yl-2-methyl-thiophen-3-yl)-phenyl]-benzamide;

2,6-Difluoro-N-[4-(2-methyl-5-oxazol-5-yl-thiophen-3-yl)-phenyl]-

benzamide;

3-Methyl-N-[4-(2-methyl-5-oxazol-5-yl-thiophen-3-yl)-phenyl]-isonicotinamide;

N-[4-(2-Chloro-5-trifluoromethyl-thiophen-3-yl)-phenyl]-2,6-difluoro-benzamide;

2,6-Difluoro-N-[4-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-phenyl]-benzamide;

4-{4-[(3-Fluoro-pyridine-4-carbonyl)-amino]-phenyl}-5-methyl-thiophene-2-carboxylic acid methyl ester;

5-Methyl-4-{4-[(4-methyl-[1,2,3]thiadiazole-5-carbonyl)-amino]-phenyl}-thiophene-2-carboxylic acid methyl ester;

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-5-methyl-furan-2-carboxylic acid ethyl ester;

2,6-Difluoro-N-[4-(2-methyl-5-thiazol-2-yl-furan-3-yl)-phenyl]-benzamide;

3-Fluoro-N-[4-(2-methyl-5-thiazol-2-yl-furan-3-yl)-phenyl]-isonicotinamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(2-methyl-5-thiazol-2-yl-furan-3-yl)-phenyl]-amide;

3,5-Difluoro-N-[4-(2-methyl-5-thiazol-2-yl-furan-3-yl)-phenyl]-isonicotinamide;

2,6-Difluoro-N-[4-(2-methyl-5-thiazol-2-yl-furan-3-yl)-phenyl]-benzamide;

3-Fluoro-5-methyl-N-[4-(2-methyl-5-oxazol-2-yl-furan-3-yl)-phenyl]-isonicotinamide;

2,6-Difluoro-N-[5-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-pyridin-2-yl]-benzamide;

3,5-Difluoro-N-[5-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

3-Fluoro-N-[5-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

2-Fluoro-6-methyl-N-[5-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-pyridin-2-yl]-benzamide;

3-Methyl-N-[5-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [5-(3-methyl-5-oxazol-5-yl]-

thiophen-2-yl)-pyridin-2-yl]-amide;

2,6-Difluoro-N-[5-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-benzamide;

3,5-Difluoro-N-[5-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

3-Fluoro-N-[5-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

2-Fluoro-6-methyl-N-[5-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-benzamide;

3-Methyl-N-[5-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [5-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-amide;

2,6-Difluoro-N-[5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-benzamide;

3,5-Difluoro-N-[5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

3-Fluoro-N-[5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

2-Fluoro-N-[5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-6-methyl-benzamide;

N-[5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-3-methyl-isonicotinamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-amide;

3-Fluoro-N-[5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-5-methyl-isonicotinamide;

3-Methyl-pyridazine-4-carboxylic acid [5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-amide;

4-Methyl-[1,2,3]oxadiazole-5-carboxylic acid [5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-amide;

2,6-Difluoro-N-[5-(3-methyl-5-[1,3,4]oxadiazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-benzamide;

3,5-Difluoro-N-[5-(3-methyl-5-[1,3,4]oxadiazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

3-Fluoro-N-[5-(3-methyl-5-[1,3,4]oxadiazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

2-Fluoro-6-methyl-N-[5-(3-methyl-5-[1,3,4]oxadiazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-benzamide;

3-Methyl-N-[5-(3-methyl-5-[1,3,4]oxadiazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [5-(3-methyl-5-[1,3,4]oxadiazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-amide;

N-[5-(3-Chloro-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-2,6-difluoro-benzamide;

N-[5-(3-Chloro-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-3,5-difluoro-isonicotinamide;

N-[5-(3-Chloro-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-3-fluoro-isonicotinamide;

N-[5-(3-Chloro-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-2-fluoro-6-methyl-benzamide;

N-[5-(3-Chloro-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-3-methyl-isonicotinamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [5-(3-chloro-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-amide;

2,6-Difluoro-N-[5-(5-isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-benzamide;

3,5-Difluoro-N-[5-(5-isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-isonicotinamide;

3-Fluoro-N-[5-(5-isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-isonicotinamide;

2-Fluoro-N-[5-(5-isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-6-methyl-benzamide;

N-[5-(5-Isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-3-methyl-isonicotinamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [5-(5-isoxazol-5-yl-2-methyl-

thiophen-3-yl)-pyridin-2-yl]-amide;

3-Fluoro-N-[5-(5-isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-5-methyl-isonicotinamide;

3-Methyl-pyridazine-4-carboxylic acid [5-(5-isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-amide;

4-Methyl-[1,2,3]oxadiazole-5-carboxylic acid [5-(5-isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-amide;

2,6-Difluoro-N-[3-methyl-4-(4-trifluoromethyl-thiazole-2-yl)-phenyl]-benzamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-phenyl]-amide;

3-Methyl-N-[4-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

3-Methyl-N-[4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

3-Methyl-N-[4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide, hydrochloride;

3-Methyl-N-[4-(3-methyl-5-pyridin-3-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

3-Methyl-N-[4-(3-methyl-5-pyrimidin-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-pyrimidin-5-yl-thiophen-2-yl)-phenyl]-amide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-pyridin-4-yl-thiophen-2-yl)-phenyl]-amide, hydrochloride;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-pyridin-2-yl-thiophen-2-yl)-phenyl]-amide, hydrochloride;

3-Methyl-N-[4-(3-methyl-5-pyrimidin-4-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

1-Methyl-1H-pyrrol-2-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

1-Methyl-1H-pyrazol-5-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

Iothiazol-4-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

[1,2,3]thiadiazol-4-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

5-Methyl-pyrimidine-4-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

4-Methyl-pyrimidine-5-carboxylic acid [4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

3-Methyl-N-[4-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

4-Chloro-thiazol-5-carboxylic acid [4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

3-Methyl-N-[4-(3-methyl-5-thiazol-2-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

3-Methyl-N-[4-(3-chloro-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

3-Methyl-N-[4-(3-chloro-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

3-Fluoro-N-[4-(3-chloro-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

5-Methyl-pyrimidine-4-carboxylic acid [4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

1-Methyl-1H-pyrrol-2-carboxylic acid [4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

3-Methyl-1H-pyrrol-2-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-pyridin-4-yl-thiophen-2-yl)-phenyl]-amide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-pyridin-2-yl-thiophen-2-yl)-phenyl]-amide;

2,6-Difluoro-N-[4-(4-methyl-2-methoxycarbonyl-thiazol-5-yl)-phenyl]-

benzamide;

2,6-Difluoro-N-[4-(2-methyl-5-oxazol-2-yl-thiophen-3-yl)-phenyl]-benzamide;

2,6-Difluoro-N-[4-(5-methyl-2-ethoxycarbonyl-thiazol-4-yl)-phenyl]-benzamide;

3-Methyl-N-[4-(2-methyl-5-oxazol-2-yl-thiophen-3-yl)-phenyl]-

isonicotinamide;

1-(2,6-difluoro-phenyl)-3-[4-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-phenyl]-urea;

1-(2,6-difluoro-phenyl)-3-[4-(5-oxazol-5-yl-3-methyl-thiophen-2-yl)-phenyl]-urea;

1-(3-fluoro-pyridin-4-yl)-3-[4-(5-oxazol-5-yl-3-methyl-thiophen-2-yl)-phenyl]-urea;

(3-Fluoro-pyridin-4-ylmethyl)-[4-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-phenyl]-amine;

(3-Fluoro-pyridin-4-ylmethyl)-[4-(5-oxazol-5-yl-3-methyl-thiophen-2-yl)-phenyl]-amine; and

pharmaceutically acceptable salts, solvates, clathrates, or prodrugs thereof.

All of the features, specific embodiments and particular substituents disclosed

5 herein may be combined in any combination. Each feature, embodiment or substituent disclosed in this specification may be replaced by an alternative

feature, embodiment or substituent serving the same, equivalent, or similar purpose. In the case of chemical compounds, specific values for variables (e.g., values shown in the exemplary compounds disclosed herein) in any

10 chemical formula disclosed herein can be combined in any combination resulting in a stable structure. Furthermore, specific values (whether preferred or not) for substituents in one type of chemical structure may be combined with values for other substituents (whether preferred or not) in the same or different type of chemical structure. Thus, unless expressly stated otherwise,

15 each feature, embodiment or substituent disclosed is only an example of a generic series of equivalent or similar features, embodiments or substituents.

In some embodiments, the invention relates to pharmaceutical compositions that comprise a compound of any one of formulas (I) through (V), or Table 1, or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, as an active ingredient, and a pharmaceutically acceptable carrier or vehicle.

5 The compositions are useful for immunosuppression or to treat or prevent inflammatory conditions, allergic conditions and immune disorders.

In some embodiments, the invention relates to methods for immunosuppression or for treating or preventing inflammatory conditions,

10 immune disorders, or allergic disorders in a patient in need thereof comprising administering an effective amount of a compound represented by any one of formulas (I) through (V), or Table 1, or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof.

15 In some embodiments, the invention relates to methods for immunosuppression or for treating or preventing inflammatory conditions, immune disorders, or allergic disorders in a patient in need thereof comprising administering an effective amount of a pharmaceutical composition that comprises a compound represented by any one of formulas (I) through (V), or
20 Table 1, or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof.

In some embodiments, compounds of any one of formulas (I) through (V), or Table 1, or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug

25 thereof, are particularly useful inhibiting immune cell (e.g., T-cells and/or B-cells) activation (e.g., activation in response to an antigen) and/or T cell and/or B cell proliferation. Indicators of immune cell activation include secretion of IL-2 by T cells, proliferation of T cells and/or B cells, and the like.

30 In one embodiment, immune cell activation and/or T cell and/or B cell proliferation is inhibited in a mammal (e.g., a human), by administering to the mammal (e.g., human) a compound of any one of formulas (I) through (V) or Table 1, or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof.

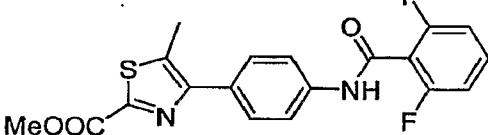
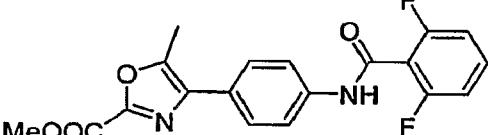
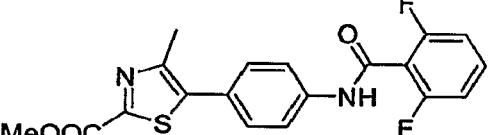
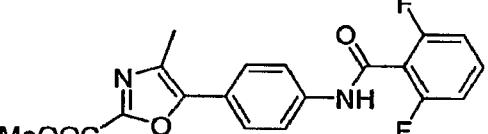
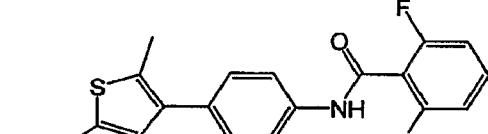
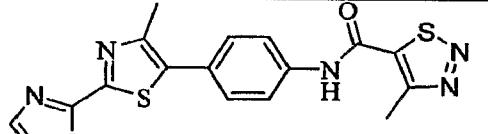
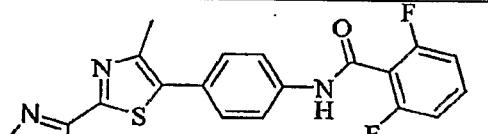
In some embodiments, compounds of of any one of formula (I) through (V), or Table 1, or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, can inhibit the production of certain cytokines that regulate immune cell activation. For example, compounds of any one of formulas (I) through (V), or Table 1, or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, can inhibit the production of IL-2, IL-4, IL-5, IL-13, GM-CSF, IFN- γ , TNF- α and combinations thereof. In one embodiment, cytokine production is inhibited in a mammal (e.g., a human), by administering to the mammal (e.g., human) a compound of any one of formulas (I) through (V) or Table 1, or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof.

In some embodiments, compounds of any one of formulas (I) through (V), or Table 1, or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, can modulate the activity of one or more ion channel, such as CRAC ion channels, involved in activation of immune cells. In some embodiments, a compound of any one of formulas (I) through (V) or Table 1 can inhibit the influx of calcium ions into an immune cell (e.g., T cells, B cells, and/or mast cells) by inhibiting the action of CRAC ion channels. In general, a decrease in I_{CRAC} current upon contacting a cell with a compound is one indicator that the compound inhibits CRAC ion channels. I_{CRAC} current can be measured, for example, using a patch clamp technique, which is described in more detail in the examples below. In some embodiments, a compound of any one of formulas (I) through (V) or Table 1 modulates an ion channel in a mammal (e.g., a human). In some embodiments, the activity of one or more ion channels is inhibited in a mammal (e.g., a human), by administering to the mammal (e.g., human) a compound of any one of formulas (I) through (V) or Table 1, or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof.

In some embodiments, compounds of of any one of formula (I) through (V), or Table 1, or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug

thereof, can inhibit degranulation of mast cell. Inhibition of mast cell degranulation can be determined as described in the experimental section herein or by any method known to those skilled in the art. In some embodiments, mast cell degranulation is inhibited in a mammal (e.g., a human), by 5 administering to the mammal (e.g., human) a compound of any one of formulas (I) through (V) or Table 1, or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof.

EXEMPLARY COMPOUNDS OF THE INVENTION








10

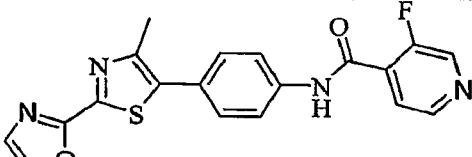
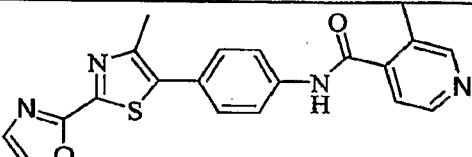
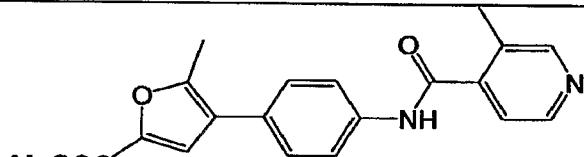
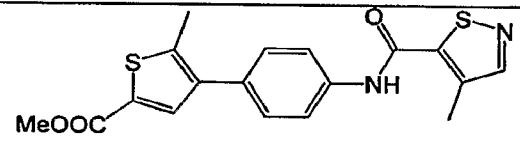
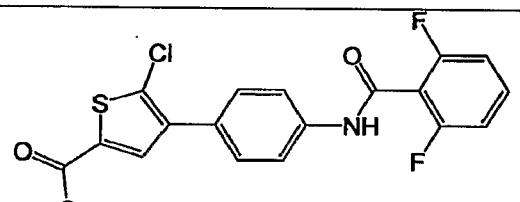
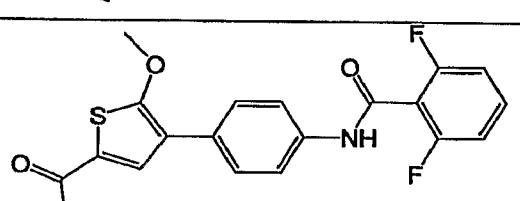
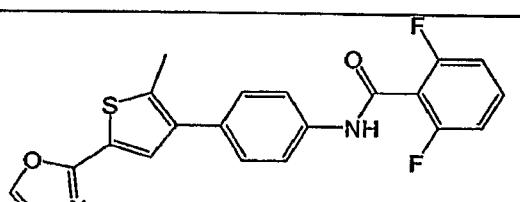
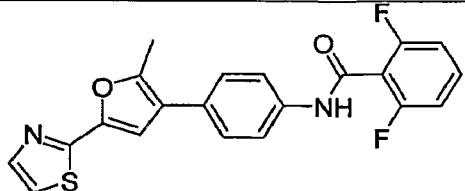
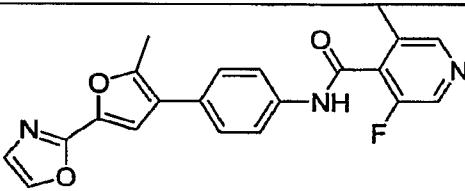
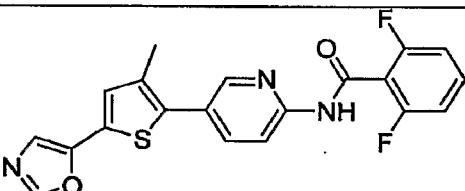
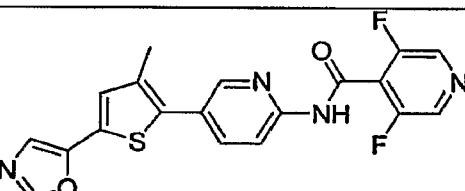
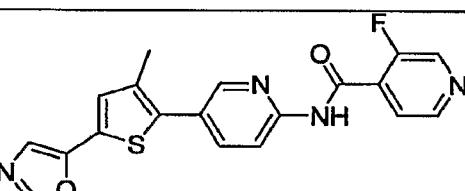
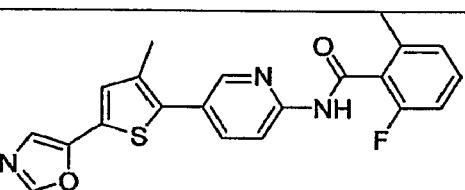
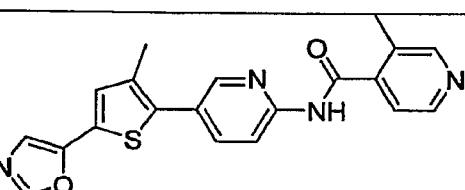







Exemplary compounds of the invention are depicted in Table 1 below.

Table 1

No.	Structure	Name
1		4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-5-methyl-thiophene-2-carboxylic acid methyl ester
2		5-Methyl-4-{4-[4-(3-methylpyridine-4-carbonyl)amino]phenyl}-thiophene-2-carboxylic acid methyl ester
3		2,6-Difluoro-N-[4-(2-methyl-5-oxazol-5-yl-thiophen-3-yl)-phenyl]-benzamide
4		5-[4-(2,6-Difluoro-benzoylamino)-phenyl]-4-methyl-thiophene-2-carboxylic acid methyl ester

5		2,6-Difluoro-N-[4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-benzamide
6		3-Methyl-N-[4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide
7		4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-amide
8		4-[4-(2,6-Difluoro-benzoylamo)-phenyl]-5-methyl-furan-2-carboxylic acid methyl ester
9		2,6-Difluoro-N-[4-(4-methyl-2-morpholin-4-yl-thiazol-5-yl)-phenyl]-benzamide
10		3-Methyl-N-[4-(4-methyl-2-morpholin-4-yl-thiazol-5-yl)-phenyl]-isonicotinamide
11		5-[4-(2,6-Difluoro-benzoylamo)-phenyl]-4-methyl-thiophene-2-carboxylic acid methyl ester








12		4-[4-(2,6-Difluorobenzoylamino)-phenyl]-5-methyl-thiazole-2-carboxylic acid methyl ester
13		4-[4-(2,6-Difluorobenzoylamino)-phenyl]-5-methyl-oxazole-2-carboxylic acid methyl ester
14		5-[4-(2,6-Difluorobenzoylamino)-phenyl]-4-methyl-thiazole-2-carboxylic acid methyl ester
15		5-[4-(2,6-Difluorobenzoylamino)-phenyl]-4-methyl-oxazole-2-carboxylic acid methyl ester
16		4-[4-(2,6-Difluorobenzoylamino)-phenyl]-5-methyl-thiophene-2-carboxylic acid ethyl ester
17		4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(4-methyl-2-oxazol-2-yl-thiazol-5-yl)-phenyl]-amide
18		2,6-Difluoro-N-[4-(4-methyl-2-oxazol-2-yl-thiazol-5-yl)-phenyl]-benzamide

19		3-Fluoro-N-[4-(4-methyl-2-oxazol-2-yl-thiazol-5-yl)-phenyl]-isonicotinamide
20		3-Methyl-N-[4-(4-methyl-2-oxazol-2-yl-thiazol-5-yl)-phenyl]-isonicotinamide
21		5-Methyl-4-{4-[(3-methyl-pyridine-4-carbonyl)-amino]-phenyl}-furan-2-carboxylic acid methyl ester
22		5-Methyl-4-{4-[(4-methyl-isothiazole-5-carbonyl)-amino]-phenyl}-thiophene-2-carboxylic acid methyl ester
23		5-Chloro-4-[4-(2,6-difluoro-benzoylamino)-phenyl]-thiophene-2-carboxylic acid methyl ester
24		4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-5-methoxy-thiophene-2-carboxylic acid methyl ester
25		2,6-Difluoro-N-[4-(2-methyl-5-oxazol-2-yl-thiophen-3-yl)-phenyl]-benzamide

26		3-Methyl-N-[4-(2-methyl-5-oxazol-2-yl-thiophen-3-yl)-phenyl]-isonicotinamide
27		2,6-Difluoro-N-[4-(5-furan-3-yl-2-methyl-thiophen-3-yl)-phenyl]-benzamide
28		2,6-Difluoro-N-[4-(5-furan-2-yl-2-methyl-thiophen-3-yl)-phenyl]-benzamide
29		2,6-Difluoro-N-[4-(2-methyl-5-oxazol-5-yl-thiophen-3-yl)-phenyl]-benzamide
30		3-Methyl-N-[4-(2-methyl-5-oxazol-5-yl-thiophen-3-yl)-phenyl]-isonicotinamide
31		N-[4-(2-Chloro-5-trifluoromethyl-thiophen-3-yl)-phenyl]-2,6-difluoro-benzamide
32		4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-thiophene-2-carboxylic acid methyl ester

33		4-{4-[(3-Methyl-pyridine-4-carbonyl)-amino]-phenyl}-thiophene-2-carboxylic acid methyl ester
34		4-[4-(2,6-Difluoro-benzoylamo)-phenyl]-thiophene-2-carboxylic acid propyl ester
35		4-[4-(2,6-Difluoro-benzoylamo)-phenyl]-thiophene-2-carboxylic acid 2-methoxy-ethyl ester
36		2,6-Difluoro-N-[4-(5-oxazol-2-yl-thiophen-3-yl)-phenyl]-benzamide
37		2,6-Difluoro-N-[4-(5-oxazol-5-yl-thiophen-3-yl)-phenyl]-benzamide
38		2,6-Difluoro-N-[4-(5-furan-3-yl-thiophen-3-yl)-phenyl]-benzamide
39		2,6-Difluoro-N-[4-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-phenyl]-benzamide

40		4-{4-[(3-Fluoro-pyridine-4-carbonyl)-amino]-phenyl}-5-methyl-thiophene-2-carboxylic acid methyl ester
41		5-Methyl-4-{4-[(4-methyl-[1,2,3]thiadiazole-5-carbonyl)-amino]-phenyl}-thiophene-2-carboxylic acid methyl ester
42		4-[4-(2,6-Difluoro-benzoylamo)-phenyl]-5-methyl-furan-2-carboxylic acid ethyl ester
43		2,6-Difluoro-N-[4-(2-methyl-5-thiazol-2-yl-furan-3-yl)-phenyl]-benzamide
44		3-Fluoro-N-[4-(2-methyl-5-thiazol-2-yl-furan-3-yl)-phenyl]-isonicotinamide
45		4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(2-methyl-5-thiazol-2-yl-furan-3-yl)-phenyl]-amide
46		3,5-Difluoro-N-[4-(2-methyl-5-thiazol-2-yl-furan-3-yl)-phenyl]-isonicotinamide

47		2,6-Difluoro-N-[4-(2-methyl-5-thiazol-2-yl-furan-3-yl)-phenyl]-benzamide
48		3-Fluoro-5-methyl-N-[4-(2-methyl-5-oxazol-2-yl-furan-3-yl)-phenyl]-isonicotinamide
49		2,6-Difluoro-N-[5-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-pyridin-2-yl]-benzamide
50		3,5-Difluoro-N-[5-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide
51		3-Fluoro-N-[5-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide
52		2-Fluoro-6-methyl-N-[5-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-pyridin-2-yl]-benzamide
53		3-Methyl-N-[5-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide

54		4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [5-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-pyridin-2-yl]-amide
55		2,6-Difluoro-N-[5-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-benzamide
56		3,5-Difluoro-N-[5-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide
57		3-Fluoro-N-[5-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide
58		2-Fluoro-6-methyl-N-[5-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-benzamide
59		3-Methyl-N-[5-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide
60		4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [5-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-amide

61		2,6-Difluoro-N-[5-(5-isoxazol-5-yl)-3-methyl-thiophen-2-yl]-pyridin-2-yl]-benzamide
62		3,5-Difluoro-N-[5-(5-isoxazol-5-yl)-3-methyl-thiophen-2-yl]-pyridin-2-yl]-isonicotinamide
63		3-Fluoro-N-[5-(5-isoxazol-5-yl)-3-methyl-thiophen-2-yl]-pyridin-2-yl]-isonicotinamide
64		2-Fluoro-N-[5-(5-isoxazol-5-yl)-3-methyl-thiophen-2-yl]-pyridin-2-yl]-6-methyl-benzamide
65		N-[5-(5-Isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-3-methyl-isonicotinamide
66		4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-amide
67		3-Fluoro-N-[5-(5-isoxazol-5-yl)-3-methyl-thiophen-2-yl]-pyridin-2-yl]-5-methyl-isonicotinamide

68		3-Methyl-pyridazine-4-carboxylic acid [5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-amide
69		4-Methyl-[1,2,3]oxadiazole-5-carboxylic acid [5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-amide
70		2,6-Difluoro-N-[5-(3-methyl-5-[1,3,4]oxadiazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-benzamide
71		3,5-Difluoro-N-[5-(3-methyl-5-[1,3,4]oxadiazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide
72		3-Fluoro-N-[5-(3-methyl-5-[1,3,4]oxadiazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide
73		2-Fluoro-6-methyl-N-[5-(3-methyl-5-[1,3,4]oxadiazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-benzamide
74		3-Methyl-N-[5-(3-methyl-5-[1,3,4]oxadiazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide

75		4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [5-(3-methyl-5-[1,3,4]oxadiazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-amide
76		N-[5-(3-Chloro-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-2,6-difluoro-benzamide
77		N-[5-(3-Chloro-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-3,5-difluoro-isonicotinamide
78		N-[5-(3-Chloro-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-3-fluoro-isonicotinamide
79		N-[5-(3-Chloro-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-2-fluoro-6-methyl-benzamide
80		N-[5-(3-Chloro-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-3-methyl-isonicotinamide
81		4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [5-(3-chloro-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-amide

82		2,6-Difluoro-N-[5-(5-isoxazol-5-yl)-2-methyl-thiophen-3-yl]-pyridin-2-yl]-benzamide
83		3,5-Difluoro-N-[5-(5-isoxazol-5-yl)-2-methyl-thiophen-3-yl]-pyridin-2-yl]-isonicotinamide
84		3-Fluoro-N-[5-(5-isoxazol-5-yl)-2-methyl-thiophen-3-yl]-pyridin-2-yl]-isonicotinamide
85		2-Fluoro-N-[5-(5-isoxazol-5-yl)-2-methyl-thiophen-3-yl]-pyridin-2-yl]-6-methyl-benzamide
86		N-[5-(5-isoxazol-5-yl)-2-methyl-thiophen-3-yl]-pyridin-2-yl]-3-methyl-isonicotinamide
87		4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [5-(5-isoxazol-5-yl)-2-methyl-thiophen-3-yl]-pyridin-2-yl]-amide
88		3-Fluoro-N-[5-(5-isoxazol-5-yl)-2-methyl-thiophen-3-yl]-pyridin-2-yl]-5-methyl-isonicotinamide

89		3-Methyl-pyridazine-4-carboxylic acid [5-(5-isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-amide
90		4-Methyl-[1,2,3]oxadiazole-5-carboxylic acid [5-(5-isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-amide
91		2,6-Difluoro-N-[3-methyl-4-(4-trifluoromethyl-thiazole-2-yl)-phenyl]-benzamide
92		4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-phenyl]-amide
93		3-Methyl-N-[4-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-phenyl]-isonicotinamide
94		3-Methyl-N-[4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide
95		3-Methyl-N-[4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide, hydrochloride

96		3-Methyl-N-[4-(3-methyl-5-pyridin-3-yl-thiophen-2-yl)-phenyl]-isonicotinamide
97		3-Methyl-N-[4-(3-methyl-5-pyrimidin-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide
98		4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-pyrimidin-5-yl-thiophen-2-yl)-phenyl]-amide
99		4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-pyridin-4-yl-thiophen-2-yl)-phenyl]-amide, hydrochloride
100		4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-pyridin-2-yl-thiophen-2-yl)-phenyl]-amide, hydrochloride
101		3-Methyl-N-[4-(3-methyl-5-pyrimidin-4-yl-thiophen-2-yl)-phenyl]-isonicotinamide
102		[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide

103		1-Methyl-1H-pyrrol-2-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide
104		1-Methyl-1H-pyrazol-5-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide
105		Isothiazol-4-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide
106		[1,2,3]thiadiazol-4-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide
107		5-Methyl-pyrimidine-4-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide
108		4-Methyl-pyrimidine-5-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide

109		3-Methyl-N-[4-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-phenyl]-isonicotinamide
110		4-Chloro-thiazol-5-carboxylic acid [4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-amide
111		3-Methyl-N-[4-(3-methyl-5-thiazol-2-yl-thiophen-2-yl)-phenyl]-isonicotinamide
112		3-Methyl-N-[4-(3-chloro-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide
113		3-Methyl-N-[4-(3-chloro-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide
114		3-Fluoro-N-[4-(3-chloro-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide
115		5-Methyl-pyrimidine-4-carboxylic acid [4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-amide

116		1-Methyl-1H-pyrrol-2-carboxylic acid [4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-amide
117		3-Methyl-1H-pyrrol-2-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide
118		4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-pyridin-4-yl-thiophen-2-yl)-phenyl]-amide
119		4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-pyridin-2-yl-thiophen-2-yl)-phenyl]-amide
120		2,6-Difluoro-N-[4-(4-methyl-thiazole-5-yl)-phenyl]-benzamide
121		2,6-Difluoro-N-[4-(4-methyl-2-methoxycarbonyl-thiazol-5-yl)-phenyl]-benzamide
122		2,6-Difluoro-N-[4-(2-methyl-5-oxazol-2-yl-thiophen-3-yl)-phenyl]-benzamide

123		2,6-Difluoro-N-[4-(5-methyl-2-ethoxycarbonyl-thiazol-4-yl)-phenyl]-benzamide
124		3-Methyl-N-[4-(2-methyl-5-oxazol-2-yl-thiophen-3-yl)-phenyl]-isonicotinamide
125		1-(2,6-difluoro-phenyl)-3-[4-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-phenyl]-urea
126		1-(2,6-difluoro-phenyl)-3-[4-(5-oxazol-5-yl-3-methyl-thiophen-2-yl)-phenyl]-urea
127		1-(3-fluoro-pyridin-4-yl)-3-[4-(5-oxazol-5-yl-3-methyl-thiophen-2-yl)-phenyl]-urea
128		(3-Fluoro-pyridin-4-ylmethyl)-[4-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-phenyl]-amine
129		(3-Fluoro-pyridin-4-ylmethyl)-[4-(5-oxazol-5-yl-3-methyl-thiophen-2-yl)-phenyl]-amine

MECHANISM OF ACTION

Activation of T-lymphocytes in response to an antigen is dependent on calcium ion oscillations. Calcium ion oscillations in T-lymphocytes are

5 triggered through stimulation of the T-cell antigen receptor, and involve calcium ion influx through the stored-operated Ca^{2+} -release-activated Ca^{2+} (CRAC) channel. In addition, antigen induced degranulation of mast cells has also been shown to be initiated by calcium ion in flux. Although the molecular structure of the CRAC ion channel has not been identified, a detailed 10 electrophysiological profile of the channel exist. Thus, inhibition of CRAC ion channels can be measured by measuring inhibition of the I_{CRAC} current. Calcium ion oscillations in T-cells have been implicated in the activation of several transcription factors (e.g., NFAT, Oct/Oap and NF κ B) which are critical for T-cell activation (Lewis, *Biochemical Society Transactions* (2003), 15 31:925-929, the entire teachings of which are incorporated herein by reference). Without wishing to be bound by any theory, it is believed that because the compounds of the invention inhibit the activity of CRAC ion channels, they inhibit immune cell activation.

20 METHODS OF TREATMENT AND PREVENTION

In accordance with the invention, an effective amount of a compound of any one of formulas (I) through (V) or Table 1, or a pharmaceutically acceptable

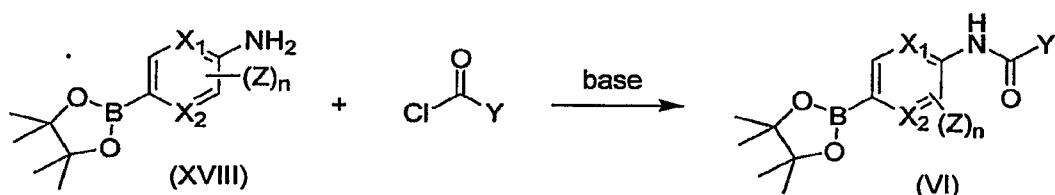
25 salt, solvate, clathrate, and prodrug thereof, or a pharmaceutical composition comprising a compound of any one of formulas (I) through (V) or Table 1, or a pharmaceutically acceptable salt, solvate, clathrate, and prodrug thereof, is administered to a patient in need of immunosuppression or in need of treatment or prevention of an inflammatory condition, an immune disorder, or an allergic disorder. Such patients may be treatment naïve or may experience partial or no response to conventional therapies.

30

Responsiveness to immunosuppression or of a particular inflammatory condition, immune disorder, or allergic disorder in a subject can be measured directly (e.g., measuring blood levels of inflammatory cytokines (such as IL-2,

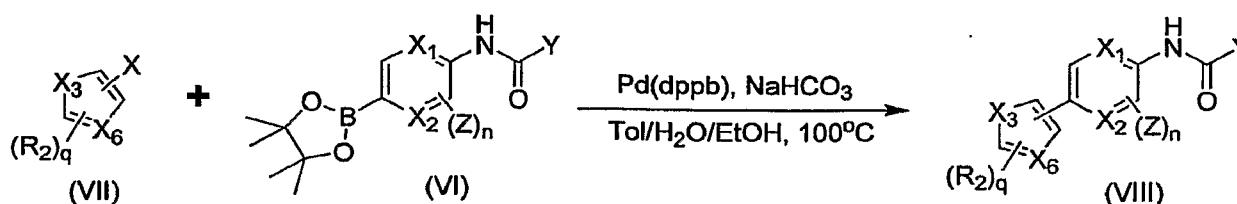
IL-4, IL-5, IL-13, GM-CSF, TNF- α , IFN- γ and the like) after administration of a compound of this invention), or can be inferred based on an understanding of disease etiology and progression. The compounds of any one of formulas (I) through (V), or Table 1, or pharmaceutically acceptable salts, solvates,

5 clathrates, and prodrugs thereof can be assayed *in vitro* or *in vivo*, for the desired therapeutic or prophylactic activity, prior to use in humans. For example, known animal models of inflammatory conditions, immune disorders, or allergic disorders can be used to demonstrate the safety and efficacy of compounds of this invention.


10

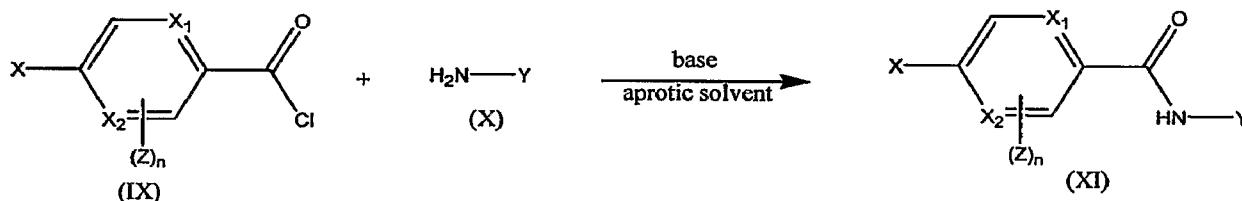
PREPARATION OF COMPOUNDS OF THE INVENTION

In general, the phenyl and pyridinyl compounds of the invention that have amide linkers are prepared by contacting a [1,3,2]dioxaborolan-2-yl-phenyl or 15 –pyridinyl derivative (XVIII) with an acid chloride (XVI) in the presence of a base to form intermediate compound (VI) having an amide linkage (see Scheme I). Typically, an aprotic solvent and aprotic base is used in this reaction.


20

Scheme I

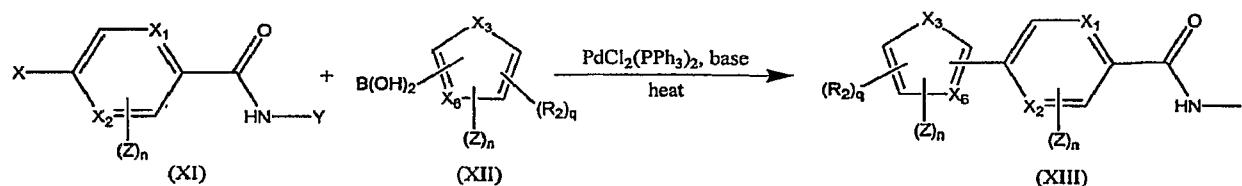
Intermediate (VI) is then reacted with a halo-heteroaryl derivative (VII) in the


25 presence of a palladium catalyst and a base (Suzuki coupling reaction) to form a phenyl or pyridinyl compound of the invention having amide linkers (VIII) (see Scheme II).

Scheme II

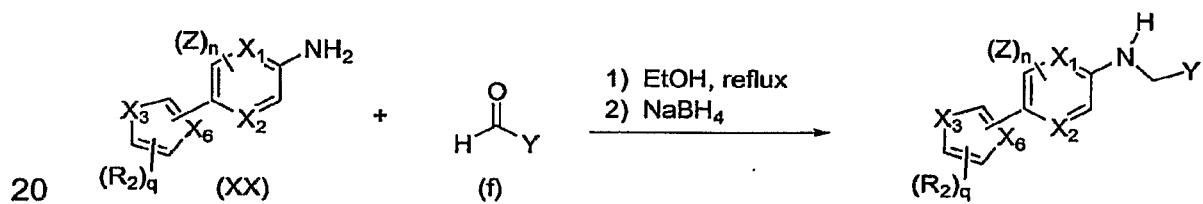
X is a halo

X_6 is X_4 or X_5

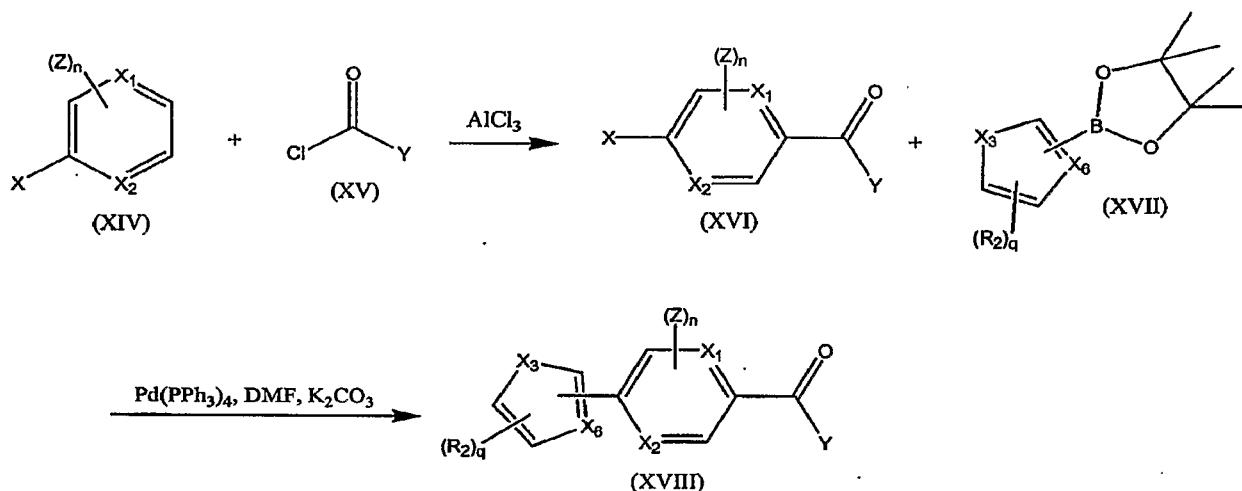

5 Phenyl or pyridinyl compounds of the invention having an amide linker in which the amine group is attached to Y and the carbonyl group is attached to the Phenyl or pyridinyl ring can be prepared by reacting 4-halo-benzoyl chloride or a 5-halo-pyridine-2-carbonyl chloride (IX) with an amine derivative (X) in the presence of a base to form intermediate compound (XI) (see
 10 Scheme III).

Scheme III

15


Intermediate (XI) is then reacted with a boronic acid derivative (XII) in the presence of $\text{PdCl}_2(\text{PPh}_3)_4$ and a base (Suzuki Coupling reaction, as in Scheme IV) to form phenyl or pyridinyl compound of the invention (XIII).

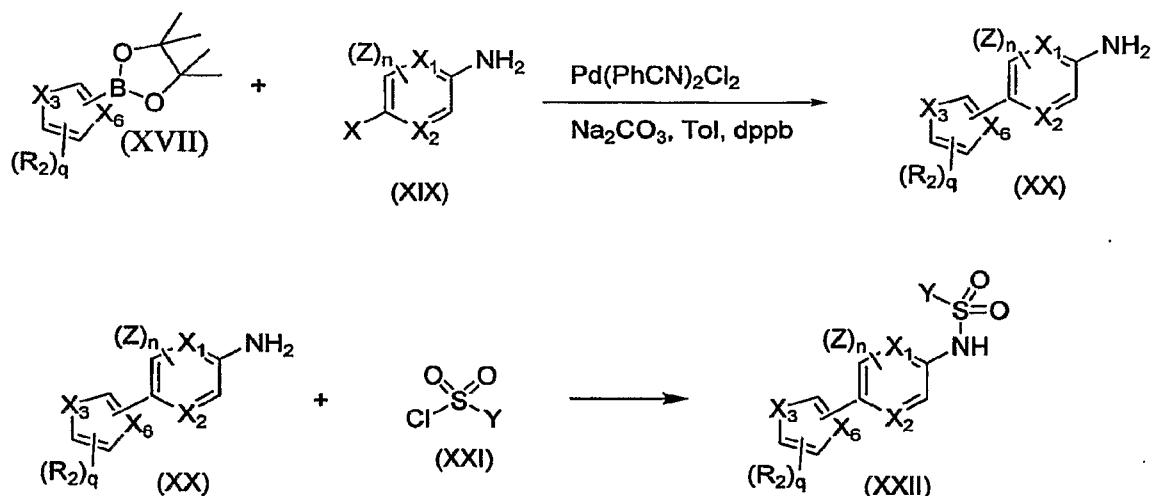
20


Scheme IV

5 Compounds of the invention in which L is $-\text{NHC}(\text{S})-$ or $-\text{C}(\text{S})\text{NH}-$ can be prepared by treating compounds having an amide linker with Lawesson's reagent.

Compounds of the invention having $-\text{CH}_2\text{-NH-}$ or $-\text{NH-CH}_2-$ linkers can be 10 prepared by contacting compounds having $-\text{NHC}(\text{S})-$ or $-\text{C}(\text{S})\text{NH}-$ linkers with Raney Ni. Alternatively, compounds of the invention having a $-\text{CH}_2\text{-NH-}$ or $-\text{NH-CH}_2-$ linker can be prepared by reducing a compound having a $-\text{C}(\text{O})\text{-NH-}$ or $-\text{NH-C}(\text{O})-$ linker, respectively, with, for example, sodium borohydride. Alternatively, compounds that have $-\text{NHCH}_2-$ linkers 15 can be prepared by reacting aldehyde (f) with amine (XX) followed by reduction of the shift base with sodium borohydride as shown in Scheme IVa (see U.S. Patent Application No. 10/897,681, filed on July 22, 2004, the entire teachings of which are incorporated herein by reference).

Scheme IVa


Compounds of the invention having $-\text{C}(\text{O})-$ linkers can be prepared by a 20 Friedel-Craft acylation reaction by reacting a halo-phenyl or halo-pyridinyl derivative (XIV) with an acid chloride (XV) in the presence of AlCl_3 to form an intermediate which can then be reacted with an [1,3,2]dioxaborolan-2-yl-heteroaryl (XVI) in the presence of a palladium catalyst and a base to form a compound of the invention having a carbonyl linker (XVII) (see Scheme V).

Scheme V

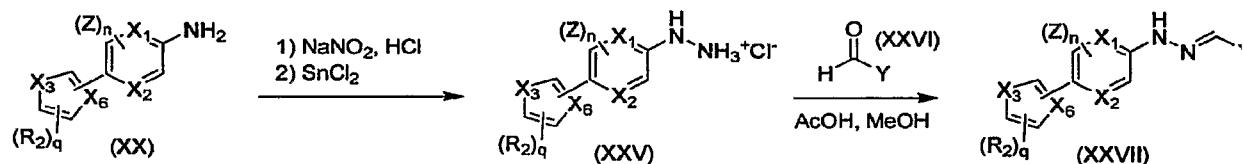
5 Compounds of the invention that have $-\text{C}(\text{S})-$ can be prepared from compounds that have carbonyl linkers by treating them with Lawesson's reagent or P_2S_5 in pyridine.

10 Compounds of the invention that have a sulfonamide linker (XXII) can be prepared by reacting an amine derivative (XX), which is prepared by an analogous method as described in Scheme II, with a sulfonyl chloride derivative (XXI) as shown in Scheme VI. Typically, the amine derivative (XX) is dissolved in a polar solvent, such as an alcohol, and the sulfonyl chloride derivative (XXI) is added. The reaction is typically heated to about 50°C to 15 about 100°C.

Scheme VI

Compounds of the invention having a urea linker (XXIV) can be prepared by reacting amine derivative (XX) with an isocyanate (XXIII) as shown in Scheme VII. Typically, the amine derivative (XX) is dissolved in a non-polar, aprotic solvent such as dichloromethane (DCM) to which the isocyanate (XXIII) is added at room temperature. The reaction is typically stirred for about 5 minutes to about 1 hour to give a compound of the invention having a urea linker (XXIV).

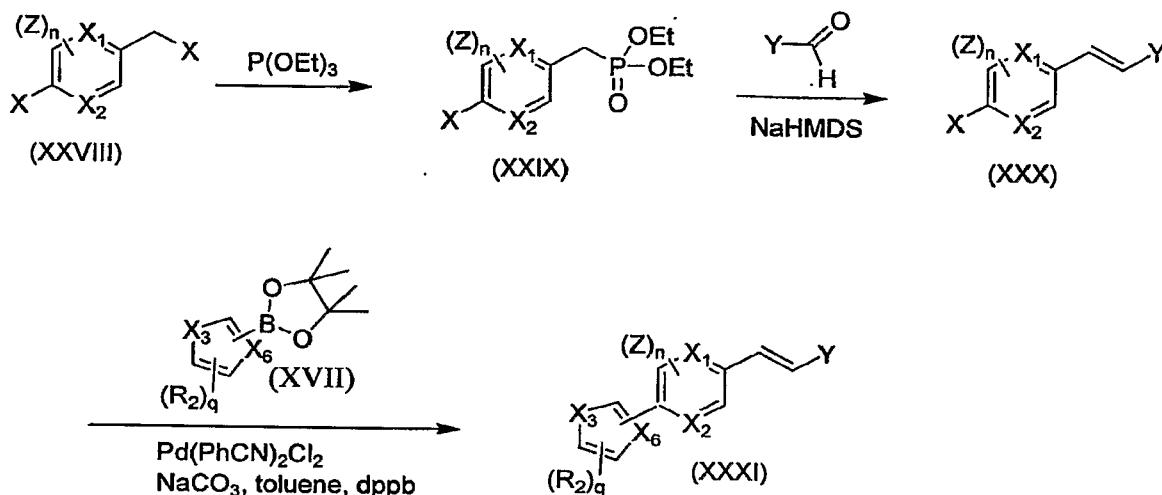
Scheme VII


Compounds of the invention having a thiourea linker ($-\text{NHC(S)NH}-$) can be prepared by treating compounds having a urea linker with Lawesson's reagent.

Compounds of the invention having a hydrazinyl linker (-NH-N=CH-) can be prepared by adding an aqueous solution of NaNO₂ (1 eq.) to a solution of amine derivative (XX) (1 eq.) in concentrated HCl at about 0°C. After the solution is stirred at about 0°C for about 15 minute to about 1 hour, then 2.4 eq. of SnCl₂ in concentrated HCl is added, and the reaction is stirred at about

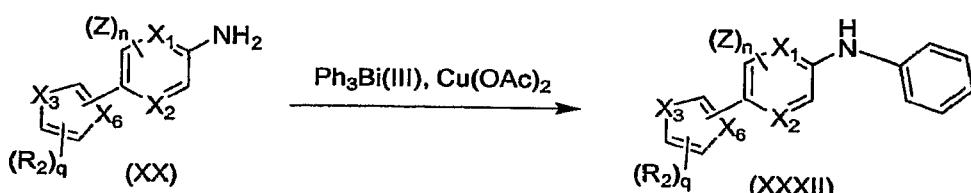
0°C for about 1 hour to give a hydrazinium chloride intermediate (XXV). The hydrazinium chloride intermediate (XXV) is dissolved in acetic acid and an alcohol, such as methanol, and an aldehyde (XXVI) is added. The reaction is stirred at room temperature for about an hour to give a compound of the

5 invention having a hydrazinyl linker (XXVII) (see Scheme VIII).


Scheme VIII

10 Compounds of the invention that have a double bond linker can be prepared by heating a mixture of a 4-halo-benzyl halide or a halomethyl-halo-pyridine (XXVIII) and a trialkyl-phosphite, such as triethyl phosphate, in a non-polar, aprotic solvent to form a dialkyl phosphate derivative (XXIX). The dialkyl phosphate derivative (XXIX) is then dissolved in a polar, aprotic solvent, such

15 as an ether, and cooled to about -25°C to about -78°C and sodium-hexamethyldisilazane (NaHMDS) is added. After about 5 minutes to about 30 minutes an aldehyde is added and the solution is stirred for about 15 minutes to about 1 hour then allowed to warm to room temperature. The reaction is quenched with an aqueous ammonium chloride solution to form alkene


20 intermediate (XXX). Alkene intermediate (XXX) is then coupled with cycloalkylene boronic acid ester (XVII) in a similar manner as described in Scheme II to form a compound of the invention that has a double bond linker (XXXI) (see Scheme IX).

Scheme IX

5

Compounds that have an amine linker (XXXII) can be prepared by stirring a mixture of amine derivative (XX) (1 equ.), triphenylbismuthine(III) (1.1-1.5 equ.) and $\text{Cu}(\text{OAc})_2$ (1.1-1.5 equ.) in dichloromethane at room temperature for about 2-12 hours (see Scheme X).

10

Scheme X

PHARMACEUTICAL COMPOSITIONS AND DOSAGE FORMS

Pharmaceutical compositions and dosage forms of the invention comprise one or more active ingredients in relative amounts and formulated in such a way that a given pharmaceutical composition or dosage form can be used for immunosuppression or to treat or prevent inflammatory conditions, immune disorders, and allergic disorders. Preferred pharmaceutical compositions and dosage forms comprise a compound of any one of formulas (I) through (V), or Table 1, or a pharmaceutically acceptable prodrug, salt, solvate, or clathrate thereof, optionally in combination with one or more additional active agents.

Single unit dosage forms of the invention are suitable for oral, mucosal (e.g., nasal, sublingual, vaginal, buccal, or rectal), parenteral (e.g., subcutaneous, intravenous, bolus injection, intramuscular, or intraarterial), or transdermal administration to a patient. Examples of dosage forms include, but are not

5 limited to: tablets; caplets; capsules, such as soft elastic gelatin capsules; cachets; troches; lozenges; dispersions; suppositories; ointments; cataplasms (poultices); pastes; powders; dressings; creams; plasters; solutions; patches; aerosols (e.g., nasal sprays or inhalers); gels; liquid dosage forms suitable for oral or mucosal administration to a patient, including suspensions (e.g.,
10 aqueous or non-aqueous liquid suspensions, oil-in-water emulsions, or a water-in-oil liquid emulsions), solutions, and elixirs; liquid dosage forms suitable for parenteral administration to a patient; and sterile solids (e.g., crystalline or amorphous solids) that can be reconstituted to provide liquid dosage forms suitable for parenteral administration to a patient.

15

The composition, shape, and type of dosage forms of the invention will typically vary depending on their use. For example, a dosage form suitable for mucosal administration may contain a smaller amount of active ingredient(s) than an oral dosage form used to treat the same indication. This
20 aspect of the invention will be readily apparent to those skilled in the art. See, e.g., Remington's Pharmaceutical Sciences (1990) 18th ed., Mack Publishing, Easton PA.

25 Typical pharmaceutical compositions and dosage forms comprise one or more excipients. Suitable excipients are well known to those skilled in the art of pharmacy, and non-limiting examples of suitable excipients are provided herein. Whether a particular excipient is suitable for incorporation into a pharmaceutical composition or dosage form depends on a variety of factors well known in the art including, but not limited to, the way in which the dosage
30 form will be administered to a patient. For example, oral dosage forms such as tablets may contain excipients not suited for use in parenteral dosage forms.

The suitability of a particular excipient may also depend on the specific active ingredients in the dosage form. For example, the decomposition of some active ingredients can be accelerated by some excipients such as lactose, or when exposed to water. Active ingredients that comprise primary or 5 secondary amines (e.g., N-desmethylvenlafaxine and N,N-didesmethylvenlafaxine) are particularly susceptible to such accelerated decomposition. Consequently, this invention encompasses pharmaceutical compositions and dosage forms that contain little, if any, lactose. As used herein, the term "lactose-free" means that the amount of lactose present, if 10 any, is insufficient to substantially increase the degradation rate of an active ingredient. Lactose-free compositions of the invention can comprise excipients that are well known in the art and are listed, for example, in the U.S. Pharmacopedia (USP) SP (XXI)/NF (XVI). In general, lactose-free compositions comprise active ingredients, a binder/filler, and a lubricant in 15 pharmaceutically compatible and pharmaceutically acceptable amounts. Preferred lactose-free dosage forms comprise active ingredients, microcrystalline cellulose, pre-gelatinized starch, and magnesium stearate.

This invention further encompasses anhydrous pharmaceutical compositions 20 and dosage forms comprising active ingredients, since water can facilitate the degradation of some compounds. For example, the addition of water (e.g., 5%) is widely accepted in the pharmaceutical arts as a means of simulating long-term storage in order to determine characteristics such as shelf-life or the stability of formulations over time. See, e.g., Jens T. Carstensen (1995) Drug 25 Stability: Principles & Practice, 2d. Ed., Marcel Dekker, NY, NY, 379-80. In effect, water and heat accelerate the decomposition of some compounds. Thus, the effect of water on a formulation can be of great significance since moisture and/or humidity are commonly encountered during manufacture, handling, packaging, storage, shipment, and use of formulations.

30

Anhydrous pharmaceutical compositions and dosage forms of the invention can be prepared using anhydrous or low moisture containing ingredients and low moisture or low humidity conditions. Pharmaceutical compositions and

dosage forms that comprise lactose and at least one active ingredient that comprises a primary or secondary amine are preferably anhydrous if substantial contact with moisture and/or humidity during manufacturing, packaging, and/or storage is expected.

5

An anhydrous pharmaceutical composition should be prepared and stored such that its anhydrous nature is maintained. Accordingly, anhydrous compositions are preferably packaged using materials known to prevent exposure to water such that they can be included in suitable formulary kits.

10 Examples of suitable packaging include, but are not limited to, hermetically sealed foils, plastics, unit dose containers (e.g., vials), blister packs, and strip packs.

15 The invention further encompasses pharmaceutical compositions and dosage forms that comprise one or more compounds that reduce the rate by which an active ingredient will decompose. Such compounds, which are referred to herein as "stabilizer" include, but are not limited to, antioxidants such as ascorbic acid, pH buffers, or salt buffers.

20 Like the amounts and types of excipients, the amounts and specific types of active ingredients in a dosage form may differ depending on factors such as, but not limited to, the route by which it is to be administered to patients.

25 However, typical dosage forms of the invention comprise a compound of any one of formulas (I) through (V), or Table 1, or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof in an amount of from about 1 mg to about 1000 mg, preferably in an amount of from about 50 mg to about 500 mg, and most preferably in an amount of from about 75 mg to about 350 mg.

30 The typical total daily dosage of a compound of any one of formulas (I) through (V), or Table 1, or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof can range from about 0.001 mg to about 5000 mg per day, preferably in an amount from about 0.01 mg to about 1500 mg per day, more preferably from about 0.01 mg to about 1000 mg per day. It is

within the skill of the art to determine the appropriate dose and dosage form for a given patient.

ORAL DOSAGE FORMS

5 Pharmaceutical compositions of the invention that are suitable for oral administration can be presented as discrete dosage forms, such as, but are not limited to, tablets (e.g., chewable tablets), caplets, capsules, and liquids (e.g., flavored syrups). Such dosage forms contain predetermined amounts of active ingredients, and may be prepared by methods of pharmacy well known
10 to those skilled in the art. See generally, Remington's Pharmaceutical Sciences (1990) 18th ed., Mack Publishing, Easton PA.

Typical oral dosage forms of the invention are prepared by combining the active ingredient(s) in an admixture with at least one excipient according to
15 conventional pharmaceutical compounding techniques. Excipients can take a wide variety of forms depending on the form of preparation desired for administration. For example, excipients suitable for use in oral liquid or aerosol dosage forms include, but are not limited to, water, glycols, oils, alcohols, flavoring agents, preservatives, and coloring agents. Examples of
20 excipients suitable for use in solid oral dosage forms (e.g., powders, tablets, capsules, and caplets) include, but are not limited to, starches, sugars, micro-crystalline cellulose, diluents, granulating agents, lubricants, binders, and disintegrating agents.

25 Because of their ease of administration, tablets and capsules represent the most advantageous oral dosage unit forms, in which case solid excipients are employed. If desired, tablets can be coated by standard aqueous or nonaqueous techniques. Such dosage forms can be prepared by any of the methods of pharmacy. In general, pharmaceutical compositions and dosage
30 forms are prepared by uniformly and intimately admixing the active ingredients with liquid carriers, finely divided solid carriers, or both, and then shaping the product into the desired presentation if necessary.

For example, a tablet can be prepared by compression or molding. Compressed tablets can be prepared by compressing in a suitable machine the active ingredients in a free-flowing form such as powder or granules, optionally mixed with an excipient. Molded tablets can be made by molding in 5 a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.

Examples of excipients that can be used in oral dosage forms of the invention include, but are not limited to, binders, fillers, disintegrants, and lubricants.

10 Binders suitable for use in pharmaceutical compositions and dosage forms include, but are not limited to, corn starch, potato starch, or other starches, gelatin, natural and synthetic gums such as acacia, sodium alginate, alginic acid, other alginates, powdered tragacanth, guar gum, cellulose and its derivatives (e.g., ethyl cellulose, cellulose acetate, carboxymethyl cellulose 15 calcium, sodium carboxymethyl cellulose), polyvinyl pyrrolidone, methyl cellulose, pre-gelatinized starch, hydroxypropyl methyl cellulose, (e.g., Nos. 2208, 2906, 2910), microcrystalline cellulose, and mixtures thereof.

Suitable forms of microcrystalline cellulose include, but are not limited to, the

20 materials sold as AVICEL-PH-101, AVICEL-PH-103 AVICEL RC-581, AVICEL-PH-105 (available from FMC Corporation, American Viscose Division, Avicel Sales, Marcus Hook, PA), and mixtures thereof. One specific binder is a mixture of microcrystalline cellulose and sodium carboxymethyl cellulose sold as AVICEL RC-581. Suitable anhydrous or low moisture 25 excipients or additives include AVICEL-PH-103J and Starch 1500 LM.

Examples of fillers suitable for use in the pharmaceutical compositions and dosage forms disclosed herein include, but are not limited to, talc, calcium carbonate (e.g., granules or powder), microcrystalline cellulose, powdered

30 cellulose, dextrates, kaolin, mannitol, silicic acid, sorbitol, starch, pre-gelatinized starch, and mixtures thereof. The binder or filler in pharmaceutical compositions of the invention is typically present in from about 50 to about 99 weight percent of the pharmaceutical composition or dosage form.

Disintegrants are used in the compositions of the invention to provide tablets that disintegrate when exposed to an aqueous environment. Tablets that contain too much disintegrant may disintegrate in storage, while those that 5 contain too little may not disintegrate at a desired rate or under the desired conditions. Thus, a sufficient amount of disintegrant that is neither too much nor too little to detrimentally alter the release of the active ingredients should be used to form solid oral dosage forms of the invention. The amount of disintegrant used varies based upon the type of formulation, and is readily 10 discernible to those of ordinary skill in the art. Typical pharmaceutical compositions comprise from about 0.5 to about 15 weight percent of disintegrant, preferably from about 1 to about 5 weight percent of disintegrant.

Disintegrants that can be used in pharmaceutical compositions and dosage 15 forms of the invention include, but are not limited to, agar-agar, alginic acid, calcium carbonate, microcrystalline cellulose, croscarmellose sodium, crospovidone, polacrilin potassium, sodium starch glycolate, potato or tapioca starch, other starches, pre-gelatinized starch, other starches, clays, other algins, other celluloses, gums, and mixtures thereof.

20 Lubricants that can be used in pharmaceutical compositions and dosage forms of the invention include, but are not limited to, calcium stearate, magnesium stearate, mineral oil, light mineral oil, glycerin, sorbitol, mannitol, polyethylene glycol, other glycols, stearic acid, sodium lauryl sulfate, talc, 25 hydrogenated vegetable oil (e.g., peanut oil, cottonseed oil, sunflower oil, sesame oil, olive oil, corn oil, and soybean oil), zinc stearate, ethyl oleate, ethyl laureate, agar, and mixtures thereof. Additional lubricants include, for example, a sylloid silica gel (AEROSIL 200, manufactured by W.R. Grace Co. of Baltimore, MD), a coagulated aerosol of synthetic silica (marketed by 30 Degussa Co. of Plano, TX), CAB-O-SIL (a pyrogenic silicon dioxide product sold by Cabot Co. of Boston, MA), and mixtures thereof. If used at all, lubricants are typically used in an amount of less than about 1 weight percent

of the pharmaceutical compositions or dosage forms into which they are incorporated.

CONTROLLED RELEASE DOSAGE FORMS

5 Active ingredients of the invention can be administered by controlled release means or by delivery devices that are well known to those of ordinary skill in the art. Examples include, but are not limited to, those described in U.S. Patent Nos.: 3,845,770; 3,916,899; 3,536,809; 3,598,123; and 4,008,719, 5,674,533, 5,059,595, 5,591,767, 5,120,548, 5,073,543, 5,639,476, 10 5,354,556, and 5,733,566, each of which is incorporated herein by reference. Such dosage forms can be used to provide slow or controlled-release of one or more active ingredients using, for example, hydropropylmethyl cellulose, other polymer matrices, gels, permeable membranes, osmotic systems, multilayer coatings, microparticles, liposomes, microspheres, or a combination 15 thereof to provide the desired release profile in varying proportions. Suitable controlled-release formulations known to those of ordinary skill in the art, including those described herein, can be readily selected for use with the active ingredients of the invention. The invention thus encompasses single unit dosage forms suitable for oral administration such as, but not limited to, 20 tablets, capsules, gelcaps, and caplets that are adapted for controlled-release.

25 All controlled-release pharmaceutical products have a common goal of improving drug therapy over that achieved by their non-controlled counterparts. Ideally, the use of an optimally designed controlled-release preparation in medical treatment is characterized by a minimum of drug substance being employed to cure or control the condition in a minimum amount of time. Advantages of controlled-release formulations include 30 extended activity of the drug, reduced dosage frequency, and increased patient compliance. In addition, controlled-release formulations can be used to affect the time of onset of action or other characteristics, such as blood levels of the drug, and can thus affect the occurrence of side (e.g., adverse) effects.

Most controlled-release formulations are designed to initially release an amount of drug (active ingredient) that promptly produces the desired therapeutic effect, and gradually and continually release of other amounts of drug to maintain this level of therapeutic or prophylactic effect over an extended period of time. In order to maintain this constant level of drug in the body, the drug must be released from the dosage form at a rate that will replace the amount of drug being metabolized and excreted from the body. Controlled-release of an active ingredient can be stimulated by various conditions including, but not limited to, pH, temperature, enzymes, water, or other physiological conditions or compounds.

A particular extended release formulation of this invention comprises a therapeutically or prophylactically effective amount of a compound of formula (I) through (V), or Table 1, or a pharmaceutically acceptable salt, solvate, hydrate, clathrate, or prodrug thereof, in spheroids which further comprise microcrystalline cellulose and, optionally, hydroxypropylmethyl-cellulose coated with a mixture of ethyl cellulose and hydroxypropylmethylcellulose. Such extended release formulations can be prepared according to U.S. Patent No. 6,274,171, the entire teachings of which are incorporated herein by reference.

A specific controlled-release formulation of this invention comprises from about 6% to about 40% a compound of any one of formulas (I) through (V), or Table 1 by weight, about 50% to about 94% microcrystalline cellulose, NF, by weight, and optionally from about 0.25% to about 1% by weight of hydroxypropyl-methylcellulose, USP, wherein the spheroids are coated with a film coating composition comprised of ethyl cellulose and hydroxypropylmethylcellulose.

30

PARENTERAL DOSAGE FORMS

Parenteral dosage forms can be administered to patients by various routes including, but not limited to, subcutaneous, intravenous (including bolus

injection), intramuscular, and intraarterial. Because their administration typically bypasses patients' natural defenses against contaminants, parenteral dosage forms are preferably sterile or capable of being sterilized prior to administration to a patient. Examples of parenteral dosage forms include, but

5 are not limited to, solutions ready for injection, dry products ready to be dissolved or suspended in a pharmaceutically acceptable vehicle for injection, suspensions ready for injection, and emulsions.

Suitable vehicles that can be used to provide parenteral dosage forms of the

10 invention are well known to those skilled in the art. Examples include, but are not limited to: Water for Injection USP; aqueous vehicles such as, but not limited to, Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, and Lactated Ringer's Injection; water-miscible vehicles such as, but not limited to, ethyl alcohol, polyethylene 15 glycol, and polypropylene glycol; and non-aqueous vehicles such as, but not limited to, corn oil, cottonseed oil, peanut oil, sesame oil, ethyl oleate, isopropyl myristate, and benzyl benzoate.

Compounds that increase the solubility of one or more of the active

20 ingredients disclosed herein can also be incorporated into the parenteral dosage forms of the invention.

TRANSDERMAL, TOPICAL, AND MUCOSAL DOSAGE FORMS

Transdermal, topical, and mucosal dosage forms of the invention include, but

25 are not limited to, ophthalmic solutions, sprays, aerosols, creams, lotions, ointments, gels, solutions, emulsions, suspensions, or other forms known to one of skill in the art. See, e.g., Remington's Pharmaceutical Sciences (1980 & 1990) 16th and 18th eds., Mack Publishing, Easton PA and Introduction to Pharmaceutical Dosage Forms (1985) 4th ed., Lea & Febiger, Philadelphia.

30 Dosage forms suitable for treating mucosal tissues within the oral cavity can be formulated as mouthwashes or as oral gels. Further, transdermal dosage forms include "reservoir type" or "matrix type" patches, which can be applied

to the skin and worn for a specific period of time to permit the penetration of a desired amount of active ingredients.

Suitable excipients (e.g., carriers and diluents) and other materials that can be 5 used to provide transdermal, topical, and mucosal dosage forms encompassed by this invention are well known to those skilled in the pharmaceutical arts, and depend on the particular tissue to which a given pharmaceutical composition or dosage form will be applied. With that fact in mind, typical excipients include, but are not limited to, water, acetone, ethanol, 10 ethylene glycol, propylene glycol, butane-1,3-diol, isopropyl myristate, isopropyl palmitate, mineral oil, and mixtures thereof to form lotions, tinctures, creams, emulsions, gels or ointments, which are non-toxic and pharmaceutically acceptable. Moisturizers or humectants can also be added to pharmaceutical compositions and dosage forms if desired. Examples of 15 such additional ingredients are well known in the art. See, e.g., Remington's Pharmaceutical Sciences (1980 & 1990) 16th and 18th eds., Mack Publishing, Easton PA.

Depending on the specific tissue to be treated, additional components may be 20 used prior to, in conjunction with, or subsequent to treatment with active ingredients of the invention. For example, penetration enhancers can be used to assist in delivering the active ingredients to the tissue. Suitable penetration enhancers include, but are not limited to: acetone; various alcohols such as ethanol, oleyl, and tetrahydrofuryl; alkyl sulfoxides such as dimethyl sulfoxide; 25 dimethyl acetamide; dimethyl formamide; polyethylene glycol; pyrrolidones such as polyvinylpyrrolidone; Kollidon grades (Povidone, Polyvidone); urea; and various water-soluble or insoluble sugar esters such as Tween 80 (polysorbate 80) and Span 60 (sorbitan monostearate).

30 The pH of a pharmaceutical composition or dosage form, or of the tissue to which the pharmaceutical composition or dosage form is applied, may also be adjusted to improve delivery of one or more active ingredients. Similarly, the polarity of a solvent carrier, its ionic strength, or tonicity can be adjusted to

improve delivery. Compounds such as stearates can also be added to pharmaceutical compositions or dosage forms to advantageously alter the hydrophilicity or lipophilicity of one or more active ingredients so as to improve delivery. In this regard, stearates can serve as a lipid vehicle for the formulation, as an emulsifying agent or surfactant, and as a delivery-enhancing or penetration-enhancing agent. Different salts, hydrates or solvates of the active ingredients can be used to further adjust the properties of the resulting composition.

10 COMBINATION THERAPY

The methods for immunosuppression or for treating or preventing inflammatory conditions, allergic disorders, and immune disorders in a patient in need thereof can further comprise administering to the patient being administered a compound of this invention, an effective amount of one or more other active agents. Such active agents may include those used conventionally for immunosuppression or for inflammatory conditions, allergic disorders, or immune disorders. These other active agents may also be those that provide other benefits when administered in combination with the compounds of this invention. For example, other therapeutic agents may include, without limitation, steroids, non-steroidal anti-inflammatory agents, antihistamines, analgesics, immunosuppressive agents and suitable mixtures thereof. In such combination therapy treatment, both the compounds of this invention and the other drug agent(s) are administered to a subject (e.g., humans, male or female) by conventional methods. The agents may be administered in a single dosage form or in separate dosage forms. Effective amounts of the other therapeutic agents and dosage forms are well known to those skilled in the art. It is well within the skilled artisan's purview to determine the other therapeutic agent's optimal effective-amount range.

20 In one embodiment of the invention where another therapeutic agent is administered to a subject, the effective amount of the compound of this invention is less than its effective amount when the other therapeutic agent is not administered. In another embodiment, the effective amount of the

25

30

conventional agent is less than its effective amount when the compound of this invention is not administered. In this way, undesired side effects associated with high doses of either agent may be minimized. Other potential advantages (including without limitation improved dosing regimens and/or

5 reduced drug cost) will be apparent to those of skill in the art.

In one embodiment relating to autoimmune, allergic and inflammatory conditions, the other therapeutic agent may be a steroid or a non-steroidal anti-inflammatory agent. Particularly useful non-steroidal anti-inflammatory agents, include, but are not limited to, aspirin, ibuprofen, diclofenac,

10 naproxen, benoxaprofen, flurbiprofen, fenoprofen, flubufen, ketoprofen, indoprofen, piroprofen, carprofen, oxaprozin, pramoprofen, muoprofen, trioxaprofen, suprofen, aminoprofen, tiaprofenic acid, fluprofen, bucloxic acid, indomethacin, sulindac, tolmetin, zomepirac, tiopinac, zidometacin, acemetacin, fentiazac, clidanac, oxpina, mefenamic acid, meclofenamic acid,

15 flufenamic acid, niflumic acid, tolfenamic acid, diflunisal, flufenisal, piroxicam, sudoxicam, isoxicam; salicylic acid derivatives, including aspirin, sodium salicylate, choline magnesium trisalicylate, salsalate, diflunisal, salicylsalicylic acid, sulfasalazine, and olsalazin; para-aminophenol derivatives including acetaminophen and phenacetin; indole and indene acetic acids, including

20 indomethacin, sulindac, and etodolac; heteroaryl acetic acids, including tolmetin, diclofenac, and ketorolac; anthranilic acids (fenamates), including mefenamic acid, and meclofenamic acid; enolic acids, including oxicams (piroxicam, tenoxicam), and pyrazolidinediones (phenylbutazone, oxyphenthartazone); and alkanones, including nabumetone and

25 pharmaceutically acceptable salts thereof and mixtures thereof. For a more detailed description of the NSAIDs, see *Paul A. Insel, Analgesic-Antipyretic and Antiinflammatory Agents and Drugs Employed in the Treatment of Gout*, in *Goodman & Gilman's The Pharmacological Basis of Therapeutics* 617-57 (Perry B. Molinhoff and Raymond W. Ruddon eds., 9th ed 1996) and *Glen R.*

30 *Hanson, Analgesic, Antipyretic and Anti-Inflammatory Drugs in Remington: The Science and Practice of Pharmacy Vol II* 1196-1221 (A.R. Gennaro ed. 19th ed. 1995) which are hereby incorporated by reference in their entireties.

Of particular relevance to allergic disorders, the other therapeutic agent may be an antihistamine. Useful antihistamines include, but are not limited to, loratadine, cetirizine, fexofenadine, desloratadine, diphenhydramine, chlorpheniramine, chlorcyclizine, pyrilamine, promethazine, terfenadine, 5 doxepin, carboxamine, clemastine, tripeleamine, brompheniramine, hydroxyzine, cyclizine, meclizine, cyproheptadine, phenindamine, acrivastine, azelastine, levocabastine, and mixtures thereof. For a more detailed description of antihistamines, see Goodman & Gilman's The Pharmacological Basis of Therapeutics (2001) 651-57, 10th ed).

10

Immunosuppressive agents include glucocorticoids, corticosteroids (such as Prednisone or Solumedrol), T cell blockers (such as cyclosporin A and FK506), purine analogs (such as azathioprine (Imuran)), pyrimidine analogs (such as cytosine arabinoside), alkylating agents (such as nitrogen mustard, 15 phenylalanine mustard, busulfan, and cyclophosphamide), folic acid antagonists (such as aminopterin and methotrexate), antibiotics (such as rapamycin, actinomycin D, mitomycin C, puramycin, and chloramphenicol), human IgG, antilymphocyte globulin (ALG), and antibodies (such as anti-CD3 (OKT3), anti-CD4 (OKT4), anti-CD5, anti-CD7, anti-IL-2 receptor, anti- 20 alpha/beta TCR, anti-ICAM-1, anti-CD20 (Rituxan), anti-IL-12 and antibodies to immunotoxins).

The foregoing and other useful combination therapies will be understood and appreciated by those of skill in the art. Potential advantages of such 25 combination therapies include a different efficacy profile, the ability to use less of each of the individual active ingredients to minimize toxic side effects, synergistic improvements in efficacy, improved ease of administration or use and/or reduced overall expense of compound preparation or formulation.

30 OTHER EMBODIMENTS

The compounds of this invention may be used as research tools (for example, as a positive control for evaluating other potential CRAC inhibitors, or IL-2, IL-4, IL-5, IL-13, GM-CSF, TNF- α , and/or INF- γ inhibitors). These and other

uses and embodiments of the compounds and compositions of this invention will be apparent to those of ordinary skill in the art.

The invention is further defined by reference to the following examples

5 describing in detail the preparation of compounds of the invention. It will be apparent to those skilled in the art that many modifications, both to materials and methods, may be practiced without departing from the purpose and interest of this invention. The following examples are set forth to assist in understanding the invention and should not be construed as specifically 10 limiting the invention described and claimed herein. Such variations of the invention, including the substitution of all equivalents now known or later developed, which would be within the purview of those skilled in the art, and changes in formulation or minor changes in experimental design, are to be considered to fall within the scope of the invention incorporated herein.

15

EXAMPLES

EXPERIMENTAL RATIONALE

Without wishing to be bound by theory, it is believed that the compounds of

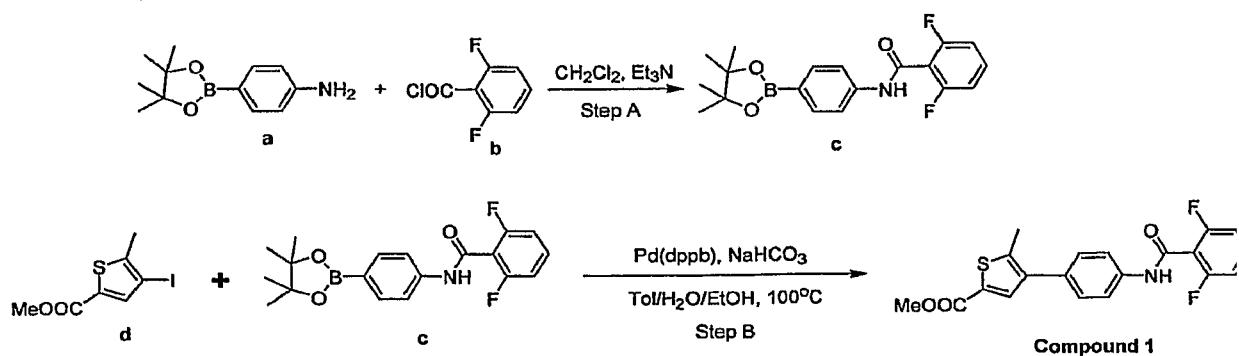
20 this invention inhibit CRAC ion channels, thereby inhibiting production of IL-2 and other key cytokines involved with inflammatory, allergic and immune responses. The examples that follow demonstrate these properties.

MATERIALS AND GENERAL METHODS

25 Reagents and solvents used below can be obtained from commercial sources such as Aldrich Chemical Co. (Milwaukee, Wisconsin, USA). ¹H-NMR and ¹³C-NMR spectra were recorded on a Varian 300MHz NMR spectrometer. Significant peaks are tabulated in the order: δ (ppm): chemical shift, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br s, broad 30 singlet), coupling constant(s) in Hertz (Hz) and number of protons.

Patch clamp experiments were performed in the tight-seal whole-cell configuration at 21-25°C. High resolution current recordings were acquired by

a computer-based patch clamp amplifier system (EPC-9, HEKA, Lambrecht, Germany). Patch pipettes had resistances between 2-4 MΩ after filling with the standard intracellular solution. Immediately following establishment of the whole-cell configuration, voltage ramps of 50-200 ms duration spanning the


5 voltage range of -100 to +100 mV were delivered at a rate of 0.5 Hz over a period of 300-400 seconds. All voltages were corrected for a liquid junction potential of 10 mV between external and internal solutions when using glutamate as the intracellular anion. Currents were filtered at 2.9 kHz and digitized at 10 µs intervals. Capacitive currents and series resistance were
10 determined and corrected before each voltage ramp using the automatic capacitance compensation of the EPC-9. The low resolution temporal development of membrane currents was assessed by extracting the current amplitude at -80 mV or +80 mV from individual ramp current records.

15 **EXAMPLE 1: SYNTHESIS OF REPRESENTATIVE EXEMPLARY COMPOUNDS OF THIS INVENTION**

In general, the compounds of the invention can be synthesized using methods analogous to those described in U.S. Patent Application Serial No.

20 10/897,681 and U.S. Provisional Patent Application Serial No. 60/611,913, the entire teachings of these patent applications are incorporated herein by reference.

25 Compound 1: 4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-5-methyl-thiophene-2-carboxylic acid methyl ester

Step A: To a stirred solution of 4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenylamine (**a**) (5.2 g, 24 mmol), TEA (5 mL) in dry DCM (50 mL) at 0°C was added 2,6-difluoro-benzoyl chloride (**b**) (3.0 mL, 24 mmol) dropwise. The mixture was allowed to warm to room temperature over 2 h before it was washed with water (2 x 100 mL) and dried. Removal of solvents gave 2,6-difluoro-N-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-benzamide (**c**) (8.4 g, 23 mmol) as white solid.

¹H-NMR (CDCl₃) δ (ppm) 7.8 (d, 2H, J = 8), 7.7 (br, 1H), 7.6 (m, 2H), 7.4 (m, 1H), 7.0 (t, 2H, J = 9), 1.35 (s, 12H); ESMS calcd for C₁₉H₂₀BF₂NO₃: 359.1; Found: 360.1 (M+H)⁺.

Step B: A mixture of 4-ido-5-methyl-thiophene-2-carboxylic acid methyl ester (**d**, 1 mmol), 2,6-Difluoro-N-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-benzamide (**c**, 1 mmol), palladium catalyst (0.1 mmol), sodium bicarbonate (1 mmol) in a mixture of toluene (5 mL), water (1 mL), ethanol (1 mL) was heated at 100 °C for 24 h. The mixture was taken up with EtOAc (100 mL), washed with water (2x100 mL) and dried (Na₂SO₄). The oil obtained on concentration was purified by flash chromatography to give

Compound 1 as a yellowish solid (50 mg).

¹H-NMR (CDCl₃) δ 7.8 (br, 1H), 7.7 (m, 3H), 7.4 (m, 3H), 7.0 (t, 2H, J = 8) 3.88 (s, 3H), 2.54 (s, 3H) ppm; ESMS calcd for C₂₀H₁₅F₂NO₃S: 387.1; found: 388.1 (M + H⁺).

The following compounds were prepared by methods analogous to those described for the preparation of Compound 1.

Compound 2: 5-Methyl-4-{4-[(3-methyl-pyridine-4-carbonyl)-amino]-phenyl}-thiophene-2-carboxylic acid methyl ester

¹H-NMR (CDCl₃) δ 8.6 (m, 2H), 8.2 (br, 1H), 7.7 (m, 3H), 7.4 (m, 3H), 3.82 (s, 3H), 2.52 (s, 3H), 2.46 (s, 3H) ppm; ESMS calcd for C₂₀H₁₈N₂O₃S: 366.1; found: 367.2 (M + H⁺).

Compound 3: 2,6-Difluoro-N-[4-(2-methyl-5-oxazol-5-yl-thiophen-3-yl)-phenyl]-benzamide

5 $^1\text{H-NMR}$ (CDCl_3) δ 7.9 (br, 1H), 7.85 (s, 1H), 7.7 (d, 2H, J = 8), 7.4 (m, 3H),
7.3 (m, 1H), 7.17 (s, 1H), 7.0 (t, 2H, J = 8), 2.53 (s, 3H) ppm; ESMS calcd for
 $\text{C}_{21}\text{H}_{14}\text{F}_2\text{N}_2\text{O}_2\text{S}$: 396.1; found: 397.3 ($\text{M} + \text{H}^+$).

10 Compound 4: Methyl 5-(4-(2,6-difluorobenzamido)phenyl)-4-methylthiophene-2-carboxylate

15 $^1\text{H NMR}$ (300 MHz, CDCl_3) δ 7.91 (s, 1 H), 7.74-7.70 (m, 2 H), 7.61 (s, 1 H),
7.49-7.40 (m, 3 H), 7.01-6.96 (m, 2 H), 3.87 (s, 3 H), 2.31 (s, 3 H); ESMS
cacl (C₂₀H₁₅F₂NO₃S): 387.1; found: 388.0 (M+H).

20 Compound 39: 2,6-difluoro-N-(4-(3-methyl-5-(oxazol-5-yl)thiophen-2-yl)phenyl)benzamide

25 $^1\text{H NMR}$ (300 MHz, CDCl_3) δ 7.86 (s, 1 H), 7.73-7.70 (m, 2 H), 7.50-7.43 (m, 3 H), 7.25-6.82 (m, 5 H), 2.33 (s, 3 H); ESMS cacl (C₂₁H₁₄F₂N₂O₂S): 396.1; found: 397.0 (M+H).

30 Compound 93: 3-methyl-N-(4-(3-methyl-5-(oxazol-5-yl)thiophen-2-yl)phenyl)isonicotinamide

35 $^1\text{H NMR}$ (300 MHz, CDCl_3) δ 8.58-8.56 (m, 2 H), 7.85 (s, 1 H), 7.69 (t, J = 7.7 Hz, 3 H), 7.52-7.49 (m, 2 H), 7.37 (d, J = 5.1 Hz, 1 H), 7.20-7.16 (m, 2 H), 2.51 (s, 3 H), 2.34 (s, 3 H); ESMS cacl (C₂₁H₁₇N₃O₂S): 375.1; found: 376.2 (M+H).

40 Compound 92: 4-methyl-N-(4-(3-methyl-5-(oxazol-5-yl)thiophen-2-yl)phenyl)-1,2,3-thiadiazole-5-carboxamide

45 $^1\text{H NMR}$ (300 MHz, CDCl_3) δ 7.85 (s, 1 H), 7.82 (s, 1 H), 7.66-7.44 (m, 2 H),
7.51-7.49 (m, 2 H), 7.20-7.16 (m, 2 H), 2.98 (s, 3 H), 2.33 (s, 3 H); ESMS

cacl_d (C₁₈H₁₄N₄O₂S₂): 382.1; found: 383.0 (M+H).

Compound 9: 2,6-Difluoro-N-[4-(4-methyl-2-morpholin-4-yl-thiazol-5-yl)-phenyl]-benzamide

5

¹H NMR (300 MHz, CDCl₃) δ 7.35-7.26 (m, 4H), 6.85-6.80 (m, 3H), 3.84-3.76 (m, 4H), 3.48-3.40 (m, 4H), 2.26 (s, 3H).

MS (ESI) [M+H⁺]: 416

10 Compound 10: 3-Methyl-N-[4-(4-methyl-2-morpholin-4-yl-thiazol-5-yl)-phenyl]-isonicotinamide

¹H NMR (300 MHz, CDCl₃) δ 8.48 (s, 1H), 8.44 (d, J = 5 Hz, 1H), 7.35 (d, J = 8 Hz, 2H), 7.24 (d, J = 5 Hz, 1H), 7.16 (d, J = 8 Hz, 2H), 3.84-3.74 (m, 4H),

15 3.48-3.38 (m, 4H), 2.44 (s, 3H), 2.28 (s, 3H).

MS (ESI) [M+H⁺]: 395

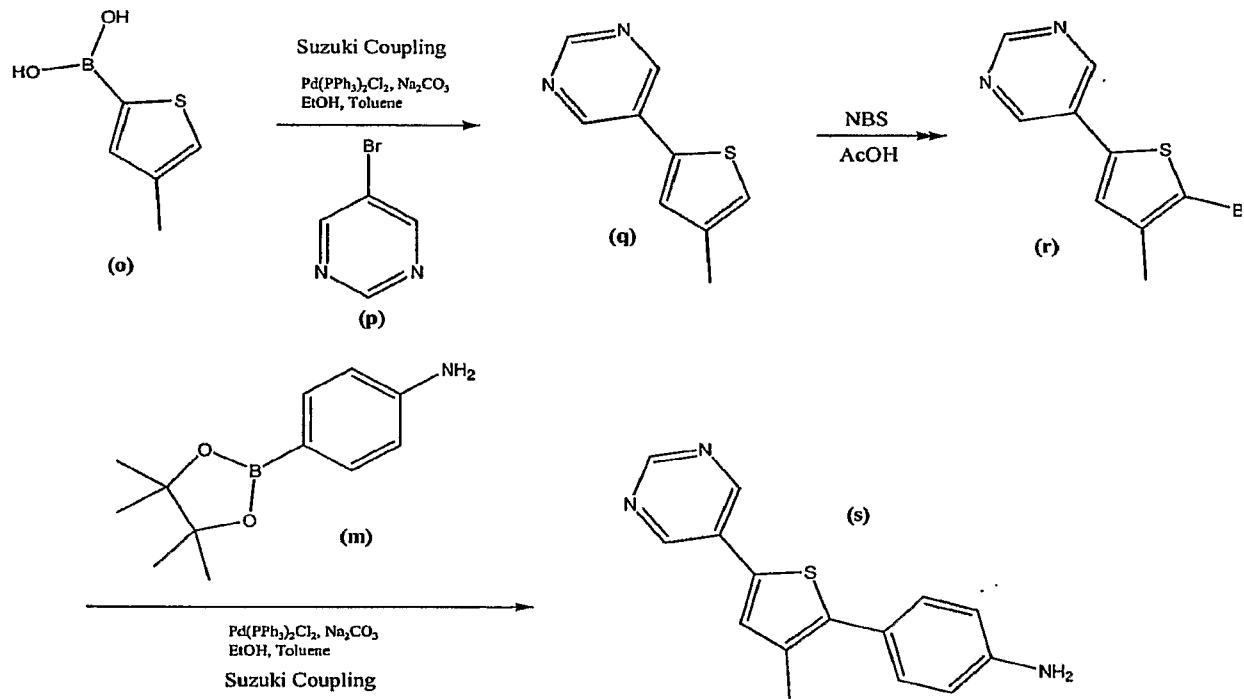
Compound 94: 3-Methyl-N-[4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide

20

¹H NMR (300 MHz, CD₃OD) δ 8.54-8.50 (m, 2 H), 8.40-8.39 (m, 1 H), 7.81 (d, J = 8.4 Hz, 2 H), 7.55-7.46 (m, 4 H), 6.61 (d, J = 1.5 Hz, 1 H), 2.47 (s, 3 H), 2.36 (s, 3 H); ESMS cacl_d (C₂₁H₁₇N₃O₂S): 375.1; found: 376.3 (M+H).

25 Compound 95: 3-Methyl-N-[4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide, hydrochloride

¹H NMR (300 MHz, CD₃OD) δ 8.93 (s, 1 H), 8.88 (d, J = 5.7 Hz, 1 H), 8.40 (d, J = 1.8 Hz, 1 H), 8.19 (d, J = 6.0 Hz, 1 H), 7.84 (d, J = 8.7 Hz, 2 H), 7.59-7.55


30 (m, 2 H), 7.47 (s, 1 H), 6.62 (d, J = 1.8 Hz, 1 H), 2.65 (s, 3 H), 2.37 (s, 3 H); ESMS cacl_d (C₂₁H₁₇N₃O₂S): 375.1; found: 376.3 (M+H).

Compound 96: 3-Methyl-N-[4-(3-methyl-5-pyridin-3-yl-thiophen-2-yl)-phenyl]-

isonicotinamide

¹H NMR (300 MHz, CD₃OD) δ 8.82 (s, 1 H), 8.54-8.50 (m, 2 H), 8.43-8.42 (m, 1 H), 8.10-8.06 (m, 1 H), 7.81-7.78 (m, 2 H), 7.56-7.41 (m, 5 H), 2.47 (s, 3 H), 5 2.37 (s, 3 H); ESMS cacl'd (C₂₃H₁₉N₃OS): 385.1; found: 386.1 (M+H).

Compound 97: 3-Methyl-N-[4-(3-methyl-5-pyrimidin-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide

10

The pyrimidine substituent on the thiophene ring of Compound 97 was attached using a Suzuki coupling reaction (as described in Step B of the synthesis of compound 1) by reacting a boric acid derivative of thiophene (o) with 5-bromo-pyridine (p) in the presence of a palladium catalyst to form 2-(pyrimidin-5-yl)-4-methyl-thiophene (q). In general, aromatic substituents such as pyridine, can be added to thiophene, oxazole, thiazole and oxazole ring systems by using a Suzuki coupling reaction. A bromo substituent was added to (q) by reacting it with N-bromo-succinimide in acetic acid to form 2-(pyrimidin-5-yl)-4-methyl-5-bromo-thiophene (r). Compound (r) is then 15 coupled to an amino pyridine using a Suzuki coupling reaction (as described in the synthesis of compound 1) to form Compound 97.

20

Step B of the synthesis of compound 1) to form Compound (s). Compound (s) is then reacted with 2-methyl-isonicotinoyl chloride in a reaction analogous to the reaction described in step A of the synthesis of Compound 1 to form Compound 97.

5 ^1H NMR (300 MHz, CDCl_3) δ 9.10 (s, 1 H), 8.93 (s, 2 H), 8.57-8.54 (m, 2 H), 7.80 (s, 1 H), 7.73 (d, J = 8.7 Hz, 2 H), 7.53 (d, J = 8.7 Hz, 2 H), 7.36 (d, J = 5.1 Hz, 1 H), 7.27 (s, 1 H), 2.51 (s, 3 H), 2.38 (s, 3 H); ESMS cacl (C₂₂H₁₈N₄OS): 386.1; found: 387.2 (M+H).

10 Compound 98: 4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-pyrimidin-5-yl-thiophen-2-yl)-phenyl]-amide

^1H NMR (300 MHz, CDCl_3) δ 9.14 (s, 1 H), 8.98 (s, 2 H), 7.69-7.66 (m, 2 H), 7.54 (d, J = 8.7 Hz, 2 H), 7.29-7.26 (m, 2 H), 3.00 (s, 3 H), 2.38 (s, 3 H); ESMS cacl (C₁₉H₁₅N₅OS₂): 393.1; found: 384.1 (M+H).

15

Compound 99: 4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-pyridin-4-yl-thiophen-2-yl)-phenyl]-amide, hydrochloride

^1H NMR (300 MHz, CD_3OD) δ 8.68 (d, J = 6.9 Hz, 2 H), 8.23 (d, J = 6.9 Hz, 2 H), 8.02 (s, 1 H), 7.85 (d, J = 8.7 Hz, 2 H), 7.62 (d, J = 8.7 Hz, 2 H), 2.89 (s, 3 H), 2.43 (s, 3 H); ESMS cacl (C₂₀H₁₆N₄OS₂): 392.1; found: 393.1 (M+H).

20

Compound 100: 4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-pyridin-2-yl-thiophen-2-yl)-phenyl]-amide, hydrochloride

^1H NMR (300 MHz, CD_3OD) δ 8.61-8.58 (m, 1 H), 8.31-8.26 (m, 1 H), 8.14 (d, J = 8.1 Hz, 1 H), 7.85-7.79 (m, 3 H), 7.66-7.58 (m, 3 H), 2.89 (s, 3 H), 2.61 (s, 3 H); ESMS cacl (C₂₀H₁₆N₄OS₂): 392.1; found: 393.1 (M+H).

Compound 101: 3-Methyl-N-[4-(3-methyl-5-pyrimidin-4-yl-thiophen-2-yl)-phenyl]-isonicotinamide

30 ^1H NMR (300 MHz, CD_3OD) δ 8.54-8.46 (m, 4 H), 7.80 (d, J = 8.7 Hz, 2 H), 7.65-7.49 (m, 6 H), 2.47 (s, 3 H), 2.36 (s, 3 H); ESMS cacl (C₂₃H₁₉N₃OS): 385.1; found: 386.1 (M+H).

Compound 102: [1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide

¹H NMR (300 MHz, (CD₃)₂SO) δ 11.03 (s, 1 H), 9.53 (d, J = 1.2 Hz, 1 H), 8.64-8.63 (m, 1 H), 7.84 (d, J = 7.8 Hz, 2 H), 7.60-7.57 (m, 3 H), 6.85-6.84 (m,

5 1 H), 2.33 (s, 3 H); ESMS cacl (C₁₇H₁₂N₄O₂S₂): 368.0; found: 369.0 (M+H).

Compound 103: 1-Methyl-1H-pyrrol-2-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide

¹H NMR (300 MHz, CDCl₃) δ 8.25-8.24 (m, 1 H), 7.66-7.63 (m, 3 H), 7.48-7.45

10 (m, 2 H), 7.35 (s, 1 H), 6.81 (brs, 1 H), 6.74-6.72 (m, 1 H), 6.35 (d, J = 1.8 Hz, 1 H), 6.17-6.15 (m, 1 H), 4.00 (s, 3 H), 2.34 (s, 3 H); ESMS cacl (C₂₀H₁₇N₃O₂S): 363.1; found: 364.1 (M+H).

Compound 104: 1-Methyl-1H-pyrazol-5-carboxylic acid [4-(3-methyl-5-

15 isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide

¹H NMR (300 MHz, CDCl₃) δ 8.78 (s, 1 H), 8.25-8.24 (m, 1 H), 7.79-7.76 (m, 2 H), 7.50-7.26 (m, 4 H), 6.90 (d, J = 2.4 Hz, 1 H), 6.35 (d, J = 2.1 Hz, 1 H), 3.99 (s, 3 H), 2.36 (s, 3 H); ESMS cacl (C₁₉H₁₆N₄O₂S): 364.1; found: 365.1 (M+H).

20

Compound 105: Isothiazol-4-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide

¹H NMR (300 MHz, CD₃OD) δ 9.60 (s, 1 H), 9.00 (s, 1 H), 8.40 (d, J = 2.1 Hz, 1 H), 7.84 (d, J = 9.0 Hz, 2 H), 7.55-7.52 (m, 2 H), 7.47 (s, 1 H), 6.61 (d, J =

25 1.8 Hz, 1 H), 2.37 (s, 3 H); ESMS cacl (C₁₈H₁₃N₃O₂S₂): 367.0; found: 368.0 (M+H).

Compound 106: [1,2,3]thiadiazol-4-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide

30 ¹H NMR (300 MHz, (CD₃)₂SO) δ 9.83 (s, 1 H), 8.61 (s, 1 H), 8.02-7.99 (m, 2 H), 7.57-7.54 (m, 3 H), 6.82 (s, 1 H), 2.33 (s, 3 H); ESMS cacl

(C₁₇H₁₂N₄O₂S₂): 368.0; found: 369.1 (M+H).

Compound 107: 5-Methyl-pyrimidine-4-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide

¹H NMR (300 MHz, CDCl₃) δ 10.20 (s, 1 H), 9.14 (s, 1 H), 8.79 (s, 1 H), 8.25-8.24 (m, 1 H), 7.84-7.80 (m, 2 H), 7.52-7.49 (m, 2 H), 7.35 (s, 1 H), 6.35 (d, J = 1.8 Hz, 1 H); 2.80 (s, 3 H), 2.36 (s, 3 H); ESMS cacld (C₂₀H₁₆N₄O₂S): 376.1; found: 377.1 (M+H).

Compound 108: 4-Methyl-pyrimidine-5-carboxylic acid [4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-amide

10 ¹H NMR (300 MHz, CDCl₃) δ 9.13 (s, 1 H), 8.79 (s, 1 H), 8.34 (s, 1 H), 7.83 (s, 1 H), 7.70 (d, J = 8.1 Hz, 2 H), 7.49 (d, J = 8.1 Hz, 2 H), 7.61-7.51 (m, 2 H), 2.73 (s, 3 H), 2.33 (s, 3 H); ESMS cacld (C₂₀H₁₆N₄O₂S): 376.1; found: 377.1 (M+H).

15 Compound 109: 3-Methyl-N-[4-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-phenyl]-isonicotinamide

¹H NMR (300 MHz, CDCl₃) δ 8.50-8.45 (m, 2 H), 8.34 (s, 1 H), 7.74-7.71 (m, 2 H), 7.63 (s, 1 H), 7.52-7.48 (m, 2 H), 7.32 (d, J = 5.1 Hz, 1 H), 7.26 (d, J = 0.9 Hz, 1 H), 7.16-7.15 (m, 1 H), 2.47 (s, 3 H), 2.34 (s, 3 H); ESMS cacld (C₂₁H₁₇N₃O₂S): 375.1; found: 376.2 (M+H).

20 ¹H NMR (300 MHz, CDCl₃) δ 8.86 (s, 1 H), 8.83 (s, 1 H), 7.85 (s, 1 H), 7.71-7.68 (m, 2 H), 7.51-7.48 (m, 2 H), 7.20 (s, 1 H), 7.16 (s, 1 H), 2.33 (s, 3 H); ESMS cacld (C₁₈H₁₂CIN₃O₂S₂): 401.0; found: 402.0 (M+H).

25 Compound 111: 3-Methyl-N-[4-(3-methyl-5-thiazol-2-yl-thiophen-2-yl)-phenyl]-isonicotinamide

¹H NMR (300 MHz, CDCl₃) δ 8.51-8.40 (m, 3 H), 7.76-7.72 (m 2 H), 7.62-7.32 (m, 5 H), 7.25 (t, J = 3.3 Hz, 1 H), 2.47 (s, 3 H), 2.35 (s, 3 H); ESMS cacld (C₂₁H₁₇N₃OS₂): 391.1; found: 392.2 (M+H).

30

Compound 112: 3-Methyl-N-[4-(3-chloro-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide

¹H NMR (300 MHz, CDCl₃) δ 9.40 (s, 1 H), 8.39 (s, 1 H), 8.31 (d, J = 4.8 Hz, 1

H), 7.84 (s, 1 H), 7.76 (d, J = 9.0 Hz, 2 H), 7.65 (d, J = 8.4 Hz, 2 H), 7.48-7.41 (m, 1 H), 7.28-7.19 (m, 2 H), 2.41 (s, 3 H); ESMS cacl'd (C₂₀H₁₄CIN₃O₂S): 395.1; found: 396.2 (M+H).

5 **Compound 113:** 3-Methyl-N-[4-(3-chloro-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide
¹H NMR (300 MHz, CD₃OD) δ 8.55 (s, 1 H), 8.52 (d, J = 4.5 Hz, 1 H), 8.45 (d, J = 2.4 Hz, 1 H), 7.86-7.83 (m, 2 H), 7.76-7.73 (m, 2 H), 7.59 (s, 1 H), 7.51 (d, J = 4.5 Hz, 1 H), 6.74 (d, J = 1.8 Hz, 1 H), 2.47 (s, 3 H); ESMS cacl'd (C₂₀H₁₄CIN₃O₂S): 395.1; found: 396.2 (M+H).

Compound 114: 3-Fluoro-N-[4-(3-chloro-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide

15 ¹H NMR (300 MHz, CD₃OD) δ 8.66-8.65 (m, 1 H), 8.57-8.55 (m, 1 H), 8.45 (d, J = 2.4 Hz, 1 H), 7.87-7.72 (m, 5 H), 7.60 (s, 1 H), 6.75 (d, J = 2.1 Hz, 1 H); ESMS cacl'd (C₁₉H₁₁ClFN₃O₂S): 399.0; found: 400.2 (M+H).

Compound 115: 5-Methyl-pyrimidine-4-carboxylic acid [4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-amide

20 ¹H NMR (300 MHz, CDCl₃) δ 10.18 (s, 1 H), 9.14 (s, 1 H), 8.78 (s, 1 H), 7.85 (s, 1 H), 7.81 (d, J = 8.4 Hz, 2 H), 7.50 (d, J = 8.4 Hz, 2 H), 7.19 (s, 1 H), 7.15 (s, 1 H), 2.80 (s, 3 H), 2.34 (s, 3 H); ESMS cacl'd (C₂₀H₁₆N₄O₂S): 376.1; found: 377.1 (M+H).

25 **Compound 116:** 1-Methyl-1H-pyrrol-2-carboxylic acid [4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-amide

¹H NMR (300 MHz, CDCl₃) δ 7.85 (s, 1 H), 7.66-7.61 (m, 3 H), 7.47-7.44 (m, 2 H), 7.19 (s, 1 H), 7.15 (s, 1 H), 6.81-6.79 (m, 1 H), 6.74-6.71 (m, 1 H), 6.17-6.15 (m, 1 H), 3.99 (s, 3 H), 2.33 (s, 3 H); ESMS cacl'd (C₂₀H₁₇N₃O₂S): 363.1; found: 364.1 (M+H).

Compound 117: 3-Methyl-1H-pyrrol-2-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide

¹H NMR (300 MHz, CDCl₃) δ 8.24 (d, J = 2.1 Hz, 1 H), 7.69-7.65 (m, 2 H), 7.55 (s, 1 H), 7.49-7.46 (m, 2 H), 7.35 (s, 1 H), 6.89 (t, J = 2.7 Hz, 1 H), 6.35 (d, J = 2.1 Hz, 1 H), 6.15-6.13 (m, 1 H), 2.52 (s, 3 H), 2.35 (s, 3 H); ESMS cacld (C₂₀H₁₇N₃O₂S): 363.1; found: 364.1 (M+H).

5

Compound 118: 4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-pyridin-4-yl-thiophen-2-yl)-phenyl]-amide

¹H NMR (300 MHz, CDCl₃) δ 8.63-8.60 (m, 2 H), 8.01 (s, 1 H), 7.71-7.63 (m, 4 H), 7.55-7.48 (m, 3 H), 2.98 (s, 3 H), 2.39 (s, 3 H); ESMS cacld

10 (C₂₀H₁₆N₄OS₂): 392.1; found: 393.1 (M+H).

Compound 119: 4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-pyridin-2-yl-thiophen-2-yl)-phenyl]-amide

¹H NMR (300 MHz, CD₃OD) δ 8.47-8.44 (m, 1 H); 7.80-7.75 (m, 4 H), 7.55-

15 7.52 (m, 3 H), 7.26-7.21 (m, 1 H), 2.89 (s, 3 H), 2.35 (s, 3 H); ESMS cacld (C₂₀H₁₆N₄OS₂): 392.1; found: 393.1 (M+H).

Compound 120: 2,6-Difluoro-N-[4-(4-methyl-thiazole-5-yl)-phenyl]-benzamide

¹H-NMR (CDCl₃) δ (ppm) 8.66 (s, 1H), 8.1 (br, 1H), 7.7 (d, 2H, J=8), 7.4 (m,

20 3H), 7.0 (t, 2H, J=8), 2.52 (s, 3H); ESMS clcd for C₁₇H₁₂F₂N₂OS: 330.1; Found: 331.0 (M+H)⁺.

Compound 121: 2,6-Difluoro-N-[4-(4-methyl-2-methoxycarbonyl-thiazol-5-yl)-phenyl]-benzamide

25 ¹H-NMR (CDCl₃) δ (ppm) 7.9 (br, 1H), 7.8 (d, 2H, J=8), 7.5 (m, 3H), 7.0 (t, 2H, J=8), 4.03 (s, 3H), 2.59 (s, 3H); ESMS clcd for C₁₉H₁₄F₂N₂O₃S: 388.1; Found: 389.0 (M+H)⁺.

Compound 122: 2,6-Difluoro-N-[4-(2-methyl-5-oxazol-2-yl-thiophen-3-yl)-

30 phenyl]-benzamide

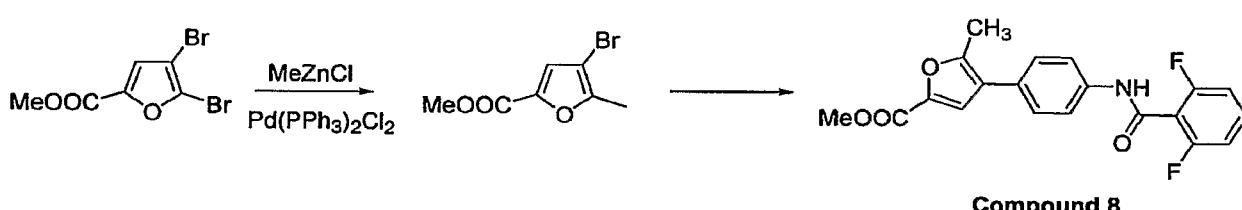
¹H-NMR (CDCl₃) δ (ppm) 8.0 (br, 1H), 7.7 (d, 2H, J=8), 7.6 (d, 1H, J=9), 7.4

(m, 3H), 7.16 (s, 1H), 7.0 (t, 2H, J=8), 6.8 (d, 1H, J=9), 2.53 (s, 3H); ESMS clcd for C₂₁H₁₄F₂N₂O₂S: 396.1; Found: 397.0 (M+H)⁺.

Compound 123: 2,6-Difluoro-N-[4-(5-methyl-2-ethoxycarbonyl-thiazol-4-yl)-phenyl]-benzamide

¹H-NMR (CDCl₃) δ (ppm) 7.7 (m, 5H), 7.4 (m, 1H), 7.0 (t, 2H, J=8), 4.5 (q, 2H,

5 J=7), 2.65 (s, 3H), 1.4 (t, 3H, J=7); ESMS calcd for C₂₀H₁₆F₂N₂O₃S: 402.1; Found: 403.0 (M+H)⁺.

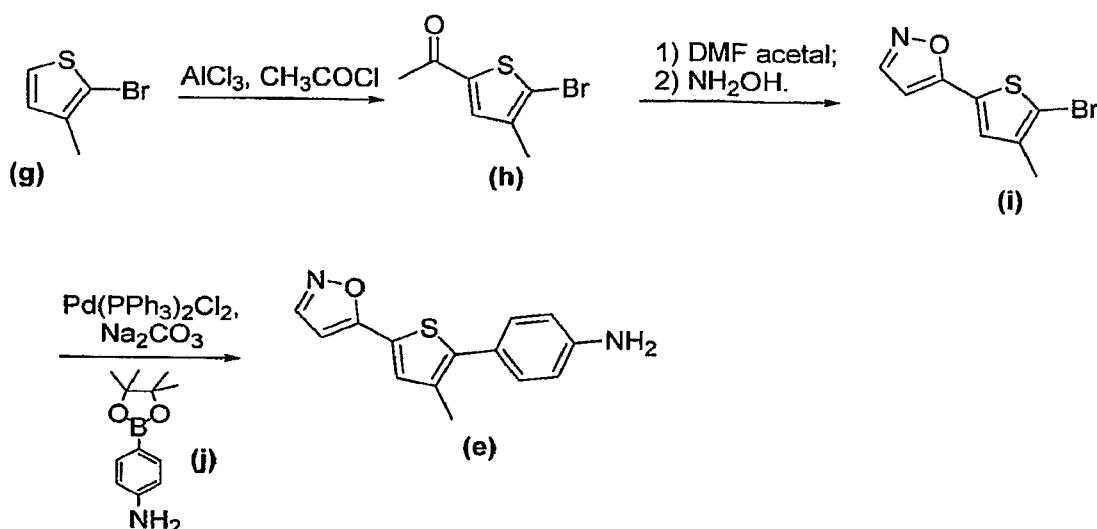

Compound 124: 3-Methyl-N-[4-(2-methyl-5-oxazol-2-yl-thiophen-3-yl)-phenyl]-isonicotinamide

10 ¹H-NMR (CDCl₃) δ (ppm) 8.6 (m, 2H), 7.7 (m, 3H), 7.6 (d, 2H, J=8), 7.4 (m,

3H), 7.17 (s, 1H), 2.55 (s, 3H), 2.51 (s, 3H); ESMS calcd for C₂₁H₁₇N₃O₂S: 375.1; Found: 376.1 (M+H)⁺.

Compound 8: Methyl 4-(4-(2,6-difluorobenzamido)phenyl)-5-methylfuran-2-

15 **carboxylate**

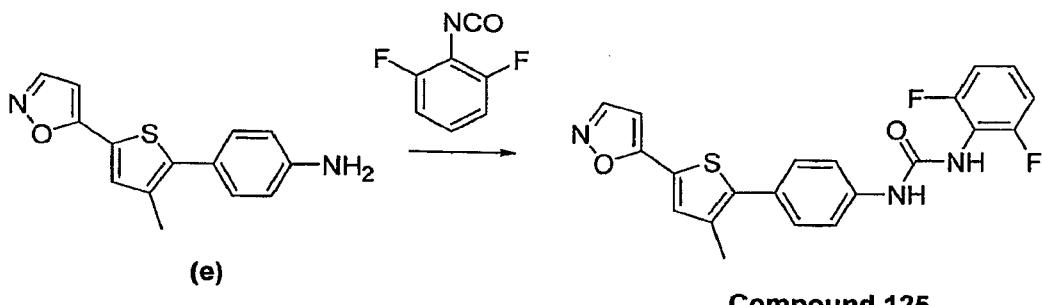

20 To a solution of 2,3-dibromo-furan-5-carboxylic acid methyl ester (200 mg, 0.70 mmol) in THF (4 mL) was added Pd(PPh₃)₂Cl₂ (50 mg) and MeZnCl (2 M in THF, 420 μL, 0.84 mmol) at room temperature. The reaction was stirred at this temperature for 12 hr before the solvent was removed. Column chromatography afforded 4-Bromo-5-methyl-furan-2-carboxylic acid methyl ester (130 mg, 84%). Suzuki coupling of 4-Bromo-5-methyl-furan-2-carboxylic acid methyl ester with the corresponding boronic acid (See the synthesis of Compound 1, Step B) provided Compound 8.

25 ¹H NMR (300 MHz, CDCl₃) δ 7.78-7.31 (m, 7 H), 7.03-6.96 (m, 2 H), 3.91 (s, 3 H), 2.52 (s, 3 H); ESMS calcd (C₂₀H₁₅F₂NO₄): 371.1; found: 372.2 (M+H).

30

Compound 125: 1-(2,6-difluoro-phenyl)-3-[4-(5-isoxazol-5-yl-3-methyl-

thiophen-2-yl)-phenyl]-urea



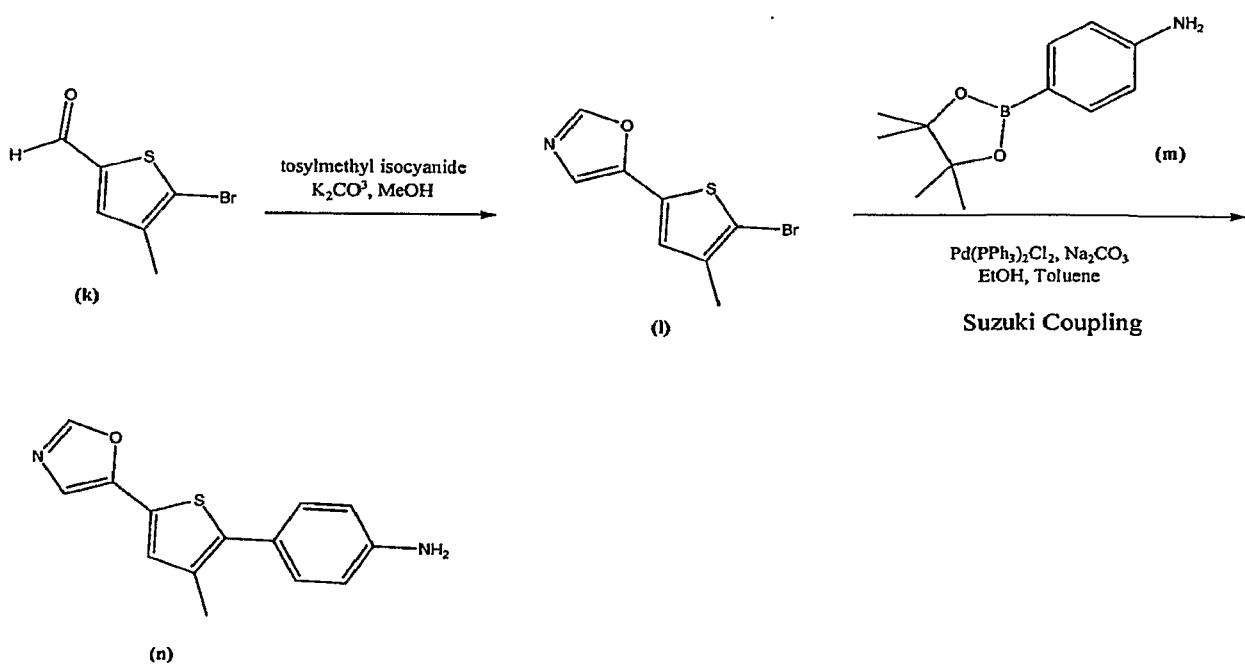
5 To 70 mL dichloromethane was added AlCl_3 (2.26 g, 16.9 mmol). Acetyl chloride (1.3 mL, 18.2 mmol) was then added drop wise to the above mixture at 0 °C. After stirring at this temperature for 30 min, 2-bromo-3-methylthiophene (g) (1 g, 5.65 mmol) was added drop wise through a syringe. After stirring at 0 °C for 1 hr, the reaction was quenched with H_2O (20 mL).

10 The organic layer was washed with NH_4Cl , dried, and concentrated. Purification by silica gel column chromatography afforded compound (h) in 75% yield.

15 A solution of (h) (1.33 g, 5.11 mmol) in DMF dimethyl acetal (10 mL) was refluxed at 90 °C for 4 hr. The solvent was removed and the residue and hydroxylamine hydrochloride (710 mg, 10.22 mmol) was dissolved in ethanol (10 mL). The solution was refluxed at 90 °C for 2 hr. After removal of the volatile components the crude material was purified by silica gel column chromatography to provide compound (i) in 62% overall yield. Compound (e)

20 was then obtained from (i) and (j) using the standard Suzuki coupling procedure described above.

To a solution of (e) (40 mg, 0.16 mmol) in dichloromethane (DCM) (2 mL) was added 2,6-difluorophenyl isocyanate (27 mg, 0.18 mmol). The reaction was stirred at room temperature overnight before it was filtered. The white solid


5 was washed with DCM and methanol to afforded pure **Compound 125** (35 mg, 53%).

¹H NMR (300 MHz, (CD₃)₂SO) δ 9.16 (s, 1 H), 8.62 (s, 1 H), 8.18 (s, 1 H), 7.58-7.43 (m, 3 H), 7.46-7.28 (m, 3 H), 7.15 (t, *J* = 8.4 Hz, 2 H), 6.82 (s, 1 H), 2.30 (s, 3 H); ESMS calcd (C₂₁H₁₅F₂N₃O₂S): 411.1; found: 412.1 (M+H).

10

Compounds 126 and 127 were prepared using a method analogous to that used to prepare Compound 125.

Compound 126: 1-(2,6-difluoro-phenyl)-3-[4-(5-oxazol-5-yl-3-methyl-thiophen-2-yl)-phenyl]-urea

The mixed solution of 5-bromo-4-methyl-thiophene-2-carbaldehyde (**k**) (0.93 mmol) in methanol (4 mL) was added tosylmethyl isocyanide (1.02 mmol) and 5 K_2CO_3 (1.88 mmol). The reaction was stirred at room temperature for 5 min before heated to 80 °C in the sealed tube. After 30 min, the solution was cooled to room temperature and concentrated. Column chromatography afforded 5-bromo-4-methyl-5-(oxazol-5-yl)-thiophene (**l**) (190 mg, 80%). Compound (**n**) was prepared using a Suzuki Coupling reaction 10 analogous to step B of the preparation of Compound 1. Compound 126 was prepared by reacting (**n**) with 2,6-difluorophenyl isocyanate by an analogous procedure as that described for Compound 125.

¹H NMR (300 MHz, $(CD_3)_2SO$) δ 9.14 (s, 1 H), 8.39 (s, 1 H), 8.17 (s, 1 H), 7.56-7.27 (m, 7 H), 7.15 (d, J = 8.4 Hz, 2 H), 2.28 (s, 3 H); ESMS cacl $(C_{21}H_{15}F_2N_3O_2S)$: 411.1; found: 412.1 (M+H). 15

Compound 127: 1-(3-fluoro-pyridin-4-yl)-3-[4-(5-oxazol-5-yl-3-methyl-thiophen-2-yl)-phenyl]-urea

Compound 127 was prepared by reacting compound (**n**) with 2-fluoro-4-20 isocyanato-pyridine by an analogous reaction as that described for Compound 125.

¹H NMR (300 MHz, $CDCl_3$) δ 9.11 (s, 1 H), 8.71 (s, 1 H), 8.64 (s, 1 H), 7.88-7.82 (m, 3 H), 7.68 (s, 1 H), 7.32-7.13 (m, 6 H), 2.31 (s, 3 H), 2.20 (s, 3 H); ESMS cacl $(C_{22}H_{19}N_5O_2)$: 385.2; found: 386.3 (M+H). 25

Compound 128: (3-Fluoro-pyridin-4-ylmethyl)-[4-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-phenyl]-amine

Compound 128 were prepared by reacting Compoud (**e**) with commercially available 3-fluoro-pyridine-4-carbaldehyde to form the shift base which was 30 reduced to the methylamine linker using sodium borohydride as described in Scheme IVa above.

¹H NMR (300 MHz, $CDCl_3$) δ 8.44 (d, J = 1.5 Hz, 1 H), 8.36 (d, J = 4.8 Hz, 1 H), 8.22-8.21 (m, 1 H), 7.38-7.25 (m, 4 H), 6.65-6.61 (m, 2 H), 6.31-6.30 (m, 1

H), 4.51-4.45 (m, 3 H), 2.29 (s, 3 H); ESMS cacl'd (C₂₀H₁₆FN₃OS): 365.1; found: 366.2 (M+H).

5 **Compound 129:** (3-Fluoro-pyridin-4-ylmethyl)-[4-(5-oxazol-5-yl-3-methyl-thiophen-2-yl)-phenyl]-amine

Compound 129 was prepared by a method analogous to the method used to prepare Compound 128.

10 ¹H NMR (300 MHz, CDCl₃) δ 8.45 (d, J = 1.8 Hz, 1 H), 8.36 (d, J = 4.8 Hz, 1 H), 7.82 (s, 1 H), 7.38-7.25 (m, 4 H), 7.13 (d, J = 12.6 Hz, 1 H), 6.65-6.61 (m, 2 H), 4.52-4.40 (m, 3 H), 2.28 (s, 3 H); ESMS cacl'd (C₂₀H₁₆FN₃OS): 365.1; found: 366.3 (M+H).

EXAMPLE 2: INHIBITION OF IL-2 PRODUCTION

15 Jurkat cells were placed in a 96 well plate (0.5 million cells per well in 1% FBS

medium) then a test compound of this invention was added at different concentrations. After 10 minutes, the cells were activated with PHA (final concentration 2.5 µg/mL) and incubated for 20 hours at 37°C under CO₂. The final volume was 200 µL. Following incubation, the cells were centrifuged and the supernatants collected and stored at -70°C prior to assaying for IL-2

20 production. A commercial ELISA kit (IL-2 Eli-pair, Diacalone Research, Besancon, France) was used to detect production of IL-2, from which dose response curves were obtained. The IC₅₀ value was calculated as the concentration at which 50% of maximum IL-2 production after stimulation was inhibited versus a non-stimulation control.

25

Compound #	IC ₅₀
1	1 nM
2	3 nM
3	3 nM
4	1 nM
8	7 nM
9	106 nM
10	237 nM

39	1 nM
91	>1000 nM
92	4 nM
93	3 nM
94	5.2 nM
95	4.4 nM
96	2.1 nM
97	7.2 nM
98	9.3 nM
99	5.2 nM
100	10.5 nM
101	4.0 nM
102	22 nM
103	3.0 nM
104	>1000 nM
105	7.6 nM
106	83.8 nM
107	2.8 nM
108	3.4 nM
109	2.7 nM
110	7.5 nM
111	8.7 nM
112	6.7 nM
113	10.0 nM
114	11.0 nM
115	9.6 nM
116	4.8 nM
117	48.8 nM
118	6.1 nM
119	4.8 nM
120	>1000 nM
121	133.2 nM

122	1.9 nM
123	122.8 nM
124	8.6 nM
125	2.5 nM
126	2.4 nM
127	41 nM
128	19 nM
129	74.4 nM

Inhibition of other cytokines, such as IL-4, IL-5, IL-13, GM-CSF, TNF- α , and INF- γ , can be tested in a similar manner using a commercially available ELISA kit for each cytokine.

5

EXAMPLE 3: PATCH CLAMP STUDIES OF INHIBITION OF I_{CRAC} CURRENT IN RBL CELLS, JURKAT CELLS, AND PRIMARY T CELLS

In general, a whole cell patch clamp method was used to examine the effects of a compound of the invention on a channel that mediates I_{crac} . In such

10 experiments, a baseline measurement was established for a patched cell.

Then a compound to be tested was perfused (or puffed) to cells in the external solution and the effect of the compound on I_{crac} was measured. A compound that modulates I_{crac} (e.g., inhibits) is a compound that is useful in the invention for modulating CRAC ion channel activity.

15

1) RBL cells

Cells

20 Rat basophilic leukemia cells (RBL-2H3) are grown in DMEM media supplemented with 10% fetal bovine serum in an atmosphere of 95% air/5% CO₂. Cells are seeded on glass coverslips 1-3 days before use.

Recording Conditions

Membrane currents of individual cells are recorded using the whole-cell

configuration of the patch clamp technique with an EPC10 (HEKA Electronik, Lambrecht, Germany). Electrodes (2-5 MΩ in resistance) are fashioned from borosilicate glass capillary tubes (Sutter Instruments, Novato, Ca). The recordings are done at room temperature.

5 **Intracellular pipette solution**

The intracellular pipette solution contains Cs-Glutamate 120mM; CsCl 20mM; CsBAPTA 10mM; CsHEPES 10mM; NaCl 8mM; MgCl₂ 1mM; IP3 0.02mM; pH=7.4 adjusted with CsOH. The solution is kept on ice and shielded from light before the experiment is preformed.

10 **Extracellular solution**

The extracellular solution contains NaCl 138mM; NaHEPES, 10mM; CsCl 10mM; CaCl₂ 10mM; Glucose 5.5mM; KCl 5.4mM; KH₂PO₄ 0.4mM; Na₂HPO₄·H₂O 0.3mM at pH=7.4 adjusted with NaOH.

Compound treatment

15 Each test compound is diluted from a 10 mM stock in series using DMSO. The final DMSO concentration is kept at 0.1 %.

Experimental procedure

I_{CRAC} currents are monitored every 2 seconds using a 50 msec protocol, where the voltage was ramped from -100 mV to +100 mV. The membrane potential is held at 0 mV between the test ramps. In a typical experiment, the peak inward currents are expected to develop within 50-100 seconds. Once the I_{CRAC} currents are stabilized, the cells are perfused with a test compound in the extracellular solution. At the end of an experiment, the remaining I_{CRAC} currents are then challenged with a control compound (SKF96365, 10 μM) to ensure that the current could still be inhibited.

Data analysis

The I_{CRAC} current level is determined by measuring the inward current amplitude at -80 mV of the voltage ramp in an off-line analysis using MATLAB. The I_{CRAC} current inhibition for each concentration is calculated

using peak amplitude in the beginning of the experiment from the same cell. The IC_{50} value and Hill coefficient for each compound is estimated by fitting all the individual data points to a single Hill equation.

5 **Results**

Compounds of the invention are expected to inhibit I_{CRAC} current in RBL cells

2) Jurkat cells

Cells

10 Jurkat T cells are grown on glass coverslips, transferred to the recording chamber and kept in a standard modified Ringer's solution of the following composition: NaCl 145mM, KCl 2.8mM, CsCl 10mM, $CaCl_2$ 10mM, $MgCl_2$ 2mM, glucose 10mM, HEPES-NaOH 10mM, pH 7.2.

Extracellular Solution

15 The external solution contains 10 mM CaNaR, 11.5 mM glucose and a test compound at various concentrations.

Intracellular Pipette Solution

The standard intracellular pipette solution contains: Cs-glutamate 145 mM, NaCl 8 mM, $MgCl_2$ 1 mM, ATP 0.5 mM, GTP 0.3 mM, pH 7.2 adjusted with 20 CsOH. The solution is supplemented with a mixture of 10 mM Cs-BAPTA and 4.3-5.3 mM $CaCl_2$ to buffer $[Ca^{2+}]_i$ to resting levels of 100-150 nM.

Patch-clamp recordings

Patch-clamp experiments are performed in the tight-seal whole-cell configuration at 21-25°C. High-resolution current recordings are acquired by 25 a computer-based patch-clamp amplifier system (EPC-9, HEKA, Lambrecht, Germany). Sylgard®- coated patch pipettes typically have resistances between 2-4 MΩ after filling with the standard intracellular solution. Immediately following establishment of the whole-cell configuration, voltage ramps of 50 ms duration spanning the voltage range of -100 to +100 mV are 30 delivered from a holding potential of 0 mV at a rate of 0.5 Hz over a period of

300 to 400 seconds. All voltages are corrected for a liquid junction potential of 10 mV between external and internal solutions. Currents are filtered at 2.3 kHz and digitized at 100 μ s intervals. Capacitive currents and series resistance are determined and corrected before each voltage ramp using the
5 automatic capacitance compensation of the EPC-9.

Data analysis

The very first ramps before activation of I_{CRAC} (usually 1 to 3) are digitally filtered at 2 kHz, pooled and used for leak-subtraction of all subsequent current records. The low-resolution temporal development of inward currents
10 is extracted from the leak-corrected individual ramp current records by measuring the current amplitude at -80 mV or a voltage of choice.

Compounds of the invention are expected to inhibit I_{CRAC} current in Jurkat cells.

15

3) Primary T Cells

Preparation of Primary T Cells

Primary T cells are obtained from human whole blood samples by adding
20 100 μ L of RosetteSep® human T cell enrichment cocktail to 2 mL of whole blood. The mixture is incubated for 20 minutes at room temperature, then diluted with an equal volume of PBS containing 2% FBS. The mixture is layered on top of RosetteSep® DM-L density medium and then centrifuged for 20 minutes at 1200 g at room temperature. The enriched T cells are
25 recovered from the plasma/density medium interface, then washed with PBS containing 2% FBS twice, and used in patch clamp experiments following the procedure described for RBL cells.

Compounds of the invention are expected to inhibit I_{CRAC} current in human
30 primary T cells.

EXAMPLE 4: INHIBITION OF MULTIPLE CYTOKINES IN PRIMARY HUMAN PBMCs

Peripheral blood mononuclear cells (PBMCs) are stimulated with phytohemagglutinin (PHA) in the presence of varying concentrations of

5 compounds of the invention or cyclosporine A (CsA), a known inhibitor of cytokine production. Cytokine production is measured using commercially available human ELISA assay kits (from Cell Science, Inc.) following the manufacturers instructions.

10 The compounds of the invention are potent inhibitors of IL-2, and are expected to be potent inhibitors of IL-4, IL-5, IL-13, GM-CSF, INF- γ and TNF- α in primary human PBM cells. In addition, compounds of the invention are not expected to inhibit the anti-inflammatory cytokine, IL-10.

15 **EXAMPLE 5: COMPOUNDS OF THE INVENTION ARE POTENT INHIBITORS OF DEGRANULATION IN RBL CELLS**

Procedure:

20 The day before the assay is performed, RBL cells, that had been grown to confluence in a 96 well plate, are incubated at 37°C for at least 2 hours. The medium is replaced in each well with 100 μ L of fresh medium containing 2 μ Lg/mL of anti-DNP IgE.

25 On the following day, the cells are washed once with PRS (2.6 mM glucose and 0.1% BSA) and 160 μ L of PRS was added to each well. A test compound is added to a well in a 20 μ L solution at 10X of the desired concentration and incubated for 20 to 40 minutes at 37°C. 20 μ L of 10X mouse anti-IgE (10 μ L/mL) is added. SKF96365 is used as a positive control. Maximum degranulation typically occurs between 15 to 40 minutes after addition of anti-30 IgE.

Results:

Compounds of the invention are expected to inhibit degranulation of RBL cells.

5 EXAMPLE 6: COMPOUNDS OF THE INVENTION ARE POTENT INHIBITORS OF CHEMOTAXIS IN T CELLS

T-cell isolation:

Twenty ml aliquots of heparinized whole blood (2 pig, 1 human) are subjected to density gradient centrifugation on Ficoll Hypaque. The buffy coat layers representing peripheral blood mononuclear cells (PBMCs) containing lymphocytes and monocytes are washed once, resuspended in 12 ml of incomplete RPMI 1640 and then placed in gelatin-coated T75 culture flasks for 1 hr at 37°C. The non-adherent cells, representing peripheral blood lymphocytes (PBLs) depleted of monocytes, are resuspended in complete RPMI media and placed in loosely packed activated nylon wool columns that had been equilibrated with warm media. After 1 hr at 37°C, the non-adherent T cell populations are eluted by washing of the columns with additional media. The T cell preparations are centrifuged, resuspended in 5 ml of incomplete RPMI, and counted using a hemocytometer.

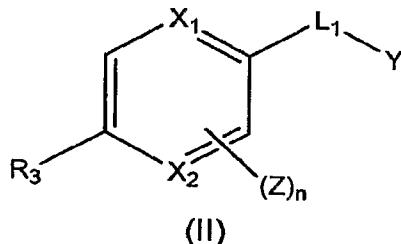
Cell migration assay:

Aliquots of each T cell preparation are labeled with Calcien AM (TefLabs) and suspended at a concentration of 2.4×10^6 /ml in HEPES-buffered Hank's Balanced Salt Solution containing 1.83 mM CaCl₂ and 0.8 mM MgCl₂, pH 7.4 (HHBSS). An equal volume of HHBSS containing 0, 20 nM, 200 nM or 2000 nM of compound 1 or 20 nM EDTA is then added and the cells are incubated for 30 min at 37°C. Fifty μ l aliquots of the cell suspensions (60,000 cells) are placed on the membrane (pore size 5 μ m) of a Neuroprobe ChemoTx 96 well chemotaxis unit that had been affixed over wells containing 10 ng/ml MIP-1 α in HHBSS. The T cells are allowed to migrate for 2 hr at 37°C, after which the apical surface of the membrane is wiped clean of cells. The chemotaxis units are then placed in a CytoFlour 4000 (PerSeptive BioSystems) and the

fluorescence of each well is measured (excitation and emission wavelengths of 450 and 530 nm, respectively). The number of migrating cells in each well is determined from a standard curve generated from measuring the fluorescence of serial two-fold dilutions of the labeled cells placed in the lower 5 wells of the chemotaxis unit prior to affixing the membrane.

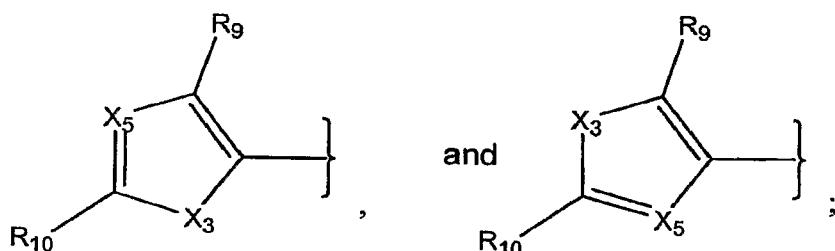
Results: Compounds of the invention are expected to be inhibitory to the chemotactic response of porcine T cells and in human T cells.

10 All publications, patent applications, patents, and other documents cited herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting in any way.


15

From the foregoing description, it will be apparent that variations and modifications may be made to the invention described herein. Such embodiments are also within the scope of the following claims.

CLAIMS


WE CLAIM:

1. A method of inhibiting immune cell activation comprising administering to the cell a compound of structural formula (II):

or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein:

10 R₃ is selected from the group consisting of:

X₁ and X₂ are CH, CZ, or N, provided that at least one of X₁ or X₂ is CH or CZ;

15 X₃ is O or S;

X₅ is CH or N;

20 L₁ is a linker selected from the group consisting of -NRC(R)₂-, -C(R)₂NR-, -C(O)-, -NR-C(O)-, -C(O)-NR-, -C(S)-, -C(NR₈)-, -NR-C(S)-, -C(S)-NR-, -NR-C(NR₈)-, -C(NR₈)-NR-, -NRC(O)NR-, -NRC(S)NR-, -NRC(NR₈)NR-, -S(O)₂NR-, -NRS(O)₂-, -NRS(O)₂NR-, -NRC(R)₂NR-, -CR=CR-, -C≡C-, -N=CR-, -CR=N-, -NR-N=CR-, or -CR=N-NR-;

Y is an optionally substituted phenyl or an optionally substituted heteroaryl;

25 each Z is independently selected from the group consisting of a lower alkyl, a lower haloalkyl, a halo, a lower alkoxy, a lower alkyl sulfanyl, cyano, nitro, or lower haloalkoxy;

R is H or a lower alkyl;

5 R₉ is a halo, -OR₅, -SR₅, -NR₆R₇, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

10 R₁₀ is a halo, nitro, cyano, a haloalkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally

15 substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, -C(O)NR₆R₇, -C(O)R₅, -C(O)OR₅, -C(O)SR₅, -C(S)NR₆R₇, -C(S)R₅, -C(S)OR₅, -C(S)SR₅, -C(NR₈)NR₆R₇, -C(NR₈)R₅, -C(NR₈)OR₅, -C(NR₈)SR₅, -S(O)_pR₅, -S(O)_pNR₆R₇, -P(O)(OR₅)₂, -P(S)(OR₅)₂, -P(O)(OR₅)(SR₅), -P(S)(OR₅)(SR₅), -P(O)(SR₅)₂, or -P(S)(SR₅)₂;

20 R₅, for each occurrence, is independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

25 R₆ and R₇, for each occurrence are, independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl; or R₆ and R₇ taken together with the nitrogen to which they are attached are an optionally substituted heterocycl or optionally substituted heteroaryl;

30 R₈, for each occurrence, is independently -H, a halo, an

alkyl, -OR₅, -NR₆R₇, -C(O)R₅, -C(O)OR₅, or -C(O)NR₆R₇; and
n is 0, 1 or 2.

2. The method of Claim 1, wherein immune cell activation is inhibited in a
5 subject by administering the compound to the subject.

3. The method of Claim 2, wherein L₁ is a linker selected from the group
consisting of -NHCH₂-, -CH₂NH-, -C(O)-, -NH-C(O)-, -C(O)-NH-
, -C(S)-, -NH-C(S)-, -C(S)-NH-, -NHC(O)NH-, -NHC(S)NH-, -S(O)₂NH-
10 , -NHS(O)₂-, -CH=CH-, -NH-N=CH-, or -CH=N-NH-.

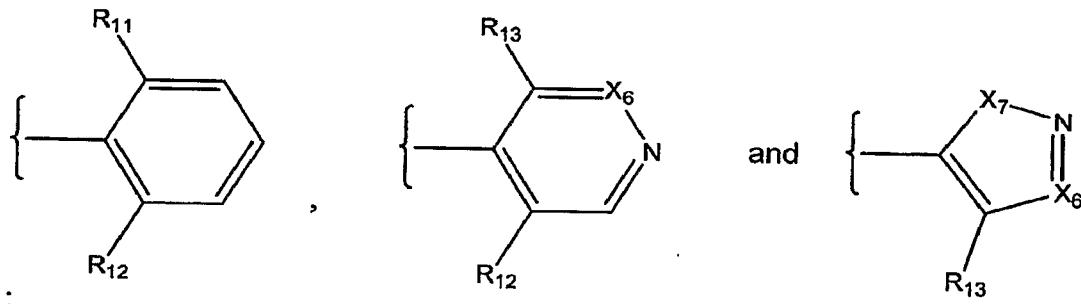
4. The method of Claim 3, wherein L₁ is -NH-C(O)-, -C(O)-NH-, -
NHCH₂-, or -CH₂NH-.

15 5. The method of Claim 3, wherein n is 0.

6. The method of Claim 3, wherein X₁ and X₂ are both CH.

7. The method of Claim 3, wherein X₁ is N and X₂ is CH.

20 8. The method of Claim 3, wherein Y is selected from the group
consisting of an optionally substituted phenyl, an optionally substituted
naphthyl, an optionally substituted anthracenyl, an optionally
substituted pyridyl, an optionally substituted furyl, an optionally
substituted thienyl, an optionally substituted pyrrolyl, an optionally
substituted oxazolyl, an optionally substituted imidazolyl, an optionally
substituted indolizinyl, an optionally substituted thiazolyl, an optionally
substituted isoxazolyl, an optionally substituted pyrazolyl, an optionally
substituted isothiazolyl, an optionally substituted pyridazinyl, an
25 optionally substituted pyrimidinyl, an optionally substituted pyrazinyl, an
optionally substituted triazinyl, an optionally substituted triazolyl, an
optionally substituted thiadiazolyl, an optionally substituted pyrazinyl,
an optionally substituted quinolinyl, an optionally substituted


isoquinoliny, an optionally substituted indazolyl, an optionally substituted benzoxazolyl, an optionally substituted benzofuryl, an optionally substituted benzothiazolyl, an optionally substituted indolizinyl, an optionally substituted imidazopyridinyl, an optionally substituted isothiazolyl, an optionally substituted tetrazolyl, an optionally substituted benzoxazolyl, an optionally substituted benzothiazolyl, an optionally substituted benzothiadiazolyl, an optionally substituted benzoxadiazolyl, an optionally substituted indolyl, an optionally substituted tetrahydroindolyl, an optionally substituted azaindolyl, an optionally substituted imidazopyridyl, an optionally substituted quinazolinyl, an optionally substituted purinyl, an optionally substituted pyrrolo[2,3]pyrimidyl, an optionally substituted pyridopyrimidyl, an optionally substituted pyrazolo[3,4]pyrimidyl or an optionally substituted benzo(b)thienyl.

15

9. The method of Claim 8, wherein Y is an optionally substituted phenyl, an optionally substituted pyridinyl, an optionally substituted pyridazinyl, an optionally substituted isothiazolyl, an optionally substituted isoxazolyl, an optionally substituted oxadiazolyl, or an optionally substituted thiadiazolyl.

20

10. The method of Claim 9, wherein Y is selected from the group consisting of:

X_6 is CH or N;

X_7 is O or S;

R_{11} and R_{12} are each, independently, a substituent; and

R_{13} is H or a substituent.

25

11. The method of Claim 10, wherein:

R₁₁ and R₁₂ are each, independently, selected from the group consisting of a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl; and

R₁₃ is H, a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl.

12. The method of Claim 3, wherein:

R₉ is a halo, an optionally substituted alkoxy, an optionally substituted alkyl, an optionally substituted heterocyclyl, or an optionally substituted heteroaryl; and

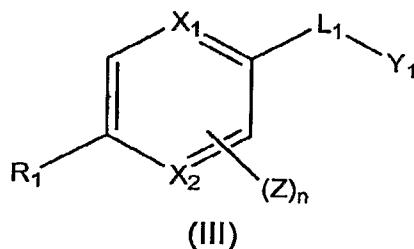
R₁₀ is a halo, a haloalkyl, an optionally substituted heterocyclyl, an optionally substituted heteroaryl, -C(O)NR₆R₇, -C(O)R₅, -C(O)OR₅, -C(NR₈)NR₆R₇, -S(O)_pR₅, or -S(O)_pNR₆R₇.

13. The method of Claim 12, wherein:

R₉ is a halo, a lower alkoxy, or a lower alkyl;

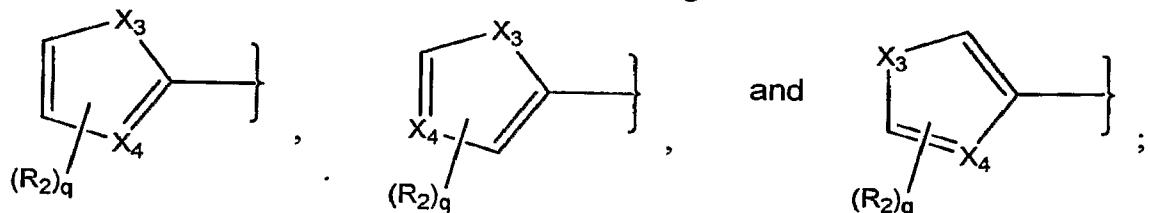
R₁₀ is an oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, a thiadiazolyl, -C(O)N(R₁₉)₂, -C(O)R₂₀, -C(O)OR₂₀, wherein the oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, and a thiadiazolyl are optionally substituted with one or more substituents, independently, selected from a halo or a lower alkyl; and

R₁₉ and R₂₀, for each occurrence are, independently, a lower alkyl.


14. The method of Claim 13, wherein X₃ is O and X₅ is CH.

15. The method of Claim 13, wherein X₃ is S and X₅ is CH.

16. The method of Claim 13, wherein X₃ is O and X₅ is N.

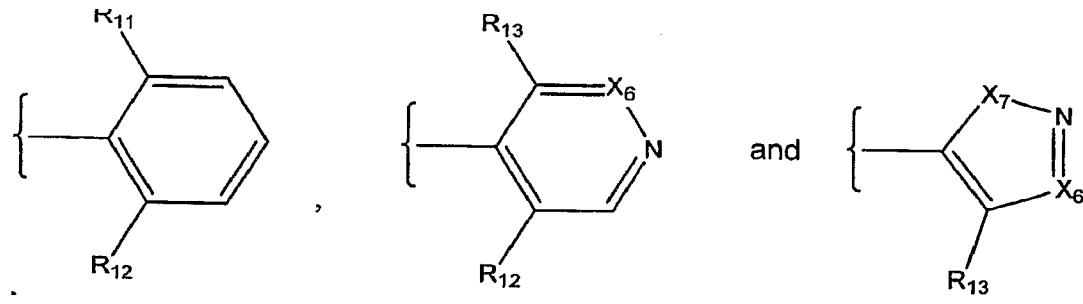

17. The method of Claim 13, wherein X_3 is S and X_5 is N.

18. A method of inhibiting immune cell activation comprising administering to the cell a compound of structural formula (III):

or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein:

10 R_1 is selected from the group consisting of:

15 X_1 and X_2 are CH, CZ, or N, provided that at least one of X_1 or X_2 is CH or CZ;


X_3 is O or S;

X_4 is CH, CR₂, or N;

R_2 is a substituent;

20 L_1 is a linker selected from the group consisting of $-NRC(R)_2-$, $-C(R)_2NR-$, $-C(O)-$, $-NR-C(O)-$, $-C(O)-NR-$, $-C(S)-$, $-C(NR_8)-$, $-NR-C(S)-$, $-C(S)-NR-$, $-NR-C(NR_8)-$, $-C(NR_8)-NR-$, $-NRC(O)NR-$, $-NRC(S)NR-$, $-NRC(NR_8)NR-$, $-S(O)_2NR-$, $-NRS(O)_2-$, $-NRS(O)_2NR-$, $-NRC(R)_2NR-$, $-CR=CR-$, $-C\equiv C-$, $-N=CR-$, $-CR=N-$, $-NR-N=CR-$, or $-CR=N-NR-$;

Y_1 is selected from the group consisting of:

X₆ is CH or N;

X₇ is O or S;

5 R₁₁ and R₁₂ are each, independently, a substituent, provided that R₁₁ and R₁₂ are not both halo when L₁ is -NRS(O)₂;

R₁₃ is H or a substituent;

each Z is independently selected from the group consisting of a lower alkyl, a lower haloalkyl, a halo, a lower alkoxy, a lower alkylsufanyl, cyano, nitro, or lower haloalkoxy;

R is H or a lower alkyl;

R₈, for each occurrence, is independently -H, a halo, an alkyl, -OR₅, -NR₆R₇, -C(O)R₅, -C(O)OR₅, or -C(O)NR₆R₇;

10 R₅, for each occurrence, is independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

15 R₆ and R₇, for each occurrence are, independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

20 R₆ and R₇ taken together with the nitrogen to which they are attached are an optionally substituted heterocyclyl or optionally substituted heteroaryl;

25 q is 0, 1, or 2; and

n is 0, 1 or 2.

19. The method of Claim 18, wherein immune cell activation is inhibited in a subject by administering the compound to the subject.

5

20. The method of Claim 19, wherein L_1 is a linker selected from the group consisting of $-\text{NHCH}_2-$, $-\text{CH}_2\text{NH}-$, $-\text{C}(\text{O})-$, $-\text{NH}-\text{C}(\text{O})-$, $-\text{C}(\text{O})-\text{NH}-$, $-\text{C}(\text{S})-$, $-\text{NH}-\text{C}(\text{S})-$, $-\text{C}(\text{S})-\text{NH}-$, $-\text{NHC}(\text{O})\text{NH}-$, $-\text{NHC}(\text{S})\text{NH}-$, $-\text{S}(\text{O})_2\text{NH}-$, $-\text{NHS}(\text{O})_2-$, $-\text{CH}=\text{CH}-$, $-\text{NH}-\text{N}=\text{CH}-$, or $-\text{CH}=\text{N}-\text{NH}-$.

10

21. The method of Claim 20, wherein L_1 is $-\text{NH}-\text{C}(\text{O})-$, $-\text{C}(\text{O})-\text{NH}-$, $-\text{NHCH}_2-$, or $-\text{CH}_2\text{NH}-$.

22. The method of Claim 20, wherein n is 0.

15

23. The method of Claim 20, wherein X_1 and X_2 are both CH.

24. The method of Claim 20, wherein X_1 is N and X_2 is CH.

20 25. The method of Claim 20, wherein X_3 is O and X_4 is CH or CR_2 .

26. The method of Claim 20, wherein X_3 is S and X_4 is CH or CR_2 .

27. The method of Claim 20, wherein X_3 is O and X_4 is N.

25

28. The method of Claim 20, wherein X_3 is S and X_4 is N.

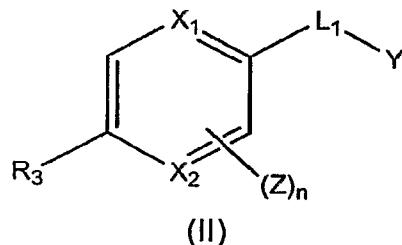
30

29. The method of Claim 20, wherein R_2 , for each occurrence, is independently, selected from the group consisting of a halo, nitro, cyano, a haloalkyl, $-\text{OR}_5$, $-\text{SR}_5$, $-\text{NR}_6\text{R}_7$, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an

optionally substituted heteroaryl, an optionally substituted aralkyl, an
 5 optionally substituted heteraralkyl, -C(O)NR₆R₇, -C(O)R₅, -C(O)OR₅, -
 C(O)SR₅, -C(S)NR₆R₇, -C(S)R₅, -C(S)OR₅, -C(S)SR₅, -C(NR₈)NR₆R₇, -
 C(NR₈)R₅, -C(NR₈)OR₅, -C(NR₈)SR₅, -S(O)_pR₅, -S(O)_pNR₆R₇, -
 P(O)(OR₅)₂, -P(S)(OR₅)₂, -P(O)(OR₅)(SR₅), -P(S)(OR₅)(SR₅), -
 P(O)(SR₅)₂, or -P(S)(SR₅)₂, -OC(O)NR₆R₇, -OC(O)R₅, -OC(O)OR₅, -
 10 OC(O)SR₅, -NR₅C(O)NR₆R₇, -NR₅C(O)R₅, -NR₅C(O)OR₅, -
 NR₅C(O)SR₅, -SC(O)NR₆R₇, -SC(O)R₅, -SC(O)OR₅, -SC(O)SR₅, -
 OC(S)NR₆R₇, -OC(S)R₅, -OC(S)OR₅, -OC(S)SR₅, -NR₅C(S)NR₆R₇, -
 NR₅C(S)R₅, -NR₅C(S)OR₅, -NR₅C(S)SR₅, -SC(S)NR₆R₇, -SC(S)R₅, -
 15 SC(S)OR₅, -SC(S)SR₅, -OC(NR₈)NR₆R₇, -OC(NR₈)R₅, -OC(NR₈)OR₅, -
 OC(NR₈)SR₅, -NR₅C(NR₈)NR₆R₇, -NR₅C(NR₈)R₅, -NR₅C(NR₈)OR₅, -
 NR₅C(NR₈)SR₅, -OS(O)_pR₅, -NR₅S(O)_pR₅, -OP(O)(OR₅)₂, or -
 OP(S)(OR₅)₂.

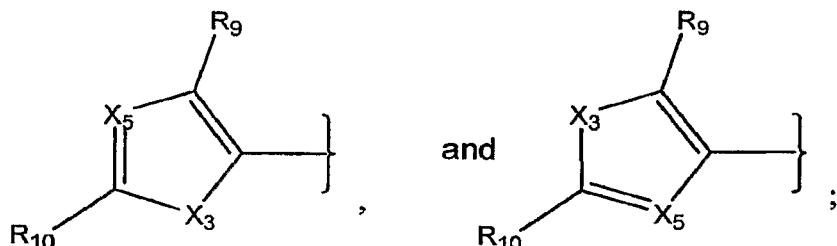
15

30. The method of Claim 29, wherein R₂, for each occurrence, is
 independently selected from the group consisting of a halo, a lower
 alkoxy, or a lower alkyl, an oxazolyl, a morpholinyl, a furanyl, a lower
 haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an
 20 isothiazolyl, a thiadiazolyl, -C(O)N(R₁₉)₂, -C(O)R₂₀, -C(O)OR₂₀, wherein
 the oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an
 isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, and a
 thiadiazolyl are optionally substituted with one or more substituents,
 independently, selected from a halo or a lower alkyl; and
 25 R₁₉ and R₂₀, for each occurrence are, independently, a lower
 alkyl.


31. The method of Claim 20, wherein:

30 R₁₁ and R₁₂ are each, independently, selected from the group
 consisting of a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a
 lower haloalkoxyl; and

R₁₃ is H, a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a
 lower haloalkoxyl.


32. The method of Claim 2 or 19, wherein the subject is human.

33. A method of inhibiting cytokine production in a cell, comprising
5 administering to the cell a compound of structural formula (II):

or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein:

10 R_3 is selected from the group consisting of:

X_1 and X_2 are CH, CZ, or N, provided that at least one of X_1 or
15 X_2 is CH or CZ;

X_3 is O or S;

15 X_5 is CH or N;

L_1 is a linker selected from the group consisting of $-NRC(R)_2-$, $-C(R)_2NR-$, $-C(O)-$, $-NR-C(O)-$, $-C(O)-NR-$, $-C(S)-$, $-C(NR_8)-$, $-NR-C(S)-$, $-C(S)-NR-$, $-NR-C(NR_8)-$, $-C(NR_8)-NR-$, $-NRC(O)NR-$, $-NRC(S)NR-$, $-NRC(NR_8)NR-$, $-S(O)_2NR-$, $-NRS(O)_2-$, $-NRS(O)_2NR-$, $20 -NRC(R)_2NR-$, $-CR=CR-$, $-C\equiv C-$, $-N=CR-$, $-CR\equiv N-$, $-NR-N=CR-$, or $-CR=N-NR-$;

Y is an optionally substituted phenyl or an optionally substituted heteroaryl;

25 each Z is independently selected from the group consisting of a lower alkyl, a lower haloalkyl, a halo, a lower alkoxy, a lower alkyl sulfanyl, cyano, nitro, or lower haloalkoxy;

R is H or a lower alkyl;

5 R₉ is a halo, -OR₅, -SR₅, -NR₆R₇, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

10 R₁₀ is a halo, nitro, cyano, a haloalkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, -C(O)NR₆R₇, -C(O)R₅, -C(O)OR₅, -C(O)SR₅, -C(S)NR₆R₇, -C(S)R₅, -C(S)OR₅, -C(S)SR₅, -C(NR₈)NR₆R₇, -C(NR₈)R₅, -C(NR₈)OR₅, -C(NR₈)SR₅, -S(O)_pR₅, -S(O)_pNR₆R₇, -P(O)(OR₅)₂, -P(S)(OR₅)₂, -P(O)(OR₅)(SR₅), -P(S)(OR₅)(SR₅), -P(O)(SR₅)₂, or -P(S)(SR₅)₂;

15 R₅, for each occurrence, is independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

20 R₆ and R₇, for each occurrence are, independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl; or R₆ and R₇ taken together with the nitrogen to which they are attached are an optionally substituted heterocyclyl or optionally substituted heteroaryl;

25 R₈, for each occurrence, is independently -H, a halo, an

alkyl, -OR₅, -NR₆R₇, -C(O)R₅, -C(O)OR₅, or -C(O)NR₆R₇; and
n is 0, 1 or 2.

34. The method of Claim 33, wherein cytokine production is inhibited in a
5 subject by administering the compound to the subject.

35. The method of Claim 34, wherein L₁ is a linker selected from the group
consisting of -NHCH₂-, -CH₂NH-, -C(O)-, -NH-C(O)-, -C(O)-NH-
, -C(S)-, -NH-C(S)-, -C(S)-NH-, -NHC(O)NH-, -NHC(S)NH-, -S(O)₂NH-
10 , -NHS(O)₂-, -CH=CH-, -NH-N=CH-, or -CH=N-NH-.

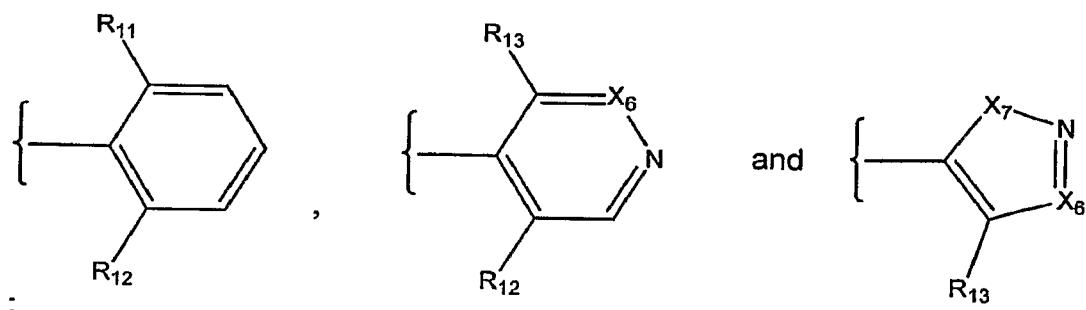
36. The method of Claim 35, wherein L₁ is -NH-C(O)-, -C(O)-NH-, -
NHCH₂-, or -CH₂NH-.

15 37. The method of Claim 35, wherein n is 0.

38. The method of Claim 35, wherein X₁ and X₂ are both CH.

39. The method of Claim 35, wherein X₁ is N and X₂ is CH.

20 40. The method of Claim 35, wherein Y is selected from the group
consisting of an optionally substituted phenyl, an optionally substituted
naphthyl, an optionally substituted anthracenyl, an optionally
substituted pyridyl, an optionally substituted furyl, an optionally
substituted thienyl, an optionally substituted pyrrolyl, an optionally
substituted oxazolyl, an optionally substituted imidazolyl, an optionally
substituted indolizinyl, an optionally substituted thiazolyl, an optionally
substituted isoxazolyl, an optionally substituted pyrazolyl, an optionally
substituted isothiazolyl, an optionally substituted pyridazinyl, an
25 optionally substituted pyrimidinyl, an optionally substituted pyrazinyl, an
optionally substituted triazinyl, an optionally substituted triazolyl, an
optionally substituted thiadiazolyl, an optionally substituted pyrazinyl,
an optionally substituted quinolinyl, an optionally substituted


isoquinolinyl, an optionally substituted indazolyl, an optionally substituted benzoxazolyl, an optionally substituted benzofuryl, an optionally substituted benzothiazolyl, an optionally substituted indolizinyl, an optionally substituted imidazopyridinyl, an optionally substituted isothiazolyl, an optionally substituted tetrazolyl, an optionally substituted benzoxazolyl, an optionally substituted benzothiazolyl, an optionally substituted benzothiadiazolyl, an optionally substituted benzodiazolyl, an optionally substituted indolyl, an optionally substituted tetrahydroindolyl, an optionally substituted azaindolyl, an optionally substituted imidazopyridyl, an optionally substituted quinazolinyl, an optionally substituted purinyl, an optionally substituted pyrrolo[2,3]pyrimidyl, an optionally substituted pyridopyrimidyl, an optionally substituted pyrazolo[3,4]pyrimidyl or an optionally substituted benzo(b)thienyl.

15

41. The method of Claim 40, wherein Y is an optionally substituted phenyl, an optionally substituted pyridinyl, an optionally substituted pyridazinyl, an optionally substituted isothiazolyl, an optionally substituted isoxazolyl, an optionally substituted oxadiazolyl, or an optionally substituted thiadiazolyl.

20

42. The method of Claim 41, wherein Y is selected from the group consisting of:

25

X_6 is CH or N;

X_7 is O or S;

R_{11} and R_{12} are each, independently, a substituent; and

R_{13} is H or a substituent.

43. The method of Claim 42, wherein:

5 R_{11} and R_{12} are each, independently, selected from the group consisting of a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl; and

R_{13} is H, a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl.

44. The method of Claim 35, wherein:

10 R_9 is a halo, an optionally substituted alkoxy, an optionally substituted alkyl, an optionally substituted heterocycl, or an optionally substituted heteroaryl; and

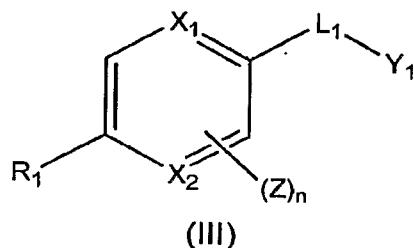
15 R_{10} is a halo, a haloalkyl, an optionally substituted heterocycl, an optionally substituted heteroaryl, $-C(O)NR_6R_7$, $-C(O)R_5$, $-C(O)OR_5$, $-C(NR_8)NR_6R_7$, $-S(O)_pR_5$, or $-S(O)_pNR_6R_7$.

45. The method of Claim 44, wherein:

20 R_9 is a halo, a lower alkoxy, or a lower alkyl;

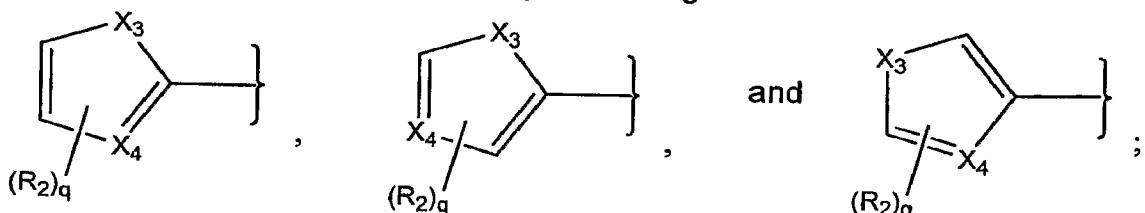
25 R_{10} is an oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, a thiadiazolyl, $-C(O)N(R_{19})_2$, $-C(O)R_{20}$, $-C(O)OR_{20}$, wherein the oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, and a thiadiazolyl are optionally substituted with one or more substituents, independently, selected from a halo or a lower alkyl; and

R_{19} and R_{20} , for each occurrence are, independently, a lower alkyl.


30 46. The method of Claim 45, wherein X_3 is O and X_5 is CH.

 47. The method of Claim 45, wherein X_3 is S and X_5 is CH.

 48. The method of Claim 45, wherein X_3 is O and X_5 is N.

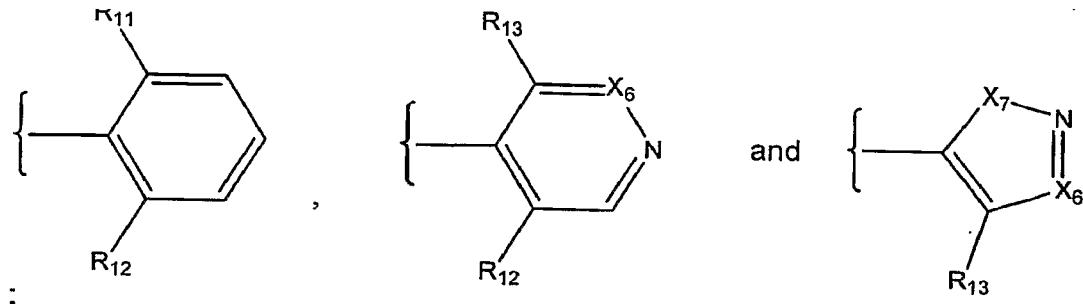

49. The method of Claim 45, wherein X_3 is S and X_5 is N.

50. A method of inhibiting cytokine production in a cell, comprising
5 administering to the cell a compound of structural formula (III):

or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein:

10 R_1 is selected from the group consisting of:

X_1 and X_2 are CH, CZ, or N, provided that at least one of X_1 or X_2 is CH or CZ;


15 X_3 is O or S;

X_4 is CH, CR₂, or N;

R_2 is a substituent;

20 L_1 is a linker selected from the group consisting of $-NRC(R)_2-$, $-C(R)_2NR-$, $-C(O)-$, $-NR-C(O)-$, $-C(O)-NR-$, $-C(S)-$, $-C(NR_8)-$, $-NR-C(S)-$, $-C(S)-NR-$, $-NR-C(NR_8)-$, $-C(NR_8)-NR-$, $-NRC(O)NR-$, $-NRC(S)NR-$, $-NRC(NR_8)NR-$, $-S(O)_2NR-$, $-NRS(O)_2-$, $-NRS(O)_2NR-$, $-NRC(R)_2NR-$, $-CR=CR-$, $-C\equiv C-$, $-N=CR-$, $-CR=N-$, $-NR-N=CR-$, or $-CR=N-NR-$;

Y_1 is selected from the group consisting of:

X₆ is CH or N;

X₇ is O or S;

5 R₁₁ and R₁₂ are each, independently, a substituent, provided that R₁₁ and R₁₂ are not both halo when L₁ is -NRS(O)₂⁻;

R₁₃ is H or a substituent;

each Z is independently selected from the group consisting of a lower alkyl, a lower haloalkyl, a halo, a lower alkoxy, a lower alkylsufanyl, cyano, nitro, or lower haloalkoxy;

R is H or a lower alkyl;

R₈, for each occurrence, is independently -H, a halo, an alkyl, -OR₅, -NR₆R₇, -C(O)R₅, -C(O)OR₅, or -C(O)NR₆R₇;

10 R₅, for each occurrence, is independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

15 R₆ and R₇, for each occurrence are, independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl; or R₆ and R₇ taken together with the nitrogen to which they are attached are an optionally substituted heterocycl or optionally substituted heteroaryl;

20 q is 0, 1, or 2; and

n is 0, 1 or 2.

51. The method of Claim 50, wherein cytokine production is inhibited in a subject by administering the compound to the subject.

52. The method of Claim 51, wherein L_1 is a linker selected from the group consisting of $-\text{NHCH}_2-$, $-\text{CH}_2\text{NH}-$, $-\text{C}(\text{O})-$, $-\text{NH}-\text{C}(\text{O})-$, $-\text{C}(\text{O})-\text{NH}-$, $-\text{C}(\text{S})-$, $-\text{NH}-\text{C}(\text{S})-$, $-\text{C}(\text{S})-\text{NH}-$, $-\text{NHC}(\text{O})\text{NH}-$, $-\text{NHC}(\text{S})\text{NH}-$, $-\text{S}(\text{O})_2\text{NH}-$, $-\text{NHS}(\text{O})_2-$, $-\text{CH}=\text{CH}-$, $-\text{NH}-\text{N}=\text{CH}-$, or $-\text{CH}=\text{N}-\text{NH}-$.

10

53. The method of Claim 52, wherein L_1 is $-\text{NH}-\text{C}(\text{O})-$, $-\text{C}(\text{O})-\text{NH}-$, $-\text{NHCH}_2-$, or $-\text{CH}_2\text{NH}-$.

54. The method of Claim 52, wherein n is 0.

15

55. The method of Claim 52, wherein X_1 and X_2 are both CH.

56. The method of Claim 52, wherein X_1 is N and X_2 is CH.

20 57. The method of Claim 52, wherein X_3 is O and X_4 is CH or CR_2 .

58. The method of Claim 52, wherein X_3 is S and X_4 is CH or CR_2 .

59. The method of Claim 52, wherein X_3 is O and X_4 is N.

25

60. The method of Claim 52, wherein X_3 is S and X_4 is N.

61. The method of Claim 52, wherein R_2 , for each occurrence, is independently, selected from the group consisting of a halo, nitro, cyano, a haloalkyl, $-\text{OR}_5$, $-\text{SR}_5$, $-\text{NR}_6\text{R}_7$, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an

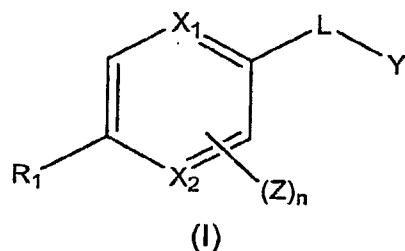
optionally substituted heteroaryl, an optionally substituted aralkyl, an
optionally substituted heteraralkyl, -C(O)NR₆R₇, -C(O)R₅, -C(O)OR₅, -
C(O)SR₅, -C(S)NR₆R₇, -C(S)R₅, -C(S)OR₅, -C(S)SR₅, -C(NR₈)NR₆R₇, -
C(NR₈)R₅, -C(NR₈)OR₅, -C(NR₈)SR₅, -S(O)_pR₅, -S(O)_pNR₆R₇, -
5 P(O)(OR₅)₂, -P(S)(OR₅)₂, -P(O)(OR₅)(SR₅), -P(S)(OR₅)(SR₅), -
P(O)(SR₅)₂, or -P(S)(SR₅)₂, -OC(O)NR₆R₇, -OC(O)R₅, -OC(O)OR₅, -
OC(O)SR₅, -NR₅C(O)NR₆R₇, -NR₅C(O)R₅, -NR₅C(O)OR₅, -
NR₅C(O)SR₅, -SC(O)NR₆R₇, -SC(O)R₅, -SC(O)OR₅, -SC(O)SR₅, -
10 OC(S)NR₆R₇, -OC(S)R₅, -OC(S)OR₅, -OC(S)SR₅, -NR₅C(S)NR₆R₇, -
NR₅C(S)R₅, -NR₅C(S)OR₅, -NR₅C(S)SR₅, -SC(S)NR₆R₇, -SC(S)R₅, -
SC(S)OR₅, -SC(S)SR₅, -OC(NR₈)NR₆R₇, -OC(NR₈)R₅, -OC(NR₈)OR₅, -
OC(NR₈)SR₅, -NR₅C(NR₈)NR₆R₇, -NR₅C(NR₈)R₅, -NR₅C(NR₈)OR₅, -
NR₅C(NR₈)SR₅, -OS(O)_pR₅, -NR₅S(O)_pR₅, -OP(O)(OR₅)₂, or -
OP(S)(OR₅)₂.

15

62. The method of Claim 61, wherein R₂, for each occurrence, is
independently selected from the group consisting of a halo, a lower
alkoxy, or a lower alkyl, an oxazolyl, a morpholinyl, a furanyl, a lower
haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an
isothiazolyl, a thiadiazolyl, -C(O)N(R₁₉)₂, -C(O)R₂₀, -C(O)OR₂₀, wherein
20 the oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an
isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, and a
thiadiazolyl are optionally substituted with one or more substituents,
independently, selected from a halo or a lower alkyl; and
R₁₉ and R₂₀, for each occurrence are, independently, a lower
25 alkyl.

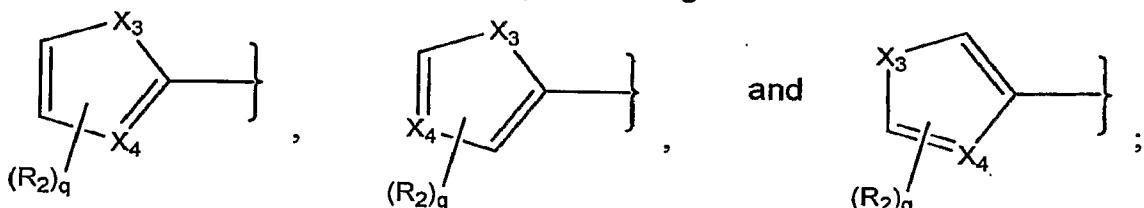
63. The method of Claim 52, wherein:

30 R₁₁ and R₁₂ are each, independently, selected from the group
consisting of a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a
lower haloalkoxyl; and


R₁₃ is H, a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a
lower haloalkoxyl.

64. The method of Claim 34 or 51, wherein the subject is human.

65. The method of Claim 64, wherein the cytokine is selected from the group consisting of IL-2, IL-4, IL-5, IL-13, GM-CSF, IFN- γ , TNF- α , and combinations thereof.


5 66. The method of Claim 65, wherein the cytokine is IL-2.

10 67. A method of modulating an ion channel in a cell, wherein the ion channel is involved in immune cell activation, comprising administering to the cell a compound of structural formula (I):

15 or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein:

R₁ is selected from the group consisting of:

20 X₁ and X₂ are CH, CZ, or N, provided that at least one of X₁ or X₂ is CH or CZ;

X₃ is O or S;

X₄ is CH, CR₂, or N;

25 R₂ is a substituent;

L is a linker selected from the group consisting of -NR₅CR^aR^b-, -CR^aR^bNR₅-, -C(O)-, -NR₅-C(O)-, -C(O)-NR₅-, -C(S)-, -C(NR₈)-, -NR₅-C(S)-, -C(S)-NR₅-, -NR₅-C(NR₈)-, -C(NR₈)-NR₅-, -NR₅C(O)NR₅-, -

NR₅C(S)NR₅-, -NR₅C(NR₈)NR₅-, -S(O)₂NR₅-, -NR₅S(O)NR₅-, -
 NR₅S(O)NR₅-, -NR₅CR^aR^bNR₅-, -CR^a=CR^b-, -C≡C-, -N=CR^a-, -CR^a=N-
 , -NR₅-N=CR^a-, or -CR^a=N-NR₅;

5 Y is an optionally substituted phenyl or an optionally substituted heteroaryl;

each Z is independently selected from the group consisting of a lower alkyl, a lower haloalkyl, a halo, a lower alkoxy, a lower alkyl sufanyl, cyano, nitro, or lower haloalkoxy;

10 R^a and R^b, for each occurrence, are independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclil, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted

15 heteraralkyl, cyano, nitro, halo, -OR₅, -SR₅, -NR₆R₇, -C(O)NR₆R₇, -NR₅C(O)R₅, -C(O)R₅, -C(O)OR₅, -OC(O)R₅, -C(O)SR₅, -SC(O)R₅, -C(S)NR₆R₇, -NR₅C(S)R₅, -C(S)R₅, -C(S)OR₅, -OC(S)R₅, -C(S)SR₅, -SC(S)R₅, -C(NR₈)NR₆R₇, -NR₅C(NR₈)R₅, -C(NR₈)R₅, -C(NR₈)OR₅, -OC(NR₈)R₅, -C(NR₈)SR₅, -SC(NR₈)R₅, -OC(O)OR₅, -OC(O)NR₆R₇, -

20 NR₅C(O)OR₅, -NR₅C(O)NR₆R₇, -SC(O)OR₅, -SC(O)NR₆R₇, -SC(O)SR₅, -NR₅C(O)SR₅, -OC(O)SR₅, -OC(S)OR₅, -OC(S)NR₆R₇, -NR₅C(S)OR₅, -NR₅C(S)NR₆R₇, -SC(S)OR₅, -SC(S)NR₆R₇, -SC(S)SR₅, -NR₅C(S)SR₅, -OC(S)SR₅, -OC(NR₈)OR₅, -OC(NR₈)NR₆R₇, -NR₅C(NR₈)OR₅, -NR₅C(NR₈)NR₆R₇, -SC(NR₈)OR₅, -SC(NR₈)NR₆R₇, -

25 SC(NR₈)SR₅, -NR₅C(NR₈)SR₅, or -OC(NR₈)SR₅;

30 R₅, for each occurrence, is independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclil, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

R₆ and R₇, for each occurrence are, independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an

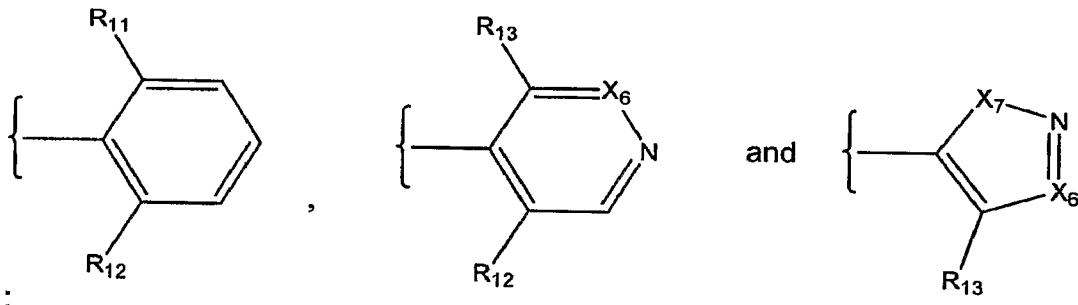
optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl; or R_6 and R_7 taken together with the nitrogen to which they are attached are an optionally substituted heterocyclyl or optionally substituted heteroaryl;

R₈, for each occurrence, is independently -H, a halo, an alkyl, -OR₅, -NR₆R₇, -C(O)R₅, -C(O)OR₅, or -C(O)NR₆R₇; q is 0, 1, or 2; and n is 0, 1 or 2.

68. The method of Claim 67, wherein the ion channel is in a subject and it is modulated by administering the compound to the subject.
69. The method of Claim 51, wherein L_1 is a linker selected from the group consisting of $-\text{NHCH}_2-$, $-\text{CH}_2\text{NH}-$, $-\text{C}(\text{O})-$, $-\text{NH}-\text{C}(\text{O})-$, $-\text{C}(\text{O})-\text{NH}-$, $-\text{C}(\text{S})-$, $-\text{NH}-\text{C}(\text{S})-$, $-\text{C}(\text{S})-\text{NH}-$, $-\text{NHC}(\text{O})\text{NH}-$, $-\text{NHC}(\text{S})\text{NH}-$, $-\text{S}(\text{O})_2\text{NH}-$, $-\text{NHS}(\text{O})_2-$, $-\text{CH}=\text{CH}-$, $-\text{NH}-\text{N}=\text{CH}-$, or $-\text{CH}=\text{N}-\text{NH}-$.
70. The method of Claim 69, wherein L_1 is $-\text{NH}-\text{C}(\text{O})-$, $-\text{C}(\text{O})-\text{NH}-$, $-\text{NHCH}_2-$, or $-\text{CH}_2\text{NH}-$.
71. The method of Claim 69, wherein n is 0.
72. The method of Claim 69, wherein X_1 and X_2 are both CH.
73. The method of Claim 69, wherein X_1 is N and X_2 is CH.
74. The method of Claim 69, wherein X_3 is O and X_4 is CH or CR_2 .
75. The method of Claim 69, wherein X_3 is S and X_4 is CH or CR_2 .

76. The method of Claim 69, wherein X_3 is O and X_4 is N.

77. The method of Claim 69, wherein X_3 is S and X_4 is N.


5 78. The method of Claim 69, wherein Y is selected from the group
10 consisting of an optionally substituted phenyl, an optionally substituted
naphthyl, an optionally substituted anthracenyl, an optionally
substituted pyridyl, an optionally substituted furyl, an optionally
substituted thienyl, an optionally substituted pyrrolyl, an optionally
substituted oxazolyl, an optionally substituted imidazolyl, an optionally
substituted indolizinyl, an optionally substituted thiazolyl, an optionally
substituted isoxazolyl, an optionally substituted pyrazolyl, an optionally
substituted isothiazolyl, an optionally substituted pyridazinyl, an
15 optionally substituted pyrimidinyl, an optionally substituted pyrazinyl, an
optionally substituted triazinyl, an optionally substituted triazolyl, an
optionally substituted thiadiazolyl, an optionally substituted pyrazinyl,
an optionally substituted quinolinyl, an optionally substituted
isoquinolinyl, an optionally substituted indazolyl, an optionally
substituted benzoxazolyl, an optionally substituted benzofuryl, an
20 optionally substituted benzothiazolyl, an optionally substituted
indolizinyl, an optionally substituted imidazopyridinyl, an optionally
substituted isothiazolyl, an optionally substituted tetrazolyl, an
optionally substituted benzoxazolyl, an optionally substituted
benzothiazolyl, an optionally substituted benzothiadiazolyl, an
25 optionally substituted benzoxadiazolyl, an optionally substituted indolyl,
an optionally substituted tetrahydroindolyl, an optionally substituted
azaindolyl, an optionally substituted imidazopyridyl, an optionally
substituted quinazolinyl, an optionally substituted purinyl, an optionally
substituted pyrrolo[2,3]pyrimidyl, an optionally substituted
30 pyridopyrimidyl, an optionally substituted pyrazolo[3,4]pyrimidyl or an
optionally substituted benzo(b)thienyl.

79. The method of Claim 78, wherein Y is an optionally substituted phenyl,

an optionally substituted pyridinyl, an optionally substituted pyridazinyl, an optionally substituted isothiazolyl, an optionally substituted isoxazolyl, an optionally substituted oxadiazolyl, or an optionally substituted thiadiazolyl.

5

80. The method of Claim 79, wherein Y is selected from the group consisting of:

10

X_6 is CH or N;

X_7 is O or S;

R_{11} and R_{12} are each, independently, a substituent; and

R_{13} is H or a substituent.

15 81. The method of Claim 80, wherein:

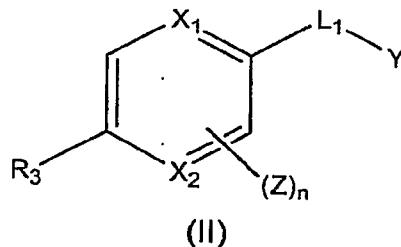
R_{11} and R_{12} are each, independently, selected from the group consisting of a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl; and

20 R_{13} is H, a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl.

25 82. The method of Claim 69, wherein R_2 , for each occurrence, is independently, selected from the group consisting of a halo, nitro, cyano, a haloalkyl, $-OR_5$, $-SR_5$, $-NR_6R_7$, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, $-C(O)NR_6R_7$, $-C(O)R_5$, $-C(O)OR_5$, -

C(O)SR_5 , $-\text{C(S)NR}_6\text{R}_7$, $-\text{C(S)R}_5$, $-\text{C(S)OR}_5$, $-\text{C(S)SR}_5$, $-\text{C(NR}_8\text{)NR}_6\text{R}_7$, $-$
 $\text{C(NR}_8\text{)R}_5$, $-\text{C(NR}_8\text{)OR}_5$, $-\text{C(NR}_8\text{)SR}_5$, $-\text{S(O)}_p\text{R}_5$, $-\text{S(O)}_p\text{NR}_6\text{R}_7$, $-$
 $\text{P(O)(OR}_5\text{)}_2$, $-\text{P(S)(OR}_5\text{)}_2$, $-\text{P(O)(OR}_5\text{)(SR}_5$, $-\text{P(S)(OR}_5\text{)(SR}_5$, $-$
 $\text{P(O)(SR}_5\text{)}_2$, or $-\text{P(S)(SR}_5\text{)}_2$, $-\text{OC(O)NR}_6\text{R}_7$, $-\text{OC(O)R}_5$, $-\text{OC(O)OR}_5$, $-$
5 OC(O)SR_5 , $-\text{NR}_5\text{C(O)NR}_6\text{R}_7$, $-\text{NR}_5\text{C(O)R}_5$, $-\text{NR}_5\text{C(O)OR}_5$, $-$
 $\text{NR}_5\text{C(O)SR}_5$, $-\text{SC(O)NR}_6\text{R}_7$, $-\text{SC(O)R}_5$, $-\text{SC(O)OR}_5$, $-\text{SC(O)SR}_5$, $-$
 $\text{OC(S)NR}_6\text{R}_7$, $-\text{OC(S)R}_5$, $-\text{OC(S)OR}_5$, $-\text{OC(S)SR}_5$, $-\text{NR}_5\text{C(S)NR}_6\text{R}_7$, $-$
 $\text{NR}_5\text{C(S)R}_5$, $-\text{NR}_5\text{C(S)OR}_5$, $-\text{NR}_5\text{C(S)SR}_5$, $-\text{SC(S)NR}_6\text{R}_7$, $-\text{SC(S)R}_5$, $-$
 SC(S)OR_5 , $-\text{SC(S)SR}_5$, $-\text{OC(NR}_8\text{)NR}_6\text{R}_7$, $-\text{OC(NR}_8\text{)R}_5$, $-\text{OC(NR}_8\text{)OR}_5$, $-$
10 $\text{OC(NR}_8\text{)SR}_5$, $-\text{NR}_5\text{C(NR}_8\text{)NR}_6\text{R}_7$, $-\text{NR}_5\text{C(NR}_8\text{)R}_5$, $-\text{NR}_5\text{C(NR}_8\text{)OR}_5$, $-$
 $\text{NR}_5\text{C(NR}_8\text{)SR}_5$, $-\text{OS(O)}_p\text{R}_5$, $-\text{NR}_5\text{S(O)}_p\text{R}_5$, $-\text{OP(O)(OR}_5\text{)}_2$, or $-$
 $\text{OP(S)(OR}_5\text{)}_2$.

83. The method of Claim 82, wherein R_2 , for each occurrence, is
15 independently selected from the group consisting of a halo, a lower alkoxy, or a lower alkyl, an oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, a thiadiazolyl, $-\text{C(O)N(R}_{19}\text{)}_2$, $-\text{C(O)R}_{20}$, $-\text{C(O)OR}_{20}$, wherein the oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, and a thiadiazolyl are optionally substituted with one or more substituents, independently, selected from a halo or a lower alkyl; and
20 R_{19} and R_{20} , for each occurrence are, independently, a lower alkyl.


25

84. The method of Claim 68, wherein the subject is human.

85. The method of Claim 84, wherein the ion channel is a Ca^{2+} -release-activated Ca^{2+} channel (CRAC).

30

86. A method of inhibiting T-cell and/or B-cell proliferation in response to an antigen, comprising administering to the cell a compound of structural formula (II):

or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein:

5

R_3 is selected from the group consisting of:

X_1 and X_2 are CH, CZ, or N, provided that at least one of X_1 or X_2 is CH or CZ;

X_3 is O or S;

10

X_5 is CH or N;

L_1 is a linker selected from the group consisting of $-NRC(R)_2-$, $-C(R)_2NR-$, $-C(O)-$, $-NR-C(O)-$, $-C(O)-NR-$, $-C(S)-$, $-C(NR_8)-$, $-NR-C(S)-$, $-C(S)-NR-$, $-NR-C(NR_8)-$, $-C(NR_8)-NR-$, $-NRC(O)NR-$, $-NRC(S)NR-$, $-NRC(NR_8)NR-$, $-S(O)_2NR-$, $-NRS(O)_2-$, $-NRS(O)_2NR-$, $-NRC(R)_2NR-$, $-CR=CR-$, $-C\equiv C-$, $-N=CR-$, $-CR=N-$, $-NR-N=CR-$, or $-CR=N-NR-$;

Y is an optionally substituted phenyl or an optionally substituted heteroaryl;

20

each Z is independently selected from the group consisting of a lower alkyl, a lower haloalkyl, a halo, a lower alkoxy, a lower alkyl sulfanyl, cyano, nitro, or lower haloalkoxy;

R is H or a lower alkyl;

25

R_9 is a halo, $-OR_5$, $-SR_5$, $-NR_6R_7$, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an

optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

5 R₁₀ is a halo, nitro, cyano, a haloalkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, -C(O)NR₆R₇, -C(O)R₅, -C(O)OR₅, -C(O)SR₅, -C(S)NR₆R₇, -C(S)R₅, -C(S)OR₅, -C(S)SR₅, -C(NR₈)NR₆R₇, -C(NR₈)R₅, -C(NR₈)OR₅, -C(NR₈)SR₅, -S(O)_pR₅, -S(O)_pNR₆R₇, -P(O)(OR₅)₂, -P(S)(OR₅)₂, -P(O)(OR₅)(SR₅), -P(S)(OR₅)(SR₅), -P(O)(SR₅)₂, or -P(S)(SR₅)₂;

10 R₅, for each occurrence, is independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

15 R₆ and R₇, for each occurrence are, independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl; or R₆ and R₇ taken together with the nitrogen to which they are attached are an optionally substituted heterocyclyl or optionally substituted heteroaryl;

20 R₈, for each occurrence, is independently -H, a halo, an alkyl, -OR₅, -NR₆R₇, -C(O)R₅, -C(O)OR₅, or -C(O)NR₆R₇; and
25 n is 0, 1 or 2.

30

87. The method of Claim 86, wherein T-cell and/or B-cell proliferation is inhibited in a subject by administering the compound to the subject.

88. The method of Claim 87, wherein L_1 is a linker selected from the group consisting of $-\text{NHCH}_2-$, $-\text{CH}_2\text{NH}-$, $-\text{C}(\text{O})-$, $-\text{NH}-\text{C}(\text{O})-$, $-\text{C}(\text{O})-\text{NH}-$, $-\text{C}(\text{S})-$, $-\text{NH}-\text{C}(\text{S})-$, $-\text{C}(\text{S})-\text{NH}-$, $-\text{NHC}(\text{O})\text{NH}-$, $-\text{NHC}(\text{S})\text{NH}-$, $-\text{S}(\text{O})_2\text{NH}-$, $-\text{NHS}(\text{O})_2-$, $-\text{CH}=\text{CH}-$, $-\text{NH}-\text{N}=\text{CH}-$, or $-\text{CH}=\text{N}-\text{NH}-$.

5 89. The method of Claim 88, wherein L_1 is $-\text{NH}-\text{C}(\text{O})-$, $-\text{C}(\text{O})-\text{NH}-$, $-\text{NHCH}_2-$, or $-\text{CH}_2\text{NH}-$.

10 90. The method of Claim 88, wherein n is 0.

91. The method of Claim 88, wherein X_1 and X_2 are both CH.

15 92. The method of Claim 88, wherein X_1 is N and X_2 is CH.

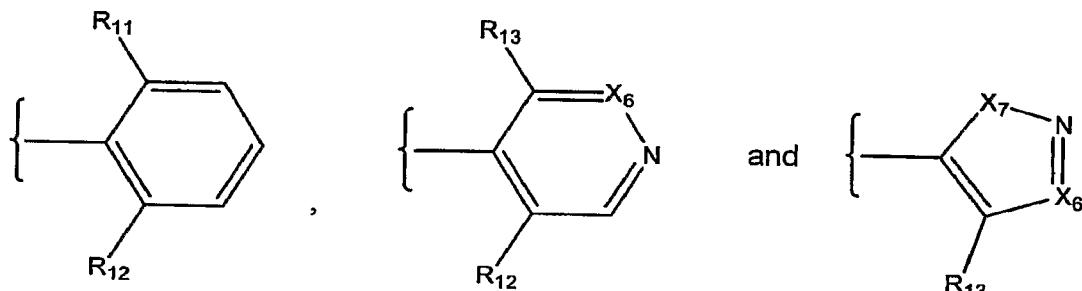
93. The method of Claim 88, wherein Y is selected from the group consisting of an optionally substituted phenyl, an optionally substituted naphthyl, an optionally substituted anthracenyl, an optionally substituted pyridyl, an optionally substituted furyl, an optionally substituted thieryl, an optionally substituted pyrrolyl, an optionally substituted oxazolyl, an optionally substituted imidazolyl, an optionally substituted indolizinyl, an optionally substituted thiazolyl, an optionally substituted isoxazolyl, an optionally substituted pyrazolyl, an optionally substituted isothiazolyl, an optionally substituted pyridazinyl, an optionally substituted pyrimidinyl, an optionally substituted pyrazinyl, an optionally substituted triazinyl, an optionally substituted triazolyl, an optionally substituted thiadiazolyl, an optionally substituted pyrazinyl, an optionally substituted quinolinyl, an optionally substituted isoquinolinyl, an optionally substituted indazolyl, an optionally substituted benzoxazolyl, an optionally substituted benzofuryl, an optionally substituted benzothiazolyl, an optionally substituted indolizinyl, an optionally substituted imidazopyridinyl, an optionally substituted isothiazolyl, an optionally substituted tetrazolyl, an

20

25

30

optionally substituted benzoxazolyl, an optionally substituted benzothiazolyl, an optionally substituted benzothiadiazolyl, an optionally substituted benzoxadiazolyl, an optionally substituted indolyl, an optionally substituted tetrahydroindolyl, an optionally substituted azaindolyl, an optionally substituted imidazopyridyl, an optionally substituted quinazolinyl, an optionally substituted purinyl, an optionally substituted pyrrolo[2,3]pyrimidyl, an optionally substituted pyridopyrimidyl, an optionally substituted pyrazolo[3,4]pyrimidyl or an optionally substituted benzo(b)thienyl.


5

10

94. The method of Claim 93, wherein Y is an optionally substituted phenyl, an optionally substituted pyridinyl, an optionally substituted pyridazinyl, an optionally substituted isothiazolyl, an optionally substituted isoxazolyl, an optionally substituted oxadiazolyl, or an optionally substituted thiadiazolyl.

15

95. The method of Claim 94, wherein Y is selected from the group consisting of:

20

;

X₆ is CH or N;

X₇ is O or S;

R₁₁ and R₁₂ are each, independently, a substituent; and

R₁₃ is H or a substituent.

25

96. The method of Claim 95, wherein:

R₁₁ and R₁₂ are each, independently, selected from the group consisting of a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl; and

R_{13} is H, a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxy.

97. The method of Claim 88, wherein:

5 R_9 is a halo, an optionally substituted alkoxy, an optionally substituted alkyl, an optionally substituted heterocyclyl, or an optionally substituted heteroaryl; and

10 R_{10} is a halo, a haloalkyl, an optionally substituted heterocyclyl, an optionally substituted heteroaryl, $-C(O)NR_6R_7$, $-C(O)R_5$, $-C(O)OR_5$, $-C(NR_8)NR_6R_7$, $-S(O)_pR_5$, or $-S(O)_pNR_6R_7$.

98. The method of Claim 97, wherein:

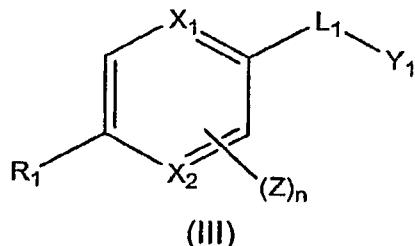
R_9 is a halo, a lower alkoxy, or a lower alkyl;

15 R_{10} is an oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, a thiadiazolyl, $-C(O)N(R_{19})_2$, $-C(O)R_{20}$, $-C(O)OR_{20}$, wherein the oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, and a thiadiazolyl are optionally substituted with one or more substituents, independently, selected from a halo or a lower alkyl; and

20 R_{19} and R_{20} , for each occurrence are, independently, a lower alkyl.

99. The method of Claim 98, wherein X_3 is O and X_5 is CH.

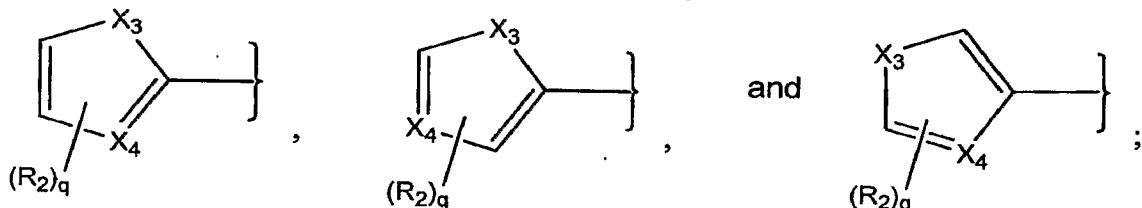
25


100. The method of Claim 98, wherein X_3 is S and X_5 is CH.

101. The method of Claim 98, wherein X_3 is O and X_5 is N.

30 102. The method of Claim 98, wherein X_3 is S and X_5 is N.

103. A method of inhibiting T-cell and/or B-cell proliferation in response to an antigen, comprising administering to the cell a compound of


structural formula (III):

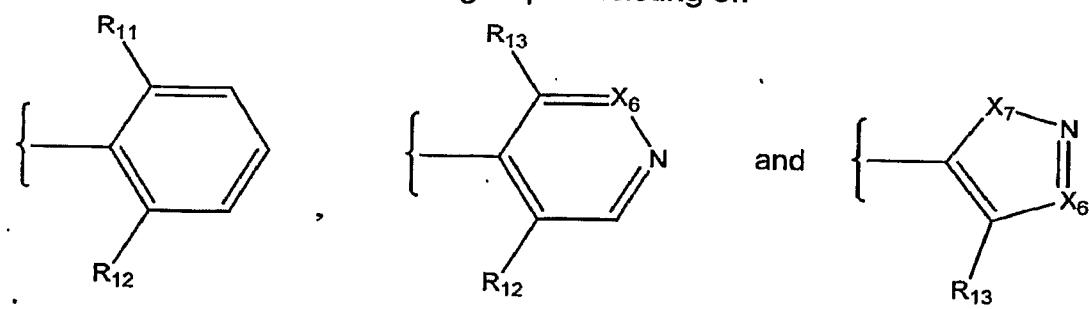
or a pharmaceutically acceptable salt, solvate, clathrate, or

5 prodrug thereof, wherein:

R_1 is selected from the group consisting of:

10 X_1 and X_2 are CH, CZ, or N, provided that at least one of X_1 or X_2 is CH or CZ;

X_3 is O or S;


X_4 is CH, CR₂, or N;

R_2 is a substituent;

15 L_1 is a linker selected from the group consisting of $-NRC(R)_2-$, $-$

$C(R)_2NR-$, $-C(O)-$, $-NR-C(O)-$, $-C(O)-NR-$, $-C(S)-$, $-C(NR_8)-$, $-NR-$
 $C(S)-$, $-C(S)-NR-$, $-NR-C(NR_8)-$, $-C(NR_8)-NR-$, $-NRC(O)NR-$, $-$
 $NRC(S)NR-$, $-NRC(NR_8)NR-$, $-S(O)_2NR-$, $-NRS(O)_2-$, $-NRS(O)_2NR-$, $-$
 $NRC(R)_2NR-$, $-CR=CR-$, $-C\equiv C-$, $-N=CR-$, $-CR=N-$, $-NR-N=CR-$, or $-$
 $CR=N-NR-$;

20 Y_1 is selected from the group consisting of:

X_6 is CH or N;

X_7 is O or S;

R_{11} and R_{12} are each, independently, a substituent, provided that R_{11} and R_{12} are not both halo when L_1 is $-NRS(O)_2-$;

R_{13} is H or a substituent;

5 each Z is independently selected from the group consisting of a lower alkyl, a lower haloalkyl, a halo, a lower alkoxy, a lower alkyl sufanyl, cyano, nitro, or lower haloalkoxy;

R is H or a lower alkyl;

10 R_8 , for each occurrence, is independently $-H$, a halo, an alkyl, $-OR_5$, $-NR_6R_7$, $-C(O)R_5$, $-C(O)OR_5$, or $-C(O)NR_6R_7$;

15 R_5 , for each occurrence, is independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

20 R_6 and R_7 , for each occurrence are, independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl; or R_6 and R_7 taken together with the nitrogen to which they are attached are an optionally substituted heterocycl or

25 optionally substituted heteroaryl;

q is 0, 1, or 2; and

n is 0, 1 or 2.

104. The method of Claim 103, wherein T-cell and/or B-cell proliferation is inhibited in a subject by administering the compound to the subject.

30 105. The method of Claim 104, wherein L_1 is a linker selected from the group consisting of $-NHCH_2-$, $-CH_2NH-$, $-C(O)-$, $-NH-C(O)-$, $-C(O)-$

NH-, -C(S)-, -NH-C(S)-, -C(S)-NH-, -NHC(O)NH-, -NHC(S)NH-, -S(O)₂NH-, -NHS(O)₂-, -CH=CH-, -NH-N=CH-, or -CH=N-NH-.

106. The method of Claim 105, wherein L₁ is -NH-C(O)-, -C(O)-NH-, -5 NHCH₂-, or -CH₂NH-.

107. The method of Claim 105, wherein n is 0.

108. The method of Claim 105, wherein X₁ and X₂ are both CH.

109. The method of Claim 105, wherein X₁ is N and X₂ is CH.

110. The method of Claim 105, wherein X₃ is O and X₄ is CH or CR₂.

15 111. The method of Claim 105, wherein X₃ is S and X₄ is CH or CR₂.

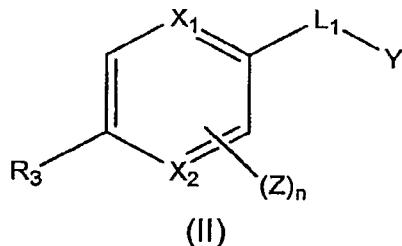
112. The method of Claim 105, wherein X₃ is O and X₄ is N.

113. The method of Claim 105, wherein X₃ is S and X₄ is N.

20 114. The method of Claim 105, wherein R₂, for each occurrence, is independently, selected from the group consisting of a halo, nitro, cyano, a haloalkyl, -OR₅, -SR₅, -NR₆R₇, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclil, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, -C(O)NR₆R₇, -C(O)R₅, -C(O)OR₅, -C(O)SR₅, -C(S)NR₆R₇, -C(S)R₅, -C(S)OR₅, -C(S)SR₅, -C(NR₈)NR₆R₇, -C(NR₈)R₅, -C(NR₈)OR₅, -C(NR₈)SR₅, -S(O)_pR₅, -S(O)_pNR₆R₇, -P(O)(OR₅)₂, -P(S)(OR₅)₂, -P(O)(OR₅)(SR₅), -P(S)(OR₅)(SR₅), -P(O)(SR₅)₂, or -P(S)(SR₅)₂, -OC(O)NR₆R₇, -OC(O)R₅, -OC(O)OR₅, -OC(O)SR₅, -NR₅C(O)NR₆R₇, -NR₅C(O)R₅, -NR₅C(O)OR₅, -

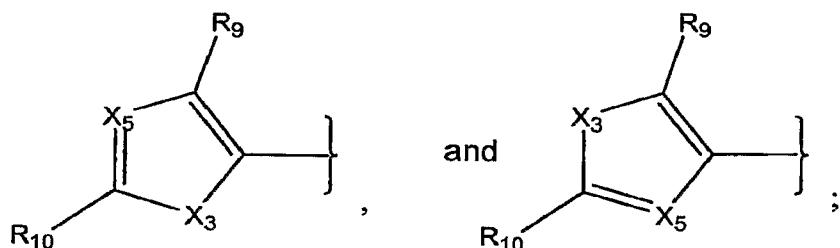
NR₅C(O)SR₅, -SC(O)NR₆R₇, -SC(O)R₅, -SC(O)OR₅, -SC(O)SR₅, -
OC(S)NR₆R₇, -OC(S)R₅, -OC(S)OR₅, -OC(S)SR₅, -NR₅C(S)NR₆R₇, -
NR₅C(S)R₅, -NR₅C(S)OR₅, -NR₅C(S)SR₅, -SC(S)NR₆R₇, -SC(S)R₅, -
SC(S)OR₅, -SC(S)SR₅, -OC(NR₈)NR₆R₇, -OC(NR₈)R₅, -OC(NR₈)OR₅, -
5 OC(NR₈)SR₅, -NR₅C(NR₈)NR₆R₇, -NR₅C(NR₈)R₅, -NR₅C(NR₈)OR₅, -
NR₅C(NR₈)SR₅, -OS(O)_pR₅, -NR₅S(O)_pR₅, -OP(O)(OR₅)₂, or -
OP(S)(OR₅)₂.

115. The method of Claim 114, wherein R₂, for each occurrence, is
10 independently selected from the group consisting of a halo, a lower
alkoxy, or a lower alkyl, an oxazolyl, a morpholinyl, a furanyl, a lower
haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an
isothiazolyl, a thiadiazolyl, -C(O)N(R₁₉)₂, -C(O)R₂₀, -C(O)OR₂₀, wherein
the oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an
15 isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, and a
thiadiazolyl are optionally substituted with one or more substituents,
independently, selected from a halo or a lower alkyl; and
R₁₉ and R₂₀, for each occurrence are, independently, a lower
alkyl.


20

116. The method of Claim 105, wherein:
R₁₁ and R₁₂ are each, independently, selected from the group
consisting of a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a
lower haloalkoxyl; and

25 R₁₃ is H, a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a
lower haloalkoxyl.


117. The method of Claim 87 or 104, wherein the subject is human.

30 118. A method for treating or preventing an immune disorder in a subject in
need thereof, comprising administering to the subject a compound of
structural formula (II):

or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein:

5 R_3 is selected from the group consisting of:

X_1 and X_2 are CH, CZ, or N, provided that at least one of X_1 or X_2 is CH or CZ;

10 X_3 is O or S;

10 X_5 is CH or N;

15 L_1 is a linker selected from the group consisting of $-NRC(R)_2-$, $-C(R)_2NR-$, $-C(O)-$, $-NR-C(O)-$, $-C(O)-NR-$, $-C(S)-$, $-C(NR_8)-$, $-NR-C(S)-$, $-C(S)-NR-$, $-NR-C(NR_8)-$, $-C(NR_8)-NR-$, $-NRC(O)NR-$, $-NRC(S)NR-$, $-NRC(NR_8)NR-$, $-S(O)_2NR-$, $-NRS(O)_2-$, $-NRS(O)_2NR-$, $-NRC(R)_2NR-$, $-CR=CR-$, $-C\equiv C-$, $-N=CR-$, $-CR=N-$, $-NR-N=CR-$, or $-CR=N-NR-$;

20 Y is an optionally substituted phenyl or an optionally substituted heteroaryl;

20 each Z is independently selected from the group consisting of a lower alkyl, a lower haloalkyl, a halo, a lower alkoxy, a lower alkyl sulfanyl, cyano, nitro, or lower haloalkoxy;

25 R is H or a lower alkyl;

25 R_9 is a halo, $-OR_5$, $-SR_5$, $-NR_6R_7$, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an

optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

5 R₁₀ is a halo, nitro, cyano, a haloalkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, -C(O)NR₆R₇, -C(O)R₅, -C(O)OR₅, -C(O)SR₅, -C(S)NR₆R₇, -C(S)R₅, -C(S)OR₅, -C(S)SR₅, -C(NR₈)NR₆R₇, -C(NR₈)R₅, -C(NR₈)OR₅, -C(NR₈)SR₅, -S(O)_pR₅, -S(O)_pNR₆R₇, -P(O)(OR₅)₂, -P(S)(OR₅)₂, -P(O)(OR₅)(SR₅), -P(S)(OR₅)(SR₅), -P(O)(SR₅)₂, or -P(S)(SR₅)₂;

10 R₅, for each occurrence, is independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

15 R₆ and R₇, for each occurrence are, independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl; or R₆ and R₇ taken together with the nitrogen to which they are attached are an optionally substituted heterocycl or optionally substituted heteroaryl;

20 R₈, for each occurrence, is independently -H, a halo, an alkyl, -OR₅, -NR₆R₇, -C(O)R₅, -C(O)OR₅, or -C(O)NR₆R₇; and

25 n is 0, 1 or 2.

30

119. The method of Claim 118, wherein L₁ is a linker selected from the group consisting of -NHCH₂-, -CH₂NH-, -C(O)-, -NH-C(O)-, -C(O)-

NH-, -C(S)-, -NH-C(S)-, -C(S)-NH-, -NHC(O)NH-, -NHC(S)NH-, -S(O)₂NH-, -NHS(O)₂-, -CH=CH-, -NH-N=CH-, or -CH=N-NH-.

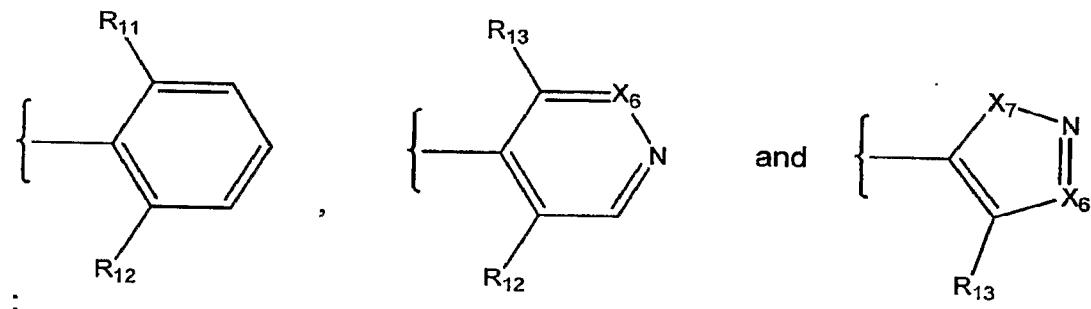
120. The method of Claim 119, wherein L₁ is -NH-C(O)-, -C(O)-NH-, -5 NHCH₂-, or -CH₂NH-.

121. The method of Claim 119, wherein n is 0.

122. The method of Claim 119, wherein X₁ and X₂ are both CH.

10 123. The method of Claim 119, wherein X₁ is N and X₂ is CH.

124. The method of Claim 119, wherein Y is selected from the group consisting of an optionally substituted phenyl, an optionally substituted 15 naphthyl, an optionally substituted anthracenyl, an optionally substituted pyridyl, an optionally substituted furyl, an optionally substituted thienyl, an optionally substituted pyrrolyl, an optionally substituted oxazolyl, an optionally substituted imidazolyl, an optionally substituted indolizinyl, an optionally substituted thiazolyl, an optionally substituted isoxazolyl, an optionally substituted pyrazolyl, an optionally substituted isothiazolyl, an optionally substituted pyridazinyl, an 20 optionally substituted pyrimidinyl, an optionally substituted pyrazinyl, an optionally substituted triazinyl, an optionally substituted triazolyl, an optionally substituted thiadiazolyl, an optionally substituted pyrazinyl, an optionally substituted quinolinyl, an optionally substituted isoquinolinyl, an optionally substituted indazolyl, an optionally substituted benzoxazolyl, an optionally substituted benzofuryl, an 25 optionally substituted benzothiazolyl, an optionally substituted indolizinyl, an optionally substituted imidazopyridinyl, an optionally substituted isothiazolyl, an optionally substituted tetrazolyl, an optionally substituted benzoxazolyl, an optionally substituted benzothiazolyl, an optionally substituted benzothiadiazolyl, an 30 optionally substituted benzoxadiazolyl, an optionally substituted indolyl,


an optionally substituted tetrahydroindolyl, an optionally substituted azaindolyl, an optionally substituted imidazopyridyl, an optionally substituted quinazolinyl, an optionally substituted purinyl, an optionally substituted pyrrolo[2,3]pyrimidyl, an optionally substituted pyridopyrimidyl, an optionally substituted pyrazolo[3,4]pyrimidyl or an optionally substituted benzo(b)thienyl.

5

125. The method of Claim 124, wherein Y is an optionally substituted phenyl, an optionally substituted pyridinyl, an optionally substituted pyridazinyl, an optionally substituted isothiazolyl, an optionally substituted isoxazolyl, an optionally substituted oxadiazolyl, or an optionally substituted thiadiazolyl.

10

126. The method of Claim 125, wherein Y is selected from the group 15 consisting of:

20 X_6 is CH or N;

X_7 is O or S;

R_{11} and R_{12} are each, independently, a substituent; and

25 R_{13} is H or a substituent.

127. The method of Claim 126, wherein:

R_{11} and R_{12} are each, independently, selected from the group 25 consisting of a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl; and

R_{13} is H, a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl.

128. The method of Claim 119, wherein:

R₉ is a halo, an optionally substituted alkoxy, an optionally substituted alkyl, an optionally substituted heterocycl, or an optionally substituted heteroaryl; and

5 R₁₀ is a halo, a haloalkyl, an optionally substituted heterocycl, an optionally substituted heteroaryl, -C(O)NR₆R₇, -C(O)R₅, -C(O)OR₅, -C(NR₈)NR₆R₇, -S(O)_pR₅, or -S(O)_pNR₆R₇.

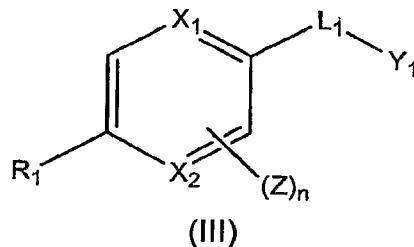
129. The method of Claim 128, wherein:

10 R₉ is a halo, a lower alkoxy, or a lower alkyl;

R₁₀ is an oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, a thiadiazolyl, -C(O)N(R₁₉)₂, -C(O)R₂₀, -C(O)OR₂₀, wherein the oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, and a thiadiazolyl are optionally substituted with one or more substituents, independently, selected from a halo or a lower alkyl; and

15 R₁₉ and R₂₀, for each occurrence are, independently, a lower alkyl.

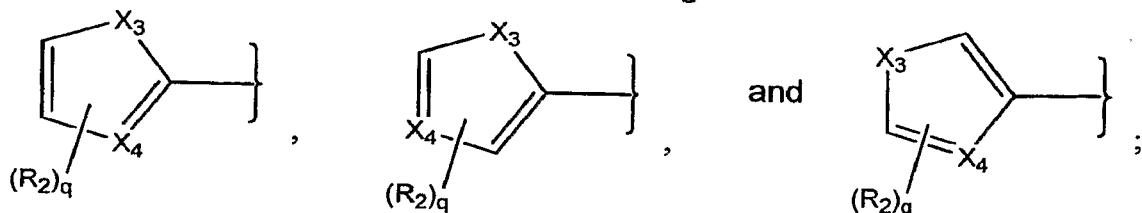
20


130. The method of Claim 119, wherein X₃ is O and X₅ is CH.

131. The method of Claim 119, wherein X₃ is S and X₅ is CH.

25 132. The method of Claim 119, wherein X₃ is O and X₅ is N.

133. The method of Claim 119, wherein X₃ is S and X₅ is N.


30 134. A method for treating or preventing an immune disorder in a subject in need thereof, comprising administering to the subject a compound of structural formula (III):

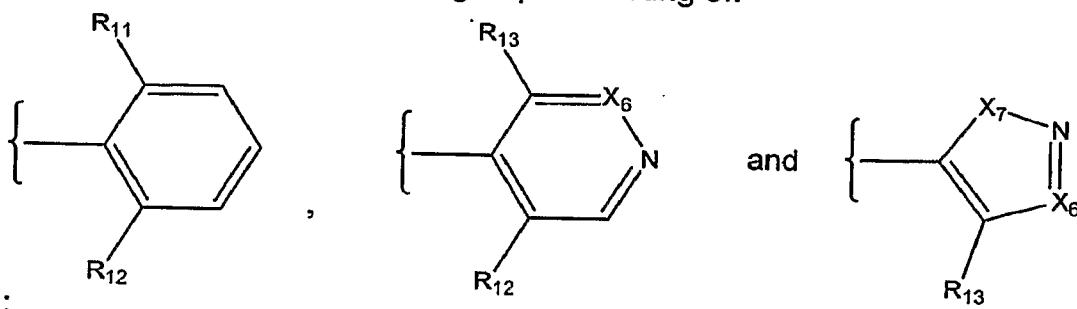
or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein:

5

R_1 is selected from the group consisting of:

X_1 and X_2 are CH, CZ, or N, provided that at least one of X_1 or X_2 is CH or CZ;

10


X_3 is O or S;

X_4 is CH, CR₂, or N;

R_2 is a substituent;

15 L_1 is a linker selected from the group consisting of $-NRC(R)_2-$, $-C(R)_2NR-$, $-C(O)-$, $-NR-C(O)-$, $-C(O)-NR-$, $-C(S)-$, $-C(NR_8)-$, $-NR-C(S)-$, $-C(S)-NR-$, $-NR-C(NR_8)-$, $-C(NR_8)-NR-$, $-NRC(O)NR-$, $-NRC(S)NR-$, $-NRC(NR_8)NR-$, $-S(O)_2NR-$, $-NRS(O)_2-$, $-NRS(O)_2NR-$, $-NRC(R)_2NR-$, $-CR=CR-$, $-C\equiv C-$, $-N=CR-$, $-CR=N-$, $-NR-N=CR-$, or $-CR=N-NR-$;

20 Y_1 is selected from the group consisting of:

X_6 is CH or N;

X_7 is O or S;

R₁₁ and R₁₂ are each, independently, a substituent, provided that R₁₁ and R₁₂ are not both halo when L₁ is -NRS(O)₂-;
5 R₁₃ is H or a substituent;
each Z is independently selected from the group consisting of a lower alkyl, a lower haloalkyl, a halo, a lower alkoxy, a lower alkyl sufanyl, cyano, nitro, or lower haloalkoxy;

R is H or a lower alkyl;

10 R₈, for each occurrence, is independently -H, a halo, an alkyl, -OR₅, -NR₆R₇, -C(O)R₅, -C(O)OR₅, or -C(O)NR₆R₇;

15 R₅, for each occurrence, is independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

20 R₆ and R₇, for each occurrence are, independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted heterocycl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl; or R₆ and R₇ taken together with the nitrogen to which they are attached are an optionally substituted heterocycl or optionally substituted heteroaryl;

25 q is 0, 1, or 2; and

n is 0, 1 or 2.

135. The method of Claim 134, wherein L₁ is a linker selected from the group consisting of -NHCH₂-, -CH₂NH-, -C(O)-, -NH-C(O)-, -C(O)-NH-, -C(S)-, -NH-C(S)-, -C(S)-NH-, -NHC(O)NH-, -NHC(S)NH-, -S(O)₂NH-, -NHS(O)₂-, -CH=CH-, -NH-N=CH-, or -CH=N-NH-.

30 136. The method of Claim 135, wherein L₁ is -NH-C(O)-, -C(O)-NH-, -

NHCH₂-, or -CH₂NH-.

137. The method of Claim 135, wherein n is 0.

5 138. The method of Claim 135, wherein X₁ and X₂ are both CH.

139. The method of Claim 135, wherein X₁ is N and X₂ is CH.

140. The method of Claim 135, wherein X₃ is O and X₄ is CH or CR₂.

10

141. The method of Claim 135, wherein X₃ is S and X₄ is CH or CR₂.

142. The method of Claim 135, wherein X₃ is O and X₄ is N.

15 143. The method of Claim 135, wherein X₃ is S and X₄ is N.

144. The method of Claim 135, wherein R₂, for each occurrence, is independently, selected from the group consisting of a halo, nitro, cyano, a haloalkyl, -OR₅, -SR₅, -NR₆R₇, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclil, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, -C(O)NR₆R₇, -C(O)R₅, -C(O)OR₅, -C(O)SR₅, -C(S)NR₆R₇, -C(S)R₅, -C(S)OR₅, -C(S)SR₅, -C(NR₈)NR₆R₇, -C(NR₈)R₅, -C(NR₈)OR₅, -C(NR₈)SR₅, -S(O)_pR₅, -S(O)_pNR₆R₇, -P(O)(OR₅)₂, -P(S)(OR₅)₂, -P(O)(OR₅)(SR₅), -P(S)(OR₅)(SR₅), -P(O)(SR₅)₂, or -P(S)(SR₅)₂, -OC(O)NR₆R₇, -OC(O)R₅, -OC(O)OR₅, -OC(O)SR₅, -NR₅C(O)NR₆R₇, -NR₅C(O)R₅, -NR₅C(O)OR₅, -NR₅C(O)SR₅, -SC(O)NR₆R₇, -SC(O)R₅, -SC(O)OR₅, -SC(O)SR₅, -OC(S)NR₆R₇, -OC(S)R₅, -OC(S)OR₅, -OC(S)SR₅, -NR₅C(S)NR₆R₇, -NR₅C(S)R₅, -NR₅C(S)OR₅, -NR₅C(S)SR₅, -SC(S)NR₆R₇, -SC(S)R₅, -SC(S)OR₅, -SC(S)SR₅, -OC(NR₈)NR₆R₇, -OC(NR₈)R₅, -OC(NR₈)OR₅, -

25

30 -NR₅C(O)SR₅, -SC(O)NR₆R₇, -SC(O)R₅, -SC(O)OR₅, -SC(O)SR₅, -

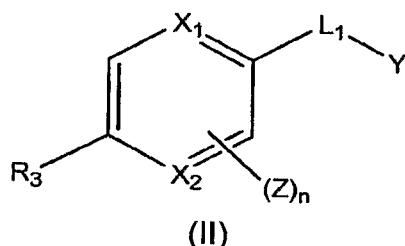
OC(NR₈)SR₅, -NR₅C(NR₈)NR₆R₇, -NR₅C(NR₈)R₅, -NR₅C(NR₈)OR₅, -NR₅C(NR₈)SR₅, -OS(O)_pR₅, -NR₅S(O)_pR₅, -OP(O)(OR₅)₂, or -OP(S)(OR₅)₂.

5 145. The method of Claim 144, wherein R₂, for each occurrence, is
independently selected from the group consisting of a halo, a lower
alkoxy, or a lower alkyl, an oxazolyl, a morpholinyl, a furanyl, a lower
haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an
isothiazolyl, a thiadiazolyl, -C(O)N(R₁₉)₂, -C(O)R₂₀, -C(O)OR₂₀, wherein
10 the oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an
isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, and a
thiadiazolyl are optionally substituted with one or more substituents,
independently, selected from a halo or a lower alkyl; and
R₁₉ and R₂₀, for each occurrence are, independently, a lower
15 alkyl.

146. The method of Claim 135, wherein:

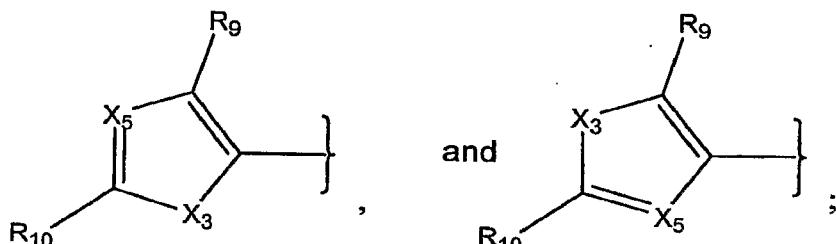
R₁₁ and R₁₂ are each, independently, selected from the group
consisting of a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a
20 lower haloalkoxyl; and

R₁₃ is H, a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a
lower haloalkoxyl.


147. The method of Claim 118 and 134, wherein the subject is human.

25

148. The method of Claim 118 and 134, wherein the disorder is selected
from the group consisting of multiple sclerosis, myasthenia gravis,
Guillain-Barré, autoimmune uveitis, autoimmune hemolytic anemia,
pernicious anemia, autoimmune thrombocytopenia, temporal arteritis,
30 anti-phospholipid syndrome, vasculitides such as Wegener's
granulomatosis, Behcet's disease, psoriasis, dermatitis herpetiformis,
pemphigus vulgaris, vitiligo, Crohn's disease, ulcerative colitis, primary
biliary cirrhosis, autoimmune hepatitis, Type 1 or immune-mediated


5 diabetes mellitus, Grave's disease, Hashimoto's thyroiditis, autoimmune oophoritis and orchitis, autoimmune disorder of the adrenal gland, rheumatoid arthritis, systemic lupus erythematosus, scleroderma, polymyositis, dermatomyositis, ankylosing spondylitis, and Sjogren's syndrome.

149. A method for treating or preventing an inflammatory condition in a subject in need thereof, comprising administering to the subject a compound of structural formula (II):

or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein:

R_3 is selected from the group consisting of:

X_1 and X_2 are CH, CZ, or N, provided that at least one of X_1 or X_2 is CH or CZ;

X_3 is O or S;

X_5 is CH or N;

20 L_1 is a linker selected from the group consisting of $-NRC(R)_2-$, $-C(R)_2NR-$, $-C(O)-$, $-NR-C(O)-$, $-C(O)-NR-$, $-C(S)-$, $-C(NR_8)-$, $-NR-C(S)-$, $-C(S)-NR-$, $-NR-C(NR_8)-$, $-C(NR_8)-NR-$, $-NRC(O)NR-$, $-NRC(S)NR-$, $-NRC(NR_8)NR-$, $-S(O)_2NR-$, $-NRS(O)_2-$, $-NRS(O)_2NR-$, $-NRC(R)_2NR-$, $-CR=CR-$, $-C\equiv C-$, $-N=CR-$, $-CR=N-$, $-NR-N=CR-$, or $-CR=N-NR-$;

25 Y is an optionally substituted phenyl or an optionally substituted

heteroaryl;

each Z is independently selected from the group consisting of a lower alkyl, a lower haloalkyl, a halo, a lower alkoxy, a lower alkyl sufanyl, cyano, nitro, or lower haloalkoxy;

5 R is H or a lower alkyl;

R₉ is a halo, -OR₅, -SR₅, -NR₆R₇, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an 10 optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

R₁₀ is a halo, nitro, cyano, a haloalkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally

15 substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, -C(O)NR₆R₇, -C(O)R₅, -C(O)OR₅, -C(O)SR₅, -C(S)NR₆R₇, -C(S)R₅, -C(S)OR₅, -C(S)SR₅, -C(NR₈)NR₆R₇, -C(NR₈)R₅, -C(NR₈)OR₅, -C(NR₈)SR₅, -S(O)_pR₅, -S(O)_pNR₆R₇, -P(O)(OR₅)₂, -P(S)(OR₅)₂, -P(O)(OR₅)(SR₅), -P(S)(OR₅)(SR₅), -P(O)(SR₅)₂, or - 20 P(S)(SR₅)₂;

25 R₅, for each occurrence, is independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

30 R₆ and R₇, for each occurrence are, independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl

heteraralkyl; or R₆ and R₇ taken together with the nitrogen to which they are attached are an optionally substituted heterocycl or optionally substituted heteroaryl;

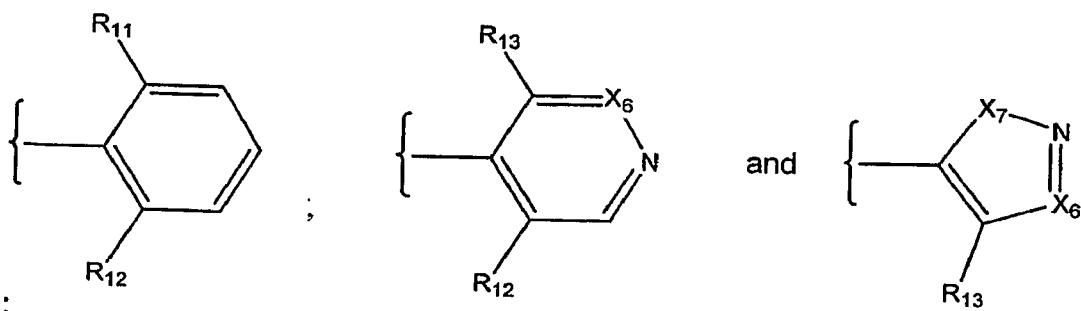
5 R₈, for each occurrence, is independently -H, a halo, an alkyl, -OR₅, -NR₆R₇, -C(O)R₅, -C(O)OR₅, or -C(O)NR₆R₇; and n is 0, 1 or 2.

150. The method of Claim 149, wherein L₁ is a linker selected from the group consisting of -NHCH₂-, -CH₂NH-, -C(O)-, -NH-C(O)-, -C(O)-NH-, -C(S)-, -NH-C(S)-, -C(S)-NH-, -NHC(O)NH-, -NHC(S)NH-, -S(O)₂NH-, -NHS(O)₂-, -CH=CH-, -NH-N=CH-, or -CH=N-NH-.

151. The method of Claim 150, wherein L₁ is -NH-C(O)-, -C(O)-NH-, -NHCH₂-, or -CH₂NH-.

152. The method of Claim 150, wherein n is 0.

153. The method of Claim 150, wherein X₁ and X₂ are both CH.


20 154. The method of Claim 150, wherein X₁ is N and X₂ is CH.

155. The method of Claim 150, wherein Y is selected from the group consisting of an optionally substituted phenyl, an optionally substituted naphthyl, an optionally substituted anthracenyl, an optionally substituted pyridyl, an optionally substituted furyl, an optionally substituted thienyl, an optionally substituted pyrrolyl, an optionally substituted oxazolyl, an optionally substituted imidazolyl, an optionally substituted indolizinyl, an optionally substituted thiazolyl, an optionally substituted isoxazolyl, an optionally substituted pyrazolyl, an optionally substituted isothiazolyl, an optionally substituted pyridazinyl, an optionally substituted pyrimidinyl, an optionally substituted pyrazinyl, an optionally substituted triazinyl, an optionally substituted triazolyl, an optionally substituted thiadiazolyl, an optionally substituted pyrazinyl,

an optionally substituted quinolinyl, an optionally substituted isoquinolinyl, an optionally substituted indazolyl, an optionally substituted benzoxazolyl, an optionally substituted benzofuryl, an optionally substituted benzothiazolyl, an optionally substituted indolizinyl, an optionally substituted imidazopyridinyl, an optionally substituted isothiazolyl, an optionally substituted tetrazolyl, an optionally substituted benzoxazolyl, an optionally substituted benzothiazolyl, an optionally substituted benzothiadiazolyl, an optionally substituted benzoxadiazolyl, an optionally substituted indolyl, an optionally substituted tetrahydroindolyl, an optionally substituted azaindolyl, an optionally substituted imidazopyridyl, an optionally substituted quinazolinyl, an optionally substituted purinyl, an optionally substituted pyrrolo[2,3]pyrimidyl, an optionally substituted pyridopyrimidyl, an optionally substituted pyrazolo[3,4]pyrimidyl or an 5
10
15
optionally substituted benzo(b)thienyl.

156. The method of Claim 155, wherein Y is an optionally substituted phenyl, an optionally substituted pyridinyl, an optionally substituted pyridazinyl, an optionally substituted isothiazolyl, an optionally substituted isoxazolyl, an optionally substituted oxadiazolyl, or an 20
optionally substituted thiadiazolyl.

157. The method of Claim 156, wherein Y is selected from the group consisting of:

X₆ is CH or N;

X₇ is O or S;

R₁₁ and R₁₂ are each, independently, a substituent; and

R_{13} is H or a substituent.

158. The method of Claim 157, wherein:

5 R_{11} and R_{12} are each, independently, selected from the group consisting of a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl; and

R_{13} is H, a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl.

10 159. The method of Claim 150, wherein:

R_9 is a halo, an optionally substituted alkoxy, an optionally substituted alkyl, an optionally substituted heterocycll, or an optionally substituted heteroaryl; and

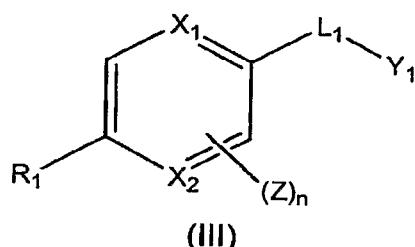
15 R_{10} is a halo, a haloalkyl, an optionally substituted heterocycll, an optionally substituted heteroaryl, $-C(O)NR_6R_7$, $-C(O)R_5$, $-C(O)OR_5$, $-C(NR_8)NR_6R_7$, $-S(O)_pR_5$, or $-S(O)_pNR_6R_7$.

160. The method of Claim 159, wherein:

20 R_9 is a halo, a lower alkoxy, or a lower alkyl;

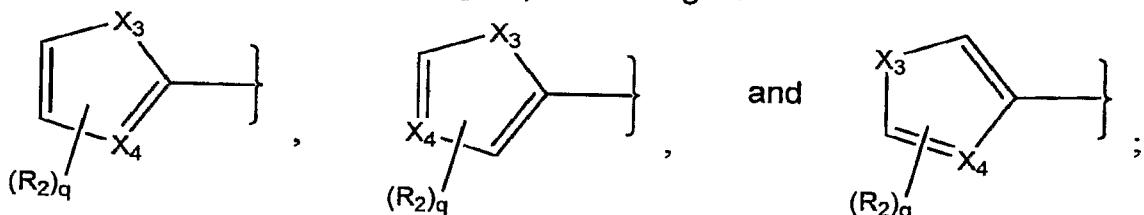
25 R_{10} is an oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, a thiadiazolyl, $-C(O)N(R_{19})_2$, $-C(O)R_{20}$, $-C(O)OR_{20}$, wherein the oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, and a thiadiazolyl are optionally substituted with one or more substituents, independently, selected from a halo or a lower alkyl; and

R_{19} and R_{20} , for each occurrence are, independently, a lower alkyl.


30 161. The method of Claim 160, wherein X_3 is O and X_5 is CH.

162. The method of Claim 160, wherein X_3 is S and X_5 is CH.

163. The method of Claim 160, wherein X_3 is O and X_5 is N.

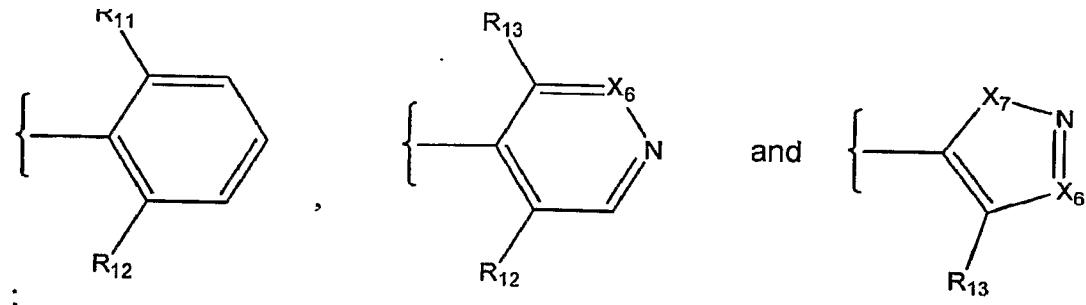

164. The method of Claim 160, wherein X_3 is S and X_5 is N.

5 165. A method for treating or preventing an inflammatory condition in a subject in need thereof, comprising administering to the subject a compound of structural formula (III):

10 or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein:

R_1 is selected from the group consisting of:

15 X_1 and X_2 are CH, CZ, or N, provided that at least one of X_1 or X_2 is CH or CZ;


X_3 is O or S;

X_4 is CH, CR₂, or N;

R_2 is a substituent;

20 L_1 is a linker selected from the group consisting of $-NRC(R)_2-$, $-C(R)_2NR-$, $-C(O)-$, $-NR-C(O)-$, $-C(O)-NR-$, $-C(S)-$, $-C(NR_8)-$, $-NR-C(S)-$, $-C(S)-NR-$, $-NR-C(NR_8)-$, $-C(NR_8)-NR-$, $-NRC(O)NR-$, $-NRC(S)NR-$, $-NRC(NR_8)NR-$, $-S(O)_2NR-$, $-NRS(O)_2-$, $-NRS(O)_2NR-$, $-NRC(R)_2NR-$, $-CR=CR-$, $-C\equiv C-$, $-N=CR-$, $-CR=N-$, $-NR-N=CR-$, or $-CR=N-NR-$;

25 Y_1 is selected from the group consisting of:

X₆ is CH or N;

X₇ is O or S;

5 R₁₁ and R₁₂ are each, independently, a substituent, provided that R₁₁ and R₁₂ are not both halo when L₁ is -NRS(O)₂⁻;

R₁₃ is H or a substituent;

each Z is independently selected from the group consisting of a lower alkyl, a lower haloalkyl, a halo, a lower alkoxy, a lower alkyl 10 sufanyl, cyano, nitro, or lower haloalkoxy;

R is H or a lower alkyl;

R₈, for each occurrence, is independently -H, a halo, an alkyl, -OR₅, -NR₆R₇, -C(O)R₅, -C(O)OR₅, or -C(O)NR₆R₇;

15 R₅, for each occurrence, is independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

20 R₆ and R₇, for each occurrence are, independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl; or R₆ and R₇ taken together with the nitrogen to which 25 they are attached are an optionally substituted heterocycl or optionally substituted heteroaryl;

q is 0, 1, or 2; and

n is 0, 1 or 2.

166. The method of Claim 165, wherein L₁ is a linker selected from the group consisting of -NHCH₂-, -CH₂NH-, -C(O)-, -NH-C(O)-, -C(O)-NH-, -C(S)-, -NH-C(S)-, -C(S)-NH-, -NHC(O)NH-, -NHC(S)NH-, -S(O)₂NH-, -NHS(O)₂-, -CH=CH-, -NH-N=CH-, or -CH=N-NH-.

5 167. The method of Claim 166, wherein L₁ is -NH-C(O)-, -C(O)-NH-, -NHCH₂-, or -CH₂NH-.

10

168. The method of Claim 166, wherein n is 0.

169. The method of Claim 166, wherein X₁ and X₂ are both CH.

15 170. The method of Claim 166, wherein X₁ is N and X₂ is CH.

171. The method of Claim 166, wherein X₃ is O and X₄ is CH or CR₂.

172. The method of Claim 166, wherein X₃ is S and X₄ is CH or CR₂.

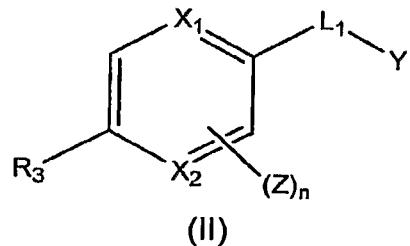
20

173. The method of Claim 166, wherein X₃ is O and X₄ is N.

174. The method of Claim 166, wherein X₃ is S and X₄ is N.

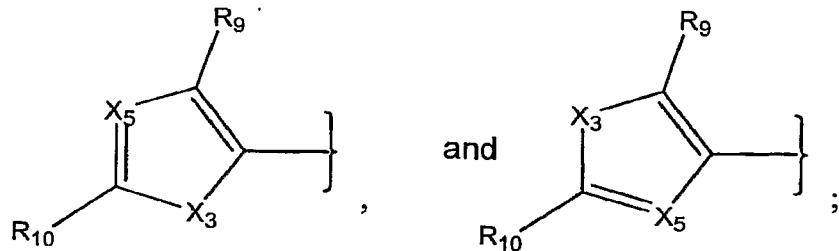
25 175. The method of Claim 166, wherein R₂, for each occurrence, is independently, selected from the group consisting of a halo, nitro, cyano, a haloalkyl, -OR₅, -SR₅, -NR₆R₇, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclil, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, -C(O)NR₆R₇, -C(O)R₅, -C(O)OR₅, -C(O)SR₅, -C(S)NR₆R₇, -C(S)R₅, -C(S)OR₅, -C(S)SR₅, -C(NR₈)NR₆R₇, -

$\text{C}(\text{NR}_8)\text{R}_5$, $-\text{C}(\text{NR}_8)\text{OR}_5$, $-\text{C}(\text{NR}_8)\text{SR}_5$, $-\text{S}(\text{O})_p\text{R}_5$, $-\text{S}(\text{O})_p\text{NR}_6\text{R}_7$, $-\text{P}(\text{O})(\text{OR}_5)_2$, $-\text{P}(\text{S})(\text{OR}_5)_2$, $-\text{P}(\text{O})(\text{OR}_5)(\text{SR}_5)$, $-\text{P}(\text{S})(\text{OR}_5)(\text{SR}_5)$, $-\text{P}(\text{O})(\text{SR}_5)_2$, or $-\text{P}(\text{S})(\text{SR}_5)_2$, $-\text{OC}(\text{O})\text{NR}_6\text{R}_7$, $-\text{OC}(\text{O})\text{R}_5$, $-\text{OC}(\text{O})\text{OR}_5$, $-\text{OC}(\text{O})\text{SR}_5$, $-\text{NR}_5\text{C}(\text{O})\text{NR}_6\text{R}_7$, $-\text{NR}_5\text{C}(\text{O})\text{R}_5$, $-\text{NR}_5\text{C}(\text{O})\text{OR}_5$, $-\text{NR}_5\text{C}(\text{O})\text{SR}_5$, $-\text{SC}(\text{O})\text{NR}_6\text{R}_7$, $-\text{SC}(\text{O})\text{R}_5$, $-\text{SC}(\text{O})\text{OR}_5$, $-\text{SC}(\text{O})\text{SR}_5$, $-\text{OC}(\text{S})\text{NR}_6\text{R}_7$, $-\text{OC}(\text{S})\text{R}_5$, $-\text{OC}(\text{S})\text{OR}_5$, $-\text{OC}(\text{S})\text{SR}_5$, $-\text{NR}_5\text{C}(\text{S})\text{NR}_6\text{R}_7$, $-\text{NR}_5\text{C}(\text{S})\text{R}_5$, $-\text{NR}_5\text{C}(\text{S})\text{OR}_5$, $-\text{NR}_5\text{C}(\text{S})\text{SR}_5$, $-\text{SC}(\text{S})\text{NR}_6\text{R}_7$, $-\text{SC}(\text{S})\text{R}_5$, $-\text{SC}(\text{S})\text{OR}_5$, $-\text{SC}(\text{S})\text{SR}_5$, $-\text{OC}(\text{NR}_8)\text{NR}_6\text{R}_7$, $-\text{OC}(\text{NR}_8)\text{R}_5$, $-\text{OC}(\text{NR}_8)\text{OR}_5$, $-\text{OC}(\text{NR}_8)\text{SR}_5$, $-\text{NR}_5\text{C}(\text{NR}_8)\text{NR}_6\text{R}_7$, $-\text{NR}_5\text{C}(\text{NR}_8)\text{R}_5$, $-\text{NR}_5\text{C}(\text{NR}_8)\text{OR}_5$, $-\text{NR}_5\text{C}(\text{NR}_8)\text{SR}_5$, $-\text{OS}(\text{O})_p\text{R}_5$, $-\text{NR}_5\text{S}(\text{O})_p\text{R}_5$, $-\text{OP}(\text{O})(\text{OR}_5)_2$, or $-\text{OP}(\text{S})(\text{OR}_5)_2$.


176. The method of Claim 175, wherein R_2 , for each occurrence, is independently selected from the group consisting of a halo, a lower alkoxy, or a lower alkyl, an oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, a thiadiazolyl, $-\text{C}(\text{O})\text{N}(\text{R}_{19})_2$, $-\text{C}(\text{O})\text{R}_{20}$, $-\text{C}(\text{O})\text{OR}_{20}$, wherein the oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, and a thiadiazolyl are optionally substituted with one or more substituents, independently, selected from a halo or a lower alkyl; and
 R_{19} and R_{20} , for each occurrence are, independently, a lower alkyl.

177. The method of Claim 166, wherein:
 R_{11} and R_{12} are each, independently, selected from the group consisting of a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl; and
 R_{13} is H, a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl.

178. The method of Claim 149 or 165, wherein the subject is human.


179. The method according to claim 149 or 165, wherein the disorder is selected from transplant rejection, skin graft rejection, arthritis, rheumatoid arthritis, osteoarthritis and bone diseases associated with increased bone resorption; inflammatory bowel disease, ileitis, ulcerative colitis, Barrett's syndrome, Crohn's disease; asthma, adult respiratory distress syndrome, chronic obstructive airway disease; corneal dystrophy, trachoma, onchocerciasis, uveitis, sympathetic ophthalmitis, endophthalmitis; gingivitis, periodontitis; tuberculosis; leprosy; uremic complications, glomerulonephritis, nephrosis; scleroderatitis, psoriasis, eczema; chronic demyelinating diseases of the nervous system, multiple sclerosis, AIDS-related neurodegeneration, Alzheimer's disease, infectious meningitis, encephalomyelitis, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis viral or autoimmune encephalitis; autoimmune disorders, immune-complex vasculitis, systemic lupus and erythematoses; systemic lupus erythematosus (SLE); cardiomyopathy, ischemic heart disease hypercholesterolemia, atherosclerosis, preeclampsia; chronic liver failure, brain and spinal cord trauma, and cancer.

180. A method for suppressing the immune system of a subject in need thereof, comprising administering to the subject a compound of structural formula (II):

or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein:

R_3 is selected from the group consisting of:

X_1 and X_2 are CH, CZ, or N, provided that at least one of X_1 or X_2 is CH or CZ;

5 X_3 is O or S;

X_5 is CH or N;

10 L_1 is a linker selected from the group consisting of $-NRC(R)_2-$, $-C(R)_2NR-$, $-C(O)-$, $-NR-C(O)-$, $-C(O)-NR-$, $-C(S)-$, $-C(NR_8)-$, $-NR-C(S)-$, $-C(S)-NR-$, $-NR-C(NR_8)-$, $-C(NR_8)-NR-$, $-NRC(O)NR-$, $-NRC(S)NR-$, $-NRC(NR_8)NR-$, $-S(O)_2NR-$, $-NRS(O)_2-$, $-NRS(O)_2NR-$, $-NRC(R)_2NR-$, $-CR=CR-$, $-C\equiv C-$, $-N=CR-$, $-CR=N-$, $-NR-N=CR-$, or $-CR=N-NR-$;

15 Y is an optionally substituted phenyl or an optionally substituted heteroaryl;

20 each Z is independently selected from the group consisting of a lower alkyl, a lower haloalkyl, a halo, a lower alkoxy, a lower alkyl sulfanyl, cyano, nitro, or lower haloalkoxy;

25 R is H or a lower alkyl;

20 R_9 is a halo, $-OR_5$, $-SR_5$, $-NR_6R_7$, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

25 R_{10} is a halo, nitro, cyano, a haloalkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, $-C(O)NR_6R_7$, $-C(O)R_5$, $-C(O)OR_5$, $-C(O)SR_5$, $-$

C(S)NR₆R₇, -C(S)R₅, -C(S)OR₅, -C(S)SR₅, -C(NR₈)NR₆R₇, -C(NR₈)R₅, -C(NR₈)OR₅, -C(NR₈)SR₅, -S(O)_pR₅, -S(O)_pNR₆R₇, -P(O)(OR₅)₂, -P(S)(OR₅)₂, -P(O)(OR₅)(SR₅), -P(S)(OR₅)(SR₅), -P(O)(SR₅)₂, or -P(S)(SR₅)₂;

5 R₅, for each occurrence, is independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

10 R₆ and R₇, for each occurrence are, independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted heterocycl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl; or R₆ and R₇ taken together with the nitrogen to which they are attached are an optionally substituted heterocycl or optionally substituted heteroaryl;

15 20 R₈, for each occurrence, is independently -H, a halo, an alkyl, -OR₅, -NR₆R₇, -C(O)R₅, -C(O)OR₅, or -C(O)NR₆R₇; and n is 0, 1 or 2.

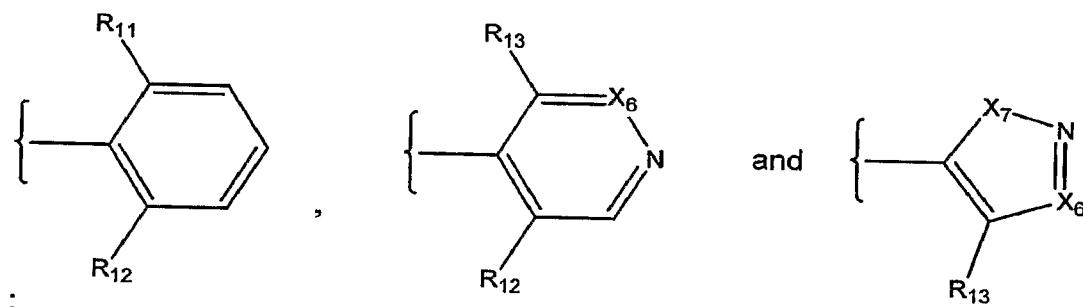
25 181. The method of Claim 180, wherein L₁ is a linker selected from the group consisting of -NHCH₂-, -CH₂NH-, -C(O)-, -NH-C(O)-, -C(O)-NH-, -C(S)-, -NH-C(S)-, -C(S)-NH-, -NHC(O)NH-, -NHC(S)NH-, -S(O)₂NH-, -NHS(O)₂-, -CH=CH-, -NH-N=CH-, or -CH=N-NH-.

30 182. The method of Claim 181, wherein L₁ is -NH-C(O)-, -C(O)-NH-, -NHCH₂-, or -CH₂NH-.

183. The method of Claim 181, wherein n is 0.

184. The method of Claim 181, wherein X_1 and X_2 are both CH.

185. The method of Claim 181, wherein X_1 is N and X_2 is CH.


5 186. The method of Claim 181, wherein Y is selected from the group
consisting of an optionally substituted phenyl, an optionally substituted
naphthyl, an optionally substituted anthracenyl, an optionally
substituted pyridyl, an optionally substituted furyl, an optionally
substituted thienyl, an optionally substituted pyrrolyl, an optionally
substituted oxazolyl, an optionally substituted imidazolyl, an optionally
substituted indolizinyl, an optionally substituted thiazolyl, an optionally
substituted isoxazolyl, an optionally substituted pyrazolyl, an optionally
substituted isothiazolyl, an optionally substituted pyridazinyl, an
optionally substituted pyrimidinyl, an optionally substituted pyrazinyl, an
optionally substituted triazinyl, an optionally substituted triazolyl, an
optionally substituted thiadiazolyl, an optionally substituted pyrazinyl,
an optionally substituted quinolinyl, an optionally substituted
isoquinolinyl, an optionally substituted indazolyl, an optionally
substituted benzoxazolyl, an optionally substituted benzofuryl, an
optionally substituted benzothiazolyl, an optionally substituted
indolizinyl, an optionally substituted imidazopyridinyl, an optionally
substituted isothiazolyl, an optionally substituted tetrazolyl, an
optionally substituted benzoxazolyl, an optionally substituted
benzothiazolyl, an optionally substituted benzothiadiazolyl, an
optionally substituted benzoxadiazolyl, an optionally substituted indolyl,
an optionally substituted tetrahydroindolyl, an optionally substituted
azaindolyl, an optionally substituted imidazopyridyl, an optionally
substituted quinazolinyl, an optionally substituted purinyl, an optionally
substituted pyrrolo[2,3]pyrimidyl, an optionally substituted
30 pyridopyrimidyl, an optionally substituted pyrazolo[3,4]pyrimidyl or an
optionally substituted benzo(b)thienyl.

187. The method of Claim 186, wherein Y is an optionally substituted

phenyl, an optionally substituted pyridinyl, an optionally substituted pyridazinyl, an optionally substituted isothiazolyl, an optionally substituted isoxazolyl, an optionally substituted oxadiazolyl, or an optionally substituted thiadiazolyl.

5

188. The method of Claim 187, wherein Y is selected from the group consisting of:

10

X_6 is CH or N;

X_7 is O or S;

R_{11} and R_{12} are each, independently, a substituent; and

R_{13} is H or a substituent.

15 189. The method of Claim 188, wherein:

R_{11} and R_{12} are each, independently, selected from the group consisting of a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl; and

20 R_{13} is H, a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl.

190. The method of Claim 181, wherein:

25 R_9 is a halo, an optionally substituted alkoxy, an optionally substituted alkyl, an optionally substituted heterocyclyl, or an optionally substituted heteroaryl; and

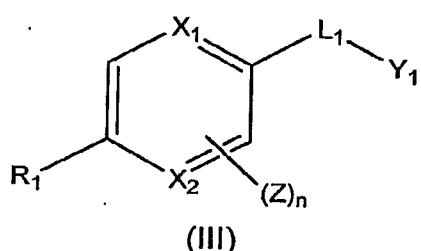
R_{10} is a halo, a haloalkyl, an optionally substituted heterocyclyl, an optionally substituted heteroaryl, $-C(O)NR_6R_7$, $-C(O)R_5$, $-C(O)OR_5$, $-C(NR_8)NR_6R_7$, $-S(O)_pR_5$, or $-S(O)_pNR_6R_7$.

191. The method of Claim 190, wherein:

R_9 is a halo, a lower alkoxy, or a lower alkyl;

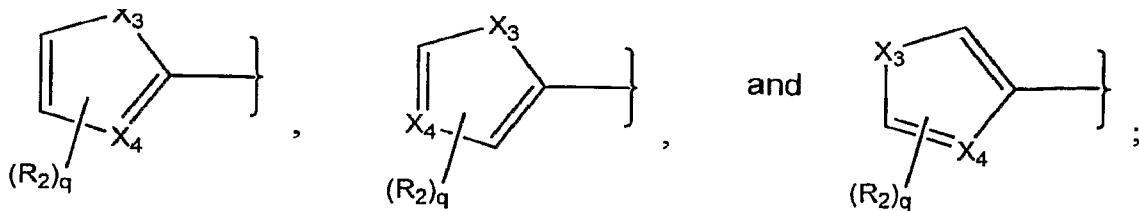
R_{10} is an oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, a thiadiazolyl, $-C(O)N(R_{19})_2$, $-C(O)R_{20}$, $-C(O)OR_{20}$, wherein the oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, and a thiadiazolyl are optionally substituted with one or more substituents, independently, selected from a halo or a lower alkyl; and

R_{19} and R_{20} , for each occurrence are, independently, a lower alkyl.


192. The method of Claim 181, wherein X_3 is O and X_5 is CH.

193. The method of Claim 181, wherein X_3 is S and X_5 is CH.

194. The method of Claim 181, wherein X_3 is O and X_5 is N.


195. The method of Claim 181, wherein X_3 is S and X_5 is N.

196. A method for suppressing the immune system of a subject in need thereof, comprising administering to the subject a compound of structural formula (III):

or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein:

R_1 is selected from the group consisting of:

X_1 and X_2 are CH, CZ, or N, provided that at least one of X_1 or X_2 is CH or CZ;

5

X_3 is O or S;

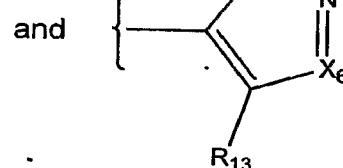
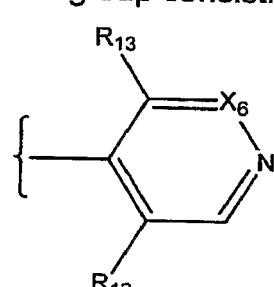
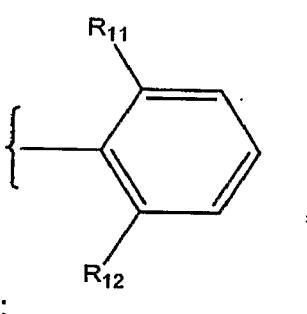
X_4 is CH, CR₂, or N;

R_2 is a substituent;

L_1 is a linker selected from the group consisting of $-NRC(R)_2-$, $-$

$C(R)_2NR-$, $-C(O)-$, $-NR-C(O)-$, $-C(O)-NR-$, $-C(S)-$, $-C(NR_8)-$, $-NR-$

10




$C(S)-$, $-C(S)-NR-$, $-NR-C(NR_8)-$, $-C(NR_8)-NR-$, $-NRC(O)NR-$, $-$

$NRC(S)NR-$, $-NRC(NR_8)NR-$, $-S(O)_2NR-$, $-NRS(O)_2-$, $-NRS(O)_2NR-$, $-$

$NRC(R)_2NR-$, $-CR=CR-$, $-C\equiv C-$, $-N=CR-$, $-CR=N-$, $-NR-N=CR-$, or $-$

$CR=N-NR-$;

Y_1 is selected from the group consisting of:

15

X_6 is CH or N;

X_7 is O or S;

20

R_{11} and R_{12} are each, independently, a substituent, provided that R_{11} and R_{12} are not both halo when L_1 is $-NRS(O)_2-$;

R_{13} is H or a substituent;

each Z is independently selected from the group consisting of a lower alkyl, a lower haloalkyl, a halo, a lower alkoxy, a lower alkyl sulfanyl, cyano, nitro, or lower haloalkoxy;

25

R is H or a lower alkyl;

R_8 , for each occurrence, is independently $-H$, a halo, an

alkyl, -OR₅, -NR₆R₇, -C(O)R₅, -C(O)OR₅, or -C(O)NR₆R₇;

5 R₅, for each occurrence, is independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

10 R₆ and R₇, for each occurrence are, independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl; or R₆ and R₇ taken together with the nitrogen to which they are attached are an optionally substituted heterocycl or optionally substituted heteroaryl;

15 q is 0, 1, or 2; and

n is 0, 1 or 2.

20 197. The method of Claim 196, wherein L₁ is a linker selected from the group consisting of -NHCH₂-, -CH₂NH-, -C(O)-, -NH-C(O)-, -C(O)-NH-, -C(S)-, -NH-C(S)-, -C(S)-NH-, -NHC(O)NH-, -NHC(S)NH-, -S(O)₂NH-, -NHS(O)₂-, -CH=CH-, -NH-N=CH-, or -CH=N-NH-.

25 198. The method of Claim 197, wherein L₁ is -NH-C(O)-, -C(O)-NH-, -NHCH₂-, or -CH₂NH-.

199. The method of Claim 197, wherein n is 0.

30 200. The method of Claim 197, wherein X₁ and X₂ are both CH.

201. The method of Claim 197, wherein X₁ is N and X₂ is CH.

202. The method of Claim 197, wherein X_3 is O and X_4 is CH or CR_2 .

203. The method of Claim 197, wherein X_3 is S and X_4 is CH or CR_2 .

5 204. The method of Claim 197, wherein X_3 is O and X_4 is N.

205. The method of Claim 197, wherein X_3 is S and X_4 is N.

206. The method of Claim 197, wherein R_2 , for each occurrence, is
10 independently selected from the group consisting of a halo, nitro,
cyano, a haloalkyl, $-OR_5$, $-SR_5$, $-NR_6R_7$, an optionally substituted alkyl,
an optionally substituted alkenyl, an optionally substituted alkynyl, an
optionally substituted cycloalkyl, an optionally substituted cycloalkenyl,
an optionally substituted heterocyclyl, an optionally substituted aryl, an
optionally substituted heteroaryl, an optionally substituted aralkyl, an
optionally substituted heteroalkyl, $-C(O)NR_6R_7$, $-C(O)R_5$, $-C(O)OR_5$, $-$
15 $C(O)SR_5$, $-C(S)NR_6R_7$, $-C(S)R_5$, $-C(S)OR_5$, $-C(S)SR_5$, $-C(NR_8)NR_6R_7$, $-$
 $C(NR_8)R_5$, $-C(NR_8)OR_5$, $-C(NR_8)SR_5$, $-S(O)_pR_5$, $-S(O)_pNR_6R_7$, $-$
20 $P(O)(OR_5)_2$, $-P(S)(OR_5)_2$, $-P(O)(OR_5)(SR_5)$, $-P(S)(OR_5)(SR_5)$, $-$
 $P(O)(SR_5)_2$, or $-P(S)(SR_5)_2$, $-OC(O)NR_6R_7$, $-OC(O)R_5$, $-OC(O)OR_5$, $-$
 $OC(O)SR_5$, $-NR_5C(O)NR_6R_7$, $-NR_5C(O)R_5$, $-NR_5C(O)OR_5$, $-$
25 $NR_5C(O)SR_5$, $-SC(O)NR_6R_7$, $-SC(O)R_5$, $-SC(O)OR_5$, $-SC(O)SR_5$, $-$
 $OC(S)NR_6R_7$, $-OC(S)R_5$, $-OC(S)OR_5$, $-OC(S)SR_5$, $-NR_5C(S)NR_6R_7$, $-$
 $NR_5C(S)R_5$, $-NR_5C(S)OR_5$, $-NR_5C(S)SR_5$, $-SC(S)NR_6R_7$, $-SC(S)R_5$, $-$
 $SC(S)OR_5$, $-SC(S)SR_5$, $-OC(NR_8)NR_6R_7$, $-OC(NR_8)R_5$, $-OC(NR_8)OR_5$, $-$
 $OC(NR_8)SR_5$, $-NR_5C(NR_8)NR_6R_7$, $-NR_5C(NR_8)R_5$, $-NR_5C(NR_8)OR_5$, $-$
30 $NR_5C(NR_8)SR_5$, $-OS(O)_pR_5$, $-NR_5S(O)_pR_5$, $-OP(O)(OR_5)_2$, or $-$
 $OP(S)(OR_5)_2$.

207. The method of Claim 206, wherein R_2 , for each occurrence, is
independently selected from the group consisting of a halo, a lower
alkoxy, or a lower alkyl, an oxazolyl, a morpholinyl, a furanyl, a lower
haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an

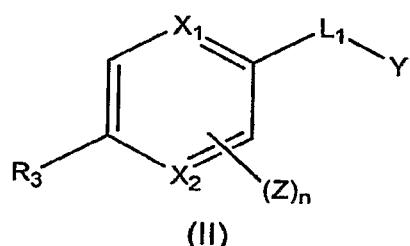
5

isothiazolyl, a thiadiazolyl, $-\text{C}(\text{O})\text{N}(\text{R}_{19})_2$, $-\text{C}(\text{O})\text{R}_{20}$, $-\text{C}(\text{O})\text{OR}_{20}$, wherein the oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, and a thiadiazolyl are optionally substituted with one or more substituents, independently, selected from a halo or a lower alkyl; and

R_{19} and R_{20} , for each occurrence are, independently, a lower alkyl.

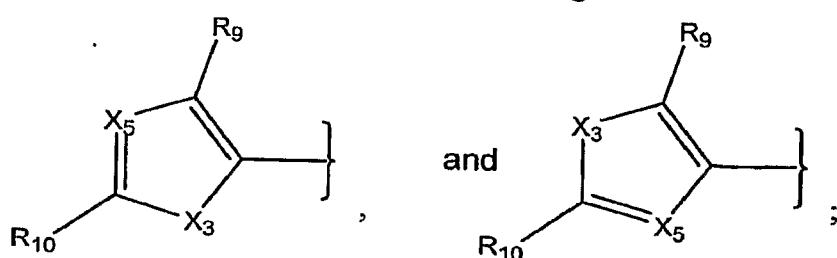
208. The method of Claim 197, wherein:

10


R_{11} and R_{12} are each, independently, selected from the group consisting of a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl; and

R_{13} is H, a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl.

15


209. The method of Claim 180 or 196, wherein the subject is human.

210. A method of inhibiting mast cell degranulation, comprising administering to the cell a compound of structural formula (II):

or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein:

R_3 is selected from the group consisting of:

25

X_1 and X_2 are CH, CZ, or N, provided that at least one of X_1 or

X_2 is CH or CZ;

X_3 is O or S;

X_5 is CH or N;

L_1 is a linker selected from the group consisting of $-NRC(R)_2-$, $-$

5 $C(R)_2NR-$, $-C(O)-$, $-NR-C(O)-$, $-C(O)-NR-$, $-C(S)-$, $-C(NR_8)-$, $-NR-$
 $C(S)-$, $-C(S)-NR-$, $-NR-C(NR_8)-$, $-C(NR_8)-NR-$, $-NRC(O)NR-$, $-$
 $NRC(S)NR-$, $-NRC(NR_8)NR-$, $-S(O)_2NR-$, $-NRS(O)_2-$, $-NRS(O)_2NR-$, $-$
 $NRC(R)_2NR-$, $-CR=CR-$, $-C\equiv C-$, $-N=CR-$, $-CR=N-$, $-NR-N=CR-$, or $-$
 $CR=N-NR-$;

10 Y is an optionally substituted phenyl or an optionally substituted heteroaryl;

each Z is independently selected from the group consisting of a lower alkyl, a lower haloalkyl, a halo, a lower alkoxy, a lower alkyl sulfanyl, cyano, nitro, or lower haloalkoxy;

15 R is H or a lower alkyl;

20 R_9 is a halo, $-OR_5$, $-SR_5$, $-NR_6R_7$, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

25 R_{10} is a halo, nitro, cyano, a haloalkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally

25 substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, $-C(O)NR_6R_7$, $-C(O)R_5$, $-C(O)OR_5$, $-C(O)SR_5$, $-$
 $C(S)NR_6R_7$, $-C(S)R_5$, $-C(S)OR_5$, $-C(S)SR_5$, $-C(NR_8)NR_6R_7$, $-C(NR_8)R_5$, $-$
 $C(NR_8)OR_5$, $-C(NR_8)SR_5$, $-S(O)_pR_5$, $-S(O)_pNR_6R_7$, $-P(O)(OR_5)_2$, $-$
 $P(S)(OR_5)_2$, $-P(O)(OR_5)(SR_5)$, $-P(S)(OR_5)(SR_5)$, $-P(O)(SR_5)_2$, or $-$
 $P(S)(SR_5)_2$;

30 R_5 , for each occurrence, is independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally

substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

5 R₆ and R₇, for each occurrence are, independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted heteraralkyl, or R₆ and R₇ taken together with the nitrogen to which they are attached are an optionally substituted heterocycl or optionally substituted heteroaryl;

10 R₈, for each occurrence, is independently –H, a halo, an alkyl, -OR₅, -NR₆R₇, -C(O)R₅, -C(O)OR₅, or -C(O)NR₆R₇; and n is 0, 1 or 2.

20

211. The method of Claim 210, wherein the mast cell is inhibited in a subject by administering the compound to the subject.

212. The method of Claim 210, wherein L₁ is a linker selected from the group consisting of –NHCH₂–, -CH₂NH-, –C(O)–, –NH-C(O)–, -C(O)–NH–, -C(S)–, –NH-C(S)–, -C(S)-NH–, -NHC(O)NH–, -NHC(S)NH–, -S(O)₂NH–, -NHS(O)₂–, -CH=CH–, -NH-N=CH–, or –CH=N-NH–.

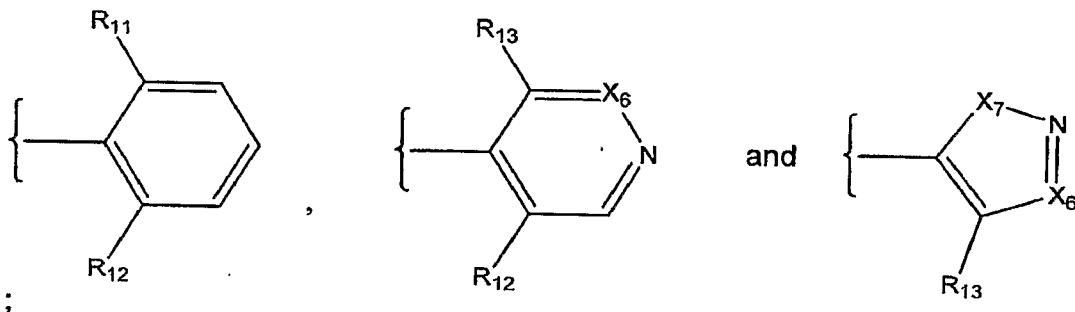
25

213. The method of Claim 212, wherein L₁ is –NH-C(O)–, -C(O)-NH–, –NHCH₂–, or -CH₂NH–.

214. The method of Claim 212, wherein n is 0.

30

215. The method of Claim 212, wherein X₁ and X₂ are both CH.


216. The method of Claim 212, wherein X₁ is N and X₂ is CH.

217. The method of Claim 212, wherein Y is selected from the group consisting of an optionally substituted phenyl, an optionally substituted naphthyl, an optionally substituted anthracenyl, an optionally substituted pyridyl, an optionally substituted furyl, an optionally substituted thienyl, an optionally substituted pyrrolyl, an optionally substituted oxazolyl, an optionally substituted imidazolyl, an optionally substituted indolizinyl, an optionally substituted thiazolyl, an optionally substituted isoxazolyl, an optionally substituted pyrazolyl, an optionally substituted isothiazolyl, an optionally substituted pyridazinyl, an optionally substituted pyrimidinyl, an optionally substituted pyrazinyl, an optionally substituted triazinyl, an optionally substituted triazolyl, an optionally substituted thiadiazolyl, an optionally substituted pyrazinyl, an optionally substituted quinolinyl, an optionally substituted isoquinolinyl, an optionally substituted indazolyl, an optionally substituted benzoxazolyl, an optionally substituted benzofuryl, an optionally substituted benzothiazolyl, an optionally substituted indolizinyl, an optionally substituted imidazopyridinyl, an optionally substituted isothiazolyl, an optionally substituted tetrazolyl, an optionally substituted benzoxazolyl, an optionally substituted benzothiazolyl, an optionally substituted benzothiadiazolyl, an optionally substituted benzoxadiazolyl, an optionally substituted indolyl, an optionally substituted tetrahydroindolyl, an optionally substituted azaindolyl, an optionally substituted imidazopyridyl, an optionally substituted quinazolinyl, an optionally substituted purinyl, an optionally substituted pyrrolo[2,3]pyrimidyl, an optionally substituted pyridopyrimidyl, an optionally substituted pyrazolo[3,4]pyrimidyl or an optionally substituted benzo(b)thienyl.

218. The method of Claim 217, wherein Y is an optionally substituted phenyl, an optionally substituted pyridinyl, an optionally substituted pyridazinyl, an optionally substituted isothiazolyl, an optionally substituted isoxazolyl, an optionally substituted oxadiazolyl, or an

optionally substituted thiadiazolyl.

219. The method of Claim 218, wherein Y is selected from the group consisting of:

X₆ is CH or N;

X₇ is O or S;

R₁₁ and R₁₂ are each, independently, a substituent; and

10 R₁₃ is H or a substituent.

220. The method of Claim 219, wherein:

R₁₁ and R₁₂ are each, independently, selected from the group consisting of a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a 15 lower haloalkoxyl; and

R₁₃ is H, a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl.

221. The method of Claim 212, wherein:

20 R₉ is a halo, an optionally substituted alkoxy, an optionally substituted alkyl, an optionally substituted heterocyclyl, or an optionally substituted heteroaryl; and

25 R₁₀ is a halo, a haloalkyl, an optionally substituted heterocyclyl, an optionally substituted heteroaryl, -C(O)NR₆R₇, -C(O)R₅, -C(O)OR₅, -C(NR₈)NR₆R₇, -S(O)_pR₅, or -S(O)_pNR₆R₇.

222. The method of Claim 221, wherein:

R₉ is a halo, a lower alkoxy, or a lower alkyl;

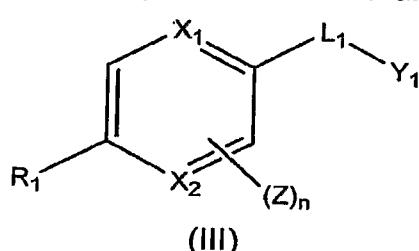
5 R_{10} is an oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, a thiadiazolyl, $-C(O)N(R_{19})_2$, $-C(O)R_{20}$, $-C(O)OR_{20}$, wherein the oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, and a thiadiazolyl are optionally substituted with one or more substituents, independently, selected from a halo or a lower alkyl; and

10 R_{19} and R_{20} , for each occurrence are, independently, a lower alkyl.

10

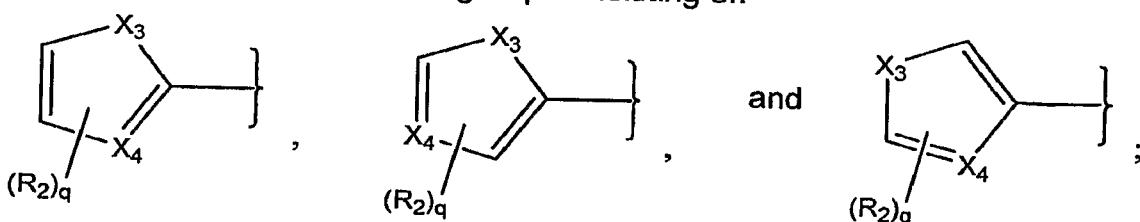
223. The method of Claim 212, wherein X_3 is O and X_5 is CH.

224. The method of Claim 212, wherein X_3 is S and X_5 is CH.


15

225. The method of Claim 212, wherein X_3 is O and X_5 is N.

226. The method of Claim 212, wherein X_3 is S and X_5 is N.

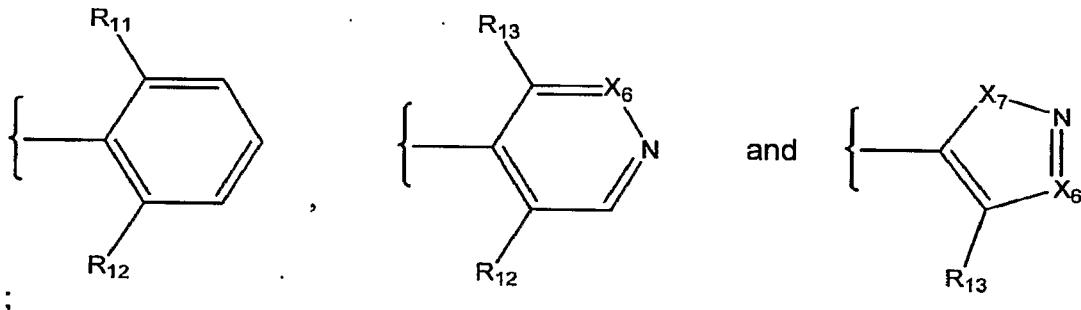

20

227. A method of inhibiting mast cell degranulation, comprising administering to the cell a compound of structural formula (III):

25 or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein:

25 R_1 is selected from the group consisting of:

X_1 and X_2 are CH, CZ, or N, provided that at least one of X_1 or X_2 is CH or CZ;


X_3 is O or S;

X_4 is CH, CR₂, or N;

5 R_2 is a substituent;

L_1 is a linker selected from the group consisting of $-NRC(R)_2-$, $-C(R)_2NR-$, $-C(O)-$, $-NR-C(O)-$, $-C(O)-NR-$, $-C(S)-$, $-C(NR_8)-$, $-NR-C(S)-$, $-C(S)-NR-$, $-NR-C(NR_8)-$, $-C(NR_8)-NR-$, $-NRC(O)NR-$, $-NRC(S)NR-$, $-NRC(NR_8)NR-$, $-S(O)_2NR-$, $-NRS(O)_2-$, $-NRS(O)_2NR-$, $-NRC(R)_2NR-$, $-CR=CR-$, $-C\equiv C-$, $-N=CR-$, $-CR=N-$, $-NR-N=CR-$, or $-CR=N-NR-$;

10 Y_1 is selected from the group consisting of:

15 X_6 is CH or N;

X_7 is O or S;

20 R_{11} and R_{12} are each, independently, a substituent, provided that R_{11} and R_{12} are not both halo when L_1 is $-NRS(O)_2-$;

R_{13} is H or a substituent;

25 each Z is independently selected from the group consisting of a lower alkyl, a lower haloalkyl, a halo, a lower alkoxy, a lower alkyl sulfanyl, cyano, nitro, or lower haloalkoxy;

R is H or a lower alkyl;

R_8 , for each occurrence, is independently $-H$, a halo, an alkyl, $-OR_5$, $-NR_6R_7$, $-C(O)R_5$, $-C(O)OR_5$, or $-C(O)NR_6R_7$;

R_5 , for each occurrence, is independently H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an

optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteroaralkyl:

R_6 and R_7 , for each occurrence are, independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl; or R_6 and R_7 taken together with the nitrogen to which they are attached are an optionally substituted heterocycl or optionally substituted heteroaryl;

q is 0, 1, or 2; and

n is 0, 1 or 2.

15 228. The method of Claim 227, wherein mast cell is inhibited in a subject by
administering the compound to the subject

229. The method of Claim 228, wherein L_1 is a linker selected from the group consisting of $-\text{NHCH}_2-$, $-\text{CH}_2\text{NH}-$, $-\text{C}(\text{O})-$, $-\text{NH}-\text{C}(\text{O})-$, $-\text{C}(\text{O})-\text{NH}-$, $-\text{C}(\text{S})-$, $-\text{NH}-\text{C}(\text{S})-$, $-\text{C}(\text{S})-\text{NH}-$, $-\text{NHC}(\text{O})\text{NH}-$, $-\text{NHC}(\text{S})\text{NH}-$, $-\text{S}(\text{O})_2\text{NH}-$, $-\text{NHS}(\text{O})_2-$, $-\text{CH}=\text{CH}-$, $-\text{NH}-\text{N}=\text{CH}-$, or $-\text{CH}=\text{N}-\text{NH}-$.

230. The method of Claim 229, wherein L_1 is $-\text{NH}-\text{C}(\text{O})-$, $-\text{C}(\text{O})-\text{NH}-$, $-\text{NHCH}_2-$, or $-\text{CH}_2\text{NH}-$.

25

231. The method of Claim 229, wherein n is 0.

232. The method of Claim 229, wherein χ_1 and χ_2 are both 0.5.

30 233. The method of Claim 230, wherein X₁ is N and X₂ is an

234. The method of Claim 229, wherein X_1 is O and X_2 is CH or CR.

235. The method of Claim 229, wherein X_3 is S and X_4 is CH or CR_2 .

236. The method of Claim 229, wherein X_3 is O and X_4 is N.

5 237. The method of Claim 229, wherein X_3 is S and X_4 is N.

238. The method of Claim 229, wherein R_2 , for each occurrence, is independently, selected from the group consisting of a halo, nitro, cyano, a haloalkyl, $-OR_5$, $-SR_5$, $-NR_6R_7$, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, $-C(O)NR_6R_7$, $-C(O)R_5$, $-C(O)OR_5$, -

10

$-C(O)SR_5$, $-C(S)NR_6R_7$, $-C(S)R_5$, $-C(S)OR_5$, $-C(S)SR_5$, $-C(NR_8)NR_6R_7$, - $C(NR_8)R_5$, $-C(NR_8)OR_5$, $-C(NR_8)SR_5$, $-S(O)_pR_5$, $-S(O)_pNR_6R_7$, - $P(O)(OR_5)_2$, $-P(S)(OR_5)_2$, $-P(O)(OR_5)(SR_5)$, $-P(S)(OR_5)(SR_5)$, - $P(O)(SR_5)_2$, or $-P(S)(SR_5)_2$, $-OC(O)NR_6R_7$, $-OC(O)R_5$, $-OC(O)OR_5$, - $OC(O)SR_5$, $-NR_5C(O)NR_6R_7$, $-NR_5C(O)R_5$, $-NR_5C(O)OR_5$, -

15

$NR_5C(O)SR_5$, $-SC(O)NR_6R_7$, $-SC(O)R_5$, $-SC(O)OR_5$, $-SC(O)SR_5$, - $OC(S)NR_6R_7$, $-OC(S)R_5$, $-OC(S)OR_5$, $-OC(S)SR_5$, $-NR_5C(S)NR_6R_7$, - $NR_5C(S)R_5$, $-NR_5C(S)OR_5$, $-NR_5C(S)SR_5$, $-SC(S)NR_6R_7$, $-SC(S)R_5$, - $SC(S)OR_5$, $-SC(S)SR_5$, $-OC(NR_8)NR_6R_7$, $-OC(NR_8)R_5$, $-OC(NR_8)OR_5$, - $OC(NR_8)SR_5$, $-NR_5C(NR_8)NR_6R_7$, $-NR_5C(NR_8)R_5$, $-NR_5C(NR_8)OR_5$, - $NR_5C(NR_8)SR_5$, $-OS(O)_pR_5$, $-NR_5S(O)_pR_5$, $-OP(O)(OR_5)_2$, or - $OP(S)(OR_5)_2$.

20

239. The method of Claim 238, wherein R_2 , for each occurrence, is independently selected from the group consisting of a halo, a lower alkoxy, or a lower alkyl, an oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, a thiadiazolyl, $-C(O)N(R_{19})_2$, $-C(O)R_{20}$, $-C(O)OR_{20}$, wherein the oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an

25

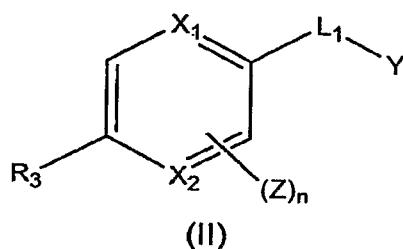
30

isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, and a thiadiazolyl are optionally substituted with one or more substituents, independently, selected from a halo or a lower alkyl; and

R₁₉ and R₂₀, for each occurrence are, independently, a lower

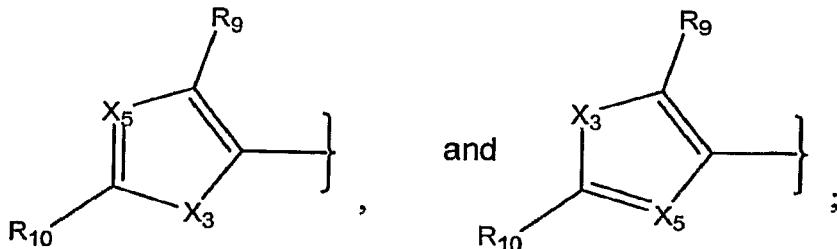
5 alkyl.

240. The method of Claim 229, wherein:


R₁₁ and R₁₂ are each, independently, selected from the group consisting of a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl; and

10 R₁₃ is H, a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl.

241. The method of Claim 211 or 228, wherein the subject is human.


15

242. A method for treating or preventing an allergic disorder in a subject in need thereof, comprising administering to the subject a compound of structural formula (II):

20 or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein:

R₃ is selected from the group consisting of:

25 X₁ and X₂ are CH, CZ, or N, provided that at least one of X₁ or X₂ is CH or CZ;

5 X_3 is O or S;

10 X_5 is CH or N;

15 L_1 is a linker selected from the group consisting of $-NRC(R)_2-$, $-C(R)_2NR-$, $-C(O)-$, $-NR-C(O)-$, $-C(O)-NR-$, $-C(S)-$, $-C(NR_8)-$, $-NR-C(S)-$, $-C(S)-NR-$, $-NR-C(NR_8)-$, $-C(NR_8)-NR-$, $-NRC(O)NR-$, $-NRC(S)NR-$, $-NRC(NR_8)NR-$, $-S(O)_2NR-$, $-NRS(O)_2-$, $-NRS(O)_2NR-$, $-NRC(R)_2NR-$, $-CR=CR-$, $-C\equiv C-$, $-N=CR-$, $-CR=N-$, $-NR-N=CR-$, or $-CR=N-NR-$;

20 Y is an optionally substituted phenyl or an optionally substituted heteroaryl;

25 each Z is independently selected from the group consisting of a lower alkyl, a lower haloalkyl, a halo, a lower alkoxy, a lower alkyl sulfanyl, cyano, nitro, or lower haloalkoxy;

30 R is H or a lower alkyl;

35 R_9 is a halo, $-OR_5$, $-SR_5$, $-NR_6R_7$, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

40 R_{10} is a halo, nitro, cyano, a haloalkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, $-C(O)NR_6R_7$, $-C(O)R_5$, $-C(O)OR_5$, $-C(O)SR_5$, $-C(S)NR_6R_7$, $-C(S)R_5$, $-C(S)OR_5$, $-C(S)SR_5$, $-C(NR_8)NR_6R_7$, $-C(NR_8)R_5$, $-C(NR_8)OR_5$, $-C(NR_8)SR_5$, $-S(O)_pR_5$, $-S(O)_pNR_6R_7$, $-P(O)(OR_5)_2$, $-P(S)(OR_5)_2$, $-P(O)(OR_5)(SR_5)$, $-P(S)(OR_5)(SR_5)$, $-P(O)(SR_5)_2$, or $-P(S)(SR_5)_2$;

45 R_5 , for each occurrence, is independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally

substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

5 R₆ and R₇, for each occurrence are, independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl; or R₆ and R₇ taken together with the nitrogen to which they are attached are an optionally substituted heterocyclyl or 10 optionally substituted heteroaryl;

15 R₈, for each occurrence, is independently —H, a halo, an alkyl, —OR₅, —NR₆R₇, —C(O)R₅, —C(O)OR₅, or —C(O)NR₆R₇; and n is 0, 1 or 2.

243. The method of Claim 242, wherein L₁ is a linker selected from the group consisting of —NHCH₂—, —CH₂NH—, —C(O)—, —NH-C(O)—, —C(O)NH—, —C(S)—, —NH-C(S)—, —C(S)-NH—, —NHC(O)NH—, —NHC(S)NH—, —S(O)₂NH—, —NHS(O)₂—, —CH=CH—, —NH-N=CH—, or —CH=N-NH—.

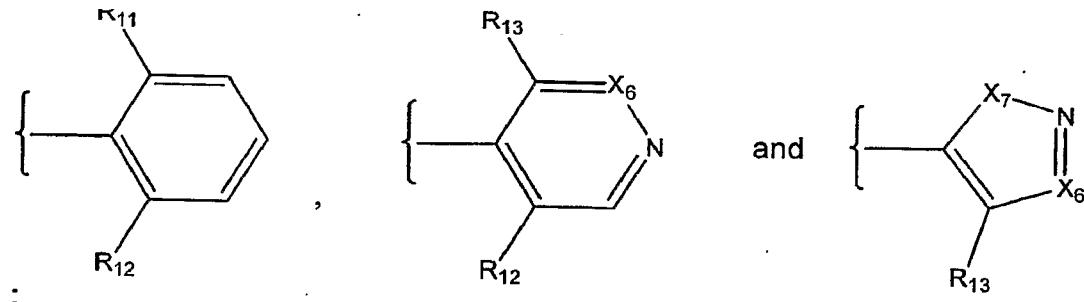
244. The method of Claim 243, wherein L₁ is —NH-C(O)—, —C(O)-NH—, —NHCH₂—, or —CH₂NH—.

25 245. The method of Claim 243, wherein n is 0.

246. The method of Claim 243, wherein X₁ and X₂ are both CH.

247. The method of Claim 243, wherein X₁ is N and X₂ is CH.

30 248. The method of Claim 243, wherein Y is selected from the group consisting of an optionally substituted phenyl, an optionally substituted naphthyl, an optionally substituted anthracenyl, an optionally


substituted pyridyl, an optionally substituted furyl, an optionally substituted thienyl, an optionally substituted pyrrolyl, an optionally substituted oxazolyl, an optionally substituted imidazolyl, an optionally substituted indolizinyl, an optionally substituted thiazolyl, an optionally substituted isoxazolyl, an optionally substituted pyrazolyl, an optionally substituted isothiazolyl, an optionally substituted pyridazinyl, an optionally substituted pyrimidinyl, an optionally substituted pyrazinyl, an optionally substituted triazinyl, an optionally substituted triazolyl, an optionally substituted thiadiazolyl, an optionally substituted pyrazinyl, an optionally substituted quinolinyl, an optionally substituted isoquinolinyl, an optionally substituted indazolyl, an optionally substituted benzoxazolyl, an optionally substituted benzofuryl, an optionally substituted benzothiazolyl, an optionally substituted indolizinyl, an optionally substituted imidazopyridinyl, an optionally substituted isothiazolyl, an optionally substituted tetrazolyl, an optionally substituted benzoxazolyl, an optionally substituted benzothiazolyl, an optionally substituted benzothiadiazolyl, an optionally substituted benzoxadiazolyl, an optionally substituted indolyl, an optionally substituted tetrahydroindolyl, an optionally substituted azaindolyl, an optionally substituted imidazopyridyl, an optionally substituted quinazolinyl, an optionally substituted purinyl, an optionally substituted pyrrolo[2,3]pyrimidyl, an optionally substituted pyridopyrimidyl, an optionally substituted pyrazolo[3,4]pyrimidyl or an optionally substituted benzo(b)thienyl.

25

249. The method of Claim 248, wherein Y is an optionally substituted phenyl, an optionally substituted pyridinyl, an optionally substituted pyridazinyl, an optionally substituted isothiazolyl, an optionally substituted isoxazolyl, an optionally substituted oxadiazolyl, or an optionally substituted thiadiazolyl.

30

250. The method of Claim 249, wherein Y is selected from the group consisting of:

X₆ is CH or N;

X₇ is O or S;

5 R₁₁ and R₁₂ are each, independently, a substituent; and
R₁₃ is H or a substituent.

251. The method of Claim 250, wherein:

R₁₁ and R₁₂ are each, independently, selected from the group
10 consisting of a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a
lower haloalkoxyl; and

R₁₃ is H, a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a
lower haloalkoxyl.

15 252. The method of Claim 243, wherein:

R₉ is a halo, an optionally substituted alkoxy, an optionally
substituted alkyl, an optionally substituted heterocyclyl, or an optionally
substituted heteroaryl; and

20 R₁₀ is a halo, a haloalkyl, an optionally substituted heterocyclyl,
an optionally substituted heteroaryl, -C(O)NR₆R₇, -C(O)R₅, -C(O)OR₅,
C(NR₈)NR₆R₇, -S(O)_pR₅, or -S(O)_pNR₆R₇.

253. The method of Claim 252, wherein:

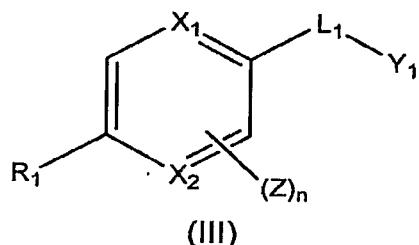
R₉ is a halo, a lower alkoxy, or a lower alkyl;

25 R₁₀ is an oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a
thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, a
thiadiazolyl, -C(O)N(R₁₉)₂, -C(O)R₂₀, -C(O)OR₂₀, wherein the oxazolyl,
a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an
oxadiazolyl, a tetrazolyl, an isothiazolyl, and a thiadiazolyl are

optionally substituted with one or more substituents, independently, selected from a halo or a lower alkyl; and

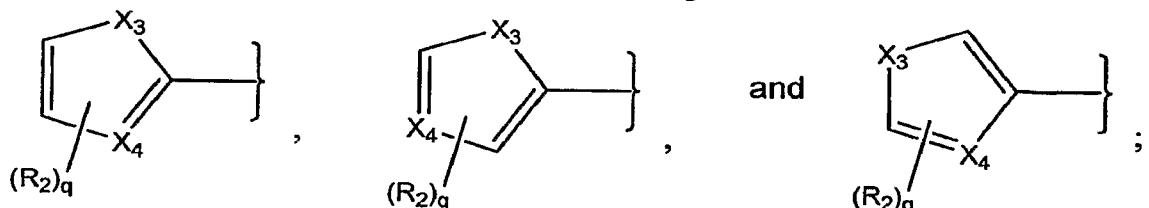
R_{19} and R_{20} , for each occurrence are, independently, a lower alkyl.

5


254. The method of Claim 253, wherein X_3 is O and X_5 is CH.

255. The method of Claim 253, wherein X_3 is S and X_5 is CH.

10 256. The method of Claim 253, wherein X_3 is O and X_5 is N.

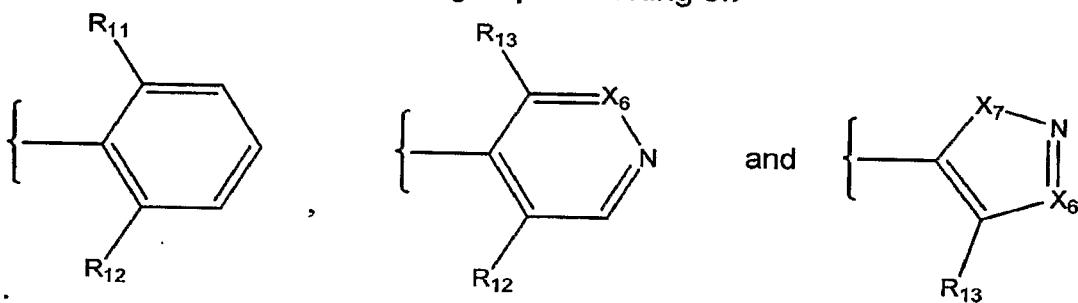

257. The method of Claim 253, wherein X_3 is S and X_5 is N.

15 258. A method for treating or preventing an allergic disorder in a subject in need thereof, comprising administering to the subject a compound of structural formula (III):

20 or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein:

R_1 is selected from the group consisting of:

25 X_1 and X_2 are CH, CZ, or N, provided that at least one of X_1 or X_2 is CH or CZ;


X_3 is O or S;

X_4 is CH, CR₂, or N;

R_2 is a substituent;

5 L_1 is a linker selected from the group consisting of $-NRC(R)_2-$, $-C(R)_2NR-$, $-C(O)-$, $-NR-C(O)-$, $-C(O)-NR-$, $-C(S)-$, $-C(NR_8)-$, $-NR-C(S)-$, $-C(S)-NR-$, $-NR-C(NR_8)-$, $-C(NR_8)-NR-$, $-NRC(O)NR-$, $-NRC(S)NR-$, $-NRC(NR_8)NR-$, $-S(O)_2NR-$, $-NRS(O)_2-$, $-NRS(O)_2NR-$, $-NRC(R)_2NR-$, $-CR=CR-$, $-C\equiv C-$, $-N=CR-$, $-CR=N-$, $-NR-N=CR-$, or $-CR=N-NR-$;

Y_1 is selected from the group consisting of:

X_6 is CH or N;

X_7 is O or S;

15 R_{11} and R_{12} are each, independently, a substituent, provided that R_{11} and R_{12} are not both halo when L_1 is $-NRS(O)_2-$;

R_{13} is H or a substituent;

each Z is independently selected from the group consisting of a lower alkyl, a lower haloalkyl, a halo, a lower alkoxy, a lower alkyl sulfanyl, cyano, nitro, or lower haloalkoxy;

20 R is H or a lower alkyl;

R_8 , for each occurrence, is independently $-H$, a halo, an alkyl, $-OR_5$, $-NR_6R_7$, $-C(O)R_5$, $-C(O)OR_5$, or $-C(O)NR_6R_7$;

25 R_5 , for each occurrence, is independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclil, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

R_6 and R_7 , for each occurrence are, independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an

optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl; or R₆ and R₇ taken together with the nitrogen to which they are attached are an optionally substituted heterocyclyl or optionally substituted heteroaryl;

5 q is 0, 1, or 2; and

n is 0, 1 or 2.

10

259. The method of Claim 258, wherein L₁ is a linker selected from the group consisting of -NHCH₂-, -CH₂NH-, -C(O)-, -NH-C(O)-, -C(O)-NH-, -C(S)-, -NH-C(S)-, -C(S)-NH-, -NHC(O)NH-, -NHC(S)NH-, -S(O)₂NH-, -NHS(O)₂-, -CH=CH-, -NH-N=CH-, or -CH=N-NH-.

15

260. The method of Claim 259, wherein L₁ is -NH-C(O)-, -C(O)-NH-, -NHCH₂-, or -CH₂NH-.

20

261. The method of Claim 259, wherein n is 0.

262. The method of Claim 259, wherein X₁ and X₂ are both CH.

263. The method of Claim 259, wherein X₁ is N and X₂ is CH.

25 264. The method of Claim 259, wherein X₃ is O and X₄ is CH or CR₂.

265. The method of Claim 259, wherein X₃ is S and X₄ is CH or CR₂.

266. The method of Claim 259, wherein X₃ is O and X₄ is N.

30

267. The method of Claim 259, wherein X₃ is S and X₄ is N.

268. The method of Claim 259, wherein R_2 , for each occurrence, is independently selected from the group consisting of a halo, nitro, cyano, a haloalkyl, $-OR_5$, $-SR_5$, $-NR_6R_7$, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an 5 optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, $-C(O)NR_6R_7$, $-C(O)R_5$, $-C(O)OR_5$, $-C(O)SR_5$, $-C(S)NR_6R_7$, $-C(S)R_5$, $-C(S)OR_5$, $-C(S)SR_5$, $-C(NR_8)NR_6R_7$, $-C(NR_8)R_5$, $-C(NR_8)OR_5$, $-C(NR_8)SR_5$, $-S(O)_pR_5$, $-S(O)_pNR_6R_7$, $-P(O)(OR_5)_2$, $-P(S)(OR_5)_2$, $-P(O)(OR_5)(SR_5)$, $-P(S)(OR_5)(SR_5)$, $-P(O)(SR_5)_2$, or $-P(S)(SR_5)_2$, $-OC(O)NR_6R_7$, $-OC(O)R_5$, $-OC(O)OR_5$, $-OC(O)SR_5$, $-NR_5C(O)NR_6R_7$, $-NR_5C(O)R_5$, $-NR_5C(O)OR_5$, $-NR_5C(O)SR_5$, $-SC(O)NR_6R_7$, $-SC(O)R_5$, $-SC(O)OR_5$, $-SC(O)SR_5$, $-OC(S)NR_6R_7$, $-OC(S)R_5$, $-OC(S)OR_5$, $-OC(S)SR_5$, $-NR_5C(S)NR_6R_7$, $-NR_5C(S)R_5$, $-NR_5C(S)OR_5$, $-NR_5C(S)SR_5$, $-SC(S)NR_6R_7$, $-SC(S)R_5$, $-SC(S)OR_5$, $-SC(S)SR_5$, $-OC(NR_8)NR_6R_7$, $-OC(NR_8)R_5$, $-OC(NR_8)OR_5$, $-OC(NR_8)SR_5$, $-NR_5C(NR_8)NR_6R_7$, $-NR_5C(NR_8)R_5$, $-NR_5C(NR_8)OR_5$, $-NR_5C(NR_8)SR_5$, $-OS(O)_pR_5$, $-NR_5S(O)_pR_5$, $-OP(O)(OR_5)_2$, or $-OP(S)(OR_5)_2$.

269. The method of Claim 268, wherein R_2 , for each occurrence, is independently selected from the group consisting of a halo, a lower 10 alkoxy, or a lower alkyl, an oxazolyl, a morpholinyl, a furanyl, a lower optionally substituted heterocycl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, a thiadiazolyl, $-C(O)N(R_{19})_2$, $-C(O)R_{20}$, $-C(O)OR_{20}$, wherein the oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, and a thiadiazolyl are optionally substituted with one or more substituents, independently, selected from a halo or a lower alkyl; and 15 R_{19} and R_{20} , for each occurrence are, independently, a lower alkyl.

270. The method of Claim 259, wherein:

R_{11} and R_{12} are each, independently, selected from the group consisting of a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl; and

5 R_{13} is H, a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl.

271. The method of Claim 242 or 258, wherein the subject is human.

10 272. The method of Claim 242 or 258, wherein the disorder is allergic rhinitis, sinusitis, rhinosinusitis, chronic otitis media, recurrent otitis media, drug reactions, insect sting reactions, latex reactions, conjunctivitis, urticaria, anaphylaxis reactions, anaphylactoid reactions, atopic dermatitis, asthma, or food allergies.

15

273. The method of Claim 18, 50, 67, 103, 134, 165, 196, 227, or 258, wherein the compound is selected from the group consisting of:

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-thiophene-2-carboxylic acid methyl ester;

4-{4-[(3-Methyl-pyridine-4-carbonyl)-amino]-phenyl}-thiophene-2-carboxylic acid methyl ester;

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-thiophene-2-carboxylic acid propyl ester;

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-thiophene-2-carboxylic acid 2-methoxy-ethyl ester;

2,6-Difluoro-N-[4-(5-oxazol-2-yl-thiophen-3-yl)-phenyl]-benzamide;

2,6-Difluoro-N-[4-(5-oxazol-5-yl-thiophen-3-yl)-phenyl]-benzamide;

2,6-Difluoro-N-[4-(5-furan-3-yl-thiophen-3-yl)-phenyl]-benzamide;

2,6-Difluoro-N-[4-(4-methyl-thiazole-5-yl)-phenyl]-benzamide; and

pharmaceutically acceptable salts, solvates, clathrates, and prodrugs thereof.

20

274. The method of Claim 1, 33, 67, 86, 118, 149, 180, 210, or 242, wherein the compound is selected from the group consisting of:

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-5-methyl-thiophene-2-carboxylic acid methyl ester;

5-Methyl-4-{4-[(3-methyl-pyridine-4-carbonyl)-amino]-phenyl}-thiophene-2-carboxylic acid methyl ester;

2,6-Difluoro-N-[4-(2-methyl-5-oxazol-5-yl-thiophen-3-yl)-phenyl]-benzamide;

5-[4-(2,6-Difluoro-benzoylamino)-phenyl]-4-methyl-thiophene-2-carboxylic acid methyl ester;

2,6-Difluoro-N-[4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-benzamide;

3-Methyl-N-[4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-5-methyl-furan-2-carboxylic acid methyl ester;

2,6-Difluoro-N-[4-(4-methyl-2-morpholin-4-yl-thiazol-5-yl)-phenyl]-benzamide;

3-Methyl-N-[4-(4-methyl-2-morpholin-4-yl-thiazol-5-yl)-phenyl]-isonicotinamide;

5-[4-(2,6-Difluoro-benzoylamino)-phenyl]-4-methyl-thiophene-2-carboxylic acid methyl ester;

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-5-methyl-thiazole-2-carboxylic acid methyl ester;

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-5-methyl-oxazole-2-carboxylic acid methyl ester;

5-[4-(2,6-Difluoro-benzoylamino)-phenyl]-4-methyl-thiazole-2-carboxylic acid methyl ester;

5-[4-(2,6-Difluoro-benzoylamino)-phenyl]-4-methyl-oxazole-2-carboxylic acid methyl ester;

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-5-methyl-thiophene-2-carboxylic

acid ethyl ester;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(4-methyl-2-oxazol-2-yl-thiazol-5-yl)-phenyl]-amide;

2,6-Difluoro-N-[4-(4-methyl-2-oxazol-2-yl-thiazol-5-yl)-phenyl]-benzamide;

3-Fluoro-N-[4-(4-methyl-2-oxazol-2-yl-thiazol-5-yl)-phenyl]-isonicotinamide;

3-Methyl-N-[4-(4-methyl-2-oxazol-2-yl-thiazol-5-yl)-phenyl]-isonicotinamide;

5-Methyl-4-{4-[(3-methyl-pyridine-4-carbonyl)-amino]-phenyl}-furan-2-carboxylic acid methyl ester;

5-Methyl-4-{4-[(4-methyl-isothiazole-5-carbonyl)-amino]-phenyl}-thiophene-2-carboxylic acid methyl ester;

5-Chloro-4-[4-(2,6-difluoro-benzoylamino)-phenyl]-thiophene-2-carboxylic acid methyl ester;

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-5-methoxy-thiophene-2-carboxylic acid methyl ester;

2,6-Difluoro-N-[4-(2-methyl-5-oxazol-2-yl-thiophen-3-yl)-phenyl]-benzamide;

3-Methyl-N-[4-(2-methyl-5-oxazol-2-yl-thiophen-3-yl)-phenyl]-isonicotinamide;

2,6-Difluoro-N-[4-(5-furan-3-yl-2-methyl-thiophen-3-yl)-phenyl]-benzamide;

2,6-Difluoro-N-[4-(5-furan-2-yl-2-methyl-thiophen-3-yl)-phenyl]-benzamide;

2,6-Difluoro-N-[4-(2-methyl-5-oxazol-5-yl-thiophen-3-yl)-phenyl]-benzamide;

3-Methyl-N-[4-(2-methyl-5-oxazol-5-yl-thiophen-3-yl)-phenyl]-isonicotinamide;

N-[4-(2-Chloro-5-trifluoromethyl-thiophen-3-yl)-phenyl]-2,6-difluoro-benzamide;

2,6-Difluoro-N-[4-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-phenyl]-benzamide;

4-{4-[(3-Fluoro-pyridine-4-carbonyl)-amino]-phenyl}-5-methyl-thiophene-2-carboxylic acid methyl ester;

5-Methyl-4-{4-[(4-methyl-[1,2,3]thiadiazole-5-carbonyl)-amino]-phenyl}-thiophene-2-carboxylic acid methyl ester;

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-5-methyl-furan-2-carboxylic acid

ethyl ester;

2,6-Difluoro-N-[4-(2-methyl-5-thiazol-2-yl-furan-3-yl)-phenyl]-benzamide;
3-Fluoro-N-[4-(2-methyl-5-thiazol-2-yl-furan-3-yl)-phenyl]-isonicotinamide;
4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(2-methyl-5-thiazol-2-yl-furan-3-yl)-phenyl]-amide;
3,5-Difluoro-N-[4-(2-methyl-5-thiazol-2-yl-furan-3-yl)-phenyl]-isonicotinamide;
2,6-Difluoro-N-[4-(2-methyl-5-thiazol-2-yl-furan-3-yl)-phenyl]-benzamide;
3-Fluoro-5-methyl-N-[4-(2-methyl-5-oxazol-2-yl-furan-3-yl)-phenyl]-isonicotinamide;
2,6-Difluoro-N-[5-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-pyridin-2-yl]-benzamide;
3,5-Difluoro-N-[5-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;
3-Fluoro-N-[5-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;
2-Fluoro-6-methyl-N-[5-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-pyridin-2-yl]-benzamide;
3-Methyl-N-[5-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;
4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [5-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-pyridin-2-yl]-amide;
2,6-Difluoro-N-[5-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-benzamide;
3,5-Difluoro-N-[5-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;
3-Fluoro-N-[5-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;
2-Fluoro-6-methyl-N-[5-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-benzamide;
3-Methyl-N-[5-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;
4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [5-(3-methyl-5-oxazol-2-yl-]

thiophen-2-yl)-pyridin-2-yl]-amide;

2,6-Difluoro-N-[5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-benzamide;

3,5-Difluoro-N-[5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

3-Fluoro-N-[5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

2-Fluoro-N-[5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-6-methyl-benzamide;

N-[5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-3-methyl-isonicotinamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-amide;

3-Fluoro-N-[5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-5-methyl-isonicotinamide;

3-Methyl-pyridazine-4-carboxylic acid [5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-amide;

4-Methyl-[1,2,3]oxadiazole-5-carboxylic acid [5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-amide;

2,6-Difluoro-N-[5-(3-methyl-5-[1,3,4]oxadiazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-benzamide;

3,5-Difluoro-N-[5-(3-methyl-5-[1,3,4]oxadiazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

3-Fluoro-N-[5-(3-methyl-5-[1,3,4]oxadiazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

2-Fluoro-6-methyl-N-[5-(3-methyl-5-[1,3,4]oxadiazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-benzamide;

3-Methyl-N-[5-(3-methyl-5-[1,3,4]oxadiazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [5-(3-methyl-5-[1,3,4]oxadiazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-amide;

N-[5-(3-Chloro-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-2,6-difluoro-benzamide;

N-[5-(3-Chloro-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-3,5-difluoroisonicotinamide;

N-[5-(3-Chloro-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-3-fluoroisonicotinamide;

N-[5-(3-Chloro-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-2-fluoro-6-methylbenzamide;

N-[5-(3-Chloro-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-3-methylisonicotinamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [5-(3-chloro-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-amide;

2,6-Difluoro-N-[5-(5-isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-benzamide;

3,5-Difluoro-N-[5-(5-isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-isonicotinamide;

3-Fluoro-N-[5-(5-isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-isonicotinamide;

2-Fluoro-N-[5-(5-isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-6-methyl-benzamide;

N-[5-(5-Isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-3-methylisonicotinamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [5-(5-isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-amide;

3-Fluoro-N-[5-(5-isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-5-methyl-isonicotinamide;

3-Methyl-pyridazine-4-carboxylic acid [5-(5-isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-amide;

4-Methyl-[1,2,3]oxadiazole-5-carboxylic acid [5-(5-isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-amide;

2,6-Difluoro-N-[3-methyl-4-(4-trifluoromethyl-thiazole-2-yl)-phenyl]-benzamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-phenyl]-amide;

3-Methyl-N-[4-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-phenyl]-

isonicotinamide;

3-Methyl-N-[4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

3-Methyl-N-[4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide, hydrochloride;

3-Methyl-N-[4-(3-methyl-5-pyridin-3-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

3-Methyl-N-[4-(3-methyl-5-pyrimidin-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-pyrimidin-5-yl-thiophen-2-yl)-phenyl]-amide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-pyridin-4-yl-thiophen-2-yl)-phenyl]-amide, hydrochloride;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-pyridin-2-yl-thiophen-2-yl)-phenyl]-amide, hydrochloride;

3-Methyl-N-[4-(3-methyl-5-pyrimidin-4-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

1-Methyl-1H-pyrrol-2-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

1-Methyl-1H-pyrazol-5-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

Isothiazol-4-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

[1,2,3]thiadiazol-4-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

5-Methyl-pyrimidine-4-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

4-Methyl-pyrimidine-5-carboxylic acid [4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

3-Methyl-N-[4-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

4-Chloro-thiazol-5-carboxylic acid [4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

3-Methyl-N-[4-(3-methyl-5-thiazol-2-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

3-Methyl-N-[4-(3-chloro-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

3-Methyl-N-[4-(3-chloro-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

3-Fluoro-N-[4-(3-chloro-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

5-Methyl-pyrimidine-4-carboxylic acid [4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

1-Methyl-1H-pyrrol-2-carboxylic acid [4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

3-Methyl-1H-pyrrol-2-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-pyridin-4-yl-thiophen-2-yl)-phenyl]-amide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-pyridin-2-yl-thiophen-2-yl)-phenyl]-amide;

2,6-Difluoro-N-[4-(4-methyl-2-methoxycarbonyl-thiazol-5-yl)-phenyl]-benzamide;

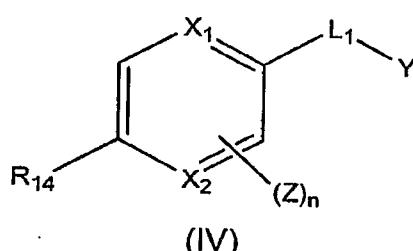
2,6-Difluoro-N-[4-(2-methyl-5-oxazol-2-yl-thiophen-3-yl)-phenyl]-benzamide;

2,6-Difluoro-N-[4-(5-methyl-2-ethoxycarbonyl-thiazol-4-yl)-phenyl]-benzamide;

3-Methyl-N-[4-(2-methyl-5-oxazol-2-yl-thiophen-3-yl)-phenyl]-isonicotinamide;

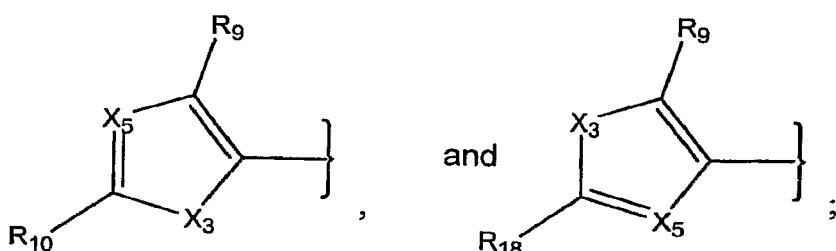
1-(2,6-difluoro-phenyl)-3-[4-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-phenyl]-urea;

1-(2,6-difluoro-phenyl)-3-[4-(5-oxazol-5-yl-3-methyl-thiophen-2-yl)-phenyl]-urea;


1-(3-fluoro-pyridin-4-yl)-3-[4-(5-oxazol-5-yl-3-methyl-thiophen-2-yl)-phenyl]-urea;

(3-Fluoro-pyridin-4-ylmethyl)-[4-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-phenyl]-amine;

(3-Fluoro-pyridin-4-ylmethyl)-[4-(5-oxazol-5-yl-3-methyl-thiophen-2-yl)-phenyl]-amine; and


pharmaceutically acceptable salts, solvates, clathrates, and prodrugs thereof.

275. A compound of structural formula (IV):

or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein:

R_{14} is selected from the group consisting of:

X_1 and X_2 are CH, CZ, or N, provided that at least one of X_1 or X_2 is CH or CZ;

X_3 is O or S;

X_5 is CH or N;

15 L_1 is a linker selected from the group consisting of $-NRC(R)_2-$, $-C(R)_2NR-$, $-C(O)-$, $-NR-C(O)-$, $-C(O)-NR-$, $-C(S)-$, $-C(NR_8)-$, $-NR-C(S)-$, $-C(S)-NR-$, $-NR-C(NR_8)-$, $-C(NR_8)-NR-$, $-NRC(O)NR-$, $-NRC(S)NR-$, $-NRC(NR_8)NR-$, $-S(O)_2NR-$, $-NRS(O)_2-$, $-NRS(O)_2NR-$, $-NRC(R)_2NR-$, $-CR=CR-$, $-C\equiv C-$, $-N=CR-$, $-CR=N-$, $-NR-N=CR-$, or $-CR=N-NR-$;

20 Y is an optionally substituted phenyl or an optionally substituted heteroaryl;

each Z is independently selected from the group consisting of a lower alkyl, a lower haloalkyl, a halo, a lower alkoxy, a lower alkylsufanyl, cyano, nitro, or lower haloalkoxy;

R is H or a lower alkyl;

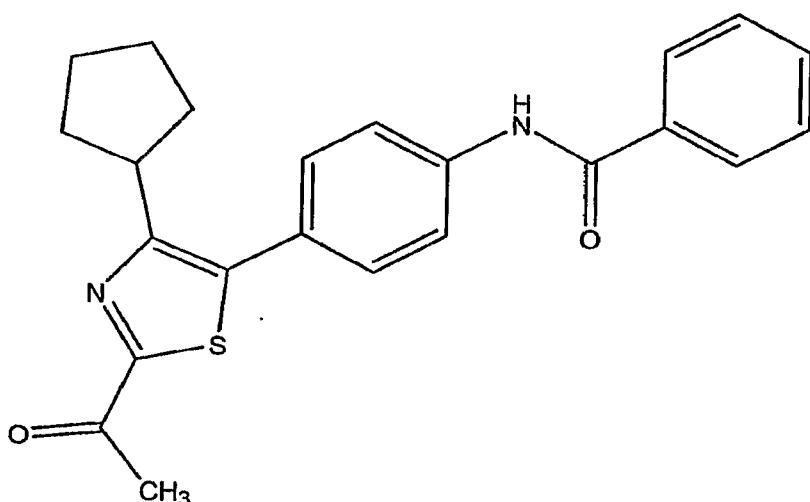
5 R₉ is a halo, -OR₅, -SR₅, -NR₆R₇, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an 10 optionally substituted heteraralkyl;

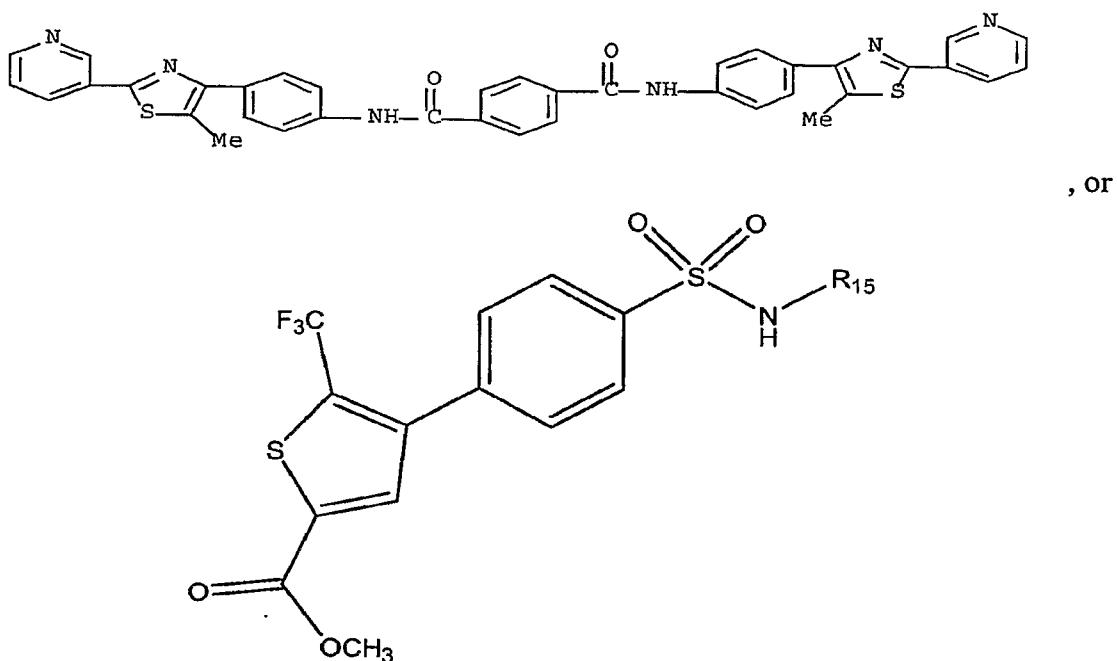
R₁₀ is a halo, nitro, cyano, a haloalkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, -C(O)NR₆R₇, -C(O)R₅, -C(O)OR₅, -C(O)SR₅, -C(S)NR₆R₇, -C(S)R₅, -C(S)OR₅, -C(S)SR₅, -C(NR₈)NR₆R₇, -C(NR₈)R₅, -C(NR₈)OR₅, -C(NR₈)SR₅, -S(O)pR₅, -S(O)pNR₆R₇, -P(O)(OR₅)₂, -P(S)(OR₅)₂, -P(O)(OR₅)(SR₅), -P(S)(OR₅)(SR₅), -P(O)(SR₅)₂, or - 15 P(S)(SR₅)₂;

20 R₁₈ is a halo, nitro, cyano, a haloalkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted heteroaryl, an 25 optionally substituted heteraralkyl, -C(O)NR₆R₇, -C(O)R₅, -C(O)OR₅, -C(O)SR₅, -C(S)NR₆R₇, -C(S)R₅, -C(S)OR₅, -C(S)SR₅, -C(NR₈)NR₆R₇, -C(NR₈)R₅, -C(NR₈)OR₅, -C(NR₈)SR₅, -S(O)pR₅, -S(O)pNR₆R₇, -P(O)(OR₅)₂, -P(S)(OR₅)₂, -P(O)(OR₅)(SR₅), -P(S)(OR₅)(SR₅), -P(O)(SR₅)₂, or -P(S)(SR₅)₂;

30 R₅, for each occurrence, is independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an

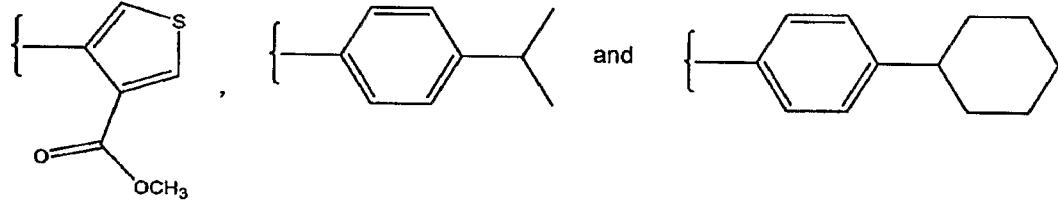
optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;


5 R_6 and R_7 , for each occurrence are, independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl; or R_6 and R_7 taken together with the nitrogen to which they are attached are an optionally substituted heterocyclyl or 10 optionally substituted heteroaryl;


15 R_8 , for each occurrence, is independently $-H$, a halo, an alkyl, $-OR_5$, $-NR_6R_7$, $-C(O)R_5$, $-C(O)OR_5$, or $-C(O)NR_6R_7$; and n is 0, 1 or 2,

15 provided that when L_1 is $-C(O)-$, $-NH-C(O)-$, $-S(O)_2NH-$, $-CH=CH-$, or $-C\equiv C-$, R_{10} is not an optionally substituted aryl;

provided that when L_1 is $-S(O)_2NH-$, R_{10} is not a haloalkyl; and


provided that the compound is not a compound represented by 20 one of the following formulas:

wherein:

R_{15} is selected from the group consisting of:

5

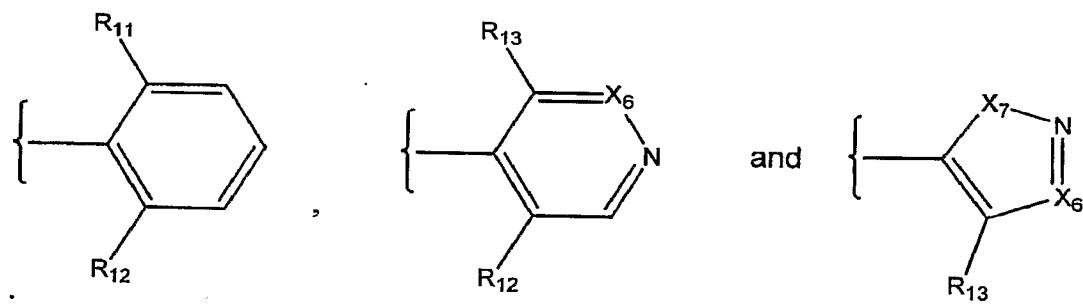
10 276. The compound of Claim 275, wherein L_1 is a linker selected from the group consisting of $-NHCH_2-$, $-CH_2NH-$, $-C(O)-$, $-NH-C(O)-$, $-C(O)-NH-$, $-C(S)-$, $-NH-C(S)-$, $-C(S)-NH-$, $-NHC(O)NH-$, $-NHC(S)NH-$, $-S(O)_2NH-$, $-NHS(O)_2-$, $-CH=CH-$, $-NH-N=CH-$, or $-CH=N-NH-$.

15 277. The compound of Claim 276, wherein L_1 is $-NH-C(O)-$, $-C(O)-NH-$, $-NHCH_2-$, or $-CH_2NH-$.

278. The compound of Claim 276, wherein n is 0.

279. The compound of Claim 276, wherein X_1 and X_2 are both CH.

280. The compound of Claim 276, wherein X_1 is N and X_2 is CH.


5 281. The compound of Claim 276, wherein Y is selected from the group
consisting of an optionally substituted phenyl, an optionally substituted
naphthyl, an optionally substituted anthracenyl, an optionally
substituted pyridyl, an optionally substituted furyl, an optionally
substituted thienyl, an optionally substituted pyrrolyl, an optionally
substituted oxazolyl, an optionally substituted imidazolyl, an optionally
substituted indolizinyl, an optionally substituted thiazolyl, an optionally
substituted isoxazolyl, an optionally substituted pyrazolyl, an optionally
substituted isothiazolyl, an optionally substituted pyridazinyl, an
optionally substituted pyrimidinyl, an optionally substituted pyrazinyl, an
optionally substituted triazinyl, an optionally substituted triazolyl, an
optionally substituted thiadiazolyl, an optionally substituted pyrazinyl,
an optionally substituted quinolinyl, an optionally substituted
isoquinolinyl, an optionally substituted indazolyl, an optionally
substituted benzoxazolyl, an optionally substituted benzofuryl, an
optionally substituted benzothiazolyl, an optionally substituted
indolizinyl, an optionally substituted imidazopyridinyl, an optionally
substituted isothiazolyl, an optionally substituted tetrazolyl, an
optionally substituted benzoxazolyl, an optionally substituted
benzothiazolyl, an optionally substituted benzothiadiazolyl, an
optionally substituted benzoxadiazolyl, an optionally substituted indolyl,
an optionally substituted tetrahydroindolyl, an optionally substituted
azaindolyl, an optionally substituted imidazopyridyl, an optionally
substituted quinazolinyl, an optionally substituted purinyl, an optionally
substituted pyrrolo[2,3]pyrimidyl, an optionally substituted
pyridopyrimidyl, an optionally substituted pyrazolo[3,4]pyrimidyl or an
optionally substituted benzo(b)thienyl.

282. The compound of Claim 281, wherein Y is an optionally substituted

phenyl, an optionally substituted pyridinyl, an optionally substituted pyridazinyl, an optionally substituted isothiazolyl, an optionally substituted isoxazolyl, an optionally substituted oxadiazolyl, or an optionally substituted thiadiazolyl.

5

283. The compound of Claim 282, wherein Y is selected from the group consisting of:

10

X_6 is CH or N;

X_7 is O or S;

R_{11} and R_{12} are each, independently, a substituent; and

R_{13} is H or a substituent.

15 284. The compound of Claim 283, wherein:

R_{11} and R_{12} are each, independently, selected from the group consisting of a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl; and

20 R_{13} is H, a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl.

285. The compound of Claim 276, wherein:

25 R_9 is a halo, an optionally substituted alkoxy, an optionally substituted alkyl, an optionally substituted heterocyclyl, or an optionally substituted heteroaryl; and

R_{10} and R_{18} are each, independently, selected from the group consisting of a halo, a haloalkyl, an optionally substituted heterocyclyl, an optionally substituted heteroaryl, $-C(O)NR_6R_7$, $-C(O)R_5$, $-C(O)OR_5$, $-C(NR_8)NR_6R_7$, $-S(O)_pR_5$, or $-S(O)_pNR_6R_7$.

286. The compound of Claim 285, wherein:

R₉ is a halo, a lower alkoxy, or a lower alkyl;

R₁₀ and R₁₈ are each, independently, selected from the group

5 consisting of an oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, a thiadiazolyl, -C(O)N(R₁₉)₂, -C(O)R₂₀, -C(O)OR₂₀, wherein the oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, and a thiadiazolyl are optionally substituted with one or more substituents, independently, selected from a halo or a lower alkyl; and

10 R₁₉ and R₂₀, for each occurrence are, independently, a lower alkyl.

15 287. The compound of Claim 286, wherein X₃ is O and X₅ is CH.

288. The compound of Claim 286, wherein X₃ is S and X₅ is CH.

289. The compound of Claim 286, wherein X₃ is O and X₅ is N.

20

290. The compound of Claim 286, wherein X₃ is S and X₅ is N.

291. The compound of Claim 275, wherein the compound is selected from the group consisting of:

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-5-methyl-thiophene-2-carboxylic acid methyl ester;

5-Methyl-4-{4-[(3-methyl-pyridine-4-carbonyl)-amino]-phenyl}-thiophene-2-carboxylic acid methyl ester;

2,6-Difluoro-N-[4-(2-methyl-5-oxazol-5-yl-thiophen-3-yl)-phenyl]-benzamide;

5-[4-(2,6-Difluoro-benzoylamino)-phenyl]-4-methyl-thiophene-2-carboxylic acid methyl ester;

2,6-Difluoro-N-[4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-

benzamide;

3-Methyl-N-[4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-5-methyl-furan-2-carboxylic acid methyl ester;

2,6-Difluoro-N-[4-(4-methyl-2-morpholin-4-yl-thiazol-5-yl)-phenyl]-benzamide;

3-Methyl-N-[4-(4-methyl-2-morpholin-4-yl-thiazol-5-yl)-phenyl]-isonicotinamide;

5-[4-(2,6-Difluoro-benzoylamino)-phenyl]-4-methyl-thiophene-2-carboxylic acid methyl ester;

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-5-methyl-thiazole-2-carboxylic acid methyl ester;

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-5-methyl-oxazole-2-carboxylic acid methyl ester;

5-[4-(2,6-Difluoro-benzoylamino)-phenyl]-4-methyl-thiazole-2-carboxylic acid methyl ester;

5-[4-(2,6-Difluoro-benzoylamino)-phenyl]-4-methyl-oxazole-2-carboxylic acid methyl ester;

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-5-methyl-thiophene-2-carboxylic acid ethyl ester;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(4-methyl-2-oxazol-2-yl-thiazol-5-yl)-phenyl]-amide;

2,6-Difluoro-N-[4-(4-methyl-2-oxazol-2-yl-thiazol-5-yl)-phenyl]-benzamide;

3-Fluoro-N-[4-(4-methyl-2-oxazol-2-yl-thiazol-5-yl)-phenyl]-isonicotinamide;

3-Methyl-N-[4-(4-methyl-2-oxazol-2-yl-thiazol-5-yl)-phenyl]-isonicotinamide;

5-Methyl-4-{4-[(3-methyl-pyridine-4-carbonyl)-amino]-phenyl}-furan-2-carboxylic acid methyl ester;

5-Methyl-4-{4-[(4-methyl-isothiazole-5-carbonyl)-amino]-phenyl}-thiophene-2-carboxylic acid methyl ester;

5-Chloro-4-[4-(2,6-difluoro-benzoylamino)-phenyl]-thiophene-2-carboxylic acid methyl ester;

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-5-methoxy-thiophene-2-carboxylic acid methyl ester;

2,6-Difluoro-N-[4-(2-methyl-5-oxazol-2-yl-thiophen-3-yl)-phenyl]-benzamide;

3-Methyl-N-[4-(2-methyl-5-oxazol-2-yl-thiophen-3-yl)-phenyl]-isonicotinamide;

2,6-Difluoro-N-[4-(5-furan-3-yl-2-methyl-thiophen-3-yl)-phenyl]-benzamide;

2,6-Difluoro-N-[4-(5-furan-2-yl-2-methyl-thiophen-3-yl)-phenyl]-benzamide;

2,6-Difluoro-N-[4-(2-methyl-5-oxazol-5-yl-thiophen-3-yl)-phenyl]-benzamide;

3-Methyl-N-[4-(2-methyl-5-oxazol-5-yl-thiophen-3-yl)-phenyl]-isonicotinamide;

N-[4-(2-Chloro-5-trifluoromethyl-thiophen-3-yl)-phenyl]-2,6-difluoro-benzamide;

2,6-Difluoro-N-[4-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-phenyl]-benzamide;

4-{4-[(3-Fluoro-pyridine-4-carbonyl)-amino]-phenyl}-5-methyl-thiophene-2-carboxylic acid methyl ester;

5-Methyl-4-{4-[(4-methyl-[1,2,3]thiadiazole-5-carbonyl)-amino]-phenyl}-thiophene-2-carboxylic acid methyl ester;

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-5-methyl-furan-2-carboxylic acid ethyl ester;

2,6-Difluoro-N-[4-(2-methyl-5-thiazol-2-yl-furan-3-yl)-phenyl]-benzamide;

3-Fluoro-N-[4-(2-methyl-5-thiazol-2-yl-furan-3-yl)-phenyl]-isonicotinamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(2-methyl-5-thiazol-

2-yl-furan-3-yl)-phenyl]-amide;

3,5-Difluoro-N-[4-(2-methyl-5-thiazol-2-yl-furan-3-yl)-phenyl]-isonicotinamide;

2,6-Difluoro-N-[4-(2-methyl-5-thiazol-2-yl-furan-3-yl)-phenyl]-benzamide;

3-Fluoro-5-methyl-N-[4-(2-methyl-5-oxazol-2-yl-furan-3-yl)-phenyl]-isonicotinamide;

2,6-Difluoro-N-[5-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-pyridin-2-yl]-benzamide;

3,5-Difluoro-N-[5-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

3-Fluoro-N-[5-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

2-Fluoro-6-methyl-N-[5-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-pyridin-2-yl]-benzamide;

3-Methyl-N-[5-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [5-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-pyridin-2-yl]-amide;

2,6-Difluoro-N-[5-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-benzamide;

3,5-Difluoro-N-[5-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

3-Fluoro-N-[5-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

2-Fluoro-6-methyl-N-[5-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-benzamide;

3-Methyl-N-[5-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [5-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-amide;

2,6-Difluoro-N-[5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-benzamide;

3,5-Difluoro-N-[5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

3-Fluoro-N-[5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

2-Fluoro-N-[5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-6-methyl-benzamide;

N-[5-(5-Isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-3-methyl-isonicotinamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-amide;

3-Fluoro-N-[5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-5-methyl-isonicotinamide;

3-Methyl-pyridazine-4-carboxylic acid [5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-amide;

4-Methyl-[1,2,3]oxadiazole-5-carboxylic acid [5-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-pyridin-2-yl]-amide;

2,6-Difluoro-N-[5-(3-methyl-5-[1,3,4]oxadiazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-benzamide;

3,5-Difluoro-N-[5-(3-methyl-5-[1,3,4]oxadiazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

3-Fluoro-N-[5-(3-methyl-5-[1,3,4]oxadiazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

2-Fluoro-6-methyl-N-[5-(3-methyl-5-[1,3,4]oxadiazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-benzamide;

3-Methyl-N-[5-(3-methyl-5-[1,3,4]oxadiazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-isonicotinamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [5-(3-methyl-5-[1,3,4]oxadiazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-amide;

N-[5-(3-Chloro-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-2,6-difluoro-benzamide;

N-[5-(3-Chloro-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-3,5-difluoro-isonicotinamide;

N-[5-(3-Chloro-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-3-fluoro-

isonicotinamide;

N-[5-(3-Chloro-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-2-fluoro-6-methyl-benzamide;

N-[5-(3-Chloro-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-3-methyl-isonicotinamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [5-(3-chloro-5-oxazol-2-yl-thiophen-2-yl)-pyridin-2-yl]-amide;

2,6-Difluoro-N-[5-(5-isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-benzamide;

3,5-Difluoro-N-[5-(5-isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-isonicotinamide;

3-Fluoro-N-[5-(5-isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-isonicotinamide;

2-Fluoro-N-[5-(5-isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-6-methyl-benzamide;

N-[5-(5-Isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-3-methyl-isonicotinamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [5-(5-isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-amide;

3-Fluoro-N-[5-(5-isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-5-methyl-isonicotinamide;

3-Methyl-pyridazine-4-carboxylic acid [5-(5-isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-amide;

4-Methyl-[1,2,3]oxadiazole-5-carboxylic acid [5-(5-isoxazol-5-yl-2-methyl-thiophen-3-yl)-pyridin-2-yl]-amide;

2,6-Difluoro-N-[3-methyl-4-(4-trifluoromethyl-thiazole-2-yl)-phenyl]-benzamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-phenyl]-amide;

3-Methyl-N-[4-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

3-Methyl-N-[4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

3-Methyl-N-[4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide, hydrochloride;

3-Methyl-N-[4-(3-methyl-5-pyridin-3-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

3-Methyl-N-[4-(3-methyl-5-pyrimidin-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-pyrimidin-5-yl-thiophen-2-yl)-phenyl]-amide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-pyridin-4-yl-thiophen-2-yl)-phenyl]-amide, hydrochloride;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-pyridin-2-yl-thiophen-2-yl)-phenyl]-amide, hydrochloride;

3-Methyl-N-[4-(3-methyl-5-pyrimidin-4-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

1-Methyl-1H-pyrrol-2-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

1-Methyl-1H-pyrazol-5-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

Isothiazol-4-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

[1,2,3]thiadiazol-4-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

5-Methyl-pyrimidine-4-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

4-Methyl-pyrimidine-5-carboxylic acid [4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

3-Methyl-N-[4-(3-methyl-5-oxazol-2-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

4-Chloro-thiazol-5-carboxylic acid [4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

3-Methyl-N-[4-(3-methyl-5-thiazol-2-yl-thiophen-2-yl)-phenyl]-

isonicotinamide;

3-Methyl-N-[4-(3-chloro-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

3-Methyl-N-[4-(3-chloro-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

3-Fluoro-N-[4-(3-chloro-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-isonicotinamide;

5-Methyl-pyrimidine-4-carboxylic acid [4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

1-Methyl-1H-pyrrol-2-carboxylic acid [4-(3-methyl-5-oxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

3-Methyl-1H-pyrrol-2-carboxylic acid [4-(3-methyl-5-isoxazol-5-yl-thiophen-2-yl)-phenyl]-amide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-pyridin-4-yl-thiophen-2-yl)-phenyl]-amide;

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid [4-(3-methyl-5-pyridin-2-yl-thiophen-2-yl)-phenyl]-amide;

2,6-Difluoro-N-[4-(4-methyl-2-methoxycarbonyl-thiazol-5-yl)-phenyl]-benzamide;

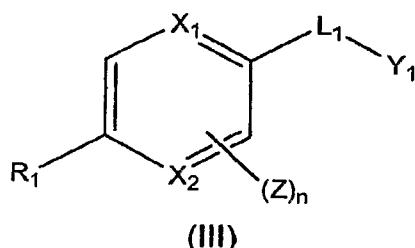
2,6-Difluoro-N-[4-(2-methyl-5-oxazol-2-yl-thiophen-3-yl)-phenyl]-benzamide;

2,6-Difluoro-N-[4-(5-methyl-2-ethoxycarbonyl-thiazol-4-yl)-phenyl]-benzamide;

3-Methyl-N-[4-(2-methyl-5-oxazol-2-yl-thiophen-3-yl)-phenyl]-isonicotinamide;

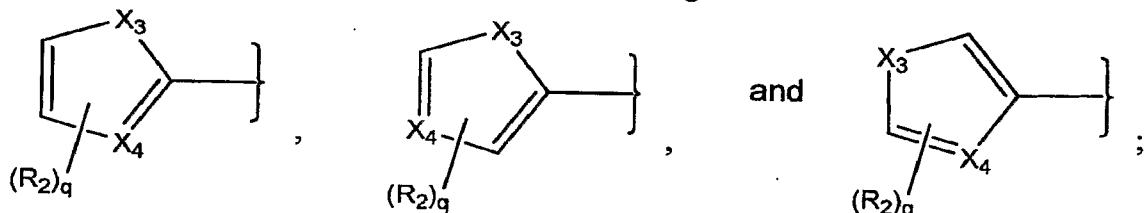
1-(2,6-difluoro-phenyl)-3-[4-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-phenyl]-urea;

1-(2,6-difluoro-phenyl)-3-[4-(5-oxazol-5-yl-3-methyl-thiophen-2-yl)-phenyl]-urea;


1-(3-fluoro-pyridin-4-yl)-3-[4-(5-oxazol-5-yl-3-methyl-thiophen-2-yl)-phenyl]-urea;

(3-Fluoro-pyridin-4-ylmethyl)-[4-(5-isoxazol-5-yl-3-methyl-thiophen-2-yl)-phenyl]-amine;

(3-Fluoro-pyridin-4-ylmethyl)-[4-(5-oxazol-5-yl-3-methyl-thiophen-2-yl)-phenyl]-amine; and

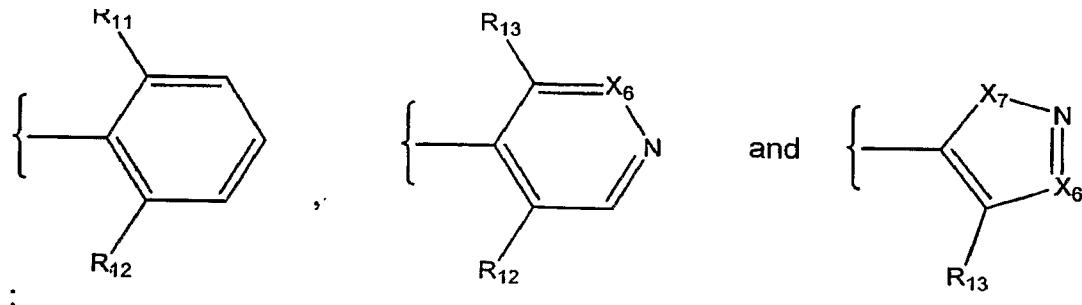

or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof.

292. A compound of structural formula (III):

or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof, wherein:

R_1 is selected from the group consisting of:

X_1 and X_2 are CH, CZ, or N, provided that at least one of X_1 or X_2 is CH or CZ;


15 X_3 is O or S;

X_4 is CH, CR₂, or N;

R_2 is a substituent;

20 L_1 is a linker selected from the group consisting of $-NRC(R)_2-$, $-C(R)_2NR-$, $-C(O)-$, $-NR-C(O)-$, $-C(O)-NR-$, $-C(S)-$, $-C(NR_8)-$, $-NR-C(S)-$, $-C(S)-NR-$, $-NR-C(NR_8)-$, $-C(NR_8)-NR-$, $-NRC(O)NR-$, $-NRC(S)NR-$, $-NRC(NR_8)NR-$, $-S(O)_2NR-$, $-NRS(O)_2-$, $-NRS(O)_2NR-$, $-NRC(R)_2NR-$, $-CR=CR-$, $-C\equiv C-$, $-N=CR-$, $-CR=N-$, $-NR-N=CR-$, or $-CR=N-NR-$;

Y_1 is selected from the group consisting of:

5 X_6 is CH or N;

X_7 is O or S;

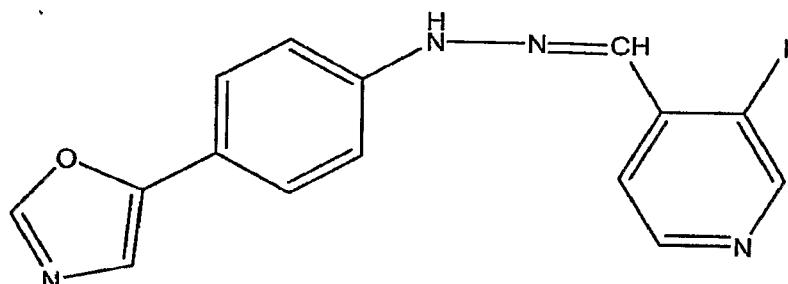
10 R_{11} and R_{12} are each, independently, a substituent, provided that R_{11} and R_{12} are not both halo when L_1 is $-NRS(O)_2^-$;

R_{13} is H or a substituent;

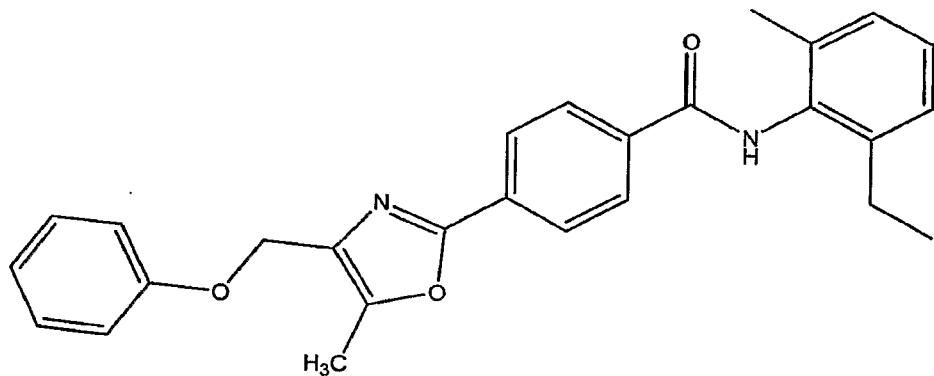
 each Z is independently selected from the group consisting of a lower alkyl, a lower haloalkyl, a halo, a lower alkoxy, a lower alkylsufanyl, cyano, nitro, or lower haloalkoxy;

 R is H or a lower alkyl;

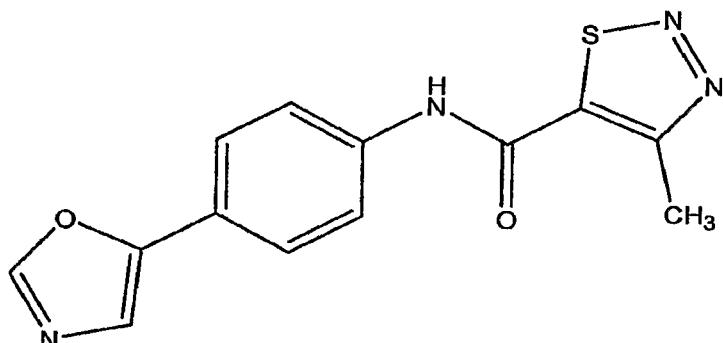
R_8 , for each occurrence, is independently $-H$, a halo, an alkyl, $-OR_5$, $-NR_6R_7$, $-C(O)R_5$, $-C(O)OR_5$, or $-C(O)NR_6R_7$;

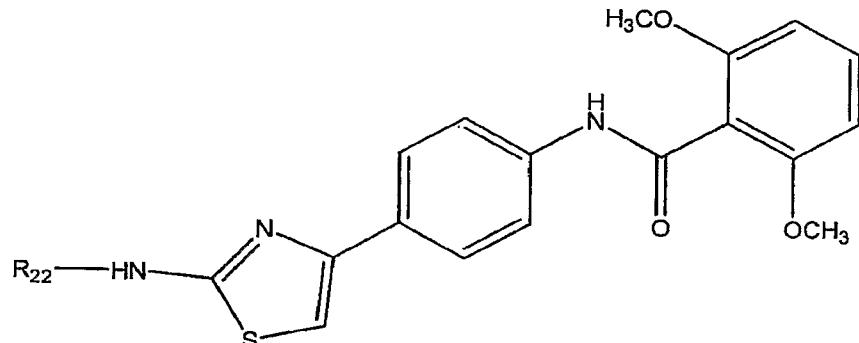

15 R_5 , for each occurrence, is independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

20 R_6 and R_7 , for each occurrence are, independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

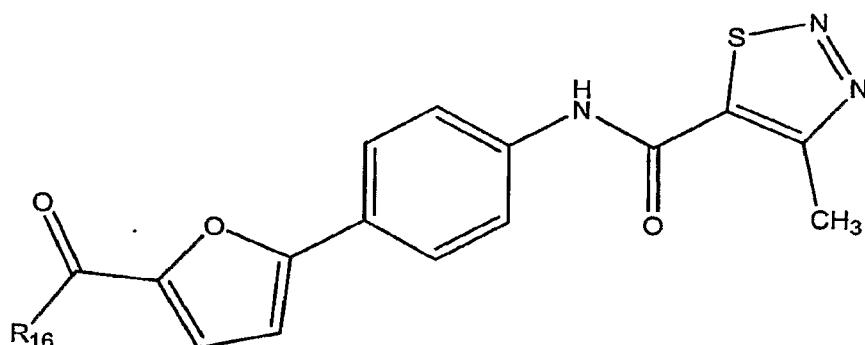

25 or R_6 and R_7 taken together with the nitrogen to which they are attached are an optionally substituted heterocyclyl or optionally substituted heteroaryl;

 q is 0, 1, or 2; and

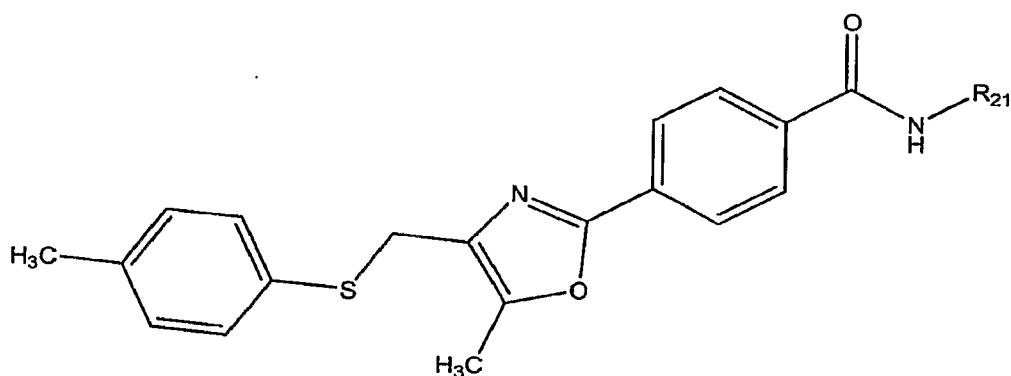

n is 0, 1 or 2, provided that the compound is not selected from the group consisting of:



5



10


wherein R_{22} is allyl, 2-chloro-phenyl, or 3-methyl-phenyl;

5

wherein R_{16} is $-\text{NH}_2$, 2-amino-ethylamino, or [1,4]diazepan-1-yl;

and

10

wherein R_{21} is 2-methyl-6-ethyl-phenyl or 2,6-dimethyl-phenyl.

293. The compound of Claim 292, wherein L_1 is a linker selected from the group consisting of $-\text{NHCH}_2-$, $-\text{CH}_2\text{NH}-$, $-\text{C}(\text{O})-$, $-\text{NH}-\text{C}(\text{O})-$, $-\text{C}(\text{O})-\text{NH}-$, $-\text{C}(\text{S})-$, $-\text{NH}-\text{C}(\text{S})-$, $-\text{C}(\text{S})-\text{NH}-$, $-\text{NHC}(\text{O})\text{NH}-$, $-\text{NHC}(\text{S})\text{NH}-$, $-\text{S}(\text{O})_2\text{NH}-$, $-\text{NHS}(\text{O})_2-$, $-\text{CH}=\text{CH}-$, $-\text{NH}-\text{N}=\text{CH}-$, or $-\text{CH}=\text{N}-\text{NH}-$.

15

294. The compound of Claim 293, wherein L_1 is $-\text{NH}-\text{C}(\text{O})-$, $-\text{C}(\text{O})-\text{NH}-$, $-\text{NHCH}_2-$, or $-\text{CH}_2\text{NH}-$.

5 295. The compound of Claim 293, wherein n is 0.

296. The compound of Claim 293, wherein X_1 and X_2 are both CH

297. The compound of Claim 293, wherein X_1 is N and X_2 is CH

10

298. The compound of Claim 293, wherein X_3 is O and X_4 is CH or CB_2 .

299. The compound of Claim 293, wherein X_3 is S and X_1 is CH or CR_2 .

15 300. The compound of Claim 293, wherein X_3 is O and X_4 is N

301. The compound of Claim 293, wherein X_1 is S and X_2 is N

302. The compound of Claim 293, wherein R_2 , for each occurrence, is independently selected from the group consisting of a halo, nitro, cyano, a haloalkyl, $-OR_5$, $-SR_5$, $-NR_6R_7$, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, $-C(O)NR_6R_7$, $-C(O)R_5$, $-C(O)OR_5$, $-C(O)SR_5$, $-C(S)NR_6R_7$, $-C(S)R_5$, $-C(S)OR_5$, $-C(S)SR_5$, $-C(NR_8)NR_6R_7$, $-C(NR_8)R_5$, $-C(NR_8)OR_5$, $-C(NR_8)SR_5$, $-S(O)_pR_5$, $-S(O)_pNR_6R_7$, -

30 $P(O)(OR_5)_2, -P(S)(OR_5)_2, -P(O)(OR_5)(SR_5), -P(S)(OR_5)(SR_5), -P(O)(SR_5)_2$, or $-P(S)(SR_5)_2, -OC(O)NR_6R_7, -OC(O)R_5, -OC(O)OR_5, -OC(O)SR_5, -NR_5C(O)NR_6R_7, -NR_5C(O)R_5, -NR_5C(O)OR_5, -NR_5C(O)SR_5, -SC(O)NR_6R_7, -SC(O)R_5, -SC(O)OR_5, -SC(O)SR_5, -OC(S)NR_6R_7, -OC(S)R_5, -OC(S)OR_5, -OC(S)SR_5, -NR_5C(S)NR_6R_7, -$

NR₅C(S)R₅, -NR₅C(S)OR₅, -NR₅C(S)SR₅, -SC(S)NR₆R₇, -SC(S)R₅, -
SC(S)OR₅, -SC(S)SR₅, -OC(NR₈)NR₆R₇, -OC(NR₈)R₅, -OC(NR₈)OR₅, -
OC(NR₈)SR₅, -NR₅C(NR₈)NR₆R₇, -NR₅C(NR₈)R₅, -NR₅C(NR₈)OR₅, -
NR₅C(NR₈)SR₅, -OS(O)_pR₅, -NR₅S(O)_pR₅, -OP(O)(OR₅)₂, or -
OP(S)(OR₅)₂.

5

303. The compound of Claim 302, wherein R₂, for each occurrence, is independently selected from the group consisting of a halo, a lower alkoxy, or a lower alkyl, an oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, a thiadiazolyl, -C(O)N(R₁₉)₂, -C(O)R₂₀, -C(O)OR₂₀, wherein the oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, and a thiadiazolyl are optionally substituted with one or more substituents, independently, selected from a halo or a lower alkyl; and R₁₉ and R₂₀, for each occurrence are, independently, a lower alkyl.

304. The compound of Claim 293, wherein:

R₁₁ and R₁₂ are each, independently, selected from the group consisting of a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl; and

R₁₃ is H, a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl.

25

305. The compound of Claim 275, wherein the compound is selected from the group consisting of:

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-thiophene-2-carboxylic acid methyl ester;

4-[4-[(3-Methyl-pyridine-4-carbonyl)-amino]-phenyl]-thiophene-2-carboxylic acid methyl ester;

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-thiophene-2-carboxylic acid propyl ester;

4-[4-(2,6-Difluoro-benzoylamino)-phenyl]-thiophene-2-carboxylic acid 2-methoxy-ethyl ester;

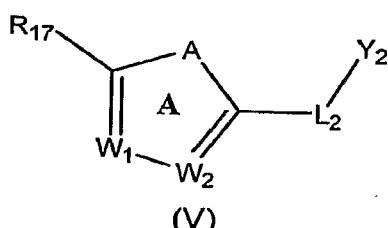
2,6-Difluoro-N-[4-(5-oxazol-2-yl-thiophen-3-yl)-phenyl]-benzamide;

2,6-Difluoro-N-[4-(5-oxazol-5-yl-thiophen-3-yl)-phenyl]-benzamide;

2,6-Difluoro-N-[4-(5-furan-3-yl-thiophen-3-yl)-phenyl]-benzamide;

2,6-Difluoro-N-[4-(4-methyl-thiazole-5-yl)-phenyl]-benzamide; and

or a pharmaceutically acceptable salt, solvate, clathrate, or prodrug thereof.


306. A pharmaceutical composition, comprising a pharmaceutically acceptable carrier and a compound of any one of Claims 275 through 305.

307. The pharmaceutical composition of Claim 306, further comprising one or more additional therapeutic agents.

308. The pharmaceutical composition according to Claim 307, wherein the additional therapeutic agent is selected from the group consisting of immunosuppressive agents, anti-inflammatory agents and suitable mixtures thereof.

309. The pharmaceutical composition of Claim 308, wherein the additional therapeutic agent is selected from the group consisting of steroids, non-steroidal anti-inflammatory agents, antihistamines, analgesics, and suitable mixtures thereof.

310. A method of modulating a CRAC ion channel in a cell, comprising administering to the cell a compound of structural formula (V):

or a pharmaceutically acceptable salt, solvate, clathrate, or

prodrug thereof, wherein:

A is $-O-$, $-S-$, $-NR^e-$, $-CR^c=CR^d-$, $-N=CR^c-$, $-CR^c=N-$, or $-N=N-$;

W₁ and W₂ are each, independently, CR^c or N;

L₂ is a linker;

5 Y₂ is an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, or an optionally substituted heteroaryl;

10 R₁₇ is an optionally substituted heteroaryl, provided that R₁₇ is not an optionally substituted triazolyl, an optionally substituted pyridinyl, an optionally substituted indolizinyl, an optionally substituted benzamidazolyl, imidazo[4,5-c]pyridyl, an optionally substituted imidazo[4,5-b]pyridyl, an optionally substituted tetrahydroindolizinyl, or an optionally substituted imidazo[1,2-a]pyridyl, or an optionally substituted pyrazolyl;

15 20 R^e is H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, -OR₅, -SR₅, -NR₆R₇, -C(O)NR₆R₇, -C(O)R₅, -C(O)OR₅, -C(O)SR₅, -C(S)NR₆R₇, -C(S)R₅, -C(S)OR₅, -C(S)SR₅, -C(NR₈)NR₆R₇, -C(NR₈)R₅, -C(NR₈)OR₅, or -C(NR₈)SR₅;

25 30 R^c and R^d, for each occurrence, are independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, cyano, nitro, halo, -OR₅, -SR₅, -NR₆R₇, -C(O)NR₆R₇, -NR₅C(O)R₅, -C(O)R₅, -C(O)OR₅, -OC(O)R₅, -C(O)SR₅, -SC(O)R₅, -C(S)NR₆R₇, -NR₅C(S)R₅, -C(S)R₅, -C(S)OR₅, -OC(S)R₅, -C(S)SR₅, -

SC(S)R₅, -C(NR₈)NR₆R₇, -NR₅C(NR₈)R₅, -C(NR₈)R₅, -C(NR₈)OR₅, -
 OC(NR₈)R₅, -C(NR₈)SR₅, -SC(NR₈)R₅, -OC(O)OR₅, -OC(O)NR₆R₇, -
 NR₅C(O)OR₅, -NR₅C(O)NR₆R₇, -SC(O)OR₅, -SC(O)NR₆R₇, -
 SC(O)SR₅, -NR₅C(O)SR₅, -OC(O)SR₅, -OC(S)OR₅, -OC(S)NR₆R₇, -
 5 NR₅C(S)OR₅, -NR₅C(S)NR₆R₇, -SC(S)OR₅, -SC(S)NR₆R₇, -SC(S)SR₅,
 -NR₅C(S)SR₅, -OC(S)SR₅, -OC(NR₈)OR₅, -OC(NR₈)NR₆R₇, -
 NR₅C(NR₈)OR₅, -NR₅C(NR₈)NR₆R₇, -SC(NR₈)OR₅, -SC(NR₈)NR₆R₇, -
 SC(NR₈)SR₅, -NR₅C(NR₈)SR₅, -OC(NR₈)SR₅, -S(O)_pR₅, -S(O)_pNR₆R₇, -
 NR₅S(O)_pR₅, -NR₅S(O)NR₆R₇, -S(O)_pOR₅, -OS(O)_pR₅, or -OS(O)OR₅;

10 R₅, for each occurrence, is independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl;

15 R₆ and R₇, for each occurrence are, independently, H, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocycl, an

20 heterocycl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, or an optionally substituted heteraralkyl; or R₆ and R₇ taken together with the nitrogen to which they are attached are an optionally substituted heterocycl or optionally substituted heteroaryl;

25 R₈, for each occurrence, is independently -H, a halo, an alkyl, -OR₅, -NR₆R₇, -C(O)R₅, -C(O)OR₅, or -C(O)NR₆R₇; and p is 1 or 2.

311. The method of Claim 310, wherein:

30 L₂ is selected from the group consisting of -NRC(R)₂-, -C(R)₂NR-, -C(O)-, -NR-C(O)-, -C(O)-NR-, -C(S)-, -C(NR₈)-, -NR-C(S)-, -C(S)-NR-, -NR-C(NR₈)-, -C(NR₈)-NR-, -NRC(O)NR-, -NRC(S)NR-, -NRC(NR₈)NR-, -S(O)₂NR-, -NRS(O)₂-, -NRS(O)₂NR-, -

NRC(R)₂NR-, -CR=CR-, -C≡C-, -N=CR-, -CR=N-, -NR-N=CR-, or -CR=N-NR-; and

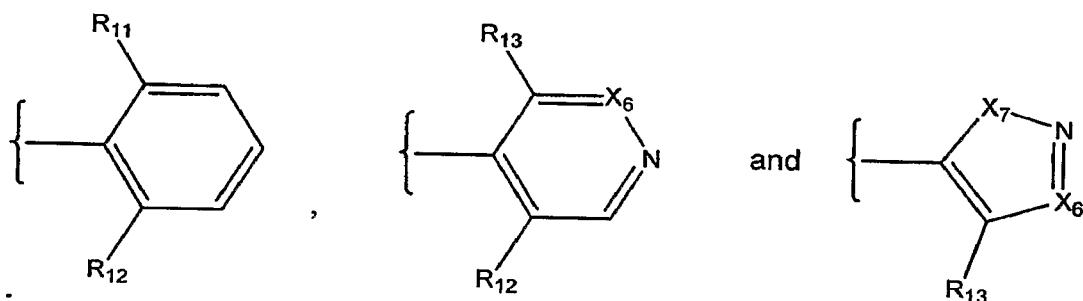
R is H or a lower alkyl.

5 312. The method of Claim 311, wherein L₂ is -NRCH₂-, -CH₂NR-, -C(O)-, -NR-C(O)-, -C(O)-NR-, -C(S)-, -NR-C(S)-, -C(S)-NR-, -NRC(O)NR-, -NRC(S)NR-, -NRS(O)₂-, -NRC(R)₂NR-, -CR=CR-, or -NR-N=CR-.

313. The method of Claim 312, wherein:

10 W₁ and W₂ are CH; and A is -CH=CH-; or
one of W₁ or W₂ is CH and the other is N; and A is -CH=CH-.

314. The method of Claim 313, wherein Y₂ is an optionally substituted aryl or an optionally substituted heteroaryl.


15 315. The method of Claim 314, wherein Y₂ is an optionally substituted phenyl, an optionally substituted naphthyl, an optionally substituted anthracenyl, an optionally substituted pyridyl, an optionally substituted furyl, an optionally substituted thienyl, an optionally substituted pyrrolyl, an optionally substituted oxazolyl, an optionally substituted imidazolyl, an optionally substituted indolizinyl, an optionally substituted thiazolyl, an optionally substituted isoxazolyl, an optionally substituted pyrazolyl, an optionally substituted isothiazolyl, an optionally substituted pyridazinyl, an optionally substituted pyrimidinyl, an optionally substituted pyrazinyl, an optionally substituted triazinyl, an optionally substituted triazolyl, an optionally substituted thiadiazolyl, an optionally substituted pyrazinyl, an optionally substituted quinolinyl, an optionally substituted isoquinolinyl, an optionally substituted indazolyl, an optionally substituted benzoxazolyl, an optionally substituted benzofuryl, an optionally substituted benzothiazolyl, an optionally substituted indolizinyl, an optionally substituted imidazopyridinyl, an optionally substituted isothiazolyl, an optionally substituted tetrazolyl, an optionally substituted benzoxazolyl, an optionally substituted

benzamidazolyl, an optionally substituted benzothiazolyl, an optionally substituted benzothiadiazolyl, an optionally substituted benzoxadiazolyl, an optionally substituted indolyl, an optionally substituted tetrahydroindolyl, an optionally substituted azaindolyl, an optionally substituted imidazopyridyl, an optionally substituted quinazolinyl, an optionally substituted purinyl, an optionally substituted pyrrolo[2,3]pyrimidyl, an optionally substituted pyridopyrimidyl, an optionally substituted pyrazolo[3,4]pyrimidyl or an optionally substituted benzo(b)thienyl.

10

316. The method of Claim 315, wherein Y_2 is an optionally substituted phenyl, an optionally substituted pyridinyl, an optionally substituted pyridazinyl, an optionally substituted isothiazolyl, an optionally substituted isoxazolyl, an optionally substituted oxadiazolyl, or an optionally substituted thiadiazolyl.
317. The method of Claim 316, wherein Y_2 is selected from the group consisting of:

20

wherein:

X_6 is CH or N;

X_7 is O or S:

R_{11} and R_{12} are each, independently, a substituent; and

25

R_{13} is H or a substituent

318. The method of Claim 317, wherein:

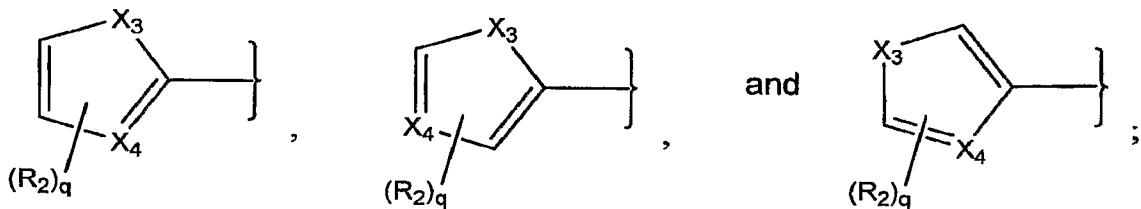
R_{11} and R_{12} are each, independently, selected from the group consisting of a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a

lower haloalkoxyl; and

R_{13} is H, a halo, a lower alkyl, a lower alkoxy, a haloalkyl, or a lower haloalkoxyl.

5 319. The method of Claim 313, wherein Y_2 is an optionally substituted
cycloalkyl.

320. The method of Claim 319, wherein Y_2 is an optionally substituted
cyclohexanyl or an optionally substituted cyclopentanyl.


10 321. The method of Claim 313, wherein R_{17} is selected from the group
consisting of an optionally substituted furyl, an optionally substituted
thienyl, an optionally substituted pyrrolyl, an optionally substituted
oxazolyl, an optionally substituted imidazolyl, an optionally substituted
thiazolyl, an optionally substituted isoxazolyl, an optionally substituted
pyrazolyl, an optionally substituted isothiazolyl, an optionally
substituted pyridazinyl, an optionally substituted pyrimidinyl, an
optionally substituted pyrazinyl, an optionally substituted triazinyl, an
optionally substituted thiadiazolyl, an optionally substituted pyrazinyl,
15 an optionally substituted quinolinyl, an optionally substituted
isoquinolinyl, an optionally substituted indazolyl, an optionally
substituted benzoxazolyl, an optionally substituted benzofuryl, an
optionally substituted benzothiazolyl, an optionally substituted
isothiazolyl, an optionally substituted tetrazolyl, an optionally
substituted benzoxazolyl, an optionally substituted benzothiazolyl, an
optionally substituted benzothiadiazolyl, an optionally substituted
benzoxadiazolyl, an optionally substituted indolyl, an optionally
substituted tetrahydroindolyl, an optionally substituted azaindolyl, an
optionally substituted quinazolinyl, an optionally substituted purinyl, an
optionally substituted pyrrolo[2,3]pyrimidyl, an optionally substituted
20 pyridopyrimidyl, an optionally substituted pyrazolo[3,4]pyrimidyl or an
optionally substituted benzo(b)thienyl.

25 30

322. The method of Claim 321, wherein R_{17} is selected an optionally substituted thienyl, an optionally substituted furanyl, an optionally substituted thiazolyl, or an optionally substituted oxazolyl.

5 323. The method of Claim 322, wherein:

R_{17} is selected from the group consisting of:

X_3 is O or S;

10 X_4 is CH, CR₂, or N;

R_2 is a substituent; and

q is 0, 1 or 2.

324. The method of Claim 323, wherein R_2 , for each occurrence, is independently, selected from the group consisting of a halo, nitro, cyano, a haloalkyl, -OR₅, -SR₅, -NR₆R₇, an optionally substituted alkyl, an optionally substituted alkenyl, an optionally substituted alkynyl, an optionally substituted cycloalkyl, an optionally substituted cycloalkenyl, an optionally substituted heterocyclyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted aralkyl, an optionally substituted heteraralkyl, -C(O)NR₆R₇, -C(O)R₅, -C(O)OR₅, -C(O)SR₅, -C(S)NR₆R₇, -C(S)R₅, -C(S)OR₅, -C(S)SR₅, -C(NR₈)NR₆R₇, -C(NR₈)R₅, -C(NR₈)OR₅, -C(NR₈)SR₅, -S(O)_pR₅, -S(O)_pNR₆R₇, -P(O)(OR₅)₂, -P(S)(OR₅)₂, -P(O)(OR₅)(SR₅), -P(S)(OR₅)(SR₅), -P(O)(SR₅)₂, or -P(S)(SR₅)₂, -OC(O)NR₆R₇, -OC(O)R₅, -OC(O)OR₅, -OC(O)SR₅, -NR₅C(O)NR₆R₇, -NR₅C(O)R₅, -NR₅C(O)OR₅, -NR₅C(O)SR₅, -SC(O)NR₆R₇, -SC(O)R₅, -SC(O)OR₅, -SC(O)SR₅, -OC(S)NR₆R₇, -OC(S)R₅, -OC(S)OR₅, -OC(S)SR₅, -NR₅C(S)NR₆R₇, -NR₅C(S)OR₅, -NR₅C(S)SR₅, -SC(S)NR₆R₇, -SC(S)R₅, -SC(S)OR₅, -SC(S)SR₅, -OC(NR₈)NR₆R₇, -OC(NR₈)R₅, -OC(NR₈)OR₅, -

15

20

25

30

OC(NR₈)SR₅, -NR₅C(NR₈)NR₆R₇, -NR₅C(NR₈)R₅, -NR₅C(NR₈)OR₅, -NR₅C(NR₈)SR₅, -OS(O)_pR₅, -NR₅S(O)_pR₅, -OP(O)(OR₅)₂, or -OP(S)(OR₅)₂.

5 325. The method of Claim 324, wherein R₂, for each occurrence, is independently selected from the group consisting of a halo, a lower alkoxy, or a lower alkyl, an oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, a thiadiazolyl, -C(O)N(R₁₉)₂, -C(O)R₂₀, -C(O)OR₂₀, wherein 10 the oxazolyl, a morpholinyl, a furanyl, a lower haloalkyl, a thiazolyl, an isoxazolyl, an oxadiazolyl, a tetrazolyl, an isothiazolyl, and a thiadiazolyl are optionally substituted with one or more substituents, independently, selected from a halo or a lower alkyl; and R₁₉ and R₂₀, for each occurrence are, independently, a lower alkyl.

15 326. The method of Claim 325, wherein q is 2.

327. The method of any one of Claims 310 through 326, wherein immune 20 cell activation is inhibited.

328. The method of any one of Claims 310 through 326, wherein cytokine production in a cell is inhibited.

25 329. The method of Claim 328, wherein the cytokine is selected from the group consisting of IL-2, IL-4, IL-5, IL-13, GM-CSF, IFN- γ , TNF- α , and combinations thereof.

30 330. The method of Claim 329, wherein the cytokine is IL-2.

331. The method of any one of Claims 310 through 326, wherein T-cell and/or B-cell proliferation in response to an antigen is inhibited.

332. A method for treating or preventing an immune disorder in a subject in need thereof, comprising administering to the subject an effective amount of a compound of any one of Claims 310 through 326 that inhibits CRAC ion channels.

5 333. The method of Claim 332, wherein the subject is human.

10 334. The method of Claim 333, wherein the disorder is selected from the group consisting of multiple sclerosis, myasthenia gravis, Guillain-Barré, autoimmune uveitis, autoimmune hemolytic anemia, pernicious anemia, autoimmune thrombocytopenia, temporal arteritis, anti-phospholipid syndrome, vasculitides such as Wegener's granulomatosis, Behcet's disease, psoriasis, dermatitis herpetiformis, pemphigus vulgaris, vitiligo, Crohn's disease, ulcerative colitis, primary biliary cirrhosis, autoimmune hepatitis, Type 1 or immune-mediated diabetes mellitus, Grave's disease, Hashimoto's thyroiditis, autoimmune oophoritis and orchitis, autoimmune disorder of the adrenal gland, rheumatoid arthritis, systemic lupus erythematosus, scleroderma, polymyositis, dermatomyositis, ankylosing spondylitis, and Sjogren's syndrome.

15

20 335. A method for treating or preventing an inflammatory condition in a subject in need thereof, comprising administering to the subject an effective amount of a compound of any one of Claims 310 through 326 that inhibits CRAC ion channels.

25 336. The method of Claim 335, wherein the subject is human.

30 337. The method according to claim 336, wherein the disorder is selected from transplant rejection, skin graft rejection, arthritis, rheumatoid arthritis, osteoarthritis and bone diseases associated with increased bone resorption; inflammatory bowel disease, ileitis, ulcerative colitis,

Barrett's syndrome, Crohn's disease; asthma, adult respiratory distress syndrome, chronic obstructive airway disease; corneal dystrophy, trachoma, onchocerciasis, uveitis, sympathetic ophthalmitis, endophthalmitis; gingivitis, periodontitis; tuberculosis; leprosy; uremic complications, glomerulonephritis, nephrosis; scleroderatitis, psoriasis, eczema; chronic demyelinating diseases of the nervous system, multiple sclerosis, AIDS-related neurodegeneration, Alzheimer's disease, infectious meningitis, encephalomyelitis, Parkinson's disease, Huntington's disease; amyotrophic lateral sclerosis viral or autoimmune encephalitis; autoimmune disorders, immune-complex vasculitis, systemic lupus and erythematoses; systemic lupus erythematosus (SLE); cardiomyopathy, ischemic heart disease hypercholesterolemia, atherosclerosis, preeclampsia; chronic liver failure, brain and spinal cord trauma, and cancer.

15

338. A method for suppressing the immune system of a subject in need thereof, comprising administering to the subject an effective amount of a compound of any one of Claims 310 through 326 that inhibits CRAC ion channels.

20

339. The method of Claim 338, wherein the subject is human.

25

340. A method of inhibiting mast cell degranulation, comprising administering to the cell a compound of any one of Claims 310 through 326 that inhibits CRAC ion channels.

30

341. The method of Claim 340, wherein mast cell degranulation is inhibited in a subject by administering the compound to the subject.

35

342. The method of Claim 341, wherein the subject is human.

343. A method for treating or preventing an allergic disorder in a subject in need thereof, comprising administering to the subject an effective

amount of a compound of any one of Claims 310 through 326 that inhibits CRAC ion channels.

344. The method of Claim 343, wherein the subject is human.

5

345. The method of Claim 344, wherein the disorder is allergic rhinitis, sinusitis, rhinosinusitis, chronic otitis media, recurrent otitis media, drug reactions, insect sting reactions, latex reactions, conjunctivitis, urticaria, anaphylaxis reactions, anaphylactoid reactions, atopic dermatitis, asthma, or food allergies.

10

15