

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

**(43) International Publication Date
21 January 2016 (21.01.2016)**

WIPO | PCT

**(10) International Publication Number
WO 2016/008590 A1**

(51) **International Patent Classification:**
C07D 401/14 (2006.01) *A61K 31/506* (2006.01)
C07D 403/04 (2006.01) *A61P 29/00* (2006.01)
C07D 403/14 (2006.01)

(21) **International Application Number:** PCT/EP2015/001473

(22) **International Filing Date:** 16 July 2015 (16.07.2015)

(25) **Filing Language:** English

(26) **Publication Language:** English

(30) **Priority Data:**
14002450.6 16 July 2014 (16.07.2014) EP

(71) **Applicant:** GRÜNENTHAL GMBH [DE/DE]; Zieglerstrasse 6, 52078 Aachen (DE).

(72) **Inventors:** NARDI, Antonio; Maria Montessori Strasse 101, 52134 Herzogenrath (DE). JAKOB, Florian; Oppenhoffallee 14 a, 52066 Aachen (DE). KONETZKI, Ingo; Ringstrasse 139, 52078 Aachen (DE). CRAAN, Tobias; Altdorfstrasse 32, 52066 Aachen (DE). HESSLINGER, Christian; Untere Haldenäcker 6, 78357 Zoznegg (DE).

(81) **Designated States** (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

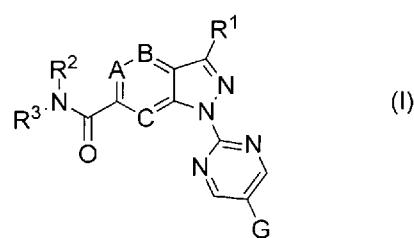
(84) **Designated States** (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))

Published:

- with international search report (Art. 21(3))


Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))

Published:

— with international search report (Art. 21(3))

(54) Title: NOVEL 2,5-SUBSTITUTED PYRIMIDINES AS PDE4 INHIBITORS

(57) Abstract: The invention relates to novel substituted condensed pyrimidine compounds of general formula (I) in which the chemical groupings, substituents and indices are as defined in the description, and to their use as medicaments, in particular as medicaments for the treatment of conditions and diseases that can be treated by inhibition of the PDE4 enzyme.

WO 2016/008590 A1

NOVEL 2,5-SUBSTITUTED PYRIMIDINES AS PDE4 INHIBITORS

The present invention relates to novel 2,5-substituted pyrimidines and to their use as pharmaceuticals (medicaments).

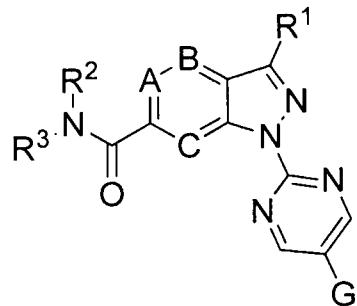
It is known that certain pyrimidine compounds are suitable for inhibiting specific phosphodiesterases (abbreviated as PDEs). WO 95/01338 A1 describes, for example, that certain PDE inhibitors can be used for treating inflammatory respiratory diseases, dermatoses, and other proliferative, inflammatory and allergic skin diseases. Phosphodiesterases are a group of enzymes encompassing 11 gene families (PDE1-11), which differ inter alia through their affinity to cAMP and cGMP.

The discovery that the second messenger cAMP plays an important role in many inflammatory processes and that PDE4 is strongly expressed in cells that control inflammation processes (see inter alia Schudt, C. et al. (1995). PDE isoenzymes as targets for anti-asthma drugs. *European Respiratory Journal* **8**, 1179-1183), has led to the development of PDE4 inhibitors having an anti-inflammatory effect. One such PDE4 inhibitor having an anti-inflammatory effect is for example roflumilast (known under the trade name Daxas[®]), which is approved as a medicament for the treatment of COPD (chronic obstructive pulmonary disease). It is however known that roflumilast has quite a number of undesired (adverse) side-effects such as for example nausea, diarrhoea and headaches, which side-effects limit the dose in humans.

Undesired side-effects in humans were not only observed with roflumilast but also with other PDE4 inhibitors, so that the therapeutic range (therapeutic window) of such medicaments is relatively narrow. The provision of PDE4 inhibitors having less severe or no adverse side-effects and a better therapeutic window would therefore be desirable.

Phosphodiesterase 4 (PDE4) is cAMP-specific and encompasses 4 different subtypes (PDE4A, PDE4B, PDE4C and PDE4D). As described below, efforts are being made to find subtype-selective PDE4 inhibitors, above all PDE4B-selective inhibitors, that have less severe or no adverse side-effects, such that the therapeutic range of these compounds is increased significantly.

It is known that the inhibition of PDE4D is associated with the occurrence of the undesired adverse side-effects like diarrhoea, vomiting and nausea (cf. Mori, F. et al. (2010). The human area postrema and other nuclei related to the emetic reflex express cAMP phosphodiesterases 4B and 4D. *Journal of Chemical Neuroanatomy* **40**, 36-42; Press, N.J.; Banner K. H (2009). PDE4 inhibitors – A review of the current field. *Progress in Medicinal Chemistry* **47**, 37-74; Robichaud, A. et al. (2002). Deletion of phosphodiesterase 4D in mice shortens α 2-adrenoceptor-mediated anesthesia, a behavioral correlate of emesis. *The Journal of Clinical Investigation* **110**, 1045-52; or Lee et al., (2007). Dynamic regulation of CFTR by competitive interactions of molecular adaptors. *Journal of Biological Chemistry* **282**, 10414-


- 2 -

10422); or Giembycz, M.A. (2002). 4D or not 4D – the emetogenic basis of PDE4 inhibitors uncovered? *Trends in Pharmacological Sciences* **23**, 548).

Based on this knowledge the object of the present invention was to find compounds that are preferably PDE4B-selective (i.e. to find active compounds that with a particular amount of active ingredient inhibit PDE4B subtype but without or only weakly inhibiting the PDE4D subtype). The advantage of such a PDE4B selectivity, as mentioned above, is that various side-effects do not occur or occur only to a small extent and that therefore a greater therapeutic range of the pharmaceutical active ingredient can be obtained. The therapeutic range of a pharmaceutical active ingredient and medicament, respectively, describes the gap between its therapeutic dose and a dose that would lead to a toxic or undesired effect. 10 The greater the therapeutic range, the rarer or more unlikely the occurrence of such toxic or undesired effects and hence the safer and more acceptable the pharmaceutical active ingredient and medicament, respectively. The therapeutic range is often also referred to as the therapeutic window or therapeutic index. These names are used synonymously in the present application.

The inventors now have found 2,5- substituted pyrimidines that display the desired inhibiting and, 15 additionally, a PDE4B-selective property. They are therefore particularly suitable for the treatment of diseases and conditions in which inhibition of the PDE4 enzyme, in particular the PDE4B enzyme, is advantageous.

Therefore, in a first aspect, the invention relates to 2,5-substituted pyrimidines having the following general formula (I)

(I)

20

in which

A, B, C each independently of each other stands for N or CH; preferably A, B, C each stands for CH;

25 R¹ stands for (C₁-C₆)-alkyl, (C₁-C₆)-hydroxyalkyl, (C₁-C₆)-haloalkyl, (C₃-C₆)-cycloalkyl, SO_x-(C₁-C₆)-alkyl, CONH₂, CONH-(C₁-C₆)-alkyl, CON((C₁-C₆)-alkyl)₂; preferably R¹ stands for methyl, ethyl, propyl, i-propyl, n-butyl, hydroxymethyl, hydroxyethyl, hydroxypropyl, cyclopropyl, CF₃, CONH₂, SOCH₃ or SO₂CH₃; more preferably R¹ stands for methyl, cyclopropyl, CF₃, CONH₂, hydroxymethyl, 1-hydroxyethyl, 2-hydroxypropan-2-yl, SOCH₃, SO₂CH₃; most preferably R¹ stands for cyclopropyl, 1-hydroxyethyl, 2-hydroxypropan-2-yl, SOCH₃, SO₂CH₃;

- 3 -

x is 0, 1 or 2; preferably x is 1 or 2;

G is an optionally with at least one substituent Y substituted phenyl or 5- or 6-membered heteroaryl which contains at least one oxygen, sulfur or nitrogen atom, whereas the nitrogen atoms present in the heteroaryl can be substituted with R⁴; preferably G stands for optionally with at least one substituent Y substituted phenyl, pyridyl, pyrimidyl, furyl, thiophenyl, oxazolyl, thiazolyl; more preferably G stands for one of the groups G1 to G45 as given herein;

R⁴ is hydrogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, CO-(C₁-C₆)-alkyl, SO(C₁-C₆)-alkyl, SO₂(C₁-C₆)-alkyl; preferably R⁴ stands for hydrogen or methyl;

Y independently of one another is halogen, OH, CN, SH, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkinyl, (C₃-C₆)-cycloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-thioalkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-thiohaloalkyl, (C₁-C₆)-haloalkoxy, CO₂H, CO₂(C₁-C₆)-alkyl, CHO, CO(C₁-C₆)-alkyl, OCO(C₁-C₆)-alkyl, CONH₂, CONH-(C₁-C₆)-alkyl, CON((C₁-C₆)-alkyl)₂, OCO-NH(C₁-C₆)-alkyl, OCO-N((C₁-C₆)-alkyl)₂, NH₂, NH(C₁-C₆)-alkyl, N((C₁-C₆)-alkyl)₂, N-pyrrolidinyl, N-piperidinyl, N-morpholinyl, NH-CO-(C₁-C₆)-alkyl, NH-CO₂(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-CO₂(C₁-C₆)-alkyl, NH-CO-NH₂, NH-CO-NH(C₁-C₆)-alkyl, NH-CO-N(C₁-C₆)-alkyl₂, N(C₁-C₆)-alkyl-CO-NH(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-CO-N((C₁-C₆)-alkyl)₂, NH-SO₂-(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-SO₂-(C₁-C₆)-alkyl, S-(C₁-C₆)-alkyl, SO(C₁-C₆)-alkyl, SO₂-(C₁-C₆)-alkyl, SO₂H, SO₂OH, SO₂NH₂, SO₂NH(C₁-C₆)-alkyl, SO₂N((C₁-C₆)-alkyl)₂, C(=N)-NH, NHC(=N)-NH₂, -N=C=O, -S-CN, wherein the aforementioned alkyl chains may be substituted with at least one of the following substituents OH, CN, (C₃-C₆)-cycloalkyl, (C₁-C₆)-alkoxy, CO₂H, CO₂(C₁-C₆)-alkyl or -NH₂; preferably Y independently of one another is halogen, CN, OH, NH₂, N((C₁-C₄)-alkyl)₂, CONH₂, (C₁-C₄)-alkyl, (C₁-C₄)-alkoxy, (C₃-C₆)-cycloalkyl; more preferably Y independently of one another is F, Cl, CN, OH, NH₂, N(CH₃)₂, CONH₂, CH₃, CH₂CH₃, OCH₃, OCH₂CH₃, cycloalkyl;

R² and R³ independently of one another stand for hydrogen or optionally substituted (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-hydroxyalkyl, (C₁-C₆)-alkoxy(C₁-C₆)-alkylen, (C₁-C₆)-alkylen-CO₂H, (C₁-C₆)-alkylen-CO₂(C₁-C₆)-alkyl, (C₁-C₆)-alkylen-CONH₂, (C₁-C₆)-alkylen-CONH(C₁-C₆)-alkyl, (C₁-C₆)-alkylen-CON((C₁-C₆)-alkyl)₂, (C₁-C₆)-alkylen-(C₃-C₆)-cycloalkyl, (C₁-C₆)-hydroxyalkyl-(C₃-C₆)-cycloalkylen, a group L¹V, a group L²W, or

R² and R³ together with the nitrogen atom to which they are attached form an optionally with at least one substituent X^Q substituted 3- to 12-membered mono- or bicyclic heteroaliphatic residue Q which may additionally contain at least one oxygen, sulfur or further nitrogen atom, whereas these one or more additional nitrogen atoms are substituted with R⁵;

X^Q independently of each other stand for =O (carbonyl), halogen, OH, CN, SH, (C₁-C₆)-alkyl, (C₁-C₆)-hydroxyalkyl, (C₁-C₆)-cyanoalkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkinyl, (C₃-C₆)-cycloalkyl, (C₁-C₆)-

- 4 -

alkoxy, (C₁-C₆)-alkoxy(C₁-C₆)-alkylen, (C₁-C₆)-thioalkyl, (C₁-C₆)-thiohaloalkyl, (C₁-C₆)-haloalkoxy, -NH₂, NH(C₁-C₆)-alkyl, N((C₁-C₆)-alkyl)₂, (C₁-C₆)-alkylen-NH(C₁-C₆)-alkyl, (C₁-C₆)-alkylen-N((C₁-C₆)-alkyl)₂ NH-CHO, NH-CO(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-CO(C₁-C₆)-alkyl, NH-CO-O(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-CO-O(C₁-C₆)-alkyl, NH-CO-NH₂, NH-CO-NH(C₁-C₆)-alkyl, NH-CO-N((C₁-C₆)-alkyl)₂, N(C₁-C₆)-alkyl-CO-NH(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-CO-N((C₁-C₆)-alkyl)₂, NH-SO₂-(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-SO₂-(C₁-C₆)-alkyl, CO₂H, CO₂(C₁-C₆)-alkyl, CHO, CO(C₁-C₆)-alkyl, O-CO(C₁-C₆)-alkyl, CO-NH₂, CO-NH(C₁-C₆)-alkyl, CO-N((C₁-C₆)-alkyl)₂, O-CO-NH(C₁-C₆)-alkyl, O-CO-N((C₁-C₆)-alkyl)₂, S-(C₁-C₆)-alkyl, SO(C₁-C₆)-alkyl, SO₂-(C₁-C₆)-alkyl, SOOH, SO₂OH, SO₂NH₂, SO₂NH(C₁-C₆)-alkyl, SO₂N((C₁-C₆)-alkyl)₂, C(=N)-NH, NHC(=N)-NH₂, -N=C=O, -S-CN, wherein the aforementioned alkyl chains may be substituted with at least one of the following substituents OH, CN, (C₃-C₆)-cycloalkyl, (C₁-C₆)-alkoxy, CO₂H, CO₂(C₁-C₆)-alkyl or -NH₂; preferably X^Q independently of each other stands for carbonyl (=O), F, Cl, CN, NH₂, OH, SH, CH₃, CH₂CH₃, OCH₃, OCH₂CH₃, SCH₃, SCH₂CH₃, CH₂OCH₃, CH₂OH, CH₂CH₂OH, CH₂CN, CH₂CH₂CN, cyclopropyl, N(CH₃)₂, CH₂NH(CH₃), CF₃, CHF₂, CH₂F, SCF₃, SCF₂H, SCFH₂, OCF₃, OCF₂H, and OCFH₂; more preferably for (=O), NH₂, OH, CH₃, CH₂CH₃, OCH₃, OCH₂CH₃, CH₂OCH₃, CH₂OH, CH₂CH₂OH, CH₂CN, CH₂CH₂CN, N(CH₃)₂, CH₂NH(CH₃);

R⁵ is hydrogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, CO-(C₁-C₆)-alkyl, SO-(C₁-C₆)-alkyl, SO₂-(C₁-C₆)-alkyl; preferably R⁵ is for hydrogen, methyl or ethyl;

preferably R² and R³ independently of one another stand for hydrogen, (C₁-C₄)-alkyl, (C₁-C₄)-hydroxyalkyl, (C₁-C₄)-alkoxy(C₁-C₄)-alkylen, (C₁-C₄)-alkylen-CO₂H, (C₁-C₄)-alkylen-CO₂(C₁-C₄)-alkyl, (C₁-C₄)-alkylen-CONH₂, (C₁-C₄)-alkylen-CONH(C₁-C₂)-alkyl, (C₁-C₄)-alkylen-CON((C₁-C₂)-alkyl)₂, (C₁-C₄)-alkylen-(C₃-C₆)-cycloalkyl, (C₁-C₄)-hydroxyalkyl-(C₃-C₆)-cycloalkylen, a group L¹V, a group L²W, or R² and R³ together with the nitrogen atom to which they are attached form one of the groups Q1 to Q27 as given herein;

more preferably R² and R³ independently of each other stand for H, CH₃, CH₂-cyclopropyl, 2-hydroxpropyl, hydroxyethyl, 2-methoxyethyl, 1-hydroxymethylcyclopropyl, 2-hydroxy-2-methylpropyl, CH₂CO₂H, CH₂CONH₂, CH₂CO₂CH₃, L¹V1, L¹V2, L¹V7, L¹V12 or R² and R³ together with the nitrogen atom to which they are attached form one of the groups Q6, Q10, Q17, Q18, Q19, Q20, Q21, Q22, Q24 and Q25 as given herein;

L¹ is a bond or a branched or straight-chain optionally substituted (C₁-C₆)-alkylene group connected to the amide nitrogen; preferably L¹ is a bond, or a branched or straight-chain optionally substituted (C₁-C₄)-alkylene; more preferably L¹ is a bond or a methylene or ethylene group;

- 5 -

V is an optionally with at least one substituent X^V substituted 3- to 12-membered (**preferably** 3- to 8-membered) mono- or bicyclic aliphatic or heteroaliphatic residue, whereas if one or more nitrogen atoms are present in the mono- or bicyclic heteroaliphatic residue, then at least one of these nitrogen atoms is substituted with R⁶;

5 X^V independently of each other stand for =O (carbonyl), halogen, OH, CN, SH, (C₁-C₆)-alkyl, (C₁-C₆)-hydroxyalkyl, (C₁-C₆)-cyanoalkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkinyl, (C₃-C₆)-cycloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-alkoxy(C₁-C₆)-alkylen, (C₁-C₆)-thioalkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-thiohaloalkyl, (C₁-C₆)-haloalkoxy, -NH₂, NH(C₁-C₆)-alkyl, N((C₁-C₆)-alkyl)₂, (C₁-C₆)-alkylen-NH(C₁-C₆)-alkyl, (C₁-C₆)-alkylen-N((C₁-C₆)-alkyl)₂ NH-CHO, NH-CO(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-CO(C₁-C₆)-alkyl, 10 NH-CO-O(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-CO-O(C₁-C₆)-alkyl, NH-CO-NH₂, NH-CO-NH(C₁-C₆)-alkyl, NH-CO-N((C₁-C₆)-alkyl)₂, N(C₁-C₆)-alkyl-CO-NH₂, N(C₁-C₆)-alkyl-CO-NH(C₁-C₆)-alkyl, 15 N(C₁-C₆)-alkyl-CO-N((C₁-C₆)-alkyl)₂, NH-SO₂-(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-SO₂-(C₁-C₆)-alkyl, CO₂H, CO₂(C₁-C₆)-alkyl, CHO, CO(C₁-C₆)-alkyl, O-CO(C₁-C₆)-alkyl, CO-NH₂, CO-NH(C₁-C₆)-alkyl, CO-N((C₁-C₆)-alkyl)₂, O-CO-NH(C₁-C₆)-alkyl, O-CO-N((C₁-C₆)-alkyl)₂, S-(C₁-C₆)-alkyl, 20 SO(C₁-C₆)-alkyl, SO₂-(C₁-C₆)-alkyl, SOOH, SO₂OH, SO₂NH₂, SO₂NH(C₁-C₆)-alkyl, SO₂N((C₁-C₆)-alkyl)₂, C(=N)-NH, NHC(=N)-NH₂, -N=C=O, -S-CN, wherein the aforementioned alkyl chains may be substituted with at least one of the following substituents OH, CN, (C₃-C₆)-cycloalkyl, (C₁-C₆)-alkoxy, CO₂H, CO₂(C₁-C₆)-alkyl or -NH₂; preferably X^V independently of each other stands for carbonyl (=O), F, Cl, CN, NH₂, OH, SH, CH₃, CH₂CH₃, OCH₃, OCH₂CH₃, SCH₃, SCH₂CH₃, 25 CH₂OCH₃, CH₂OH, CH₂CH₂OH, CH₂CN, CH₂CH₂CN, cyclopropyl, N(CH₃)₂, CH₂NH(CH₃), CF₃, CHF₂, CH₂F, SCF₃, SCF₂H, SCFH₂, OCF₃, OCF₂H, and OCFH₂; more preferably for (=O), NH₂, OH, CH₃, CH₂CH₃, OCH₃, OCH₂CH₃, CH₂OCH₃, CH₂OH, CH₂CH₂OH, CH₂CN, CH₂CH₂CN, N(CH₃)₂, CH₂NH(CH₃);

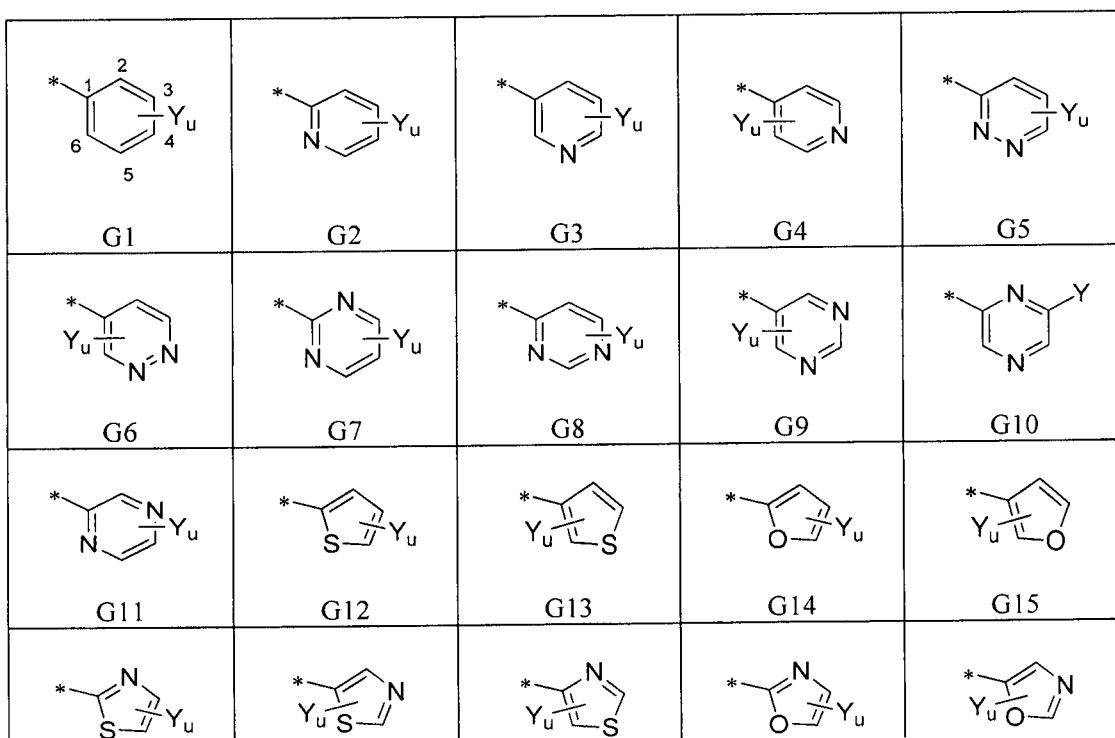
R⁶ is hydrogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, CO-(C₁-C₆)-alkyl, SO(C₁-C₆)-alkyl, SO₂(C₁-C₆)-alkyl; 25 preferably R⁶ is hydrogen, methyl or ethyl;

L² is a bond or a branched or straight-chain optionally substituted (C₁-C₆)-alkylene group connected to the amide nitrogen; preferably L² is a bond, or a branched or straight-chain optionally substituted (C₁-C₄)-alkylene; more preferably L² is a bond or a methylene or ethylene group;

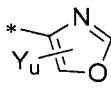
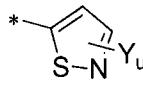
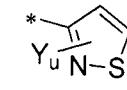
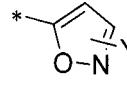
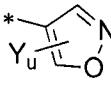
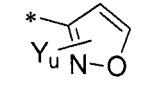
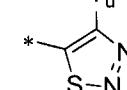
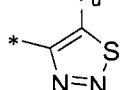
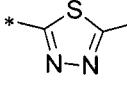
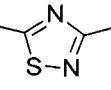
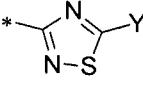
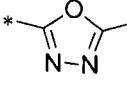
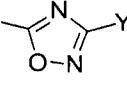
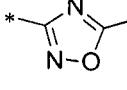
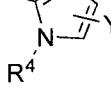
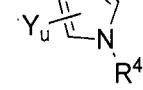
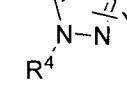
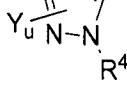
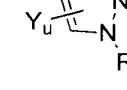
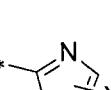
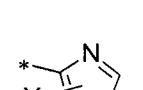
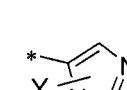
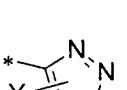
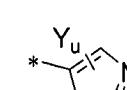
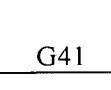
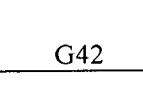
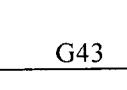
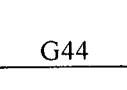
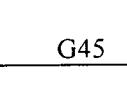
W is an optionally with at least one substituent Z substituted phenyl or 5- or 6-membered heteroaryl which contains at least one oxygen, sulfur or nitrogen atom; W preferably stands for optionally with at least one substituent Z substituted phenyl, pyridyl, pyrimidyl, furyl; and 30

Z independently of each other stand for halogen, OH, CN, SH, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkinyl, (C₃-C₆)-cycloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-thioalkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-thiohaloalkyl, (C₁-C₆)-haloalkoxy, -NH₂, NH(C₁-C₆)-alkyl, N((C₁-C₆)-alkyl)₂, N-pyrrolidinyl, N-

- 6 -


5 piperidinyl, N-morpholinyl, NH-CHO, NH-CO(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-CO(C₁-C₆)-alkyl, NH-CO₂(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-CO₂(C₁-C₆)-alkyl, NH-CO-NH₂, NH-CO-NH(C₁-C₆)-alkyl, NH-CO-N((C₁-C₆)-alkyl)₂, N(C₁-C₆)-alkyl-CO-NH₂, N(C₁-C₆)-alkyl-CO-NH(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-CO-N((C₁-C₆)-alkyl)₂, NH-SO₂-(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-SO₂-(C₁-C₆)-alkyl, CO₂H, CO₂(C₁-C₆)-alkyl, CHO, CO(C₁-C₆)-alkyl, O-CO(C₁-C₆)-alkyl, CO-NH₂, CO-NH(C₁-C₆)-alkyl, CO-N((C₁-C₆)-alkyl)₂, O-CO-NH(C₁-C₆)-alkyl, O-CO-N((C₁-C₆)-alkyl)₂, S-(C₁-C₆)-alkyl, SO(C₁-C₆)-alkyl, SO₂-(C₁-C₆)-alkyl, SO₂H, SO₂OH, SO₂NH₂, SO₂NH(C₁-C₆)-alkyl, SO₂N((C₁-C₆)-alkyl)₂, C(=N)-NH, NHC(=N)-NH₂, -N=C=O, -S-CN, wherein the aforementioned alkyl chains may be substituted with at least one of the following substituents OH, CN, (C₃-C₆)-cycloalkyl, (C₁-C₆)-alkoxy, CO₂H, CO₂(C₁-C₆)-alkyl or -NH₂; preferably Z independently of each other stands halogen, for carbonyl (=O), F, Cl, CN, NH₂, OH, SH, CH₃, CH₂CH₃, OCH₃, OCH₂CH₃, SCH₃, SCH₂CH₃, CH₂OCH₃, CH₂OH, CH₂CH₂OH, CH₂CN, CH₂CH₂CN, cyclopropyl, N(CH₃)₂, CH₂NH(CH₃), CF₃, CHF₂, CH₂F, SCF₃, SCF₂H, SCFH₂, OCF₃, OCF₂H, OCFH₂, more preferably for (=O), NH₂, OH, CH₃, CH₂CH₃, OCH₃, OCH₂CH₃, CH₂OCH₃, CH₂OH, CH₂CH₂OH, CH₂CN, CH₂CH₂CN, N(CH₃)₂, CH₂NH(CH₃).

10






























15

Moreover, in the context of the invention the following groupings (groups or residues) and indices are preferred:

G preferably stands for optionally with at least one substituent Y substituted phenyl, pyridyl, pyrimidyl, furyl, thiophenyl, oxazolyl, thiazolyl, or for one of the following groups G1 to G45

- 7 -

G16	G17	G18	G19	G20
G21	G22	G23	G24	G25
G26	G27	G28	G29	G30
G31	G32	G33	G34	G35
G36	G37	G38	G39	G40
G41	G42	G43	G44	G45

wherein the site marked with an asterisk (*) indicates the binding site to the position 4 of the pyrimidine ring and wherein R⁴ and Y are as defined above and u is 0, 1, 2, 3 or 4 (preferably u is 0, or 1);

G more preferably stands for one of the following groups G1, G2, G3, G4, G5, G12, G13, G16, or G17.

5 R² and R³ preferably and independently of one another stand for hydrogen, (C₁-C₄)-alkyl, (C₁-C₄)-hydroxyalkyl, (C₁-C₄)-alkoxy(C₁-C₄)-alkylen, (C₁-C₄)-alkylen-CO₂H, (C₁-C₄)-alkylen-CO₂(C₁-C₄)-alkyl, (C₁-C₄)-alkylen-CONH₂, (C₁-C₄)-alkylen-CONH(C₁-C₂)-alkyl, (C₁-C₄)-alkylen-CON((C₁-C₂)-alkyl)₂, (C₁-C₄)-alkylen-(C₃-C₆)-cycloalkyl, (C₁-C₄)-hydroxyalkyl-(C₃-C₆)-cycloalkylen, a group L¹V, a group L²W, or

10 If R² and R³ together with the nitrogen atom to which they are attached form an optionally with at least one substituent X^Q substituted 3- to 12-membered mono- or bicyclic heteroaliphatic residue Q which may additionally contain at least one oxygen, sulfur or further nitrogen atom, whereas these one or

- 8 -

more additional nitrogen atoms are substituted with R^5 , then the following groups Q1 to Q27 are preferred; more preferably Q stands for one of the following groups Q6, Q10, Q17, Q18, Q19, Q20, Q21, Q22, Q24, and Q25 even more preferably for the groups Q6, Q10, Q17, Q20, Q21, Q22, Q24 and Q25; most preferably Q stands for Q17.

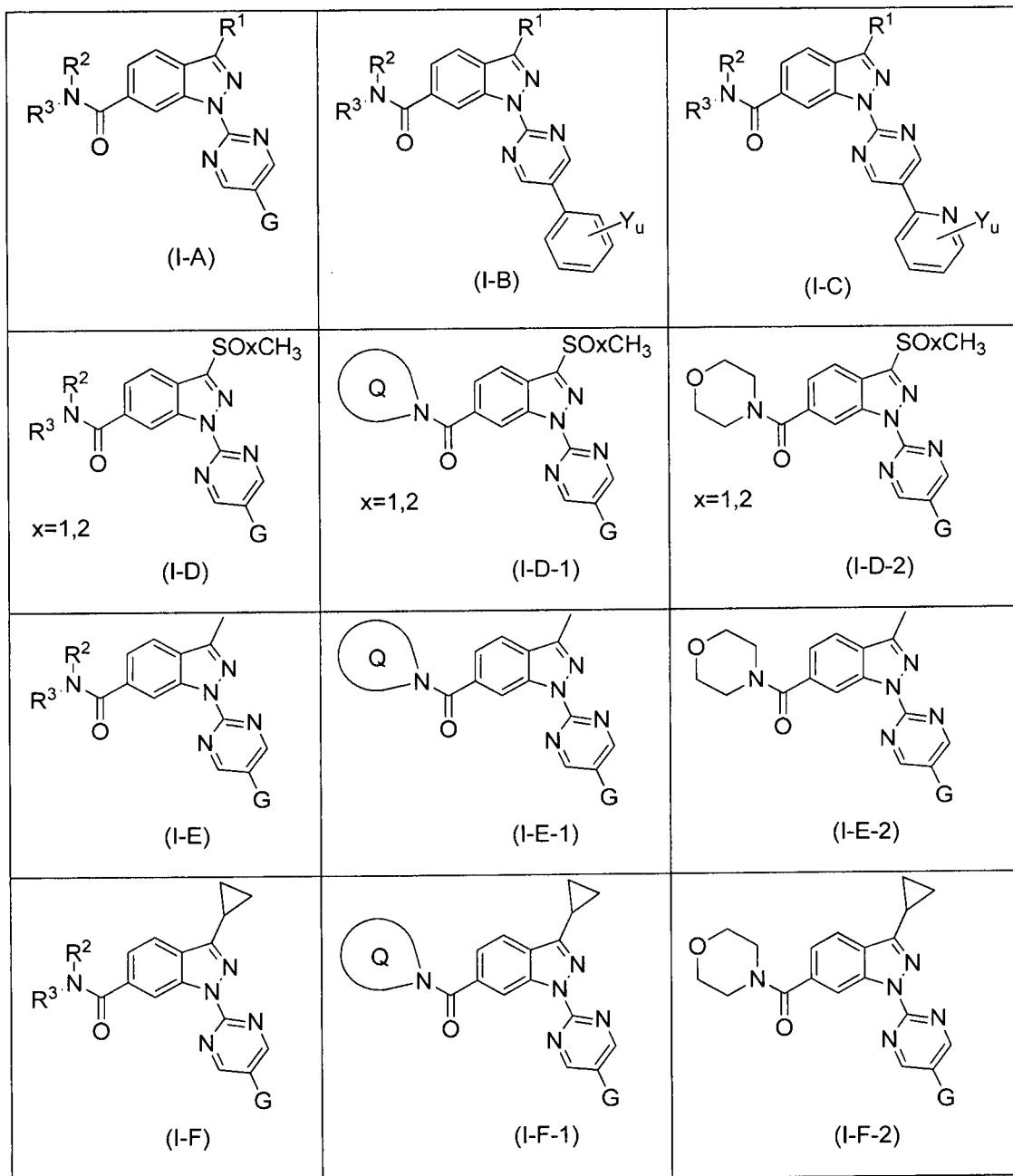
5

whereas the nitrogen atom marked with the asterisk (*) is bound to the carbonyl carbon atom; and wherein R^5 and X^Q are as defined herein and m is 0, 1, 2, 3 or 4 (preferably m is 0, 1, or 2).

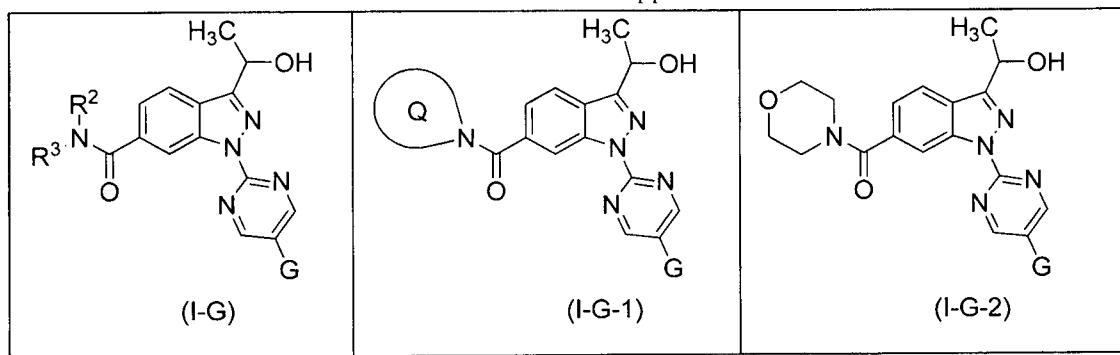
- 9 -

If one or both of R^2 and R^3 stand for a group L^1V with L^1 being a branched or straight-chain optionally substituted (C_1 - C_6)- or (C_1 - C_4)-alkylene group, then V preferably stands for one of the following groups V1 to V40; more preferably for one of the groups V1, V2, V3, V4, V6, V7, V8, V11, V12, V14, V18, V19, V20, V21, V22, V24, V27, V28, V29, V30, V31, V34, V37, V40.

5 wherein the site marked with an asterisk (*) indicates the binding site to L^1 ; and wherein R^6 and X^V are as defined herein and n is 0, 1, 2, 3 or 4 (preferably n is 0, 1 or 2).


If one or both of R^2 and R^3 stand for a group L^1V with L^1 being a bond, then V is preferably selected from one of before mentioned groups V1, V2, V4, V5, V7, V9, V10, V12, V13, V15 to V17, V23, V25, V26,

- 10 -


V31 to V36, V38, preferably, for V1, V2, V4, V7, V9, V12, V13, V34, V38; even more preferably for V1, V2, V7 or V12.

Compound of formula (I) are preferred which are defined as given herein and wherein A, B and C each stands for CH; or one of A, B or C stands for N while the other groupings stand for CH.

5 According to the invention, compounds are preferred having one of the following formulae as given hereinafter:

- 11 -

In an embodiment the invention relates to compounds having one of the formulae (I-A), (I-B) and (I-C) wherein R¹ stands for methyl, CF₃, CONH₂, cyclopropyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxypropan-2-yl, SOCH₃, SO₂CH₃ and wherein all other groups and indices are as defined in the context of the compound of general formula (I).

5 The term "physiologically acceptable salt" in the sense of this invention preferably comprises a salt of at least one compound according to the present invention and at least one physiologically acceptable acid or base.

A physiologically acceptable salt of at least one compound according to the present invention and at least one physiologically acceptable acid or one physiologically acceptable base preferably refers in the sense of this invention to a salt of at least one compound according to the present invention with at least one inorganic or organic acid or with at least one inorganic or organic base respectively which is physiologically acceptable - in particular when used in human beings and/or other mammals.

The term "physiologically acceptable solvate" in the sense of this invention preferably comprises an adduct of one compound according to the present invention and/or a physiologically acceptable salt of at least one compound according to the present invention with distinct molecular equivalents of one solvent or more solvents.

In the context of the present invention, and unless otherwise specified herein, the term "halogen" preferably represents the radicals F, Cl, Br and I, in particular the radicals F and Cl.

Unless otherwise specified, the term "(C₁-C₆)-alkyl" is understood to mean branched and unbranched alkyl groups consisting of 1 to 6 hydrocarbon atoms. Examples of (C₁-C₆)-alkyl radicals are methyl, ethyl, n-propyl, 1-methylethyl (isopropyl), n-butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl (tert-butyl), n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl. (C₁-C₄)-alkyl radicals are preferred, (C₁-C₃)-alkyl radicals being particularly preferred, in particular methyl, ethyl n-propyl or iso-propyl. Unless otherwise stated, the definitions of propyl, butyl, pentyl and hexyl encompass all possible isomeric forms of the individual radicals.

- 12 -

Unless otherwise specified, a haloalkyl radical is understood to be an alkyl radical in which at least one hydrogen is exchanged for a halogen atom, preferably fluorine, chlorine, bromine, particularly preferably fluorine. The haloalkyl radicals can be branched or unbranched and optionally mono- or polysubstituted. Preferred haloalkyl radicals are CHF₂, CH₂F, CF₃, CH₂-CH₂F, CH₂-CHF₂, CH₂CF₃. (C₁-C₆) haloalkyl radicals are preferred, with (C₁-C₄) haloalkyl radicals being particularly preferred and (C₁-C₃) haloalkyl radicals most particularly preferred, in particular CHF₂, CH₂F, CF₃, CH₂-CH₂F, CH₂-CHF₂ and CH₂CF₃.

Unless otherwise specified, a haloalkoxy radical is understood to be an alkoxy radical in which at least one hydrogen is exchanged for a halogen atom, preferably fluorine, chlorine, bromine, particularly preferably fluorine. The haloalkoxy radicals can be branched or unbranched and optionally mono- or polysubstituted. Preferred haloalkoxy radicals are OCHF₂, OCH₂F, OCF₃, OCH₂-CFH₂, OCH₂-CF₂H, OCH₂CF₃. (C₁-C₆) haloalkoxy radicals are preferred, with (C₁-C₄) haloalkoxy radicals being particularly preferred and (C₁-C₃) haloalkoxy radicals most particularly preferred, in particular OCHF₂, OCH₂F, OCF₃, OCH₂-CFH₂, OCH₂-CF₂H, OCH₂CF₃.

Unless otherwise specified, a hydroxyalkyl radical is understood to be an alkyl radical in which at least one hydrogen is exchanged for a hydroxyl group. The hydroxyalkyl radicals can be branched or unbranched and optionally mono- or polysubstituted. (C₁-C₆)-hydroxyalkyl radicals are preferred, with (C₁-C₄)-hydroxyalkyl radicals being particularly preferred and (C₁-C₃)-hydroxyalkyl radicals most particularly preferred, in particular CH₂-OH, CH₂-CH₂-OH and CH₂-CH₂-CH₂-OH.

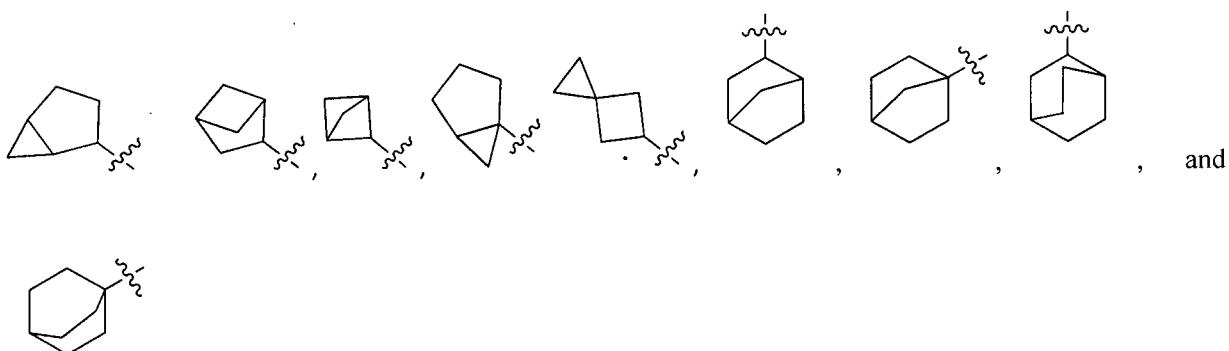
Unless otherwise specified, a cyanoalkyl radical is understood to be an alkyl radical in which at least one hydrogen is exchanged for a cyano group. The cyanoalkyl radicals can be branched or unbranched and optionally mono- or polysubstituted. (C₁-C₆)-cyanoalkyl radicals are preferred, with (C₁-C₄)-cyanoalkyl radicals being particularly preferred and (C₁-C₃)-cyanoalkyl radicals most particularly preferred, in particular CH₂-CN, CH₂-CH₂-CN and CH₂-CH₂-CH₂-CN.

In the context of the present invention, the expression "(C₁-C₆)-alkylene group" or "(C₁-C₄)-alkylene group" includes acyclic saturated hydrocarbon radicals having 1, 2, 3, 4, 5 or 6 carbon atoms or 1, 2, 3 or 4 carbon atoms, respectively, which can be branched or unbranched and unsubstituted or substituted once or several times, for example 2, 3, 4 or 5 times, by identical or different substituents and which link a corresponding moiety to the main structure. Such alkylene groups can preferably be chosen from the group consisting of -CH₂-, -CH₂-CH₂-, -CH(CH₃)-, -CH₂-CH₂-CH₂-, -CH(CH₃)-CH₂-, -CH(CH₂CH₃)-, -CH₂-(CH₂)₂-CH₂-, -CH(CH₃)-CH₂-CH₂-, -CH₂-CH(CH₃)-CH₂-, -CH(CH₃)-CH(CH₃)-, -CH(CH₂CH₃)-CH₂-, -C(CH₃)₂-CH₂-, -CH(CH₂CH₂CH₃)-, -C(CH₃)(CH₂CH₃)-, -CH₂-(CH₂)₃-CH₂-, -CH(CH₃)-CH₂-CH₂-, -CH₂-CH(CH₃)-CH₂-CH₂-, -CH(CH₃)-CH₂-CH(CH₃)-, -CH(CH₃)-CH(CH₃)-CH₂-, -C(CH₃)₂-CH₂-CH₂-, -CH₂-C(CH₃)₂-CH₂-, -CH(CH₂CH₃)-CH₂-CH₂-, -CH₂-CH(CH₂CH₃)-CH₂-, -C(CH₃)₂-CH(CH₃)-, -CH(CH₂CH₃)-CH(CH₃)-, -C(CH₃)(CH₂CH₃)-CH₂-, -CH(CH₂CH₂CH₃)-CH₂-, -C(CH₂CH₂CH₃)CH₂-, -CH(CH₂CH₂CH₂CH₃)-, -C(CH₃)(CH₂CH₂CH₃)-, -C(CH₂CH₃)₂- and -CH₂-(CH₂)₄-CH₂-.

- 13 -

The alkylene groups can particularly preferably be chosen from the group consisting of -CH₂-, -CH₂-CH₂- and -CH₂-CH₂-CH₂-.

Unless otherwise specified, the term "(C₂-C₆)-alkenyl" is understood to mean branched and unbranched unsaturated alkyl groups consisting of 2 to 6 hydrocarbon atoms and having at least one double bond.


5 Examples of (C₂-C₆)-alkenyls are ethenyl (also referred to as vinyl), prop-1-enyl, prop-2-enyl (also referred to as allyl), but-1-enyl, but-2-enyl, but-3-enyl, pent-1-enyl and hex-1-enyl. The designation (C₂-C₆)-alkenyl includes all possible isomers, i.e. structural isomers (constitutional isomers) and stereoisomers ((Z) and (E) isomers). Unless otherwise specified, the term "(C₂-C₆)-alkinyl" is understood to mean branched and unbranched unsaturated alkyl groups consisting of 2 to 6 hydrocarbon atoms and

10 having at least one triple bond. Examples of (C₂-C₆)-alkinyls are ethinyl.

Unless otherwise specified, the term "3- to 12-membered cyclic aliphatic ring" is understood to mean cyclic aliphatic hydrocarbons containing 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 carbon atoms, wherein the hydrocarbons in each case can be saturated or unsaturated (but not aromatic), unsubstituted or mono- or polysubstituted. The residues may be mono- or bicyclic.

15 The cycloaliphatic residues can be bound to the respective superordinate general structure via any desired and possible ring member of the cycloaliphatic residue. The (C₃-C₁₂) cycloaliphatic residue can furthermore be single or multiple bridged such as, for example, in the case of adamantyl, bicyclo[2.2.1]heptyl or bicyclo[2.2.2]octyl. Preferred (C₃-C₁₂) cycloaliphatic residues are selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl,

20 cyclononyl, cyclodecyl, adamantyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl,

Preferred are (C₃-C₈)-mono- or bicyclic aliphatic residues which are selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. Particularly preferred are (C₃-C₆)-cycloaliphatic residues such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopentenyl and cyclohexenyl, in particular cyclopropyl.

Unless otherwise specified, the term "3- to 12-membered heteroaliphatic residue" is understood to mean heterocycloaliphatic saturated or unsaturated (but not aromatic) residues having 3 to 12, i.e. 3, 4, 5, 6, 7,

- 14 -

8, 9, 10, 11 or 12 ring members, in which in each case at least one, if appropriate also two or three carbon atoms are replaced by a heteroatom or a heteroatom group each selected independently of one another from the group consisting of O, S, S(=O), S(=O)₂, N, NH and N(C₁-C₆)-alkyl such as N(CH₃), wherein the ring members can be unsubstituted or mono- or polysubstituted. The residues may be mono- or bicyclic.

5 Unless otherwise specified, the term "5- or 6-membered heteroaryl" is understood to represent a 5- or 6-membered cyclic aromatic residue containing at least 1, if appropriate also 2, 3, 4 or 5 heteroatoms, wherein the heteroatoms are each preferably selected independently of one another from the group S, N and O, whereas the sulfur atom may exist in oxidized form as SO or SO₂ group, and the heteroaryl residue can be unsubstituted or mono- or polysubstituted; e.g. substituted by 2, 3, 4 or 5 substituents, whereby the 10 substituents can be the same or different and be in any desired and possible position of the heteroaryl. The binding to the superordinate general structure can be carried out via any desired and possible ring member of the heteroaryl residue if not indicated otherwise. The heteroaryl may be condensed with a 4-, 5-, 6- or 15 7-membered ring, being carbocyclic or heterocyclic, wherein the heteroatoms of the heterocyclic ring are each preferably selected independently of one another from the group S, N and O, and wherein said condensed ring may be saturated, partially unsaturated or aromatic and may be unsubstituted or mono- or polysubstituted; e.g. substituted by 2, 3, 4 or 5 substituents, whereby the substituents can be the same or 20 different and be in any desired and possible position. Examples of such heteroaryl moieties are benzofuranyl, benzoimidazolyl, benzo-thienyl, benzo-thiadiazolyl, benzothiazolyl, benzotriazolyl, benzooxazolyl, benzooxadiazolyl, quinazolinyl, quinoxaliny, carbazolyl, quinoliny, dibenzofuranyl, dibenzothienyl, furyl (furanyl), imidazolyl, imidazo-thiazolyl, indazolyl, indolizinyl, indolyl, isoquinolinyl, isoxazoyl, isothiazolyl, indolyl, naphthyridinyl, oxazolyl, oxadiazolyl, phenazinyl, phenothiazinyl, phthalazinyl, pyrazolyl, pyridyl (2-pyridyl, 3-pyridyl, 4-pyridyl), pyrrolyl, pyridazinyl, 25 pyrimidinyl, pyrazinyl, purinyl, phenazinyl, thienyl (thiophenyl), triazolyl, tetrazolyl, thiazolyl, thiadiazolyl and triazinyl.

25 In connection with non-aromatic moieties such as "alkyl", "alkenyl", "alkinyl", "alkylene", "cycloaliphatic", "heterocycloaliphatic", "carbocyclic ring", "heterocyclic", "cycloalkyl" and "heterocyclyl", in the context of this invention the term "substituted" is understood as meaning replacement of a hydrogen radical by a substituent selected from the group consisting of =O, OH, CN, halogen, SH, nitro, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkinyl, (C₁-C₆)-hydroxyalkyl, (C₁-C₆)-30 cyanoalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-thioalkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-thiohaloalkyl, (C₁-C₆)-haloalkoxy, (C₁-C₆)-alkylen-S-(C₁-C₆)-alkyl, (C₃-C₈)-cycloalkyl, (C₃-C₆)-cycloalkyl-(C₁-C₃)-alkylenyl, (C₃-C₈)-heterocycloalkyl, NH₂, NH(C₁-C₆)-alkyl, N((C₁-C₆)-alkyl)₂, NH-CO-(C₁-C₆)-alkyl, NH-CO-O-(C₁-C₆)-alkyl, NH-C(O)NH₂, NH-CO-NH-(C₁-C₆)-alkyl, NH-CO-N((C₁-C₆)-alkylen)-CO-(C₁-C₆)-alkyl, NH((C₁-C₆)-alkylen)-CO-(C₁-C₆)-alkyl, NH((C₁-C₆)-alkylen)-CO-O-(C₁-C₆)-alkyl, NH((C₁-C₆)-alkylen)-CONH₂, 35 NH((C₁-C₆)-alkylen)-CO-NH-(C₁-C₆)-alkyl, NH((C₁-C₆)-alkylen)-CO-N((C₁-C₆)-alkyl)₂, NH-S(O)₂OH, NH-S(O)₂(C₁-C₆)-alkyl, NH-S(O)₂O(C₁-C₆)-alkyl, NH-S(O)₂NH₂, NH-S(O)₂NH(C₁-C₆)-alkyl, NH-

- 15 -

$\text{S(O)_2N((C}_1\text{-C}_6\text{)-alkyl})_2$, $\text{NH((C}_1\text{-C}_6\text{)-alkylen)-S(O)_2\text{OH}$, $\text{NH((C}_1\text{-C}_6\text{)-alkylen)-S(O)_2(C}_1\text{-C}_6\text{)-alkyl}$, $\text{NH((C}_1\text{-C}_6\text{)-alkylen)-S(O)_2\text{O(C}_1\text{-C}_6\text{)-alkyl}$, $\text{NH((C}_1\text{-C}_6\text{)-alkylen)-S(O)_2\text{NH}_2$, $\text{NH((C}_1\text{-C}_6\text{)-alkylen)-S(O)_2\text{NH(C}_1\text{-C}_6\text{)-alkyl}$, CO_2H , $\text{CO(C}_1\text{-C}_6\text{)-alkyl}$, $\text{CO-O(C}_1\text{-C}_6\text{)-alkyl}$, $\text{O-CO(C}_1\text{-C}_6\text{)-alkyl}$, $\text{O-CO-O(C}_1\text{-C}_6\text{)-alkyl}$, CONH_2 , $\text{CO-NH(C}_1\text{-C}_6\text{)-alkyl}$, $\text{CO-N((C}_1\text{-C}_6\text{)-alkyl})_2$, $\text{O-CO-NH(C}_1\text{-C}_6\text{)-alkyl}$, $\text{O-CO-N((C}_1\text{-C}_6\text{)-alkyl})_2$,
5 $\text{O-S(O)_2-(C}_1\text{-C}_6\text{)-alkyl}$, $\text{O-S(O)_2\text{OH}$, $\text{O-S(O)_2-(C}_1\text{-C}_6\text{)-alkoxy}$, $\text{O-S(O)_2\text{NH}_2$, $\text{O-S(O)_2-NH(C}_1\text{-C}_6\text{)-alkyl}$, $\text{O-S(O)_2-N((C}_1\text{-C}_6\text{)-alkyl})_2$, $\text{S(O)(C}_1\text{-C}_6\text{)-alkyl}$, $\text{S(O)_2(C}_1\text{-C}_6\text{)-alkyl}$, $\text{S(O)_2\text{OH}$, $\text{S(O)_2O(C}_1\text{-C}_6\text{)-alkyl}$, $\text{S(O)_2\text{NH}_2$, $\text{S(O)_2\text{NH(C}_1\text{-C}_6\text{)-alkyl}$, and $\text{S(O)_2N((C}_1\text{-C}_6\text{)-alkyl})_2$. If a moiety is substituted with more than 1 substituent, e.g. by 2, 3, 4, or 5 substituents, these substituents may be present either on different or on the same atoms, e.g. as in the case of CF_3 or CH_2CF_3 , or at different places, as in the case of $\text{CH(Cl)-CH=CH-CHCl}_2$. Substitution with more than 1 substituent may include identical or different substituents, such as, for example, in the case of $\text{CH(OH)-CH=CH-CHCl}_2$. Preferably, the substituents may be selected from the group consisting of F, Cl, Br, CF_3 , CHF_2 , CH_2F , OCF_3 , OH, CN, $(\text{C}_1\text{-C}_4\text{)-alkyl}$, $(\text{C}_1\text{-C}_4\text{)-hydroxyalkyl}$, $(\text{C}_1\text{-C}_4\text{)-alkoxy}$, $(\text{C}_3\text{-C}_6\text{)-cycloalkyl}$, NH_2 , $\text{NH(C}_1\text{-C}_4\text{)-alkyl}$, $\text{N((C}_1\text{-C}_4\text{)-alkyl})_2$, $\text{NH-CO-(C}_1\text{-C}_4\text{)-alkyl}$, $\text{NH-CO-NH-(C}_1\text{-C}_6\text{)-alkyl}$, $\text{NH-CO-N((C}_1\text{-C}_6\text{)-alkyl})_2$, $\text{NH-S(O)_2(C}_1\text{-C}_4\text{)-alkyl}$, CONH_2 , $\text{CO-NH(C}_1\text{-C}_6\text{)-alkyl}$, $\text{CO-N((C}_1\text{-C}_6\text{)-alkyl})_2$, $\text{S(O)(C}_1\text{-C}_4\text{)-alkyl}$ and $\text{S(O)_2(C}_1\text{-C}_4\text{)-alkyl}$.

In connection with aromatic moieties such as "phenyl" and "heteroaryl", in the context of this invention the term "substituted" is understood as meaning replacement of a hydrogen radical by a substituent selected from the group consisting of OH, halogen, CN, SH, nitro, $(\text{C}_1\text{-C}_6\text{)-alkyl}$, $(\text{C}_2\text{-C}_6\text{)-alkenyl}$, $(\text{C}_2\text{-C}_6\text{)-alkinyl}$, $(\text{C}_1\text{-C}_6\text{)-hydroxyalkyl}$, $(\text{C}_1\text{-C}_6\text{)-cyanoalkyl}$, $(\text{C}_1\text{-C}_6\text{)-alkoxy}$, $(\text{C}_1\text{-C}_6\text{)-thioalkyl}$, $(\text{C}_1\text{-C}_6\text{)-haloalkyl}$, $(\text{C}_1\text{-C}_6\text{)-thiohaloalkyl}$, $(\text{C}_1\text{-C}_6\text{)-haloalkoxy}$, $(\text{C}_1\text{-C}_6\text{)-alkylen-S-(C}_1\text{-C}_6\text{)-alkyl}$, $(\text{C}_3\text{-C}_8\text{)-cycloalkyl}$, $(\text{C}_3\text{-C}_6\text{)-cycloalkyl-(C}_1\text{-C}_3\text{)-alkylenyl}$, $(\text{C}_3\text{-C}_8\text{)-heterocycloalkyl}$, NH_2 , $\text{NH(C}_1\text{-C}_6\text{)-alkyl}$, $\text{N((C}_1\text{-C}_6\text{)-alkyl})_2$, $\text{NH-CO-(C}_1\text{-C}_6\text{)-alkyl}$, $\text{NH-CO-O-(C}_1\text{-C}_6\text{)-alkyl}$, NH-C(O)NH_2 , $\text{NH-CO-NH-(C}_1\text{-C}_6\text{)-alkyl}$, $\text{NH-CO-N((C}_1\text{-C}_6\text{)-alkyl})_2$, $\text{NH((C}_1\text{-C}_6\text{)-alkylen)-CO-(C}_1\text{-C}_6\text{)-alkyl}$, $\text{NH((C}_1\text{-C}_6\text{)-alkylen)-CO-O-(C}_1\text{-C}_6\text{)-alkyl}$, $\text{NH((C}_1\text{-C}_6\text{)-alkylen)-CO-N((C}_1\text{-C}_6\text{)-alkyl})_2$, NH-S(O)_2OH , $\text{NH-S(O)_2(C}_1\text{-C}_6\text{)-alkyl}$, $\text{NH-S(O)_2O(C}_1\text{-C}_6\text{)-alkyl}$, NH-S(O)_2NH_2 , $\text{NH-S(O)_2NH(C}_1\text{-C}_6\text{)-alkyl}$, $\text{NH-S(O)_2N((C}_1\text{-C}_6\text{)-alkyl})_2$, $\text{NH((C}_1\text{-C}_6\text{)-alkylen)-S(O)_2OH}$, $\text{NH((C}_1\text{-C}_6\text{)-alkylen)-S(O)_2(C}_1\text{-C}_6\text{)-alkyl}$, $\text{NH((C}_1\text{-C}_6\text{)-alkylen)-S(O)_2O(C}_1\text{-C}_6\text{)-alkyl}$, $\text{NH((C}_1\text{-C}_6\text{)-alkylen)-S(O)_2NH}_2$, $\text{NH((C}_1\text{-C}_6\text{)-alkylen)-S(O)_2NH(C}_1\text{-C}_6\text{)-alkyl}$, CO_2H , $\text{CO(C}_1\text{-C}_6\text{)-alkyl}$, $\text{CO-O(C}_1\text{-C}_6\text{)-alkyl}$, $\text{O-CO(C}_1\text{-C}_6\text{)-alkyl}$, $\text{O-CO-O(C}_1\text{-C}_6\text{)-alkyl}$, CONH_2 , $\text{CO-NH(C}_1\text{-C}_6\text{)-alkyl}$, $\text{CO-N((C}_1\text{-C}_6\text{)-alkyl})_2$,
25 $\text{O-CO-NH(C}_1\text{-C}_6\text{)-alkyl}$, $\text{O-CO-N((C}_1\text{-C}_6\text{)-alkyl})_2$, $\text{O-S(O)_2-(C}_1\text{-C}_6\text{)-alkyl}$, O-S(O)_2OH , $\text{O-S(O)_2-(C}_1\text{-C}_6\text{)-alkoxy}$, O-S(O)_2NH_2 , $\text{O-S(O)_2-NH(C}_1\text{-C}_6\text{)-alkyl}$, $\text{O-S(O)_2-N((C}_1\text{-C}_6\text{)-alkyl})_2$, $\text{S(O)(C}_1\text{-C}_6\text{)-alkyl}$, $\text{S(O)_2(C}_1\text{-C}_6\text{)-alkyl}$, S(O)_2OH , $\text{S(O)_2O(C}_1\text{-C}_6\text{)-alkyl}$, and $\text{S(O)_2N((C}_1\text{-C}_6\text{)-alkyl})_2$. If a moiety is substituted with more than 1 substituent, e.g. by 2, 3, 4, or 5 substituents, these substituents may be identical or different. Preferably, the substituents may be selected from the group consisting of F, Cl, Br, CF_3 , CHF_2 , CH_2F , OCF_3 , OH, CN, $(\text{C}_1\text{-C}_4\text{)-alkyl}$, $(\text{C}_1\text{-C}_4\text{)-hydroxyalkyl}$, $(\text{C}_1\text{-C}_4\text{)-alkoxy}$, $(\text{C}_3\text{-C}_6\text{)-cycloalkyl}$, NH_2 , $\text{NH(C}_1\text{-C}_4\text{)-alkyl}$, $\text{N((C}_1\text{-C}_4\text{)-alkyl})_2$, $\text{NH-CO-(C}_1\text{-C}_4\text{)-alkyl}$, $\text{NH-CO-NH-(C}_1\text{-C}_6\text{)-alkyl}$,

30 $\text{NH-CO-N((C}_1\text{-C}_6\text{)-alkyl})_2$, $\text{O-CO-NH(C}_1\text{-C}_6\text{)-alkyl}$, $\text{O-CO-N((C}_1\text{-C}_6\text{)-alkyl})_2$, $\text{O-S(O)_2-(C}_1\text{-C}_6\text{)-alkyl}$, O-S(O)_2OH , $\text{O-S(O)_2-(C}_1\text{-C}_6\text{)-alkoxy}$, O-S(O)_2NH_2 , $\text{O-S(O)_2-NH(C}_1\text{-C}_6\text{)-alkyl}$, $\text{O-S(O)_2-N((C}_1\text{-C}_6\text{)-alkyl})_2$, $\text{S(O)(C}_1\text{-C}_6\text{)-alkyl}$, $\text{S(O)_2(C}_1\text{-C}_6\text{)-alkyl}$, S(O)_2OH , $\text{S(O)_2O(C}_1\text{-C}_6\text{)-alkyl}$, S(O)_2NH_2 , $\text{S(O)_2NH(C}_1\text{-C}_6\text{)-alkyl}$, and $\text{S(O)_2N((C}_1\text{-C}_6\text{)-alkyl})_2$. If a moiety is substituted with more than 1 substituent, e.g. by 2, 3, 4, or 5 substituents, these substituents may be identical or different. Preferably, the substituents may be selected from the group consisting of F, Cl, Br, CF_3 , CHF_2 , CH_2F , OCF_3 , OH, CN, $(\text{C}_1\text{-C}_4\text{)-alkyl}$, $(\text{C}_1\text{-C}_4\text{)-hydroxyalkyl}$, $(\text{C}_1\text{-C}_4\text{)-alkoxy}$, $(\text{C}_3\text{-C}_6\text{)-cycloalkyl}$, NH_2 , $\text{NH(C}_1\text{-C}_4\text{)-alkyl}$, $\text{N((C}_1\text{-C}_4\text{)-alkyl})_2$, $\text{NH-CO-(C}_1\text{-C}_4\text{)-alkyl}$, $\text{NH-CO-NH-(C}_1\text{-C}_6\text{)-alkyl}$,

35 $\text{NH-CO-N((C}_1\text{-C}_6\text{)-alkyl})_2$

- 16 -

NH-CO-N((C₁-C₆)-alkyl)₂, NH-S(O)₂(C₁-C₄)-alkyl, CONH₂, CO-NH(C₁-C₆)-alkyl, CO-N((C₁-C₆)-alkyl)₂, S(O)(C₁-C₄)-alkyl and S(O)₂(C₁-C₄)-alkyl.

Owing to their excellent pharmacological activity, the compounds according to the first aspect of the invention are suitable for the treatment of various diseases or conditions in which inhibition of the PDE4 enzyme is advantageous.

Such conditions and diseases are inter alia

- inflammatory diseases of the joints, in particular rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis (Bechterew's disease), gout, osteoarthritis;
- inflammatory diseases of the skin, in particular psoriasis, atopic dermatitis, lichen planus;
- inflammatory diseases of the eyes, in particular uveitis;
- gastrointestinal diseases and complaints, in particular inflammatory diseases of the digestive organs, above all Crohn's disease, ulcerative colitis, and acute and chronic inflammations of the gall bladder and bile ducts, of pseudopolyps and juvenile polyps;
- inflammatory diseases of the internal organs, in particular SLE (systemic lupus erythematosus) including lupus nephritis, chronic prostatitis, interstitial cystitis;
- hyperplastic diseases, in particular benign prostatic hyperplasia;
- respiratory or lung diseases associated with elevated mucus production, inflammation and/or obstruction of the respiratory tract, in particular COPD (chronic obstructive pulmonary disease), chronic bronchitis, asthma, pulmonary fibrosis, allergic and non-allergic rhinitis, obstructive sleep apnoea, cystic fibrosis, chronic sinusitis, emphysema, cough, alveolitis, ARDS (acute respiratory distress syndrome), pulmonary oedema, bronchiectasis, pneumonia;
- diseases of the fibrotic spectrum, in particular hepatic fibrosis, systemic sclerosis, scleroderma;
- cancers, in particular haematopoietic cancers, inter alia B-cell lymphoma, T-cell lymphoma, in particular CLL and CML (chronic lymphatic and chronic myeloid leukaemia), ALL and AML (acute lymphatic and acute myeloid leukaemia), and gliomas;
- metabolic diseases, in particular type 2 diabetes, metabolic syndrome, obesity/adiposity, fatty liver disease (not alcohol-induced), and cardiovascular diseases, in particular arteriosclerosis, PAH (pulmonary arterial hypertension);
- psychological disorders, in particular schizophrenia, depression, in particular bipolar or manic depression, dementia, memory loss, generalised anxiety disorder (GAD); and
- diseases of the peripheral or central nervous system, in particular Parkinson's disease, multiple sclerosis, Alzheimer's disease, stroke, ALS (amyotrophic lateral sclerosis).

One of the advantages of the compounds according to the first aspect of the invention is that they are selective PDE4B inhibitors. The advantage of this selectivity lies in the fact that the PDE4D enzyme for

example is not inhibited or is only partly inhibited, and hence the use of such selective PDE4B inhibitors

- 17 -

gives rise to no side-effects or to markedly reduced side-effects. Undesired side-effects are for example emesis and nausea, in particular indisposition, vomiting and sickness. The therapeutic range of the compounds according to the invention is therefore advantageous.

In a second aspect of the invention, the invention therefore also provides a pharmaceutical composition 5 (medicament) containing at least one compound according to the first aspect of the invention.

In a third aspect of the invention, the invention therefore also provides a compound according to the first aspect of the invention for the treatment of conditions or diseases that can be treated by inhibition of the PDE4 enzyme, in particular the PDE4B enzyme.

In a fourth aspect of the invention, the invention therefore also provides a compound according to the first 10 aspect of the invention for the treatment of inflammatory diseases of the joints, in particular rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis (Bechterew's disease), gout, osteoarthritis; and/or inflammatory diseases of the skin, in particular psoriasis, atopic dermatitis, lichen planus; and/or inflammatory diseases of the eyes, in particular uveitis; gastrointestinal diseases and complaints, in particular inflammatory diseases of the digestive organs, above all Crohn's disease, ulcerative colitis, and 15 acute and chronic inflammations of the gall bladder and bile ducts, of pseudopolyps and juvenile polyps; inflammatory diseases of the internal organs, in particular SLE (systemic lupus erythematosus) including lupus nephritis, chronic prostatitis, interstitial cystitis; and/or hyperplastic diseases, in particular benign prostatic hyperplasia; respiratory or lung diseases associated with elevated mucus production, inflammation and/or obstruction of the respiratory tract, in particular COPD (chronic obstructive 20 pulmonary disease), chronic bronchitis, asthma, pulmonary fibrosis, allergic and non-allergic rhinitis, obstructive sleep apnoea, cystic fibrosis, chronic sinusitis, emphysema, cough, alveolitis, ARDS (acute respiratory distress syndrome), pulmonary oedema, bronchiectasis, pneumonia; diseases of the fibrotic spectrum, in particular hepatic fibrosis, systemic sclerosis, scleroderma; cancers, in particular 25 haematopoietic cancers, inter alia B-cell lymphomas, T-cell lymphomas, in particular CLL and CML (chronic lymphatic and chronic myeloid leukaemia), ALL and AML (acute lymphatic and acute myeloid leukaemia), and gliomas; metabolic diseases, in particular type 2 diabetes, metabolic syndrome, obesity/adiposity, fatty liver disease (not alcohol-induced), and cardiovascular diseases, in particular arteriosclerosis, PAH (pulmonary arterial hypertension); psychological disorders, in particular schizophrenia, depression, in particular bipolar or manic depression, dementia, memory loss, generalised 30 anxiety disorder (GAD); and/or diseases of the peripheral or central nervous system, in particular Parkinson's disease, multiple sclerosis, Alzheimer's disease, stroke, ALS (amyotrophic lateral sclerosis).

In a preferred embodiment of the fourth aspect of the invention, the invention therefore provides a compound according to the first aspect of the invention for the treatment of inflammatory diseases of the joints (in particular rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis (Bechterew's disease), 35 gout, osteoarthritis), the skin (in particular psoriasis, atopic dermatitis, lichen planus) or the eyes (in

- 18 -

particular uveitis), of respiratory or lung diseases associated with elevated mucus production, inflammation and/or obstruction of the respiratory tract, in particular COPD (chronic obstructive pulmonary disease), chronic bronchitis, asthma, pulmonary fibrosis, allergic and non-allergic rhinitis, obstructive sleep apnoea, cystic fibrosis, chronic sinusitis, emphysema, cough, alveolitis, ARDS (acute respiratory distress syndrome), pulmonary oedema, bronchiectasis, pneumonia; of metabolic diseases, in particular type 2 diabetes, metabolic syndrome, obesity/adiposity, fatty liver disease (not alcohol-induced), and/or cardiovascular diseases, in particular arteriosclerosis, PAH (pulmonary arterial hypertension).

In another aspect of the invention, the invention also provides the use of a compound according to the 10 first aspect of the invention for the treatment of diseases and conditions according to the fourth aspect of the invention.

In yet another aspect of the invention, the invention also provides a method for the treatment of the 15 diseases and conditions according to the fourth aspect of the invention in a human, which is characterised in that a therapeutically effective amount of at least one compound according to the first aspect of the invention is administered.

The amount of active ingredient to be administered to the person or patient varies and is dependent on the patient's weight, age and medical history and on the type of administration, the indication and the severity of the illness. Generally 0.01 to 500 mg/kg, in particular 0.05 to 50 mg/kg, preferably 0.1 to 25 mg/kg of body weight of at least one compound according to the first aspect of the invention are administered.

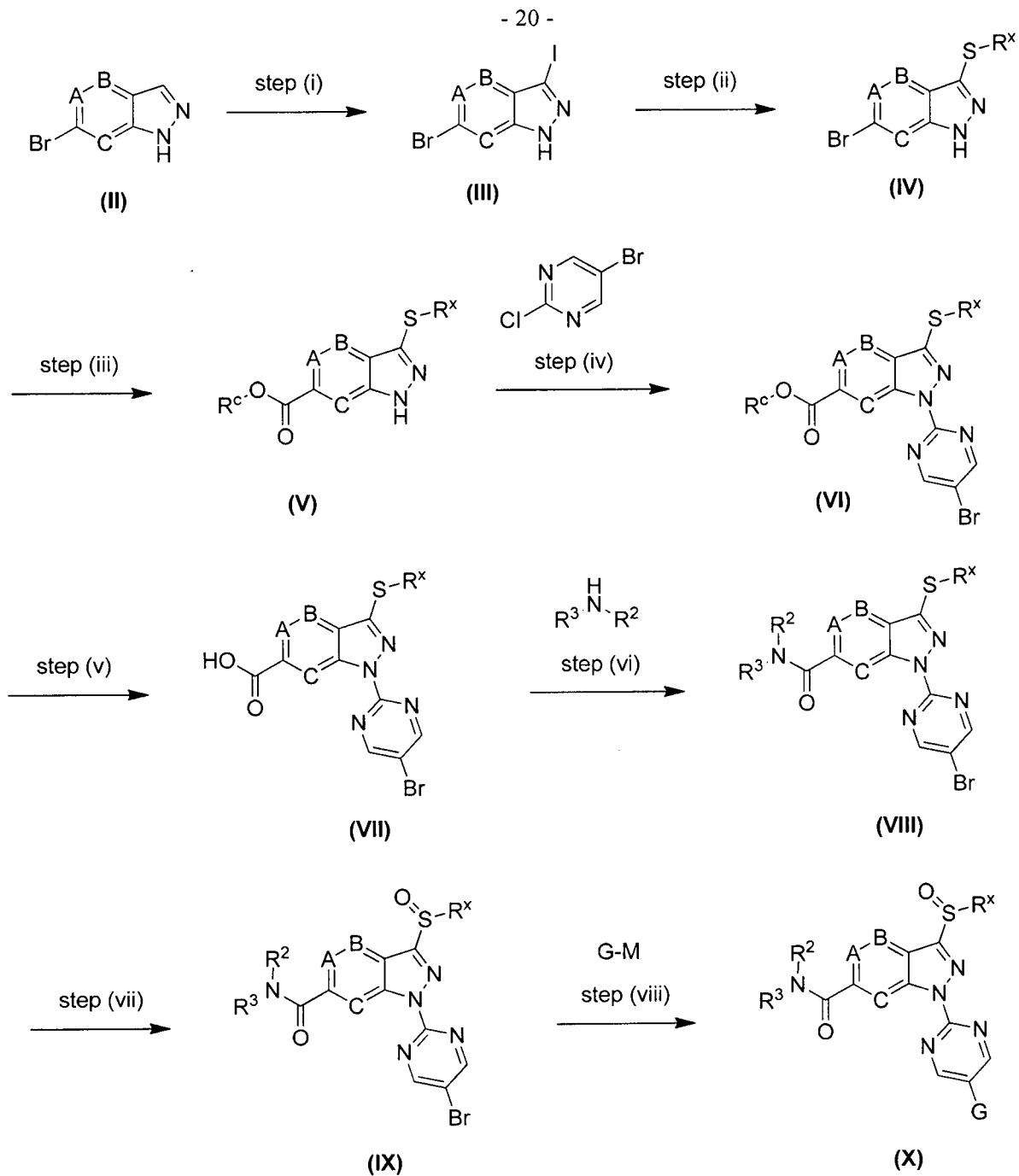
20 All embodiments, in particular the preferred embodiments, of the first aspect of the invention apply mutatis mutandis to all other aspects of the invention.

The medicaments, drugs and pharmaceutical compositions according to the invention can take the form of and be administered as liquid, semi-solid or solid dosage forms and as for example injection solutions, drops, juices, syrups, sprays, suspensions, granules, tablets, pellets, transdermal therapeutic systems, 25 capsules, plasters, suppositories, ointments, creams, lotions, gels, emulsions or aerosols and contain, in addition to at least one compound according to the first aspect of the invention according to the pharmaceutical form and depending on the administration route, pharmaceutical auxiliary substances such as for example carrier materials, fillers, solvents, diluting agents, surface-active substances, dyes, preservatives, disintegrants, slip additives, lubricants, flavourings and/or binders.

30 The choice of auxiliary substances and the amounts thereof to use depends on whether the medicament/drug is to be administered by oral, subcutaneous, parenteral, intravenous, vaginal, pulmonary, intraperitoneal, transdermal, intramuscular, nasal, buccal or rectal means or locally, for example for infections of the skin, mucous membranes and eyes. Preparations in the form of inter alia tablets, pastilles, capsules, granules, drops, juices and syrups are suitable for oral administration;

- 19 -

solutions, suspensions, easily reconstitutable powders for inhalation and sprays are suitable for parenteral, topical and inhalative administration. Compounds according to the first aspect of the invention in a depot formulation, in dissolved form or in a plaster, optionally with addition of agents promoting skin penetration, are suitable preparations for percutaneous administration. Preparation forms that are suitable 5 for rectal, transmucosal, parenteral, oral or percutaneous administration can deliver the compounds according to the first aspect of the invention, on a delayed release basis.


Preparation of the medicaments and pharmaceutical compositions according to the invention takes place using agents, equipment, methods and procedures that are well-known from the prior art of pharmaceutical formulation, such as are described for example in "Remington's Pharmaceutical 10 Sciences", Ed. A.R. Gennaro, 17th edition, Mack Publishing Company, Easton PD (1985), in particular in part 8, chapters 76 to 93. The compounds according to the invention can be produced in the manner described here or in an analogous manner.

Unless indicated otherwise, the compounds according to the first aspect of invention can be synthesized according to general knowledge in the field of organic chemistry or in a manner as described here (cf. 15 reaction schemes below) or analogously. The reaction conditions in the synthesis routes described herein are known to the skilled person and are for some cases exemplified in the synthesis examples herein.

If not given otherwise, in below reaction scheme all substituents, chemical groupings and indices are as defined here in the context of the compound of general formula (I) and R^x is (C_1-C_6) alkyl, preferably methyl and butyl, and R^e is a leaving group such as e.g. methyl, ethyl, tert-butyl or benzyl

20 **Synthesis method (01)**

Reaction scheme 01:

Step (i): Halogenation of a compound of general formula (II) towards a compound of the general formula (III).

In step (i), the compound of general formula (III) is obtained via iodination at position three of the heterocycle of the compound of general formula (II) (e.g. 6-bromo-1H-indazole) following methods known in the art (e.g. Bioorg. Med. Chem. Lett. 2006, 16 (23), 6069). For example by treatment of the compound of general formula (II) with iodine in the presence of potassium hydroxide in a solvent like N,N-dimethylformamide at temperatures between 0° and 30°C.

- 21 -

Step (ii): Thiomethylation of a compound of general formula (III) to form a 3-(alkylthio)-1H-indazole compound of general formula (IV)

In the step (ii), the compound of general formula (III) is converted into the corresponding 3-(alkylthio)-1H-indazole compound of formula (IV) e.g. by treatment with copper(I) iodide, potassium carbonate, 5 sodium thiomethoxide and ethylene glycol in a solvent like isopropanol at elevated temperature.

Step (iii): Transition metal catalysed carbomethylation of 3-(alkylthio)-1H-indazole compound of general formula (IV)

Step (iii) of synthesis method (01) is the carbomethylation of a bromo compound of the general formula (IV) towards the corresponding methyl ester of the general formula (V). Methods for this type of reaction are described in the literature (Moser, W. R. et al. J. Am. Chem. Soc. 1988, 110, 2816; Tercel, 10 M. et al. J. Med. Chem. 2009, 52, 7258). Typically the bromo compound is reacted at elevated temperatures in an autoclave with carbon monoxide gas in the presence of methanol and an amine base like triethylamine under palladium catalysis whereby the catalyst is prepared in situ for example from palladium(II)acetate and 1,3-bis(diphenylphosphino)propane (dppp).

15 Step (iv): Reacting 5-bromo-2-chloropyrimidine with a compound of general formula (V)

Step (iv) of synthesis method (01) is the reaction of 5-bromo-2-chloropyrimidine with a 3-(alkylthio)-1H-indazole compound of general formula (V) to form a compound of general formula (VI). This reaction is performed according to known methods for nucleophilic aromatic substitution in a solvent and in the presence of a base. Examples of suitable solvents are dioxane, N,N-dimethylformamide, N-methyl-2-pyrrolidone or dimethylsulfoxide. Examples of suitable bases are potassium tert-butylyate, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), aqueous sodium hydroxide and potassium carbonate. This reaction can take place at a temperature ranging from approximately 50°C to approximately 200°C. The reaction preferably takes place at a temperature in the range from 100°C to 150°C. Instead of 5-bromo-2-chloropyrimidine, other 2,5-di-substituted pyrimidines could be used wherein the two halogens are 20 replaced by suitable leaving groups. The compounds of general formula (VI) can be also obtained by reacting 5-bromo-2-chloropyrimidine with a compound of general formula (V) in the presence of an acid, such as for example hydrochloric acid, in a solvent like N,N-dimethylformamide or under the conditions 25 for palladium-catalyzed cross-coupling reactions, as described in step (viii) of synthesis method (01).

Step (v): Conversion of an ester of formula (VI) into a carboxylic acid of formula (VII)

30 This step (v) of synthesis method (01), namely the ester cleavage (ester hydrolysis) of a compound of formula (VI) to form a compound of general formula (VII) takes place by known methods. Ester cleavages are described for example by P.G.M. Wuts, T.W. Greene in Greene's Protective Groups in Organic Synthesis, 4th Edition, 2007, pages 538-616, Wiley-Interscience. They can be performed

- 22 -

hydrolytically, for example, in the presence of acids or bases (e.g. alkali hydroxides such as for example lithium or sodium hydroxide) in an organic solvent to which varying proportions of water are added. Other frequently used methods of ester cleavage involve the acid-catalyzed cleavage of a tert-butyl ester (R^c = tert-butyl) by generally known methods, for example using trifluoroacetic acid in dichloromethane, 5 or the hydrogenolysis of benzyl esters (if R^c = benzyl).

Step (vi): Reacting an amine with a carboxylic acid of formula (VII) to form the corresponding carboxamide having the general formula (VIII)

In step (vi), the coupling of a primary or secondary amine with a compound of general formula (VII) is performed according to known methods from peptide chemistry (e.g. Tetrahedron 2004, 60, 2447–2467).

10 Suitable coupling reagents are known to a person skilled in the art and include e.g. carbodiimides (such as 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (EDC)) or uronium salts (such as (1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU)) in a suitable solvent (e.g. N,N-dimethylformamide or dichloromethane).

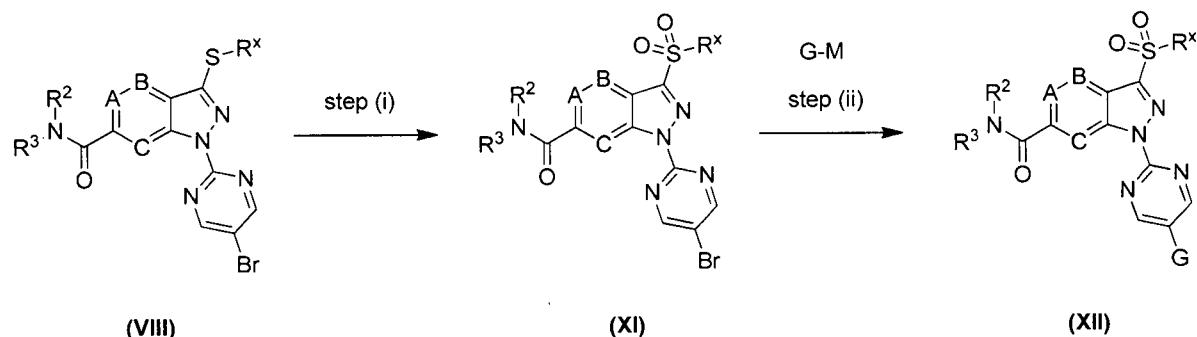
15 Step (vii): Oxidation of an alkylthio compound of general formula (VIII) towards the corresponding sulfoxide of general formula (IX)

This step (vii) of synthesis method (01), comprises reacting a compound of formula (VIII) with an oxidizing agent under appropriate reaction conditions. A suitable oxidizing agent is for example m-chloroperoxybenzoic acid in a solvent like dichloromethane under cooling or at room temperature for a certain time period. By choosing the appropriate amount or equivalents of the oxidizing agent based on 20 the amount of starting material of formula (VIII), the oxidation reaction can be controlled so that either the sulfoxide of formula (IX) or the corresponding sulfone is obtained.

25 Step (viii): Reacting a compound of formula (IX) with a compound "G-M" to form a compound of formula (X) under the conditions of a palladium-catalysed cross-coupling reaction

G in the compound "G-M" has the meaning described in connection with the compounds according to the invention and M is defined as follows:

If a Suzuki coupling is performed, then M denotes B(OH)₂ (boronic acid), B(OR^a)₂ (boronic acid ester, R^a stands for (C₁-C₆)-alkyl, preferably methyl) or an optionally (C₁-C₆)-alkyl substituted 1,3,2-dioxaborolane (e.g. 4,4,5,5-tetramethyl-1,3,2-dioxaborolane, pinacol boronic acid ester) and if a Stille coupling is performed, then M denotes SnR^b₃ (R^b stands for (C₁-C₆)-alkyl, preferably methyl and butyl; e.g. M = 30 Sn(CH₃)₃ (trimethylstannyl) or SnBn₃ (tributylstannyl)).


This step (viii) of synthesis method (01), namely the reaction under Stille or Suzuki coupling reaction conditions is performed according to methods known in the art (cf. Tetrahedron 2005, 61, 2245-67). The

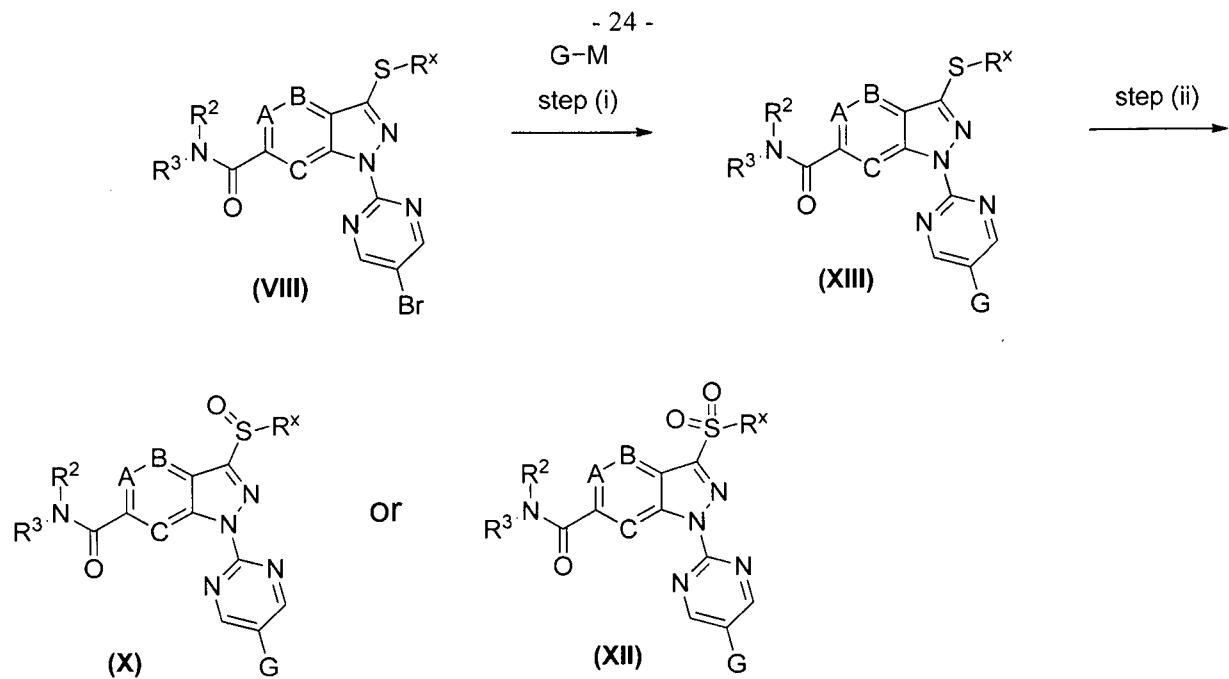
- 23 -

Suzuki coupling can be performed for example in the presence of a catalyst such as tris(dibenzylideneacetone)dipalladium / tri-tert-butylphosphonium tetrafluoroborate, tetrakis(triphenylphosphine)palladium(0) or [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II) complex and a base (e.g. caesium or potassium carbonate) in a solvent or a mixture of solvents (solvent blend) (e.g. THF, 5 dioxane or acetonitrile with or without water).

Synthesis method (02)

Reaction scheme 02:

Step (i): Oxidation of a compound of general formula (VIII) towards the corresponding sulfoxide of general formula (XI)


This step (i) of synthesis method (02), namely the treatment of a compound of formula (VIII) with an oxidizing agent to form a sulfoxide of formula (XI) takes place for example under the conditions described in step (vii) of synthesis method (01).

Step (ii): Reacting a compound of formula (XII) with a compound “G-M” to form a compound of formula (XII) under the conditions of a palladium-catalysed cross-coupling reaction

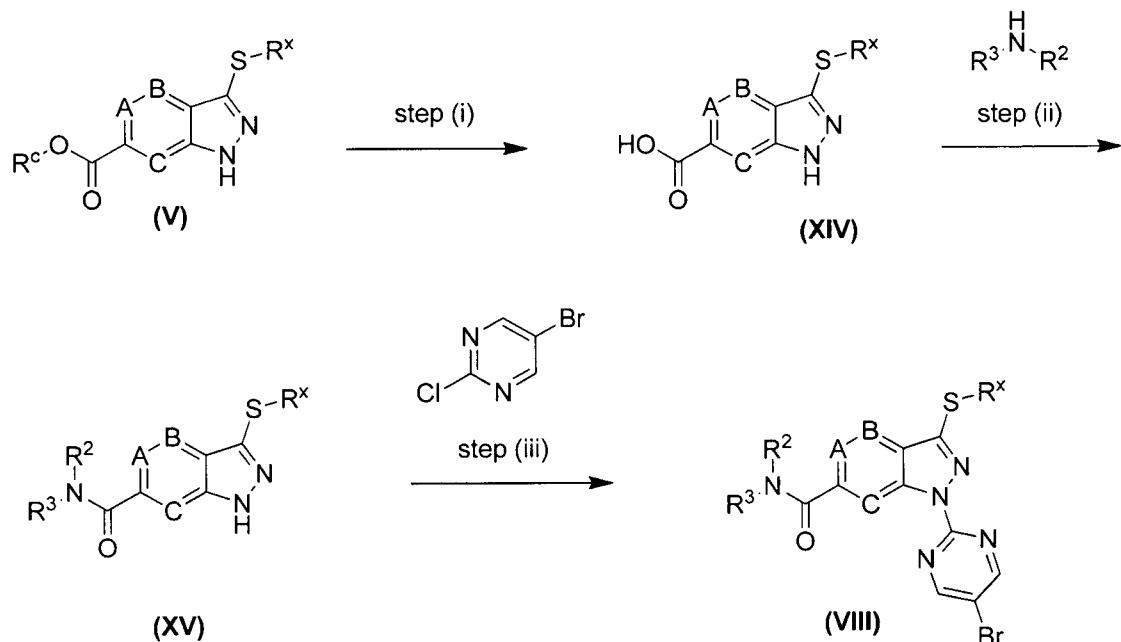
This step (ii) of synthesis method (02), namely the reaction of a compound of formula (XI) with a compound G-M towards a compound of the general formula (XII) can be performed under the conditions for a Stille or Suzuki coupling reaction as described in step (viii) of synthesis method (01).

Synthesis method (03)

20 Reaction scheme 03:

Step (i): Reacting a compound of formula (VIII) with a compound G-M to form a compound of formula (XIII) under the conditions of a palladium-catalysed cross-coupling reaction

This step (i) of synthesis method (03), namely the reaction of a compound of formula (VIII) with a compound G-M towards a compound of the general formula (XIII) can be performed under the conditions for a Stille or Suzuki coupling reaction as described in step (viii) of synthesis method (01).


Step (ii): Oxidation of an alkylthio compound of general formula (XIII) towards the corresponding sulfoxide or sulfone of general formula (X) and (XII), respectively

This step (ii) of synthesis method (03), namely the treatment of a compound of formula (XIII) with an oxidizing agent to form a sulfoxide of formula (X) or a sulfone of formula (XII) takes place for example under the conditions described in step (vii) of synthesis method (01).

Synthesis method (04)

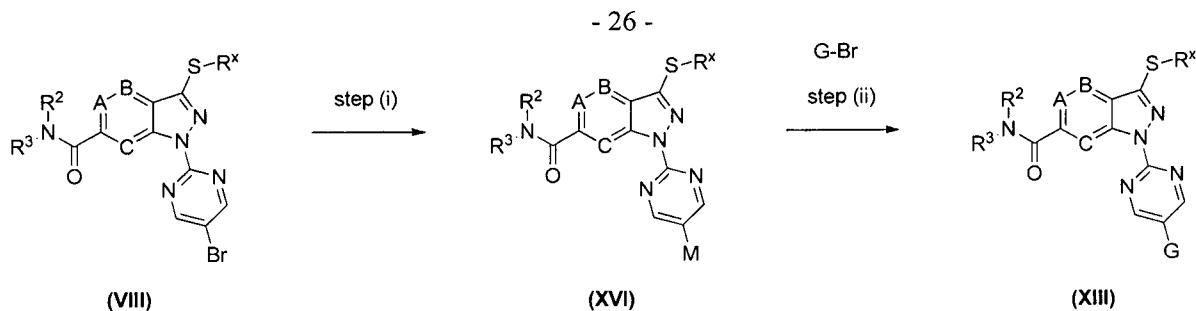
Reaction scheme 04:

- 25 -

Step (i): Conversion of an ester of formula (V) into the corresponding carboxylic acid of formula (XIV)

This step (i) of synthesis method (04), namely the ester cleavage (ester hydrolysis) of a compound of formula (V) to form a compound of general formula (XIV) takes place applying for example the methods 5 described in step (v) of synthesis method (01).

Step (ii): Reacting an amine with a carboxylic acid of formula (XIV) towards a carboxamide of general formula (XV)


Step (ii) of synthesis method (04), namely the coupling of an amine with a carboxylic acid of general formula (XIV) takes place under known conditions as described for example in step (vi) of synthesis 10 method (04).

Step (iii): Reacting 5-bromo-2-chloropyrimidine with a compound of general formula (XV)

This step (iii) of synthesis method (04), namely the reaction of 5-bromo-2-chloropyrimidine with a compound of general formula (XV) can be carried out using the methods described in step (iv) of synthesis method (01).

15 **Synthesis method (05)**

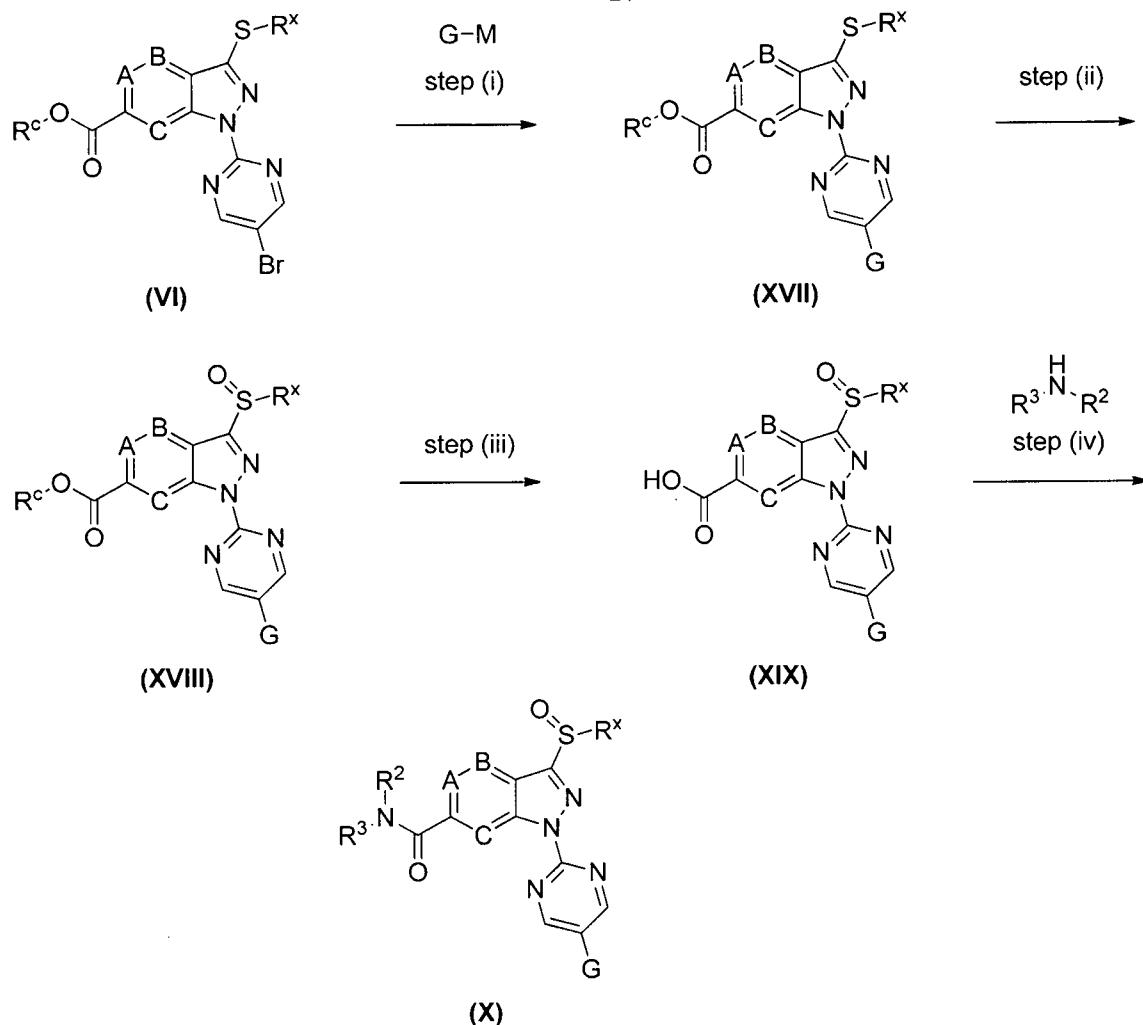
Reaction scheme 05:

wherein in above reaction scheme 05 "M" has the meaning described in connection with the compounds "G-M" in synthesis method (01).

Step (i): Transforming a compound of formula (VIII) into a compound of formula (XVI) under the conditions of a palladium-catalysed cross-coupling reaction

This step (i) of synthesis method (05), namely the transformation of a compound of formula (VIII) to a compound of formula (XVI) wherein M denotes $B(OH)_2$ (boronic acid), $B(OR^a)_2$ (boronic acid ester, R^a stands for (C_1 - C_6)-alkyl, preferably methyl) or an optionally (C_1 - C_6)-alkyl substituted 1,3,2-dioxaborolane (e.g. 4,4,5,5-tetramethyl-1,3,2-dioxaborolane, pinacol boronic acid ester) can be performed under the conditions of a palladium-catalysed reaction that are known from the literature (cf. Journal of Organic Chemistry 1995, 60, 7508-7510; Journal of Organic Chemistry 2000, 65, 164-168). Suitable reaction conditions comprise for example the use of a catalyst like [$1,1'$ -bis(diphenylphosphino)-ferrocene]dichloropalladium(II) complex and potassium acetate in a solvent like dioxane or DMSO. Compounds of formula (VIII) wherein the bromo substituent is replaced by a triflate, sulfonate or another halide like iodide could be also used as suitable substrates in this reaction.

Alternatively, the compounds of formula (VIII) can be transformed into compounds of formula (XVI) wherein M denotes SnR^b_3 (R^b stands for (C_1 - C_6)-alkyl, preferably methyl and butyl; e.g. $M = Sn(CH_3)_3$ (trimethylstannyl) or $SnBn_3$ (tributylstannyl)).


Step (ii): Reacting a compound of formula (XVI) with a compound G-Br under the conditions of a Suzuki or Stille reaction

This step (ii) of synthesis method (05), namely the reaction of a compound of formula (XVI) with a compound G-Br is performed under the conditions for a Stille or Suzuki coupling reaction as described in step (viii) of synthesis method (01). The reaction can be also performed with compounds G-Br wherein the bromo substituent "-Br" is replaced by a triflate, sulfonate or another halide like iodide or chloride.

25 Synthesis method (06)

Reaction scheme 06:

- 27 -

Step (i): Reacting a compound of formula (VI) with a compound G-M to form a compound of formula (XVII) under the conditions of a palladium-catalysed cross-coupling reaction

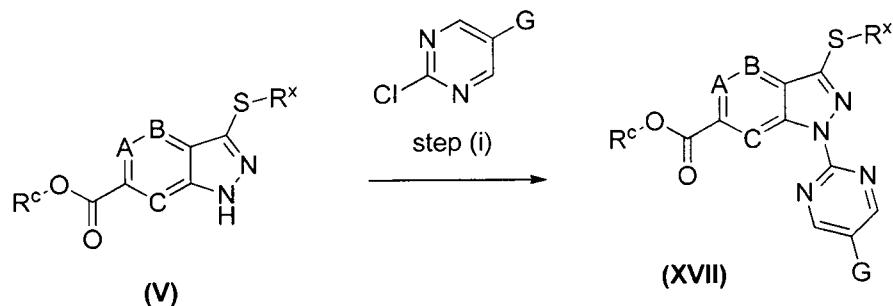
This step (i) of synthesis method (06), namely the reaction of a compound of formula (VI) with a compound G-M towards a compound of the general formula (XVII) can be performed under the conditions for a Stille or Suzuki coupling reaction as described in step (viii) of synthesis method (01).

Step (ii): Oxidation of a compound of general formula (XVII) towards the corresponding sulfoxide of general formula (XVIII)

This step (ii) of synthesis method (06), namely the treatment of a compound of formula (XVII) with an oxidizing agent to form a sulfoxide of formula (XVIII) takes place for example under the conditions described in step (vii) of synthesis method (01).

Step (iii): Conversion of an ester of formula (XVIII) into a carboxylic acid of formula (XIX)

- 28 -

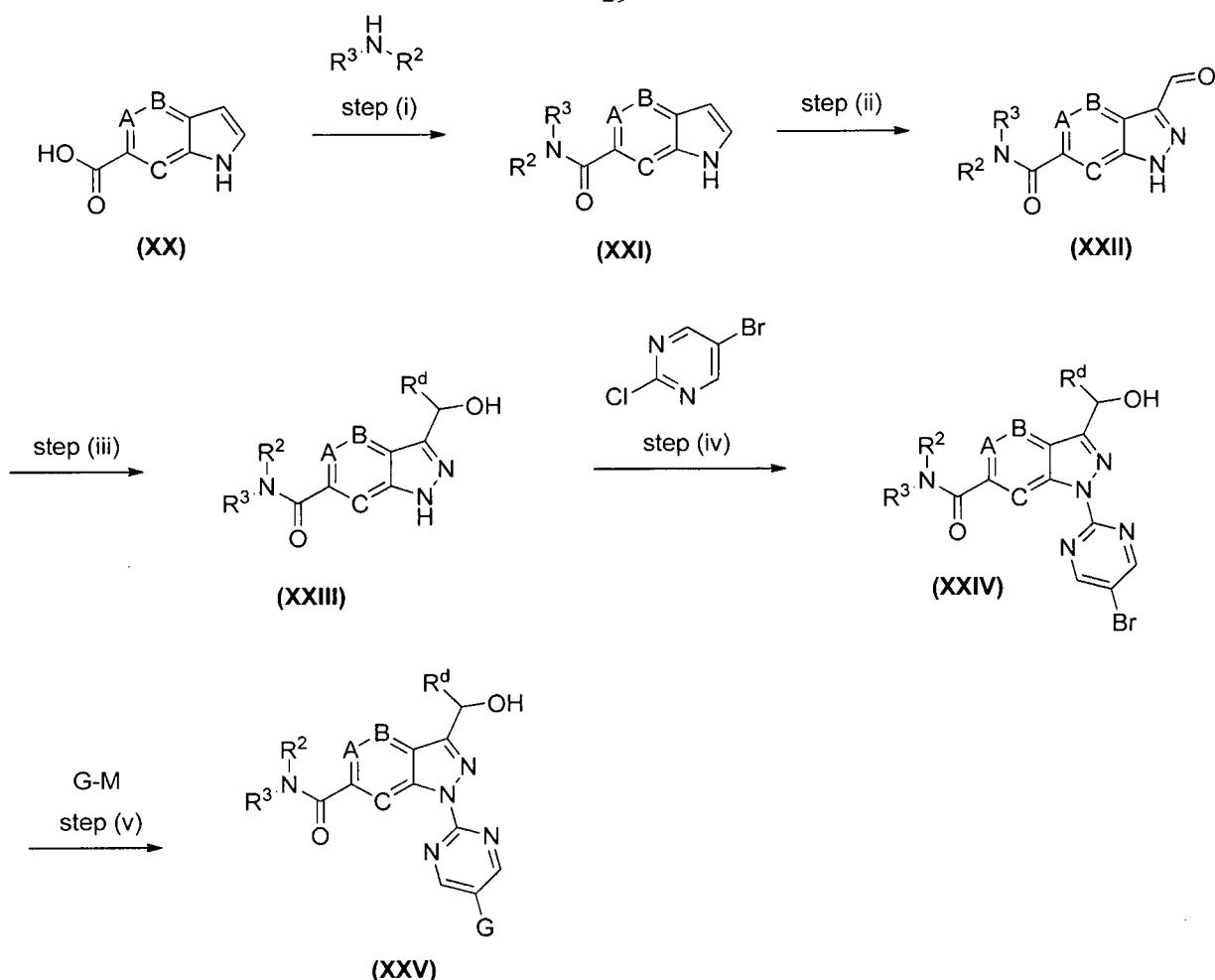

This step (iii) of synthesis method (06), namely the ester cleavage (ester hydrolysis) of a compound of formula (XVIII) to form a compound of general formula (XIX) can be performed under the methods described in step (v) of synthesis method (01).

Step (iv): Reacting an amine with a carboxylic acid of formula (XIX) towards a carboxamide of general formula (X)

Step (iv) of synthesis method (06), namely the coupling of an amine with a carboxylic acid of general formula (XIX) takes place under known conditions as described for example in step (vi) of synthesis method (01).

Synthesis method (07)

10 Reaction scheme 07:


G is as defined herein, and wherein R^c is a leaving group such as methyl, ethyl, tert-butyl or benzyl.

Step (i): Reacting a compound of formula (V) with a 2-chloropyrimidine to form a compound of formula (XVII) under the conditions for a nucleophilic aromatic substitution or a palladium-catalysed cross-coupling reaction as described in step (iv) of synthesis method (01).

Synthesis method (08)

Reaction scheme 08:

- 29 -

In this reaction scheme 08, R^d stands for hydrogen and ($\text{C}_1\text{-C}_6$)-alkyl, and G and M in the compound G-M have the aforementioned meaning.

Step (i): Reacting an amine with a carboxylic acid (1H-indole-6-carboxylic acid) of formula (XX) towards a carboxamide (1H-indole-6-carboxamide) of general formula (XXI)

Step (i) of synthesis method (08), namely the coupling of an amine with a carboxylic acid of the general formula (XX) takes place under known conditions as described for example in step (vi) of synthesis method (01).

Step (ii): Preparation of a 3-formyl-indazole compound of formula (XXII) from a compound of formula (XXI)

This step (ii) of synthesis method (08), namely the transformation of a compound of the general formula (XXI) into a 3-formyl-indazole compound of the general formula (XXII) takes place according to known methods (Büchi, G. et al. J. Am. Chem. Soc. 1986, 108, 4115-4119; WO200102369 p. 313ff). Therefore, reaction of a compound of the general formula (XXI) with nitrous acid generated in situ from sodium

- 30 -

nitrite and aqueous hydrogen chloride in a solvent like water or dioxane at room temperature leads to the formation of a 3-formyl-indazole compound (XXII).

Step (iii): Transforming a compound of formula (XXII) into a compound of general formula (XXIII)

This step (iii) of synthesis method (08), namely the transformation of a 3-formyl-indazole compound of formula (XXII) into a compound of general formula (XXIII) wherein R^d is hydrogen takes place under standard conditions for the reduction of aldehydes towards primary alcohols. Suitable reducing reagents are alkyl borohydrides as for example sodium borohydride or lithium borohydride in a solvent like methanol at temperatures in the range between 0°C and 30°C. Compounds of the general formula (XXIII) wherein R^d is (C₁-C₆)-alkyl are obtained from the reaction of compounds of the general formula (XXII) with alkyl magnesium halides under the conditions of a Grignard reaction. The reactions are typically performed in solvents like diethyl ether or THF at temperatures preferably in the range from -70°C to 0°C.

Step (iv): Reacting 5-bromo-2-chloropyrimidine with a compound of formula (XXIII)

This step (iv) of synthesis method (08), namely the reaction of 5-bromo-2-chloropyrimidine with a compound of the general formula (XXIII) to form a compound of the general formula (XXIV) takes place respectively by the methods described in step (iv) of synthesis method (01).

Step (v): Reacting a compound of formula (XXIV) with a compound G-M to form a compound of formula (XXV) under the conditions of a palladium-catalysed cross-coupling reaction

Step (v) of synthesis method (08), namely the reaction of a compound G-M with a compound of the general formula (XXIV) takes place under the conditions for a Stille or a Suzuki coupling reaction as described in step (viii) of synthesis method (01).

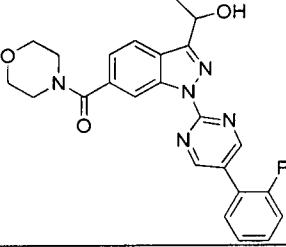
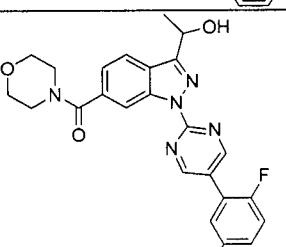
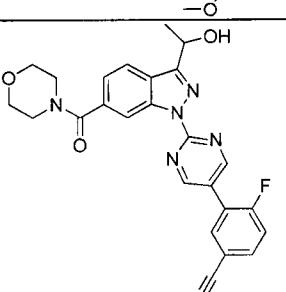
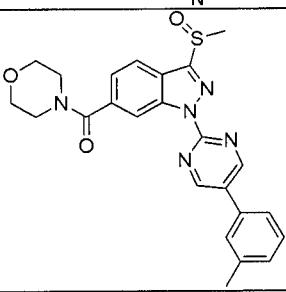
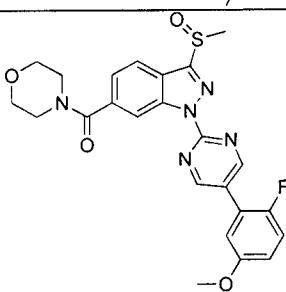
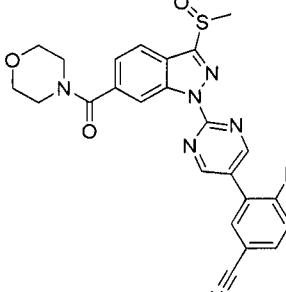
The compounds according to the first aspect of the invention are specified in the table 1 below, without limiting the invention thereto.

Table 1:

Cpd. No.	Structure	Name
1		(1-(5-(2-Fluorophenyl)pyrimidin-2-yl)-3-methyl-1H-indazol-6-yl)(morpholino)methanone

- 31 -

2		(1-(5-(2-Fluorophenyl)pyrimidin-2-yl)-3-(trifluoromethyl)-1H-indazol-6-yl)(morpholino)methanone
3		1-(5-(2-Fluorophenyl)pyrimidin-2-yl)-6-(morpholine-4-carbonyl)-1H-indazole-3-carboxamide
4		(3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone
5		(1-(5-(2-Fluorophenyl)pyrimidin-2-yl)-3-(methylsulfonyl)-1H-indazol-6-yl)(morpholino)methanone
6		(1-(5-(2-Fluorophenyl)pyrimidin-2-yl)-3-(methylsulfinyl)-1H-indazol-6-yl)(morpholino)methanone
7		(1-(5-(2-Fluorophenyl)pyrimidin-2-yl)-3-(methylsulfonyl)-1H-indazol-6-yl)(piperazin-1-yl)methanone







- 32 -

8		(1-(5-(2-Fluorophenyl)pyrimidin-2-yl)-3-(methylsulfinyl)-1H-indazol-6-yl)(piperazin-1-yl)methanone
9		(3-(Methylsulfinyl)-1-(5-phenylpyrimidin-2-yl)-1H-indazol-6-yl)(piperazin-1-yl)methanone
10		(3-(Methylsulfonyl)-1-(5-phenylpyrimidin-2-yl)-1H-indazol-6-yl)(piperazin-1-yl)methanone
11		(3-(Methylsulfinyl)-1-(5-phenylpyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone
12		(3-(Methylsulfonyl)-1-(5-phenylpyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone
13		((R)-3-Aminopyrrolidin-1-yl)(1-(5-(2-fluorophenyl)pyrimidin-2-yl)-3-(methylsulfinyl)-1H-indazol-6-yl)methanone

- 33 -

14		(3-Cyclopropyl-1-(5-phenylpyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone
15		4-(3-Cyclopropyl-1-(5-phenylpyrimidin-2-yl)-1H-indazole-6-carbonyl)piperazin-2-one
16		4-(3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-indazole-6-carbonyl)piperazin-2-one
17		4-(3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-indazole-6-carbonyl)-1-methylpiperazin-2-one
18		(3-(1-Hydroxyethyl)-1-(5-(m-tolyl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone
19		(3-(1-Hydroxyethyl)-1-(5-phenylpyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone

- 34 -

20		(1-(5-(2-Fluorophenyl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-1H-indazol-6-yl)(morpholino)methanone
21		(1-(5-(2-Fluoro-5-methoxyphenyl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-1H-indazol-6-yl)(morpholino)methanone
22		Fluoro-3-(2-(3-(1-hydroxyethyl)-6-(morpholine-4-carbonyl)-1H-indazol-1-yl)pyrimidin-5-yl)benzonitrile
23		(3-(Methylsulfinyl)-1-(5-(m-tolyl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone
24		(1-(5-(2-Fluoro-5-methoxyphenyl)pyrimidin-2-yl)-3-(methylsulfinyl)-1H-indazol-6-yl)(morpholino)methanone
25		4-Fluoro-3-(2-(3-(methylsulfinyl)-6-(morpholine-4-carbonyl)-1H-indazol-1-yl)pyrimidin-5-yl)benzonitrile

- 35 -

26		(3-(Methylsulfonyl)-1-(5-(m-tolyl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone
27		(1-(5-(2-Fluoro-5-methoxyphenyl)pyrimidin-2-yl)-3-(methylsulfonyl)-1H-indazol-6-yl)(morpholino)methanone
28		4-Fluoro-3-(2-(3-(methylsulfonyl)-6-(morpholine-4-carbonyl)-1H-indazol-1-yl)pyrimidin-5-yl)benzonitrile
29		(3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-pyrazolo[4,3-c]pyridin-6-yl)(morpholino)methanone
30		(3-Cyclopropyl-1-(5-(pyridin-2-yl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone
31		(1-(5-(2-Fluorophenyl)pyrimidin-2-yl)-3-(2-hydroxypropan-2-yl)-1H-indazol-6-yl)(morpholino)methanone

- 36 -

32		(1-(5-(2-Fluoro-5-methylphenyl)pyrimidin-2-yl)-3-(methylsulfinyl)-1H-indazol-6-yl)(morpholino)methanone
33		(1-(5-(2-Fluoro-5-methylphenyl)pyrimidin-2-yl)-3-(methylsulfonyl)-1H-indazol-6-yl)(morpholino)methanone
34		(1-(5-(2-Fluoro-5-methylphenyl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-1H-indazol-6-yl)(morpholino)methanone
35		Azetidin-1-yl(3-cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-pyrazolo[4,3-c]pyridin-6-yl)methanone
36		N,3-Dicyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-pyrazolo[4,3-c]pyridine-6-carboxamide

- 37 -

37		3-Cyclopropyl-N-ethyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-pyrazolo[4,3-c]pyridine-6-carboxamide
38		(3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-pyrazolo[4,3-c]pyridin-6-yl)(pyrrolidin-1-yl)methanone
39		3-Cyclopropyl-N,N-diethyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-pyrazolo[4,3-c]pyridine-6-carboxamide
40		3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-N-(2-hydroxyethyl)-N-methyl-1H-pyrazolo[4,3-c]pyridine-6-carboxamide
41		3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-N-(2-methoxyethyl)-1H-pyrazolo[4,3-c]pyridine-6-carboxamide

- 38 -

42		(3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-pyrazolo[4,3-c]pyridin-6-yl)(piperidin-1-yl)methanone
43		3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-N-(3-methoxypropyl)-1H-pyrazolo[4,3-c]pyridine-6-carboxamide
44		(3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-pyrazolo[4,3-c]pyridin-6-yl)(3-methylmorpholino)methanone
45		3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-N-(tetrahydro-2H-pyran-4-yl)-1H-pyrazolo[4,3-c]pyridine-6-carboxamide
46		3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-N-((1-hydroxycyclobutyl)methyl)-1H-pyrazolo[4,3-c]pyridine-6-carboxamide

- 39 -

47		N-(2-(1H-1,2,4-Triazol-1-yl)ethyl)-3-cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-pyrazolo[4,3-c]pyridine-6-carboxamide
48		(S)-(3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-pyrazolo[4,3-c]pyridin-6-yl)(2-(methoxymethyl)pyrrolidin-1-yl)methanone
49		(3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-pyrazolo[4,3-c]pyridin-6-yl)(3,5-dimethylmorpholino)methanone
50		N-(2-Amino-2-oxoethyl)-3-cyclopropyl-1-(5-(5-ethoxy-2-fluorophenyl) pyrimidin-2-yl)-N-methyl-1H-indazole-6-carboxamide
51		(3-Cyclopropyl-1-(5-(5-ethoxy-2-fluorophenyl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone

- 40 -

52		(3-Cyclopropyl-1-(5-(2-fluoro-5-(1-hydroxyethyl)phenyl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone
53		N-(2-Amino-2-oxoethyl)-3-cyclopropyl-1-(5-(2-fluoro-5-(1-hydroxyethyl)phenyl) pyrimidin-2-yl)-N-methyl-1H-indazole-6-carboxamide
54		(3-Cyclopropyl-1-(5-(2-fluoro-5-(2-hydroxypropan-2-yl)phenyl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone
55		N-(2-Amino-2-oxoethyl)-3-cyclopropyl-1-(5-(2-fluoro-5-(2-hydroxypropan-2-yl)phenyl)pyrimidin-2-yl)-N-methyl-1H-indazole-6-carboxamide
56		(3-Cyclopropyl-1-(5-(2-fluoro-5-(methylsulfinyl)phenyl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone

- 41 -

57		N-(2-Amino-2-oxoethyl)-3-cyclopropyl-1-(5-(2-fluoro-5-(methylsulfinyl)phenyl) pyrimidin-2-yl)-N-methyl-1H-indazole-6-carboxamide
58		(3-Cyclopropyl-1-(5-(2-fluoro-5-(methylsulfonyl)phenyl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone
59		N-(2-Amino-2-oxoethyl)-3-cyclopropyl-1-(5-(2-fluoro-5-(methylsulfonyl)phenyl) pyrimidin-2-yl)-N-methyl-1H-indazole-6-carboxamide
60		N-(2-Amino-2-oxoethyl)-1-(5-(5-ethoxy-2-fluorophenyl)pyrimidin-2-yl)-N,3-dimethyl-1H-indazole-6-carboxamide
61		N-(2-Amino-2-oxoethyl)-1-(5-(2-fluoro-5-(1-hydroxyethyl)phenyl)pyrimidin-2-yl)-N,3-dimethyl-1H-indazole-6-carboxamide

- 42 -

62		N-(2-Amino-2-oxoethyl)-1-(5-(2-fluoro-5-(2-hydroxypropan-2-yl)phenyl)pyrimidin-2-yl)-N,3-dimethyl-1H-indazole-6-carboxamide
63		N-(2-Amino-2-oxoethyl)-1-(5-(2-fluoro-5-(methylsulfonyl)phenyl)pyrimidin-2-yl)-N,3-dimethyl-1H-indazole-6-carboxamide
64		N-(2-Amino-2-oxoethyl)-1-(5-(2-fluoro-5-(methylsulfinyl)phenyl)pyrimidin-2-yl)-N,3-dimethyl-1H-indazole-6-carboxamide
65		(1-(5-(2-Fluoro-5-methylphenyl)pyrimidin-2-yl)-3-(methylsulfinyl)-1H-indazol-6-yl)(morpholino)methanone (single enantiomer)
66		1-(5-(2-Fluoro-5-methylphenyl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-N-(2-hydroxyethyl)-N-methyl-1H-indazole-6-carboxamide

- 43 -

67		N-(2-Amino-2-oxoethyl)-1-(5-(2-fluoro-5-methylphenyl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-N-methyl-1H-indazole-6-carboxamide
68		N-(2-Amino-2-oxoethyl)-1-(5-(5-ethyl-2-fluorophenyl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-N-methyl-1H-indazole-6-carboxamide
69		(1-(5-(5-Ethyl-2-fluorophenyl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-1H-indazol-6-yl)(morpholino)methanone
70		(3-(1-Hydroxyethyl)-1-(5-(4-methylpyridin-2-yl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone
71		(3-(1-Hydroxyethyl)-1-(5-(4-methoxypyridin-2-yl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone

- 44 -

72		(1-(5-(4-Ethylpyridin-2-yl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-1H-indazol-6-yl)(morpholino)methanone
73		(1-(5-(4-Cyclopropylpyridin-2-yl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-1H-indazol-6-yl)(morpholino)methanone
74		(1-(5-(5-Ethoxy-2-fluorophenyl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-1H-indazol-6-yl)(morpholino)methanone
75		(1-(5-(5-Cyclopropyl-2-fluorophenyl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-1H-indazol-6-yl)(morpholino)methanone
76		(1-(5-(3-Cyclopropylphenyl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-1H-indazol-6-yl)(morpholino)methanone

- 45 -

77		(1-(5-(4-Methylpyridin-2-yl)pyrimidin-2-yl)-3-(methylsulfinyl)-1H-indazol-6-yl)(morpholino)methanone
78		(1-(5-(4-Methoxypyridin-2-yl)pyrimidin-2-yl)-3-(methylsulfinyl)-1H-indazol-6-yl)(morpholino)methanone
79		(1-(5-(4-Cyclopropylpyridin-2-yl)pyrimidin-2-yl)-3-(methylsulfinyl)-1H-indazol-6-yl)(morpholino)methanone
80		(1-(5-(3-Cyclopropylphenyl)pyrimidin-2-yl)-3-(methylsulfinyl)-1H-indazol-6-yl)(morpholino)methanone
81		(1-(5-(5-Cyclopropyl-2-fluorophenyl)pyrimidin-2-yl)-3-(methylsulfinyl)-1H-indazol-6-yl)(morpholino)methanone

- 46 -

The following abbreviations are used in the descriptions of the experiments:

min = minute; h = hour; d = day; calc. = calculated; eq. = equivalent; f. = found; APCI = atmospheric pressure chemical ionization; (AtaPhos)2PdCl₂ = bis(di-tert-butyl(4-dimethylaminophenyl)phosphine)-

5 dichloropalladium(II); CDI = carbonyldiimidazole; dba = dibenzylidene-acetone; DMF = N,N-dimethylformamide; DMSO = dimethylsulfoxide; EDCxHCl = 1-[3-(dimethylamino)propyl]-3-

ethylcarbodiimide hydrochloride; ES-MS = electrospray mass spectrometry (ES-MS); HATU = 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate; HOEt = 1-hydroxybenzotriazole monohydrate; MTBE = methyl-tert-butylether; PdCl₂(dppf) = [1,1'-

10 bis(diphenylphosphino)ferrocene]dichloropalladium(II) dichloromethane complex; R_t = retention time; SFC = supercritical fluid chromatography; TBTU = N,N,N',N'-tetramethyl-O-(benzotriazol-1-yl)uronium

tetrafluoroborate; tert = tertiary; TFA = 2,2,2-trifluoroacetic acid; THF = tetrahydrofuran; TLC = thin layer chromatography; TOFMS = time-of-flight mass spectrometer.

15 The following analytical method were used:

Method 1 (LC-MS)

Column: Waters XSelect (C18, 50x2.1mm, 3.5 μ); Column temp: 35°C ;Flow: 0.8 ml/min

Eluent A: 95% acetonitrile + 5% 10 mM NH₄HCO₃ in water

Eluent B: 10 mM NH₄HCO₃ in water (pH=9.0)

20 Gradient: t=0 min 2% A, t=3.5 min 98% A, t=6 min 98% A

Detection: DAD (220 - 320 nm); Detection: MSD (ESI pos/neg) mass range: 100 – 800

Gradient:

Time in min	% A	% B	Flow rate in ml/min
0.0	2.0	98.0	0.8
3.5	98.0	2.0	0.8
6.0	98.0	2.0	0.8
8.0	2.0	98.0	0.8

Method 2 (LC-MS):

25 Column: Zorbax Extend C18 (4.6 x 50 mm, 5 μ m); Instrument: Shimadzu Prominence;

Flow rate: 1.2 mL/min; Column temperature: 25°C; Injection volume: 2 μ L

Detection: 220 and 260 nm;

Mobile phase A: 10 mM ammonium acetate in water; mobile phase B: acetonitrile

Gradient:

- 47 -

Time in min	% A	% B	Flow rate in ml/min
0	90	10	1.2
1.5	70	30	1.2
3.0	10	90	1.2
4.0	10	90	1.2
5.0	90	10	1.2

Mass spectroscopy conditions:

Instrument: API 2000 LC/MS/MS from Applied Biosystem

Ionization technique: ESI using API source

5 Declustering Potential: 10-70 V depending on the ionization of compound

Mass range: 100-800 amu; Scan type: Q1; Polarity: + Ve; Ion Source: Turbo spray; Ion spray voltage: +5500 for +Ve mode; Mass Source temperature: 200°C

Method 3 (LC-MS):

10 Column: XBridge C18 (4.6 x 50 mm, 5.0 µm); Instrument: Shimadzu Prominence

Flow rate: 1.2 mL/min; Column temperature: 25°C; Injection volume: 2 µL

Detection: 220 and 260 nm

Mobile phase A: 10 mM ammonium acetate in water; mobile phase B: acetonitrile

Gradient:

Time in min	% A	% B	Flow rate in ml/min
0	90	10	1.2
1.5	70	30	1.2
3.0	10	90	1.2
4.0	10	90	1.2
5.0	90	10	1.2

15

Method 4:

Same set up as for method 2 with the only difference that the following gradient was used:

Time in min	% A	% B	Flow rate in ml/min
0	90	10	1.2
1.5	70	30	1.2
3.0	10	90	1.2
4.0	10	90	1.2
6.0	90	10	1.2

- 48 -

Method 5:

Column: XBridge C18 (150 mm x 4.6 mm, 3.5 μ m); Column temperature: 25°C

Flow rate: 1.0 mL/min

Injection volume: 2 μ l

5 Detection: 215 and 254 nm

Mobile phase A: acetonitrile; mobile phase B: 10 mM ammonium acetate in water

Gradient:

Time in min	% A	% B	Flow rate in ml/min
0	5	95	1.0
1.5	5	95	1.0
3	15	85	1.0
7	55	45	1.0
10	95	5	1.0
14	95	5	1.0
16	100	0	1.0
18	5	95	1.0
20	5	95	1.0

Method 6:

10 Column: XBridge C18 (150 mm x 4.6 mm, 5.0 μ m); Column temperature: 25°C

Flow rate: 1.0 mL/min

Injection volume: 2 μ l

Detection: 215 and 254 nm

Mobile phase A: acetonitrile; mobile phase B: 10 mM ammonium acetate in water

15 Gradient:

Time in min	% A	% B	Flow rate in ml/min
0	70	30	1.0
7	45	55	1.0
10	5	95	1.0
15	5	95	1.0
16	0	100	1.0
18	70	30	1.0
20	70	30	1.0

Method 7:

Column: XBridge C18 (150 mm x 4.6 mm, 5.0 μ m); Column temperature: 25°C

- 49 -

Flow rate: 1.2 mL/min

Injection volume: 2 µl

Detection: 215 and 254 nm

Mobile phase A: 10 mM ammonium acetate in water B: acetonitrile; mobile phase

5 Gradient:

Time in min	% A	% B	Flow rate in ml/min
0	5	95	1.2
1.2	5	95	1.2
3	55	45	1.2
5	70	30	1.2
7	95	5	1.2
10	95	5	1.2
12	100	0	1.2
14	5	95	1.2
16	5	95	1.2

Method 8:

Column: XBridge C18 (150 mm x 4.6 mm, 3.5 µm); Column temperature: 25°C

Flow rate: 1.2 mL/min

10 Injection volume: 2 µl

Detection: 215 and 254 nm

Mobile phase A: 10 mM ammonium acetate in water B: acetonitrile; mobile phase

Gradient:

Time in min	% A	% B	Flow rate in ml/min
0	5	95	1.2
2	30	70	1.2
4	50	50	1.2
7	98	2	1.2
13	98	2	1.2
14	5	95	1.2

15 Method 9:

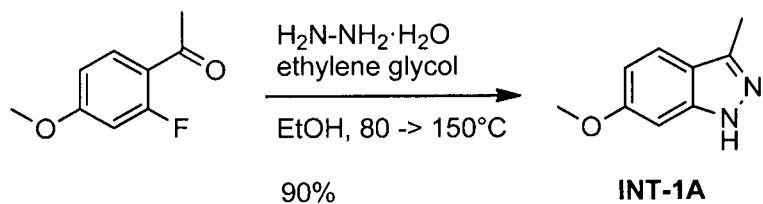
Column: XBridge Shield RP 18 (150 mm x 4.6 mm, 3.5 µm); Column temperature: 35°C

Flow rate: 1.0 mL/min

Injection volume: 2 µl

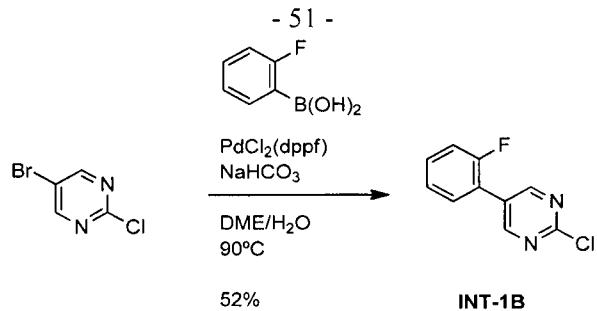
Detection: 215 and 254 nm

- 50 -

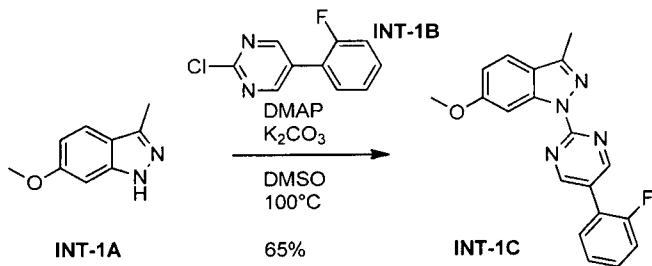

Mobile phase A: 10 mM ammonium acetate in water B: acetonitrile; mobile phase Gradient:

Time in min	% A	% B	Flow rate in ml/min
0	5	95	1.0
1.2	5	95	1.0
3	55	45	1.0
5	70	30	1.0
7	95	5	1.0
10	95	5	1.0
12	100	0	1.0
14	5	95	1.0
16	5	95	1.0

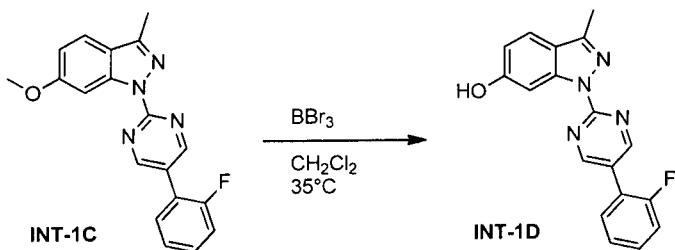
Mass spectroscopy conditions:


5 Instrument: API 2000 LC/MS/MS from Applied Biosystem; Ionization technique: ESI using API source;
Declustering Potential: 10-70 V depending on the ionization of compound;
Mass range: 100-800 amu; Scan type: Q1; Polarity: + Ve; Ion Source: Turbo spray; Ion spray voltage:
+5500 for +Ve mode; Mass Source temperature: 200°

10 Compound No. 1: (1-(5-(2-Fluorophenyl)pyrimidin-2-yl)-3-methyl-1H-indazol-6-yl)(morpholino) methanone (1)


To a solution of 1-(2-fluoro-4-methoxyphenyl)ethanone (4.85 g, 28.8 mmol) in ethanol (50 mL) was added hydrazine hydrate (5.61 mL, 115 mmol) and the mixture was heated at reflux temperature for 6 h.

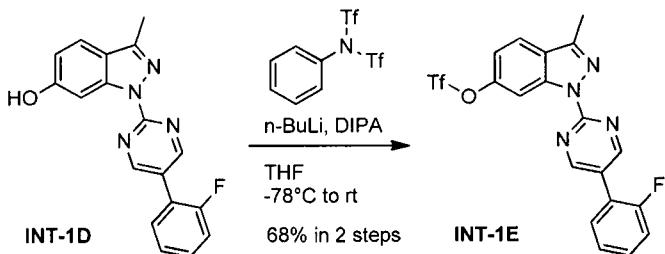
15 This mixture was evaporated to dryness. Then, ethylene glycol (24.12 mL, 433 mmol) was added and the mixture was heated at 150°C for 96 h. After cooling to room temperature, the mixture was diluted with water (75 mL). A solid was formed and the suspension was stirred for 30 minutes. After filtration, indazole **INT-1A** (4.20 g, 26 mmol, 90%) was isolated as an off white solid. LCMS: calculated for $[M+H]^+$: 163, found: 163.


A mixture of 5-bromo-2-chloropyrimidine (10.0 g, 51.7 mmol), 2-fluorophenyl boronic acid (7.23 g, 51.7 mmol) and NaHCO_3 (6.51 g, 78 mmol) were dissolved in DME (160 mL) / water (40 mL). The solution was degassed with Argon for 15 minutes. $\text{PdCl}_2(\text{dppf})$ (2.13 g, 2.58 mmol) was added and the mixture was heated at 90°C for 18 h. The reaction mixture was filtered; the filtrate was bubbled trough with air and evaporated. Purification by flash chromatography (silica, 5% \rightarrow 25% ethyl acetate in heptane, compound coated on silica) gave product with some small impurities. Trituration with diethyl ether gave final compound **INT-1B** (5.60 g, 26.8 mmol, 52%) as a white solid. LCMS: calculated for $[\text{M}+\text{H}]^+$: 209, found: 209.

10

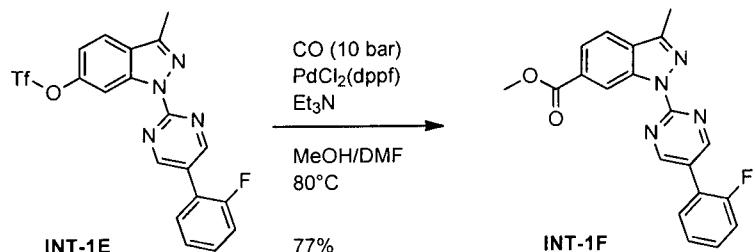
15

A mixture of indazole **INT-1A** (600 mg, 3.70 mmol), pyrimidine **INT-1B** (772 mg, 3.70 mmol), K_2CO_3 (1.02 g, 7.40 mmol) and 4-dimethylaminopyridine (113 mg, 0.93 mmol) in DMSO (10 mL) was stirred at 100°C for 2 h. After cooling to room temperature, water (100 mL) was added and the organic layer was extracted with dichloromethane (100 mL). The organic layer was dried (Na_2SO_4) and evaporated. Purification by column chromatography (silica, 0 \rightarrow 100% ethyl acetate in heptane) gave **INT-1C** (0.81 g, 2.42 mmol, 65%) as a slightly yellow solid. LCMS: calculated for $[\text{M}+\text{H}]^+$: 335, found: 335.

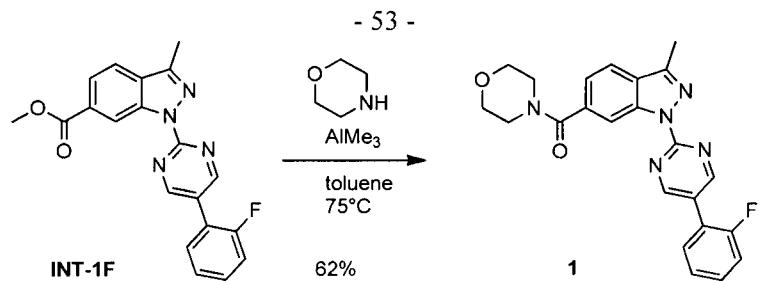


20

A solution of boron tribromide (1.14 mL, 12.1 mmol) in dichloromethane (25 mL) was added dropwise to a stirred and warmed (35°C) solution of indazole **INT-1C** (808 mg, 2.42 mmol) in dichloromethane (25 mL). The reaction mixture was stirred at 35°C for 18 h. The reaction mixture was quenched with H_2O and NaHCO_3 was added to pH~9, a solid remained. The solid was filtered off, washed with diethyl ether and

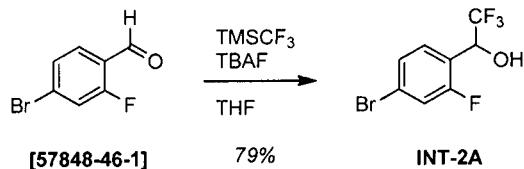

- 52 -

dried on a stream of air to afford phenol **INT-1D** (940 mg) as an off white solid. LCMS: calculated for $[M+H]^+$: 321, found: 321. This was used as such.

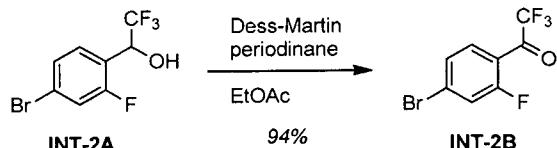


To a stirred solution of diisopropylamine (379 μ L, 2.66 mmol) in tetrahydrofuran (10 mL) at -78°C was 5 added dropwise n-BuLi (2.5 M in hexanes 1.07 mL, 2.66 mmol) in 10 minutes keeping the temperature below -60°C. The resulting solution was stirred at -78°C for 15 minutes. Then a solution of crude alcohol **INT-1D** (940 mg) in tetrahydrofuran (5 mL) was added dropwise. The resulting solution was stirred at -78°C for 15 minutes. Subsequently, Tf₂-aniline (951 mg, 2.66 mmol) in tetrahydrofuran (5 mL) was 10 added dropwise within 5 minutes keeping the temperature below -60 °C. A suspension was formed. The reaction was allowed to warm up to room temperature and was stirred for 72 h. The reaction mixture was poured into saturated aqueous NaHCO₃ (10 mL), dichloromethane (10 mL) was added and layers were separated. The organic layer was washed with H₂O, dried over Na₂SO₄ and evaporated. Purification by column chromatography (silica, 0 -> 100% ethyl acetate in heptane) gave compound **INT-1E** (740 mg, 1.64 mmol, 68% over 2 steps). LCMS: calculated for $[M+H]^+$: 453, found: 453.

15

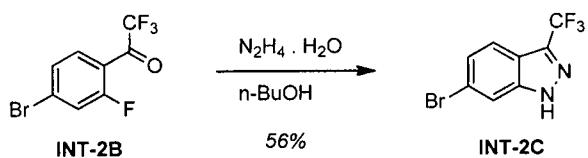


In an autoclave, a solution of triflate **INT-1E** (620 mg, 1.37 mmol) in dimethylformamide (6 mL)/methanol (4 mL) was flushed with Argon for 5 minutes. Then, PdCl₂(dppf) (224 mg, 0.27 mmol), and triethylamine (411 μ L, 2.95 mmol) were added. A CO-atmosphere was applied (10 bar) and the mixture was stirred at 80°C for 18 h. The solution was poured into H₂O (100 mL) and extracted with 20 ethyl acetate (3 x 75 mL). The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated. Purification by column chromatography (silica, 0% -> 100% ethyl acetate in heptane) gave ester **INT-1F** (382 mg, 1.05 mmol, 77%) as a white/yellow solid. LCMS: calculated for $[M+H]^+$: 363, found: 363.



A solution of trimethylaluminum (2M in toluene, 552 μ L, 1.10 mmol) was added slowly to a stirred suspension of methyl ester **INT-1F** (200 mg, 0.55 mmol) and morpholine (48 μ L, 0.55 mmol) in toluene (4 mL) at 0°C. Immediately, foaming and an exotherm was observed. The reaction mixture was heated at 5 85°C for 4 h. The mixture was quenched by careful addition of brine (25 mL) under cooling of an ice-bath. Ethyl acetate was added and the layers were separated. The aqueous layer was extracted with ethyl acetate (3 x 25 mL). The combined organic layers were washed with brine, dried over Na_2SO_4 and evaporated. Purification by flash column chromatography (silica, 0% -> 100% ethyl acetate in heptane) gave final compound **1** (143 mg, 0.34 mmol, 62%) as a slightly yellow foam. LCMS: calculated for 10 $[\text{M}+\text{H}]^+$: 418, found: 418.

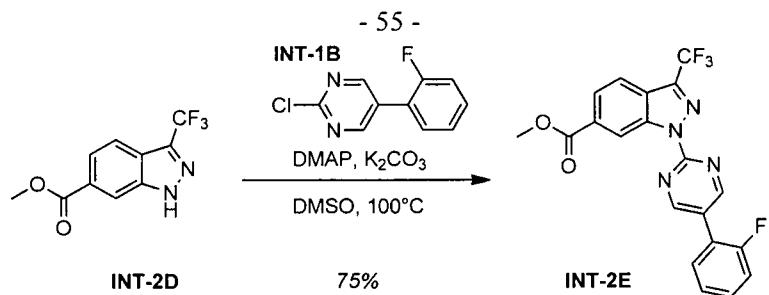
Compound No. 2: (1-(5-(2-Fluorophenyl)pyrimidin-2-yl)-3-(trifluoromethyl)-1H-indazol-6-yl)(morpholino)methanone (2)

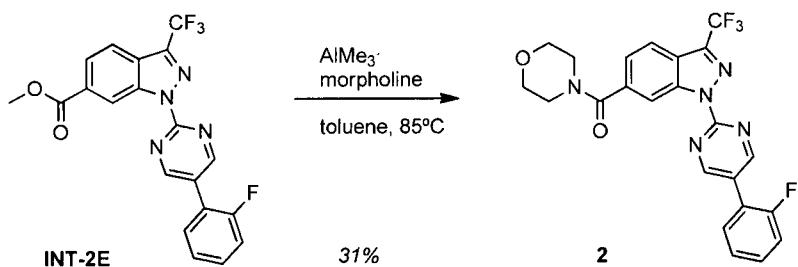


15 Trifluoromethyltrimethylsilane (7.83 mL, 49.3 mmol) was added dropwise to a stirred solution of 4-bromo-2-fluorobenzaldehyde (10.0 g, 49.3 mmol) in dry tetrahydrofuran (300 mL) at 0°C and the reaction mixture was stirred for 30 minutes. Next, Tetra-*n*-butylammonium fluoride, (1.0 M in tetrahydrofuran, 4.93 mL, 4.93 mmol) was added dropwise, the reaction mixture was allowed to warm to room temperature slowly and was stirred for 3 days. The reaction mixture was concentrated to a smaller volume under reduced pressure. The residue was partitioned between 1M aqueous HCl (250 mL) and ethyl acetate (250 mL). The aqueous layer was extracted with ethyl acetate (200 mL). The combined organic layers were washed with brine (200 mL), dried on Na₂SO₄ and evaporated. Purification by flash column chromatography (silica, 0% -> 25% ethyl acetate in heptane) gave alcohol **INT-2A** (10.7 g, 39.1 mmol, 79%) as a colorless oil. GCMS: calculated for [M+H]⁺: 272/274, found: 272/274, mono-Br isotope pattern observed.

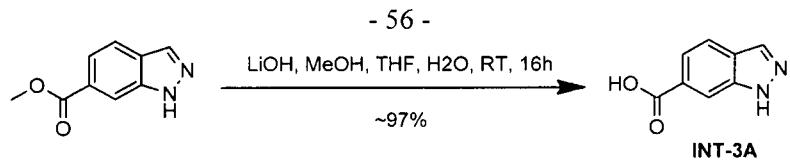


- 54 -

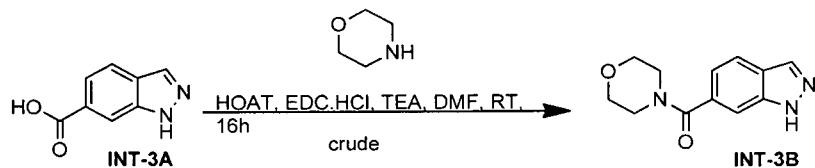

Dess-Martin Periodinane (18.6 g, 44.0 mmol) was added neat to a stirred solution of alcohol **INT-2A** (10.0 g, 36.6 mmol) in ethyl acetate (200 mL). The reaction mixture was heated under reflux for 1.5 h. After cooling down to room temperature, the mixture was concentrated to a smaller volume (100 mL) under reduced pressure. The solids were filtered off over Celite and rinsed well with ethyl acetate (50 mL). The filtrate was washed with saturated aqueous NaHCO₃ (3x 100 mL), dried on Na₂SO₄ and evaporated to give crude ketone **INT-2B** (9.54 g, 35.2 mmol, 94%) as a pale oil. GCMS: calculated for [M+H]⁺: 270/272, found: 270/272, mono-Br isotope pattern observed.


Hydrazine hydrate (20.0 mL, 412 mmol) was added neat to a stirred solution of ketone **INT-2B** (9.5 g, 35.0 mmol) in n-butanol (95.0 mL). The reaction mixture was heated under reflux for 3 h. The reaction mixture was cooled to room temperature, diluted with water (500 mL) and extracted with ethyl acetate (3x 200 mL). The combined organic layers were washed with brine (150 mL), dried on Na₂SO₄ and evaporated. Purification by flash column chromatography (silica, 5% \rightarrow 50% ethyl acetate in heptane) gave indazole **INT-2C** (5.21 g, 19.6 mmol, 56%) as a pale solid. GCMS: calculated for [M+H]⁺: 264/266, found: 264/266, mono-Br isotope pattern observed.

A solution of indazole **INT-2C** (2.50 g, 9.43 mmol) and triethylamine (2.88 mL, 20.7 mmol) in a mixture of methanol (50 mL) and dry dimethylformamide (20 mL) in a metal autoclave was flushed thoroughly with CO-gas for 10 minutes. Next, PdCl₂(dppf) (1.16 g, 1.42 mmol) was added neat and the reaction mixture was flushed again with CO-gas for 5 minutes. The autoclave was closed and pressurised at 40 bar with CO-gas. The autoclave was then heated at 70°C for 18 h with vigorous stirring. An LCMS sample showed partial conversion of starting material into desired product. An extra quantity of triethylamine (2.88 mL, 20.7 mmol) and PdCl₂(dppf) (1.16 g, 1.42 mmol) were added. The reaction was then continued under 40 bar of CO-pressure at 70°C for 2 days. Full conversion was seen. Silica (~10 g) was added to the reaction mixture and the solvents were carefully removed under reduced pressure. The absorbed material was loaded and purified on a flash column (silica, 0% \rightarrow 50% ethyl acetate in heptane) to give ester **INT-2D** (1.72 g, 7.04 mmol, 75%) as a pale solid. LCMS: calculated for [M-H]⁻: 243, found: 243.


K₂CO₃ (2.89 g, 20.9 mmol) and 4-dimethylaminopyridine (212 mg, 1.74 mmol) were added neat to a stirred solution of ester **INT-2D** (1.70 g, 6.96 mmol) and chloropyrimidine **INT-1B** (1.45 g, 6.96 mmol) in dry dimethyl sulfoxide (25 mL) and the reaction mixture was heated to 100°C for 2 h. The reaction mixture was cooled to room temperature and allowed to stir overnight. The mixture was partitioned between water (200 mL) and ethyl acetate (200 mL). The aqueous phase was extracted with ethyl acetate (2x 100 mL). The combined organic layers were washed with brine (3x 75 mL), dried on Na₂SO₄ and evaporated. Purification by flash chromatography (silica, 0% -> 50% ethyl acetate in heptane) gave indazole **INT-2E** (2.18 g, 5.24 mmol, 75%) as a pale yellow solid. LCMS: calculated for [M+H]⁺: 417, found: 417.

Trimethylaluminum, (2M in toluene, 0.90 mL, 1.80 mmol) was added slowly (gas-formation!) to a stirred solution of indazole **INT-2E** (0.30 g, 0.72 mmol) and morpholine (0.069 mL, 0.79 mmol) in dry toluene (4.0 mL) at room temperature. After the gas evolution had subsided, the reaction vial was closed and heated at 85°C for 2 h. The reaction mixture was cooled to room temperature and partitioned between saturated aqueous NaHCO₃ (25 mL) and ethyl acetate (25 mL). The aqueous phase was extracted with ethyl acetate (25 mL). The combined organic layers were washed with brine (20 mL), dried on Na₂SO₄ and evaporated. Purification by flash chromatography (silica, 0% -> 50% ethyl acetate in heptane) gave final compound **2** (106 mg, 0.23 mmol, 31%) as a pale solid. LCMS: calculated for [M+H]⁺: 472, found: 472.


¹H NMR (400 MHz, DMSO-*d*₆) δ 9.28 (d, *J* = 1.2 Hz, 2H), 8.88 (s, 1H), 8.06 (d, *J* = 8.3 Hz, 1H), 7.81 (td, *J* = 7.9, 1.6 Hz, 1H), 7.64 – 7.54 (m, 2H), 7.52 – 7.40 (m, 2H), 3.81 – 3.36 (m, 8H).

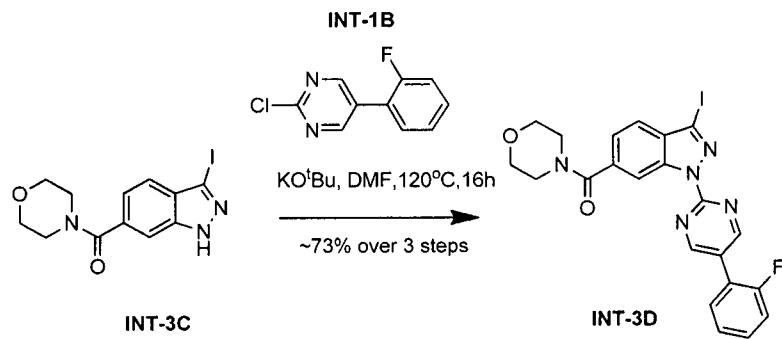
Compound No. 3: 1-(5-(2-Fluorophenyl)pyrimidin-2-yl)-6-(morpholine-4-carbonyl)-1H-indazole-3-carboxamide (3)

To a stirred solution of compound methyl 1H-indazole-6-carboxylate (1.0 g, 5.676 mmol, 1 eq) in tetrahydrofuran/methanol/H₂O (1:1:1; 10mL) was added LiOH (476 mg, 11.353 mmol, 2 eq) at room temperature then stirred for 16h. The solvents were evaporated, residue diluted with water (10mL) and acidified with 2N HCl (pH~4-5) to get solid precipitate, filtered and dried to get compound **2** (900 mg, ~97%) as off white solid. TLC system: methanol/dichloromethane (1:9), R_f: 0.1.

¹H NMR (300 MHz, DMSO-d₆): δ 13.36 (s, 1H), 13.04 (s, 1H), 8.24 – 8.08 (m, 2H), 7.85 (dd, J = 8.5, 0.9 Hz, 1H), 7.67 (dd, J = 8.4, 1.3 Hz, 1H).

10 To a stirred solution of compound **3A** (900 mg, 5.555 mmol, 1.0 eq) in dimethylformamide (30 mL) was added 1-hydroxy-7-azabenzotriazole (37 mg, 0.277 mmol, 0.05 eq), N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (1.1 g, 6.11 mmol, 1.1 eq) followed by morpholine (0.6mL, 6.666 mmol, 1.2 eq), tetraethylammonium (1.5 mL, 11.11 mmol, 2.0 eq) and stirred at room temperature for 16h. The RM was diluted with water (50 mL), extracted with ethyl acetate (2 X 50 mL), washed with brine (50 mL), dried over anhydrous Na₂SO₄ and evaporated to get compound **INT-3B** (1 g, crude) as colorless liquid. The compound **3** used for next step without purification. TLC system: methanol/dichloromethane (1:9), R_f: 0.4.

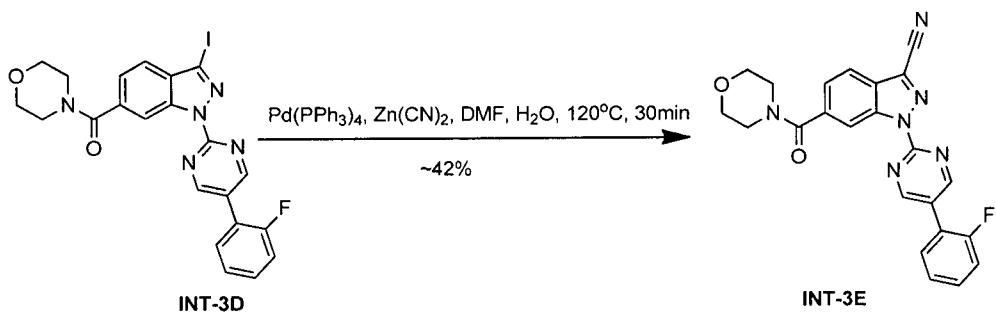
¹H NMR: (300 MHz, DMSO-d₆): δ 13.24 (s, 1H), 8.13 (s, 1H), 7.83 (dd, J = 8.2, 1.2 Hz, 1H), 7.56 (s, 1H), 7.12 (dd, J = 8.3, 1.3 Hz, 1H), 3.71 – 3.35 (m, 8H).



20 To a stirred solution of compound **INT-3B** (800 mg, 3.463 mmol, 1.0 eq) in dimethylformamide (10 mL) was added KOH (672 mg, 12.01 mmol, 3.47 eq) and iodine (1.7 g, 6.92 mmol, 2.0 eq). The reaction mixture was stirred at room temperature for 1h at RT. The reaction mixture was then quenched with hypo (20mL) solution and extract with ethyl acetate (2X20 mL), washed with water (2 X20 mL), brine solution (20 mL), dried over anhydrous Na₂SO₄, and evaporated to get compound **INT-3C** (800 mg,

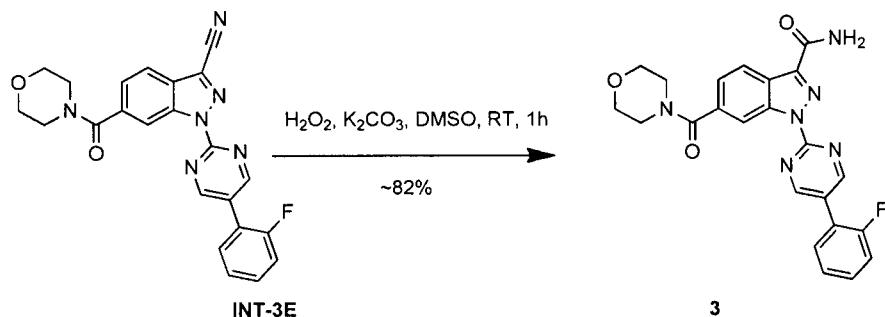
- 57 -

crude) as colorless liquid that is used for next step without purification. TLC system: methanol/dichloromethane (0.5:0.9); R_f : 0.4.


^1H NMR: (400 MHz, DMSO-d₆) δ 13.68 (s, 1H), 7.95 (s, 1H), 7.58 (s, 1H), 7.50 (dd, 8.4, 1.2 Hz, 1H), 7.20 (dd, J = 8.3, 1.3 Hz, 1H), 3.60 (s, 8H).

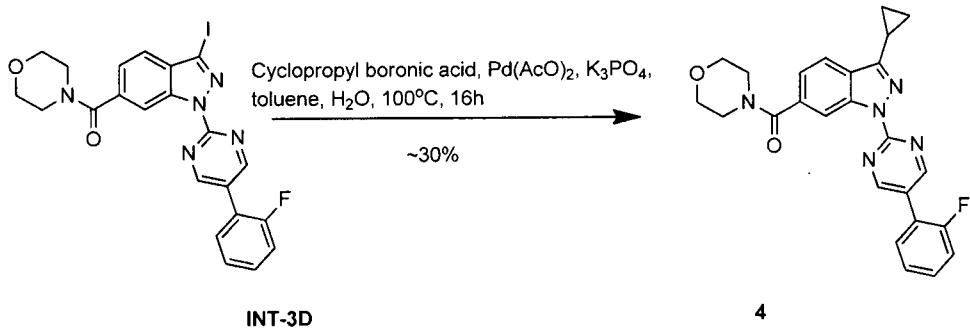
5

To a stirred solution of compound INT-3C (800 mg, 2.240 mmol, 1.0 eq) in dimethylformamide (15 mL) was added potassium *tert*-butoxide (377 mg, 3.361 mmol, 1.5 eq) and compound INT-1B (605 mg, 2.913 mmol, 1.5 eq). The reaction mixture was stirred at 120°C for 16h. The reaction mixture was diluted with ethyl acetate/H₂O (20/20 mL), precipitate formed, filtered and washed with ethyl acetate to get compound 10 INT-3D (800 mg ~73% over 3 steps) as pure off white solid. TLC system: ethyl acetate/petroleum ether (7:3); R_f : 0.4.


^1H NMR: (300 MHz, DMSO-d₆) δ 9.19 (s, 2H), 8.76 (s, 1H), 7.84 – 7.75 (m, 1H), 7.69 (d, J = 8.3 Hz, 1H), 7.56-7.50 (m, 1H), 7.47 – 7.38 (m, 3H), 3.69-3.50 (m, 8H).

15 To a stirred solution of compound INT-3D (300 mg, 0.567 mmol, 1.0 eq) in dimethylformamide (5 mL) at room temperature under inert atmosphere was added Zn(CN)₂ (73 mg, 0.623 mmol, 1.1 eq) and Pd(PPh₃)₄ (327 mg, 0.283 mmol, 0.5 eq). The reaction mixture was degassed for 15 min then irradiated with microwave for 30 min at 120°C. The reaction mixture was diluted with water (20 mL) and extracted with ethyl acetate (2x20 mL), washed with brine (20 mL), dried (Na₂SO₄) and evaporated. The crude was 20 purified by preparative silica gel TLC using 2% acetone in dichloromethane as eluent to get compound INT-3E (100mg, ~42%) as off white solid. TLC system: methanol/dichloromethane (1:9), R_f : 0.45.

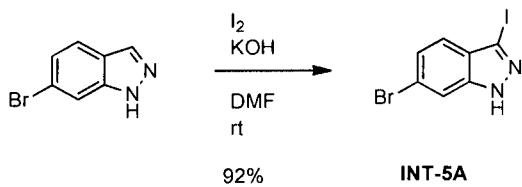
- 58 -


¹H NMR: (300 MHz, DMSO-d₆): δ 9.30 (d, J = 1.4 Hz, 2H), 8.87 (s, 1H), 8.14 (d, J = 8.3 Hz, 1H), 7.84–7.79 (m, 1H), 7.67–7.55 (m, 2H), 7.50–7.41 (m, 2H), 3.69 (s, 8H).

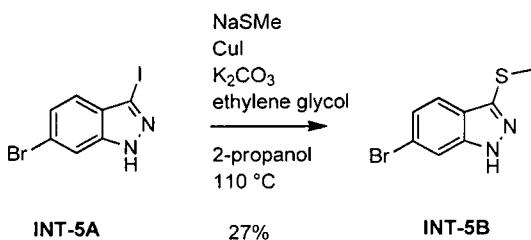
To a stirred solution of compound **INT-3E** (100 mg, 0.235 mmol, 1.0eq) in dimethyl sulfoxide (5 mL), was added K_2CO_3 (8 mg, 0.058 mmol, 0.25 eq) and 30% H_2O_2 (0.04 mL, 0.042 mmol, 0.18 eq) at 0°C and stirred for 1h at room temperature. The reaction mixture was diluted water (20 mL) to get solid precipitate. Solid was filtered and washed with petroleum ether (2mL) to get **3** (85 mg, ~82%) as white solid. TLC system: ethyl acetate/petroleum ether (1:1), R_f : 0.2.

¹H NMR (300 MHz, DMSO-d₆): δ 9.25 (s, 2H), 8.81 (s, 1H), 8.39 (d, J = 8.3 Hz, 1H), 8.09 (s, 1H), 7.86 – 7.75 (m, 2H), 7.59–7.54 (m, 1H), 7.52 – 7.39 (m, 3H), 3.69–3.53 (m, 8H).

Compound No. 4: (3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone (4)

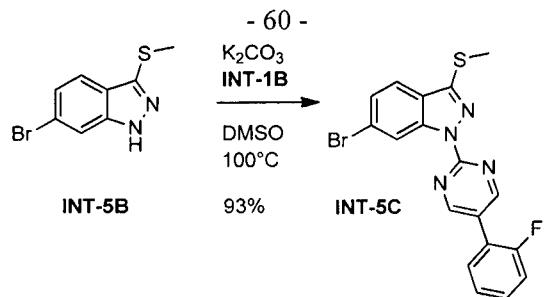

To a stirred solution of compound **INT-3D** (200 mg, 0.378 mmol, 1.0 eq) in toluene/H₂O (5/1 mL) at room temperature under inert atmosphere was added K₃PO₄ (320 mg, 1.51 mmol, 4.0 eq), and Pd (PPh₃)₄ (47 mg, 0.037 mmol, 0.1 eq) the reaction mixture was degassed for 15 min then stirred at 100°C for 16h. The reaction mixture was diluted with water (20 mL) and extracted with ethyl acetate (2x20 mL), washed with brine (20 mL), dried (Na₂SO₄) and evaporated. The crude was purified by silica gel preparative TLC using 2% acetone in dichloromethane as eluent to get **4** (50 mg, ~30%) as white solid. TLC system: methanol/dichloromethane (1:9), R_f: 0.4.

- 59 -

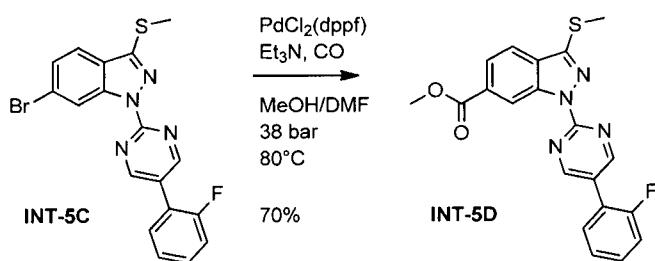

¹H NMR (400 MHz, DMSO-d₆): δ 9.14 (d, J = 1.5 Hz, 2H), 8.74 (s, 1H), 8.06 (d, J = 8.2 Hz, 1H), 7.78-7.73 (m, 1H), 7.56 – 7.51 (m, 1H), 7.48 – 7.34 (m, 3H), 3.70-3.51 (m, 8H), 2.53-2.47 (m, 1H), 1.20 – 1.10 (m, 4H).

Compound No. 5: (1-(5-(2-Fluorophenyl)pyrimidin-2-yl)-3-(methylsulfonyl)-1H-indazol-6-yl)(morpholino)methanone (5)

Analytical method 1

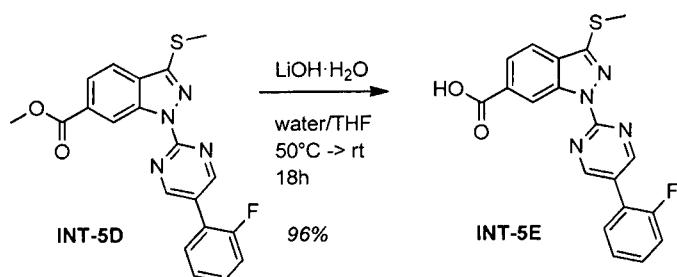


To a solution of 6-bromo-1H-indazole (10 g, 50.8 mmol) in dry dimethylformamide (10 mL) was added I₂ (28.3 g, 112 mmol) and KOH (6.83 g, 122 mmol) and the reaction mixture was stirred at room temperature for 3h. The reaction mixture was partitioned between ethyl acetate and a 1:1 mixture of aqueous saturated NaCl and saturated Na₂S₂O₃. The aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with water and brine, dried (Na₂SO₄) and concentrated under reduced pressure to give iodoindazole **INT-5A** (15.0 g, 46.4 mmol, 92%) as a solid. LCMS: calculated for [M+H]⁺: 323/325, found: 323/325.



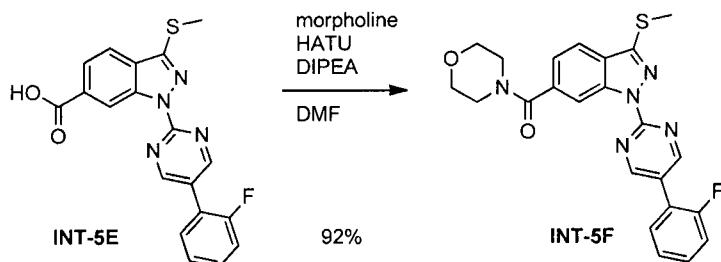
15

To a mixture of iodo-indazole **INT-5A** (11.3 g, 35.0 mmol), CuI (1.0 g, 2.25 mmol) and K_2CO_3 (9.67 g, 70.0 mmol) in isopropyl alcohol (300 mL) was added NaSMe (4.91 g, 70.0 mmol) and ethylene glycol (3.9 mL, 70.0 mmol) in an autoclave. The reaction mixture was heated to 110°C for 18h. Water and ethyl acetate were added. The mixture was filtered through Celite. The layers were separated and the organic layer was dried (Na_2SO_4), filtered and concentrated under reduced pressure. The above procedure was repeated with this residue. Purification by column chromatography (silica, 0% \rightarrow 60% ethyl acetate in heptane) gave a 1:1 mixture of starting material and product (60%) and starting material (18%). The above procedure was repeated for the mixture and the product was purified by column chromatography (silica, 0% \rightarrow 60% ethyl acetate in heptane) to give indazole **INT-5B** (2.3 g, 9.46 mmol, 27%) as an off-white solid. LCMS: calculated for $[M+H]^+$: 243/245, found: 243/245.

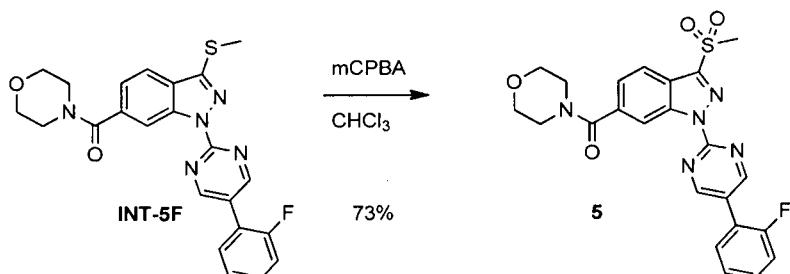


To a solution of indazole **INT-5B** (2.3 g, 9.46 mmol) and pyrimidine **INT-1B** (1.97 g, 9.46 mmol) in dry dimethyl sulfoxide (30 mL) was added K_2CO_3 (3.92 g, 28.4 mmol) and the mixture was heated at 100°C for 18h. The reaction mixture was cooled to room temperature, water and ethyl acetate were added and the layers were separated. The aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with water and brine, dried (Na_2SO_4) and concentrated under reduced pressure to give indazole **INT-5C** (3.65 g, 8.80 mmol, 93%) as a solid. LCMS: calculated for $[\text{M}+\text{H}]^+$: 415/417, found: 415/417.

10 A solution of indazole **INT-5C** (3.65 g, 8.80 mmol) and triethylamine (2.95 mL, 21.2 mmol) in a mixture of dry dimethylformamide (160 mL)/methanol (80 mL) in an autoclave was flushed thoroughly with nitrogen for 10 minutes. $\text{PdCl}_2(\text{dppf})$ (1.06 g, 1.45 mmol) was added, the autoclave was closed and pressurised to 33 bar with CO-gas. The mixture was stirred at 80°C for 3 days (38 bar CO-pressure). The mixture was concentrated to a smaller volume under reduced pressure. The residue was diluted with ethyl acetate and filtered through Celite. The filtrate was washed with water and brine, dried over Na_2SO_4 and evaporated. Purification by column chromatography (silica, 0% -> 10% ethyl acetate in dichloromethane) gave methylester **INT-5D** (2.43 g, 6.16 mmol, 70%). LCMS: calculated for $[\text{M}+\text{H}]^+$: 395, found: 395.


15

To a solution of methylester **INT-5D** (2.43 g, 6.16 mmol) in tetrahydrofuran (80 mL) was added a solution of LiOH·H₂O (1.03 g, 24.6 mmol) in H₂O (40 mL) and the reaction mixture was heated to 50°C for 2h, followed by room temperature for 18h. The organic solvent was evaporated and the aqueous

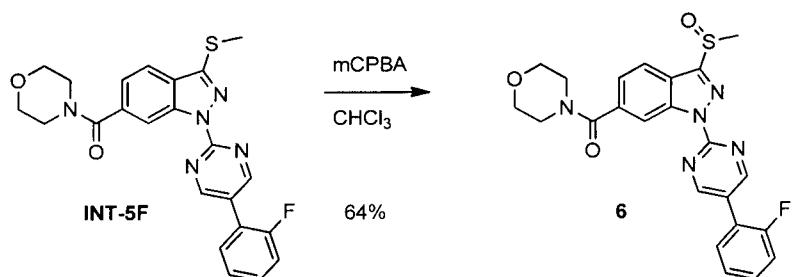

- 61 -

residue was acidified to pH~3 by addition of 1N aqueous HCl. The aqueous layer was extracted with ethyl acetate (3x). The combined organic layers were dried over Na_2SO_4 and evaporated to give carboxylic acid **INT-5E** (2.26 g, 5.94 mmol, 96%) as an off-white solid. LCMS: calculated for $[\text{M}+\text{H}]^+$: 381, found: 381.

To a suspension of carboxylic acid **INT-5E** (1.0 g, 2.63 mmol) in dry dimethylformamide (40 mL) was added 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (1.10 g, 2.89 mmol), followed by morpholine (0.28 mL, 3.15 mmol) and N,N-diisopropylethylamine (1.15 mL, 6.57 mmol) and the reaction mixture was stirred at room temperature for 18h. The reaction 10 mixture was partitioned between ethyl acetate and water/brine (1/1). The layers were separated and the aqueous layer was extracted with ethyl acetate (2x). The combined organic layers were washed with water (2x) and brine, dried over Na_2SO_4 and evaporated. Purification by column chromatography (silica, 0% \rightarrow 5% methanol in dichloromethane) gave amide **INT-5F** (1.09 g, 2.43 mmol, 92%) as a white foam. LCMS: calculated for $[\text{M}+\text{H}]^+$: 450, found: 450.

15

To a solution of indazole **INT-5F** (150 mg, 0.33 mmol) in CHCl_3 (4 mL) was added 3-chloroperbenzoic acid (70-75%, 192 mg, 0.83 mmol) and the reaction mixture was stirred at 50°C for 5 h. The reaction mixture was quenched by addition of saturated aqueous Na_2CO_3 (4 mL), the biphasic mixture was shaken and filtered over a phase separator. The organic layer was concentrated *in vacuo* to give final compound **5** (117 mg, 0.24 mmol, 73%) as a white solid. LCMS: calculated for $[\text{M}+\text{H}]^+$: 482, found: 482.

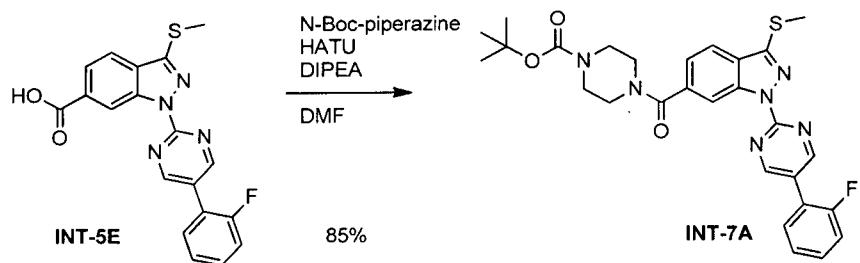

¹H NMR (400 MHz, $\text{DMSO}-d_6$) δ 9.29 (d, J = 1.1 Hz, 2H), 8.86 (s, 1H), 8.21 (d, J = 8.3 Hz, 1H), 7.82 (td, J = 7.9, 1.6 Hz, 1H), 7.65 – 7.55 (m, 2H), 7.52 – 7.41 (m, 2H), 3.83 – 3.64 (m, 4H), 3.61 – 3.51 (m, 2H), 3.56 (s, 3H), 3.42 – 3.36 (m, 2H).

Compound No. 6: (1-(5-(2-Fluorophenyl)pyrimidin-2-yl)-3-(methylsulfinyl)-1H-indazol-6-

25 yl)(morpholino)methanone (6)

- 62 -

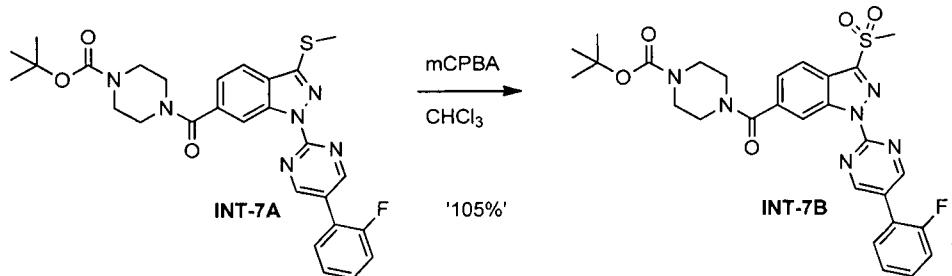
Analytical method 1



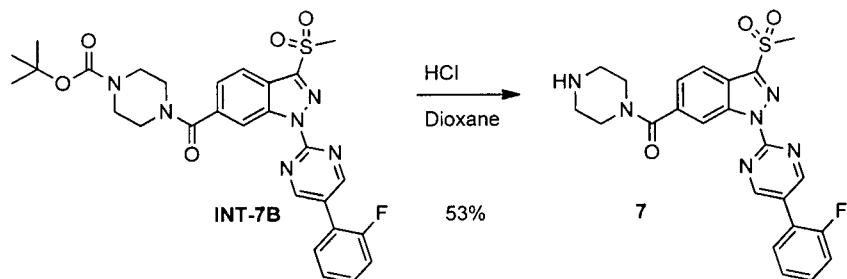
A solution of indazole **INT-5F** (150 mg, 0.33 mmol) in CHCl_3 (4 mL) was cooled to 0°C. 3-Chloroperbenzoic acid (70-75%, 92 mg, 0.40 mmol) was added and the reaction mixture was stirred at 5 0°C for 1h. The reaction mixture was quenched by addition of saturated aqueous Na_2CO_3 (4 mL), the biphasic mixture was shaken and filtered over a phase separator. The organic layer was concentrated *in vacuo*. Purification by column chromatography (silica, 0% -> 6% methanol in dichloromethane), followed by prep-HPLC gave final compound **6** (100 mg, 0.22 mmol, 64%) as a white solid. LCMS: calculated for $[\text{M}+\text{H}]^+$: 466, found: 466.

10 ^1H NMR (400 MHz, $\text{DMSO}-d_6$) δ 9.25 (d, J = 0.8 Hz, 2H), 8.85 (s, 1H), 8.33 (d, J = 8.3 Hz, 1H), 7.80 (dd, J = 8.3, 0.9 Hz, 1H), 7.62 – 7.51 (m, 2H), 7.51 – 7.40 (m, 2H), 3.77 – 3.64 (m, 4H), 3.61 – 3.52 (m, 2H), 3.44 – 3.35 (m, 2H), 3.23 (s, 3H).

Compound No. 7: (1-(5-(2-Fluorophenyl)pyrimidin-2-yl)-3-(methylsulfonyl)-1H-indazol-6-yl)(piperazin-1-yl)methanone (7)


15 Analytical method 1

To a suspension of carboxylic acid **INT-5E** (1.25 g, 3.29 mmol) in dry dimethylformamide (45 mL) was added 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (1.37 g, 3.61 mmol), followed by N-Boc-piperazine (734 mg, 3.94 mmol) and N,N-diisopropylethylamine (1.44 mL, 8.22 mmol) and the reaction mixture was stirred at room temperature for 18h. The reaction mixture was partitioned between dichloromethane and water. The layers were separated and the aqueous layer was extracted with dichloromethane (2x). The combined organic layers were washed with brine, dried over Na_2SO_4 and evaporated. Purification by column chromatography (silica, 0% -> 3% methanol

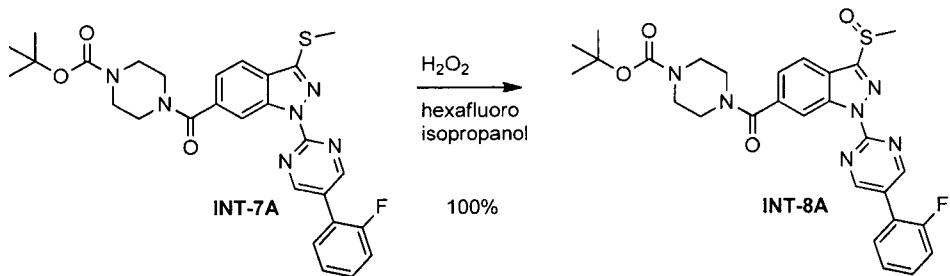

- 63 -

in dichloromethane) gave amide **INT-7A** (1.54 g, 2.81 mmol, 85%) as a white foam. LCMS: calculated for $[M+H]^+$: 549, found: 549.

To a solution of indazole **INT-7A** (500 mg, 0.91 mmol) in CHCl₃ (14 mL) was added m-CPBA (70-75%, 524 mg, 2.28 mmol) and the reaction mixture was stirred at 50°C for 18 h. The reaction mixture was quenched by addition of saturated aqueous Na₂CO₃ (4 mL), the biphasic mixture was shaken and filtered over a phase separator. The organic layer was concentrated *in vacuo* to give sulfone **INT-7B** (557 mg, 0.96 mmol, '105%') as a white solid. LCMS: calculated for $[M+H]^+$: 581, found: 581.

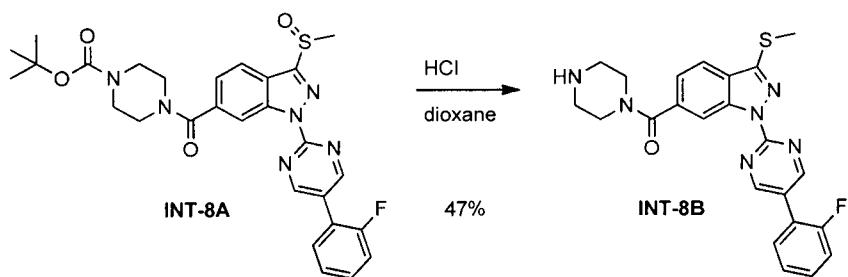
Analytical method 1

10

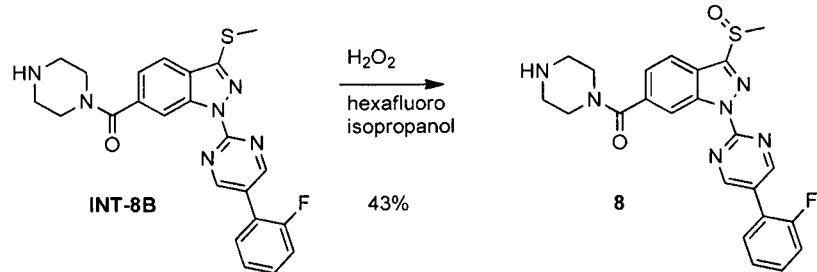

To a suspension of indazole **INT-7B** (527 mg, 0.91 mmol) in dioxane (15 mL) was added HCl (4M in dioxane, 2.39 mL, 9.58 mmol) and the reaction mixture was stirred at room temperature for 72h. The reaction mixture was diluted with dichloromethane and quenched with aqueous NaHCO₃. The layers were separated and the water layer was extracted with dichloromethane (2x). The combined organic layers were washed with brine, dried over Na₂SO₄ and evaporated. Purification by column chromatography (silica, 0% -> 7% methanol in dichloromethane) gave final compound **7** (232 mg, 0.48 mmol, 53%) as a white solid. LCMS: calculated for $[M+H]^+$: 481, found: 481.

¹H NMR (400 MHz, DMSO-*d*₆) δ 9.29 (d, *J* = 1.1 Hz, 2H), 8.82 (s, 1H), 8.20 (d, *J* = 8.3 Hz, 1H), 7.82 (dt, *J* = 7.9, 1.6 Hz, 1H), 7.65 – 7.53 (m, 2H), 7.53 – 7.38 (m, 2H), 3.62 (m, 2H), 3.56 (s, 3H), 3.35 – 3.25 (m, 2H + NH), 2.88 – 2.72 (m, 2H), 2.72 – 2.57 (m, 2H).

Compound No. 8: (1-(5-(2-Fluorophenyl)pyrimidin-2-yl)-3-(methylsulfinyl)-1H-indazol-6-yl)(piperazin-1-yl)methanone (8)


Analytical method 1

- 64 -


To a solution of indazole **INT-7A** (500 mg, 0.91 mmol) in hexafluoro-isopropanol (5 mL) was added hydrogen peroxide (30% (w/w) in water, 0.11 mL, 1.09 mmol) and the reaction mixture was stirred at room temperature for 18h. The reaction mixture was partitioned between ethyl acetate and water. The 5 layers were separated and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over Na_2SO_4 and evaporated to give sulfoxide **INT-8A** (513 mg, 0.91 mmol, 100%) as a yellow oil. LCMS: calculated for $[\text{M}+\text{H}]^+$: 565, found: 565.

Analytical method 1

10 To a solution of indazole **INT-8A** (500 mg, 0.91 mmol) in dioxane (15 mL) / methanol (2 mL) was added HCl (4M in dioxane, 2.21 mL, 8.86 mmol) and the reaction mixture was stirred at room temperature for 72h. The reaction mixture was diluted with dichloromethane and quenched with aqueous NaHCO_3 . The layers were separated and the aqueous layer was extracted with dichloromethane (2x). The combined organic layers were washed with brine, dried over Na_2SO_4 and evaporated. Purification by column 15 chromatography (silica, 0% \rightarrow 7% methanol in dichloromethane) gave sulfide **INT-8B** (190 mg, 0.42 mmol, 47%) as a white solid. LCMS: calculated for $[\text{M}+\text{H}]^+$: 449, found: 449.

Analytical method 1

- 65 -

To a solution of indazole **INT-8B** (190 mg, 0.42 mmol) in hexafluoro-isopropanol (3 mL) was added hydrogen peroxide (30% (w/w) in water, 0.052 mL, 0.51 mmol) and the reaction mixture was stirred at room temperature for 18h. The reaction mixture was concentrated *in vacuo*. Purification by column chromatography (silica, 0% -> 7% methanol in dichloromethane) afforded final compound **8** (86 mg, 0.19 mmol, 43%) as a white solid. LCMS: calculated for $[M+H]^+$: 465, found: 465.

¹H NMR (400 MHz, DMSO-*d*₆) δ 9.25 (s, 2H), 8.82 (s, 1H), 8.32 (d, *J* = 8.3 Hz, 1H), 7.80 (dt, *J* = 8.0, 1.5 Hz, 1H), 7.64 – 7.54 (m, 1H), 7.53 – 7.37 (m, 3H), 3.77 – 3.52 (m, 2H), 3.32 – 3.24 (m, 2H + NH), 3.23 (s, 3H), 2.90 – 2.73 (m, 2H), 2.73 – 2.59 (m, 2H).

Compound No. 9: (3-(Methylsulfinyl)-1-(5-phenylpyrimidin-2-yl)-1H-indazol-6-yl)(piperazin-1-yl)methanone

9a) Methyl 3-(methylthio)-1-(5-phenylpyrimidin-2-yl)-1H-indazole-6-carboxylate

To a solution of methyl 3-(methylthio)-1H-indazole-6-carboxylate (2.2 g, 9.90 mmol) in dry DMSO (30 mL) were added 2-chloro-5-phenylpyrimidine (1.89 g, 9.90 mmol) and potassium carbonate (4.10 g, 29.7 mmol) and the mixture was heated to 100°C for 18 h. After cooling to room temperature, the reaction mixture was diluted with warm ethyl acetate and water. The layers were separated and the aqueous phase was extracted first with warm ethyl acetate and then with dichloromethane. The combined ethyl acetate layers were washed with water and brine, and dried over sodium sulfate. The dichloromethane layer was washed with brine, dried over sodium sulfate, combined with the ethyl acetate fraction and evaporated. Purification by column chromatography [silica, dichloromethane with 0 to 3% methanol]. Yellow solid.

9b) 3-(Methylthio)-1-(5-phenylpyrimidin-2-yl)-1H-indazole-6-carboxylic acid

To a solution of methyl ester 9a) (3.25 g, 8.63 mmol) in THF (100 mL) was added lithium hydroxide hydrate (1.45 g, 34.5 mmol) in water (50 mL). The reaction mixture was stirred at 50°C for 1 h, and then at room temperature for 18 h. The reaction mixture was acidified to pH~6 by addition of 1N aqueous hydrogen chloride solution upon which the product precipitated from the solution. The product was collected by filtration and stripped three times with toluene. White solid. Yield: 2.98 g (95% of theory).
 25 LCMS: calculated for $[M+H]^+$: 363, found: 363.

9c) Tert-butyl 4-(3-(methylthio)-1-(5-phenylpyrimidin-2-yl)-1H-indazole-6-carbonyl)piperazine-1-carboxylate

30 To a suspension of carboxylic acid 9b) (1.95 g, 5.38 mmol) in dry DMF (80 mL) was added HATU (2.25 g, 5.92 mmol), followed by N-Boc-piperazine (1.20 g, 6.46 mmol) and diisopropylethylamine (2.35 mL, 13.5 mmol). The reaction mixture was stirred at room temperature for 18 h and then diluted with dichloromethane and water/brine (1/1). The layers were separated and the aqueous layer was extracted

- 66 -

with dichloromethane (2x). The combined organic layers were washed with water (2x), dried over sodium sulfate and evaporated. Purification by column chromatography [silica gel, dichloromethane with 0 to 5% methanol]. White foam. Yield: 2.65 g (93% of theory). LCMS: calculated for $[M+H]^+$: 531, found: 531

9d) (3-(Methylthio)-1-(5-phenylpyrimidin-2-yl)-1H-indazol-6-yl)(piperazin-1-yl)methanone

5 Hydrogen chloride solution (4M in dioxane, 4.71 mL, 18.9 mmol) was added to the indazole 9c) (1.0 g, 1.88 mmol) dissolved in dioxane (30 mL). The reaction mixture was stirred at room temperature for 18 h, and then for 4 h at 50°C. The mixture was basified with sodium hydrogen carbonate and extracted with dichloromethane (3x). The combined organic layers were washed with sodium hydrogen carbonate, dried over sodium sulfate and evaporated. White solid. Yield: 865 mg. LCMS: calculated for $[M+H]^+$: 431, found: 431.

10 9e) (3-(Methylsulfinyl)-1-(5-phenylpyrimidin-2-yl)-1H-indazol-6-yl)(piperazin-1-yl)methanone

Hydrogen peroxide (30% w/v in water, 0.25 mL, 2.39 mmol) was added to a solution of the thioether 9d) (860 mg, 1.99 mmol) in hexafluoroisopropanol (15 mL) and the reaction mixture was stirred at room temperature for 18 h. The mixture was then concentrated in vacuo and the crude product was purified by 15 column chromatography [silica gel, dichloromethane with 2 to 8% methanol]. Trituration with diethyl ether afforded the product as white solid. Yield: 416 mg (46% of theory). LCMS: calculated for $[M+H]^+$: 447, found: 447.

20 ^1H NMR (400 MHz, DMSO-d6, δ ppm): 9.36 (s, 2H), 8.82 (s, 1H), 8.32 (d, J = 8.3 Hz, 1H), 7.94-7.86 (m, 2H), 7.63-7.54 (m, 2H), 7.54-7.47 (m, 2H), 3.64 (bs, 2H), 3.31 (bs, 2H + NH), 3.23 (s, 3H), 2.83 (bs, 2H), 2.69 (bs, 2H).

Compound No. 10: (3-(Methylsulfonyl)-1-(5-phenylpyrimidin-2-yl)-1H-indazol-6-yl)(piperazin-1-yl)methanone

The target compound was obtained from tert-butyl 4-(3-(methylthio)-1-(5-phenylpyrimidin-2-yl)-1H-indazole-6-carbonyl)piperazine-1-carboxylat in analogy to the procedures of the last two reaction steps 25 towards Compound No. 7. White solid. Yield: 616 mg. LCMS: calculated for $[M+H]^+$: 463, found: 463.

^1H NMR (400 MHz, DMSO-d6, δ ppm): 9.40 (s, 2H), 8.84 (s, 1H), 8.20 (d, J = 8.3 Hz, 1H), 7.94-7.90 (m, 2H), 7.61-7.46 (m, 4H), 3.68 (bs, 2H), 3.56 (s, 3H), 3.34 (bs, 2H + NH), 2.89 (bs, 2H), 2.75 (bs, 2H).

Compound No. 11: (3-(Methylsulfinyl)-1-(5-phenylpyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone

30 Synthesized from 3-(methylthio)-1-(5-phenylpyrimidin-2-yl)-1H-indazole-6-carboxylic acid in two steps analogously to the procedures 9c) and 9d). Trituration with acetonitril provided the final product as white solid. Yield: 139 mg. LCMS: calculated for $[M+H]^+$: 448, found: 448.

- 67 -

1H NMR (400 MHz, DMSO-d6, δ ppm): 9.36 (s, 2H), 8.85 (s, 1H), 8.32 (d, J = 8.3 Hz, 1H), 7.91 (d, J = 7.2 Hz, 2H), 7.59 (t, J = 7.5 Hz, 2H), 7.56-7.46 (m, 2H), 3.84-3.9 (m, 6H), 3.49-3.37 (m, 2H), 3.23 (s, 3H).

5 Compound No. 12: (3-(Methylsulfonyl)-1-(5-phenylpyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone

To a solution of (3-(methylthio)-1-(5-phenylpyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone (200 mg, 0.46 mmol) in chloroform (5 mL) was added m-chloroperoxybenzoic acid (267 mg, 1.16 mmol) and the reaction mixture was stirred at 50°C for 18 h. The mixture was quenched with sodium hydrogen carbonate and extracted with dichloromethane. The combined organic layers were washed with a 10 saturated solution of sodium hydrogen carbonate, dried over sodium sulfate and evaporated. Trituration with warm ethyl acetate provided the target compound as a white solid. Yield: 154 mg (71% of theory). LCMS: calculated for $[M+H]^+$: 464, found: 464.

1H NMR (400 MHz, DMSO-d6, δ ppm): 9.41 (s, 2H), 8.86 (s, 1H), 8.21 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 7.4 Hz, 2H), 7.61 (m, 3H), 7.53 (t, J = 7.3 Hz, 1H), 3.82-3.48 (m, 6H), 3.56 (s, 3H), 3.46-3.36 (m, 2H).

15 Compound No. 13: ((R)-3-Aminopyrrolidin-1-yl)(1-(5-(2-fluorophenyl)pyrimidin-2-yl)-3-(methylsulfinyl)-1H-indazol-6-yl)methanone

Prepared from 3-(methylthio)-1-(5-phenylpyrimidin-2-yl)-1H-indazole-6-carboxylic acid and (R)-tert-butyl pyrrolidin-3-ylcarbamate in three steps following the procedures of compound No. 9. Slightly yellow solid. Yield: 460 mg. LCMS calculated for $[M+H]^+$: 465, found: 465.

20 1H NMR (400 MHz, DMSO-d6, δ ppm): 9.25 (s, 2H), 8.92 (d, J = 3.3 Hz, 1H), 8.31 (d, J = 8.0 Hz, 1H), 7.85-7.75 (m, 1H), 7.67-7.52 (m, 2H), 7.51-7.38 (m, 2H), 3.75-3.39 (m, 4H), 3.28-3.03 (m, 1H), 3.22 (s, 3H), 2.09-1.79 (m, 3H), 1.73-1.56 (m, 1H).

Compound No. 14: (3-Cyclopropyl-1-(5-phenylpyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone

25 14a) Methyl 3-iodo-1H-indazole-6-carboxylate

Potassium hydroxide (11 g, 19.69 mmol, 3.47 eq) and iodine (28.8 g, 11.35 mmol, 2.0 eq) were added to a stirred solution of methyl 1H-indazole-6-carboxylate (10 g, 5.68 mmol, 1.0 eq) in DMF (100 mL). Stirring was continued for 1 h at room temperature and the reaction mixture was then quenched with aqueous sodium thiosulfate solution (20%, 20 mL). The precipitating solid was filtered off, washed with 30 water (20 mL) and dried. The target compound was obtained as white solid that was used within the next step without further purification. Yield: 15 g

- 68 -

1H NMR (400 MHz, DMSO-d6, δ ppm): 13.86 (s, 1H), 8.16 (s, 1H), 7.75 (d, J = 8.6 Hz, 1H), 7.56 (d, J = 8.6 Hz, 1H), 3.90 (s, 3H).

14b) 1-tert-Butyl 6-methyl 3-iodo-1H-indazole-1,6-dicarboxylate

Sodium hydrogen carbonate (8.3 g, 99.33 mmol, 2.0 eq) and di-tert-butyl dicarbonate (16 mL, 74.50 mmol, 1.5 eq) were added to a stirred solution of methyl 3-iodo-1H-indazole-6-carboxylate (15 g, 49.66 mmol, 1.0 eq) in THF (150 mL) and the mixture was stirred at 60°C for 2 h. The solvent was distilled off and the residue diluted with water (40 mL). The precipitate was filtered off, washed with water (20 mL) and dried. The isolated white solid was used without purification in the next step. Yield: 18 g

1H NMR (400 MHz, DMSO-d6, δ ppm): 8.71 (s, 1H), 7.99 (d, J = 8.4 Hz, 1H), 7.70 (dd, J = 8.4 Hz, 1H), 3.93 (s, 3H), 1.67 (s, 9H).

14c) 1-tert-Butyl 6-methyl 3-cyclopropyl-1H-indazole-1,6-dicarboxylate

Potassium phosphate (10.5 g, 49.72 mmol, 4.0 eq), cyclopropylboronic acid (2.1 g, 24.87 mmol, 2.0 eq) and tetrakis(triphenylphosphine)palladium(0) (1.43 g, 1.24 mmol, 0.1 eq) were added under an argon atmosphere to a stirred solution of 1-tert-butyl 6-methyl 3-iodo-1H-indazole-1,6-dicarboxylate (5.0 g, 12.43 mmol, 1.0 eq) in toluene/water (9:1; 50 mL) at room temperature. The mixture was stirred at 100°C for 16 h, then diluted with water (20 mL) and extracted with ethyl acetate (2x20 mL). The combined organic layers were washed with brine (20 mL), dried (Na_2SO_4) and evaporated. The remnant was finally purified by silica gel column chromatography [100-200 mesh; pet ether with 5% ethyl acetate]. White solid. Yield: 2.8 g (71% of theory)

1H NMR (400 MHz, DMSO-d6, δ ppm): 8.68 (s, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 8.4 Hz, 1H), 3.90 (s, 3H), 2.50-2.40 (m, 1H), 1.25 (s, 9H), 1.12-1.06 (m, 4H).

14d) Methyl 3-cyclopropyl-1H-indazole-6-carboxylate

1-Tert-butyl 6-methyl 3-cyclopropyl-1H-indazole-1,6-dicarboxylate (1.2 g, 3.79 mmol, 1.0 eq) and TFA (0.12 mL) in dichloromethane (20 mL) were stirred at room temperature for 1 h. The volatiles were evaporated, water (10 mL) was added and the pH value was adjusted to ~10-11 with saturated sodium hydrogen carbonate solution. The mixture was extracted with dichloromethane (2x20 mL), dried (Na_2SO_4) and evaporated. Yellow solid. Yield: 800 mg (90% of theory)

1H NMR (400 MHz, DMSO-d6, δ ppm): 12.92 (s, 1H), 8.06 (s, 1H), 7.89 (d, J = 8.5 Hz, 1H), 7.75-7.52 (m, 1H), 3.89 (s, 3H), 2.50-2.40 (m, 1H), 1.04 -0.93 (m, 4H).

30 14e) Methyl 3-cyclopropyl-1-(5-phenylpyrimidin-2-yl)-1H-indazole-6-carboxylate

- 69 -

Potassium tert-butyrate (147 mg, 1.32 mmol, 1.5 eq) and 2-chloro-5-phenylpyrimidine (167 mg, 0.88 mmol, 1.0 eq) were added to a stirred solution of product 14d) (190 mg, 0.88 mmol, 1.0 eq) in DMF (10 mL). The mixture was stirred at 120°C for 16 h, then cooled to room temperature, diluted with water (10 mL) and extracted with ethyl acetate (2x10 mL). The combined organic layers were washed with brine (10 mL), dried (Na_2SO_4) and evaporated. The residue was purified by column chromatography [100-200 mesh silica gel; pet ether with 20% ethyl acetate]. Pale brown solid. Yield: 150 mg (46% of theory)

5 ^1H NMR (400 MHz, DMSO-d6, δ ppm): 9.34 (s, 1H), 9.29 (s, 2H), 8.12 (d, J = 8.1 Hz, 1H), 7.94 (d, J = 8.2 Hz, 1H), 7.89 (d, J = 7.5 Hz, 2H), 7.58-7.46 (m, 3H), 3.95 (s, 3H), 2.50-2.40 (m, 1H), 1.16-1.14 (s, 4H).

10 14f) 3-Cyclopropyl-1-(5-phenylpyrimidin-2-yl)-1H-indazole-6-carboxylic acid

The product 14e) (100 mg, 0.270 mmol, 1 eq) and lithium hydroxide (22 mg, 0.540 mmol, 2 eq) in THF/MeOH/water (1:1:1; 6 mL) were stirred at room temperature for 16 h. The solvents were removed in vacuo and the residue was diluted with water (5 mL) and acidified with 2N hydrogen chloride solution (pH ~4-5). The precipitating solid was filtered off and dried. White solid. Yield: 90 mg (90% of theory)

15 ^1H NMR (400 MHz, DMSO-d6, δ ppm): 13.1 (s, 1H), 9.31 (s, 1H), 9.28 (s, 2H), 8.05 (d, J = 8.4 Hz, 1H), 7.93-7.86 (m, 3H), 7.58-7.54 (m, 2H), 7.49-7.46 (m, 1H), 2.50-2.41 (m, 1H), 1.15-1.14 (m, 4H).

14g) (3-Cyclopropyl-1-(5-phenylpyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)-methanone

20 1-Hydroxy-7-azabenzotriazole (2 mg, 0.012 mmol, 0.05 eq), EDCxHCl (50 mg, 0.261 mmol, 1.1 eq) and morpholine (0.025 mL, 0.286 mmol, 1.2 eq) were added to a stirred solution of product 14f) (85 mg, 0.238 mmol, 1.0 eq) in DMF (5 mL) and stirring was continued for 16 h at room temperature. The reaction mixture was diluted with water (10 mL) and extracted with ethyl acetate (2x10 mL). The combined organic layers were washed with brine (10 mL), dried over anhydrous sodium sulfate and evaporated. The remnant was purified by preparative silica gel TLC with ethyl acetate/pet ether (7:3) as eluent. White solid. Yield: 65 mg (60% of theory). Melting range: 218-222°C. HPLC (method 5): R_t = 25 10.34 min. Mass spectroscopy: m/z: $[\text{M}+\text{H}]^+$ = 426.3

1H NMR (400 MHz, DMSO-d6, δ ppm): 9.24 (s, 2H), 8.74 (s, 1H), 8.05 (d, J = 8.2 Hz, 1H), 7.86 (d, J = 7.6 Hz, 2H), 7.58-7.54 (m, 2H), 7.50-7.48 (m, 1H), 7.39 (d, J = 8.2 Hz, 1H), 3.60-3.50 (m, 8H), 2.50-2.45 (m, 1H), 1.15-1.14 (m, 4H).

30 Compound No. 15: 4-(3-Cyclopropyl-1-(5-phenylpyrimidin-2-yl)-1H-indazole-6-carbonyl)piperazin-2-one

- 70 -

Obtained from the carboxylic acid 14f) (140 mg, 0.393 mmol, 1.0 eq) and piperazin-2-one (60 mg, 0.589 mmol, 1.5 eq) in analogy to the procedure for 14g). White solid. Yield: 80 mg (46% of theory). Melting range: 175-179°C. HPLC (method 5): R_t = 9.04 min. Mass spectroscopy: m/z: [M+H]⁺ = 438.9

5 ¹H NMR (400 MHz, DMSO-d6, δ ppm): δ 9.24 (s, 2H), 8.77 (s, 1H), 8.12 (s, 1H), 8.07 (d, J = 8.2 Hz, 1H), 7.84 (d, J = 7.6 Hz, 2H), 7.58-7.54 (m, 2H), 7.52-7.38 (m, 2H), 4.16-3.81 (m, 3H), 3.55-3.45 (m, 1H), 3.29 (s, 2H), 2.50-2.40 (m, 1H), 1.15-1.14 (m, 4H).

Compound No. 16: 4-(3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-indazole-6-carbonyl)piperazin-2-one

10 Synthesized in three steps from methyl 3-cyclopropyl-1H-indazole-6-carboxylate and 2-chloro-5-(2-fluorophenyl)pyrimidine in analogy to the protocols of Compound No.14. White solid. Yield: 100 mg. Melting range: 252-255°C. HPLC (method 5): R_t = 9.13 min. Mass spectroscopy: m/z: [M+H]⁺ = 457.3

15 ¹H NMR (400 MHz, DMSO-d6, δ ppm): 9.13 (s, 2H), 8.77 (s, 1H), 8.12 (s, 1H), 8.07 (d, J = 8.2 Hz, 1H), 7.80-7.69 (m, 1H), 7.64-7.51 (m, 1H), 7.47-7.36 (m, 3H), 4.23-4.12 (m, 2H), 3.57-3.54 (m, 2H), 3.30 (s, 2H), 2.50-2.40 (m, 1H), 1.16-1.14 (m, 4H).

15 Compound No. 17: 4-(3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-indazole-6-carbonyl)-1-methylpiperazin-2-one

20 Synthesized from 3-cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-indazole-6-carboxylic acid (200 mg, 0.534 mmol, 1.0 eq) and 1-methylpiperazin-2-one hydrochloride (120 mM, 0.801 mmol, 1.2 eq). White solid. Yield: 130 mg (52% of theory). Melting range: 217-221°C. HPLC (method 5): R_t = 9.53 min. Mass spectroscopy: m/z: [M+H]⁺ = 471.2

15 ¹H NMR (400 MHz, DMSO-d6, δ ppm): 9.13 (s, 2H), 8.78 (s, 1H), 8.08 (d, J = 8.0 Hz, 1H), 7.75-7.73 (m, 1H), 7.56-7.51 (m, 1H), 7.46-7.31 (m, 3H), 4.28-4.20 (m, 2H), 3.70-3.61 (m, 2H), 3.38 (s, 2H), 2.88 (s, 3H), 2.50-2.40 (m, 1H), 1.16-1.14 (m, 4H).

25 Compound No. 18: (3-(1-Hydroxyethyl)-1-(5-(m-tolyl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)-methanone

18a) (1H-Indol-6-yl)(morpholino)methanone

30 A solution of 1H-indole-6-carboxylic acid (10.0 g, 62.1 mmol) and CDI (11.07 g, 68.32 mmol) in dichloromethane (300 mL) was refluxed for 30 min. Morpholine (3.25 mL) was added to the reaction mixture and heating was continued for 16 h. The reaction mixture was then cooled and quenched with 1 N hydrogen chloride solution (100 mL). The organic layer was separated, washed with 1 N sodium hydroxide solution (100 mL) and brine (100 mL), and dried over sodium sulfate. Evaporation of the solvent under reduced pressure provided the product as white solid which was used in the next step

- 71 -

without further purification. Yield: 13.0 g (91% of theory). HPLC-MS (method 3): R_t = 2.45 min.; m/z $[M+H]^+$ = 231.2 (MW calc. 230.26)

18b) 6-(Morpholine-4-carbonyl)-1H-indazole-3-carbaldehyde

Concentrated hydrogen chloride solution (30 mL) was added dropwise to a mixture of (1H-indol-6-yl)-morpholin-4-yl-methanone (9.0 g, 39.1 mmol) and sodium nitrite (27.00 g, 391.3 mmol) in water (720 mL) until a pH value of 2 was reached. The reaction mixture was stirred at room temperature for 16 h and then extracted with ethyl acetate (3 x 300 mL). The combined organic layers were washed with water (100 mL) and brine (100 mL), and dried over sodium sulfate. The solvent was removed in vacuo and the remnant was purified by flash column chromatography [silica gel; methanol / dichloromethane = 3:97].
10 Light brown solid. Yield: 6.0 g (59% of theory). HPLC-MS (method 2): R_t = 2.16 min., m/z $[M+H]^+$ = 260.0 (MW calc. 259.26)

18c) (3-(1-Hydroxyethyl)-1H-indazol-6-yl)(morpholino)methanone

Methylmagnesium iodide (3 M in diethyl ether) (19.3 mL, 57.9 mmol) was added to a solution of the product obtained under 18b) (5.0 g, 19.3 mmol) in dry THF (500 mL) at 0°C. The mixture was stirred for 15 2 h at room temperature and then quenched with saturated ammonium chloride solution (100 mL). The aqueous phase was separated and extracted with ethyl acetate/ethanol = 9:1 (4 x 50 mL). The combined organic layers were washed with brine (50 mL), dried over sodium sulfate and evaporated. The residue was finally purified by column chromatography [100-200 mesh silica, dichloromethane with 5-10% methanol]. Brown solid. Yield: 3.0 g (56% of theory). LC-MS (method 2): R_t = 1.83 min., m/z $[M+H]^+$ = 20 276.3 (MW calc. 275.3)

18d) (1-(5-Bromopyrimidin-2-yl)-3-(1-hydroxyethyl)-1H-indazol-6-yl)(morpholino)methanone

The indazol from 18c) (2.5 g, 9.09 mmol), 5-bromo-2-chloro-pyrimidine (1.75 g, 9.09 mmol) and potassium carbonate (3.76 g, 27.27 mmol) in DMSO (15 mL) were stirred at 70°C for 16 h. The reaction mixture was diluted with ice water and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were washed with water (50 mL) and brine (50 mL), and dried over sodium sulfate. The Solvent was removed under reduced pressure and the residue was purified by flash column chromatography [silica gel; methanol / dichloromethane = 3:97]. Brown solid. Yield: 1.5 g (38% of theory). LC-MS (method 2): R_t = 2.63 min., m/z $[M+H]^+$ = 432.0 / 434.0 (MW calc. 432.27)

18e) (3-(1-Hydroxyethyl)-1-(5-(m-tolyl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone

30 Potassium carbonate (190 mg, 1.38 mmol), $Pd_2(dbu)_3$ (42 mg, 0.046 mmol) and tri-tert-butylphosphonium tetrafluoroborate (66 mg, 0.023 mmol) were added under argon atmosphere to a solution of the product 18d) (200 g, 0.46 mmol) and 3-methyl phenylboronic acid (94 mg, 0.69 mmol) in THF (6 mL) and water (1.5 mL). The reaction mixture was stirred for 2 h at 30-40°C and then filtered over celite. The filtrate

- 72 -

was evaporated and the remnant purified by flash column chromatography [silica gel; methanol / dichloromethane = 2:98]. White solid. Yield: 46 mg (23% of theory). LC-MS (method 2): R_t = 3.04 min., m/z [M+H]⁺ = 444.3 (MW calc. 443.5)

1H NMR (400 MHz, DMSO-d6, δ ppm): 9.25 (s, 2H), 8.75 (s, 1H), 8.14 (d, 1H, J = 8.4 Hz), 7.69 (bs, 5 1H), 7.64 (d, 1H, J = 8.0 Hz), 7.45 (t, 1H, J = 8.0 Hz), 7.38 (d, 1H, J = 8.0 Hz), 7.31-7.29 (m, 1H), 5.69 (d, 1H, J = 4.8 Hz), 5.25-5.22 (m, 1H), 3.68-3.37 (m, 8H), 2.42 (s, 3H), 1.63 (3H, d, J = 6.4 Hz).

The Compound No.'s 19-21 were synthesized in analogy to procedure 18e).

Compound No. 19: (3-(1-Hydroxyethyl)-1-(5-phenylpyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone

10 White solid. Yield: 75 mg (39% of theory). LC-MS (method 3): R_t = 2.78 min., m/z [M+H]⁺ = 430.2 (MW calc. 429.47)

1H NMR (400 MHz, DMSO-d6, δ ppm): 9.27 (s, 2H), 8.76 (s, 1H), 8.15 (d, 1H, J = 8.0 Hz), 7.87 (d, 2H, J = 8.0 Hz), 7.57 (t, 2H, J = 7.6 Hz), 7.5-7.47 (m, 1H), 7.38 (d, 1H, J = 8.3 Hz), 5.69 (d, 1H, J = 4.9 Hz), 5.25-5.22 (m, 1H), 3.68-3.36 (m, 8H), 1.63 (d, 3H, J = 6.6 Hz).

15 Compound No. 20: (1-(5-(2-Fluorophenyl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-1H-indazol-6-yl)(morpholino)methanone

White solid. Yield: 63 mg (30% of theory). LC-MS (method 2): R_t = 2.93 min., m/z [M+H]⁺ = 448.2 (MW calc. 447.46)

20 1H NMR (400 MHz, DMSO-d6, δ ppm): 9.16 (s, 2H), 8.75 (s, 1H), 8.15 (d, 1H, J = 8.2 Hz), 7.77 (t, 1H, J = 7.9 Hz), 7.57-7.52 (m, 1H), 7.43-7.38 (m, 3H), 5.71 (d, 1H, J = 4.8 Hz), 5.26-5.22 (m, 1H), 3.7-3.39 (m, 8H), 1.63 (d, 3H, J = 6.6 Hz).

Compound No. 21: (1-(5-(2-Fluoro-5-methoxyphenyl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-1H-indazol-6-yl)(morpholino)methanone

Final purification by preparative HPLC. White solid. Yield: 60 mg (27% of theory). LC-MS (method 2): 25 R_t = 2.96 min., m/z [M+H]⁺ = 478.3 (MW calc. 477.49)

1H NMR (400 MHz, DMSO-d6, δ ppm): 9.16 (s, 2H), 8.75 (s, 1H), 8.15 (d, 1H, J = 8.1 Hz), 7.4-7.3 (m, 3H), 7.08-7.06 (m, 1H), 5.71 (d, 1H, J = 4.8 Hz), 5.25-5.21 (m, 1H), 3.84 (s, 3H), 3.69-3.39 (m, 8H), 1.63 (d, 3H, J = 6.5 Hz).

30 Compound No. 22: 4-Fluoro-3-(2-(3-(1-hydroxyethyl)-6-(morpholine-4-carbonyl)-1H-indazol-1-yl)pyrimidin-5-yl)benzonitrile

- 73 -

Posassium carbonate (191 mg, 1.38 mmol) and (AtaPhos)₂PdCl₂ (33 mg, 0.046 mmol) were added under an inert atmosphere to the product of 1d) (200 mg, 0.46 mmol) and 5-cyano-2-fluoro phenyl boronic acid (152.3 mg, 0.92 mmol) in a blend of t-amyl alcohol (8 mL) and water (0.8 mL). The reaction mixture was stirred for 1 h at 80°C and then filtered over celite. The solvents were removed in vacuo and the raw 5 product was purified first by flash column chromatography (silica gel; methanol / dichloromethane = 2:98) and finally by washing with diethyl ether / dichloromethane. White solid. Yield: 102 mg (47% of theory). LC-MS (method 2): R_t = 2.86 min., m/z [M+H]⁺ = 472.47 (MW calc. 473.1)

10 ¹H NMR (400 MHz, DMSO-d6, δ ppm): 9.21 (s, 2H), 8.75 (s, 1H), 8.37 (dd, 1H, J = 1.6, 7.2 Hz), 8.15 (d, 1H, J = 8.4 Hz), 8.09-8.05 (m, 1H), 7.69 (t, 1H, J = 10.0 Hz), 7.4 (d, 1H, J = 8.4 Hz), 5.72 (d, 1H, J = 4.8 Hz), 5.26-5.22 (m, 1H), 3.69-3.38 (m, 8H), 1.63 (d, 3H, J = 6.4 Hz).

Compound No. 23: (3-(Methylsulfinyl)-1-(5-(m-tolyl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone

23a) Methyl 3-(methylthio)-1H-indazole-6-carboxylate

15 6-Bromo-3-methylsulfanyl-1H-indazole (2.5 g, 10.28 mmol) and triethylamine (2.9 mL, 20.56 mmol) in methanol (100 mL) were placed under an inert atmosphere in an autoclave vessel. Palladium(II)-acetate (0.69 g, 3.08 mmol) and diphenylphosphinopropane (1.52 g, 3.7 mmol) were added and the autoclave was pressurized to 50 psi with carbon monoxide. The mixture was stirred at 60°C for 16 h and then filtered over celite. The filtrate was evaporated and the remnant was purified by flash column chromatography [silica gel; hexane with 5% ethyl acetate]. Yellow solid. Yield: 1.35 g (56% of theory). LC-MS (method 20 3): R_t = 2.97 min., m/z [M+H]⁺ = 223 (MW calc. 222.26)

23b) Methyl 1-(5-bromopyrimidin-2-yl)-3-(methylthio)-1H-indazole-6-carboxylate

25 5-Bromo-2-chloro-pyrimidine (1.13 g, 5.85 mmol) and potassium carbonate (2.42 g, 17.55 mmol) were added to a solution of methyl 3-(methylthio)-1H-indazole-6-carboxylate (1.3 g, 5.85 mmol) in DMSO (20 mL). The reaction mixture was stirred at 100°C for 16 h, cooled to ambient temperature and diluted with ice. A precipitating solid was filtered off, co-evaporated with toluene (3 x 10 mL), and washed with pentane. White solid. Yield: 1.6 g (72% of theory). LC-MS (method 2): R_t = 3.66 min., m/z [M+H]⁺ = 379.1/381.1 (MW calc. 379.23)

23c) 1-(5-Bromopyrimidin-2-yl)-3-(methylthio)-1H-indazole-6-carboxylic acid

30 Lithium hydroxide monohydrate (0.88 g, 21.1 mmol) was added at 0°C to a solution of the product of 23b) (1.6 g, 4.22 mmol) in THF (50 mL) and water (25 mL) and the mixture was stirred for 16 h at room temperature. The mixture was concentrated in vacuo and acidified with saturated sodium hydrogen sulfate solution. The precipitate was filtered off and, after repeated addition and evaporation of toluene (3 x 10

- 74 -

mL), washed with ether. White solid. Yield: 1.55 g. LC-MS (method 2): R_t = 2.13 min., m/z [M+H]⁺ = 365.0/367.0 (MW calc. 365.21)

23d) (1-(5-Bromopyrimidin-2-yl)-3-(methylthio)-1H-indazol-6-yl)(morpholino)methanone

Diisopropylethylamine (2.15 mL, 12.36 mmol), HATU (1.72 g, 4.53 mmol) and morpholine (0.39 mL)

5 were added to a solution of product 23c) (1.5 g, 4.12 mmol) in dichloromethane (50 mL). The reaction mixture was stirred at room temperature for 16 h. Further morpholine (0.5 mL, 5.8 mmol) and HATU (0.6 g, 2.2 mmol) were added and stirring was continued for 4 h at room temperature. The reaction mixture was quenched with saturated ammonium chloride solution. The organic layer was separated, washed with saturated sodium hydrogen carbonate solution (30 mL) and brine (30 mL), and dried over sodium sulfate.

10 The solvents were removed under vacuum and the residue was purified by flash column chromatography [silica gel; dichloromethane with 1% methanol]. Yellow solid. Yield: 1.42 g (79% of theory). LC-MS (method 3): R_t = 3.07 min., m/z [M+H]⁺ = 433.9/435.9 (MW calc. 434.31)

23e) (1-(5-Bromopyrimidin-2-yl)-3-(methylsulfinyl)-1H-indazol-6-yl)(morpholino)methanone

m-Chloroperoxybenzoic acid (77%, 1.03 g, 4.61 mmol) was added at 0°C to a solution of product 23d)

15 (2.0 g, 4.61 mmol) in dichloromethane (80 mL). The reaction mixture was stirred for 1 h at room temperature and then quenched with saturated sodium hydrogen carbonate solution (30 mL). The aqueous phase was extracted with dichloromethane (3 x 50 mL) and the combined organic layers were washed with brine (30 mL) and dried over sodium sulfate. The solvent was evaporated and the residue purified by flash column chromatography [silica gel; dichloromethane with 2% methanol]. White solid. Yield: 1.5 g

20 (72% of theory). LC-MS (method 3): R_t = 2.49 min., m/z [M+H]⁺ = 450.0/451.9 (MW calc. 450.31)

23f) (3-(Methylsulfinyl)-1-(5-(m-tolyl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone

Potassium carbonate (0.18 g, 1.32 mmol) and (AtaPhos)₂PdCl₂ (0.031 g, 0.044 mmol) were added under an argon atmosphere to pyrimidine bromide 23d) (0.20 g, 0.44 mmol) and 3-methyl phenyl boronic acid (0.12 g, 0.88 mmol) in t-amyl alcohol (5 mL) and water (0.5 mL). The reaction mixture was heated to

25 110°C for 1 h, then cooled and diluted with MTBE (10 mL). The precipitating solid was removed by filtration and dissolved in methanol / dichloromethane (1:4). The solvents were distilled off under reduced pressure and the remnant was purified by flash column chromatography [silica gel; dichloromethane with 1.5% methanol]. Brown solid. Yield: 0.10 g (83% of theory). LC-MS (method 2): R_t = 2.91 min., m/z [M+NH4]⁺ = 479.3 (MW calc. 461.54)

30 1H NMR (400 MHz, DMSO-d6, 100°C, δ ppm): 9.27 (s, 2H), 8.81 (s, 1H), 8.3 (d, 1H, J = 8.2 Hz), 7.68-7.63 (m, 2H), 7.51-7.44 (m, 2H), 7.33-7.31 (m, 1H), 3.67 (bs, 4H), 3.57 (bs, 4H), 3.21 (s, 3H), 2.44 (s, 3H).

The following examples (Compound No.'s 24 and 25) were prepared in an analogous manner:

- 75 -

Compound No. 24: (1-(5-(2-Fluoro-5-methoxyphenyl)pyrimidin-2-yl)-3-(methylsulfinyl)-1H-indazol-6-yl)(morpholino)methanone

White solid. Yield: 0.14 g (48% of theory). LC-MS (method 2): R_t = 2.78 min., m/z [M+H]⁺ = 496.2 (MW calc. 495.53)

5 1H NMR (400 MHz, DMSO-d6, δ ppm): 9.25 (s, 2H), 8.84 (s, 1H), 8.32 (d, 1H, J = 8.3 Hz), 7.53 (d, 1H, J = 8.3 Hz), 7.4-7.32 (m, 2H), 7.11-7.07 (m, 1H), 3.84 (s, 3H), 3.7-3.38 (m, 8H), 3.17 (s, 3H).

Compound No. 25: 4-Fluoro-3-(2-(3-(methylsulfinyl)-6-(morpholine-4-carbonyl)-1H-indazol-1-yl)pyrimidin-5-yl)benzonitrile

10 White solid. Yield: 0.12 g (54% of theory). LC-MS (method 2): R_t = 2.64 min., m/z [M+H]⁺ = 491.3 (MW calc. 490.51)

1H NMR (400 MHz, DMSO-d6, 100 °C, δ ppm): 9.25 (s, 2H), 8.82 (s, 1H), 8.31 (d, 2 H, J = 8.0 Hz), 8.01 (bs, 1H), 7.63 (t, 1H, J = 9.6 Hz), 7.52 (d, 1H, J = 8 Hz), 3.67 (bs, 4H), 3.57 (bs, 4H), 3.21 (s, 3H).

Compound No. 26: (3-(Methylsulfonyl)-1-(5-(m-tolyl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone

15 26a) (1-(5-Bromopyrimidin-2-yl)-3-(methylsulfonyl)-1H-indazol-6-yl)(morpholino)methanone

m-Chloroperoxybenzoic acid (77%, 3.6 g, 16.16 mmol) was added at 0°C to a solution of the thioether 23d) (1.4 g, 3.23 mmol) in dichloromethane (70 mL). The solution was stirred for 3 h at room temperature and then quenched with saturated sodium hydrogen carbonate solution (40 mL). The aqueous phase was separated and extracted with dichloromethane (3 x 50 mL). The combined organic layers were washed with brine (30 mL), dried over sodium sulfate and evaporated. The residue finally was washed with acetone / ether (20 mL). White solid. Yield: 1.3 g (86% of theory). LC-MS (method 2): R_t = 2.7 min., m/z [M+H]⁺ = 466.2 / 468.2 (MW calc. 466.31)

26b) (3-(Methylsulfonyl)-1-(5-(m-tolyl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone

The product was obtained from sulfone 26a) (0.20 g, 0.43 mmol) and 3-methyl phenyl boronic acid (0.12 g, 0.86 mmol) via a Suzuki reaction in analogy to procedure 23f). White solid. Yield: 0.10 g (48% of theory). LC-MS (method 3): R_t = 3.19 min., m/z [M+H]⁺ = 478.2 (MW calc. 477.54)

1H NMR (400 MHz, DMSO-d6, 100 °C, δ ppm): 9.31 (s, 2H), 8.83 (s, 1H), 8.21 (d, 1H, J = 8.4 Hz), 7.7-7.65 (m, 2H), 7.58 (d, 1H, J = 8.0 Hz), 7.47 (t, 1H, J = 7.6 Hz), 7.33 (d, 1H, J = 7.2 Hz), 3.68-3.66 (m, 4 H), 3.57 (bs, 4H), 3.51 (s, 3H), 2.45 (s, 3H).

30 Compound No.'s 27 and 28 were prepared in an analogous manner

- 76 -

Compound No. 27: (1-(5-(2-Fluoro-5-methoxyphenyl)pyrimidin-2-yl)-3-(methylsulfonyl)-1H-indazol-6-yl)(morpholino)methanone

White solid. Yield: 0.14 g (63% of theory for the last step). LC-MS (method 3): R_t = 3.09 min., m/z $[M+H]^+$ = 512 (MW calc. 511.53)

5 1H NMR (400 MHz, DMSO-d6, 100°C, δ ppm): 9.25 (s, 2H), 8.84 (s, 1H), 8.22 (d, 1H, J = 8.0 Hz), 7.59 (d, 1H, J = 8.0 Hz), 7.36-7.31 (m, 2H), 7.13-7.09 (m, 1H), 3.88 (s, 3H), 3.66 (bs, 4H), 3.57 (bs, 7H).

Compound No. 28: 4-Fluoro-3-(2-(3-(methylsulfonyl)-6-(morpholine-4-carbonyl)-1H-indazol-1-yl)pyrimidin-5-yl)benzonitrile

White solid. Yield: 0.12 g (28% for the final step). LC-MS (method 3): R_t = 2.93 min., m/z $[M+H]^+$ = 10 507.2 (MW calc. 506.51)

1H NMR (400 MHz, DMSO-d6, 100°C, δ ppm): 9.31 (s, 2H), 8.84 (s, 1H), 8.34 (dd, 1H, J = 1.7, 7.0 Hz), 8.21 (d, 1H, J = 8.3 Hz), 8.06-8.03 (m, 1H), 7.69-7.59 (m, 2H), 3.69 (bs, 4H), 3.56 (bs, 7H).

Compound No. 29: (3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-pyrazolo[4,3-c]pyridin-6-yl)(morpholino)methanone

15 29a) 4,6-Dichloro-N-methoxy-N-methylnicotinamide

A solution of 4,6-dichloronicotinic acid (42 g, 214.65 mmol, 1 eq) and CDI (52.16 g, 321.98 mmol, 1.5 eq) in THF (1 L) was stirred for 30 min at room temperature. Diisopropylethylamine (76.28 ml, 429.31 mmol, 2 eq) followed by N,O-dimethylhydroxylamine hydrochloride (25.12 g, 257.59 mmol, 1.2 eq) were added and the resulting solution was further stirred at room temperature for 18 h. The reaction mixture was diluted with ethyl acetate (400 ml), washed with water (3 x 200 ml) and brine (200 ml), dried over sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure and the residue was triturated with diethyl ether/pet ether (1:9), filtered and dried under vacuum. Pale yellow solid. Yield: 32 g (62% of theory). LC-MS: m/z $[M+H]^+$ = 235.0

29b) Cyclopropyl(4,6-dichloropyridin-3-yl)methanone

25 Cyclopropylmagnesium bromide (0.5M in THF, 544.60 ml, 272.34 mmol, 2 eq) was added drop wise at 0°C to a stirred solution of 29a) (32 g, 136.17 mmol, 1 eq) in THF (150 ml). The reaction mixture was stirred at room temperature for 18 h, then quenched at 0°C with saturated ammonium chloride solution (100 ml), and extracted with ethyl acetate (3 x 200 ml). The combined organic layers were washed with water (2 x 200 ml) and brine (200 ml), dried (sodium sulfate), and filtered. The filtrate was evaporated 30 and the residue purified by column chromatography [100-200 mesh silica gel; ethyl acetate/pet ether = 3:7]. White solid. Yield: 18 g (62% of theory). LC-MS: m/z $[M+H]^+$ = 216.1

- 77 -

29c) 6-Chloro-3-cyclopropyl-1H-pyrazolo[4,3-c]pyridine

Diisopropylethylamine (40 ml) and hydrazine hydrate (14.60 g, 293.02 mmol, 3.5 eq) were added to compound 29b) (18 g, 83.72 mmol, 1 eq) in DMF (300 ml) at room temperature and the resulting solution was stirred at 80°C for 18 h. The mixture was cooled to room temperature, diluted with ethyl acetate (800 ml), washed with water (3 x 200 ml) and brine (200 ml), dried (sodium sulfate) and filtered. The solvent was distilled off and the residue was purified by column chromatography [100-200mesh silica gel; ethyl acetate/pet ether = 2:3]. Pale yellow solid. Yield: 12.5 g (77% of theory). LC-MS: m/z [M+H]⁺ = 194.1

29d) 6-Chloro-3-cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-pyrazolo[4,3-c]pyridine

A solution of compound 29c) (4 g, 20.72mmol, 1 eq), potassium tert-butylate (3.48 g, 31.08 mmol, 1.5 eq) and 2-chloro-5-(2-fluorophenyl)pyrimidine (4.74 g, 22.79 mmol, 1.1 eq) in DMF (80 ml) was stirred at 120°C for 18 h (monitored by TLC). The reaction mixture was cooled to room temperature, diluted with ethyl acetate (300 ml) and washed with water (3 x 100 ml) and brine (100 ml). The organic phase was dried (sodium sulfate), filtered and concentrated under reduced pressure. The residue was triturated with diethyl ether/pet ether (1:4). Brown solid. Yield: 4 g (53% of theory). LC-MS: m/z [M+H]⁺ = 366.1

29e) Ethyl 3-cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-pyrazolo[4,3-c]pyridine-6-carboxylate

A mixture of 29d) (4 g, 10.95 mmol, 1 eq), ethanol (1 L), triethylamine (80 ml) and PdCl₂(dppf) (894 mg, 1.09 mmol, 0.1 eq) was stirred in an autoclave at 150°C for 18 h under a carbon monoxide atmosphere. The autoclave was cooled to room temperature and the reaction mixture was filtered through a plug of celite. The filter was rinsed with ethanol (100 ml) and the filtrate was concentrated. The residue was purified by column chromatography [100-200 mesh silica gel; ethyl acetate/pet ether = 3:7]. White solid. Yield: 2.5 g (56% of theory). LC-MS: m/z [M+H]⁺ = 404.2

29f) (3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-pyrazolo[4,3-c]pyridin-6-yl)(morpholino)methanone

Trimethylaluminum (2M in toluene, 1.11 ml, 2.22 mmol, 3 eq) was added drop wise at room temperature to a stirred solution of compound 29e) (300 mg, 0.742 mmol, 1 eq) and morpholine (0.13 ml, 1.48 mmol, 2 eq) in toluene (20 ml). The resulting solution was stirred at this temperature for 18 h, cooled to 0°C, quenched with methanol (5 ml) and extracted with ethyl acetate (3 x 50 ml). The combined organic layers were washed with brine (50 ml), dried (sodium sulfate), filtered and concentrated under reduced pressure. The residue was purified by preparative TLC (ethyl acetate/pet ether = 1:4). Pale yellow solid. Yield: 90 mg (27% of theory). Melting range: 232-235°C. LC-MS (method 5): R_t = 9.73 min., m/z [M+H]⁺ = 445.2

Compound No. 30: (3-Cyclopropyl-1-(5-(pyridin-2-yl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone

- 78 -

The target compound was obtained in three chemical steps from methyl 3-cyclopropyl-1H-indazole-6-carboxylate and 2-chloro-5-(pyridin-2-yl)pyrimidine in an analogous manner as described for Compound No. 14. Pale green solid. Yield: 80 mg. Melting range: 260-263°C. HPLC (method 5): R_t = 9.08 min. Mass spectroscopy: m/z: $[M+H]^+$ = 427.5

5 1H NMR (400 MHz, DMSO-d6, δ ppm): 9.54 (s, 2H), 8.76 (s, 2H), 8.15 (d, J = 7.9 Hz, 1H), 8.06 (d, J = 6.0 Hz, 1H), 8.01-7.97 (m, 1H), 7.49-7.46 (m, 1H), 7.42 (d, J = 1.3 Hz, 1H), 3.60-3.50 (m, 8H), 2.50-2.45 (m, 1H), 1.16-1.14 (m, 4H).

Compound No. 31: (1-(5-(2-Fluorophenyl)pyrimidin-2-yl)-3-(2-hydroxypropan-2-yl)-1H-indazol-6-yl)(morpholino)methanone

10 31a) Methyl 6-(morpholine-4-carbonyl)-1H-indazole-3-carboxylate

Triethylamine (0.84 mL, 6.16 mmol, 2.2 eq) and PdCl₂(dppf) (283 g, 0.347 mmol, 0.124 eq) were placed at room temperature into an autoclave vessel containing a solution of (3-iodo-1H-indazol-6-yl)(morpholino)methanone (1.0 g, 2.801 mmol, 1.0 eq) in methanol/toluene (10/10 mL, 1:1). The reaction mixture was pressurized to 600 psi with carbon monoxide gas and stirred at 70°C for 16 h. The reaction 15 mixture was then cooled to room temperature, diluted with water (10 mL) and extracted with ethyl acetate (2x10 mL). The organic layers were washed with brine (10 mL), dried (Na_2SO_4) and evaporated. The residue was purified by silica gel column chromatography [100-200 mesh, 3% methanol in dichloromethane]. Brown solid. Yield: 800 mg (66% of theory).

1H NMR (400 MHz, DMSO-d6, δ ppm): 14.09 (s, 1H), 8.12 (d, J = 8.3 Hz, 1H), 7.69 (s, 1H), 7.33 (d, J = 8.5 Hz, 1H), 3.93 (s, 3H), 3.6-3.50 (m, 8H).

20 31b) Methyl 1-(5-(2-fluorophenyl)pyrimidin-2-yl)-6-(morpholine-4-carbonyl)-1H-indazole-3-carboxylate

Potassium tert-butyrate (406 mg, 3.63 mmol, 1.5 eq) and 2-chloro-5-(2-fluorophenyl)pyrimidine (654 mg, 3.148 mmol, 1.2 eq) were added to a stirred solution of 31a) (700 mg, 2.42 mmol, 1.0 eq) in DMF (10 mL). The mixture was stirred at 120°C for 16 h, then diluted with water (10 mL) and extracted with ethyl acetate (2x10 mL). The combined organic layers were washed with brine (10 mL), dried (Na_2SO_4) and evaporated. The residue was finally purified by silica gel column chromatography [100-200 mesh, ethyl acetate / pet ether = 1:1]. White solid. Yield: 500 mg (63% of theory)

25 1H NMR (400 MHz, DMSO-d6, δ ppm): 9.26 (s, 2H), 8.84 (s, 1H), 8.29 (d, J = 8.3 Hz, 1H), 7.85-7.76 (m, 1H), 7.60-7.54 (m, 2H), 7.48-7.37 (m, 2H), 4.03 (s, 3H), 3.60-3.50 (m, 8H).

30 31c) (1-(5-(2-Fluorophenyl)pyrimidin-2-yl)-3-(2-hydroxypropan-2-yl)-1H-indazol-6-yl)(morpholino)methanone

- 79 -

Methylmagnesium iodide (3M in THF, 0.64 mL, 1.948 mmol, 1.5 eq) was added at -20°C under an inert atmosphere to a stirred solution of 31b) (300 mg, 0.643 mmol, 1.0 eq) in THF (10 mL). The mixture was stirred at this temperature for 2 h, then quenched with saturated ammonium chloride solution (10 mL) and extracted with ethyl acetate (2x10 mL). The organic layers were dried (Na_2SO_4) and evaporated. The remnant was purified by preparative silica gel TLC with ethyl acetate/pet ether (7:3) as eluents. Pale yellow solid. Yield: 60 mg (20% of theory). Melting range: 235-237°C. HPLC (method 6): R_t = 9.73 min. Mass spectroscopy: m/z: $[\text{M}+\text{H}]^+$ = 462.1

1H NMR (400 MHz, DMSO-d6, δ ppm): 9.16 (s, 2H), 8.76 (s, 1H), 8.25 (d, J = 8.2 Hz, 1H), 7.79-7.74 (m, 1H), 7.58-7.52 (m, 1H), 7.47-7.32 (m, 3H), 5.58 (s, 1H), 3.6-3.50 (m, 8H), 1.70 (s, 6H).

10 Compound No. 32: (1-(5-(2-Fluoro-5-methylphenyl)pyrimidin-2-yl)-3-(methylsulfinyl)-1H-indazol-6-yl)(morpholino)methanone

Prepared from 1-(5-bromo-pyrimidin-2-yl)-3-methanesulfinyl-1H-indazol-6-yl]-morpholin-4-yl-methanone (0.5 g, 1.11 mmol) and 2-fluoro-5-methyl-phenylboronic acid (0.343 g, 2.22 mmol) in analogy to the instructions of procedure 23f). White solid. Yield: 0.33 g (62% of theory). LC-MS (method 15 2): R_t = 7.18 min., m/z $[\text{M}+\text{H}]^+$ = 480.2 (MW calc. 480.53)

1H NMR (400 MHz, DMSO-d6, 100°C, δ ppm): 9.18 (s, 2H), 8.81 (s, 1H), 8.31 (d, 1H, J = 8.2 Hz), 7.55 (d, 1H, J = 7.3 Hz), 7.5 (d, 1H, J = 8.2 Hz), 7.34-7.24 (m, 2H), 3.66 (bs, 4H), 3.56 (bs, 4H), 3.21 (s, 3H), 2.41 (s, 3H).

20 Compound No. 33: (1-(5-(2-Fluoro-5-methylphenyl)pyrimidin-2-yl)-3-(methylsulfonyl)-1H-indazol-6-yl)(morpholino)methanone

m-Chloroperoxybenzoic acid (77%, 117 mg, 0.52 mmol) was added at 0°C to a solution of Compound No.32 (0.25 g, 0.52 mmol) in dichloromethane (50.0 mL). The resulting solution was stirred at room temperature for 3 h and then quenched with saturated sodium hydrogen carbonate solution (20 mL). The organic layer was separated, washed with brine (30 mL), dried over sodium sulfate and evaporated to dryness. The remnant was finally purified by flash column chromatography [silica gel; dichloromethane with 1.5% methanol]. White solid. Yield: 0.2 g (77% of theory). LC-MS (method 3): R_t = 3.15 min., m/z $[\text{M}+\text{H}]^+$ = 496.3 (MW calc. 496.53)

1H NMR (400 MHz, DMSO-d6, 100°C, δ ppm): 9.22 (s, 2H), 8.83 (s, 1H), 8.21 (d, 1H, J = 8.0 Hz), 7.59-7.57 (m, 2H), 7.35-7.26 (m, 2H), 3.66 (bs, 4H), 3.56 (bs, 4H), 3.51 (s, 3H), 2.41 (s, 3H).

30 Compound No. 34: (1-(5-(2-Fluoro-5-methylphenyl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-1H-indazol-6-yl)(morpholino)methanone

- 80 -

Synthesized from (1-(5-bromopyrimidin-2-yl)-3-(1-hydroxyethyl)-1H-indazol-6-yl)(morpholino)-methanone (230 mg, 0.53 mmol) and 2-fluoro-5-methyl-phenylboronic acid (164 mg, 1.06 mmol) in analogy to procedure 23f). White solid. Yield: 90 mg (37% of theory). LC-MS (method 2): R_t = 7.37 min., m/z $[M+H]^+$ = 462.3 (MW calc. 462.49)

5 1H NMR (400 MHz, DMSO-d6, δ ppm): 9.14 (s, 2H), 8.75 (s, 1H), 8.14 (d, 1H, J = 8.1 Hz), 7.57 (d, 1H, J = 7.3 Hz), 7.39 (d, 1H, J = 8.5 Hz), 7.33-7.28 (m, 2H), 5.71 (d, 1H, J = 4.8 Hz), 5.27-5.21 (m, 1H), 3.68-3.39 (m, 8H), 2.39 (s, 3H), 1.62 (d, 3H, J = 6.5 Hz).

10 The Compounds No.'s 35 to 49 as given in below table 1a were synthesized according to the following general procedure:

15 1-Hydroxybenzotriazole hydrate (30 μ mol) and diisopropylethylamine (200 μ mol) in dichloromethane (1 mL) were pipetted to a solution of 1-3-cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-pyrazolo[4,3-c]pyridine-6-carboxylic acid (100 μ mol) and diisopropylethylamine (180 μ mol) in dichloromethane (1 mL). EDCxHCl (150 μ mol) in dichloromethane (1 mL) was added and the resulting mixture was shaken for 15 min at room temperature. The amine (125 μ mol) dissolved in dichloromethane (1 mL) was then introduced and the reaction tube was kept in the shaking device overnight at room temperature. The reaction was stopped by addition of saturated sodium hydrogen carbonate solution (2.5 mL) and the organic layer was separated and extracted with dichloromethane (2 x 3 mL). The solvent was removed under reduced pressure and the residue purified by preparative HPLC to furnish the desired 20 compound.

Table 1a

Cpd. No	Name	Mass peak $[M+H]^+$
35	Azetidin-1-yl(3-cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-pyrazolo[4,3-c]pyridin-6-yl)methanone	415,2
36	N,3-Dicyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-pyrazolo[4,3-c]pyridine-6-carboxamide	415,2
37	3-Cyclopropyl-N-ethyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-N-methyl-1H-pyrazolo[4,3-c]pyridine-6-carboxamide	417,2
38	(3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-pyrazolo[4,3-c]pyridin-6-yl)(pyrrolidin-1-yl)methanone	429,2
39	3-Cyclopropyl-N,N-diethyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-pyrazolo[4,3-c]pyridine-6-carboxamide	431,2

- 81 -

40	3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-N-(2-hydroxyethyl)-N-methyl-1H-pyrazolo[4,3-c]pyridine-6-carboxamide	433,2
41	3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-N-(2-methoxyethyl)-1H-pyrazolo[4,3-c]pyridine-6-carboxamide	433,2
42	(3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-pyrazolo[4,3-c]pyridin-6-yl)(piperidin-1-yl)methanone	443,2
43	3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-N-(3-methoxypropyl)-1H-pyrazolo[4,3-c]pyridine-6-carboxamide	447,2
44	(3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-pyrazolo[4,3-c]pyridin-6-yl)(3-methylmorpholino)methanone	459,2
45	3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-N-(tetrahydro-2H-pyran-4-yl)-1H-pyrazolo[4,3-c]pyridine-6-carboxamide	459,2
46	3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-N-((1-hydroxycyclobutyl)methyl)-1H-pyrazolo[4,3-c]pyridine-6-carboxamide	459,2
47	N-(2-(1H-1,2,4-Triazol-1-yl)ethyl)-3-cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-pyrazolo[4,3-c]pyridine-6-carboxamide	470,2
48	(S)-(3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-pyrazolo[4,3-c]pyridin-6-yl)(2-(methoxymethyl)pyrrolidin-1-yl)methanone	473,2
49	(3-Cyclopropyl-1-(5-(2-fluorophenyl)pyrimidin-2-yl)-1H-pyrazolo[4,3-c]pyridin-6-yl)(3,5-dimethylmorpholino)methanone	473,2

Compound No. 50: N-(2-Amino-2-oxoethyl)-3-cyclopropyl-1-(5-(5-ethoxy-2-fluorophenyl) pyrimidin-2-yl)-N-methyl-1H-indazole-6-carboxamide

Prepared from methyl 3-cyclopropyl-1H-indazole-6-carboxylate and 2-chloro-5-(5-ethoxy-2-fluorophenyl)pyrimidine in three chemical steps analogously to the protocols 14e) to g). White solid. Yield: 80 mg. Melting range: 228-231°C. LC-MS (method 7): R_t = 5.82 min., m/z [M+H]⁺ = 489.0

1H NMR (300 MHz, DMSO-d6, δ ppm): 9.15 (d, J = 7.20 Hz, 2H), 8.74 (s, 1H), 8.07-8.01 (m, 1H), 7.50-7.26 (m, 4H), 7.15-7.13 (m, 1H), 7.07-7.03 (m, 1H), 4.14-4.07 (m, 3H), 3.83 (s, 1H), 3.01 (d, J = 19.5 Hz, 3H), 2.45-2.43 (m, 1H), 1.35 (t, J = 5.3 Hz, 3H), 1.15-1.14 (m, 4H).

10 Compound No. 51: (3-Cyclopropyl-1-(5-(5-ethoxy-2-fluorophenyl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone

Amide coupling of 3-cyclopropyl-1-(5-(5-ethoxy-2-fluorophenyl)pyrimidin-2-yl)-1H-indazole-6-carboxylic acid (160 mg, 0.382 mmol, 1.0 eq) with morpholine (0.040 mL, 0.459 mmol, 1.2 eq) in

- 82 -

analogy to procedure 14g). White solid: Yield: 80 mg (43% of theory). Melting range: 155-158°C. LC-MS (method 7): R_t = 5.82 min., m/z [M+H]⁺ = 488.0

1H NMR (400 MHz, DMSO-d6, δ ppm): 9.13 (d, J = 1.20 Hz, 2H), 8.73 (s, 1H), 8.05 (d, J = 7.60 Hz, 1H), 7.41-7.26 (m, 3H), 7.70-7.03 (m, 1H), 4.09 (q, J = 6.80 Hz, 2H), 3.69-3.31 (m, 8H), 2.51-2.49 (m, 5 1H), 1.35 (t, J = 7.0 Hz, 3H), 1.16-1.14 (m, 4H).

Compound No. 52: (3-Cyclopropyl-1-(5-(2-fluoro-5-(1-hydroxyethyl)phenyl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone

Prepared analogously to Compound No. 50. White solid. Yield: 80 mg. Melting range: 256-260°C. LC-MS (method 7): R_t = 5.68 min., m/z [M+H]⁺ = 488.2

10 1H NMR (400 MHz, DMSO-d6, δ ppm): 9.11 (s, 2H), 8.74 (s, 1H), 8.05 (d, J = 8.0 Hz, 1H), 7.67-7.65 (m, 1H), 7.50-7.49 (m, 1H), 7.41-7.34 (m, 2H), 5.31 (d, J = 4.0 Hz, 1H), 4.82 (s, 1H), 3.68-3.58 (m, 8H), 2.51-2.50 (m, 1H), 1.39 (d, J = 6.4 Hz, 3H), 1.15-1.14 (m, 4H).

Compound No. 53: N-(2-Amino-2-oxoethyl)-3-cyclopropyl-1-(5-(2-fluoro-5-(1-hydroxyethyl)phenyl)pyrimidin-2-yl)-N-methyl-1H-indazole-6-carboxamide

15 Prepared analogously to Compound No. 50. White solid. Yield: 70 mg. Melting range: 248-252°C. LC-MS (method 7): R_t = 5.07 min., m/z [M+H]⁺ = 489.2

1H NMR (300 MHz, DMSO-d6, δ ppm): 9.12 (d, J = 7.5 Hz, 2H), 8.75 (s, 1H), 8.07-8.01 (m, 1H), 7.66 (d, J = 7.8 Hz, 1H), 7.50-7.33 (m, 4H), 7.13 (bs, 1H), 5.30 (s, 1H), 4.83-4.80 (m, 1H), 4.08 (s, 1H), 3.83 (s, 1H), 3.01-2.96 (m, 3H), 2.50-2.49 (m, 1H), 1.40 (d, J = 6.0 Hz, 3H), 1.16-1.13 (m, 4H).

20 Compound No. 54: (3-Cyclopropyl-1-(5-(2-fluoro-5-(2-hydroxypropan-2-yl)phenyl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone

Prepared analogously to compound No. 50. White solid. Yield: 90 mg. Melting range: 211-215°C. LC-MS (method 7): R_t = 5.89 min., m/z [M+H]⁺ = 502.1

25 1H NMR (300 MHz, DMSO-d6, δ ppm): 9.10 (s, 2H), 8.74 (s, 1H), 8.05 (d, J = 8.10 Hz, 1H), 7.76 (dd, J = 8.0, 2.3 Hz, 1H), 7.63-7.58 (m, 1H), 7.42-7.31 (m, 2H), 5.18 (s, 1H), 3.81-3.32 (m, 8H), 2.50-2.46 (m, 1H), 1.50 (s, 6H), 1.18-1.15 (m, 4H).

Compound No. 55: N-(2-Amino-2-oxoethyl)-3-cyclopropyl-1-(5-(2-fluoro-5-(2-hydroxypropan-2-yl)phenyl)pyrimidin-2-yl)-N-methyl-1H-indazole-6-carboxamide

Prepared analogously to compound No. 50. White solid. Yield: 90 mg. Melting range: 177-180°C. LC-30 MS (method 7): R_t = 5.17 min., m/z [M+H]⁺ = 503.1

- 83 -

1H NMR (300 MHz, DMSO-d6, δ ppm): 9.06 (d, J = 0.4 Hz, 2H), 8.73 (s, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.75-7.73 (m, 1H), 7.61-7.57 (m, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.30-7.25 (m, 1H), 7.01-6.84 (m, 2H), 4.82 (s, 1H), 3.95 (bs, 2H), 3.02-2.96 (m, 3H), 2.45-2.41 (m, 1H), 1.51 (s, 6H), 1.15-1.12 (m, 4H).

Compound No. 56: (3-Cyclopropyl-1-(5-(2-fluoro-5-(methylsulfinyl)phenyl)pyrimidin-2-yl)-1H-indazol-

5 6-yl)(morpholino)methanone

56a) (3-Cyclopropyl-1-(5-(2-fluoro-5-(methylthio)phenyl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone

Prepared analogously to Compound No. 50. White solid. Yield: 150 mg. Mass spectroscopy: m/z: $[M+H]^+$ = 490.2

10 1H NMR (400 MHz, CDCl3, δ ppm): 8.97 (d, J = 1.2 Hz, 2H), 8.91 (s, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.37-7.31 (m, 3H), 7.21-7.16 (m, 1H), 3.84-3.49 (m, 8H), 2.53 (s, 3H), 2.39-2.35 (m, 1H), 1.34-1.29 (m, 2H), 1.18-1.14 (m, 2H).

56b) (3-Cyclopropyl-1-(5-(2-fluoro-5-(methylsulfinyl)phenyl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone

15 Hydrogen peroxide (30% w/v in water 0.5 mL) was added at room temperature to a stirred solution of compound 56a) (120 mg, 0.245 mmol, 1.0 eq) in acetic acid (5 mL) and stirring was continued for 1h. The reaction mixture was diluted with dichloromethane (20 mL), washed with saturated sodium hydrogen carbonate solution (10 mL) and brine (10 mL), dried over sodium sulfate and evaporated. The residual material was purified by preparative TLC using dichloromethane with 2% methanol as eluent. White 20 solid. Yield: 70 mg (56% of theory). Melting range: 243-247°C. LC-MS (method 7): R_t = 5.24 min., m/z $[M+H]^+$ = 506.1

1H NMR (400 MHz, DMSO-d6, δ ppm): 9.19 (d, J = 1.2 Hz, 2H), 8.74 (s, 1H), 8.07-8.03 (m, 2H), 7.89-7.85 (m, 1H), 7.70-7.65 (m, 1H), 7.42 (dd, J = 8.0, 1.2 Hz, 1H), 3.81-3.35 (m, 8H), 2.85 (s, 3H), 2.47-2.45 (m, 1H), 1.16-1.14 (m, 4H).

25 Compound No. 57: N-(2-Amino-2-oxoethyl)-3-cyclopropyl-1-(5-(2-fluoro-5-(methylsulfinyl)phenyl)pyrimidin-2-yl)-N-methyl-1H-indazole-6-carboxamide

Synthesized analogously to Compound No. 56. White solid. Yield: 70 mg. Melting range: 274-277°C. LC-MS (method 7): R_t = 4.82 min., m/z $[M+H]^+$ = 507.2

30 1H NMR (400 MHz, DMSO-d6, 90°C, δ ppm): 9.12 (s, 2H), 8.73 (s, 1H), 8.01-7.96 (m, 2H), 7.86-7.82 (m, 1H), 7.62-7.58 (m, 1H), 7.39 (d, J = 8.0, 1H), 7.05-6.84 (m, 2H), 4.08-3.60 (m, 2H), 3.20-3.02 (m, 3H), 2.85 (s, 3H), 2.44-2.43 (m, 1H), 1.15-1.13 (m, 4H).

- 84 -

Compound No. 58: (3-Cyclopropyl-1-(5-(2-fluoro-5-(methylsulfonyl)phenyl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone

m-Chloroperoxybenzoic acid (70% w, 302 mg, 1.226 mmol, 3.0 eq) was added at 0°C to a stirred solution of compound 56a) (200 mg, 0.408 mmol, 1.0 eq) in dichloromethane (10 mL). The mixture was stirred at

5 this temperature for 1 h and then diluted with dichloromethane (20 mL) and washed with saturated sodium hydrogen carbonate solution (10 mL) and brine (10 mL). The mixture was dried over sodium sulfate and concentrated in vacuo. The remnant was purified by silica gel column chromatography [100-200 mesh, dichloromethane with 3% methanol]. White solid. Yield: 95 mg, (45% of theory). Melting range: 276-280°C. LC-MS (method 8): R_t = 6.49 min., m/z [M+H]⁺ = 522.1

10 ¹H NMR (400 MHz, DMSO-d6, δ ppm): 9.21 (s, 2H), 8.74 (s, 1H), 8.32 (dd, J = 7.0, 2.2 Hz, 1H), 8.10-8.05 (m, 2H), 7.75-7.71 (m, 1H), 7.42 (dd, J = 8.0, 1.2 Hz, 1H), 3.80-3.41 (m, 8H), 3.34 (s, 3H), 2.50-2.49 (m, 1H), 1.16-1.15 (m, 4H).

Compound No. 59: N-(2-Amino-2-oxoethyl)-3-cyclopropyl-1-(5-(2-fluoro-5-(methylsulfonyl)phenyl)pyrimidin-2-yl)-N-methyl-1H-indazole-6-carboxamide

15 Synthesized analogously to Compound No. 58. White solid. Yield: 140 mg. Melting range: 311-315°C. LC-MS (method 7): R_t = 5.27 min., m/z [M+H]⁺ = 523.1

¹H NMR (400 MHz, DMSO-d6, 90°C, δ ppm): 9.14 (s, 2H), 8.74 (s, 1H), 8.27 (dd, J = 7.0, 1.8, 1H), 8.08-8.04 (m, 1H), 7.98 (d, J = 8.4, 1H), 7.67-7.62 (m, 1H), 7.40 (d, J = 8.0, 1H), 7.05-6.84 (m, 2H), 3.97 (bs, 2H), 3.27 (s, 3H), 3.00 (s, 3H), 2.43-2.40 (m, 1H), 1.15-1.13 (m, 4H).

20 Compound No. 60: N-(2-Amino-2-oxoethyl)-1-(5-(5-ethoxy-2-fluorophenyl)pyrimidin-2-yl)-N,3-dimethyl-1H-indazole-6-carboxamide

Prepared from methyl 3-methyl-1H-indazole-6-carboxylate and 2-chloro-5-(5-ethoxy-2-fluorophenyl)pyrimidine analogously to the protocols 14e) to g). White solid. Yield: 90 mg. Melting range: 254-257°C. LC-MS (method 7): R_t = 5.42 min., m/z [M+H]⁺ = 463.0

25 ¹H NMR (400 MHz, DMSO-d6, δ ppm): 9.13 (d, J = 9.6 Hz, 2H), 8.74 (s, 1H), 7.94 (dd, J = 13.6, 8.4 Hz, 1H), 7.49-7.30 (m, 4H), 7.13-7.04 (m, 2H), 4.14-4.08 (m, 3H), 3.83 (s, 1H), 3.01 (d, J = 27.6 Hz, 3H), 2.64 (d, J = 5.2 Hz, 3H), 1.35 (t, J = 6.6 Hz, 3H).

Compound No. 61: N-(2-Amino-2-oxoethyl)-1-(5-(2-fluoro-5-(1-hydroxyethyl)phenyl)pyrimidin-2-yl)-N,3-dimethyl-1H-indazole-6-carboxamide

30 Synthesized analogously to Compound No. 60. White solid. Yield: 160 mg. Melting range: 191-195°C. LC-MS (method 7): R_t = 4.83 min., m/z [M+H]⁺ = 463.2

- 85 -

1H NMR (400 MHz, DMSO-d6, δ ppm): 9.06 (s, 2H), 8.72 (s, 1H), 7.87 (d, J = 8.4 Hz, 1H), 7.66 (dd, J = 8.0, 2.0 Hz, 1H), 7.49-7.46 (m, 1H), 7.37 (d, J = 8.40 Hz, 1H), 7.32-7.27 (m, 1H), 6.93 (bs, 2H), 4.95 (s, 1H), 4.84-4.81 (m, 1H), 3.96 (bs, 2H), 2.99 (s, 3H), 2.63 (s, 3H) 1.42 (d, J = 6.4 Hz, 3H).

5 Compound No. 62: N-(2-Amino-2-oxoethyl)-1-(5-(2-fluoro-5-(2-hydroxypropan-2-yl)phenyl)pyrimidin-2-yl)-N,3-dimethyl-1H-indazole-6-carboxamide

Synthesized analogously to Compound No. 60. White solid. Yield: 110 mg. Melting range: 187-190°C. LC-MS (method 7): R_t = 4.93 min., m/z [M+H]⁺ = 477.1

10 1H NMR (400 MHz, DMSO-d6, δ ppm): 9.07 (d, J = 0.6 Hz, 2H), 8.72 (s, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.76 (dd, J = 8.0, 2.4 Hz, 1H), 7.61-7.57 (m, 1H), 7.37 (d, J = 6.8 Hz, 1H), 7.30-7.25 (m, 1H), 6.94 (bs, 2H), 4.83 (s, 1H), 3.96 (bs, 2H), 3.02-2.97 (m, 3H), 2.63 (s, 3H), 1.51 (s, 6H).

Compound No. 63: N-(2-Amino-2-oxoethyl)-1-(5-(2-fluoro-5-(methylsulfonyl)phenyl)pyrimidin-2-yl)-N,3-dimethyl-1H-indazole-6-carboxamide

15 N-(2-Amino-2-oxoethyl)-1-(5-(2-fluoro-5-(methylthio)phenyl)pyrimidin-2-yl)-N,3-dimethyl-1H-indazole-6-carboxamide was prepared analogously to Compound No. 60 and then oxidized with m-chloroperoxybenzoic acid as described in the procedure for compound No. 58. White solid. Yield: 250 mg. Melting range: 255-259°C. LC-MS (method 9): R_t = 5.60 min., m/z [M+H]⁺ = 497.0

1H NMR (400 MHz, DMSO-d6, 90°C, δ ppm): 9.16 (s, 2H), 8.70 (d, J = 8.4, 1H), 8.32 (d, J = 7.2 Hz, 1H), 8.08-8.05 (m, 1H), 7.93 (s, 1H), 7.68-7.64 (m, 2H), 7.10-6.90 (m, 2H), 3.97 (s, 2H), 3.28 (s, 3H), 3.01 (s, 3H), 2.63 (s, 3H).

20 Compound No. 64: N-(2-Amino-2-oxoethyl)-1-(5-(2-fluoro-5-(methylsulfinyl)phenyl)pyrimidin-2-yl)-N,3-dimethyl-1H-indazole-6-carboxamide

25 The precursor, N-(2-amino-2-oxoethyl)-1-(5-(2-fluoro-5-(methylthio)phenyl)pyrimidin-2-yl)-N,3-dimethyl-1H-indazole-6-carboxamide, was prepared in analogy to compound No. 60 and then oxidized utilizing the methodology described in the synthesis protocol 56b). White solid. Yield: 200 mg. Melting range: 164-168°C. LC-MS (method 9): R_t = 5.37 min., m/z [M+H]⁺ = 481.1

1H NMR (400 MHz, DMSO-d6, δ ppm): 9.18 (s, 2H), 8.71 (s, 1H), 8.07-8.00 (m, 2H), 7.92-7.85 (m, 1H), 7.70-7.65 (m, 2H), 7.15 (d, J = 19.2 Hz, 1H), 7.13 (s, 1H), 4.08 (s, 1H), 3.86 (s, 1H), 3.01 (s, 3H), 2.05 (s, 3H), 2.64 (d, J = 7.2 Hz, 3H).

30 Compound No. 65: (1-(5-(2-Fluoro-5-methylphenyl)pyrimidin-2-yl)-3-(methylsulfinyl)-1H-indazol-6-yl)(morpholino)methanone (single enantiomer)

- 86 -

65a) (1-(5-(2-Fluoro-5-methylphenyl)pyrimidin-2-yl)-3-(methylthio)-1H-indazol-6-yl)(morpholino) methanone

Potassium carbonate (1.71 g, 12.42 mmol) and 2-fluoro-5-methyl-phenyl boronic acid (1.27 g, 8.28 mmol) were added at room temperature to a solution of (1-(5-bromopyrimidin-2-yl)-3-(methylthio)-1H-indazol-6-yl)(morpholino)methanone (1.8 g, 4.14 mmol) in t-amyl alcohol/water (10:1, 80 mL). The reaction apparatus was set under an argon atmosphere, (AtaPhos)2PdCl₂ (0.293 g, 0.414 mmol) was added, and the resulting mixture was stirred at 100°C for 5 h. The reaction mixture was then cooled to ambient temperature and filtered through a plug of celite. The filtrate was concentrated and the residue purified by flash column chromatography [silica; acetone/hexane = 3:7]. White solid. Yield: 1.3 g (68% of theory). LC-MS (method 3): R_t = 3.51 min., m/z [M+H]⁺ = 464.1 (MW calc. 463.53)

65b) (1-(5-(2-Fluoro-5-methylphenyl)pyrimidin-2-yl)-3-(methylsulfinyl)-1H-indazol-6-yl)(morpholino)methanone (single enantiomer)

N1,N2-bis(2-((R)-4-isopropyl-4,5-dihydrooxazol-2-yl)phenyl)benzene-1,2-diamine (31.2 mg, 0.065 mmol; for synthesis and application of this ligand see: Dai. W. et al. Org. Lett. 2013, 15, 5658; Dai. W. et al. Org. Lett. 2013, 15, 4138) and Mn(OTf)₂ (22.95 mg, 0.065 mmol) in dichloromethane (18 mL) were stirred at room temperature for 3 h. Compound 65a) (1.5 g, 3.24 mmol), acetic acid (0.93 mL, 16.2 mmol) and 30% aqueous hydrogen peroxide solution (0.57 mL, 5.67 mmol) were added and the resulting mixture was immediately cooled with an ice bath (5-8°C) and stirred at this temperature for 30 min. The reaction mixture was quenched with saturated sodium sulfite solution (30 mL) and stirring was continued for 15 min. The mixture was diluted with dichloromethane (75 mL) and washed with brine (30 mL). The organic layer was dried over sodium sulfate and evaporated to dryness. The remnant was purified by flash column chromatography [silica; dichloromethane with 2.5% methanol]. Yield: 0.48 g (31% of theory)

The product (ee = 91%; analytical chiral HPLC) was submitted together with material from another batch to chiral preparative HPLC thereby providing enantiomerically pure Compound No. 65. White solid. Yield: 0.6 g. LC-MS (method 3): R_t = 2.93 min., m/z [M+H]⁺ = 479.9 (MW calc. 479.53)

Specific optical rotation: $[\alpha]_{589}^{25} = -95.2^\circ$ (c. 0.5, chloroform)

1H NMR (400 MHz, DMSO-d6, δ ppm): 9.22 (s, 2H), 8.84 (s, 1H), 8.32 (d, J = 8.2 Hz, 1H), 7.60 (d, J = 7.4 Hz, 1H), 7.53 (d, J = 8.3 Hz, 1H), 7.35-7.30 (m, 2H), 3.70 (bs, 4H), 3.57 (bs, 2H), 3.39 (bs, 2H), 3.22 (s, 3H), 2.39 (s, 3H).

30 Enantiomeric excess determined by analytical chiral HPLC method: 100% (R_t = 7.40 min)

The enantiomeric excess was measured with the following analytical method: column: Chiraldak IC 4.6 x 150 mm, 5μm; injection volume: 5 μL; mobile phase: dichloromethane/isopropyl alcohol/diethylamine = 90/10/0.1; flow rate: 1.0 mL/min.

- 87 -

Compound No. 66: 1-(5-(2-Fluoro-5-methylphenyl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-N-(2-hydroxyethyl)-N-methyl-1H-indazole-6-carboxamide

66a) Methyl 3-formyl-1H-indazole-6-carboxylate

Sodium nitrite (19.7 g, 285.7 mmol) in water (500 mL) was added to a suspension of methyl 1H-indole-6-carboxylate (5.0 g, 28.57 mmol) in THF (100 mL) at 0°C followed by drop wise addition of concentrated aqueous hydrogen chloride (22.5 mL). The reaction mixture was stirred for 3 h at room temperature and then diluted with ethyl acetate (100 mL). The aqueous phase was separated and extracted with ethyl acetate (3 x 50 mL). The combined organic layers were washed with brine (50 mL) and dried over sodium sulfate. The solvent were removed in vacuo and the residue was triturated with ether/hexane. Brownish solid. Yield: 3.2 g (55% of theory). LC-MS: m/z [M+H]⁺ = 205.0 (MW calc. 204.18)

66b) Methyl 3-(1-hydroxyethyl)-1H-indazole-6-carboxylate

Methyl magnesium bromide (3 M in ether, 14.7 ml, 44.11 mmol) was added drop wise at 0°C to a solution of methyl 3-formyl-1H-indazole-6-carboxylate (3.0 g, 14.7 mmol) in THF (500 mL). The mixture was stirred at room temperature for 2 h and then quenched with saturated of ammonium chloride solution (50 mL). The aqueous phase was separated and extracted with ethyl acetate (3 x 30 mL) and the combined organic layers were washed with brine (50 mL) and dried over sodium sulfate. The solvent was evaporated and the remnant was purified by column chromatography [silica; dichloromethane with 3% methanol]. Brownish solid. Yield: 1.2 g (37% of theory). LC-MS (method 2): R_t = 2.34 min., m/z [M+H]⁺ = 221.0 (MW calc. 220.22)

66c) Methyl 1-(5-bromopyrimidin-2-yl)-3-(1-hydroxyethyl)-1H-indazole-6-carboxylate

Potassium carbonate (2.5 g, 16.35 mmol), 5-bromo-2-chloro-pyrimidine (1.05 g, 5.45 mmol) and methyl 3-(1-hydroxyethyl)-1H-indazole-6-carboxylate (1.2 g, 5.45 mmol) in DMSO (10 mL) were stirred at 70°C for 8 h. The reaction mixture was then cooled and poured onto icecold water (100 mL). The precipitating solid was filtered off and dissolved in THF/ethyl acetate. The organic phase was washed with brine (100 mL) and dried over sodium sulfate. The solvents were distilled off under reduced pressure and the residue was washed with ether / hexane. Yellow solid. Yield: 1.5 g (73% of theory). LC-MS (method 2): R_t = 3.09 min, m/z [M+H]⁺ = 377.2 (MW calc. 377.19)

66d) Methyl 1-(5-(2-fluoro-5-methylphenyl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-1H-indazole-6-carboxylate

Potassium carbonate (1.2 g, 8.75 mmol) and (Ataphos)2PdCl₂ (0.21 g, 0.29 mmol) were added to a solution of compound 66c) (1.1 g, 2.92 mmol) and 2-fluoro-5-methylphenylboronic acid (0.89 g, 5.83 mmol) in t-amyl alcohol (20 mL) and water (2 mL) that was kept under an argon atmosphere. The reaction mixture was stirred at 100°C for 16 h, then cooled down and filtered through a plug of celite. The filtrate

- 88 -

was evaporated and the residue purified by column chromatography [silica; dichloromethane with 1.5% methanol]. Yellowish solid. Yield: 0.8 g (69% of theory). LC-MS (method 2): R_t = 3.48 min, m/z [M+H]⁺ = 407.1 (MW calc. 406.41)

66e) 1-(5-(2-Fluoro-5-methylphenyl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-1H-indazole-6-carboxylic acid

Compound 66d) (0.80 g, 1.97 mmol) and lithium hydroxide monohydrate (0.12 g, 2.95 mmol) in THF/water (1:1, 40 mL) were stirred at room temperature for 16 h. The solvent was distilled off and the residue was dissolved in water (20 mL) and acidified with 1M potassium hydrogen sulfate solution. The precipitate was filtered off and residual water was removed through repeated azeotropic distillation with toluene (3 x 10 mL). Washing with ether (30 mL) afforded the product as white solid. Yield: 0.7 g (90% of theory). LC-MS (method 2): R_t = 2.38 min, m/z [M+H]⁺ = 393.2 (MW calc. 392.38)

66f) 1-(5-(2-Fluoro-5-methylphenyl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-N-(2-hydroxyethyl)-N-methyl-1H-indazole-6-carboxamide

TBTU (0.24 g, 0.76 mmol), N-methyl-morpholine (0.14 mL, 1.27 mmol) and 2-methylamino-ethanol (0.15 mL, 1.91 mmol) were successively added at 0°C to a solution of compound 66e) (0.25 g, 0.64 mmol) in DMF (3 mL). The resulting mixture was stirred at room temperature for 16 h and then poured onto ice-cold water. The precipitating solid was filtered off and dissolved in dichloromethane. The organic phase was washed with brine (10 mL), dried over sodium sulfate and concentrated. The residue was purified by flash column chromatography [silica; dichloromethane with 5% methanol] and recrystallized from dichloromethane/pentane. White solid. Yield: 0.14 g (48% of theory). LC-MS (method 2): R_t = 3.2 min, m/z [M+H]⁺ = 450.0 (MW calc. 449.48)

1H NMR (400 MHz, DMSO-d6, 100°C, δ ppm): 9.09 (s, 2H), 8.71 (s, 1H), 8.13 (d, 1H, J = 8.2 Hz), 7.54 (d, 1H, J = 7.1 Hz), 7.36-7.23 (m, 3H), 5.31-5.26 (m, 2H), 4.43 (bs, 1H), 3.64-3.62 (m, 2H), 3.47 (bs, 2H), 3.04 (s, 3H), 2.40 (s, 3H), 1.38-1.67 (d, 3H, J = 6.1 Hz).

25 Synthesis examples 67 and 68 were prepared analogously to compound No. 66.

Compound No. 67: N-(2-Amino-2-oxoethyl)-1-(5-(2-fluoro-5-methylphenyl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-N-methyl-1H-indazole-6-carboxamide

White solid. Yield: 0.06 g. LC-MS (method 2): R_t = 2.61 min, m/z [M+H]⁺ = 462.9 (MW calc. 462.48)

1H NMR (400 MHz, DMSO-d6, 80°C, δ ppm): 9.10 (s, 2H), 8.75 (s, 1H), 8.14 (d, 1H, J = 7.7 Hz), 7.56 (d, 1H, J = 6.7 Hz), 7.39-7.03 (m, 3H), 7.03 (bs, 2H), 5.43 (d, 1H, J = 4.8 Hz), 5.30-5.24 (m, 1H), 3.98 (bs, 2H), 3.05 (d, 3H, J = 13.7 Hz), 2.49 (s, 3H), 1.67 (d, 3H, J = 6.5 Hz).

- 89 -

Compound No. 68: N-(2-Amino-2-oxoethyl)-1-(5-(5-ethyl-2-fluorophenyl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-N-methyl-1H-indazole-6-carboxamide

White solid. Yield: 0.13 g. LC-MS (method 2): R_t = 2.83 min, m/z $[M+H]^+$ = 477.0 (MW calc. 476.5)

1H NMR (400 MHz, DMSO-d6, δ ppm): 9.10 (s, 2H), 8.75 (s, 1H), 8.14 (d, 1H, J = 8 Hz), 7.57 (d, 1H, J = 7.4 Hz), 7.38-7.25 (m, 3H), 6.92 (bs, 2H), 5.31-5.26 (m, 2H), 3.99 (s, 2H), 3.02 (s, 3H), 2.75-2.70 (m, 2H), 1.68 (d, 3H, J = 6 Hz), 1.29 (t, 3H, J = 7.4 Hz).

Compound No. 69: (1-(5-(5-Ethyl-2-fluorophenyl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-1H-indazol-6-yl)(morpholino)methanone

Prepared from (1-(5-bromopyrimidin-2-yl)-3-(1-hydroxyethyl)-1H-indazol-6-yl)(morpholino) methanone (18d, 0.25 g, 0.578 mmol) and 5-ethyl-2-fluoro-phenyl boronic acid (0.194 g, 1.15 mmol) analogously to procedure 66d). White solid. Yield: 0.16 g (58% of theory). LC-MS (method 2): R_t = 3.02 min, m/z $[M+H]^+$ = 476.2 (MW calc. 475.51)

1H NMR (400 MHz, DMSO-d6, δ ppm): 9.15 (s, 2H), 8.75 (s, 1H), 8.14 (d, 1H, J = 8.1 Hz), 7.58 (d, J = 7.0 Hz, 1H), 7.4-7.3 (m, 3H), 5.72 (d, 1H, J = 4.8 Hz), 5.25-5.22 (m, 1H), 3.66-3.38 (m, 8H), 2.71-2.66 (m, 2H), 1.64 (d, 3H, J = 6.5 Hz), 1.26-1.22 (m, 3H).

Compound No. 70: (3-(1-Hydroxyethyl)-1-(5-(4-methylpyridin-2-yl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone

Bis(pinacolato)diboron (0.706 g, 2.81 mmol) and potassium acetate (0.273 g, 2.81 mmol) were added at room temperature to compound 18d) (0.4 g, 0.927 mmol) in dry dioxane (30 mL). The reaction apparatus was set under an argon atmosphere followed by the addition of PdCl2(dppf) (38 mg, 0.046 mmol) and stirring at 110°C for 1 h (until complete consumption of starting material). 2-Bromo-4-methyl-pyridine (0.319 g, 1.85 mmol), 2M potassium carbonate solution (1.8 mL) and tetrakis(triphenylphosphine)palladium(0) (53 mg, 0.046 mmol) were added successively and stirring was continued at 100°C for 16 h. The reaction mixture was then cooled to ambient temperature and filtered through a plug of celite. The filtrate was concentrated and the remnant was purified by column chromatography [silica; dichloromethane with 0-3 % methanol]. White solid. Yield: 0.1 g (24% of theory). LC-MS (method 3): R_t = 3.04 min, m/z $[M+H]^+$ = 445.2 (MW calc. 444.49)

1H NMR (400 MHz, DMSO-d6, δ ppm): 9.55 (s, 2H), 8.77 (s, 1H), 8.6 (d, 1H, J = 4.9 Hz), 8.14 (d, 1H, J = 8.1 Hz), 8.03 (s, 1H), 7.38 (d, 1H, J = 8.3 Hz), 7.3 (d, 1H, J = 4.8 Hz), 5.71 (d, 1H, J = 4.8 Hz), 5.26-5.23 (m, 1H), 3.69-3.4 (m, 8H), 2.44 (s, 3H), 1.64 (d, 3H, J = 6.5 Hz).

Examples 71 to 73 were prepared analogously to Compound No. 70.

- 90 -

Compound No. 71: (3-(1-Hydroxyethyl)-1-(5-(4-methoxypyridin-2-yl)pyrimidin-2-yl)-1H-indazol-6-yl)(morpholino)methanone

White solid. Yield: 58 mg. LC-MS (method 2): R_t = 2.57 min, m/z [M+H]⁺ = 461.1 (MW calc. 460.49)

1H NMR (400 MHz, DMSO-d6, δ ppm): 9.57 (s, 2 H), 8.78 (s, 1H), 8.57 (d, 1H, J = 5.6 Hz), 8.16 (d, 1H, J = 8.1 Hz), 7.75 (d, 1H, J = 1.7 Hz), 7.41 (d, 1H, J = 8.2 Hz), 7.07-7.06 (m, 1H), 5.76-5.72 (m, 1H), 5.26-5.23 (m, 1H), 3.95 (s, 3H), 3.69-3.39 (m, 8H), 1.64 (d, 3H, J = 6.5 Hz).

Compound No. 72: (1-(5-(4-Ethylpyridin-2-yl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-1H-indazol-6-yl)(morpholino)methanone

Yellow solid. Yield: 75 mg. LC-MS (method 2): R_t = 2.80 min, m/z [M+H]⁺ = 459.3 (MW calc. 458.51)

10 1H NMR (400 MHz, DMSO-d6, 100°C, δ ppm): 9.53 (s, 2 H), 8.76 (s, 1H), 8.63 (s, 1H), 8.16 (d, 1H, J = 8.1 Hz), 7.97 (s, 1H), 7.38-7.31 (m, 2H), 5.33-5.29 (m, 2H), 3.67-3.58 (m, 8H), 2.78-2.76 (m, 2H), 1.69 (d, 3H, J = 5.7 Hz) 1.31 (t, 3H, J = 7.1 Hz).

Compound No. 73: (1-(5-(4-Cyclopropylpyridin-2-yl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-1H-indazol-6-yl)(morpholino)methanone

15 White solid. Yield: 65 mg. LC-MS (method 2): R_t = 2.78 min, m/z [M+H]⁺ = 471.2 (MW calc. 470.52)

1H NMR (400 MHz, DMSO-d6, 100°C, δ ppm): 9.52 (s, 2H), 8.76 (s, 1H), 8.56 (d, 1H, J = 4.7 Hz), 8.16 (d, 1H, J = 8.2 Hz), 7.79 (s, 1H), 7.38 (d, 1H, J = 8.1 Hz), 7.16 (d, 1H, J = 4.3 Hz), 5.32-5.29 (m, 2H), 3.67-3.57 (m, 8H), 2.09-2.08 (m, 1H), 1.69 (d, 3H, J = 6.3 Hz) 1.14 (d, 2H, J = 6.3 Hz), 0.97 (bs, 2H).

Compound No.'s 74 to 76 were obtained from the Suzuki reactions of (1-(5-bromopyrimidin-2-yl)-3-(1-hydroxyethyl)-1H-indazol-6-yl)(morpholino)methanone and the respective boronic acids performed analogously to protocol 65a.

Compound No. 74: (1-(5-(5-Ethoxy-2-fluorophenyl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-1H-indazol-6-yl)(morpholino)methanone

White solid. Yield: 80 mg. LC-MS (method 2): R_t = 3.03 min, m/z [M+H]⁺ = 492.2 (MW calc. 491.51)

25 1H NMR (400 MHz, DMSO-d6, 100°C, δ ppm): 9.12 (s, 2 H), 8.74 (s, 1H), 8.16 (d, 1H, J = 8.0 Hz), 7.38 (d, 1H, J = 8.1 Hz), 7.31-7.27 (m, 2H), 7.06-7.04 (m, 1H), 5.32-5.27 (m, 2H), 4.17-4.12 (m, 2H), 3.66-3.56 (m, 8H), 1.68 (d, 3H, J = 6.3 Hz), 1.37 (t, 3H, J = 6.8 Hz).

Compound No. 75: (1-(5-(5-Cyclopropyl-2-fluorophenyl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-1H-indazol-6-yl)(morpholino)methanone

30 White solid. Yield: 120 mg. LC-MS (method 2): R_t = 3.11 min, m/z [M+H]⁺ = 488.1 (MW calc. 487.53)

- 91 -

1H NMR (400 MHz, DMSO-d6, 100°C, δ ppm): 9.11 (s, 2H), 8.74 (s, 1H), 8.16 (d, 1H, J = 8.1 Hz), 7.44-7.36 (m, 2H), 7.28-7.23 (m, 2H), 5.33-5.27 (m, 2H), 3.66-3.56 (m, 8H), 2.05-2.03 (m, 1H), 1.69 (d, 3H, J = 6.3 Hz), 1.00 (d, 2H, J = 6.5 Hz), 0.78 (bs, 2H).

5 Compound No. 76: (1-(5-(3-Cyclopropylphenyl)pyrimidin-2-yl)-3-(1-hydroxyethyl)-1H-indazol-6-yl)(morpholino)methanone

White solid. Yield: 90 mg. LC-MS (method 2): R_t = 3.12 min, m/z [M+H]⁺ = 470.3 (MW calc. 469.54)

10 1H NMR (400 MHz, DMSO-d6, 100°C, δ ppm): 9.20 (s, 2H), 8.74 (s, 1H), 8.16 (d, 1H, J = 8.1 Hz), 7.59 (d, 1H, J = 7.7 Hz), 7.53 (s, 1H), 7.45-7.35 (m, 2H), 7.21 (d, 1H, J = 7.5 Hz), 5.31-5.27 (m, 2H), 3.66-3.65 (m, 4H), 3.57 (s, 4H), 2.08-2.05 (m, 1H), 1.69 (d, 3H, J = 6.2 Hz), 1.02 (d, 2H, J = 6.5 Hz), 0.82 (d, 2H, J = 3.6 Hz).

(1-(5-Bromopyrimidin-2-yl)-3-(methylthio)-1H-indazol-6-yl)(morpholino)methanone was transferred into a boronic ester that was submitted to a Suzuki reaction (see also Compound No. 70); final oxidation of the coupling products with m-chloroperoxybenzoic acid provided Compound No.'s 77 to 79.

15 Compound No. 77: (1-(5-(4-Methylpyridin-2-yl)pyrimidin-2-yl)-3-(methylsulfinyl)-1H-indazol-6-yl)(morpholino)methanone

Yield: 0.075 g. White solid. LC-MS (method 2): R_t = 2.61 min, m/z [M+H]⁺ = 463.2 (MW calc. 462.53)

1H NMR (400 MHz, DMSO-d6, δ ppm): 9.62 (s, 2H), 8.85 (s, 1H), 8.61 (d, 1H, J = 4.7 Hz), 8.31 (d, 1H, J = 8.2 Hz), 8.07 (s, 1H), 7.52 (d, 1H, J = 8.2 Hz), 7.33 (d, 1H, J = 4.3 Hz), 3.7-3.39 (m, 8H), 3.22 (s, 3H), 2.44 (s, 3H).

20 Compound No. 78: (1-(5-(4-Methoxypyridin-2-yl)pyrimidin-2-yl)-3-(methylsulfinyl)-1H-indazol-6-yl)(morpholino)methanone

Yield: 0.1 g. White solid. LC-MS (method 2): R_t = 2.54 min, m/z [M+H]⁺ = 479.1 (MW calc. 478.52)

1H NMR (400 MHz, DMSO-d6, 100°C, δ ppm): 9.6 (s, 2H), 8.84 (s, 1H), 8.57 (d, 1H, J = 5.2 Hz), 8.3 (d, 1H, J = 8.0 Hz), 7.71 (s, 1H), 7.5 (d, 1H, J = 8.0 Hz), 7.06 (bs, 1H), 3.98 (s, 3H), 3.67 (bs, 4H), 3.57 (bs, 4H), 3.21 (s, 3H).

Compound No. 79: (1-(5-(4-Cyclopropylpyridin-2-yl)pyrimidin-2-yl)-3-(methylsulfinyl)-1H-indazol-6-yl)(morpholino)methanone

White solid. Yield: 0.065 g. LC-MS (method 2): R_t = 2.71 min, m/z [M+H]⁺ = 489.2 (MW calc. 488.56)

- 92 -

1H NMR (400 MHz, DMSO-d6, 100°C, δ ppm): 9.59 (s, 2H), 8.84 (s, 1H), 8.56 (d, 1H, J = 5.0 Hz), 8.32 (d, 1H, J = 8.3 Hz), 7.83 (s, 1H), 7.5 (d, 1H, J = 8.3 Hz), 7.18 (d, 1H, J = 5.0 Hz), 3.67-3.66 (m, 4H), 3.57 (bs, 4H), 3.21 (s, 3H), 2.08 (bs, 1H), 1.15-1.13 (m, 2H), 0.98-0.97 (m, 2H).

Compound No. 80: (1-(5-(3-Cyclopropylphenyl)pyrimidin-2-yl)-3-(methylsulfinyl)-1H-indazol-6-yl)(morpholino)methanone

Prepared analogously to Compound No. 23. Yield: 0.11 g. White solid. LC-MS (method 2): R_t = 2.91 min, m/z [M+H]⁺ = 487.8 (MW calc. 487.57)

1H NMR (400 MHz, DMSO-d6, 100°C, δ ppm): 9.28 (s, 2H), 8.82 (s, 1H), 8.29 (d, 1H, J = 8.4 Hz), 7.62 (d, 1H, J = 7.2 Hz), 7.56 (s, 1H), 7.51-7.42 (m, 2H), 7.21 (d, 1H, J = 7.2 Hz), 3.67 (bs, 4H), 3.57 (bs, 4H), 3.21 (s, 3H), 2.06 (bs, 1H), 1.03-1.01 (m, 2H), 0.83 (bs, 2H).

Compound No. 81: (1-(5-(5-Cyclopropyl-2-fluorophenyl)pyrimidin-2-yl)-3-(methylsulfinyl)-1H-indazol-6-yl)(morpholino)methanone

Prepared analogously to Compound No. 23. Yield: 0.1 g. White solid. LC-MS (method 2): R_t = 3.02 min, m/z [M+H]⁺ = 506.2 (MW calc. 505.57)

1H NMR (400 MHz, DMSO-d6, 100°C, δ ppm): 9.19 (s, 2H), 8.82 (s, 1H), 8.3 (d, 1H, J = 8.4 Hz), 7.5 (d, 1H, J = 8.0 Hz), 7.44 (d, 1H, J = 7.6 Hz), 7.27-7.25 (m, 2H), 3.67-3.65 (m, 4H), 3.56 (bs, 4H), 3.21 (s, 3H), 2.08-2.02 (m, 1H), 1.02-0.97 (m, 2H), 0.8-0.76 (m, 2H).

Biological Testing

cAMP HTRF® assay to determine the activity of hPDE4B1

The inhibiting effect of the compounds on the enzyme activity of human PDE4B1 was measured by the quantification of 5'-adenosine monophosphate (5'-AMP), which is formed from 3',5'-cyclic adenosine monophosphate (cAMP). Human recombinant enzyme, expressed in Sf9 cells, and the HTRF (homogeneous time-resolved fluorescence) detection method were used in the assay.

The test compound or water (control) was mixed with the human recombinant PDE4B1 enzyme (4.8 U) in a buffer consisting of 44.4 mM tris-HCl, 5.28 mM MgCl₂, 2.64 mM DTT and 0.044% Tween 20 (pH 7.8). After adding the cAMP enzyme substrate (final concentration 40 nM), the mixture was incubated for 30 minutes at room temperature. Then a fluorescence acceptor (Dye2 marked with cAMP), a fluorescence donor (anti-cAMP antibody marked with a europium cryptate) and the non-specific phosphodiesterase inhibitor IBMX (3-isobutyl-1-methylxanthine; final concentration 1 mM) were added. After 60 minutes the fluorescence transfer, which correlates with the amount of remaining cAMP, was measured with a

- 93 -

microplate reader (Rubystar, BMG) at $\lambda_{\text{ex}} = 337$ nm, $\lambda_{\text{em}} = 620$ nm and $\lambda_{\text{em}} = 665$ nm. The enzyme activity was calculated from the quotient formed from the measured signal at 665 nm and that at 620 nm. The result was expressed as the percentage inhibition of enzyme activity of the control (without PDE4 inhibitor). The enzyme was omitted for measurement of the basal control. IC50 values (IC50 = 5 concentration causing a half-maximal inhibition of control specific activity) were derived from dose response measurements with eight different concentrations (n = 2; N = 1-3).

Literature: N. Saldou et al., Comparison of recombinant human PDE4 isoforms: interaction with substrate and inhibitors, *Cell. Signal.* Vol. 10, No. 6, 427-440, 1998

TR-FRET assay using the LANCE® Ultra cAMP kit to determine the activity of hPDE4B1

10 The effects of the compounds on the activity of the human PDE4B1 was quantified by measuring the production of 5'AMP from cAMP using a human recombinant enzyme expressed in Sf9 cells and the LANCE® Ultra cAMP kit, a TR-FRET detection method from PerkinElmer. The human PDE4B1 enzyme was purchased from SignalChem Lifesciences (Catalog# P92-31BG, Lot# H296-2).

15 The test compound, reference compound or water (control) was mixed with the enzyme (0.96 U) in a reaction buffer containing 50 mM Tris-HCl, 50 mM MgCl₂ and 5 mM DTT (pH 8.5). Thereafter, the reaction was initiated by addition of 500 nM cAMP (substrate) and the mixture was incubated for 30 minutes at room temperature. For control basal measurements, the enzyme was omitted from the reaction mixture. After 30 minutes, the reaction was stopped and diluted by a factor of 100 with the reaction buffer supplemented with 500 μ M IBMX. The fluorescence donor (europium chelate-labeled cAMP) and the 20 fluorescence acceptor (anti-cAMP antibody labeled with the ULight™ dye) were then added together with 500 μ M IBMX to a 10 μ l aliquot. After 60 minutes, the fluorescence transfer corresponding to the amount of residual cAMP was measured at $\lambda_{\text{ex}} = 337$ nm, $\lambda_{\text{em}} = 620$ nm and $\lambda_{\text{em}} = 665$ nm using a microplate reader (PHERAstar, BMG). The enzyme activity was determined by dividing the signal measured at 665 nm by that measured at 620 nm (ratio) multiplied by 10000. The results were expressed 25 as percent inhibition of the control enzyme activity. IC50 values (IC50 = concentration causing a half-maximal inhibition of control specific activity) were derived from dose response measurements with ten different concentrations (n = 3; N = 1-3).

Table 2: Inhibition of PDE4B at a test substrate concentration of 1 μ M in [%] as determined by the cAMP HTRF® assay:

Cpd. No.	Inhibition in %
1	99
2	102
3	83

Cpd. No.	Inhibition in %
4	106
5	96
6	97

Cpd. No.	Inhibition in %
8	64
9	46
11	115

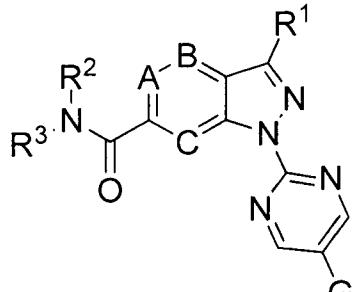
- 94 -

Cpd. No.	Inhibition in %
12	62
13	108
14	92
15	96
16	99
17	95
18	96
19	112
20	102
21	112
22	112
23	101

Cpd. No.	Inhibition in %
24	100
25	85
26	91
27	85
28	86
29	73
30	96
31	102
35	59
36	81
37	73
38	85

Cpd. No.	Inhibition in %
39	67
40	40
41	69
42	39
43	44
44	61
45	27
46	31
47	67
48	43
49	54

Table 3: Inhibition of PDE4B at a test substrate concentration of 10 μ M in [%] as determined by the TR-FRET assay using the LANCE® Ultra cAMP kit:


Cpd. No.	Inhibition in %
32	96
33	102
34	107
50	95
51	103
52	117
53	101
54	107
55	115
56	106

Cpd. No.	Inhibition in %
57	120
58	105
59	96 (10 μ M)
60	100
61	103
62	108
63	75 (10 μ M)
64	42 (10 μ M)
65	100
66	105

Cpd. No.	Inhibition in %
67	90
68	106
69	77
70	105 (10 μ M)
71	108 (10 μ M)
73	105 (10 μ M)
74	102 (10 μ M)
76	102 (10 μ M)

Claims:

1. 2,5-substituted pyrimidines having the following general formula (I)

(I)

A, B, C each independently of each other stands for N or CH;

5 R¹ stands for (C₁-C₆)-alkyl, (C₁-C₆)-hydroxyalkyl, (C₁-C₆)-haloalkyl, (C₃-C₆)-cycloalkyl, SO_x-(C₁-C₆)-alkyl, CONH₂, CONH-(C₁-C₆)-alkyl, CON((C₁-C₆)-alkyl)₂;

10 x is 0, 1 or 2;

15 G is an optionally with at least one substituent Y substituted phenyl or 5- or 6-membered heteroaryl which contains at least one oxygen, sulfur or nitrogen atom, whereas the nitrogen atoms present in the heteroaryl can be substituted with R⁴;

20 R⁴ is hydrogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, CO-(C₁-C₆)-alkyl, SO(C₁-C₆)-alkyl, SO₂(C₁-C₆)-alkyl;

25 Y OH, CN, SH, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkinyl, (C₃-C₆)-cycloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-thioalkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-thiohaloalkyl, (C₁-C₆)-haloalkoxy, CO₂H, CO₂(C₁-C₆)-alkyl, CHO, CO(C₁-C₆)-alkyl, OCO(C₁-C₆)-alkyl, CONH₂, CONH-(C₁-C₆)-alkyl, CON((C₁-C₆)-alkyl)₂, OCO-NH(C₁-C₆)-alkyl, OCO-N((C₁-C₆)-alkyl)₂, NH₂, NH(C₁-C₆)-alkyl, N((C₁-C₆)-alkyl)₂, N-pyrrolidinyl, N-piperidinyl, N-morpholinyl, NH-CO-(C₁-C₆)-alkyl, NH-CO₂(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-CO₂(C₁-C₆)-alkyl, NH-CO-NH₂, NH-CO-NH(C₁-C₆)-alkyl, NH-CO-N(C₁-C₆)-alkyl₂, N(C₁-C₆)-alkyl-CO-NH₂, N(C₁-C₆)-alkyl-CO-NH(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-CO-N((C₁-C₆)-alkyl)₂, NH-SO₂-(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-SO₂-(C₁-C₆)-alkyl, S-(C₁-C₆)-alkyl, SO(C₁-C₆)-alkyl, SO₂-(C₁-C₆)-alkyl, SO₂H, SO₂OH, SO₂NH₂, SO₂NH(C₁-C₆)-alkyl, SO₂N((C₁-C₆)-alkyl)₂, C(=N)-NH, NHC(=N)-NH₂, -N=C=O, -S-CN, wherein the aforementioned alkyl chains may be substituted with at least one of the following substituents OH, CN, (C₃-C₆)-cycloalkyl, (C₁-C₆)-alkoxy, CO₂H, CO₂(C₁-C₆)-alkyl or -NH₂;

- 96 -

R² and R³ independently of one another stand for hydrogen or optionally substituted (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-hydroxyalkyl, (C₁-C₆)-alkoxy(C₁-C₆)-alkylen, (C₁-C₆)-alkylen-CO₂H, (C₁-C₆)-alkylen-CO₂(C₁-C₆)-alkyl, (C₁-C₆)-alkylen-CONH₂, (C₁-C₆)-alkylen-CONH(C₁-C₆)-alkyl, (C₁-C₆)-alkylen-CON((C₁-C₆)-alkyl)₂, (C₁-C₆)-alkylen-(C₃-C₆)-cycloalkyl, (C₁-C₆)-hydroxyalkyl-(C₃-C₆)-cycloalkylen, a group L¹V, a group L²W, or

R² and R³ together with the nitrogen atom to which they are attached form an optionally with at least one substituent X^Q substituted 3- to 12-membered mono- or bicyclic heteroaliphatic residue Q which may additionally contain at least one oxygen, sulfur or further nitrogen atom, whereas these one or more additional nitrogen atoms are substituted with R⁵;

X^Q independently of each other stand for =O (carbonyl), halogen, OH, CN, SH, (C₁-C₆)-alkyl, (C₁-C₆)-hydroxyalkyl, (C₁-C₆)-cyanoalkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkinyl, (C₃-C₆)-cycloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-alkoxy(C₁-C₆)-alkylen, (C₁-C₆)-thioalkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-thiohaloalkyl, (C₁-C₆)-haloalkoxy, -NH₂, NH(C₁-C₆)-alkyl, N((C₁-C₆)-alkyl)₂, (C₁-C₆)-alkylen-NH(C₁-C₆)-alkyl, (C₁-C₆)-alkylen-N((C₁-C₆)-alkyl)₂ NH-

CHO, NH-CO(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-CO(C₁-C₆)-alkyl, NH-CO-O(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-CO-O(C₁-C₆)-alkyl, NH-CO-NH₂, NH-CO-NH(C₁-C₆)-alkyl, NH-CO-N((C₁-C₆)-alkyl)₂, N(C₁-C₆)-alkyl-CO-NH₂, N(C₁-C₆)-alkyl-CO-NH(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-CO-N((C₁-C₆)-alkyl)₂, NH-SO₂-(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-SO₂-(C₁-C₆)-alkyl, CO₂H, CO₂(C₁-C₆)-alkyl, CHO, CO(C₁-C₆)-alkyl, O-CO(C₁-C₆)-alkyl, CO-NH₂, CO-NH(C₁-C₆)-alkyl, CO-N((C₁-C₆)-alkyl)₂, O-CO-NH(C₁-C₆)-alkyl, O-CO-N((C₁-C₆)-alkyl)₂, S-(C₁-C₆)-alkyl, SO(C₁-C₆)-alkyl, SO₂-(C₁-C₆)-alkyl, SOOH, SO₂OH, SO₂NH₂, SO₂NH(C₁-C₆)-alkyl, SO₂N((C₁-C₆)-alkyl)₂, C(=N)-NH, NHC(=N)-NH₂, -N=C=O, -S-CN, wherein the aforementioned alkyl chains may be substituted with at least one of the following substituents OH, CN, (C₃-C₆)-cycloalkyl, (C₁-C₆)-alkoxy, CO₂H, CO₂(C₁-C₆)-alkyl or -NH₂;

R⁵ is hydrogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, CO-(C₁-C₆)-alkyl, SO-(C₁-C₆)-alkyl, SO₂-(C₁-C₆)-alkyl;

L¹ is a bond or a branched or straight-chain optionally substituted (C₁-C₆)-alkylene group connected to the amide nitrogen;

V is an optionally with at least one substituent X^v substituted 3- to 12-membered mono- or bicyclic aliphatic or heteroaliphatic residue, whereas if one or more nitrogen atoms are present in the mono- or bicyclic heteroaliphatic residue, then at least one of these nitrogen atoms is substituted with R⁶;

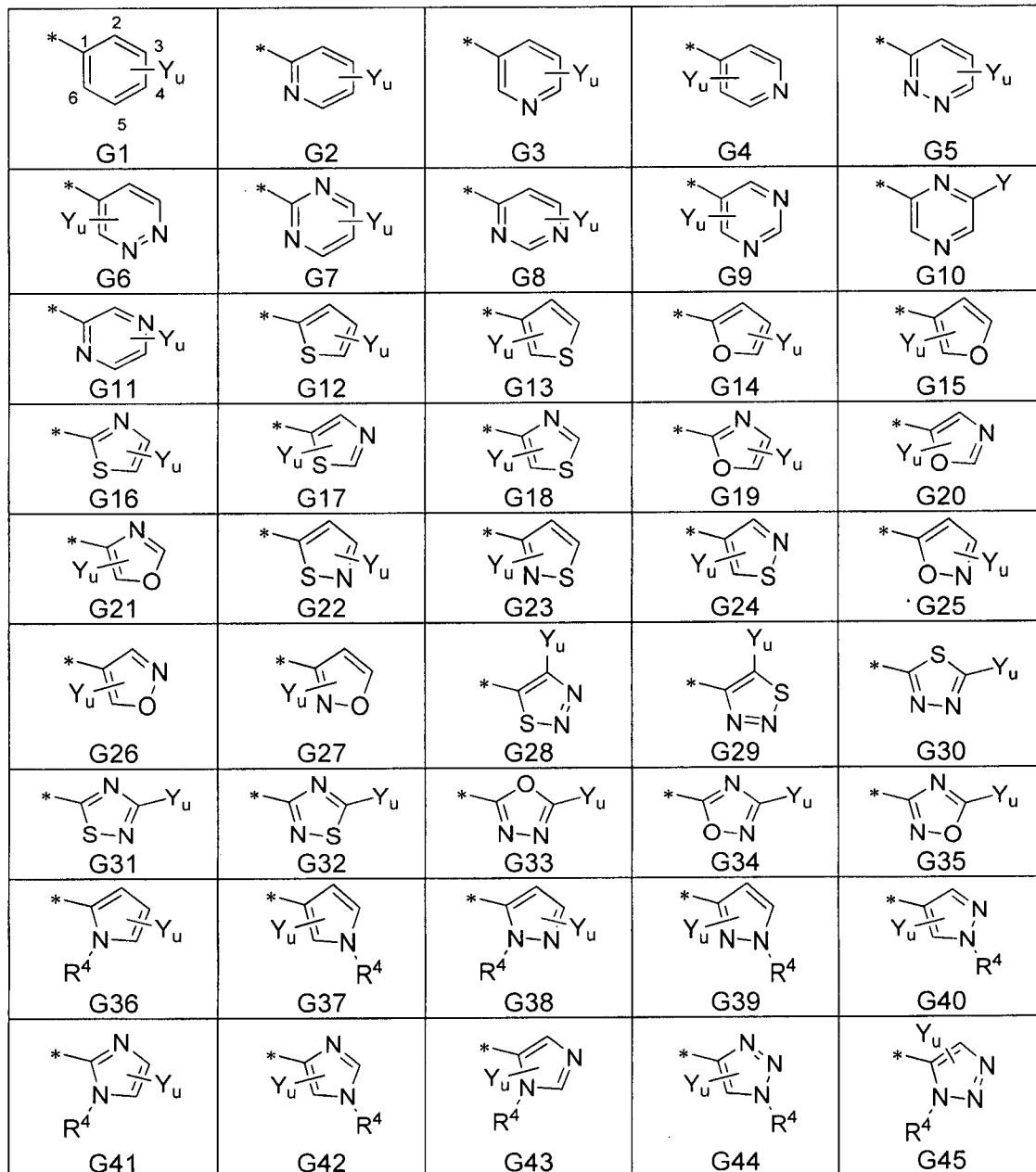
- 97 -

X^v independently of each other stand for =O (carbonyl), halogen, OH, CN, SH, (C₁-C₆)-alkyl, (C₁-C₆)-hydroxyalkyl, (C₁-C₆)-cyanoalkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkinyl, (C₃-C₆)-cycloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-alkoxy(C₁-C₆)-alkylen, (C₁-C₆)-thioalkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-thiohaloalkyl, (C₁-C₆)-haloalkoxy, -NH₂, NH(C₁-C₆)-alkyl, N((C₁-C₆)-alkyl)₂, (C₁-C₆)-alkylen-NH(C₁-C₆)-alkyl, (C₁-C₆)-alkylen-N((C₁-C₆)-alkyl)₂ NH-CHO, NH-CO(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-CO(C₁-C₆)-alkyl, NH-CO-O(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-CO-O(C₁-C₆)-alkyl, NH-CO-NH₂, NH-CO-NH(C₁-C₆)-alkyl, NH-CO-N((C₁-C₆)-alkyl)₂, N(C₁-C₆)-alkyl-CO-NH₂, N(C₁-C₆)-alkyl-CO-NH(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-CO-N((C₁-C₆)-alkyl)₂, NH-SO₂-(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-SO₂-(C₁-C₆)-alkyl, CO₂H, CO₂(C₁-C₆)-alkyl, CHO, CO(C₁-C₆)-alkyl, O-CO(C₁-C₆)-alkyl, CO-NH₂, CO-NH(C₁-C₆)-alkyl, CO-N((C₁-C₆)-alkyl)₂, O-CO-NH(C₁-C₆)-alkyl, O-CO-N((C₁-C₆)-alkyl)₂, S-(C₁-C₆)-alkyl, SO(C₁-C₆)-alkyl, SO₂-(C₁-C₆)-alkyl, SOOH, SO₂OH, SO₂NH₂, SO₂NH(C₁-C₆)-alkyl, SO₂N((C₁-C₆)-alkyl)₂, C(=N)-NH, NHC(=N)-NH₂, -N=C=O, -S-CN, wherein the aforementioned alkyl chains may be substituted with at least one of the following substituents OH, CN, (C₃-C₆)-cycloalkyl, (C₁-C₆)-alkoxy, CO₂H, CO₂(C₁-C₆)-alkyl or -NH₂;

R⁶ is hydrogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, CO-(C₁-C₆)-alkyl, SO(C₁-C₆)-alkyl, SO₂(C₁-C₆)-alkyl;

L² is a bond or a branched or straight-chain optionally substituted (C₁-C₆)-alkylene group connected to the amide nitrogen;

W is an optionally with at least one substituent Z substituted phenyl or 5- or 6-membered heteroaryl which contains at least one oxygen, sulfur or nitrogen atom; and


Z independently of each other stand for halogen, OH, CN, SH, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkinyl, (C₃-C₆)-cycloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-thioalkyl, (C₁-C₆)-haloalkyl (C₁-C₆)-thiohaloalkyl, (C₁-C₆)-haloalkoxy, -NH₂, NH(C₁-C₆)-alkyl, N((C₁-C₆)-alkyl)₂, N-pyrrolidinyl, N-piperidinyl, N-morpholinyl, NH-CHO, NH-CO(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-CO(C₁-C₆)-alkyl, NH-CO₂(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-CO₂(C₁-C₆)-alkyl, NH-CO-NH(C₁-C₆)-alkyl, NH-CO-N((C₁-C₆)-alkyl)₂, N(C₁-C₆)-alkyl-CO-NH(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-CO-N((C₁-C₆)-alkyl)₂, NH-SO₂-(C₁-C₆)-alkyl, N(C₁-C₆)-alkyl-SO₂-(C₁-C₆)-alkyl, CO₂H, CO₂(C₁-C₆)-alkyl, CHO, CO(C₁-C₆)-alkyl, O-CO(C₁-C₆)-alkyl, CO-NH₂, CO-NH(C₁-C₆)-alkyl, CO-N((C₁-C₆)-alkyl)₂, O-CO-NH(C₁-C₆)-alkyl, O-CO-N((C₁-C₆)-alkyl)₂, S-(C₁-C₆)-alkyl, SO(C₁-C₆)-alkyl, SO₂-(C₁-C₆)-alkyl, SO₂H, SO₂OH, SO₂NH₂, SO₂NH(C₁-C₆)-alkyl, SO₂N((C₁-C₆)-alkyl)₂, C(=N)-NH, NHC(=N)-NH₂, -N=C=O, -S-CN, wherein the aforementioned alkyl chains may be substituted with at least one of the following

- 98 -

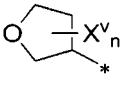
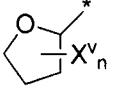
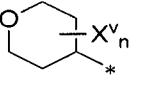
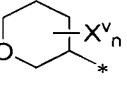
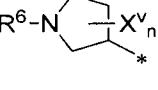
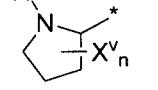
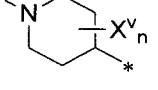
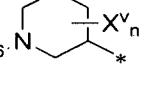
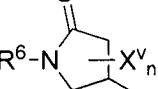
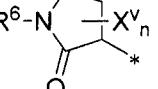
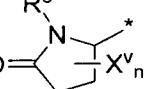
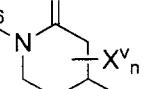
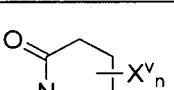
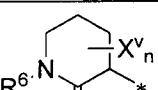
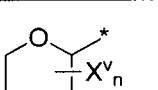
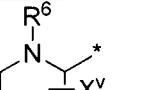
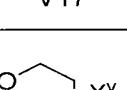
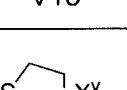
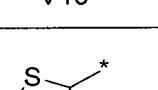
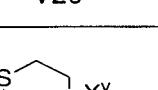
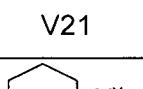
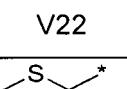
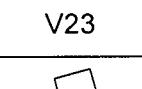
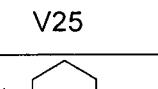
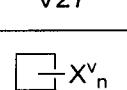
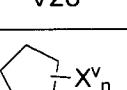
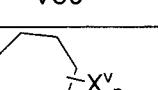
substituents OH, CN, (C₃-C₆)-cycloalkyl, (C₁-C₆)-alkoxy, CO₂H, CO₂(C₁-C₆)-alkyl or -NH₂.

2. The 2,5-substituted pyrimidines according to claim 1, wherein

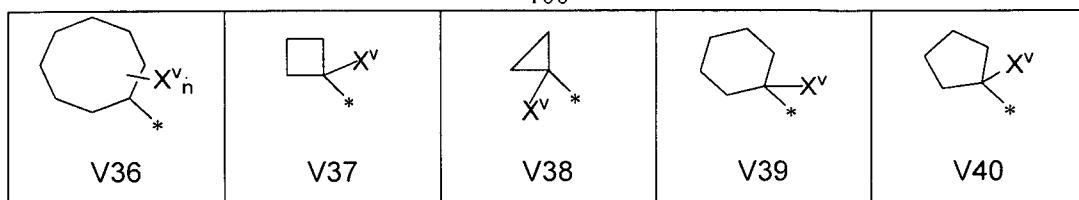
G stands for optionally with at least one substituent Y substituted phenyl, pyridyl, pyrimidyl, furyl, thiophenyl, oxazolyl, thiazolyl or for one of the following groups G1 to G45

wherein the site marked with an asterisk (*) indicates the binding site to the position 4 of the pyrimidine ring; and

u is 0, 1, 2, 3 or 4.




























- 99 -

3. The 2,5-substituted pyrimidines according to claim 1 or claim 2, wherein


5 R^2 and R^3 independently of one another stand for hydrogen, (C_1 - C_4)-alkyl, (C_1 - C_4)-hydroxyalkyl, (C_1 - C_4)-alkoxy(C_1 - C_4)-alkylen, (C_1 - C_4)-alkylen- CO_2H , (C_1 - C_4)-alkylen- $CO_2(C_1$ - C_4)-alkyl, (C_1 - C_4)-alkylen- $CONH_2$, (C_1 - C_4)-alkylen- $CONH(C_1$ - C_2)-alkyl), (C_1 - C_4)-alkylen- $CON((C_1$ - C_2)-alkyl)₂, (C_1 - C_4)-alkylen-(C_3 - C_6)-cycloalkyl, (C_1 - C_4)-hydroxyalkyl-(C_3 - C_6)-cycloalkylen, a group L^1V , a group L^2W , wherein

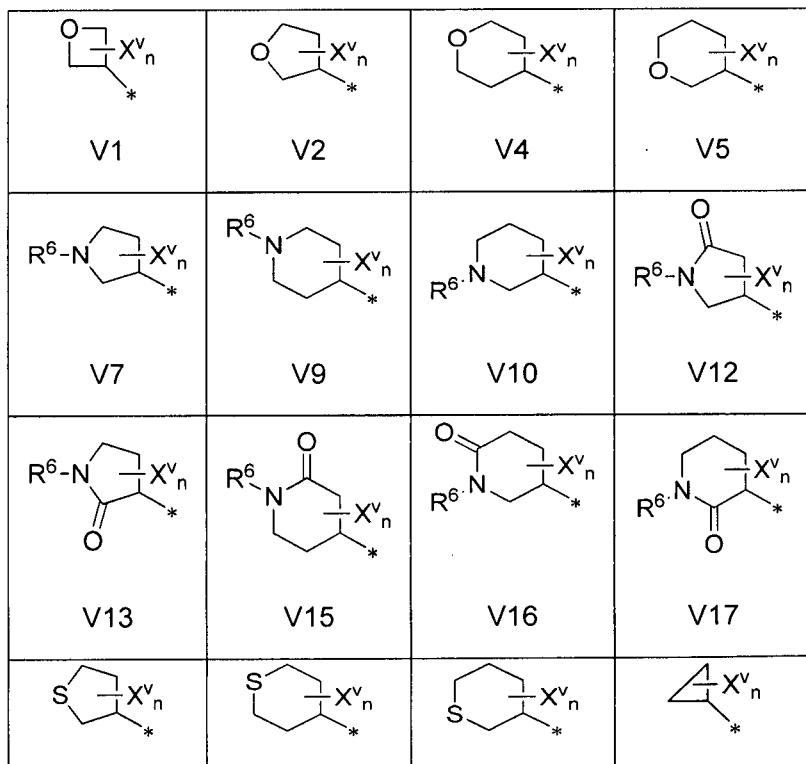
L^1 is a bond, or a branched or a straight-chain optionally substituted (C_1 - C_4)-alkylene group;

V is one of the following groups V1 to V40

- 100 -

L^2 is a bond, or a branched or straight-chain optionally substituted (C_1 - C_4)-alkylene;

W stands for optionally with at least one substituent Z substituted phenyl, pyridyl, pyrimidyl, furyl.

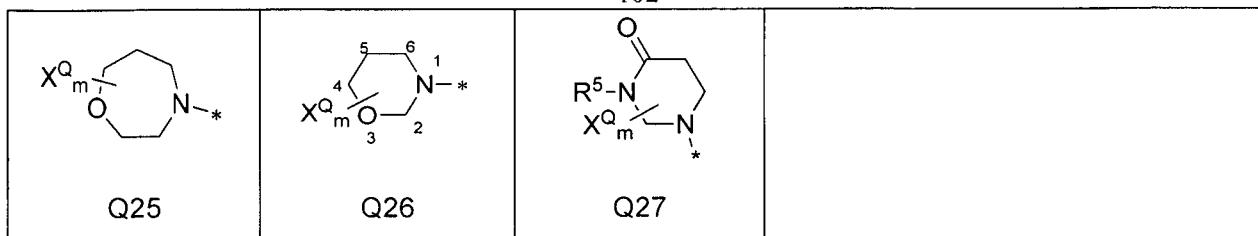

5 4. The 2,5-substituted pyrimidines according to claim 1 or claim 2, wherein

R^2 and R^3 independently of one another stand for hydrogen, (C_1 - C_4)-alkyl, (C_1 - C_4)-hydroxyalkyl, (C_1 - C_4)-alkoxy(C_1 - C_4)-alkylen, (C_1 - C_4)-alkylen-CO₂H, (C_1 - C_4)-alkylen-CO₂(C_1 - C_4)-alkyl, (C_1 - C_4)-alkylen-CONH₂, (C_1 - C_4)-alkylen-CONH(C_1 - C_2)-alkyl, (C_1 - C_4)-alkylen-CON((C_1 - C_2)-alkyl)₂, (C_1 - C_4)-alkylen-(C_3 - C_6)-cycloalkyl, (C_1 - C_4)-hydroxyalkyl-(C_3 - C_6)-cycloalkylen, a group L^1V , wherein

10

L^1 is bond or methylene or ethylene;

V is one of the following groups V1, V2, V4, V5, V7, V9, V10, V12, V13, V15 to V17, V23, V25, V26, V31 to V36, V38,


- 101 -

V23	V25	V26	V31
V32	V33	V34	V35

5. The 2,5-substituted pyrimidines according to claim 1 or claim 2, wherein
 R^2 and R^3 together with the nitrogen atom to which they are attached form an optionally
with at least one substituent X^Q substituted 3- to 12-membered mono- or bicyclic
heteroaliphatic residue Q selected from the groups Q1 to Q27

- 102 -

6. The 2,5-substituted pyrimidines according to any one of claims 1 to 5 wherein

R^1 stands for methyl, ethyl, propyl, i-propyl, n-butyl, hydroxymethyl, hydroxyethyl, hydroxypropyl, cyclopropyl, CF_3 , $CONH_2$, $SOCH_3$ or SO_2CH_3 .

5 7. The 2,5-substituted pyrimidines according to any one of claims 1 to 5 wherein

R^1 stands for methyl or cyclopropyl.

8. The 2,5-substituted pyrimidines according to any one of claims 1 to 5 wherein

R^1 stands for $SOCH_3$ or SO_2CH_3 .

9. The 2,5-substituted pyrimidines according to any one of claims 1 to 5 wherein

R^1 stands for hydroxyethyl or 2-hydroxypropan-2-yl.

10. The 2,5-substituted pyrimidines according to any one of claims 1 to 9 wherein A, B, and C each stand for CH .

11. The 2,5-substituted pyrimidines according to any one of claims 2 to 10 wherein

G stands for optionally with at least one substituent Y substituted group G1, G2, G3, G4, G5, G12, G13, G16, or G17; G most preferably stands for G1, G2, G3, G4 or G5 as defined in claim 2; and

Y independently of one another is halogen, CN , OH , NH_2 , $N((C_1-C_4)\text{-alkyl})_2$, $CONH_2$, $(C_1-C_4)\text{-alkyl}$, $(C_1-C_4)\text{-alkoxy}$, $(C_3-C_6)\text{-cycloalkyl}$.

12. Medicament containing at least one compound as defined in one of claims 1 to 11.

20 13. The 2,5-substituted pyrimidines as defined in one of claims 1 to 11 in the presented form or in the form of their acids or bases or in the form of the physiologically tolerable salts, or in the form of their solvates, optionally in the form of their racemates, their pure stereoisomers, in particular enantiomers or diastereomers, or in the form of mixtures of stereoisomers, in particular enantiomers or diastereomers, in any mixing ratio for use as a medicament for the treatment of 25 conditions or diseases selected from the following rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, gout, osteoarthritis, psoriasis, atopic dermatitis, lichen planus, uveitis, Crohn's disease, ulcerative colitis, and acute and chronic inflammations of the gall bladder and

- 103 -

bile ducts, of pseudopolyps and juvenile polyps, systemic lupus erythematosus, lupus nephritis, chronic prostatitis, interstitial cystitis, benign prostatic hyperplasia, COPD, chronic bronchitis, asthma, pulmonary fibrosis, allergic and non-allergic rhinitis, obstructive sleep apnoea, cystic fibrosis, chronic sinusitis, emphysema, cough, alveolitis, acute respiratory distress syndrome, pulmonary oedema, bronchiectasis, pneumonia, hepatic fibrosis, systemic sclerosis, scleroderma, cancers, haematopoietic cancers, B-cell lymphoma, T-cell lymphoma, chronic lymphatic and chronic myeloid leukaemia, acute lymphatic and acute myeloid leukaemia, and gliomas, type 2 diabetes, metabolic syndrome, obesity/adiposity, fatty liver disease (not alcohol-induced), and cardiovascular diseases, in particular arteriosclerosis, pulmonary arterial hypertension, schizophrenia, depression, bipolar or manic depression, dementia, memory loss, generalised anxiety disorder, Parkinson's disease, multiple sclerosis, Alzheimer's disease, stroke, amyotrophic lateral sclerosis.

14. The compounds for use as a medicament according to claim 12, wherein the conditions or diseases that can be treated by inhibition of the PDE4 enzyme are selected from the following group: inflammatory diseases of the joints, skin and eyes, gastrointestinal diseases and complaints, inflammatory diseases of the internal organs; hyperplastic diseases, respiratory or lung diseases associated with elevated mucus production, inflammation and/or obstruction of the respiratory tract, diseases of the fibrotic spectrum, cancers, metabolic diseases, psychological disorders, and diseases of the peripheral or central nervous system.

20

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2015/001473

A. CLASSIFICATION OF SUBJECT MATTER
 INV. C07D401/14 C07D403/04 C07D403/14 A61K31/506 A61P29/00
 ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 1 040 829 A2 (PFIZER [US]) 4 October 2000 (2000-10-04) claim 1 -----	1-14
A	HAMBLIN J N ET AL: "Pyrazolopyridines as a novel structural class of potent and selective PDE4 inhibitors", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, PERGAMON, AMSTERDAM, NL, vol. 18, no. 14, 15 July 2008 (2008-07-15), pages 4237-4241, XP022852937, ISSN: 0960-894X, DOI: 10.1016/J.BMCL.2008.05.052 [retrieved on 2008-07-15] table 3 ----- -/-	1-14

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
25 August 2015	01/09/2015

Name and mailing address of the ISA/
 European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040,
 Fax: (+31-70) 340-3016

Authorized officer

Gregoire, Ariane

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2015/001473

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 2008/207606 A1 (SRINIVAS AKELLA SATYA SURYA VI [IN] ET AL SRINIVAS AKELLA SATYA SURYA) 28 August 2008 (2008-08-28) claims 1, 11 -----	1-14

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/EP2015/001473

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 1040829	A2 04-10-2000	EP 1040829 A2 JP 2000198734 A	04-10-2000 18-07-2000
US 2008207606	A1 28-08-2008	NONE	