The present invention relates to a negative electrode active material which is used as a negative electrode active material in a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery.
負極活物質としてシリコン材料を用いた非水電解質二次電池において、初回充放電効率及びサイクル特性を向上させる。実施形態の一例である負極活物質粒子（10）は、Li$_{2z}$Si$_{0.5+\Delta}$（0 < z < 2）で表されるリチウムシリケート相（11）と、リチウムシリケート相（11）中に分散したシリコン粒子（12）と備える。シリコン粒子（12）の結晶子サイズは40nm以下である。当該結晶子サイズは、負極活物質粒子10のXRD測定により得られるXRDパターンのSi（111）面の回折ピークの半値幅からシェラーの式により算出される。
明細書
発明の名称：非水電解質二次電池用負極活物質及び非水電解質二次電池

技術分野
[0001] 本開示は、非水電解質二次電池用負極活物質及び非水電解質二次電池に関する。

背景技術
[0002] シリコン（Si）、SiOₓで表されるシリコン酸化物などのシリコン材料は、黒鉛などの炭素材料と比べて単位体積当りに多くのリチウムイオンを吸収できることが知られている。特にSiOₓは、Siよりもリチウムイオンの吸収による体積変化が小さいことから、リチウムイオン電池等の負極への適用が検討されている。例えば、特許文献1は、SiOₓを黒鉛と混合して負極活物質とした非水電解質二次電池を開示している。

[0003]一方、SiOₓを負極活物質として用いた非水電解質二次電池は、黒鉛を負極活物質とした場合に比べて、初回充放電効率が低いという課題がある。これにより、充放電時の不可逆反応によりSiOₓがLi₄SiO₄（不可逆反応物）に変化することが主な要因である。そこで、かかる不可逆反応を抑制して初回充放電効率を改善すべく、SiLiₓOᵧ（0 < x < 1.0, 0 < y < 1.5）で表される負極活物質が提案されている（特許文献2参照）。また、特許文献3は、Li₄SiO₄を主成分とするリチウムシリケート相がシリコン酸化物中に含まれた負極活物質を開示している。

先行技術文献
特許文献
[0004] 特許文献1：特開2011-233245号公報
特許文献2：特開2003-160328号公報
特許文献3：特開2007-59213号公報

発明の概要
発明が解決しようとする課題

[0005] 特許文献2，3に開示された技術は，いずれもSiO2及びリチウム化合物の混合物を高温で熱処理して，SiO2を不可逆反応物であるLi4SiO4に予め変換することにより，初回充放電効率の改善を図っている。しかし，当該プロセスでは，粒子内部にSiO2が残り，粒子表面のみにLi4SiO4が生成する。粒子内部まで反応させるためには，さらなる高温プロセスが必要であり，その場合Si及びLi4SiO4の結晶粒径が増大すると想定される。そして，かかる結晶粒径の増大は，例えば充放電による活物質粒子の体積変化を大きくし，またリチウムイオン導電性を低下させる。

[0006] ところで，非水電解質二次電池では，初回充放電効率が高いためでなく，充放電サイクルによる容量低下を抑制することが求められている。本開示の目的は，シリコン材料を含む非水電解質二次電池用負極活物質であって，初回充放電効率が高く，サイクル特性に優れた非水電解質二次電池を構築することが可能な負極活物質を提供することである。

課題を解決するための手段

[0007] 本開示の一態様である非水電解質二次電池用負極活物質は，Li2zSiO(2+z)（0<z<2）で表されるリチウムシリケート相と，リチウムシリケート相中に分散したシリコン粒子をと備え，XRD測定により得られるXRDパターンのSi（111）面の回折ピークの半価幅からシェラーの式により算出されるシリコン粒子の結晶子サイズが40nm以下である。

発明の効果

[0008] 本開示の一態様によれば，負極活物質としてシリコン材料を用いた非水電解質二次電池において，初回充放電効率及びサイクル特性を向上させることがができる。

図面の簡単な説明

[0009] [図1]実施形態の一例である負極活物質を模式的に示す断面図である。
[図2]実施形態の一例である負極活物質（実施例1の負極活物質A1）のXR
Dパターンである。

[図3]実施形態の一例である負極活性物質（実施例3の負極活性物質A3）のXRDパターンである。

[図4]実施形態の一例である負極活性物質（実施例3の負極活性物質A3）のSi-NMRスペクトルである。

[図5]比較例3の負極活性物質B3のSi-NMRスペクトルである。

発明を実施するための形態

[0010]以下、実施形態の一例について詳細に説明する。

実施形態の説明で参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは、現物と異なる場合がある。具体的な寸法比率等は、以下の説明を参照して判断されるべきである。

[0011]本開示の一例様である負極活性物質は、Li2xSi1+6Li(2+x) (0 < z < 2) で表されるリチウムシリケート相と、リチウムシリケート相中に分散したシリコン粒子を構成する。シリコン粒子の表面は自然酸化膜程度のSi〇2が形成されていてよく、本開示の一例様である負極活性物質のXRD測定により得られるXRDパターンには、θ = 25° にSi〇2の回折ピークが観察されないことが好適である。なお、自然酸化膜のSi〇2と、従来のSi〇2粒子のSi〇2は性質が大きく異なる。これは、自然酸化膜が極めて薄いため、X線が回折しないためであると考えられる。一方、従来のSi〇2粒子のXRDパターンには、θ = 25° にSi〇2の回折ピークが観察される。

[0012]従来のSi〇xは、Si〇2のマトリックスの中に微小なSi粒子が分散したものであり、充放電時には下記の反応が起こる。

(1) Si〇x(2Si + 2Si〇2) + 16Li ++ 16e-

→ 3Li4Si + Li4Si〇4

Siと2Si〇2について式1を分解すると下記の式になる。

(2) Si〇4 + 4Li ++ 4e- → Li4Si

(3) 2Si〇2 + 8Li ++ 8e- → Li4Si + Li4Si〇4

上記のように、式3が不可逆反応であり、Li4Si〇4の生成が初回充放電
効率を低下させる主な要因となっている。

[001 3] 本開示の一態様である負極活物質は、シリコン粒子が Li_{2z}Si_0 (2+ (0 < z < 2) で表されるリチウムシリケート相に分散したものであり、例えば従来のSiO_2に比べてSiO_2の含有量が大幅に少ない。また、本負極活物質に含有されるSiO_2は自然酸化膜であり、従来のSiO_2粒子のSiO_2と性質が大きく異なる。したがって、当該負極活物質を用いた非水電解質二次電池では、式3の反応が起こり難く、初回充放電効率が向上するものと考えられる。

[0014] 上述のように、SiO_xで表されるシリコン酸化物などのシリコン材料は、黑鉛などの炭素材料と比べて単位体積当りに多くのリチウムイオンを吸蔵できるが、黒鉛に比べて充放電に伴う体積変化が大きい。特に、リチウムシリケート相中に分散したシリコン粒子が大きくなるほど、粒子の膨張収縮時における粒子直径差が大きくなる。このため、例えば収縮時に粒子の周囲に空隙が形成されて周囲との接点が減少し、当該粒子が孤立して充放電に寄与しなくなることが想定される。本発明者らは、シリコン粒子を構成する結晶子のサイズを40nm以下とした場合に、かかる粒子の孤立を特異的に抑制でき、充放電効率及びサイクル特性が大幅に改善されることを見出したのである。本開示の一態様である負極活物質を用いることにより、初回充放電効率及びサイクル特性に優れた非水電解質二次電池を構築することができる。また、高い充電容量を確保することができる。

[0015] さらに、リチウムシリケートの(111)面の回析ピークの半価幅を0.05°以上することにより、リチウムシリケート相がアモルファスに近くなって、負極活物質粒子内のリチウムイオン導電性が向上し、充放電に伴うシリコン粒子の体積変化がより緩和されると考えられる。

[0016] 実施形態の一例である非水電解質二次電池は、上記負極活物質を含む負極と、正極と、非水溶媒を含む非水電解質をもとめる。正極と負極との間には、セパレータを設けることが好適である。非水電解質二次電池の構造の一例としては、正極及び負極がセパレータを介して巻回されてなる電極体と、非
水電解質とが外装体に収容された構造が挙げられる。或いは、巻回型の電極体の代わりに、正極及び負極がセパレータを介して積層されてなる積層型の電極体など、他の形態の電極体が適用されてもよい。非水電解質二次電池は、例えば薄型、角型、コイン型、ボタン型、ラミネート型など、いずれの形態であってもよい。

[0017] [正極]
正極は、例えば金属箔等からなる正極集電体と、当該集電体上に形成された正極合材層とで構成されることが好適である。正極集電体には、アルミニウムなどの正極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極合材層は、正極活物質の他に、導電材及び結着材を含むことが好適である。また、正極活物質の粒子表面は、酸化アルミニウム（Al₂O₃）等の酸化物、リン酸化物、ホウ酸化物等の無機化合物の微粒子で覆われていってよろしい。

[0018] 正極活物質としては、Co, Mn, Ni等の遷移金属元素を含有するリチウム遷移金属酸化物が例示できる。リチウム遷移金属酸化物は、例えばLiₓCoO₂, LiₓNiO₂, LiₓMnO₂, LiₓCoₙNi₁₋ₙO₂, LiₓCoₙM₁₋ₙO₂, LiₓNi₁₋ₙM₁₊ₙO₂, LiₓMn₂O₄, LiₓMn₁₋ₙM₂₊ₙO₄, LiₓMPO₄, LiₓM₂P0₄F (M : Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, Bのうち少なくとも1種、0 < x ≤ 1, 2, 0 < y ≤ 0, 9, 2, 0 ≤ z ≤ 2, 3) である。これらは、1種単独で用いてもよし、複数種を混合して用いてもよい。

[0019] 導電材は、正極合材層の電気伝導性を高めるために用いられる。導電材としては、カーボンプラック、アセチレンプラック、ケチベンプラック、黒鉛等の炭素材料が例示できる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。

[0020] 結着材は、正極活物質及び導電材間の良好な接触状態を維持し、且つ正極集電体表面に対する正極活物質等の結着性を高めるために用いられる。結着材としては、ポリテトラフルオロエチレン（P T F E）、ポリフッ化ビニリ
デン（P V d F）等のフッ素系樹脂、ポリアクリロニトリル（P A N）、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂等が例示できる。また、これらの樹脂と、カルボキシメチロセルロース（C M C）又はその塩（C M C - N a、C M C _ K、C M C - N H4等、また部分中和型の塩であってもよい）、ポリエチレンオキシド（P E O）等が併用してもよい。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。

[0021] [負極]

負極は、例えば金属箔等からなる負極集電体と、当該集電体上に形成された負極合材層とで構成されることが好適である。負極集電体には、鋼などの負極の電位範囲で安定的な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極合材層は、負極活性物質の他に、結着材を含むことが好適である。結着剤としては、正極の場合と同様にフッ素系樹脂、P A N、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂等を用いることがができる。水系溶媒を用いて合材スラリーを調製する場合には、C M C又はその塩（C M C _ N a、C M C _ K、C M C - N H4等、また部分中和型の塩であってもよい）、ステレン-ブタジエンゴム（S B R）、ポリアクリル酸（P A A）又はその塩（P A A _ N a、P A A _ K等、また部分中和型の塩であってもよい）、ポリビニルアルコール（P V A）等を用いることが好ましい。

[0022] 図1に実施形態の一例である負極活性物質粒子10の断面図を示す。

図1で示すように、負極活性物質粒子10は、リチウムシリケート相1と、当該相中に分散したシリコン粒子12とを備える。負極活性物質粒子10に含まれるSiO2は、自然酸化膜程度であって、負極活性物質粒子10のXRD測定により得られるXRDパーソンの2θ = 25°にSiO2の回析ピークが観察されないことが好適である。リチウムシリケート相11及びシリコン粒子12で構成される母粒子13の表面には、導電層14が形成されてい ることが好適である。

[0023] 母粒子13は、リチウムシリケート相11及びシリコン粒子12以外の第
３成分を含んでいてもよい。母粒子１３に自然酸化膜のSiO₂が含まれる場合、その含有量は、好ましくは１０質量％未満、より好ましくは７質量％未満である。なお、シリコン粒子１２の粒子径が小さいほど表面積が大きくなり、自然酸化膜のSiO₂が多くなる。

[0024]負極活物質粒子１０のシリコン粒子１２は、黒鉛等の炭素材料と比べてより多くのリチウムイオンを吸着できることから、負極活物質粒子１０を負極活物質に適用することで電池の高容量化に寄与する。負極合材層には、負極活物質として負極活物質粒子１０のみを単独で用いてもよい。但し、シリコン材料は黒鉛よりも充放電による体積変化が大きいことから、高容量化を図りながらサイクル特性を良好に維持すべく、かかる体積変化が小さな他の活物質を併用してもよい。他の活物質としては、黒鉛等の炭素材料が好ましい。

[0025]黒鉛には、従来から負極活物質として使用されている黒鉛、例えば鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、塊状人造黒鉛（M A G）、黒鉛化メソフェーズカーボンマイクロビーズ（M C M B）等の人造黒鉛などを用いることができる。黒鉛を併用する場合、負極活物質粒子１０と黒鉛との割合は、質量比で１：９：９－３：０：７０が好ましい。負極活物質粒子１０と黒鉛の質量比が当該範囲内であれば、高容量化とサイクル特性向上を両立し易くなる。一方、黒鉛に対する負極活物質粒子１０の割合が１質量％よりも低い場合は、負極活物質粒子１０を添加して高容量化するメリットが小さくなる。

[0026]リチウムリキート相１１は、Li₂₅SiO₁₉（０＜ｚ＜２）で表されるリチウムリキートからなる。即ち、リチウムリキート相１１を構成するリチウムリキートに、Li₄SiO₄（ｚ＝２）が含まれない。Li₄SiO₄は、不安定な化合物であり、水と反応してアルカリ性を示すため、SiOを変質させて充放電容量の低下を招く。リチウムリキート相１１は、安定性、作製容易性、リチウムイオン導電性等の観点から、Li₂SiO₃（ｚ＝１）又はLi₂Si₂O₅（ｚ＝１/２）を主成分とすることが好適である。Li₂Si
〇₃又はLi₂Si₂〇₅を主成分（最も質量が多い成分）とする場合、当該主成分の含有量はリチウムシリケート相１１の総質量に対して50質量％超であることが好ましく、80質量％以上がより好ましい。

[0027]リチウムシリケート相１１は、微細な粒子の集合により構成されることが好適である。リチウムシリケート相１１は、例えばシリコン粒子１２よりもさらに微細な粒子から構成される。負極活物質粒子10のXRDパターンでは、例えばSiの（111）面の回折ピークの強度が、リチウムシリケートの（111）面の回折ピークの強度よりも大きい。即ち、リチウムシリケート相１１は、（111）面の回折ピークの強度積分値がSiの（111）面の回折ピークの強度積分値よりも小さい相である。Si（111）面の回折ピークの強度がリチウムシリケートの（111）面の回折ピークの強度よりも大きいと、結晶量が少なくなるが硬度が低くなるため、シリコン粒子１２は、充放電によるシリコンの膨張収縮に耐え易くなりサイクル特性が向上する。

[0028]充放電後の負極活物質粒子10には、Li₄Si〇₄が含まれないことが好適である。負極活物質粒子10の出発原料には、自然酸化膜程度のSi〇₂が含まれるだけなので、初回充放電において、上述した式（3）の反応が起こり難く、不可逆反応物であるLi₄Si〇₄が生成し難しい。

[0029]シリコン粒子１２は、リチウムシリケート相１１中に略均一に分散していることが好適である。負極活物質粒子10（母粒子１３）は、例えばリチウムシリケートのマトリックス中に微細なシリコン粒子１２が分散した海島構造を有し、任意の断面においてシリコン粒子１２が一部の領域に偏在することなく略均一に点在している。母粒子１３におけるシリコン粒子１２（Si）の含有量は、高容量化及びサイクル特性の向上等の観点から、母粒子１３の総質量に対して20質量％〜95質量％であることが好ましく、35質量％〜75質量％がより好ましい。Siの含有量が低すぎると、例えば充放電容量が低下し、またリチウムイオンの拡散不良により負荷特性が低下する。Siの含有量が高すぎると、例えばSiの一部がリチウムシリケートで覆わ
れず露出して電解液が接触し、サイクル特性が低下する。

[0030] シリコン粒子12の平均粒径は、例えば初回充電前において500nm以下であり、200nm以下が好ましく、50nm以下がより好ましい。充放電後においては、400nm以下が好ましく、100nm以下がより好ましい。シリコン粒子12を微細化することにより、充放電時の体積変化が小さくなり電極構造の崩壊を抑制し易くなる。シリコン粒子12の平均粒径は、負極活物質粒子10の断面を走査型電子顕微鏡（SEM）又は透過型電子顕微鏡（TEM）を用いて観察することにより測定され、具体的には100個のシリコン粒子12の最長径を平均して求められる。

[0031] シリコン粒子12は、単独又は複数の結晶子で構成していてもよい。当該結晶子の結晶子サイズは、40nm以下であり、好ましくは35nm以下、より好ましくは30nm以下、特に好ましくは25nm以下である。結晶子サイズが40nm以下であれば、充放電に伴うシリコン粒子12の体積変化量を小さくすることができる。これにより、例えばシリコン粒子12の収縮時に粒子の周囲に空隙が形成されて粒子が孤立し、充放電に寄与しなくなることを抑制できる。結晶子サイズの下限値は特に限定されないが、例えば5nmである。

[0032] シリコン粒子12の結晶子サイズは、負極活物質粒子10のXRD測定により得られるXRDパターンのSi（111）面の回折ピークの半値幅からシエラーの式により算出される。具体的な結晶子サイズの測定条件等は、下記の通りである。

測定装置：試料水平型多目的X線回折装置UltimaIV（株式会社リガク社製）
解析ソフト：統合粉末X線解析ソフトウエアPDXL（株式会社リガク社製）
測定条件：20°〜90°、Si（111）面の回折ピーク（2θ＝28°〜29°）を使用、ピークトップ5000count以上
対陰極：Cu-Kα
管電流/電圧：40mA/40kV
計数時間：1.0s
発散スリット：2/3°
発散縦制限スリット：10mm
散乱スリット：2/3°
受光スリット：0.3mm
試料回転：60rpm

負極活物質粒子10（母粒子13）は、XRD測定により得られるXRDパターンにおいて、リチウムシリケートの（111）面の回析ピークの半値幅が0.05°以上である。上述のように、当該半値幅を0.05°以上に調整することで、リチウムシリケート相の結晶性が低くなり、粒子内のリチウムイオン導電性が向上し、充放電に伴うシリコン粒子12の体積変化がより緩和されると考えられる。好適なリチウムシリケートの（111）面の回析ピークの半値幅は、リチウムシリケート相11の成分によっても多少異なるが、より好ましくは0.09°以上、例えば0.09°〜0.55°、より好ましくは0.09°〜0.30°である。

上記リチウムシリケートの（111）面の回析ピークの半値幅の測定は、下記の条件で行う。複数のリチウムシリケートを含む場合には、全てのリチウムシリケートの（111）面のピーグの半値幅を測定する。また、リチウムシリケートの（111）面の回析ピークが、他の面指数の回析ピーク又は他の物質の回析ピークと重なる場合は、リチウムシリケートの（111）面の回析ピークを単離して半値幅を測定した。

測定装置：株式会社リガク社製、X線回析測定装置（型式RINT—TT
R11）
対陰極：Cu
管電圧：50kV
管電流：300mA
光学系：平行ビーム法
入射側：多層膜ミラー（発散角 0°0.05°、ビーム幅 1mm）、ソーラスリット（5°）、受光側：長尺スリット PSA 200（分解能：0°0.057°）、ソーラスリット（5°）。

走査ステップ：0°0.01°又は0°0.02°

計数時間：1〜6秒

リチウムシリケート相 L11 が Li2Si2O5 を主成分とする場合、負極物質粒子 10 の XRD パターンにおける Li2Si2O5 の (111) 面の回折ピークの半価幅は 0°0.09°以上であることが好ましい。例えば、Li2Si2O5 がリチウムシリケート相 L11 の総質量に対して 80 質量％以上である場合、好適な当該回折ピークの半価幅の一例は 0°0.09°〜0°0.55°である。また、リチウムシリケート相 L11 が Li2Si3O を主成分とする場合、負極物質粒子 10 の XRD パターンにおける Li2Si3O の (111) の回折ピークの半価幅は 0°1.0°以上であることが好ましい。例えば、Li2Si3O がリチウムシリケート相 L11 の総質量に対して 80 質量％以上である場合、好適な当該回折ピークの半価幅の一例は 0°1.0°〜0°0.55°より好ましくは 0°1.0°〜0°0.30°である。

負極物質粒子 10 の平均粒径は、高容量化及びサイクル特性の向上等の観点から、1〜1.5μmが好ましく、4〜10μmがより好ましい。ここで、負極物質粒子 10 の平均粒径とは、一次粒子の粒径であって、レーザー回折散乱法（例えば HORIZONA 製「LA-750」を用いて）で測定される粒度分布において体積積算値が 50% となる粒径（体積平均粒径）を意味する。負極物質粒子 10 の平均粒径が小さくなったり過ぎると、表面積が大きくなるため、電解質との反応量が増大して容量が低下する傾向にある。一方、平均粒径が大きくなったり過ぎると、充放電による体積変化量が大きくなるため、サイクル特性が低下する傾向にある。なお、負極物質粒子 10（母粒子 13）の表面には、導電層 14 を形成することが好ましいが、導電層 14 の厚みは薄いため、負極物質粒子 10 の平均粒径に影響しない（負極物質粒子 10 の粒径母粒子 13 の粒径）。

[0035]
[0037] 母粒子 1〜3 は、例えば下記の工程 1〜3 を経て作製される。以下の工程は、いずれも不活性雰囲気中で行う。
(1) いずれも平均粒径が数 μm〜数+ μm程度に粉砕された S i 粉末及びリチウムシリケート粉末を、例えば 20 :80〜95:5 の重量比で混合して混合物を作製する。
(2) 次に、ボールミルを用いて上記混合物を粉砕し微粒子化する。なお、それぞれの原料粉末を微粒子化してから、混合物を作製することも可能である。
(3) 粉砕された混合物を、例えば 600〜1000℃で熱処理する。当該熱処理では、ホットプレスのように圧力を印加して上記混合物の焼結体を作製してもよい。L i_{2z}S i O_{(1-z)} (0 < z < 2) で表されるリチウムシリケートは、上記温度範囲で安定であり、S i と反応しないので容量が低下することはない。また、ボールミルを使用せず、S i ナノ粒子及びリチウムシリケートナノ粒子を合成し、これらを混合して熱処理を行うことで母粒子 1〜3 を作製することも可能である。
[0038] 負極活性粒子 1 0 は、シリコン粒子 1 2 を包むリチウムシリケート相 1 1 よりも導電性の高い材料から構成される導電層 1 4 を粒子表面に有することが好適である。導電層 1 4 を構成する導電材料としては、電気化学的に安定なものが好ましく、炭素材料、金属、及び金属化合物からなる群より選択される少なくとも 1 種であることが好ましい。当該炭素材料には、正極付層の導電材と同様に、カーボンブラック、アセチレンブラック、ケッチャエンブラック、黒鉛、及びこれらの 2 種以上の混合物などを用いることができる。当該金属には、負極の電位範囲で安定な銅、ニッケル、及びこれらの合金などを用いることができる。当該金属化合物としては、銅化合物、ニッケル化合物等が例示できる (金属は金属化合物の層は、例えば無電解めつきにより母粒子 1〜3 の表面に形成できる)。中でも、炭素材料を用いることが特に好ましい。
[0039] 母粒子 1〜3 の表面を炭素被覆する方法としては、アセチレン、メタン等を
用いたCVD法、石炭ピッチ、石油ピッチ、フエノール樹脂等を母粒子13と混合し、熱処理を行う方法などが例示できる。また、カーボンブラック、ケッチェンブラック等を結着材を用いて母粒子13の表面に固着させることで炭素被覆層を形成してもよい。

[0040] 導電層14は、母粒子13の表面の略全域を覆って形成されることが好適である。導電層14の厚みは、導電性の確保と母粒子13へのリチウムイオンの拡散性を考慮して、1〜200nmが好ましく、5〜100nmがより好ましい。導電層14の厚みが薄くなり過ぎると、導電性が低下し、また母粒子13を均一に被覆することが難しくなる。一方、導電層14の厚みが厚くなり過ぎると、母粒子13へのリチウムイオンの拡散が阻害されて容量が低下する傾向にある。導電層14の厚みは、SEM又はTEM等を用いた粒子の断面観察により計測できる。

[0041] [非水電解質]
非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水電解質は、液体電解質（非水電解液）に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。非水溶媒には、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。

[0042] 上記エステル類の例としては、エチレンカーボネート（EC）、プロピレングリコールカーボネート（PGC）、ブチレングリコールカーボネート等の環状炭酸エステル、ジメチルカーボネート（DMC）、メチルエチルカーボネート（EMC）、ジェチルカーボネート（DEC）、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、アーブチロラクトン（GBL）、アーパレロラクトン（GVL）等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プチオン酸メチル（MP）、プチオン酸エチル、アーブチロラクトン等の鎖状カル
ボン酸エステルなどが挙げられる。

上記エーテル類の例としては、1, 3—ジオキサン、1, 3—ジオキサン、テトラヒドロフラン、2—メチルテトラヒドロフラン、プロピレンオキシド、1, 2—ブチレンオキシド、1, 3—ジオキサン、1, 4—ジオキサン、1, 3, 5—トリオキサン、フラン、2—メチルフラン、1, 8—シネオール、クラウンエーテル等の環状エーテル、1, 2—ジメートキシエタン、ジェチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフエニルエーテル、エチルフエニルエーテル、ブチルフエニルエーテル、ベンチルフエニルエーテル、メトキシトルエン、ベンジルエーテル、ジフエニルエーテル、ジベンジルエーテル、0—ジメトキシベンゼン、1, 2—ジエトキシエタン、1, 2—ジブトキシエタン、ジェチルエングリコールジメチルエーテル、ジェチルエングリコールジブチルエーテル、ジェチルエングリコールジヘキシルエーテル、ジェチルエングリコールジベンジルエーテル、ジェチルエングリコールジベンジルエーテル、ジェチルエングリコールジベンジルエーテル等の鎖状エーテル類などが挙げられる。

上記ハロゲン置換体としては、フルオロエチレンカーボネート（FEC）等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル（FMP）等のフッ素化鎖状カルボン酸エステル等を用いることが好ましい。

電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF₄, LiClO₄, LiPF₆, LiAsF₆, LiSbF₆, LiAlCl₄, LiSCN, LiCF₃SO₃, LiCF₃CO₂, Li(P(C₂O₄)F₄), LiPF₆ₓ(C₆F₅ₓ)ₓ (1 < x < 6, nは1又は2), LiBₙC₁ₓ, LiCl, LiBr, LiI, クロロホランリチウム、低級脂肪族カルボン酸リチウム、Li₂B₄O₇, Li(B(C₂O₄)₂)₂、等のホウ酸塩類、Li₂N(SO₂C₆F₃)₂, Li₂N(C₁F₂l+1SO₂)₂(C₆F₅ₓ, S₀₂) (1, mは1以上の整数
等のイミド塩類などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、LiPF₆を用いることが好ましい。リチウム塩の濃度は、非水溶媒1L当り0.8〜1.8molとすることが好ましい。

実施例

以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。

実施例1

[負極活物質の作製]
不活性雰囲気中で、Si粉末 (3N、10μm粉砕品)及びLi₂SiO₃粉末 (10μm粉砕品)を4:2:58の質量比で混合し、遊星ボールミル (フリーチュ製、P-5)のボット (SUS製、容量:500mL)に充填した。当該ボットにSUS製ボール (直径20mm)を24個入れてフタを閉め、200rpmで50時間粉砕処理した。その後、不活性雰囲気中で粉末を取り出し、温度600℃の条件で、不活性雰囲気・4時間の熱処理を行った。熱処理した粉末 (以下、母粒子といこう)を粉砕し、40μmのメッシュに通した後、石炭ピッチ (JFEケミカル製、MC250)と混合して、温度800℃の条件で、不活性雰囲気・5時間の熱処理を行い、母粒子の表面を炭素で被覆して導電層を形成した。炭素の被覆量は、母粒子、導電層を含む粒子の総質量に対して5質量%である。その後、篩を用いて平均粒径を5μm
に調整することにより負極活物質A1を得た。

[0049] [負極活物質の分析]

負極活物質A1の粒子断面をSEMで観察した結果、Si粒子の平均粒径は100nm未満であった。また、Li2SiO₃からなるマトリックス中にSi粒子が均一に分散していることが確認された。図2は、負極活物質A1のXRDパターンを示す。負極活物質A1のXRDパターンには、主にSiとLi₂SiO₃に由来する回折ピークが確認された。上述の測定条件等に基づき、XRDパターンのS (111) 面の回折ピーク（2θ = 28 - 29°）の半価幅からシエラーの式により算出したSi粒子の結晶子サイズは21nmであった。また、2θ = 27°付近に現れるLi₂SiO₃の (111) 面の半価幅は0.233°であった。なお、2θ = 25°にSiO2の回折ピークは観察されなかった。負極活物質A1をSi-NMRで以下の条件で測定した結果、SiO2の含有量は7質量%未満（検出下限値以下）であり、またLi₄SiO₄のピークは検出されなかった。

[0050] < Si-NMR測定条件>

測定装置：バリアン社製、固体核磁気共鳴スペクトル測定装置（INOV A-400）

プローブ：Varian 7mm CPMAS - 2
MAS : 4.2kHz
MAS速度：4kHz
パルス：DD (4.5°パルス + シグナル取込時間 1Hデカッフル)
繰り返し時間：1200sec
観測幅：100kHz
観測中心：100ppm付近
シグナル取込時間：0.05sec
積算回数：560
試料量：207.6mg

[0051] [負極の作製]
次に、上記負極活物質及びポリアクリロニトリル（PAN）を、95：5の質量比で混合し、N_メチル_2_ビロリドン（NMP）を添加した後、混合器（シンキー製、あわとり織太郎）を用いて攪拌して、負極合材スラリーを調製した。そして、銅箔の片面に負極合材層の1m2当りの質量が25gとなるように当該スラリーを塗布し、大気中、105℃で塗膜を乾燥した後、圧延することにより負極を作製した。負極合材層の充填密度は、1.50g／c m3とした。

[0052] [非水電解液の調製]

エチレンカーボネート（EC）とジェチルカーボネート（DCE）とを、3：7の体積比で混合した混合溶媒に、LiPF_6を濃度が1.0mol／Lとなるように添加して非水電解液を調製した。

[0053] [非水電解液二次電池の作製]

不活性雰囲気中で、Niタブを取り付けた上記負極及びリチウム金属箔を、ポリエチレン製セパレータを介して対向配置させることにより電極体とした。当該電極体をアルミニウムラミネートフィルムで構成される電池外装体内に入れ、非水電解液を電池外装体内に注入し、電池外装体を封止して電池T1を作製した。

[0054] < 実施例2 >

ボールミルの処理時間を10時間に変更したこと以外は、実施例1と同様の方法で負極活性物質A2及び電池T2を作製した。負極活性物質A2のXRDパターンには、主にSiとLi_2SiO_3に由来する回折ピークが確認された。Siの(111)面の回折ピークの半值幅からシエラーの式により算出したSi粒子の結晶サイズは35nmであった。また、2θ = 27°付近に現れるLi_2SiO_3の(111)面の半值幅は0.051°であった。なお、2θ = 25°にSiO_2の回折ピークは観察されなかった。負極活性物質A2をSiにおけるNMR測定した結果、SiO_2の含有量は7質量％未満（検出下限値以下）であり、また、Li_4SiO_4のピークは検出されなかった。

[0055] < 実施例3 >
Li₂SiO₃粉末 (10μm粉末)に代えて、Li₂Si₂O₅粉末 (10μm粉末)を用いたこと以外は、実施例1と同様の方法で負極活物質A3及び電池T3を作製した。図3は、負極活物質A3のXRDパターンを示す。負極活物質A3のXRDパターンには、主にSiとLi₂Si₂O₅及びLi₂SiO₃に由来する回折ピークが確認された。また、Siのピーク強度はリチウムシリケートのピーク強度よりも大きかった。Si (111)面の回折ピークの半価幅からシエラーの式により算出したSi粒子の結晶子サイズは15nmであった。また、2θ = 27°付近に現れるLi₂Si₂O₅の (111)面の半価幅は0.431°であった。なお、2θ = 2.5°にSiO₂の回折ピークは観察されなかった。負極活物質A3をSi NMR測定した結果、SiO₂の含有量は7質量％未満（検出下限値以下）であり、また、Li₄SiO₄のピークは検出されなかった。

<実施例4>
ポールミルの処理時間を10時間に変更したこと以外は、実施例3と同様の方法で負極活物質A4及び電池T4を作製した。負極活物質A4のXRDパターンには、主にSiとLi₂Si₂O₅に由来する回折ピークが確認された。Si (111)面の回折ピークの半価幅からシエラーの式により算出したSi粒子の結晶子サイズは40nmであった。また、2θ = 27°付近に現れるLi₂Si₂O₅の (111)面の半価幅は0.093°であった。なお、2θ = 2.5°にSiO₂の回折ピークは観察されなかった。負極活物質A4をSi NMR測定した結果、SiO₂の含有量は7質量％未満（検出下限値以下）であり、また、Li₄SiO₄のピークは検出されなかった。

<比較例1>
ポールミルの処理時間を2時間に変更したこと以外は、実施例1と同様の方法で負極活物質B1及び電池R1を作製した。負極活物質B1のXRDパターンには、主にSiとLi₂SiO₃に由来する回折ピークが確認された。Si (111)面の回折ピークの半価幅からシエラーの式により算出したSi粒子の結晶子サイズは45nmであった。また、2θ = 27°付近に現れる
Li_2SiO_3の(111)面の半値幅は0.66°であった。なお、$2\Theta = 2.5^\circ$にSiO_2の回折ピークは観察されなかった。負極活物質B1を$Si-NMR$測定した結果、SiO_2の含有量は7質量%未満（検出下限値以下）であり、また、Li_4SiO_4のピークは検出されなかった。

<比較例2>
Li_2SiO_3粉末$(10\mu m)$を用いたこと以外は、比較例1と同様の方法で負極活物質B2及び電池R2を作製した。負極活物質B2のXRDパターンには、主にSiとLi_2SiO_3に由来する回折ピークが確認された。Si(111)面の回折ピークの半値幅からシェラーの式により算出したSi粒子の結晶子サイズは47nmであった。また、$2\Theta = 2.7^\circ$付近に現れるLi_2SiO_3の(111)面の半値幅は0.78°であった。なお、$2\Theta = 2.5^\circ$にSiO_2の回折ピークは観察されなかった。負極活物質B2を$Si-NMR$測定した結果、SiO_2の含有量は7質量%未満（検出下限値以下）であり、また、Li_4SiO_4のピークは検出されなかった。

<比較例3>
$SiO_x(x = 0.97$、平均粒子径$5\mu m)$に石炭ピッチを混ぜて、不活性雰囲気・800℃で熱処理することにより炭素被覆層を設けたSiO_xを作製し負極活物質B3とした。負極活物質としてB3を用いたこと以外は、実施例1と同様の方法で電池R3を作製した。

実施例1～4及び比較例1～3の各電池について、以下の方法で初回充放電効率の評価を行った。評価結果は、表1に示した。

[初回充放電効率の評価]

充電
0.21tの電流で電圧が0Vになるまで定電流充電を行い、その後0.051tの電流で電圧が0Vになるまで定電流充電を行った。

放電
0.21tの電流で電圧が1.0Vになるまで定電流放電を行った。
休止
上記充電と上記放電との間の休止期間は 10 分とした。

1サイクル目の充電容量に対する放電容量の割合を、初回充放電効率とし
た。

初回充放電効率 (%)
= 1サイクル目の放電容量 / 1サイクル目の充電容量 × 100

[充放電後の負極活物質粒子の N M R 測定]

1サイクル充放電を行った放電後の電池を不活性雰囲気下で解体し、極板
から各負極活物質のみを採取し N M R 測定用試料とした。1サイクル充放電
後の各負極活物質 A 1-A 4, B 1-B 3 について、上記の条件で S i _ N
M R 測定を行った。図 4, 5 は、それぞれ負極活物質 A3, B3 の初回充放
電前及び充放電後の S i _ N M R 測定結果である。図4 に示すように、充放
電後の負極活物質 A3 の N M R スペクトルには、L i 4 S i 〇4 のピークは検
出されなかった（充放電後の負極活物質 A1, A2, A4, B1-B2 の場合
も同様）。一方、図 5 に示すように、充放電後の負極活物質 B3 の N M R ス
ペクトルには L i 4 S i 〇4 のピークが検出された。
<table>
<thead>
<tr>
<th>LiSiケート</th>
<th>粉砕時間</th>
<th>NMRピーク (初回充放電後)</th>
<th>サイズ</th>
<th>結晶性</th>
</tr>
</thead>
<tbody>
<tr>
<td>実験例1</td>
<td>Li₃SiO₆</td>
<td>50h</td>
<td>21nm</td>
<td>0.233°</td>
</tr>
<tr>
<td>実験例2</td>
<td>Li₃SiO₆</td>
<td>10h</td>
<td>15nm</td>
<td>0.051°</td>
</tr>
<tr>
<td>実験例3</td>
<td>Li₃SiO₆</td>
<td>10h</td>
<td>40nm</td>
<td>0.434°</td>
</tr>
<tr>
<td>実験例4</td>
<td>Li₃SiO₆</td>
<td>45h</td>
<td>47nm</td>
<td>0.066°</td>
</tr>
<tr>
<td>比較例1</td>
<td>Li₃SiO₆</td>
<td>2h</td>
<td>_</td>
<td>0.78°</td>
</tr>
<tr>
<td>比較例2</td>
<td>Li₃SiO₆</td>
<td>2h</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>比較例3</td>
<td>Li₃SiO₆</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
</tbody>
</table>
< 実施例5 >

[正極の作製]

コバルト酸リチウムと、アセチレンブラック（電気化学工業社製、HS 100）と、ポリフッ化ビニリデン（PVdF）とを、95：2.5：2.5の質量比で混合した。当該混合物に分散媒としてN_メチル_2—ビロリドン（NMP）を添加した後、混合機（プライミックス社製、T．K．ハイビスミックス）を用いて攪拌し、正極合金スラリーを調製した。次に、アルミニウム箔箔上に正極合金スラリーを塗布し、乾燥させた後、圧延ローラにより圧延して、アルミニウム箔の両面に密度が3.6 g/c m³の正極合金層が形成された正極を作製した。

< 実施例6 >

[負極の作製]

実施例1で用いた負極活物質A 1と、黒鉛を、5：95の質量比で混合したものを負極活物質A 5（負極活物質A 1 ：5質量％）として用いた。負極活物質A 5と、カルボキシメチルセルロースナトリウム（CMC ₉Na）と、スチレン-ブタジエンゴム（SBR）とを、97.5：1.0：1.5の質量比で混合し、水を添加した。これを混合機（プライミックス社製、T．K．ハイビスミックス）を用いて攪拌し、負極合金スラリーを調製した。次に、銅箔上に負極合金層の1 m²当りの質量が190 gとなるように混合スラリーを塗布し、大気中、105℃で塗膜を乾燥し、圧延して、銅箔の両面に密度が1.6 g/c m³の負極合金層が形成された負極を作製した。

[非水電解質二次電池の作製]

上記各電極にタブをそれぞれ取付け、タブが最外周部に位置するように、セパレータを介してタブが取付けられた正極及び負極を渦巻き状に巻回することにより巻回電極体を作製した。当該電極体をアルミニウムラミネートシートで構成される外装体に挿入して、105℃で2時間真空乾燥した後、上記非水電解液を注入し、外装体の閉口部を封止して電池T 5を作製した。この電池の設計容量は800 mAhである。
負極活物質 A 1 の代わりに負極活物質 A 2 を用いたこと以外は、実施例 5 と同様の方法で負極活物質 A 6 及び電池 T 6 を作製した。

[0068] < 実施例 7 >
負極活物質 A 1 の代わりに負極活物質 A 3 を用いたこと以外は、実施例 5 と同様の方法で負極活物質 A 7 及び電池 T 7 を作製した。

[0069] < 実施例 8 >
負極活物質 A 1 の代わりに負極活物質 A 4 を用いたこと以外は、実施例 5 と同様の方法で負極活物質 A 8 及び電池 T 8 を作製した。

[0070] < 比較例 4 >
負極活物質 A 1 の代わりに比較例 1 で用いた負極活物質 B 1 を用いたこと以外は、実施例 5 と同様の方法で負極活物質 B 4 及び電池 R 4 を作製した。

[0071] < 比較例 5 >
負極活物質 B 1 の代わりに負極活物質 B 2 を用いたこと以外は、比較例 4 と同様の方法で負極活物質 B 5 及び電池 R 5 を作製した。

[0072] < 比較例 6 >
負極活物質 B 1 の代わりに負極活物質 B 3 を用いたこと以外は、比較例 4 と同様の方法で負極活物質 B 6 及び電池 R 6 を作製した。

[0073] 実施例 5 - 8 及び比較例 4 - 6 の各電池について、以下の方法で充放電サイクル特性の評価を行った。評価結果は、表 2 に示した。

[0074] [サイクル試験]

・充電
1 l t (800 mA) の電流で電圧が 4.2 V になるまで定電流充電を行い、その後 4.2 V の定電圧で電流が 1/20 l t (40 mA) になるまで定電圧充電した。

・放電
1 l t (800 mA) の電流で電圧が 2.75 V になるまで定電流放電を
行った。

- 休止
上記充電と上記放電との間の休止期間は 10 分とした。

上記充放電サイクルを繰り返して、1サイクル目の放電容量の80％に達するサイクル数を測定し、これをサイクル寿命とした。なお、各電池のサイクル寿命は、電池T6（実施例6）のサイクル寿命を100とした指数である。

[0075] [表2]

<table>
<thead>
<tr>
<th></th>
<th>サイクル寿命</th>
</tr>
</thead>
<tbody>
<tr>
<td>実施例5</td>
<td>105</td>
</tr>
<tr>
<td>実施例6</td>
<td>100</td>
</tr>
<tr>
<td>実施例7</td>
<td>105</td>
</tr>
<tr>
<td>実施例8</td>
<td>94</td>
</tr>
<tr>
<td>比較例4</td>
<td>80</td>
</tr>
<tr>
<td>比較例5</td>
<td>79</td>
</tr>
<tr>
<td>比較例6</td>
<td>80</td>
</tr>
</tbody>
</table>

[0076] 表1及び表2に示すように、実施例の電池T1〜T4はいずれも、比較例の電池R1〜R3と比べて初回充放電効率が高く、実施例の電池T5〜T8はいずれも、比較例の電池R4〜R6と比べてサイクル特性に優れている。実施例の中でも、Si粒子を構成する結晶子のサイズが25nm以下である負極活物質A1、A3を用いた場合に、特に良好な初回充放電効率及びサイクル特性が得られた。

符号の説明

[0077] 10 負極活物質粒子、11 リチウムシリケート相、12 シリコン粒子、13 母粒子、14 導電層
請求の範囲

[請求項1] L_{i_{2z}}S_{i_0} (2z^2) \{ 0 < z < 2 \} で表されるリチウムシリケート相と

前記リチウムシリケート相中に分散したシリコン粒子と、

を備え、

XRD測定により得られるXRDパターンのS_{i_1} (111) 面の回

析ピークの半価幅からチエラーの式により算出される前記シリコン粒

子の結晶子サイズが40nm以下である、非水電解質二次電池用負極

活物質。

[請求項2] XRD測定により得られるXRDパターンにおいて、S_{i_1} (111)

面の回析ピークの強度がリチウムシリケートの (111) 面の回析

ピークの強度よりも大きい、請求項1に記載の非水電解質二次電池用

負極活物質。

[請求項3] 充放電後の前記非水電解質二次電池用負極活物質には、L_{i_{4z}}Si_{i_0}

・が含まれていない、請求項1又は2に記載の非水電解質二次電池用負

極活物質。

[請求項4] XRD測定により得られるXRDパターンにおいて、リチウムシリケートの (111) 面の回析ピークの半価幅が0.05°以上である

、請求項1〜3のいずれか1項に記載の非水電解質二次電池用負極活

物質。

[請求項5] 前記XRDパターンの2θ = 25°にS_{i_1}O_{i_2}の回析ピークが観察

されない、請求項1

〜4のいずれか1項に記載の非水電解質二次電池用負極活物質。

[請求項6] 前記リチウムシリケート相は、L_{i_{2z}}Si_{i_2}O_{i_5}を主成分とし、

前記XRDパターンにおけるL_{i_{2z}}Si_{i_2}O_{i_5} (111) 面の回析ピー

クの半価幅が0.09°以上である、請求項1〜5のいずれか1項に

記載の非水電解質二次電池用負極活物質。

[請求項7] 前記リチウムシリケート相は、L_{i_{2z}}Si_{i_3}O_{i_3}を主成分とし、
前記XRDパターンにおける$Li_2SiO_3(111)$面の回折ピークの半値幅が0.10°以上である、請求項1〜5のいずれか1項に記載の非水電解質二次電池用負極活物質。

[請求項8] 前記リチウムシリケート相、前記シリコン粒子とで構成される母粒子の表面には、導電層が形成されている、請求項1〜7のいずれか1項に記載の非水電解質二次電池用負極活物質。

[請求項9] 請求項1〜8のいずれか1項に記載の非水電解質二次電池用負極活物質を用いた負極と、正極と、非水電解質と、を備えた非水電解質二次電池。
[図1]
[図5]
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

H 01 M4 /38 (2 0 0 6 . 0 1) i . H 01 M4 / 3 6 (2 0 0 6 . 0 1) i .

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H 01 M4 / 3 8 . H 01 M4 / 3 6 .

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1922-1996
Kokai Jitsuyo Shinan Koho 1971-1996
Toroku Jitsuyo Shinan Koho 1996-2016

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* * Special categories of cited documents:
"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search 24 March 2016 (24.03.16)

Date of mailing of the international search report 05 April 2016 (05.04.16)

Name and mailing address of the ISA/Japan Patent Office 3-4-3, Kasumigas eki , Chiyoda- ku , Tokyo 102-8515, Japan

Authorized officer

Telephone No.
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2014 - 103019 A (Shin-Etsu Chemical Co., Ltd.), 05 June 2014 (05.06.2014), claims 14 to 16, 20, 25; paragraphs [0050].</td>
<td>1-9</td>
</tr>
<tr>
<td></td>
<td>CN 103840136 A & KR 10-2014-0065339 A</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (continuation of second sheet) (January 2015)
国際調査報告
国際調査報告 国際出願番号 PCT / JP 2016 / 000220

A. 発明の属する分野の分類（国際特許分類 (IPC)）
Int.Cl. H01M4/38 (2006. 01) i , H01M4/36 (2006. 01) i

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））
Int.Cl. H01M4/38，H01M4/36

最小限資料以外の資料で調査を行った分野に含まれるもの
日本国实用新案公報 1922—
日本国公開実用新案公報 1971—2
日本国实用新案登録公報 1996—
日本国登録実用新案公報 1994—

国際調査で使用した電子データベース（データベースの名前、調査に使用した用語）
Scopus

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2011-222151 A（信越化学工業株式会社）2011.11.04，特許請求の範囲【0031】 D062 - D065 図1</td>
<td>1,2,4-9</td>
</tr>
<tr>
<td>& US 2011/0244333</td>
<td>AI, Claims-5, [0037] [0132] [0138], FIG.1</td>
<td></td>
</tr>
<tr>
<td>& TW 201212352</td>
<td>AI</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>JP 2013-161705 A（株式会社豊田自動織機）2013.08.19，特許請求の範囲【0013】 D014 - D024 - D035 - D072 - D079 図1 図6（ファミリーなし）</td>
<td>1,3-5,7-9</td>
</tr>
</tbody>
</table>

"C欄の続きにも文献が列挙されている。「；」：パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー
 特に関連のある文献ではなく、一般的技術水準を示すもの
 国際出願の提出者または特許があるが、国際出願時の公表されたもの
 特に関連のある文献で、当該文献の出願日若しくは他の特別な理由を確立するために引用する文献
 口頭による開示、使用、展示等に言及する文献
 国際出願の提出者で、かつ優先権の主張の基礎となる出願日

国際調査を完了した日 24.03.2016
国際調査報告の発送日 05.04.2016

国際調査機関の名称及びあた先
日本国特許庁（ISA ／ JP）
郵便番号100-08915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）
青木 千歌子
電話番号03-3581-1101内線3477

様式PCT／ISA／210（第2ページ）（2015年1月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名及一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
</table>
| X | JP 2014-103019 A（信越化学工業株式会社）2014.06.05,
【請求項14】-【請求項16】
【請求項20】
【請求項25】 D050]
D092] - D096]
図2]

様式 PCT/ISA/210（第2ページの続き）(2015年1月)