

AMENDED

COMMONWEALTH of AUSTRALIA

PATENTS ACT 1952

APPLICATION FOR A STANDARD PATENT

We

W. R. Grace & Co.-Conn., of
 1114 Avenue of the Americas,
 New York,
 New York 10036,
 United States of America,

APPLICATION ACCEPTED AND AMENDMENTS

ALLOWED 9-2-88

hereby apply for the grant of a Standard Patent for an invention entitled:

"CONTROL OF CORROSION IN AQUEOUS SYSTEMS"

which is described in the accompanying ~~provisional~~ complete specification.

Details of basic application(s):—

<u>Number</u>	<u>Convention Country</u>	<u>Date</u>
026,494	United States of America	16 March, 1987

The address for service is care of DAVIES & COLLISON, Patent Attorneys, of 1 Little Collins Street, Melbourne, in the State of Victoria, Commonwealth of Australia.

Dated this 16th day of February, 1989.

To: THE COMMISSIONER OF PATENTS

.....
 (a member of the firm of DAVIES & COLLISON for and on behalf of the Applicant).

Davies & Collison, Melbourne and Canberra.

COMMONWEALTH OF AUSTRALIA

PATENTS ACT 1952

Reference No. 03-6829
corres. to USSN 026,494DECLARATION IN SUPPORT OF CONVENTION OR
NON-CONVENTION APPLICATION FOR A PATENT

Insert title of invention.

Insert full name(s) and address(es) of declarant(s) being the applicant(s) or person(s) authorized to sign on behalf of an applicant company.

In support of the Application made for a patent for an invention entitled: "Control of corrosion in aqueous systems"

I, William W. McDowell, Assistant Secretary,
W.R. Grace & Co.
Of 1114 Avenue of the Americas,
New York, New York 10036,
United States of America.Cross out whichever of paragraphs 1(a) or 1(b) does not apply
1(a) relates to application made by individual(s)
1(b) relates to application made by company; insert name of applicant company.

do solemnly and sincerely declare as follows:—

1. (a) ~~I, the applicant~~
~~W.R. Grace & Co.~~

or (b) I am authorized by

W.R. GRACE & CO.

the applicant..... for the patent to make this declaration on ~~its~~ behalf.2. (a) ~~I, the actual inventor~~
~~W.R. Grace & Co.~~or (b) Dionisio Guerrero Cuisia Of 6100 N. St. Louis Avenue, Chicago, Illinois 60659 and Chih Ming Hwa Of 1041 Nightingale Drive, Palatine, Illinois 60067 and Murrell Leon Salutsky Of 1950 Berkeley Road, Highland Park, Illinois 60035.
All of the United States of America.

Xs are the actual inventor..... of the invention and the facts upon which the applicant..... is entitled to make the application are as follows:—

The actual inventors assigned the invention to the said applicant.

State manner in which applicant(s) derive title from inventor(s)

Cross out paragraphs 3 and 4 for non-convention applications. For convention applications, insert basic country(s) followed by date(s) and basic applicant(s).

3. The basic application..... as defined by Section 141 of the Act was made in United States of America on the 16th March, 1987..... by Dionisio Guerrero Cuisia, Chih Ming Hwa and Murrell Leon Salutsky.....
by.....
in..... on the.....
by.....

4. The basic application..... referred to in paragraph 3 of this Declaration was the first application..... made in a Convention country in respect of the invention the subject of the application.

Declared at Columbia this
Maryland, USA17th day of November, 1987

W. R. GRACE & CO.

William W. McDowell,
Assistant Secretary

DAVIES & COLLISON, MELBOURNE and CANBERRA.

Insert place and date of signature.

Signature of declarant(s) (no attestation required)

Note: Initial all alterations.

(12) PATENT ABRIDGMENT (11) Document No. AU-B-13146/88
(19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 595992

(54) Title

CONTROL OF CORROSION IN AQUEOUS SYSTEMS

International Patent Classification(s)

(51)⁴ C23F 011/14 C02F 001/70

(21) Application No. : 13146/88

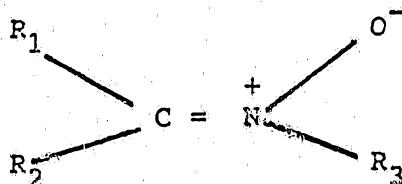
(22) Application Date : 16.03.88

(30) Priority Data

(31) Number (32) Date (33) Country
026494 16.03.87 US UNITED STATES OF AMERICA

(43) Publication Date : 15.09.88

(44) Publication Date of Accepted Application : 12.04.90


(71) Applicant(s)
W.R. GRACE & CO.-CONN.

(72) Inventor(s)
DIONISIO GUERRERO CUISIA; CHIH MING HWA; MURRELL LEON SALUTSKY

(74) Attorney or Agent
DAVIES & COLLISON, MELBOURNE

(57) Claim

1. A method for control of corrosion of metals in contact with system water in an aqueous system comprising the step of adding to the system water an effective amount of an oxygen scavenger selected from the group of nitrones of the formula:

wherein R_1 and R_2 may be the same or different and are each a member selected from the group consisting of hydrogen and hydrocarbon radicals having between 1 and 10 carbon atoms, and R_3 is a hydrocarbon radical having between 1 and 10 carbon atoms; or water soluble salts thereof.

COMMONWEALTH OF AUSTRALIA

PATENT ACT 1952

COMPLETE SPECIFICATION

(ORIGINAL)

FOR OFFICE USE

CLASS INT. CLASS

Application Number:
Lodged:

595992

Complete Specification Lodged:
Accepted:
Published:

This document contains the
amendments made under
Section 49 and is correct for
printing.

Priority:

Related Art:

NAME OF APPLICANT: W.R. GRACE & CO. (U.S.A.)

ADDRESS OF APPLICANT: 1114 Avenue of the Americas,
New York, New York 10036,
United States of America.

NAME(S) OF INVENTOR(S) Dionisio Guerrero CUISIA
Chih Ming HWA
Murrell Leon SALUTSKY

ADDRESS FOR SERVICE: DAVIES & COLLISON, Patent Attorneys
1 Little Collins Street, Melbourne, 3000.

COMPLETE SPECIFICATION FOR THE INVENTION ENTITLED:

"CONTROL OF CORROSION IN AQUEOUS SYSTEMS"

**The following statement is a full description of this invention,
including the best method of performing it known to us :-**

FIELD OF INVENTION

This invention relates to the addition of oxygen scavengers to aqueous systems to reduce the corrosion of metal's that are in contact with water in the systems, and more particularly, to the addition of a composition comprising a nitrone or certain related compounds to the system water of an aqueous system as an oxygen scavenger to reduce corrosion of metal surfaces in contact with the system water.

BACKGROUND OF THE INVENTION

In processes using aqueous solutions, corrosion of metal surfaces may occur at various locations including feed lines, heaters, steam lines, process tanks and return lines. Dissolved oxygen in the water can be a principal factor influencing this corrosion, particularly where iron and steel are materials of construction. The corrosion of the iron and steel pipes, boilers, and economizers of conventional boiler systems is a well known problem; and controlling the presence of oxygen in boiler systems, particularly in the feed water section, has received considerable attention. Oxygen removal may be partially accomplished by either vacuum or thermal deaeration, or both. Complete removal of oxygen cannot be effected by these means, however, and further removal by use of a chemical scavenging agent, such as sodium sulfite, has been a customary practice.

In recent times, the use of low pressure boilers (operating below about 150 psig) has been increasingly supplemented by use of boilers operating at moderate pressure (operating between about 150 psig and about 600 psig) and high pressure (operating above about 600 psig). As boiler operating temperatures and pressures have increased there has been particular interest in the performance of oxygen scavengers at these operating conditions. For example, use of sulphites at elevated temperatures and pressures may cause an increase in solids, and formation of sulfur dioxide and hydrogen sulfide, both of which can be a source of corrosion. Scavengers such as hydrazine, hydroquinone, and certain hydroxylamines have been found to perform satisfactorily in some circumstances. In other circumstances, the efficiency with which the scavenging proceeds has not been optimal. There is thus a continuing need for alternative oxygen scavengers which can be effectively used at elevated temperatures and pressures. Of particular value are single scavenging compounds which can be used in place of hydrazine.

Despite the reported toxicity of hydrazine, much recent research has concerned development of corrosion inhibitors using hydrazine together with various organic products. U.S. Patent No. 3,551,349 to Kallfass suggests using hydrazines in combination with activating amounts of various quinone compounds (including hydroxyl forms such as pyrocatechol and hydroquinone) and their derivatives, particularly those with hydrophilic substituents such as carboxylic acid and sulphonic acid. U.S. Patent No. 3,843,547 to

Kaufman et al. discloses a hydrazine-hydroxyl quinone combination in further combination with various aryl amine compounds; while U.S. Patent No. 3,983,048 to Schiessl et al. discloses a use of hydrazine along with a catalytic proportion of certain aryl amines, including sulfonated aryl amines. U.S. Patent No.'s 4,026,664 and 4,079,018 to Noack disclose hydrazine-based corrosion inhibitors which use organometallic complexes (including certain amino derivatives of carboxylic acids) as catalysts, and preferably quinone compounds (including hydroquinone) and their derivatives to render the compositions compatible with phosphonate scale control agents.

Other work has focused on nitrogen-containing compounds other than hydrazine such as various amines, hydroxylamines, or oximes. U.S. Patent 4,067,690 of Cuisia et al. discloses that hydroxylamine and certain derivatives thereof are highly effective oxygen scavengers in boiler water. The hydroxylamines may be catalyzed with any of a number of well-known catalysts used in sodium sulfite or hydrazine boiler water treatment. Alkali metal hydroxide, water soluble metal salts, hydroquinone, and benzoquinone are also useful catalysts. As disclosed in U.S. Patent No. 4,350,606 to Cuisia et al., the use of a hydroxylamine compound and a volatile, neutralizing amine such as cyclohexylamine, morpholine, diethylaminoethanol, dimethylpropanolamine, or 2-amino-2-methyl-1-propanol, inhibits corrosion in boiler systems caused by carbon dioxide and oxygen. Japanese Patent Document SHO

57-204288 to Sato discloses using certain hydroxylamines as de-oxidants in combination with certain trivalent phenols, napthoquinones, and anthraquinones or various derivatives thereof, as 5 activating agents. The invention may be practiced in boiler related systems and activity is deemed particularly significant in neutral and alkaline pH ranges. U.K. Patent Application No. GB 2,157,670A by Nemes et al. reveals advantageous use of hydroxylamines together with neutralizing amines and a quinone, a dihydroxybenzene, a diaminobenzene, or an 10 aminohydroxybenzene compound to scavenge oxygen and to inhibit corrosion in boiler water and other aqueous systems.

15 U.S. Patent No. 4,278,635 to Kerst discloses use of various dihydroxy, diamino, and amino hydroxy benzenes and their lower alkyl substituted derivatives (including sulfonated naphthalenes), and particularly hydroquinone, as deoxygenating corrosion control agents which compare favorably with other scavengers such as 20 hydrazine. Reaction rate increases with higher pH and higher temperature are disclosed, as is use of the invention in boiler systems. U.S. Patent No.'s 4,279,767; 4,289,645; and 4,487,708, all to Muccitelli, 25 are directed to use of hydroquinone as an oxygen scavenger in combination with various compatible amines. Addition of hydroquinone to boiler feedwater together with certain neutralizing amines used to neutralize carbon dioxide in the boiler condensate 30 system is disclosed. The systems preferably have elevated temperatures and/or alkaline conditions.

European Patent Publication No. 0054345 is directed to use of certain aminophenol compounds to reduce oxygen in aqueous medium such as boiler water. These scavengers are deemed to outperform hydrazine in simulated feedwater conditions and are preferably used in alkaline pH.

U.S. Patent No. 4,487,745 to Weiss et al. is directed to the use of certain oximes to remove dissolved oxygen from aqueous systems such as steam generating systems, and to thereby inhibit the corrosion of metal surfaces. U.S. Patent No. 4,269,717 to Slovinsky is directed to similar use of carbohydrazide and discloses that certain scavengers show activity comparable to hydrazine while other similar compounds do not. U.S. Patent No. 4,399,098 to Cuisia discloses use of semicarbazide and its salts as oxygen scavengers in aqueous systems such as boiler water systems to reduce corrosion from dissolved oxygen. U.S. Patent No. 4,479,917 to Rothgery et al. is directed to an oxygen-scavenging, corrosion-inhibiting agent for fluidic systems comprising certain aminoguanidine compounds. U.S. Patent No. 2,170,596 to Quiggle describes oxygen-absorbing solutions using catalysts such as amidol, para amido phenol, and certain amino-anthraquinones together with reducing agents such as sulfides.

It is well known that a nitrone may be prepared by the reaction of a hydroxylamine, particularly a mono N-substituted hydroxylamine, with an aldehyde or a ketone. It is also known that alkylation of oximes using agents such as alkyl halides or sulfates yields nitrones as well as oxime ethers, the relative yield of

each depending on the reaction conditions and the nature of the reagents (including the configuration of the oxime). U.S. Patent No. 4,596,874 to Murahashi et al. describes nitrone synthesis by reacting certain secondary amines with a peroxide in the presence of a catalyst.

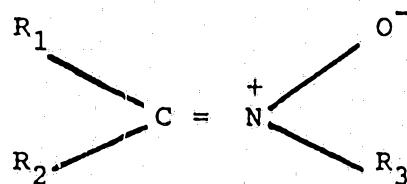
SUMMARY OF THE INVENTION

We have found that the addition of nitrones or their water soluble salts to the system water of aqueous systems, including boiler and steam condensate systems, inhibits the corrosion of metal in contact with the system water by removing oxygen in the system. The invention herein described surprisingly promotes the rapid scavenging of oxygen in aqueous systems, such as boiler water systems, containing dissolved air and/or oxygen. The invention is especially suited for aqueous systems such as boiler and steam condensate systems wherein the system liquid or steam consists essentially of water and oxygen. Indeed, the efficiency of oxygen scavenging achieved by using the additives, and the effectiveness of the additives at conditions found within boiler systems, makes boiler system use particularly advantageous.

Accordingly, it is an object of this invention to provide a method to inhibit corrosion of metals in contact with aqueous solutions.

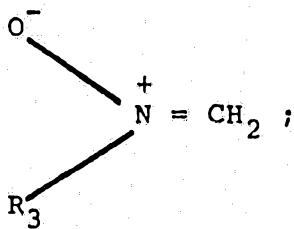
It is another object of this invention to remove oxygen from boiler system water.

It is still another object of this invention to remove oxygen from steam and its condensate.

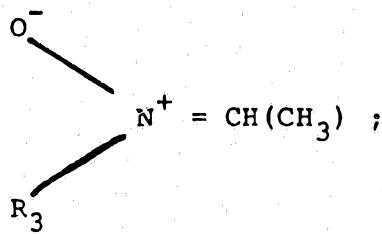

These and other objects and advantages of the present invention will become apparent from the 5 detailed description of the invention which follows.

BRIEF DESCRIPTION OF THE DRAWINGS

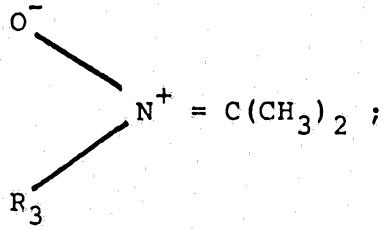
Fig. 1 is a schematic view of one apparatus used 10 to test oxygen scavenging.


DETAILED DESCRIPTION

Nitrones are used in accordance with this 15 invention to effectively scavenge oxygen from an aqueous system so that corrosion of metals in contact with the system water is inhibited. In general, the corrosion inhibiting agents used in this invention include a nitrone having the structural formula:


20 R_1 and R_2 may be the same or different and are each selected from the group consisting of hydrogen and hydrocarbon radicals having between one and ten carbon atoms. R_3 is a hydrocarbon radical having between one and ten carbon atoms. R_1 , R_2 , and R_3 may all be 25 selected from alkyl groups (saturated or unsaturated), 30

cycloalkyl groups, aryl groups, or aralkyl groups. Examples of said alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, and the various n-hexenyl, n-heptenyl, n-octenyl, n-nonenyl and n-decenyl radicals. Examples of said cycloalkyl, aryl, and aralkyl groups, respectively, include cyclohexyl, phenyl, and tolyl radicals. The preferred hydrocarbon radicals are groups which have between one and seven carbons. Examples of preferred compounds are thus formaldehyde isopropyl nitrone; formaldehyde ethyl-nitrone, formaldehyde methyl nitrone, acetaldehyde isopropyl nitrone, acetaldehyde propyl nitrone, acetaldehyde ethyl nitrone, acetaldehyde methyl nitrone, acetone isopropyl nitrone, acetone propyl nitrone, acetone ethyl nitrone, acetone methyl nitrone, acetone n-butyl nitrone, acetone benzyl nitrone, formaldehyde n-hexyl nitrone, methyl ethyl ketone ethyl nitrone, formaldehyde cyclohexyl nitrone, isobutyraldehyde isopropyl nitrone, isobutyraldehyde ethyl nitrone, n-butyraldehyde isopropyl nitrone, n-butyraldehyde ethyl nitrone, and n-butyraldehyde propyl nitrone. These preferred compounds include formaldehyde alkyl nitrones having the general structural formula:


acetaldehyde alkyl nitrones having the general structural formula:

5

and acetone alkyl nitrones having the general structural formula:

10

wherein R_3 is a saturated or unsaturated alkyl having between one and ten, and preferably between one and seven, carbon atoms. Low molecular weight embodiments of formaldehyde alkyl nitrones, acetaldehyde alkyl nitrones, and acetone alkyl nitrones such as those where R_3 is methyl, ethyl, propyl, or isopropyl are particularly useful where higher volatility is desired. Water soluble salts of the nitrones used in accordance with this invention may also be used.

15

The use of nitrones as oxygen scavengers may be practiced in various water systems, such as recirculating heating or cooling systems. We have found that they are particularly suited for use as oxygen scavenging additives to boiler related systems,

such as, for example, boiler feedwater and boiler water where the water is preferably maintained at a pH between about 7 and about 12, most preferably from about 8 to about 11. One suggested use is for treatment of water in a dormant boiler wherein the nitrone may be added along with sufficient amounts of alkaline agents such as sodium hydroxide to raise the pH to within the desired range. The higher alkalinity also aids in corrosion inhibition. In boiler water systems, corrosion may occur in feed lines, heaters, economizers, boilers, steam lines, and return lines; and the invention is intended for broad use in any boiler water system (i.e. at pressures in the range of 0 to 1000 psig or higher). The volatility of nitrone included within this invention, especially those having relatively low molecular weights, also makes them useful in steam and steam condensate systems where addition may be made to either the steam or to its condensate. Oxygen scavenging is particularly effective in systems where the water reaches elevated temperatures, above say 190 degrees Fahrenheit. Indeed, inasmuch as nitrone perform effectively at higher pressures and temperatures, they are considered particularly suited for boiler water systems which operate at temperatures in the range of about 298°F to about 637°F and at pressures in the range of about 50 psig to 2000 psig. They are also considered effective scavengers for boiler systems which operate at even higher temperatures and pressures. The metal surfaces exposed to these conditions are generally iron and steel.

Practice of the invention will become further apparent from the following non-limiting examples.

EXAMPLE I

5 The oxygen scavenging activity of the chemicals
 was evaluated in an experimental boiler. This
 experimental boiler has been described previously in
 the proceedings of the Fifteenth Annual Water
 Conference, Engineers Society of Western Pennsylvania,
 pages 87-102 (1954). Essentially, it consists of a
 10 vertical steel tube fitted with three external heating
 loops extending from near the bottom and discharging
 near the center of the central tube. Boiler water
 circulates through each heating loop from bottom to top
 15 and steam is withdrawn from the top of the vertical
 tube. The heating source in each loop consists of an
 electrical fire-rod unit transferring heat indirectly
 through the walls of a heating tube.

20 The feedwater was saturated with oxygen by
 continuous aeration maintaining about 8 to 9 parts per
 million (ppm) of dissolved oxygen. This feedwater
 contained a total hardness of approximately 10 ppm (as
 25 CaCO_3). Typical boiler water treatment chemicals such
 as sodium hydroxide (caustic soda) and disodium
 phosphate for alkalinity and calcium hardness control
 were added to the water in the boiler. The boiler
 water pH ranged from 10.8 to 11.2. Feedwater passed
 into the boiler where it was heated to a temperature of
 about 448°F under a pressure of about 400 psig. After
 steam formation, the steam was condensed through a heat
 exchanger. The condensate, which had a temperature of
 30 approximately 55°F, was then passed through a chamber
 containing a standard oxygen probe. The dissolved
 oxygen in the condensate was measured in the chamber to

determine the effectiveness of oxygen removal within the system.

Boiler water was fed through the system without addition of any oxygen scavenger until a constant dissolved oxygen reading was observed in the condensate. Once the base dissolved oxygen level in the condensate was established, formaldehyde isopropylnitron was added as the sole oxygen scavenger to the boiler feedwater at a dosage of 80 parts per million (ppm). The dissolved oxygen level in the condensate was then monitored to determine a final level by which the effectiveness of the nitron could be determined.

A second run was made using formaldehyde ethylnitron in place of formaldehyde isopropylnitron. After a base dissolved oxygen level in the condensate was established, formaldehyde ethylnitron was added to the feedwater at a dosage of 80 ppm. The final level of the oxygen in the condensate was then measured to determine the effectiveness of the nitron in the system.

A third run was made using hydrazine. After a base dissolved oxygen level in the condensate was established, hydrazine was added to the feedwater at a dosage of 80 ppm. The final level of oxygen in the condensate was then measured to determine the effectiveness of the hydrazine in the system.

A fourth run was made using sodium sulfite. After a base dissolved oxygen level in the condensate was established, sodium sulfite was added to the feedwater at a dosage of 80 ppm. The final level of oxygen in the condensate was then measured to determine the effectiveness of the sulfite in the system.

The results of these runs are summarized in Table I.

TABLE I

Run No.	Oxygen Scavenger	Base Level of Dissolved Oxygen in Condensate (ppm)	Dosage of Oxygen Scavenger		Final Level of Dissolved Oxygen in Condensate (ppm)	Reduction in Dissolved Oxygen	
			moles per liter	parts per million		parts per million	percent
1	Formaldehyde Isopropylnitronate	3.2	.00092	80	0.3	2.9	90.6
2	Formaldehyde Ethylnitronate	3.6	.0011	80	0.9	2.7	75.0
3	Hydrazine	2.7	.0025	80	0.1	2.6	96.3
4	Sodium Sulfite	2.7	.000635	80	0.1	2.6	96.3

The results shown in Table I indicate that
nitrones were effective oxygen scavengers in the boiler
system. It is evident that nitrones may be utilized as
an oxygen scavengers in moderate and high pressure
5 boiler systems. The iron and steel components
typically found in these systems can thus be
effectively protected from oxygen-related corrosion.

EXAMPLE II

10

The oxygen scavenging activity of nitrones were
also evaluated and compared to that of hydrazine under
simulated boiler feedwater conditions. The apparatus
used for this evaluation is depicted schematically in
15 Fig. 1. The apparatus (10) comprises a peristaltic
pump (11) which is used for circulating water
throughout the system, pump inlet tubing (12) and pump
outlet tubing (13). A polyethylene fill-bottle (14) is
connected with the inlet tubing (12) and is used to
20 feed system water into the apparatus. A valve (15),
which may be selectively opened and closed, is provided
between the fill-bottle (14) and the inlet tubing (12)
and is used to control flow therebetween. A
temperature measurement chamber (16) is positioned
25 within the pump inlet tubing (12) and contains a
thermometer (17) used for monitoring the water
temperature. The system water is drawn through the
inlet tubing (12), into the pump (11), and then is
pumped via the pump outlet tubing (13) into a glass
30 sampling chamber (18). The sampling chamber (18)
contains a pH probe (19) and a dissolved oxygen probe

(20). The pH probe (19) is operably connected to a pH meter (21) used for displaying and monitoring the system water pH; and the dissolved oxygen probe (20) is operably connected to a dissolved oxygen meter (22) used for displaying and monitoring the system water dissolved oxygen level, as well as to a recorder (23) used for continuously recording the dissolved oxygen level in the system water. Tubing (24) is provided for directing system water from the glass sampling chamber (18) to the one liter stainless steel preheat reactor (25), known in the laboratory as a "Parr vessel." A glass chemical inlet chamber (26) is positioned within the tubing (24) and may be fitted with a rubber septum (not shown) through which a chemical solution of oxygen scavenger may be injected. The preheat reactor (25) contains a heating element (not shown) which may be activated to preheat the system water. Water forced out of the preheat reactor (25) by operation of the pump (11) is directed through tubing (27) to a two liter stainless steel heating reactor (28) where the system water is heated to its highest temperature. A heating element and a thermostat (not shown) are provided for maintaining the water temperature in the heating reactor (28) relatively constant. The water from the heating reactor (28) passes through tubing (29) into a water cooled heat exchanger (30) which cools the system water to a range of about 55°F to 60°F. System water from the heat exchanger (30) is then recirculated into the pump inlet tubing (12). Thus, while the system water may be heated to elevated temperatures in the preheat reactor (25) and heating

reactor (28), the recirculated water passing through the pump (11) and into the sampling chamber (18) may be kept at a relatively constant temperature conducive to accurate probe operation. The full capacity of the 5 apparatus (10) is about 4.5 liters while the pumping rate of pump (11) is about 0.30 to 0.35 liters per minute.

The oxygen scavenging activities of nitrones and hydrazine were each investigated at system water 10 conditions of 190°F and pH 8.5. In each run distilled water saturated with oxygen (about 8 to 9 ppm) and adjusted to the requisite pH with sodium hydroxide, was fed into the system through the polyethylene fill-bottle (14). The system was filled to its 15 capacity with water to the substantial exclusion of air, and the water was heated using the preheat reactor (25) and heating reactor (28) until the steady state was achieved at which the temperature of system water leaving the heating reactor (28), as controlled by the 20 thermostat therein, was about 190°F, and the temperature of the system water leaving the heat exchanger (30) as measured by thermometer (17) was from about 55°F to 60°F. During this period, gas was allowed to exit from the system through the fill-bottle 25 (14) and the chemical inlet chamber (26); and the dissolved oxygen level in the circulating water was allowed to equilibrate. Recirculation continued in each run until the oxygen level in the system water remained constant for at least 30 minutes. Once the 30 initial oxygen reading was established, the system was effectively closed to the atmosphere and the oxygen

scavenger was injected through a rubber septum fitted in the chemical inlet chamber (26). Recycling continued for 30 minutes, during which time the oxygen level in the sampling chamber (18) was monitored. The 5 results given in Table II below were obtained on separate runs using hydrazine (Run 12) and various dosages of the nitrones formaldehyde isopropylnitrone (Runs 5 and 6), formaldehyde ethylnitrone (Run 7), acetaldehyde isopropylnitrone (Run 8), acetaldehyde ethylnitrone (Run 9), acetone isopropylnitrone (Run 10), and acetone ethylnitrone (Run 11).

TABLE II

Run No.	Oxygen Scavenger	Base Level of Dissolved Oxygen in Condensate (ppm)	Dosage of Oxygen Scavenger (moles per mole O ₂)	Final Level of Dissolved Oxygen in Condensate (ppm)	Reduction in Dissolved Oxygen
					parts per million percent
5	Formaldehyde Isopropylnitron	3.5	5:1	1.9	1.6 45.7
6	Formaldehyde Isopropylnitron	3.4	10:1	1.3	2.1 61.8
7	Formaldehyde Ethylnitron	3.5	4:1	1.5	2.0 57.1
8	Acetaldehyde Isopropylnitron	5.2	4:1	1.2	4.0 76.9
9	Acetaldehyde Ethylnitron	4.1	5:1	1.6	2.5 61.0
10	Acetone Isopropylnitron	3.2	4:1	0.7	2.5 78.1
11	Acetone Ethylnitron	4.5	4:1	1.5	3.0 66.7
12	Hydrazine	3.4	3:1	1.2	2.2 64.7

The results shown in Table II indicate that nitrones were effective oxygen scavengers in the system water. It is evident that nitrones may be advantageously utilized as an oxygen scavenger in feedwater systems of moderate and high temperature boilers. The iron and steel components typically found in these systems can thus be effectively protected from oxygen-related corrosion.

The process of this invention for inhibiting corrosion of metal surfaces in contact with the system water of an aqueous system by scavenging oxygen from the system water comprises adding to the system water an effective amount of at least one nitrone. The preferred dosage range of nitrone is generally from about 0.01 ppm to about 10,000 ppm. Concentrations toward the lower end of this range, say up to about 200 ppm, are most practical in systems where additional means of oxygen removal are also provided such as, for example, boiler water systems and the like having deaerators in which mechanical deaeration is practiced. Concentrations toward the upper end of this range, say about 20 ppm and above, are most practical where slug dosages are made to a system such as, for example, a recirculating hot water system, to provide residual nitrone over a long time period. The most preferred dosage range is generally from about 0.05 ppm to about 1,000 ppm. Use of nitrones is not confined to low, moderate or high pressure boiler systems, but may be utilized in a wide variety of other systems where aqueous solutions containing dissolved air and/or oxygen are in contact with metal surfaces. The precise

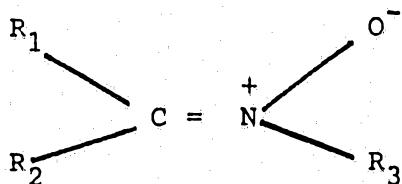
dosage used in each system will be somewhat dependent on the specific nitrone and the particular system and the water characteristics therein. The preferred system liquid (which may contain small amounts of 5 certain additives normally used in systems such as boiler water systems for control of corrosion, scaling, sedimentation, pH, hardness and the like) consists essentially of water containing dissolved oxygen. Likewise, where the nitrone are used to protect steam 10 systems, the preferred steam composition (which may contain other gases normally found in air, as well as other system volatiles) consists essentially of water and oxygen. In systems where addition is made to system water which will not be further aerated before 15 it contacts the metal surfaces to be protected, a mole ratio of nitrone to oxygen in the system is preferably between about 0.1:1 to about 1,000:1; most preferably between about 0.5:1 to about 50:1. Preferably the temperature of the system water reaches the range of about 40°F to about 700°F as scavenging proceeds, 20 most preferably between about 60°F and about 600°F.

It is generally economical, especially where the systems are not operated at elevated temperatures, that the system water have a pH greater than about 5 as 25 oxygen scavenging proceeds; preferably between about 7 and about 12; most preferably from about 8 to about 11.

The preferred pH may be maintained by conventional means such as adding alkaline agents. Preferred conventional agents include sodium hydroxide, potassium 30 hydroxide, sodium carbonate, potassium carbonate, and phosphate salts of high alkalinity, such as disodium

phosphate, and trisodium phosphate (especially trisodium phosphate). In boiler water systems, sodium hydroxide and potassium hydroxide are generally preferred over sodium carbonate and potassium carbonate because of the known potential for carbonates to contribute to carbon dioxide induced corrosion.

The oxygen scavengers are preferably added directly to the system water as nitrone. However, compositions which, upon being added to an aqueous system, yield an oxygen scavenger consisting essentially of nitrone would of course provide similar corrosion protection and are considered within the scope of our findings.


The nitrone compositions employed in the process of this invention can typically be added to the system water by conventional bypass feeders using briquettes containing the additives, by feeding the compounds as dry powder mixtures to the water, or by feeding the treatment compounds as an aqueous feed solution. Feed solutions, when used, preferably contain from about 0.5 to about 95 percent by weight of nitrone oxygen scavenger; most preferably from about 5 to about 60 weight percent thereof. Where, as in many boiler systems, make-up water is added to the aqueous solution, calibrated injectors can be employed to deliver predetermined amounts of the nitrone, periodically or continuously, to the aqueous solution via the make-up water line. While the scavengers may be added at locations throughout the system, the addition is preferably made at a location where there is little opportunity for additional aeration of the

solution before it contacts the metal components to be protected. For example, in boiler systems, addition is preferably made to the feedwater at a location where the feedwater will not be exposed to substantial 5 aeration before it enters the boiler. Examples of such locations might include the feedwater line itself, or depending upon the boiler system design, the return condensate lines, make-up water lines, or the storage section of deaerators.

10 The examples describe particular embodiments of the invention. Other embodiments will be apparent to those skilled in the art from a consideration of the specification or practice of the invention disclosed herein. It is understood that modifications and 15 variations may be practiced without departing from the spirit and scope of the novel concepts of this invention. It is further understood that the invention is not confined to the particular formulations and examples herein illustrated, but it embraces such 20 modified forms thereof as come within the scope of the following claims.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1 1. A method for control of corrosion of metals
3 in contact with system water in an aqueous system
5 comprising the step of adding to the system water an
 effective amount of an oxygen scavenger selected from
 the group of nitrones of the formula:

7 wherein R_1 and R_2 may be the same or different and are
9 each a member selected from the group consisting of
11 hydrogen and hydrocarbon radicals having between 1 and
13 10 carbon atoms, and R_3 is a hydrocarbon radical having
 between 1 and 10 carbon atoms; or water soluble salts
 thereof.

1 2. The method of Claim 1 wherein R_1 and R_2 are
3 each independently selected from a group consisting of
 saturated or unsaturated alkyl groups having between 1
 and 7 carbons and hydrogen.

1 3. The method of Claim 2 wherein R_3 is a
3 saturated or unsaturated alkyl having between 1 and 7
 carbons.

1 4. The method of Claim 1 wherein R_1 , R_2 , and R_3
3 are all selected from the groups consisting of a
saturated and unsaturated alkyl groups, cycloalkyl
groups, aryl groups, and aralkyl groups.

1 5. The method of Claim 1 wherein the scavenger
3 is added at a dosage of between ~~about~~ 0.01 ppm and
3 ~~about~~ 10,000 ppm.

1 6. The method of Claim 1 wherein the scavenger
3 added is a formaldehyde alkyl nitrone, an acetaldehyde
5 alkyl nitrone, an acetone alkyl nitrone, or a water
soluble salt thereof and wherein R_3 is a saturated or
unsaturated alkyl having between 1 and 7 carbons.

1 7. The method of Claim 6 wherein the scavenger
3 is added at a dosage between ~~about~~ 0.01 ppm and ~~about~~
3 10,000 ppm.

1 8. The method of Claim 6 wherein R_3 is selected
3 from a group consisting of methyl, ethyl, propyl, and
isopropyl radicals.

1 9. The method of Claim 1 wherein the scavenger
3 comprises formaldehyde isopropyl nitrone, formaldehyde
5 ethylnitrone, acetaldehyde isopropyl nitrone,
acetaldehyde ethylnitrone, acetone isopropyl nitrone,
acetone ethylnitrone, or a water soluble salt thereof.

1 10. The method of Claim 1 wherein the system
water is maintained at a pH within the range of about 7
3 to about 12.

1 11. The method of Claim 10 wherein the
temperature of the system water reaches the range of
3 about 40°F to about 700°F as scavenging proceeds.

1 12. The method of Claim 1 wherein addition is
made to system water which will not be further aerated
3 before it contacts the metal surfaces, and wherein the
5 mole ratio of nitrone to oxygen dissolved in the
system water is from about 0.1:1 to about 1,000:1.

1 13. The method of Claim 1 particularly adapted
for use in boiler and steam condensate systems to
3 protect the system metals in contact with system liquid
5 or steam wherein the system liquid or steam consists
essentially of water and oxygen; and wherein the oxygen
scavenger is added directly to the system as nitrone.

1 14. The method of Claim 13 wherein the scavenger
3 is added at a location wherein there is no substantial
further aeration of the water before it contacts the
5 metal surfaces to be protected, and in a mole ratio of
oxygen in the boiler feedwater of from about 0.1:1 to
about 1,000:1.

1 15. The method of Claim 14 wherein the scavenger
3 is added in a mole ratio to oxygen in the boiler
feedwater of about 0.5:1 to about 50:1.

1 16. The method of Claim 14 wherein R_1 and R_2 are
3 each independently selected from a group consisting of
5 saturated and unsaturated alkyl groups having between 1
 and 10 carbons and hydrogen; and wherein R_3 is selected
 from the group consisting of saturated or unsaturated
 alkyl having between 1 and 10 carbons.

1 17. The method of Claim 13 wherein the scavenger
3 comprises a formaldehyde alkyl nitrone, an acetaldehyde
5 alkyl nitrone, an acetone alkyl nitrone, or a water
 soluble salt thereof, wherein R_3 is a saturated or
 unsaturated alkyl having between 1 and 10 carbons; and
 wherein the nitrone is added at a dosage of from about
7 0.01 ppm to about 10,000 ppm.

1 18. The method of Claim 17 wherein R_3 is selected
3 from a group consisting of methyl, ethyl, propyl, and
 isopropyl radicals.

1 19. The method of Claim 13 wherein addition is
3 made to the boiler feedwater; and wherein the feedwater
 is adjusted to a pH of between about 7 to about 12.

1 20. The method of Claim 13 wherein the system
 contains steam and addition is made to the steam.

1 21. The method of Claim 1 particularly adapted
3 for use in boiler systems operating at pressures of at
5 least about 50 psig and temperatures of at least about
 298°F to protect the iron and steel boiler system
 components in contact with the boiler water, wherein
 the oxygen scavenger is added to the boiler water.

1 22. The method of Claim 21 wherein the boiler
system has a deaerator and deaeration is practiced.

1 23. The method of Claim 22 wherein the concen-
tration of nitrone is between ~~about~~ 0.01 ppm and ~~about~~
3 200 ppm.

1 24. The method of Claim 23 wherein the scavenger
3 is added at a location wherein there is no substantial
further aeration of the water before it enters the
boiler in a mole ratio to oxygen in the boiler
5 feedwater of from ~~about~~ 0.1:1 to ~~about~~ 1,000:1.

1 25. The method of Claim 24 wherein addition is
made to the boiler feedwater, and the feedwater is
3 adjusted to a pH of between ~~about~~ 7 and ~~about~~ 12.

1 26. The method of Claim 21 wherein the scavenger
3 is added at a dosage between ~~about~~ 0.01 ppm to ~~about~~
10,000 ppm.

1 27. The method of Claim 26 wherein the scavenger
3 comprises a formaldehyde alkyl nitrone, an acetaldehyde
5 alkyl nitrone, an acetone alkyl nitrone, or a water
soluble salt thereof, and wherein R_3 is a saturated or
unsaturated alkyl having between 1 and 10 carbons.

1 28. The method of Claim 27 wherein R_3 is selected
from a group consisting of methyl, ethyl, propyl and
3 isopropyl radicals; and wherein the pH of the system is
maintained between ~~about~~ 7 and ~~about~~ 12.

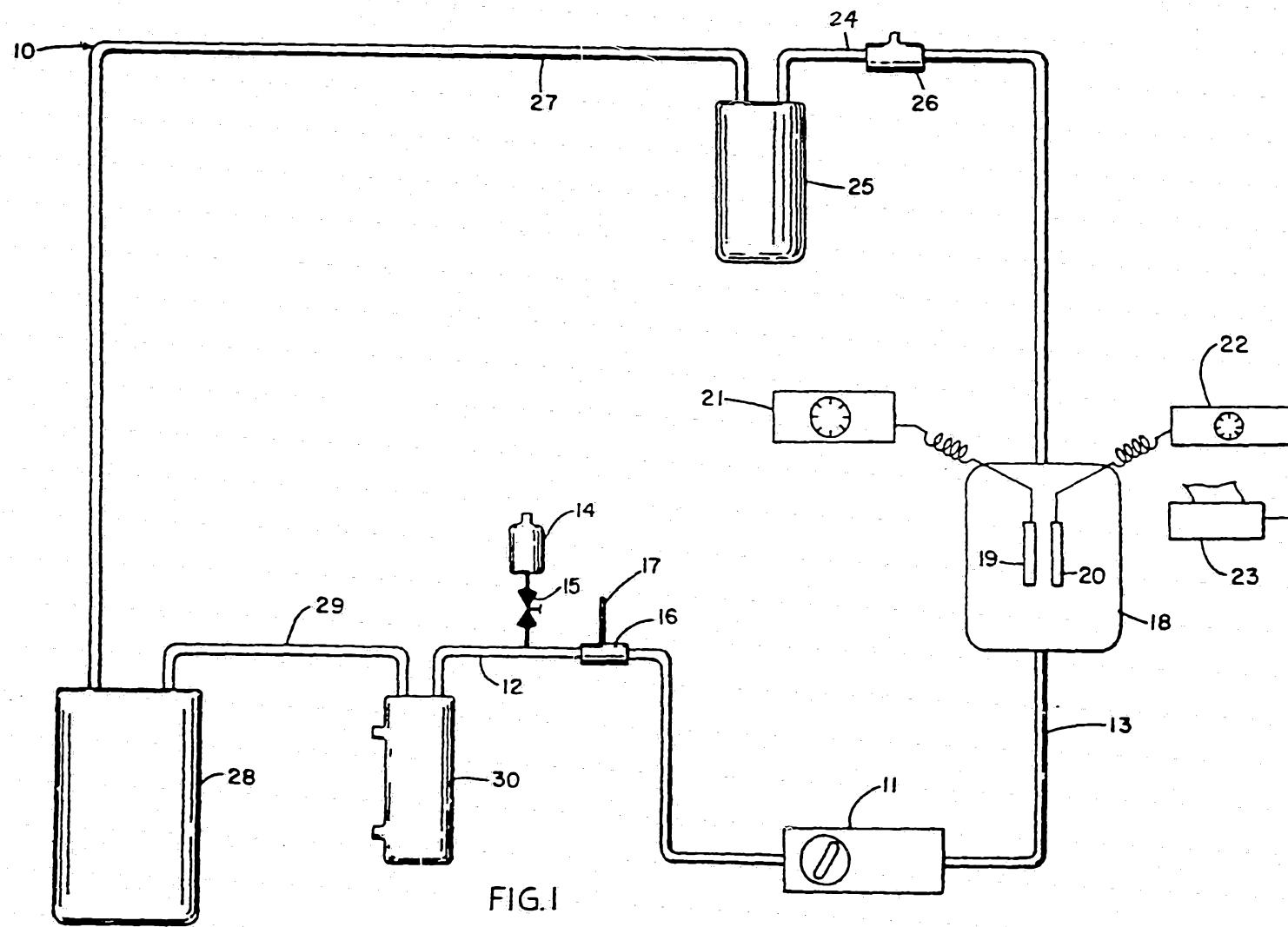
1 29. The method of Claim 27 wherein the mole ratio
2 of nitrone to oxygen dissolved in the solution is
3 between ~~about~~ 0.5:1 and ~~about~~ 50:1; the boiler water pH
4 is maintained at a pH of between ~~about~~ 7 and 12; and
5 the dosage of nitrone is between ~~about~~ 0.05 ppm and
1,000 ppm.

1 30. The method of Claim 26 wherein the boiler
2 system reaches operating pressures between ~~about~~ 50
3 psig and ~~about~~ 2000 psig and operating temperatures
4 between ~~about~~ 298°F and about 637°F as scavenging
5 proceeds.

1 31. The method of Claim 26 wherein the boiler
2 water is maintained at a pH of between ~~about~~ 7 and 12;
3 and wherein the scavenger comprises formaldehyde
4 isopropyl nitrone, formaldehyde ethyl nitrone,
5 acetaldehyde isopropyl nitrone, acetaldehyde
6 ethyl nitrone, acetone isopropyl nitrone, acetone
7 ethyl nitrone, or a water soluble salt thereof.

1 32. The method of Claim 31 wherein the mole ratio
2 of nitrone to oxygen dissolved in the solution is
3 between ~~about~~ 0.1:1 and ~~about~~ 1,000:1; and the dosage
4 of nitrone is between ~~about~~ 0.05 ppm and 1,000 ppm.

1 33. A method according to claim 1, substantially
2 as hereinbefore described with reference to the Examples
3 and/or drawing.



~~34. The steps, features, compositions and compounds referred to or indicated in the specification and/or claims of this application, individually or collectively, and any and all combinations of any two or more of said steps or features.~~

Dated this 16th day of March 1988

W.R. GRACE & CO., - CONS
By its Patent Attorneys,
DAVIES & COLLISON.

