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(57) Abstract

A radiometer system (20) detects nat-

urally occurring atmospheric microwave ra-
diation (50, 52, 54) in three bands at ap-
proximately 20, 30, and 90 GHz. Signals
representing radiation intensity at each of
these bands are converted into a brightness
temperature and used as a system input to
a processing system that yields system out-
puts (56) including the atmospheric ice wa-
ter path, liquid water path, and water vapor
content. A parameterized radiative transfer
model (P102) is used to quantify radiation
emanating from the atmosphere. The ap-
plied signal processing technique provides
measurement of the total ice column in
the atmosphere, and simultaneously pro-
vides accurate measurement of water va-
por and liquid water. A calibration tech-
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nique (P110) enhances the accuracy of ice c

detection measurements by correcting for
the effects of absorptive atmospheric com-
ponents, such as water vapor and liquid wa-
ter.
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ICE DETECTION USING RADIOMETERS

Government Funded Invention

This invention was made with United States Government support under
Agreement No. ATM-9209181 awarded by the National Science Foundation. The
Government has certain rights in this invention.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention pertains to the field of devices or systems that use
atmospheric radiation as an indicator of atmospheric conditions. More specifically,
the water detection system of the present invention uses a radiometer to measure
atmospheric water content including ice content.
2. Statement of the Problem

The earth’'s atmosphere contains water in the form of water vapor,
condensed cloud water, and ice crystals. The ability to measure atmospheric water
content is exceedingly useful because it permits mankind to take appropriate action
in response to environmental conditions. Atmospheric water content is a key
variable that influences aviation, weather prediction, and weather control.

In particular, aircraft pilots want to avoid flying through regions of supercooled
liquid water that can form sheets of ice on the exterior wing surfaces of an aircraft.
Supercooled liquid water particles or droplets form in the atmosphere as an air
parcel rises to a location where the ambient temperature is below 0°C. These
droplets have diameters that typically range from tens to hundreds of micrometers,
and are known to exist at temperatures as low as -20°C. The droplets adhere to
aircraft wing surfaces where they form a sheet of ice. This type of icing continues
to be one of the primary causes of aviation accidents, especially in winter weather.

Atmospheric water content data is also needed for use in weather control
operations. Clouds are sometimes 'seeded' with fine crystals to induce
precipitation. It is desirable to conduct these seeding operations on clouds having
a sufficient moisture content to provide the desired precipitation. It is also
desirable to optimize the applied concentration of seed crystals for purposes of
providing maximum precipitation.

Current techniques for measuring the atmospheric water content from

ground based instruments lack reliability under many conditions. The most
1
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commonly utilized devices for determining atmospheric water content include
radiometers that detect naturally occurring radiation in the atmosphere. The
radiometers are designed to sense key frequencies in the water absorption
spectrum, and use corresponding mathematical algorithms to estimate the
atmospheric water content. Naturally occurring radiation has a fairly even
distribution across the earth's surface because down welling radiation from clouds
in the presence of a cosmic background behaves simitarly to up welling radiation
over the cool ocean. These facts permit the use of radiometers over both land and
ocean bodies.

Ground-based dual-channel radiometers are commonly used to monitor
atmospheric water vapor and cloud water. The resultant radiometric
measurements are about the same as or better than measurements that derive
from radiosondes which are temporarily deployed into the atmosphere. Ground-
based radiometers are preferred over radiosondes because the radiometers
advantageously provide continuous automated measurements.

it is presently impossible to provide a system incorporating a physical model
that accounts for the many variables which influence ground-based radiometric
measurements according to known laws of nature because atmospheric radiation
is affected by a series of complex interactions with the atmosphere. Significant
variables at least include the relative humidity of the atmosphere at different levels,
the bulk density of ice and liquid water, temperature, pressure, radiation scattering
due to condensed forms of water, radiation extinction coefficients (or molar
absorptivity) of radiation at different frequencies, and the distribution of water and
ice particles in the atmosphere. Additionally, some aspects of a purely physical
model, e.g., radiation absorption due to a vapor continuum, are not compietely
understood. Therefore, the most accurate radiometric systems rely upon statistical
information that relates ground level microwave radiation readings to atmospheric
conditions. In this manner, auxiliary sources of statistical information are used to
improve the confidence and accuracy of radiometer measurements. Sources of
statistical information include airplanes or probes equipped with sensing
instruments, ground-based radar, radio acoustic sounding systems, satellites, and
radiosondes.
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Radiometric water data retrieval systems typically use statistical models to
study data from the atmospheric microwave spectrum. The microwave spectrum
is utilized because atmospheric water absorbs other forms of radiation (e.g., near
infrared radiation) to emit microwave radiation. These statistical techniques have
resulted in the development of various algorithms that indicate water vapor and
cloud water information, but these aigorithms only relate to conditions where there
is no precipitation (e.g., rain or snow). Even so, the statistical systems
demonstrate accuracy exceeding that which can be obtained from physical
systems.

Most statistical radiometric systems fail to account for the scattering of
radiation due to atmospheric water particles, e.g., as water droplets or ice crystals,
because the data supporting the system is collected under particle-free conditions.
The existing physical and statistical systems break down if precipitation exists as
ice or water droplets because the particles introduce a Mie scattering phenomenon
(a scattering of light due to particles in the light pathway), while the system models
are solely based upon absorption and emission phenomena that fail to account for
Mie scattering. For example, water data retrieval accuracies have marginal
accuracy if the cloud water content exceeds about 3mm. In ice clouds, the effect
of microwave radiation absorption is negligible, and scattering is the predominant
variable influencing the extinction of microwave radiation as the radiation passes
through the cloud.

Statistical radiometric systems commonly use brightness temperature
measurements from a radiometer as a system input to an algebraic expression that
relates statistical brightness temperature input to atmospheric water content output.
The term 'brightness temperature' pertains to well known blackbody radiation
theory from the field of physics. A blackbody is an ideal body that absorbs ali
incident radiation and reflects none. Blackbody radiation is the amount of radiant
energy that emits from a blackbody at a fixed temperature. Blackbody radiation
has a spectral energy distribution that is described by the Planck energy
distribution law, which relates blackbody temperature to radiation intensity to
bandwidths across a radiation spectrum. A brightness temperature is the
temperature of a blackbody that would emit the same amount of radiation energy

per unit area in a selected spectral region as is observed from a non-ideal object,
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e.g., water in the atmosphere. Brightness temperature measurements are within
the standard capabilities of substantially all radiometers or radiometer systems in
use today. These instruments conventionally detect radiation intensity at a
selected band, and use these measurements to derive brightness temperature
solutions through the Planck energy distribution law.

The most widely accepted statistical radiometric system uses the model
that has been developed by the National Oceanic and Atmospheric Administration
(*NOAA”). The NOAA model is based upon long term radiosonde information, and
varies with the geographical location of the radiometer. Equations (1) and (2)

provide a typical dual channel algorithm for the Denver, Colorado area:

(1) 4

-0.1705 + 0.10368Tg,,¢ - 0.04526T,, 65

(2) LWP

-0.0132 - 0.0008791T75,,¢ + 0.002165T,, 65

wherein V is the integrated water vapor content in cm; LWP is the liquid water path
in cm; Tgoq g is the radiometer brightness temperature determined at 20.6 giga
hertz (“GHz");, and Tga1 g5 is the radiometer brightness temperature determined
at 31.65 GHz. ltis significant that these algorithms ignore ice water content. The
radiosonde data upon which these calculations are based are reasonably accurate
for relative humidities ranging between 20% and 90%, but the accuracy is poor for
measurements obtained under atmospheric conditions outside this range.
Studies have shown that statistical correlations which produce values of V
and LWP from radiometer brightness temperatures have significant variances with
respect to the radiosonde data for V and LWP upon which the correlations are
based. For example, Wei, Leighton, and Rogers, A _comparison of several
radiometric methods of deducing path-integrated cloud liquid water, 6 J. Atmos.
Oceanic Technol. 1001-1012 (1989) reports that a root mean square variance of
8.7% existed between a radiosonde-based correlation similar to Equation (1) (V)

4
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for the Nova Scotia, Canada area and the actual radiosonde data upon which the
correlation was based. A 37% variance existed for a correlation similar to Equation
(2) (LwP).

No method exists to apply radiometric brightness temperatures for the
purpose of calculating atmospheric ice content. This analysis is complicated by the
fact that microwave emissions from a precipitating cloud undergo a compiex
interaction with overiapping regions of liquid, melting phase, and ice. Vivekandan,
Turk, and Bringi, 30 Journal of Applied Meteorology (No. 10 October, 1991)
indicates that the difference in brightness temperatures determined at 37 and 85
GHz can possibly be used to estimate the physical properties of an integrated ice
water path. A simple system using brightness temperatures obtained from two
frequencies was indicated to be potentially useful in predicting the physical
properties of an ice water path; however, the theoretical system in many instances
showed poor agreement with actual storm data. This article failed to provide a
method for using multiple frequencies to calculate atmospheric water parameters,
namely, vapor and liquid.

An attempt has been made to overcome the scattering phenomenon by
physical modeling. Pilewskie and Towmey, 21 ATMOSPHERIC RESEARCH 113-
122 (1987) applies a simple geometric optics approximation for single-scattering
albedo to show that polydispersed distributions of water and ice have dramatically
different absorptions within portions of the near infrared spectrum. A comparison
between near infrared measurements from two clouds shows that the clouds had
different near infrared absorptions. It was suggested that the absorption
differences were caused by the presence of ice in one of the clouds; however, the
technique could not provide quantitative measurements of cloud ice and water
contents.

There remains a need for a radiometer system that can simultaneously with
reliability determine the amount of atmospheric water vapor, cloud water, and ice.
Atmospheric ice content is especially difficult to determine using conventional
methods and apparatus.
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SOLUTION

The system of the present invention overcomes the problems mentioned
above, and provides a significant advance in the art by providing a radiometric
water detection system that can reliably determine the amount of atmospheric
water vapor, cloud water, and ice. The system method and apparatus detects
radiation at muitiple frequencies, and uses the radiation data to as system input to
a processor system that calculates the relative amounts of atmospheric water
vapor, cloud water, and ice. The system provides superior accuracy because it
accounts for the scattering effects of ice particles.

In its broadest sense, the radiometric water detection system of the present
invention is one that is able to quantify the presence of atmospheric ice. The
detection system includes a radiometer that passively detects naturally occurring
atmospheric microwave radiation in a plurality of bands. The radiometer provides
signals that represent the detected radiation for each of the bands. These signals
are converted to brightness temperatures, which are used as system inputs to a
computerized neural network that yields system outputs indicative of the observed
data including atmospheric ice water path, liquid water path, and water vapor
content.

Use of the neural network, while not absolutely essential to the invention,
is much preferred because of the wide-ranging flexibility and ease of operation that
are associated with its use. Neural networks provide a relationship between any
input data set and any output data set in ways that purely statistical correlations
cannot. For example, neural networks can provide these relationships for non-
linear functions. Statistical models can aiso fit non-linear data clouds, but a
statistician typically has to introduce personal bias into the model to gain this effect.
Additionally, nonlinearities are not always apparent from a review of the data.

In preferred embodiments, the radiometric water detection system detects
microwave radiation in a plurality of bands that are particularly sensitive to specific
phases of atmospheric water. For example, a 20.6 GHz band is mostly sensitive
to water vapor, a 31.65 GHz band is mostly sensitive to liquid water, and a 90 GHz

band is sensitive to the particle scattering effects of ice. Thus, the frequencies of
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interest are selected to conform with the radiative absorption and emission
spectrum of water.

The radiometric water detection system is preferably trained from a synthetic
data set by using a data set derived from a forward-looking radiative transfer
model. The radiative transfer model combines physical laws with statistical data
to produce the synthetic data set. Thus, the forward-looking radiative transfer
model incorporates such items as theoretical microwave extinction due to the Mie
scattering effects of atmospheric ice particles, statistical correlations relating
radiosonde data to observed brightness temperatures, and radiation extinction due
to water vapor absorption.

In especially preferred embodiments, the number of variables represented
in the synthetic training data set are limited to those having the greatest effect or
sensitivity to the presence of atmospheric water. A comparative sensitivity study
is used identify and cull non-sensitive variables. The complexity of the system
analysis of the radiometric water detection system is, accordingly, reduced by
selecting for analysis only those variables that are most sensitive to atmospheric
water.

The system training using the synthetic data set preferably occurs by
introducing the forward-looking radiative transfer model synthetic data set together
with associated brightness temperatures into a neural network. In the training
process, the neural network adjusts its weighting factors to accept brightness
temperature measurements at a plurality of frequencies or wavelengths, and
provide output including atmospheric water content including ice water path, liquid
water path, and water vapor column.

The radiometric water detection system preferably calibrates itself by
calculating a mean difference in brightness temperatures between the neural
network system output and physical observations by secondary means (.e.g., data
from statistical correlations that work very well in selected atmospheric conditions).
The calibration or correction is performed by adjusting the incoming data to reflect
an average difference between the neural network system output and the data from
the secondary means. The adjusted synthetic data set is use to retrain the neural

network for enhanced accuracy.
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Other salient features, objects, and advantages will be apparent to those
skilled in the art upon a reading of the discussion below in combination with the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 depicts a radiometer system including a computerized neural
network system according to the present invention;

FIG. 2 depicts a process flow chart diagram that governs the development
of the neural network system for the FIG. 1 system:;

FIG. 3 depicts a process flow chart that illustrates a portion of the FIG. 2
process in greater detail;

FIG. 4 depicts a plot of data derived from radiosonde measurements, and
which is used in developing the system according to the FIG. 2 process;

FIG. 5 depicts a parameterized structure that is used to develop the system
according to the FIG. 2 process;

FIG. 6 depicts a neural network system in the form of a classical feed-
forward multi layer perceptron;

FIG. 7 depicts a schematic diagram showing the training phase of a forward
neural network system;

FIG. 8 depicts a time sensitive atmospheric water profile at locations above
the FIG. 1 radiometer;

FIG. 9 depicts system outputs from the forward neural network that was
trained according to FIG. 7 and which attempted to approximate the FIG. 8
atmospheric water profile;

FIG. 10 depicts a schematic diagram showing the training phase of an
iterative inversion neural network system; and

FIG. 11 depicts system outputs from the iterative inversion neural network
that was trained according to FIG. 10 and which attempted to approximate the FIG.
8 atmospheric water profile.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

FIG. 1 depicts a conceptual diagram of a radiometric water detection system
20 according to the present invention in its intended environment of use as a

ground based system used to measure the water content of atmosphere 22. The
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major components of radiometric water detection system 20 include a three
channel ground-based microwave radiometer 24 and a computer 26.

The majority of the discussion below pertains to a signal processing method
that provides simultaneous estimation of atmospheric vapor, liquid, and ice content.
Computer 26 incorporates a program that receives signals from radiometer 24 and
processes these signals to achieve the desired results. A neural network in
computer 26, accordingly, converts system inputs into system outputs that at least
include the atmospheric water vapor content, the atmospheric liquid water content,
and the atmospheric ice content. The operational principles of radiometer 24 and
computer 26 are discussed before describing the neural network system because
an understanding of these operational principles facilitates an understanding of the
mathematical system.

RADIOMETER OPERATION

Radiometer 24 functions according to the conventional principles of
radiometer operation. Conventional radiometers utilize at least two channels to
detect microwave radiation at 20.6 GHz and 31.65 GHz according to NOAA
guidelines, or they can operate on one channel. One example of a commercially
available dual-channel radiometer is the WVR - 1100 model, which is can be
purchased from Radiometrics, Inc. of Boulder, Colorado. Other radiometers that
detect additional frequencies of microwave radiation (e.g., three channel
radiometers) can be supplied on commercial order from a variety of manufacturers,
such as Radiometrics, Inc. Generally, companies that provide radiometer
equipment offer commercially available services that permit the addition of extra
channels (i.e, detection frequencies as specified by the customer) into
conventional radiometer equipment. These companies also manufacture
radiometer equipment that detects radiation at selected user-specified frequencies.

Radiometer 24 is used to detect naturally occurring microwave radiation
from atmosphere 22. Atmosphere 22 includes a plurality of water vapor regions 28,
30, 32, and 34 in which there exists water vapor and substantially no liquid water
or ice. Atmosphere 22 also includes liquid water clouds 36 and 38, which are
formed of supercooled liquid water droplets. Ice cloud 40 is formed of tiny ice
crystals that are suspended in the atmosphere. Water clouds 36 and 38 absorb

naturally occurring near infrared radiation and emit corresponding microwave

9



10

15

20

25

30

WO 97/37213 PCT/US97/05444

radiation along a plurality of pathways, such as exemplary pathways 42, 44, 46.
in the case of pathway 42, contact with ice cloud 40 causes a reflective scattering
of microwave radiation along pathway 48 due to Mie scattering as the radiation
along path 42 impinges upon the ice crystals in cloud 40. The radiation intensity
decreases along pathway 44 as the radiation sequentially passes through water
vapor region 32 where water vapor absorbs a portion of the microwave radiation,
ice cloud 40 where a portion of the radiation is scattered, water vapor region 30
where microwave radiation is again absorbed, water cloud 36 where a portion of
the radiation is absorbed by water droplets and water vapor, and water vapor
region 28. The atmospheric configuration shown in FIG. 1 is exemplative, and
other atmospheric conditions can exist in different naturally occurring layer
patterns, such as no clouds, ice clouds only, water clouds only, or additional water
and ice clouds. Thus, the naturally occurring microwave radiation in atmosphere
22 potentially undergoes many complex interactions before it impinges upon
radiometer 24.

A representative portion of the microwave radiation from atmosphere 22
impinges upon radiometer 24 as system inputs 50, 52, and 54. Each channel of
the three channel radiometer 24 is dedicated to a specific frequency band
comresponding to one of system inputs 50, 52, and 54. Radiometer 24 detects the
impinging microwave radiation for each band in a conventional manner. The total
microwave radiation is filtered to select channels corresponding to the desired
frequencies for study. It is preferred that radiometer 24 is oriented in a precise
vertical orientation to receive radiation only from the portion of the atmosphere that
exists in direct vertical alignment with radiometer 24 (i.e., radiometer points
substantially upward, neither to the right nor to the left).

System inputs 50, 54, and 56 include three radiation bands that constitute
portions of the total microwave radiation impinging upon radiometer 24. The three
channels of radiometer 24 independently detect the intensity of the bands
corresponding to system inputs 50, 54, and 56. These bands are preferably
selected to include microwave radiation frequencies in a first band ranging from 20
to 21 GHz, a second band ranging from 30 to 32 GHz, and a third band ranging
from 89 to 91 GHz. These bands are respectively referred to herein as the 20

GHz, 30 GHz and 90 GHz bands. The most preferred frequencies for each band
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are 20.6 GHz for the 20 GHz band, 31.65 GHz for the 30 GHz band, and 90 GHz
for the 90 GHz band.

The three different frequencies of the 20 GHz, 30 GHz, and 90 GHz bands
are selected for their corresponding sensitivities to environmental conditions. The
20.6 GHz frequency is offset from a weak water vapor resonant line at 22.235 GHz
in the water vapor absorption spectrum. Detection of this frequency at radiometer
24 provides a measurement that primarily relates to integrated atmospheric water
vapor, and is not very sensitive to environmental conditions including pressure and
areas of different water vapor concentration. Similarly, the 31.65 GHz frequency
is primarily sensitive to liquid water in the atmosphere. The 90 GHz frequency is
sensitive to Mie scattering as the radiation impinges upon water droplets or ice
crystals.

Radiometer 24 detects radiation corresponding to the intensity of system
inputs 50, 52, and 54 in the form of voltage signals, and converts these signals to
digital signals that are transferred to computer 26. Computer 26 receives the
digital signais from radiometer 24 and processes the signals to obtain brightness
temperatures for each channel in a conventional manner. Alternatively, radiometer
24 processes its own digital signals to obtain brightness temperatures, and
transfers signals representing the brightness temperature to computer 26. As
indicated above, computer 26 applies the brightness temperatures to a
mathematical or neural network system that processes the brightness temperatures
to provide system outputs 56 (see FIG. 1) including the atmospheric content of
water vapor, liquid water, and ice, as well as other descriptive information

concerning these three water states. Computer 26 preferably stores the system
input and output values for later use as needed.

THE NEURAL NETWORK SYSTEM

FIG. 2 depicts a schematic process diagram that provides a generalized
overview of a process P100 that is used by the system 20 of the present invention.
Computer 26 is preferably programmed to implement all of the steps in FIG. 2. In
FIG. 2 generally, steps P102, P104, and P106 are used to generate a synthetic
data set that derives from a combination of physical laws and statistical data. This
data set is used in step P108 to train a neural network algorithm that can apply
radiometric measurements as system inputs to yield values describing atmospheric

11
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conditions including water content. Computer 26 of FIG. 1 incorporates this model,
and uses it to process signals received from radiometer 24 to determine
atmospheric water content. Additional details pertaining to some of the steps are
provided below in the context of additional figures and examples.

Step P102 pertains to the implementation of a forward radiative transfer
system that uses mathematical equations to describe atmospheric conditions. The
equations include physical laws of nature, relationships that approximate physical
laws of nature, and statistical data. The equations relate inputs and outputs as a
plurality of microphysical variables that influence the calculation of brightness
temperatures; however, it is characteristic of the extinction of radiation passing
through the atmosphere that no one equation affords a comprehensive solution.
Thus, step P102 includes the identification and selection of any equation that
relates to or could relate to the effects of water in the atmosphere.

In Step P104, the microphysical variables are varied one at a time, and
corresponding brightness temperatures are calculated to determine the sensitivity
of the brightness temperature calculation to the microphysical variable under study.

in step P106, the microphysical variables that most significantly affect
brightness temperatures are selected for further study. The non-selected variables
are held constant at a reasonable value while the selected variables are altered
within reasonable ranges to generate a data set including brightness temperatures
corresponding to the sensitized variable set. This step simplifies the system by
considering only the most significant variable to reduce unnecessary complexity.

In Step P108, the brightness temperature data set from step P106 is applied
to a neural network algorithm to generate a neural network modeling system. The
model accepts system inputs including radiometer-based brightness temperature
measurements, and provides system outputs representing atmospheric water
content.

In step P110, the neural network soiution is calibrated to make the neural
network solutions agree more closely with field conditions. The resultant system
is loaded into computer 26 (see FIG. 1) for operations in cooperation with
radiometer 24.

12
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THE PARAMETERIZED MODEL

FIG. 3 depicts a schematic process diagram providing additional detail with
respect to Step P102 of FIG. 2. The significance of this model is that it relates
microphysical parameters in the atmosphere to the transmission of radiation
through the atmosphere under a variety of conditions. Thus, a very large number
of data points are advantageously created through use of the mode! without having
to fly test instrumentation through the atmosphere. The parameterized model is a
precursor of the neural network system that is loaded into computer 26.

The FIG. 3 process yields a parameterized forward-looking radiative transfer
system that is used to generate a set of brightness temperature data from statistical
data in combination with physical modeling. In developing the radiative transfer
system, assumptions are sometimes made for purposes of simplification, and these
assumptions are identified below. Errors that are introduced to the system by these
assumptions are removed in the calibration step P110.

In step P202, equations are selected that relate microphysical parameters
to ice water path and mean ice density. Generally, these equations attempt to
explain or simulate special aspects of atmospheric behavior. Those skilled in the
art can select a variety of equations for testing and implementation in the forward-
looking radiative transfer model, and understand that the preferred equations
described below may be supplemented or substituted. Equations (3)-(6) below
are especially preferred for use in step P202.

A modified gamma function according to Equation (3) is preferably used to
describe the size distribution of ice crystals or liquid water particles, which are

assumed to be spherical:

(3) n(r) = ar%xp(-brY)

wherein n(r) is the number of particles per unit volume per unit radius; r is the
radius of the particles; and parameters o and y are set to two () and one (y). The
parameters a and b are defined by Equations (4) and (5) as:

13
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b 6
160mp;

)

(4)

(5) b =

SR IN

wherein r. is mode radius of the particles; p; is the mean bulk ice density; and IWC

is ice water content. The ice water path IWP is calculated as the integral of IWC

S atagiven height z determined with respect to height across the ice region, or

10

15

20

(6) WP = [% IWC(z)dz

Zoot

wherein z, and Zpot represent the top and bottom of the ice region; and z
represents a height above the surface of the earth.

In step P204, the modified gamma distribution of Equation (3) is used to
predict the liquid water content LWC of droplets in a liquid water region. In this

case where a water cloud exists, Equation (7) relates LWC to parameter a:

6
4 - bSwe)

N 160mp,

wherein p,,, is the mean bulk water density; and LWC is liquid water content. The
liquid water path LWP is obtained by substituting LWC for IWC in Equation (6) for
the water region.

in step P206, radiosonde observations are preferably used to identify a
relative humidity profile and a temperature profile for the atmosphere.
Radiosondes are used to measure vertical profiles of relative humidity (or vapor

density), absolute pressure, temperature, and dew point in the lower atmosphere.
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FIG. 4 depicts exemplary results of radiosonde measurements for use in

step P206. A temperature profile is calculated from this data according to Equation

(8):

(8) T(2) = T,-Tz

wherein T(z) is the atmospheric temperature at a height z above the surface of the

earth; T, is the near surface atmospheric temperature determined from the

radiosonde temperature data of FIG. 4 according to Equation (9); and I is the

temperature gradient or lapse rate computed from the radiosonde data of FIG. 4
10 according to Equation (10). According to Equations (9) and (10):

(9) T, = 4T - 6T

o]

(10) r [T-2T,)

i

xlo

wherein H is the thickness of the lower atmosphere; T is the mean of the
temperature profile calculated according to Equation (11) below; and Ty is the first

moment of the temperature profile calculated according to Equation (12) below.
15 According to Equations (11) and (12):

= _ 1 rH
(11) T = Hf T(z)dz
1 rH
T =
(12) o Hi‘fo zT(z)dz
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In step P208 (see FIG. 3), the radiosonde data is further parameterized by
calculating an integrated or total vapor column and a vapor scale height. Equation

(13) below provides the calculation for bulk vapor density p,» and equation (14)

provides the integrated vapor column V:

14 b4
= — X ——
(13) P, A p ( H)
5
(14) V= fog b, (2)
wherein p,, is the water vapor density, and the other variables are defined above.
Equation (15) provides the calculation for the vapor scale height Hy:
f "zp dz
(15) Hv =20
H
RE
0
10

In step P210, the microphysical parameters derived from Equations (3)
through (15) are used to calculate the extinction of microwave radiation as it travels
through the atmosphere. The values from the model are applied to a generalized
radiative transfer model to estimate the relationship between atmospheric

15 conditions and the intensity of radiation impinging upon radiometer 24 (see FIG.
1) Information pertaining to the transfer of radiation through the atmosphere and
the conventional use of finite difference techniques to calculate this transfer
according to a generalized radiative transfer equation is found in various literature

, €.¢., Tsang, Kong and Sain, Theory of Microwave Remote Sensing, John Wiley

20 & Sons, New York (1985). The extinction of microwave radiation occurs due to
water vapor absorption, air absorption, liquid water absorption, and ice scattering.
The system computes these values over an optical pathway through atmosphere
22 to radiometer 24 (see FIG. 1). The calculation results include the amount of
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radiation impinging upon radiometer 24 from the respective 20, 30, and 90 GHz
bands. The impinging radiation values are converted into brightness temperatures
for each of the three bands. The following paragraphs provide a brief discussion
of the step P210 application of this technique in the context of Equations (16) -
(20).

The gaseous absorption within atmosphere 22 (see FIG. 1) is caiculated
according to the conventional Liebe's unified millimeter wave propagation system
as described by Liebe, MPM- An atmospheric millimeter-wave propagation model,
10 INT. J. Infrared Millimeter Waves 631-650 (1989). This system computes the

microwave extinction coefficient € of dry air and water vapor as a function of

temperature, pressure, and humidity. The radiosonde data includes water vapor
density p,, as a function of height. For vapor regions 28, 30, 32, and 34, the
radiosonde p, data is preferably converted into relative humidity RH according to
Equation (16):

T 2950.2
(16) RH=—2__ (L yx10 T
2.4089 300

wherein T is the physical temperature. The parameter e is the partial water vapor

pressure given by the gas law:

(17) e = p(2)RT

wherein p, (z) is water vapor density as a function of height z; T is temperature, and
R is the molar gas constant. In ice and water regions, the relative humidity is
assumed to be 100%.

The transfer of electromagnetic radiation through the atmosphere is
described by the radiative transfer equation. There are four processes that can
change the intensity as it passes through the atmosphere: (a) radiation can be
absorbed; (b) radiation can be limited; © radiation can be scattered into other
directions, and (d) radiation from other directions can be scattered into the beam.

Combining the above-mentioned terms, the radiative equation is:
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dl
——0/—0/+OB +
7S (7

fznf 8'.9") p(8',9":8,p) sin 8! dB' dop'

(18)

Where s is distance along the path, | is intensity, Og is the volume absorption
coefficient; 6 is the value scaling coefficient, p(8, ¢; 81, ') is the scattering phase
function; angles (81, ¢') are the direction of incoming radiation; and (6, ¢) are the

outgoing direction of radiation from the atmosphere. The above equation can be
rearranged as:

d’— - + <[> -
(19) 35—08[3(7) T®d)]+o,[<>-1]

in the absence of ice particles, Og is zero, and the radiative transfer equation
simplifies as:

ol i
(20) £~0[B(77 1(6,9) ]

The modified Gamma distribution of Equation (3) is used to average
scattering of ice particle ensembles. The refractive indices of liquid water droplets
and ice particles at the needed frequencies are obtained by interpoiating tabulated
values from published sources, e.g., the values reported in Ray, Broadband
complex refractive indices of ice and water, 11 Applied Optics 1836 (1972). Thus,
Equation (19) is used to calculate the portion of microwave radiation | that is
transmitted from a source having an intensity | o to radiometer 24 through a field of
scattering particles having a distribution according to Equation (3).

The conventional invariant embedding method reported by Tsang, Kong,
and Shin, Theory of microwave remote sensing, New York, John Wiley & Sons

(19895) is preferably applied to find the solution to the radiative transfer equation.

According to this method, an arbitrarily defined vertical structure is divided into a
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number of homogenous layers. The radiative transfer equation for each layer is
rewritten in the form of finite difference calculations and Gaussian quadrature
integral formulae taking advantage of the principle that adjacent layers interact with
one another to transmit radiation. The formulation of radiative transfer includes
reflection matrices, transmission matrices, and emission source vectors of the
entire atmosphere, and also includes selected boundary conditions. These
boundary conditions permit the computation of outgoing radiation and the radiation
field inside the medium. The invariant embedding method, accordingly, provides
a value for the intensity of radiation from the 20, 30, and 90 GHz bands impinging
upon radiometer 24.

The impinging radiation values are converted into corresponding brightness
temperatures by conventional radiometric processing techniques. The techniques
apply black body radiation theory to assume that the radiation impinging upon
radiometer 24 originates from a black body, and compute the temperature of the
black body which would emit an equivalent amount of radiation. The calculations
preferably apply the well known Planck distribution law.

As indicated above, step P104 of FIG. 2 includes a sensitivity study of the
parameterized model to changes in brightness temperature values that are applied
to different parameters.

Examples 1 below describes preferred calculations for use in the sensitivity
study after the parameterized model has been selected. Specifically, Example 1
provides an example of Steps P102 through P106 in FIG. 2.

EXAMPLE 1
SENSITIVITY STUDY

Referring to FIG. 2, Equations (3) - (20) were programmed to obtain
computer software incorporating a radiative transfer model. FIG. 5 depicts an
atmospheric water profile that was followed to guide the sensitivity study according

to the invariant embedding method of Tsang, Kong, and Shin, Theory of microwave

remote sensing. FIG. 5 shows parameterized atmospheric structure or conditions

derived from Equation (9). Alternatively, equivalent data may be provided as
radiosonde data, if such data is available. The water vapor density measurements
preferably derive from radiosonde data. A water cloud is located at a height

between one and three km, and has a cloud thickness D beginning at water cloud
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base Hb. Similarly, an ice cloud is located at a height between about four to six
km, and includes an ice cloud thickness D; beginning at ice cloud base Hy;:

The boundary conditions for the invariant embedding method were selected
as land surface having an emissivity of 0.95, a ground temperature equal to the
effective near surface temperature T A and a top boundary temperature equaling
2.7°K due to incident radiation. These values were arbitrarily selected by an expert
to represent reasonable values for actual field conditions. The sensitivity study
was conducted over three channels, i.e., at 20.6, 31.65, and 90 GHz. A base state
was selected to represent average wintertime conditions in Denver, Colorado, and
the sensitivity study was conducted around this base state. Table 1 below provides
the base state and example sensitivity resuits. Sensitivity to a given variable is
given as the partial derivative of the brightness temperature at each frequency
taken with respect to the parameter. The Table 1 values for these derivatives
represent average values over the interval studied. The Table 1 results represent

the completion of step P104 in FIG. 2, i.e., a completed sensitivity study.
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TABLE 1
Parameter | Base State | 5T g206 | 8T 8316 | 8IBgo Units Sensitivity
5p gp op Class
V 0.8cm 7.0 4.3 16.3 K/em High
LWP 0.2mm 31.0 62.5 199.0 K/mm High
IwpP 0.2 mm 5.0 14.0 64.5 K/mm High
P, 84.0 KPa 0.06 0.13 0.27 | K/KPa Medium
p 0.92 glem? 1.49 45 175 | Kem®lg | Medium
r. 0.05cm 20.0 33.0 51.0 K/cm Medium
1.0 km 0.6 1.0 0.2 K/km Low
D; 1.0 km -0.05 -0.05 -0.15 | Kkm Low
Hy: 4.0 km -0.05 -0.05 -0.03 | Kkm Low
r 6.5 C/km 0.25 0.7 -0.2 K km/C Low
Tpa cC -0.02 -0.3 0.2 K/C Low
Hy 1.5 km 1.0 17 03 | Kkm Low
HF 2.0 km -0.8 -0.6 -2.1 K/km Low

Step P106 was completed by reviewing the Table 1 results to conciude that
the radiative transfer system was highly sensitive to V, IWP, and LWP. Other
variables were indicated to have a moderate or low sensitivity. In Table 1, the
Sensitivity Class column provided an arbitrary distinction between the different
variables. Generally, it was preferred to simplify the overall modeling process by
focusing only upon the variables that are most likely to influence brightness
temperatures. When variables such as LWP had a huge influence upon brightness
temperatures, little perceived benefit derived from detailed study of other variables,
e.g., the cloud base height, that provided extremely minor influence over a
reasonable range of values. The 'High' classification generally pertained to
variables that caused a brightness temperature variation exceeding about 10°K
over a reasonable range of values. Similarly, the 'Medium' classification generaily
pertained to variables that influenced brightness temperatures in an amount
ranging from 5 to 10 °K and the ‘Low classification pertained to variables with less
than about 5°K influence. Of course, these variable classifications change if the

Base State assumptions are altered.
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* % w

Exampie 2 teaches a preferred method for building confidence in the
radiative transfer model that was developed according to step P102 of FIGS 2, and
3, and implemented in Example 1. Confidence was built by comparing model
results against well known statistical techniques that operate well under conditions
where no ice is present in the atmosphere.

EXAMPLE 2
SENSITIVITY COMPARISONS AGAINST OTHER SYSTEMS

Calculation results from the forward-looking radiative transfer model that
was developed according to FIGS. 2 and 3 were compared against the NOAA
algorithms according to Equations (1) and (2). Specifically, the radiative transfer
model was used to calculate brightness temperatures for the 20, 30, and 90 GHz
bands while sensitizing V and LWC. Brightness temperatures within the same
general range were applied to Equations (1) and (2) to produce a set of
comparative data. partial derivatives of the brightness temperatures for each band
were determined with respect to V and IWC. Two different sensitivity studies were
performed in this manner. The first study utilized the base state data from Table
1, and assumed an atmospheric water profile as indicated in FIG. 5. A second
system (State 2) was modified to eliminate the ice cloud shown in FIG. 5 at a height

of from four km to six km. Table 2 below provides the comparison resuilts.

TABLE 2

8Tg20.6 | 2TB31.6 |3TB206 |%TB316

ov 2 SLWP | % we
NOAA Model 11.72 476 245.07 561.50
Base State 9.0 43 310 625
Difference % 23 12.3 -26.5 -11.3
State 2 10.04 4.23 273.06 514.40
Difference % 14.4 11.1 11.4 -7.85

The Table 2 resuits build significant confidence in the radiative transfer

system. Table 2 indicates that the FIG. 3 radiative transfer system for State 2 (i.e.,
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in the absence of ice) provides a sensitivity to V and LWC that falls within fifteen
percent of the calculation resuilts for the NOAA aigorithms. This level of agreement
is very good when one considers that similar NOAA algorithms have been shown
to vary 8.7% for V and 37% for LWP from the radiosonde data that was used to
create the NOAA aigorithms. On the other hand, the Base State data varies up to
27% from the NOAA aigorithms. This variance exists because the Base State
includes ice scattering. The NOAA algorithms cannot account for ice scattering.
Thus, it is seen that ice scattering produces a significant divergence from the
NOAA mode!, and the radiative transfer system is better able to account for the
effects of ice scattering.

Step P106 of FIG. 2 requires a selection of sensitive variables that are
subsequently used to generate a data set of brightness temperatures. Example 3
below provides a preferred method for implementing step P106.

EXAMPLE 3
GENERATION OF A BRIGHTNESS TEMPERATURE DATA SET

Based upon the results of Table 1 above, V, IWP, IWC, and P0 were
selected for further study. The remaining variables were assigned fixed values
because they have a less significant influence upon brightness temperatures.
Table 3 below lists the variables in combination with assumed values for the
respective variables. Values assigned to the fixed variables represent year-round
averages for the Denver, Colorado area. Value ranges assigned to the sensitivity
variables V, IWP, LWC, and Po indicate reasonable ranges for these variables

based upon expert opinion.
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TABLE 3
Sensitivity Variables Range Unit
Vv (0.4, 0.97) cm
LWP (0.0, 800.0) gim?
IWP (0.0, 800.0) g/m?
P, (76.0, 86.0) KPa
Fixed Variables Fixed Value Unit
p 0.5 glem®
o 0.005 cm
Hy 1.5 km
H, 20 km
Ta -2.0 °C
r 6.0 K/km
Hy; 3.5 km
Il D 1.0 km
n D; 2.0 km

The values of Table 1 were used to generate a set of brightness temperature
data through the radiative transfer system. A set of 1920 data groups including
three brightness temperatures at each data group were generated by sampling the
data ranges of interest for the variabies V, IWP, LWP, and P0 at uniform intervals,
and randomly mixing the sample resuits to generate a combination of V, IWP,
LWP, and P, for use as input into the radiative transfer system. The needed three-
channel brightness temperatures are generated by the radiative transfer system.

Step P108 of FIG. 2 involves the use of a training data set to teach a neural
network the solution for V, IWP, and LWP. The set of 1920 data points generated
in Example 3 was intended for use as a neural network training data set.
NEURAL NETWORK SYSTEM APPLICATIONS

Neural network models are similar to statistical correlations because they
provide correlations or algebraic expressions that are used to convert a system

input into a system output. On the other hand, the neural network processing
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techniques that are used to develop the algebraic expression are quite different
from statistical correlations. One example of a well known statistical correlation
technique is the multiple order least squares fit that calculates a polynomial
expression which defines a line having a minimum error determined with respect
to a plurality of data points. These types of statistical curve-fitting techniques are
difficult or impossible to perform if many variables (e.g., thirteen variables)
influence the calculation, or if there exist nonlinear relationships between the many
variables. It can be extremely difficult to incorporate auxiliary measurement data
into statistical correlations. Neural network techniques overcome these difficulties
by mapping an input vector to an output vector through the application of weighing
factors to the system inputs.

Neural network processing techniques are well known, and can be
accomplished on a variety of software that is available to the public, such as the
Neural Network add-on package available from SAS Institute, inc., of Cary, North
Carolina, or the Neurowindows package from Ward Systems Group, Inc., of
Frederick, Maryland. There exist many different varieties of neural network
processing. While a comprehensive presentation of ail known neural network
processing techniques is beyond the scope of this discussion, a brief overview of
the neural network theory that is presently employed suffices to explain the
preferred techniques to those skilled in the art.

FIG. 6 depicts the classical operation of a neural network processing
algorithm 60 that is commonly referred to as a feed-forward multi layer perceptron.
Algorithm 60 is a parameterized mapping process that relates an input vector a(0)
to an output vector a(L) through the function ¢:

(21) a(L) = ®(W,a(0))

wherein W is the vector of weights; L is the number of layers in the network, and
the remaining variables are defined above. According to Equation (20) in the
context of FIG. 6, passing an input vector a(0) through algorithm 60 to arrive at an
output vector a(L) includes taking the inner product of W times a(0) and feeding

this product to a nonlinear system of neurons, e.g., neuron 62.
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in feed-forward systems, algorithm 60 is trained to arrive at a correct answer
by adjusting the weighing factors W to reduce or minimize the discrepancy between
a target vector t and the output vector a(L.). System inputs a(0) include brightness
temperatures from a training data set (e.g. the data set of 1920 groups derived from
Example 3), and also preferably include other relevant data that is known to
influence the system inputs a(0) or the system outputs a(L). An example of other
relevant data includes surface pressure Po, which can be provided as both a
system input a(0); and a system output a(L);. The inclusion of this type of other
relevant data often enhances the reliability of a neural network system. The
training data set also includes a set of target input data points, e.g., the 1920 sets
of V, IWP, LWP, and Po input parameters that were used to generate a
corresponding set of 1920 brightness temperatures.

The object of neural network processing is to minimize the discrepancy
between the target vector t and the output vector a(L). This discrepancy is
commonly referred to as the cost function, and is most often defined as the sum

squared error E of the output units of the vector a(L), i.e.:

(22) E = — (t-a(L) (t-a(L))

1
2

wherein t is the target data vector; superscript T is a vector transposition function;
E is the difference between the squares of the vector t and a(L); and the remaining
variables are defined above.

Back propagation is used to compute a gradient of the cost function E to
minimize the cost. Equation (22) sets forth the Back propagation algorithm:

W - E AN +1)
(23) W -n aWn)+uAV\"

wherein J is a learning rate parameter; A is a momentum parameter; n is an
iteration count; W are weight vectors; and the remaining variables are defined
above. Thus, numerous iterations of algorithm 60 are performed with different

weighing factors to arrive at a solution or output vector a(L) having an acceptably
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low error. It is @ common practice to provide the initial output vector and weighing
factors as an initial guess for what the values should be. The initial guess provides
an inherent bias to the neural network system, but this bias is reduced or
completely eliminated as successive iterations provide additional weighing factors
that minimize the cost function.

FIG. 7 schematically depicts the operation of a neural network based on
forward system training. A training data set includes an input vector a(0) of
brightness temperatures and a target data set of microphysical parameters 72.
The forward system operates according to Equation (20) to map the brightness
temperatures 70 to an output vector a(L). The cost of this mapping is minimized
according to Equations (21) and (22) to produce optimum weights 76.

EXAMPLE 4
A FORWARD AND INVERSE MODEL CONSTRUCTION USING MLP

Step P108 of FIG. 2 was conducted by applying the data set of 1920 data
groups as input to a forward and inverse model construction iterative neural
network algorithm. The system had four input units including V, IWP, LWP, and
Po. The system aiso had four output units including TBZO’ TB3O' TBQO' and Po.
The system had one hidden layer with twenty-five neurons. After 5000 iterations,
the output error was 0.000867 indicating that the neural network model on average
produced very close agreement with the training data set.

The system was checked against an independent data set to determine
whether the system would produce accurate resuits. The microphysical parameters
in Table 3 were accessed to compute a time series of V, LWP, IWP, and Po
profiles. The profiles were selected to represent an atmospheric condition
including the presence of ice, an ice-free condition, and an atmospheric condition
including both ice and liquid water clouds.

FIG. 8 depicts the selected profiles, which are independent of the training
data set generated in Example 3. The radiative transfer model of FIG. 2 (step
P102) was used to generate three channel brightness temperatures at the 20, 30,
and 90 GHz bands. These brightness temperatures were applied to the forward
iterative neural network solution, which calculated values for V, IWP, LWP, and Po.

FIG. 9 depicts the time-dependent values for V, IWP, LWP, and P, that

were retrieved from the neural network system. The neural-based values closely
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agree with the FIG. 8 values for these same parameters (i.e., within about ten
percent). Nevertheless, the neural-based IWP values show a wild fluctuation
between 10 and 20 hours, and are 0.03 mm greater than the corresponding FIG.
9 values between 0 and 10 hours. These results showed that the comparison with
the independent data set had regions of significant variations despite the fact that
the model on average produced good agreement with the training data set. While
these variations did not preclude use of the forward and inverse neural network

model in detection system 20 (see FIG. 1), it was believed that a better model could
be selected.

Example 5 below shows that the FIG. 2 signal processing technique is
improved by using another neural network solution in Step P108.

EXAMPLE 5
AN ITERATIVE INVERSE NEURAL NETWORK SOLUTION

As an altemative to the iterative neural network solution that was applied in
Example 4, it is also possible to use an iterative neural network that holds the
weighing factors constant while updating the inputs of forward systems to minimize
the cost function. Conceptually, the idea of an iterative neural network system is
to repeatedly present outputs to the forward system and search for a solution in the
input space of the system while freezing the weights of the system. More
specifically, the inversion algorithm is performed by computing the gradient of the
cost function or Equation (21) with respect to the activation of the input units, and
applying the iterative gradient descent algorithm according to Equation (23) to
minimize the cost

(200 A0 - FO) - (1 - pin—t— / |—2E_ |-paz(Oy)
da(0)”  ga(0)™

FIG. 10 schematically depicts the operation of an iterative neural network
system that was programmed into computer 26. The model training system
included input vector a(0) of brightness temperatures 78, and a corresponding set
of weighing factors 80. The weighing factors were the same as those developed
for the forward neural network system 74 of FIG 7. A conventional iterative

28



10

15

20

25

30

WO 97/37213 PCT/US97/05444

inversion algorithm 82 applied Equation (19) to calculate an input vector 78
(brightness temperatures) from a data set 84 including a(L) vector V, IWP, LWP,
and P,. Equations (21) and (23) were applied with the result of finding the closest
approximation in the input data set.

The set of 1,920 data points from Example 3 was used as input data for an
inverse neural network algorithm. As before, the radiative transfer system was
applied to the microphysical parameters of FIG. 9 to generate a time-dependent set
of brightness temperatures. These brightness temperatures were applied as
system inputs to the iterative inverse system of FIG. 10. The results overcame
many of the problems observed in Example 4.

FIG. 11 depicts the inverted neural network resuits. These results agree
even more closely with the FIG. 8 data than did the forward neural network results
of FIG. 9.

CALIBRATION OF THE NEURAL NETWORK SYSTEM

Step P110 of FIG. 2 includes a calibration of the neural network system.
Until this step, no effort has been made to force the mathematical model into
agreement with actual physical measurements. Example 6 below describes a

preferred calibrating the neural network system according to step P110 of FIG. 2.

EXAMPLE 6

CALIBRATION OF THE FORWARD NEURAL NETWORK SYSTEM

The NOAA equations (1) and (2) do a good job of estimating V and LWP
when there is no ice present in the atmosphere, but can not account for the
presence of ice. The parameterized system according to the present invention
accounts for the presence of ice by combining physical laws with statistical
observations, but includes some inherent bias or error because no one
mathematical mode! can fully explain the complex interaction between radiation
and materials in the atmosphere. The accuracy of the parameterized system is,
accordingly, enhanced by calibration against statistical correlations that perform
well when there is no ice present in the atmosphere.

Actual radiometer data was collected in the field for this example. Three
channel radiometer data for the 20, 30, and 90 GHz bands were collected on March
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22, 1994 from a radiometer in Erie, Colorado. Surface pressure was recorded
simuitaneously with the three-channel brightness temperatures. The measurement
data set included 5000 measurements. The atmosphere was free of clouds with
zero cloud liquid water. The vapor column varied between 0.4 and 0.6 mm.

The brightness temperatures at 20.6 and 31.65 GHz were applied to the
NOAA Equations (1) and (2) to generate L and LWP values. IWP was assumed
to be zero as a consequence of visible atmospheric conditions indicating no clouds.
Thus, a first group of 5000 data sets included NOAA-based V and LWP values
together with measured brightness temperatures corresponding to the 20, 30, and
90 GHz bands. These 5000 data points were used as a ‘truth’ data set to calibrate
the neural network system, as described below.

The 5000 V and LWP values derived from Equations (1) and (2) were used
as input to a forward neural network solution using the same weighing factors
derived from Example 5. The system, accordingly, provided brightness
temperatures. This calculation generated a second group of 5000 data sets
including the NOAA derived V and LWP values together with neural network
derived brightness temperatures for the 20, 30, and 90 GHz bands.

The respective brightness temperatures at each wavelength for the two
groups of data sets were subtracted from one another according to Equations (20)-
(22) below:

(25) Twzo =~ Tcao = A Ty
(26) Tz = Tcao = A Ty
(27) Tuso = Tcoo = A Ty

25 wherein Tpaon, Tpag: @nd Tpgg are the measured brightness temperatures for the

corresponding 20, 30, and 90 GHz bands associated with a selected V and LWP:
Tcoo Teag and Tcgp are the neural network-derived brightness temperature for
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the corresponding 20, 30, and 90 GHz bands associated with the selected V and
LWP; and A Toq, A T, and A Tgq are brightness temperature differences at the
respective bands.

The differences A T20- AT3O, and ATgo, were plotted as histograms, and
showed a bell-curve shape having an arithmetic mean. The means and standard
deviation of the neural network system biases at each band were 1.503°K and
0.223°KL at 20.6 GHz; 0.984 °K and 0.135°K at 31.65 GHz; and 0.389°K and
0.389°K at 90 GHZ. These results showed that the neural network brightness
temperature input data could be corrected to provide more accurate water content
results by adjusting the input data to compensate for the observed mean difference
values at each band.

The second group of 5000 data points was adjusted to compensate for the
mean bias at each band by adding the mean for each band to each temperature at
that band. The adjusted brightness temperatures were applied as input to an
inverse neural network algorithm using the same weighing factors derived in
Example 5, and used to generate V, LWP, and IWP values. The results for V and
IWP were substantially identical to the NOAA results. Thus, the calibration
removed the inherent bias in parameterized system under conditions of no ice in
the atmosphere.

Those skilled in the art understand that the preferred embodiments, as
hereinabove described, may be subjected to apparent modifications without
departing from the true scope and spirit of the invention. The inventor, accordingly,
hereby states his intention to rely upon the Doctrine of Equivalents, in order to
protect his full rights in the invention.
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CLAIMS:

1. A microwave radiometer system (20) for use in measuring
atmospheric water content (28, 30, 32, 345, 36, 38, 40), comprising:

means (24) for passively detecting an intensity of atmospheric radiation in
a plurality of frequency bands, and for providing signals representative of said
intensity in each band; and

means (24, 26) responsive to receipt of said signals for converting said
signals to brightness temperature values corresponding to said plurality of bands,
wherein said system is characterized by

means (26, 60, P100) for processing said brightness temperature values to

produce data indicative of atmospheric water content at least including ice water
path.

2. The system as set forth in Claim 1 wherein said detecting means
includes means (24, 26, P210) for selecting said plurality of bands at frequencies
corresponding to features of the radiation absorption and emission spectrum of

water in a particular phase.

3. The system as set forth in Claim 2 wherein said frequencies are

selected to correspond to the radiative transfer for different phases of water.

4, The system as set forth in Claim 3 wherein said different phases of

water include vapor, liquid, and ice phases of water.

5. The system as set forth in Claim 4 wherein said plurality of bands
include frequencies in the 20 GHz, 30 GHz, and 90 Hz bands.

6. The system as set forth in Claim 1 wherein said plurality of bands
include frequencies at 20.6 GHz, 31.65 GHz, and 90 GHz.

7. The system as set forth in Claim 1 wherein said detecting means is
operably configured to detect radiation from an atmospheric region consisting

32



WO 97/37213 PCT/US97/05444

essentially of the atmosphere (22) in direct vertical alignment above said detecting

means.

8. The system as set forth in Claim 1 wherein said processing means
further includes means (74, 76) for using said brightness temperatures to

determine atmospheric water vapor content and liquid water path.

S. The system as set forth in Claim 1 wherein said processing means
includes neural network means (60) which receives said brightness temperatures
as input and produces said atmospheric water vapor content, liquid water content,
and ice content as output.

10. The system as set forth in Claim 9 wherein said neural network

system includes an iterative inversion neural network system (82).

11. The system as set forth in Claim 9 wherein said neural network
means includes weighting factors (76) derived from a parameterized system (P102)
providing means for combining statistical information with information from physical
laws to yield said atmospheric water content.

12. The system as set forth in Claim 11 wherein said parameterized
weighting factors derive from a means (P202) for calculating microwave scattering
due to the scattering effects of atmospheric ice particles.

13. The system as set forth in Claim 9 including means (P110) for
calibrating said neural network system by adjusting said brightness temperatures
for differences between physical measurements and system output from said
neural network system.

14.  The system as set forth in Claim 13 wherein said calibrating means
includes means for calculating a mean difference in brightness temperatures

between the system output and physical observations, and adjusting said synthetic

data set to reflect said mean difference.
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15. A method of operating a radiometer to measure atmospheric water

content, said method comprising the steps of:

detecting naturally occurring atmospheric microwave radiation (50, 52, and
54) in a plurality of bands;

providing signals representative of said microwave radiation in each band;
and

using said signals to determine respective brightness temperatures
corresponding to said plurality of bands, wherein said method is characterized by

processing (74, 82) said brightness temperatures to determine atmospheric
water content including ice water path (56).

16.  The method as set forth in Claim 15 wherein said detecting step
includes a step (P210) of selecting said plurality of bands at frequencies

corresponding to features of the radiative transfer for water.

17. The method as set forth in Claim 16 wherein said selecting step
includes selecting said frequencies to correspond to the radiative transfer for
different phases of water.

18.  The method as set forth in Claim 17 wherein said different phases of
water include vapor, liquid, and ice phases of water.

18.  The method as set forth in Claim 16 wherein said selecting step
includes a step of selecting said frequencies in the 20 GHz, 30 GHz, and 90 Hz
bands.

20. The method as set forth in Claim 15 wherein said processing step

further includes a step of using said brightness temperatures to determine

atmospheric water vapor content and liquid water path (56).
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21.  The method as set forth in Claim 15 wherein said processing step
includes a step of associating said brightness temperatures with said atmospheric

water content through the use of a neural network (60).

22. The method as set forth in Claim 21 wherein said neural network

system includes an iterative inversion neural network system (82).

23. The system as set forth in Claim 21 including a step (P102) of
deriving weighting factors from a parameterized system that combines statistical
information with information from physical laws to yield said atmospheric water

content.

24.  The system as set forth in Claim 23 wherein said deriving step
includes a step of calculating microwave scattering due to the scattering effects
of atmospheric ice particles.

25. The system as set forth in Claim 21 including a step (P110) of
calibrating said neural network system by correcting said brightness temperatures
for observed differences between a truth data set and system output from said

neural network system.

26.  The system as set forth in Claim 25 wherein said calibrating step
includes a step of calculating a mean difference in brightness temperatures
between the system output and physicat observations.

27.  The method as set forth in Claim 15 wherein said detecting step

includes a step of selecting at least one of said bands for sensitivity to radiation

scattering effects.
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