
USOO8234636B2

(12) United States Patent (10) Patent No.: US 8,234,636 B2
Kawahito et al. (45) Date of Patent: Jul. 31, 2012

(54) SOURCE CODE MODIFICATION OTHER PUBLICATIONS
TECHNIQUE Kawahito et al., Partial Redundancy Elimination for Access Expres

sions by Speculative Code Motion, Software Practice and Experi
(75) Inventors: Motohiro Kawahito, Sagamihara (JP); ence, Jun. 7, 2004, vol. 34, pp. 1065-1090.

Hideaki Komatsu, Yokohama (JP); Kawahito et al., Instruction Combining for Coalescing Memory
Toshio Nakatani, Tokyo (JP) Accesses. Using Global Code Motion, MSP, Jun. 8, 2004.

Kawahito et al., Effective Null Pointer Check Elimination Utilizing
Hardware Trap, ACM, 2000, pp. 139-149.

(73) Assignee: International Business Machines Bose, Interactive Program Improvement Via EAVE: An Expert
Corporation, Armonk, NY (US) Adviser for Vectorization, ACM, 1998, pp. 119-130.

Kebler, Pattern-Drive Automatic Parallelization, Data Distribution
(*) Notice: Subject to any disclaimer, the term of this and Performance Prediction.

Park et al., Interactive Compilation and Performance Analysis With
Ursa Minor.
Kebler, Applicability of Automatic Program Comprehension to
Sparse Matrix Computations.

(21) Appl. No.: 11/530,954 ArenaZetal. A Compiler Framework to Detect Parallelism in Irregu
lar Codes.

patent is extended or adjusted under 35
U.S.C. 154(b) by 1198 days.

(22) Filed: Sep. 12, 2006 * cited by examiner

(65) Prior Publication Data Primary Examiner — Chuck Kendall
(74) Attorney, Agent, or Firm — Lieberman & Brandsdorfer,

US 2008/O127151A1 May 29, 2008 LLC

(57) ABSTRACT
(51) Int. Cl. A modification to source code is applied in an automated

G06F 9/45 (2006.01) manner to improve program performance while maintaining
(52) U.S. Cl. 717/151; 717/154; 717/157; 717/159 the meaning of an associated program. Source code is rewrit
(58) Field of Classification Search None ten to improve the operation of the associated program. Prior

See application file for complete search history. to applying the Source code optimization to the program,
confirmation of approval by the programmer must be main

(56) References Cited tained. In one embodiment, the programmer is presented with
numerical data pertaining to an improvement ratio associated

U.S. PATENT DOCUMENTS with application of the source code optimization.
5,966,537 A * 10/1999 Ravichandran 717,158 20 Claims, 8 Drawing Sheets

Start

102
a s as a For each optimization

104
y A = Apply optimization with regular

conditions

: 108
R Ens No

optimization?

Yes
: 110- B = Apply optimization under

assumptions

: 18

: Yes

32 More optimizations
to perform?

Yes
134

Select source code \
O

U.S. Patent Jul. 31, 2012 Sheet 1 of 8 US 8,234,636 B2

102
For each optimization

A = Apply optimization with regular
Conditions

Are there any
assumptions for this

optimization?

B = Apply optimization under
assumptions

FIG. 1

106

110

108

Apply the optimization results of A to
the intermediate COCle

112

130
For each optimization

136

More optimizations
to perform?

Yes

Select Source Code
1OO

U.S. Patent Jul. 31, 2012 Sheet 2 of 8 US 8,234,636 B2

114
Regarding the locations where results
between A and B are different, Select

transformation with higher effect

116
For each transformation

Create confirmation message for
transformation and Confirm to a

OrOCrammer

118

12O
Did the programmer

approve?

Transform the Source COde and
intermediate COde

124
For each transformation

126

122

More transformations
to review?

Next transformation

FIG 2

128

U.S. Patent Jul. 31, 2012 Sheet 3 of 8 US 8,234,636 B2

For each optimization T

A = Apply optimization with regular
COnditions

Are there any
assumptions for this

optimization?

B = Apply optimization under
assumptions

FIG. 3

Apply the optimization results of A to
the intermediate COde

238

More optimizations
to perform?

Yes

Select SOurce COde

2OO

U.S. Patent Jul. 31, 2012 Sheet 4 of 8 US 8,234,636 B2

214
Optimization effectiveness

analysis part

216
Select transformation with a high

effect from the optimization
dependence graph

... 28-y
For each transformation

22 Create confirmation message for
O transformation and Confirm to a

OOCrane

222
Did the programmer

approve?

224
Transform the Source COce and

intermediate COCle

226
------ For each transformation

228
More transformations

to review?

230

Next transformation

FIG. 4

U.S. Patent Jul. 31, 2012 Sheet 5 of 8 US 8,234,636 B2

Optimization effectiveness
analysis part

Initialize a dependence graph of
variables and an optimization

dependence graph

C = Current intermediate COce

Apply the optimization result of B to
the intermediate COce

Create a dependence graph of
Variables

Based on the result of B and the
dependence graph of variables,

update the optimization dependence
graph.

302

304

306

308

310

Register the following information:
1. A list of ignored preventive conditions

. Programming area where the results of
A and B are different

. Optimization result of B

. Performance improvement ratio

3OO

U.S. Patent Jul. 31, 2012 Sheet 6 of 8 US 8,234,636 B2

312
For each following
Optimization after T

D = Apply optimization with regular
314 Conditions

Are there any
assumptions for this

optimization?

318
E = Apply optimization under

assumptions

32O O

316 NO

324

Apply the optimization results of D to
the intermediate COde

322 Based on the results of D, update the
Intermediate code = C (Return the dependence graph of variables

code to the original state)
Based on the results of D and the

330
For each following at Glice Optimization after T up ptimizati O

graph.

Register the following information:
End 1. Optimization results of D

2. Performance improvement ratio

328

FIG. 5B

U.S. Patent Jul. 31, 2012 Sheet 7 of 8

(Merger is
possibley

(1)

(2)

(1)

(2)

Dependence Graph

Move a to the outside of the loop

4.08

110% Move the array
bound check
relating to T1
o the outside of
he loop

404 4O6

412 Dependence Graph

Move the array bound check
relating to T1) and T1(k) to the
outside of the loop

(% indicates improvement percentage)

FIG. 6

%

105%:

US 8,234,636 B2

ASSumption

Value of a does
not change in f()

None

Value of a does
not change in f()

Y
400

U.S. Patent Jul. 31, 2012 Sheet 8 of 8 US 8,234,636 B2

Dependence Relationship of Variables

510

508 \
500

502 504

506

FIG. 7

US 8,234,636 B2
1.

SOURCE CODEMODIFICATION
TECHNIQUE

BACKGROUND OF THE INVENTION

1. Technical Field
This invention relates to improving efficiency of program

execution. More specifically, the invention relates to optimiz
ing source code and verification of the Suggested optimiza
tion.

2. Description of the Prior Art
A compiler is a computer program or set of programs that

translates text written in a source language into a target lan
guage. The original sequence is usually called the source code
and the output called object code. Commonly the output has
a form Suitable for processing by other programs, but it may
also take the form of a human readable text file. The most
common reason for wanting to translate source code is to
create an executable program. The name "compiler is pri
marily used for programs that translate source code from a
high level language to a lower level language. A compiler is
likely to perform many or all of the following operations:
lexing, preprocessing, parsing, semantic analysis, code opti
mizations, and code generation.

It is known in the art to improve compiler performance by
rewriting instructions in Source code to replace a sequence of
instructions. This technique is known in the art as optimiza
tion. When an optimization of a compiled code is applied, the
meaning of the program must be maintained. The intention of
combining instructions is to yield the same results with a
fewer number of machine cycles, thereby improving execu
tion efficiency.

There are two broad categories of optimization tools. The
first category is a tool to apply changes to the Source code that
changes the meaning of the program, and the second category
is a tool that rewrites source code without changing the mean
ing of a program. However, there are limitations associated
with both the first and second category of tools in the prior art,
including, limiting the quantity of specific candidates for
modification as well as limiting a select category of Source
code instructions.

Therefore, there is a need for an optimization technique
that modifies source code that is not limited to loop transfor
mations. A technique that resolves the shortcomings of the
prior art should improve performance by displaying the loca
tion of a suggested change in the Source code together with
candidates within the source code subject to modification.

SUMMARY OF THE INVENTION

This invention comprises a method and system for opti
mizing source code to improve operating efficiency of a pro
gram.

In one aspect of the invention, a method is provided for
optimizing source code by applying a first optimization tech
nique to a select set of Source code of the program based on
regular conditions, and applying a second optimization tech
nique to the select set of source code of the program based on
application of assumptive conditions. The first optimization
technique is compared with the second optimization tech
nique to determine which optimization technique yields
improved efficiency in source code execution. A programmer
selects one of the optimization techniques. Upon a selecting
of one of the optimization techniques in response to said
comparison, the source code is transformed in line with the
selected optimization technique. The step of transforming

10

15

25

30

35

40

45

50

55

60

65

2
said source code affects the program by either changing the
expression of the program or maintaining the expression of
the program.

In another aspect of the invention, an article is provided
with a computer-readable medium having computer useable
program code for optimizing source code. The computer
readable program, when executed on a computer, causes the
computer to apply a first optimization technique to a select set
of Source code of the program based on regular conditions,
and to apply a second optimization technique to the select set
Source code of said program based on application of assump
tive conditions. The program then compares the first optimi
Zation technique of the select Source code with the second
optimization technique to determine which optimization
technique yields improved efficiency in Source code execu
tion. A programmer selects one of the optimization tech
niques. Transformation of the source affects the program by
either changing the expression of the program or maintaining
the expression of the program.

In yet another aspect of the invention, a computer system is
provided with a tool to optimize source code. The tool pro
vides instructions to apply a first optimization technique to a
select set of Source code based on regular conditions, and to
apply a second optimization technique to the select set of
Source code based on application of assumptive conditions. A
manager within the tool compares the first optimization tech
nique of the select source code with the second optimization
technique to determine which optimization technique yields
improved efficiency in source code execution. A programmer
selects one of the optimization techniques. The manager
executes instructions to transform the source code based upon
a selection of one of the optimization techniques in response
to the comparison. Transformation of the source code either
changes the expression of the program, or maintains the
expression of the program.

Other features and advantages of this invention will
become apparent from the following detailed description of
the presently preferred embodiment of the invention, taken in
conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1 and 2 are flow charts illustrating the process
invoked by the source code optimization tool to apply
changes to the source code.

FIGS. 3 and 4 are flow charts illustrating a process for
creating an optimization dependence graph according to the
preferred embodiment of this invention, and are suggested for
printing on the first page of the issued patent.

FIGS. 5a and 5b are flow charts illustrating analysis and
comparison of the optimization options that yields creation of
an optimization dependency graph.

FIG. 6 is an example of a dependence graph associated
with the optimization technique(s).

FIG. 7 is a block diagram of a dependency graph showing
the relationship of the variables of the graph in FIG. 6.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

Overview

A source code optimization tool may apply changes to the
Source code to improve compiler performance. Where an
optimization to the source code has been applied and failed, a
tool is employed to store associated modification data. Such
data may include, data pertaining to the cause of the failure, a

US 8,234,636 B2
3

solution to the failure, a determination as to whether a modi
fied optimization has been Successfully applied, and any per
formance improvement ratio. The tool may also be employed
to display the location in the source code where the optimi
Zation failed. Queries are sent to a programmer through the
tool to seek approval for Such modifications and changes
thereto.

Technical Details

The source code optimization tool focuses on changing
Source code under a category of regular conditions, also
known as conditions in which no assumptions are made to the
Source code, and a category of assumptions applied to the
Source code. Under both categories, the changes made to the
Source code changes the meaning of the program. The loca
tion of the change(s) in the source code is displayed to the
programmer together with the elements to be changed. In one
embodiment, the display of the change(s) in the Source code
may be output to a console, highlighted within the code, or
placed in a pop-up window.
As noted above, the optimization tool may operate under

assumptive conditions. The following is a list of optimiza
tions and associated assumptions:
1. Movement of a command that causes an exception to the

outside of a DO LOOP. When applying this movement
command, assume that there is no problem even if the
movement is made by ignoring commands involving side
effects, such as a command that may cause another type of
exception and a command to write into memory.

2. Movement of a load command to the outside of a loop.
When applying this optimization, assume access is always
valid, there is no alias of memory at all times, and there is
no writing into the same memory region within a method
call.

3. Movement of a store command to the outside of a loop.
When applying this optimization, assume an exception
checking command located on the path to the outside of a
loop does not cause an exception at all times, there is no
alias of memory at all times, and there is no access to the
same memory region within a method call.

4. Coalesce a plurality of load commands into one command.
When applying this optimization, assume alignment of all
effective addresses of the same type of load commands for
the same base address.

5. When applying optimizations for memory access, assume
that field values do not change. In this case, a Suggestion is
made to the programmer to attach a final attribute to the
field.

6. When applying optimizations for classes, assume that
classes never have any Subclasses. In this case, a Suggestion
is made to the programmer to attach a final attribute to the
class.

7. When applying optimizations for methods, assume that
methods are not overwritten. In this case, a Suggestion is
made to the programmer to attach a final attribute to the
method.

As described above, the above listed assumptions are combi
nations of targeted optimization techniques and associated
assumption condition. In one embodiment, a programmer
may select one or more combinations from the list of optimi
Zation and assumption conditions.

FIGS. 1 and 2 area flow chart (100) illustrating the process
invoked by the Source code optimization tool to apply
changes to the Source code. There are two general categories
of optimizations, under regular conditions, i.e. without apply
ing any assumptive conditions to the optimization technique,

10

15

25

30

35

40

45

50

55

60

65

4
and under certain assumptions. For each optimization (102),
the result of applying optimization of the source code under
regular conditions is assigned to the variable A (104). A
determination is made as to whether there are any assump
tions for this optimization (106), i.e. the optimization
assigned to A. If the response to the determination at step
(106) is negative, this is an indication that the optimization
tool will operate under regular conditions and the changes
from the optimization at step (104) are applied to an interme
diate code (108). An intermediate language is the language of
an abstract machine designed to aid in the analysis of com
puter programs. The term comes from their use in compilers,
where a compiler first translates the Source code of a program
into a form more Suitable for code-improving transforma
tions, as an intermediate step before generating object or
machine code for a target machine. If the response to the
determination at step (106) is positive, this is an indication
that the optimization tool will proceed with optimizing the
source code based on the assumptions listed above. The result
of applying optimization of the Source code optimization
under specified assumptions is assigned to the variable B
(110). Following the assignment at step (110), results of
applying the optimization techniques at steps (104) and (110)
are compared to determine whether the results of the separate
techniques yield different results (112). A negative determi
nation returns to step (108) so that the tool may apply the
optimization results to an intermediate source code (108).
Accordingly, if the optimization results of the Source code
based upon regular conditions and assumptive conditions is
equivalent, input from a programmer for approval of the
optimization is not required.

However, a positive determine at step (112) results in deter
mining the improvement in the source code based on a com
parison of the changes proposed by the regular conditions and
the changes proposed based on the assumed conditions, and
selecting the transformation of the source code with the
higher effect (114). For each transformation of source code
(116), a confirmation message is created to confirm the trans
formation of the source code with a programmer (118).
Thereafter, a determination is made as to whether the pro
grammer has approved the transformation of the Source code
(120). A positive determination at step (120) will transform
the source code and intermediate code (122). Accordingly,
steps (118) through (122) are processed for each transforma
tion of source code (124).
A negative determination at step (120) will proceed to step

(126) to determine if there are more transformations to be
reviewed. If it is determined that there are more transforma
tions to be reviewed, the next transformation is presented to
the programmer (128) and the process returns to step (116) for
presentation to the programmer. However, if the response to
the results of the determination at step (126) confirms that
there is no more transformation to present to the programmer,
for each optimization (130) a subsequent determination is
conducted to determine if there is more source code to be
optimized (132). A positive response to the determination at
step (132) will follow with a selection of source code for
optimization (130), followed by a return to step (102). How
ever, a negative response to the determination at step (132) is
an indication that there is no more source code and the process
concludes (136). The steps outlined above outlines the pro
cess of optimizing the Source code and select a transformation
with a higher effect. If the transformation of the source code
at step (110) is selected, each transformation is reviewed by
the programmer, as shown at Steps (116)-(124).

In some cases the optimization of the Source code is applied
and fails. Information pertaining to the failure is conveyed to

US 8,234,636 B2
5

the programmer so that the programmer may correct the error
in the modified source code. Failure information may include
cause and location of the failure, and how the source code
may be rewritten to overcome the failure. At such time as the
optimization is Successful, an improvement ratio of the per
formance between the original Source code and the modified
Source code is stored in memory. In one embodiment, an
exception list is created from proposed changes to the Source
code that was not approved by the programmer. To avoid
repetition of prior decisions pertaining to source code opti
mization, the programmer may view the proposed change and
compare the proposal to previously negated changes on the
exception list.

In addition to determining an optimal change to the Source
code, as shown in FIGS. 1 and 2, an optimization graph is
created to illustrate estimation of the optimization effect. In
one embodiment, the optimization graph may be in the form
of a dependence graph in the form of a directed graph that
represents the control flow of program code. The graph
includes a plurality of nodes and a directed edge. Each node
represents a straight line sequence of code that can be entered
only at the beginning and exited only at the end, i.e. a basic
block. A directed edge is a control flow from one basic block
to another basic block. Edges represent the control flow from
the one basic block to one or more subsequent blocks. FIGS.
3 and 4 area flow chart (200) illustrating a process for creating
an optimization dependence graph. As in FIGS. 1 and 2, there
are two general categories of optimization, under regular
conditions, and under certain assumptions. For each optimi
Zation (202), the result of applying optimization of the Source
code under regular conditions is assigned to the variable A
(204). A determination is made as to whether there are any
assumptions for this optimization (206), i.e. the optimization
assigned to A. If the response to the determination at step
(206) is negative, this is an indication that the optimization
tool will operate under regular conditions and the changes to
the source code under regular conditions will be applied to the
source code and retained in an intermediate code (208). How
ever, if the response to the determination at step (206) is
positive, this is an indication that the optimization tool may
operate under specified assumptions. The result of applying
optimization of the source code under specified assumptions
is assigned to the variable B (210). Following the assignment
at Step (210), results of applying the optimization techniques
at steps (204) and (210) are compared to determine whether
the results of the separate techniques yield different results
(212). A negative determination returns to step (208) so that
the changes to the Source code under regular conditions may
be applied to an intermediate form of the source code (208).
However, a positive determine at step (212) results in analyz
ing the effectiveness between the two optimization methods
and storing the effectiveness in memory (214), e.g. analysis of
effectiveness of source code optimization under regular con
ditions as compared to effectiveness of source code optimi
Zation under specified assumptions. Details of the optimiza
tion analysis are shown in FIG. 5A and described in detail
below.

Following step (214), the transformation of the source code
with the higher effect is selected (216). In one embodiment,
the higher effect source code may be as determined through a
dependence graph. For each transformation of Source code
(218), a confirmation message is created to confirm the trans
formation of the source code with a programmer (220).
Thereafter, a determination is made as to whether the pro
grammer has approved the transformation of the source code
(222). A positive determination at step (222) will transform

10

15

25

30

35

40

45

50

55

60

65

6
the source code and intermediate code (224). Accordingly,
steps (218) through (224) are processed for each transforma
tion of source code (226).
A negative determination at step (222) will proceed to step

(228) to determine if there are more transformations to be
reviewed. If it is determined that there are more transforma
tions to be reviewed, the next transformation is presented to
the programmer (230) and the process returns to step (218) for
presentation to the programmer. However, if the response to
the results of the determination at step (228) confirms that
there are no more transformations to present to the program
mer, for each optimization (232) a Subsequent determination
is conducted to determine if there is more source code to be
optimized (234). A positive response to the determination at
step (234) will follow with a selection of source code for
optimization (236), followed by a return to step (202). How
ever, a negative response to the determination at step (234) is
an indication that there is no more source code and the process
concludes (238).

Accordingly, in the embodiment illustrated in FIGS. 3 and
4, a comparison of the effects of the two optimization meth
ods is compared and the optimization method with the opti
mal effect is selected for transformation.
As noted above, analysis of the two optimization methods

is conducted in order to determine which method yields opti
mal results. In one embodiment, part of this analysis includes
creation of a dependency graph based upon analysis of dif
ferent optimization options available. FIGS.5A and 5B are a
flow chart (300) illustrating analysis and comparison of the
optimization options that yields creation of an optimization
dependency graph. As shown in FIGS. 3 and 4, this analysis is
conducted based upon application of assumptive conditions
to the source code optimization at step (210) followed by a
determination that the source code optimization under regular
conditions yields different results than Source code optimiza
tion under assumptive conditions. A dependence graph of
variables and an optimization dependence graph are initial
ized (302). The current intermediate source code is assigned
to the variable C (304), i.e. intermediate code. Thereafter, the
optimization under assumption(s) is applied to the interme
diate code (306), and a dependence graph of variables based
on the result of the optimization under assumption(s) is cre
ated (308). The following information is registered: a list of
ignored preventive conditions, programming area where the
results of A and B are different, optimization result of B, and
the performance improvement ratio, if any (310). For each
Subsequent optimization to the source code (312), the results
of applying the optimization of the source code under regular
conditions is assigned the variable D (314), and a determina
tion is made as to whether there are any assumptions for this
optimization (316). If the response to the determination at
step (316) is positive, the result of applying optimization of
the source code optimization under specified assumptions is
assigned to the variable E (318), and a subsequent determi
nation is made as to whether the optimization under regular
conditions does not yield the same results as optimization
under assumed conditions (320). A positive response to the
determination at step (320) results in returning the source
code from the intermediate source code to the original source
code (322) from step (304). However, a negative response to
the determinations at steps (316) or (320), results in applying
the optimization results of the regular conditions to the inter
mediate source code (324). Based on the results of application
of the source code optimization at step (324), the dependence
graph variables are updated (326). Thereafter, the optimiza
tion dependence graph is updated to register the optimization
result(s) from step (326) and the performance improvement

US 8,234,636 B2
7

ratio associated therewith (328). Following step (328), the
process returns to step (312) to process any remaining Source
code optimizations (330). Upon a determination that analysis
of the source code optimization is complete, the analysis is
complete and the process returns to step (216) to select a
Source code optimization technique that yields the highest
result(s).
As show in FIGS. 5A and 5B, in addition to optimizing

Source code, a graph is created to express the dependence
relationships between different optimization techniques. In
one embodiment, the node in the dependence graph repre
sents how a command is transformed. Each node in the graph
has an improvement ratio. Each edge between the nodes
means that movement to the next node is allowed if the
transformation of the previous node has been achieved. As
noted above, the effectiveness of optimization between two
optimizations is recorded.

FIG. 6 is an example of a dependence graph (400). As
shown, there are three nodes (402), (404), and (406), and two
edges (408) and (410). Node (402) represents an intermediate
representation of Source code with a memory load optimiza
tion assuming memory values are not modified in a Subse
quent function call. Nodes (404) and (406) represent appli
cation of an array boundary check with no assumptions
applied. When a dependence graph is created, there is a need
to examine the dependence between optimizations. If there is
no dependence relationship between expressions for each
optimization, each expression is represented as independent.
Similarly, if there is a dependence relationship between the
expressions to be optimized, they are represented as edges. If
there is no dependence relationship between expressions for
each optimization, then each expression is represented as
independent. However, if there is a dependence relationship
between expressions for each optimization, then each expres
sion is represented as dependent. If the number of edges that
flow into a node in the graph is one and there is no assumption
in the node, the node can be combined with the previous node.
As shown herein at node (412), a merger of nodes (404) and
(406) is possible with an improvement percentage of 126
percent. FIG. 7 is a block diagram (500) of a dependency
graph showing the relationship of the variables of the graph in
FIG. 6. As shown, there are two variables (502) and (504) that
may merge to forman array (506) based on the variables (508)
and (510). This graph (500) shows that the array in (506) is
created based on the variables in (502) and (504). In this
dependence graph, if the number of edges that flow into a
node is one and there is no assumption on the node, then the
node can be combined with the previous node. The improve
ment percentage of Such a combination is calculated as fol
lows:

(improvement percentage of the following nodes)*
(improvement percentage of previous node)

In one embodiment, following the above calculation, an esti
mation of the effectiveness of the optimizations is presented
to the programmer. Accordingly, a programmer may deter
mine selection of an optimization technique based upon the
improvement percentage associated with the relationship of
the nodes in a dependence graph.

To improve the effectiveness of optimization, a plurality of
load commands is coalesced into a single load command.
Memory accesses whose effective addresses were originally
aligned are considered as a group, and code motion is carried
out so that as many memory access belonging to a group is
collected in one location. Therefore, it is possible to calculate

10

15

25

30

35

40

45

50

55

60

65

8
which memories should be aligning to obtain effectiveness
based on the execution frequency and to present the calcula
tion result to the programmer.
The invention can take the form of a hardware embodi

ment, a Software embodiment or an embodiment containing
both hardware and software elements. In a preferred embodi
ment, the invention is implemented in Software, which
includes but is not limited to firmware, resident software,
microcode, etc.

Furthermore, the invention can take the form of a computer
program product accessible from a computer-usable or com
puter-readable medium providing program code for use by or
in connection with a computer or any instruction execution
system. For the purposes of this description, a computer
usable or computer readable medium can be any apparatus
that can contain, store, communicate, propagate, or transport
the program for use by or in connection with the instruction
execution system, apparatus, or device.
The medium can be an electronic, magnetic, optical, elec

tromagnetic, infrared, or semiconductor system (or apparatus
or device) or a propagation medium. Examples of a computer
readable medium include a semiconductor or Solid State
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), a read-only memory (ROM),
a rigid magnetic disk and an optical disk. Current examples of
optical disks include compact disk-read only memory (CD
ROM), compact disk B read/write (CD-R/W) and DVD.
A data processing system suitable for storing and/or

executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Advantages Over the Prior Art

A method and tool for optimizing source code is provided
in a manner that both educates the programmer on improved
performance associated with the optimization, and Solicits
confirmation from the programmer prior to acceptance of the
changes. Program patterns and methods for optimizing
Source code associated with Such patterns may be predefined.
Similarly, certain conditions may yield assumptions, and
Such assumptions can be applied to the Source code optimi
Zation. The performance improvement of the program asso
ciated with Suggested changes in the optimization are pre
sented to the program based upon two techniques, with a
selection of one of the techniques provided as an option for
the programmer.

ALTERNATIVE EMBODIMENTS

It will be appreciated that, although specific embodiments
of the invention have been described herein for purposes of
illustration, various modifications may be made without
departing from the spirit and scope of the invention. In par
ticular, source code optimization may include one or more
assumptive conditions. However, there is no need to apply all
of the assumptive condition. Rather, a programmer may select
which conditions to apply from a list of assumptive condi
tions. In addition, in one embodiment, the programmer may
create their own assumptive conditions to be applied. Accord
ingly, the scope of protection of this invention is limited only
by the following claims and their equivalents.

US 8,234,636 B2
9

We claim:
1. A method for optimizing source code of a program,

comprising:
applying a first optimization technique to a select set

Source code of said program based on regular condi
tions;

applying a second optimization technique to said select set
Source code of said program based on application of an
assumptive condition, said applied second optimization
technique changing a meaning of the program, said
assumptive condition including movement of a com
mand outside of a loop within the program;

comparing said first optimization technique of said select
Source code with said second optimization technique to
determine which optimization technique yields
improved efficiency in Source code execution, wherein
Selection of one of said optimization techniques yields
approval from a programmer; and

Selecting of one of said optimization techniques in
response to said comparison; and

transforming said source code based upon said selection,
wherein the step of transforming said source code
includes an affect on said program.

2. The method of claim 1, wherein the step of transforming
said source code is automatic following selection of one of
said optimization techniques.

3. The method of claim 1, wherein said second optimiza
tion technique includes coalescing a plurality of load com
mands into a single load command.

4. The method of claim 1, further comprising creating a
dependence graph for said first and second optimization tech
niques to express dependence relationships between said
optimization techniques.

5. The method of claim 1, further comprising registering
disapproved source code changes in an exception list.

6. The method of claim 1, further comprising predefining
Source code patterns and modifying source code having a
pattern similar to one of said predefined source code patterns
following approval of said modification.

7. The method of claim 1, wherein said assumptive condi
tions are selected from the group consisting of ignore preven
tive conditions, attach a final attribute in locations where
classes, methods, or fields are recognized as not having been
written, attach a final attribute where a class does not have a
subclass, attach a final attribute where a method has not been
overridden, and attach a final attribute where a field has not
been modified.

8. An article comprising:
a computer-readable storage medium having computer

useable program code for optimizing Source code,
wherein the computer readable program when executed
on a computer causes the computer to:
apply a first optimization technique to a select set of

Source code of said program based on regular condi
tions;

apply a second optimization technique to said select set
Source code of said program based on application of at
least one assumptive conditions changing a meaning
of the program, said assumptive condition including
movement of a command outside of a loop within the
program;

compare said first optimization technique of said select
Source code with said second optimization technique
of said select source code to determine which optimi
Zation technique yields improved efficiency in Source

10

15

25

30

35

40

45

50

55

60

65

10
code execution, wherein selection of one of said opti
mization technique yields approval from a program
mer, and

transform said source code based upon a selection of one of
said optimization techniques in response to said com
parison, wherein transformation of said source code
includes an affect on said program.

9. The article of claim 8, wherein transformation of said
Source code is automatic after selection of one of said opti
mization techniques.

10. The article of claim 8, wherein said second optimiza
tion technique includes instructions to coalesce a plurality of
load commands into a single load command.

11. The article of claim 8, further comprising instructions
in said program to create a dependence graph for said first and
second optimization techniques to express dependence rela
tionships between said optimization techniques.

12. The article of claim 8, further comprising instructions
in said program to register disapproved source code changes
in an exception list.

13. The article of claim 8, further comprising instructions
in said program to predefine source code patterns and to
modify source code having a pattern similar to one of said
predefined source code patterns after approval of said modi
fication.

14. The article of claim 8, wherein said assumptive condi
tions are selected from the group consisting of ignore preven
tive conditions, attach a final attribute in locations where
classes, methods, or fields are recognized as not having been
written, attach a final attribute where a class does not have a
subclass, attach a final attribute where a method has not been
overridden, and attach a final attribute where a field has not
been modified.

15. A computer system comprising a processor in commu
nication with a tool to optimize source code, comprising:

a first optimization technique applied to a select set Source
code based on regular conditions;

a second optimization technique applied to said select set
Source code based on application of at least one assump
tive conditions, said applied second optimization tech
nique changing a meaning of the program, said assump
tive condition including movement of a command
outside of a loop within the program;

a manager within said tool to compare said first optimiza
tion technique of said select Source code with said sec
ond optimization technique to determine which optimi
Zation technique yields improved efficiency in source
code execution, wherein selection of one of said optimi
Zation technique yields approval from a programmer;
and

said manager to execute instructions to select to transform
said source code based upon a selection of one of said
optimization techniques in response to said comparison,
wherein transformation of said source code includes an
affect on said program.

16. The system of claim 15, whereintransformation of said
Source code is automatic following selection of one of said
optimization techniques.

17. The system of claim 15, wherein said second optimi
Zation technique includes instructions to coalesce a plurality
of load commands into a single load command.

US 8,234,636 B2
11

18. The system of claim 15, further comprising separate
dependence graphs created by said manager for said first and
second optimization techniques to express dependence rela
tionships between said optimization techniques, and a tech
nique to merge nodes of said dependence graphs.

19. The system of claim 15, wherein said assumptive con
ditions are selected from the group consisting of ignore pre
ventive conditions, attach a final attribute in locations where
classes, methods, or fields are recognized as not having been
written, attach a final attribute where a class does not have a

12
subclass, attach a final attribute where a method has not been
overridden, and attach a final attribute where a field has not
been modified.

20. The system of claim 15, further comprising a pre
defined source code pattern and said manager to modify
Source code having a pattern similar to said predefined source
code pattern after approval of said modification.

