

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

**(19) World Intellectual Property Organization
International Bureau**

(43) International Publication Date
24 January 2002 (24.01.2002)

PCT

(10) International Publication Number
WO 02/06529 A2

(51) International Patent Classification⁷: C12Q 1/68

PHAKDEEKITCHAROEN, Bunyong [TH/TH];
486/131-2 Petchburi Road, Ratchatewee, Bangkok 10400
(TH)

(74) **Agent:** HAILE, Lisa, A.; Gary Cary Ware & Friedenrich LLP, Suite 1600, 4365 Executive Drive, San Diego, CA 92121-2189 (US).

(25) Filling Language: English

(26) Publication Language: English

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(30) Priority Data: 60/218,261 13 July 2000 (13.07.2000) US
60/283,691 13 April 2001 (13.04.2001) US

EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier applications:

US 60/218,261 (CIP)
Filed on 13 July 2000 (13.07.2000)
US 60/283,691 (CIP)
Filed on 13 April 2001 (13.04.2001)

(71) **Applicant (for all designated States except US): THE
JOHNS HOPKINS UNIVERSITY SCHOOL OF
MEDICINE [US/US]; 111 Market Place, Suite 906,
Baltimore, MD 21202 (US).**

(72) **Inventors; and**
(75) **Inventors/Applicants (for US only): GERMINO, Gregory, G. [US/US]; 7310 Pomander Lane, Chevy Chase, MD 20815 (US). WATNICK, Terry, J. [US/US]; 7310 Pomander Lane, Chevy Chase, MD 20815 (US).**

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/06529 A2

(54) Title: DETECTION AND TREATMENT OF POLYCYSTIC KIDNEY DISEASE

(57) Abstract: Compositions useful for examining the PKD1 gene are provided. In addition, methods for detecting mutations of the PKD1 gene, which can be associated with autosomal dominant polycystic kidney disease in humans, are provided. Methods for diagnosing a mutant PKD1 gene sequence in a subject also are provided, as are methods of treating a subject having a PKD1-associated disorder.

DETECTION AND TREATMENT OF POLYCYSTIC KIDNEY DISEASE

5

BACKGROUND OF THE INVENTION**FIELD OF THE INVENTION**

The present invention relates generally to the diagnosis and treatment of polycystic kidney disease and more specifically to probes and agents useful in diagnosing and treating polycystic kidney disease and related disorders.

10

BACKGROUND INFORMATION

Autosomal dominant polycystic kidney disease (ADPKD), also called adult-onset polycystic kidney disease, is one of the most common hereditary disorders in humans, affecting approximately one individual in a thousand. The prevalence in the United States is greater than 500,000, with 6,000 to 7,000 new cases detected yearly (Striker *et al.*, Am. J. Nephrol. 6:161-164, 1986; Iglesias *et al.*, Am. J. Kid. Dis. 2:630-639, 1983). The disease is considered to be a systemic disorder, characterized by cyst formation in the ductal organs such as kidney, liver, and pancreas, as well as by gastrointestinal, cardiovascular, and musculoskeletal abnormalities, including colonic diverticulitis, berry aneurysms, hernias, and mitral valve prolapse (Gabow *et al.*, Adv. Nephrol. 18:19-32, 1989; Gabow, New Eng. J. Med. 329:332-342, 1993).

The most prevalent and obvious symptom of ADPKD is the formation of kidney cysts, which result in grossly enlarged kidneys and a decrease in renal-concentrating ability. In approximately half of ADPKD patients, the disease progresses to end-stage renal disease, and ADPKD is responsible for 4-8% of the renal dialysis and transplantation cases in the United States and Europe (Proc. Eur. Dialysis and Transplant Assn., Robinson and Hawkins, eds., 17:20, 1981).

30

Few diagnostics are available for the identification and characterization of mutations of the PKD1 gene, which is located on human chromosome 16. A major factor contributing to the difficulty in identifying and characterizing mutations of the PKD1 gene is that greater than 70% of the length of the PKD1 gene is replicated on

chromosome 16 and elsewhere, resulting in at least six PKD1 homologs. Significantly, the PKD1 homologs share a very high sequence identity with the PKD1 gene, including sequences having greater than 95% identity with the PKD1 gene. As such, oligonucleotides that have been examined for use as specific probes, or as 5 primers for amplification, of PKD1 gene sequences have been found to cross-hybridize with the PKD1 homologs, and the inability to identify PKD1 locus specific probes has prevented accurate analysis of PKD1 gene mutations.

The identification and characterization of PKD1 gene mutations have been 10 further hindered, in part, because transcription of the PKD1 gene results in production of a 14 kilobase (kb) mRNA, which is highly GC-rich. In addition, unlike the remainder of the PKD1 gene, which is extremely compact (approximately 13.5 kb mRNA coded within approximately 30 kb genomic DNA), exon 1 is separated from the rest of the gene by an intron of approximately 19 kb. Thus, previous investigators 15 have simply placed the 5' anchor primer within the first intron and used it as a link to more 3' sequences. Exon 1 has several other features that have been major obstacles to its amplification, including an extremely high GC content (approximately 85%), and the ability to replicate with high fidelity in PKD1 gene homologs. Furthermore, no effective method for DNA based analysis of PKD1 gene exon 22, which is flanked 20 on both ends by introns that contain lengthy polypyrimidine tracts. Accordingly, very few positions within the replicated segment and flanking exon 22 are suitable for the design of PKD1-specific primers.

A few oligonucleotides useful for examining regions of the human PKD1 gene, 25 have been described. For example, the primer set forth below as SEQ ID NO:11 has been described in U.S. Pat. No. 6,017,717, and the primer set forth as SEQ ID NO:18 has been described by Watnick *et al.* (Hum. Mol. Genet. 6:1473-1481, 1997). Also, the primers set forth below as SEQ ID NOS:9, 10, 49 to 51, and 61 to 105 have been described by Watnick *et al.* (Am. J. Hum. Genet. 65:1561-1571, 1999). The primers set 30 forth below as SEQ ID NOS: 9 and 10 and SEQ ID NOS: 11 and 12 also were more recently described by Phakdeekitcharoen *et al.* (Kidney International 58:1400-1412, 2000). In addition, a primer set forth as SEQ ID NO:13 in U.S. Pat. No. 6,071,717 has a

nucleotide sequence that is substantially identical to that set forth below as SEQ ID NO:10, and a primer designated TWR2 by Watnick et al. (Mol. Cell 2:247-251, 1998) has a nucleotide sequence that is substantially identical to that set forth below as SEQ ID NO:12.

5

Despite the large number of families having diseases associated with PKD1 gene mutations, the potential clinical and scientific impact of mutation studies, and the availability of a genomic structure, the fact that only a relatively small number of PKD1 mutations have been described demonstrates the relative paucity of data due to 10 the complicated genomic structure of the PKD1 gene. Thus, there exists a need for diagnostic methods suitable for examining the PKD1 gene and for identifying disorders related to PKD1 gene mutations. The present invention satisfies this need and provides additional advantages.

15

SUMMARY OF THE INVENTION

The present invention provides compositions and methods that allow for the selective examination of the human PKD1 gene, including the detection and identification of PKD1 gene mutations. For example, the compositions of the invention include oligonucleotide primers that are useful for selectively amplifying a 20 region of a PKD1 gene, but not a corresponding region of a PKD1 homolog. Accordingly, the present invention relates to a PKD1 gene specific primer, which can be one of a primer pair. A primer of the invention includes a 5' region and adjacent PKD1-specific 3' region, wherein the 5' region has a nucleotide sequence that can hybridize to a PKD1 gene sequence and, optionally, to a PKD1 homolog sequence, 25 and the 3' region has a nucleotide sequence that selectively hybridizes only to a PKD1 gene sequence, and particularly not to a PKD1 gene homolog sequence, except that a primer of the invention does not have a sequence as set forth in SEQ ID NO:11, SEQ ID NO:18, SEQ ID NO:52, or SEQ ID NO:60. A 5' region of a primer of the invention generally contains at least about ten contiguous nucleotides, and the 3' 30 region contains at least one 3' terminal nucleotide, wherein the at least one 3' terminal nucleotide is identical to a nucleotide that is 5' and adjacent to the nucleotide sequence of the PKD1 gene to which the 5' region of the primer can hybridize, and is different

from a nucleotide that is 5' and adjacent to a nucleotide sequence of the PKD1 homolog to which the 5' region of the primer can hybridize. Generally, the primer includes a 5' region of about 14 to 18 nucleotides and a 3' region of about 2 to 6 nucleotides, particularly about 2 to 4 nucleotides. For example, a primer of the 5 invention can have a sequence as set forth in any of SEQ ID NOS:3 to 10, 12 to 17, 19 to 51 and 61 to 113.

The present invention also relates to an isolated mutant PKD1 polynucleotide, or an oligonucleotide portion thereof. The polynucleotides of the invention are 10 exemplified by mutation of SEQ ID NO:1, which appear to be normal variants that are not associated with a PKD1-associated disorder, for example, a polynucleotide or oligonucleotide that includes nucleotide 474, wherein nucleotide 474 is a T; nucleotide 487, wherein nucleotide 487 is an A; nucleotide 9367, wherein nucleotide 9367 is a T; nucleotide 10143, wherein nucleotide 10143 is a G; 15 nucleotide 10234, wherein nucleotide 10234 is a C; nucleotide 10255, wherein nucleotide 10255 is a T; or a combination thereof; and by mutations of SEQ ID NO:1 that are associated with a PKD1-associated disorder, for example, a polynucleotide or oligonucleotide that includes nucleotide 3110 of SEQ ID NO:1, wherein nucleotide 3110 is a C; nucleotide 8298 of SEQ ID NO:1, wherein nucleotide 8298 is 20 a G; nucleotide 9164 of SEQ ID NO:1, wherein nucleotide 9164 is a G; nucleotide 9213 of SEQ ID NO:1, wherein nucleotide 9213 is an A; nucleotide 9326 of SEQ ID NO:1, wherein nucleotide 9326 is a T; nucleotide 10064 of SEQ ID NO:1, wherein nucleotide 10064 is an A; or a combination thereof. The invention also provides a vector containing such a polynucleotide, or an oligonucleotide portion 25 thereof, and provides a host cell containing such a polynucleotide or oligonucleotide, or vector.

A PKD1-specific primer of the invention is exemplified by an oligonucleotide that can selectively hybridize to a nucleotide sequence that flanks and is within about 30 fifty nucleotides of a nucleotide sequence selected from about nucleotides 2043 to 4209; nucleotides 17907 to 22489; nucleotides 22218 to 26363; nucleotides 26246 to 30615; nucleotides 30606 to 33957; nucleotides 36819 to 37140; nucleotides 37329

to 41258; and nucleotides 41508 to 47320 of SEQ ID NO:1. The primer, which can be one of a primer pair, can have a nucleotide sequence substantially identical to any of SEQ ID NOS: 3 to 18, provided that when the primer is not one of a primer pair, the primer does not have a sequence as set forth in SEQ ID NO:11, SEQ ID NO:18, 5 SEQ ID NO:52, or SEQ ID NO:60. Accordingly, the present invention further relates to a primer pair that can amplify a portion of a PKD1 gene, for example, the wild type PKD1 gene set forth as SEQ ID NO:1, wherein the amplification product can include about nucleotides 2043 to 4209; nucleotides 17907 to 22489; nucleotides 22218 to 26363; nucleotides 26246 to 30615; nucleotides 30606 to 33957; nucleotides 36819 10 to 37140; nucleotides 37329 to 41258; nucleotides 41508 to 47320; or a combination thereof. A primer pair of the invention is useful for performing PKD1-specific amplification of a portion of a PKD1 gene.

Primer pairs of the invention are exemplified by a pair including at least one 15 forward primer and at least one reverse primer of the oligonucleotides sequences set forth in SEQ ID NOS:3 to 18 or a sequence substantially identical thereto. In one embodiment, the primer pair includes SEQ ID NOS:3 and 4; SEQ ID NOS:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9 and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; SEQ ID NOS:17 and 18; or SEQ ID NOS:9 20 and 113. Also provided are primer pairs useful for performing nested amplification of a PKD1-specific amplification product of a PKD1 gene, for example, the primer pairs set forth as SEQ ID NOS:19 and 20; SEQ ID NOS:21 and 22; SEQ ID NOS:23 and 24; SEQ ID NOS:25 and 26; SEQ ID NOS:27 and 28; SEQ ID NOS:29 and 30; SEQ ID NOS:31 and 32; SEQ ID NOS:33 and 34; SEQ ID NOS:35 and 36; SEQ ID NOS:37 25 and 38; SEQ ID NOS:39 and 40; SEQ ID NOS:41 and 42; SEQ ID NOS:43 and 44; SEQ ID NOS:45 and 46; SEQ ID NOS:47 and 48; SEQ ID NOS:49 and 50; SEQ ID NOS: 51 and 61; SEQ ID NOS:62 and 63; SEQ ID NOS:64 and 65; SEQ ID NOS:66 and 67; SEQ ID NOS:68 and 69; SEQ ID NOS:70 and 71; SEQ ID NOS:72 and 73; SEQ ID NOS:74 and 75; SEQ ID NOS:76 and 77; SEQ ID NOS:78 and 79; SEQ ID 30 NOS:80 and 81; SEQ ID NOS:82 and 83; SEQ ID NOS:84 and 85; SEQ ID NOS:86 and 87; SEQ ID NOS:88 and 89; SEQ ID NOS:90 and 91; SEQ ID NOS:92 and 93; SEQ ID NOS:94 and 95; SEQ ID NOS:96 and 113; SEQ ID NOS:97 and 98; SEQ ID

NOS:99 and 100; SEQ ID NOS:101 and 102; SEQ ID NOS:103 and 104; SEQ ID NOS: 105 and 106; SEQ ID NOS:107 and 108; SEQ ID NOS:109 and 110; or SEQ ID NOS:111 and 112. In another embodiment, the invention relates to a plurality of primer pairs, which can include two or more primer pairs that are useful for 5 generating two or more PKD1-specific amplification products of a PKD1 gene; or can include two or more primer pairs that are useful for generating a PKD1-specific amplification product of a PKD1 gene and for generating a nested amplification product of the PKD1-specific amplification product.

10 The present invention also relates to a purified mutant PKD1 polypeptide, or a peptide portion thereof, comprising an amino acid sequence of a mutant of SEQ ID NO:2. A mutant PKD1 polypeptide, or peptide portion thereof can be substantially identical to a sequence of SEQ ID NO:2 and, for example, include amino acid residue 88 of SEQ ID NO:2, wherein residue 88 is a V; residue 967 of SEQ ID NO:2, 15 wherein residue 967 is an R; residue 2696 of SEQ ID NO:2, wherein residue 2696 is an R; residue 2985 of SEQ ID NO:2, wherein residue 2985 is a G; residue 3039 of SEQ ID NO:2, wherein residue 3039 is a C; residue 3285 of SEQ ID NO:2, wherein residue 3285 is an I; or residue 3311 of SEQ ID NO:2, wherein residue 3311 is an R; or can include residue 3000 of a truncated mutant PKD1 polypeptide ending at amino 20 acid residue 3000 with respect to SEQ ID NO:2, wherein residue 3001 is absent (and the mutant PKD1 polypeptide is truncated) due to the presence of a STOP codon in the encoding mutant PKD1 polynucleotide; or a combination of such mutations. Also provided is a purified antibody that specifically binds to a mutant PKD1 polypeptide, or to a peptide thereof.

25

The present invention further relates to a primer or an oligonucleotide of the invention immobilized to a solid support. In addition, the primer or oligonucleotide can be one of a plurality of primers, oligonucleotides, or a combination thereof, each of which is immobilized to a solid support. The solid support can be any support, 30 including, for example, a microchip, in which case, the primers, oligonucleotides, or combination thereof can be arranged in array, particularly an addressable array. The primers, oligonucleotides, or combination thereof also can be degenerate with respect

to each other, and specific for a wild type PKD1 polynucleotide, a mutant PKD1 polynucleotide, including a variant, or combinations thereof, and, therefore, provide a means for multiplex analysis. Accordingly, the present invention provides compositions comprising one or a plurality of immobilized primers or 5 oligonucleotides of the invention, or combinations thereof.

The present invention also relates to a method of detecting a PKD1 polynucleotide in a sample, wherein the PKD1 polynucleotide is a wild type PKD1 polynucleotide having a sequence as set forth in SEQ ID NO:1, or a mutant PKD1 10 polynucleotide, which can be a variant PKD1 polynucleotide that has a sequence different from SEQ ID NO:1 but is not associated with a PKD1-associated disorder or can be a mutant PKD1 polynucleotide that is associated with a PKD1-associated disorder. A method of the invention can be performed, for example, by contacting nucleic acid molecules in a sample suspected of containing a PKD1 polynucleotide 15 with at least one primer pair under conditions suitable for amplification of a PKD1 polynucleotide by the primer pair; and generating a PKD1-specific amplification product under said conditions, thereby detecting a PKD1 polynucleotide in the sample. The primer pair can be any primer pair as disclosed herein, for example, a primer pair such as SEQ ID NOS:3 and 4; SEQ ID NOS:5 and 6; SEQ ID NOS:7 and 8; 20 SEQ ID NOS:9 and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; SEQ ID NOS:17 and 18; or SEQ ID NOS:9 and 113; or can be a combination of such primer pairs.

A method of detecting a PKD1 polynucleotide can further include, upon 25 generating a PKD1-specific amplification product, contacting the amplification product with at least a second primer pair, under conditions suitable for nested amplification of the PKD1-specific amplification product by the second primer pair, and generating a nested amplification product. The second primer pair can be any primer pair that can produce a nested amplification product of the PKD1-specific 30 amplification product, for example, a second primer pair such as SEQ ID NOS:19 and 20; SEQ ID NOS:21 and 22; SEQ ID NOS:23 and 24; SEQ ID NOS:25 and 26; SEQ ID NOS:27 and 28; SEQ ID NOS:29 and 30; SEQ ID NOS:31 and 32; SEQ ID

NOS:33 and 34; SEQ ID NOS:35 and 36; SEQ ID NOS:37 and 38; SEQ ID NOS:39 and 40; SEQ ID NOS:41 and 42; SEQ ID NOS:43 and 44; SEQ ID NOS:45 and 46; SEQ ID NOS:47 and 48; SEQ ID NOS:49 and 50; SEQ ID NOS:51 and 61; primer pairs formed using consecutive primers set forth in Table 2 as SEQ ID NOS:62 to 96, 113, 5 and 97 to 112; or a combination thereof.

Upon detecting a PKD1 polynucleotide in a sample according to a method of the invention, an additional step of detecting the presence or absence of a mutation in an amplification product of the PKD1 polynucleotide in the sample as compared to a 10 corresponding nucleotide sequence in SEQ ID NO:1. As such, a method of the invention provides a means to identify a PKD1 polynucleotide in a sample as a mutant PKD1 polynucleotide or a wild type PKD1 polynucleotide, wherein detecting the absence of a mutation in the amplification product identifies the PKD1 polynucleotide in the sample as a wild type PKD1 polynucleotide, and wherein detecting the presence 15 of a mutation in the amplification product identifies the PKD1 polynucleotide in the sample as a mutant PKD1 polynucleotide, which can be a variant PKD1 polynucleotide, or can be mutant PKD1 polynucleotide associated with a PKD1-associated disorder, the latter of which are exemplified by a polynucleotide that is substantially identical to SEQ ID NO:1, and wherein at least nucleotide 474 is a T; 20 nucleotide 487 is an A; nucleotide 3110 is a C; nucleotide 8298 is a G; nucleotide 9164 is a G; nucleotide 9213 is an A; nucleotide 9326 is a T; nucleotide 9367 is a T; nucleotide 10064 is an A; nucleotide 10143 is a G; nucleotide 10234 is a C; or nucleotide 10255 is a T.

25 The presence or absence of a mutation in an amplification product generated according to a method of the invention can be detected any method useful for detecting a mutation. For example, the nucleotide sequence of the amplification product can be determined, and can be compared to the corresponding nucleotide sequence of SEQ ID NO:1. The melting temperature of the amplification product also 30 can be determined, and can be compared to the melting temperature of a corresponding double stranded nucleotide sequence of SEQ ID NO:1. The melting

temperature can be determined using a method such as denaturing high performance liquid chromatography.

An advantage of a method of the invention is that a large number of samples
5 can be examined serially or in parallel. Accordingly, a method of the invention can
be performed with respect to a plurality of samples, and can be performed using a
high throughput format, for example, by organizing the samples of a plurality of
samples in an array such as in an array is on a microchip. The method can further
include detecting the presence or absence of a mutation in an amplification product of
10 the samples of the plurality of samples, for example, by determining the melting
temperature of the amplification product and comparing it to the melting temperature
of a corresponding nucleotide sequence of SEQ ID NO:1 using a method such as
denaturing high performance liquid chromatography, or the presence or absence of a
mutation can be performed using any method useful for such a purpose, for example,
15 matrix-assisted laser desorption time of flight mass spectrometry or high throughput
conformation-sensitive gel electrophoresis, each of which is readily adaptable to a
high throughput analysis format.

In another embodiment, the presence or absence of a mutation in an
20 amplification product can be detected by contacting the amplification product with the
oligonucleotide of the invention, under condition suitable for selective hybridization
of the oligonucleotide to an identical nucleotide sequence; and detecting the presence
or absence of selective hybridization of the oligonucleotide to the amplification
product. Using such a method detecting the presence of selective hybridization
25 identifies the PKD1 polynucleotide in the sample as a mutant PKD1 polynucleotide,
and detecting the absence of selective hybridization identifies the PKD1
polynucleotide as a wild type PKD1 polynucleotide. Where an absence of a mutation
is detected, the PKD1 polynucleotide in the sample is identified as a wild type PKD1
polynucleotide. In comparison, where the presence of a mutation is identified, the
30 mutant PKD1 polynucleotide so identified can be further examined to determine
whether the mutant PKD1 polynucleotide is a variant PKD1 polynucleotide, which is
associated with a normal phenotype with respect to PKD1, for example, where the

amplification product has a nucleotide sequence substantially identical to SEQ ID NO:1, and including C474T, G487A, G4885A; C6058T; G6195A; T7376C; C7696T; G8021A; C9367T, A10143G, T10234C, or a combination thereof, or is a mutant PKD1 polynucleotide associated with a PKD1-associated disorder, for example, where the

5 amplification product has a nucleotide sequence substantially identical to SEQ ID NO:1, and including T3110C, G3707A; T6078A; C7433T; T8298G; A9164G; G9213A, C9326T; G10064A; an insertion of GCG between nucleotides G7535 and A7536; or a combination thereof, each of which is associated with ADPKD (see Example 2; see, also, Phakdeekitcharoen *et al.*, *Kidney International* 58:1400-1412, 2000, which is

10 incorporated herein by reference).

The present invention further relates to a method of detecting the presence of a mutant PKD1 polynucleotide in a sample. In one embodiment, a method of the invention is performed by amplifying a nucleic acid sequence in a sample suspected of containing a mutant PKD1 polynucleotide using a primer pair of the invention, for example, a primer pair selected from SEQ ID NOS:3 and 4; SEQ ID NOS:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9 and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; SEQ ID NOS:17 and 18; or SEQ ID NOS:9 and 113, thereby obtaining a PKD1-specific amplification product of a PKD1 gene sequence; and detecting a mutant PKD1 polynucleotide in the amplification product. The mutant PKD1 nucleotide in the amplification product can be detected using any method useful for detecting a mutation in a polynucleotide, for example, using denaturing high performance liquid chromatograph. In another embodiment, a method of the invention is performed by contacting a sample suspected of containing a mutant PKD1 polynucleotide with a probe comprising an isolated polynucleotide of the invention, or an oligonucleotide portion thereof, under conditions such that the probe selectively hybridizes to a mutant PKD1 polynucleotide, and detecting specific hybridization of the probe and a PKD1 polynucleotide, thereby detecting the presence of a mutant PKD1 polynucleotide sequence in the sample.

The present invention further relates to a method of identifying a subject having or is at risk of having a PKD1-associated disorder. Such a method can be

performed, for example, by contacting nucleic acid molecules in a sample from a subject with at least one primer pair of the invention under conditions suitable for amplification of a PKD1 polynucleotide by the primer pair, thereby generating an amplification product; and testing an amplification product for the presence or 5 absence of a mutation indicative of a PKD1-associated disorder. As disclosed herein, the absence of such a mutation identifies the subject as not having or at risk of the having a PKD1-associated disorder, wherein the presence of such a mutation identifies the subject as having or is at risk of having a PKD1-associated disorder, for example, ADPKD or acquired cystic disease.

10

A primer pair useful in a diagnostic method of the invention can include at least one primer pair selected from SEQ ID NO:3 and 4; SEQ ID NO:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9 and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; SEQ ID NOS:17 and 18; and SEQ ID NOS:9 and 113. The subject 15 can be any subject having a PKD1 gene and susceptible to a PKD1-associated disorder, including a vertebrate subject, and particularly a mammalian subject such as a cat or a human. In addition, the diagnostic method can be performed in a high throughput format, thereby allowing the examination of a large number samples in a cost-effective manner.

20

The diagnostic method can further include contacting the amplification product generated as described above with at least a second primer pair, under conditions suitable for nested amplification of the amplification product by a second primer pair, thereby generating a nested amplification product. The second primer 25 pair can be, for example, a primer pair selected from SEQ ID NOS:19 and 20; SEQ ID NOS:21 and 22; SEQ ID NOS:23 and 24; SEQ ID NOS:25 and 26; SEQ ID NOS:27 and 28; SEQ ID NOS:29 and 30; SEQ ID NOS:31 and 32; SEQ ID NOS:33 and 34; SEQ ID NOS:35 and 36; SEQ ID NOS:37 and 38; SEQ ID NOS:39 and 40; SEQ ID NOS:41 and 42; SEQ ID NOS:43 and 44; SEQ ID NOS:45 and 46; SEQ ID NOS:47 and 48; SEQ ID NOS:49 and 50; SEQ ID NOS:51 and 61; a primer pair formed using 30 two consecutive primers set forth in Table 2 as SEQ ID NOS:62 to 96, 113, and 97 to 112 (i.e., SEQ ID NOS: 62 and 63, SEQ ID NOS:64 and 65, and so on); and a

combination thereof, in which case, the step of testing the amplification product for the presence or absence of a mutation comprises testing the nested amplification product. It should be recognized that the selection of a primer pair for nested amplification is based, in part, on the sequence of the PKD1-specific amplification product that is to 5 be used as a template for the nested amplification, i.e., nested primer pairs are selected such that they can hybridize to a target PKD1-specific amplification product and can amplify the target sequence.

An amplification product can be tested for the presence or absence of the 10 mutation, for example, by determining the nucleotide sequence of the amplification product, and comparing it to a corresponding nucleotide sequence of SEQ ID NO:1; by determining the melting temperature of the amplification product, and comparing it to the melting temperature of a corresponding nucleotide sequence of SEQ ID NO:1, for example, using a method such as denaturing high performance liquid 15 chromatography; or by contacting the amplification product with an oligonucleotide probe containing nucleotide 474 of SEQ ID NO:1, wherein nucleotide 474 is a T; nucleotide 487 of SEQ ID NO:1, wherein nucleotide 487 is an A; nucleotide 3110 of SEQ ID NO:1, wherein nucleotide 3110 is a C; nucleotide 8298 of SEQ ID NO:1, wherein nucleotide 8298 is a G; nucleotide 9164 of SEQ ID NO:1, wherein nucleotide 20 9164 is a G; nucleotide 9213 of SEQ ID NO:1, wherein nucleotide 9213 is an A; nucleotide 9326 of SEQ ID NO:1, wherein nucleotide 9326 is a T; nucleotide 9367 of SEQ ID NO:1, wherein nucleotide 9367 is a T; nucleotide 10064 of SEQ ID NO:1, wherein nucleotide 10064 is an A; nucleotide 10143 of SEQ ID NO:1, wherein nucleotide 10143 is a G; nucleotide 10234 of SEQ ID NO:1, wherein nucleotide 25 10234 is a C; and nucleotide 10255 of SEQ ID NO:1, wherein nucleotide 10255 is a T, under conditions suitable for selective hybridization of the probe to a mutant PKD1 polypeptide, which can be a normal variant or can be a mutant PKD1 polynucleotide associated with a PKD1-associated disorder.

30 The present invention also relates to a method of diagnosing a PKD1-associated disorder in a subject suspected of having a PKD1-associated disorder. Such a method is performed by amplifying a nucleic acid sequence in a sample

obtained from the subject using a primer pair suitable for PKD1-specific amplification of a PKD1 gene sequence, for example, a primer pair such as SEQ ID NO:3 and 4; SEQ ID NOS:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9 and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; SEQ ID NOS:17 and 18, or 5 SEQ ID NOS:9 and 113, thereby obtaining a PKD1-specific first amplification product; and detecting a mutation of a PKD1 gene sequence in the PKD1-specific first amplification product, wherein the mutation is indicative of a PKD1-associated disorder, thereby diagnosing a PKD1-associated disorder in the subject.

10 In one embodiment, the diagnostic method includes a step of further amplifying the first amplification product using a second set of primer pairs to obtain a nested amplification product; and detecting a PKD1 gene mutation in the nested amplification product. The second set of primer pairs can be any primer pairs useful for amplifying the PKD1-specific first amplification product, including, for example, 15 the primer pairs exemplified by SEQ ID NOS:19 and 20; SEQ ID NOS:21 and 22; SEQ ID NOS:23 and 24; SEQ ID NOS:25 and 26; SEQ ID NOS:27 and 28; SEQ ID NOS:29 and 30; SEQ ID NOS:31 and 32; SEQ ID NOS:33 and 34; SEQ ID NOS:35 and 36; SEQ ID NOS:37 and 38; SEQ ID NOS:39 and 40; SEQ ID NOS:41 and 42; SEQ ID NOS:43 and 44; SEQ ID NOS:45 and 46; SEQ ID NOS:47 and 48; SEQ ID 20 NOS:49 and 50; SEQ ID NOS:51 and 61; or any of the primer pairs formed using consecutive primers set forth in Table 2 as SEQ ID NOS:62 to 96, 113, and 97 to 112.

In another method, the diagnostic method includes a step of contacting the PKD1-specific first amplification product or second amplification product with a 25 probe comprising an isolated polynucleotide, or an oligonucleotide portion thereof, comprising a mutant of SEQ ID NO:1, under conditions such that the probe can selectively hybridize to a mutant PKD1 polynucleotide; and detecting selective hybridization of the probe to the first amplification product, thereby diagnosing a PKD1-associated disorder in the subject. The probe can be, for example, an oligonucleotide portion of SEQ ID NO:1 that includes one or more of nucleotide 474 30 is a T; nucleotide 487 is an A; nucleotide 3110 is a C; nucleotide 8298 is a G; nucleotide 9164 is a G; nucleotide 9213 is an A; nucleotide 9326 is a T; nucleotide 9367

is a T; nucleotide 10064 is an A; nucleotide 10143 is a G; nucleotide 10234 is a C; or nucleotide 10255 is a T.

The present invention also relates to a method of detecting the presence of a mutant PKD1 polypeptide in a sample. Such a method can be performed, for example, by contacting a sample suspected of containing a mutant PKD1 polypeptide with an antibody that specifically binds to a mutant PKD1 polypeptide, under conditions which allow the antibody to bind to the mutant PKD1 polypeptide and detecting specific binding of the antibody and the mutant PKD1 polypeptide in the sample. The detection of an immunocomplex of the antibody and a mutant PKD1 polypeptide, for example, indicates the presence of a mutant PKD1 polypeptide in the sample. In one embodiment, the method is performed by contacting a tissue sample from a subject suspected of containing a PKD1 polypeptide with the antibody that specifically binds a mutant PKD1 polypeptide under conditions that allow the antibody interact with a PKD1 polypeptide and detecting specific binding of the antibody and the PKD1 polypeptide in the tissue.

The present invention further relates to a kit for detecting a mutant PKD1 polynucleotide, which can be a variant PKD1 polynucleotide or a mutant PKD1 polynucleotide associated with a PKD1-associated disorder. The kit can contain, for example, a carrier means containing therein one or more containers wherein a first container contains a nucleotide sequence useful for detecting a wild type or mutant PKD1 polynucleotide. As such, a nucleotide sequence useful in a kit of the invention can be an oligonucleotide comprising at least ten contiguous nucleotides of SEQ ID NO:1, including at least one of nucleotide 474, wherein nucleotide 474 is a T; nucleotide 487, wherein nucleotide 487 is an A; nucleotide 3110, wherein nucleotide 3110 is a C; a position corresponding to nucleotide 3336, wherein nucleotide 3336 is deleted; nucleotide 3707, wherein nucleotide 3707 is an A; nucleotide 4168, wherein nucleotide 4168 is a T; nucleotide 4885, wherein nucleotide 4885 is an A; nucleotide 5168, wherein nucleotide 5168 is a T; nucleotide 6058, wherein nucleotide 6058 is a T; nucleotide 6078, wherein nucleotide 6078 is an A; nucleotide 6089, wherein nucleotide 6089 is a T;

nucleotide 6195, wherein nucleotide 6195 is an A; nucleotide 6326, wherein nucleotide 6326 is a T; a position corresponding to nucleotides 7205 to 7211, wherein nucleotides 7205 to 7211 are deleted; nucleotide 7376, wherein nucleotide 7376 is a C; a nucleotide sequence corresponding to nucleotides 7535 to 7536, wherein a GCG 5 nucleotide sequence is inserted between nucleotides 7535 and 7536; nucleotide 7415, wherein nucleotide 7415 is a T; nucleotide 7433, wherein nucleotide 7433 is a T; nucleotide 7696, wherein nucleotide 7696 is a T; nucleotide 7883, wherein nucleotide 7883 is a T; nucleotide 8021, wherein nucleotide 8021 is an A; a nucleotide sequence corresponding to nucleotide 8159 to 8160, wherein nucleotides 8159 to 8160 10 are deleted; nucleotide 8298, wherein nucleotide 8298 is a G; nucleotide 9164, wherein nucleotide 9164 is a G; nucleotide 9213, wherein nucleotide 9213 is an A; nucleotide 9326, wherein nucleotide 9326 is a T; nucleotide 9367, wherein nucleotide 9367 is a T; nucleotide 10064, wherein nucleotide 10064 is an A; nucleotide 10143, wherein nucleotide 10143 is a G; nucleotide 10234, wherein 15 nucleotide 10234 is a C; or nucleotide 10255, wherein nucleotide 10255 is a T. A nucleotide sequence useful in a kit of the invention also can comprise one or both primers of a primer pair, particularly at least a forward primer and a reverse primer as set forth in SEQ ID NOS: 3 to 18; and the kit can further include at least a second primer pair, including a forward and reverse primer as set forth in SEQ ID NOS: 19 to 51 20 and 61 to 113. In another aspect, the present invention relates to a kit containing an antibody that specifically binds to a mutant PKD1 polypeptide or peptide portion thereof.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 is a schematic showing the genomic structure of the PKD1 gene 25 (SEQ ID NO:1) and the relative position of locus-specific templates and primers.

Figure 2 shows the relative position of the BPF6-BPR6 long-range PCR template and the much shorter PKD1-specific exon 28 product, 28F-BPR6. The dashed line below exon 28 identified the long range PCR amplification product that 30 resulted when BPF6, the sequence of which is common to the PKD1 gene and to the homologs, was used in combination with the homolog-specific primer, BPR6HG.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides compositions and methods for identifying polycystic kidney disease-associated protein-1 (PKD1) gene variants and mutants, and for diagnosing PKD1-associated disorders in a subject. Prior to the present disclosure, the ability to selectively examine the entire PKD1 gene for mutations was precluded due to the high sequence homology of the PKD1 gene and the PKD1 gene homologs, including those present with the PKD1 gene on human chromosome 16. As disclosed herein, polynucleotide sequences have now been developed that are useful as probes and primers for examining the entire PKD1 gene. Accordingly, the present invention provides polynucleotides, and oligonucleotide portions thereof, of a PKD1 gene and of PKD1 gene mutants that are useful for detecting PKD1 mutations, and that can be diagnostic of a PKD1-associated disorder.

Autosomal dominant polycystic kidney disease (ADPKD) exhibits a transmission pattern typical of autosomal dominant inheritance, where typically each offspring of an affected individual has a 50% chance of inheriting the causative gene. Linkage studies indicated that a causative gene is present on the short arm of chromosome 16, near the α globin cluster; this locus was designated PKD1 (Reeders *et al.*, *Nature*, 317:542, 1985.) Though other PKD-associated genes exist (for example, PKD2), defects in PKD1 appear to cause ADPKD in about 85-90% of affected families (Parfrey *et al.*, *New Eng. J. Med.* 323:1085-1090, 1990; Peters *et al.*, *Contrib. Nephrol.* 97:128-139, 1992).

The PKD1 gene has been localized to chromosomal position 16p13.3, specifically to an interval of approximately 600kb between the markers ATPL and CMM65 (D16S84). This region is rich in CpG islands that often flank transcribed sequences; it has been estimated that this interval contains at least 20 genes. The precise location of the PKD1 gene was pinpointed by the finding of an ADPKD family whose affected members carry a translocation that disrupts a 14 kb RNA transcript associated with this region (European PKD Consortium, *Cell*, 77:881, 1994).

The genomic structure of the PKD1 gene, which is illustrated in Figure 1 (SEQ ID NO:1; see Appendix A; see, also, GenBank Accession No. L39891, which is incorporated herein by reference), extends over approximately 50 kb, contains 46 exons, and is bisected by two large polypyrimidine tracts of approximately 2.5 kb and 0.5 kb, 5 respectively, in introns 21 and 22 (indicated by "...CCTCCTCCT..." in Figure 1). The replicated portion of the gene, which begins prior to the 5'UTR and is believed to end in exon 34 (Figure 1; stippled region), covers approximately two thirds of the 5' end of the gene and is duplicated several times in a highly similar, transcribed fashion elsewhere in the human genome (Germino *et al.*, *Genomics* 13:144-151, 1992; European 10 Chromosome 16 Tuberous Sclerosis Consortium, 1993, *Cell* 75:1305-1315). The encoded PKD1 polypeptide is shown as SEQ ID NO:2 (see Appendix A; see, also, GenBank Accession No. P98161, which is incorporated herein by reference). It should be recognized that SEQ ID NO:2 is not the same amino acid sequence as that shown to be encoded by GenBank Accession No. L39891 (see, also, GenBank AAB59488), 15 presumably due to errors in predicting the encoded PKD1 polypeptide from the PKD1 gene sequence. Instead, the wild type PKD1 polypeptide sequence is shown in SEQ ID NO:2 (GenBank Accession No. P98161).

The present invention provides a PKD1 gene specific primer, which can be 20 one of a primer pair. A primer of the invention includes a 5' region and adjacent PKD1-specific 3' region, wherein the 5' region has a nucleotide sequence that can hybridize to a PKD1 gene sequence or to a PKD1 gene sequence and a PKD1 gene homolog sequence, and the 3' region has a nucleotide sequence that selectively hybridizes only to a PKD1 gene sequence, and particularly not to a PKD1 gene 25 homolog sequence, except that a primer of the invention does not have a sequence as set forth in SEQ ID NO:11, SEQ ID NO:18, SEQ ID NO:52, or SEQ ID NO:60. Thus, a primer of the invention can have a sequence as set forth in any of SEQ ID NOS:3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 61, 30 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112 and 113, as well as a sequence that is substantially identical

to any of SEQ ID NOS:3 to 51 and 61 to 113, provided the sequence comprises a 5' region that can hybridize to a PKD1 gene sequence or to a PKD1 gene sequence and a PKD1 gene homolog sequence, and a 3' region that selectively hybridizes to a PKD1 gene sequence, but not to a PKD1 gene homolog sequence; and provided the sequence 5 is not otherwise specifically excluded herein.

As disclosed herein, a primer of the invention can be prepared by aligning SEQ ID NO:1 with the PKD1 gene homologs contained in GenBank Accession Nos. AC002039, AC010488, AC040158, AF320593 and AF320594 (each of which is 10 incorporated herein by reference; see, also, Bogdanova et al., *Genomics* 74:333-341, 2001, which is incorporated herein by reference) and identifying regions having potential sequence differences, then selecting as PKD1-specific primers those sequences that match over at least about ten nucleotides and that have a mismatch at or adjacent to the 3' terminus of the matched regions (see Example 1; see, also, 15 Phakdeekitcharoen et al., *supra*, 2000). Such primers are referred to as "PKD1-specific primers" because, while they can hybridize to a PKD1 gene and a PKD1 gene homologue, an extension product only can be generated upon hybridization to a PKD1 gene due to the mismatch of one or more nucleotides in the 3' region when the primer hybridizes to a PKD1 gene homologue. Confirmation that a selected 20 oligonucleotide is a PKD1-specific primer can be made using methods as disclosed herein (Example 1) or otherwise known in the art. For example, a simple and straightforward method for determining that a primer is a PKD1-specific primer of the invention is to perform a primer extension or an amplification reaction using the putative PKD1-specific primer and templates including a PKD1 gene sequence and 25 PKD1 gene homolog sequences, and detecting a single extension product or amplification product generated from the PKD1 gene template, but not the PKD1 gene homolog templates. Sequences identified as PKD1-specific primers using this or another method can be confirmed by performing various control experiments as described by Watnick et al. (*supra*, 1999), for example, by comparing an 30 amplification product obtained in a cell having a PKD1 gene with the products, if any, produced using the radiation hybrid cell line, 145.19, which lacks the PKD1 gene but contains PKD1 gene homologs.

A nucleotide sequence suspected of being useful as a PKD1-specific primer also can be compared against a human genomic DNA database using, for example, a BLAST search or other algorithm, to confirm that the nucleotide sequence meets the 5 requirements of a PKD1-specific primer as defined herein. For example, a putative PKD1-specific primer can be examined at the National Center for Biotechnology 10 Information (NCBI), which can be accessed on the world wide web, by selecting the "Blast" option, thereafter selecting the "Search for short nearly exact matches", entering in the sequence to be examined, and, using the default search algorithms (word size 7), searching the "nr" database, which include all non-redundant GenBank+EMBL+DDBJ+PDB sequences, but no EST, SST, GSS or HTGS sequences; output can be restricted to showing only the top ten matches.

In a PKD1-specific primer of the invention, the 5' region contains at least 15 about ten contiguous nucleotides, generally at least about 12 nucleotides, and usually about 14 to 18 nucleotides. In addition, the 3' region of the primer contains at least one 3' terminal nucleotide, and can include a sequence of at least about 2 to 6 nucleotides, particularly about 2 to 4 nucleotides. Where the 3' region consists of a single 3' terminal nucleotide, the primer is selected such that the 3' terminal nucleotide 20 is identical to a nucleotide that is 5' and adjacent to the nucleotide sequence of the PKD1 gene to which the 5' region of the primer can hybridize, and is different from a nucleotide that is 5' and adjacent to a nucleotide sequence of the PKD1 homolog to which the 5' region of the primer can hybridize, i.e., provides a mismatched nucleotide. Where the 3' region of the PKD1-specific primer contains two or more 25 nucleotides, one or more of the nucleotides can be mismatched, and the mismatched nucleotide can, but need not include the 3' terminal nucleotide, provided that when the mismatched nucleotide or nucleotides do not include the 3' terminal nucleotide, the primer cannot be extended when hybridized to a PKD1 gene homolog.

30 PKD1-specific primers of the invention are exemplified by primers that can selectively hybridize to a nucleotide sequence that flanks and is within about fifty nucleotides of a nucleotide sequence of SEQ ID NO:1 selected from about

nucleotides 2043 to 4209; nucleotides 17907 to 22489; nucleotides 22218 to 26363; nucleotides 26246 to 30615; nucleotides 30606 to 33957; nucleotides 36819 to 37140; nucleotides 37329 to 41258; and nucleotides 41508 to 47320. A primer of the invention is exemplified by any of SEQ ID NOS: 3 to 10, 12 to 17, 19 to 51, and 61 to 113, and can have a sequence substantially identical to any of SEQ ID NOS:3 to 51 and 61 to 113, provided the sequence meets the requirements of a PKD1-specific primer as disclosed herein, and provided the sequence is not a sequence as set forth in any of SEQ ID NO:11, SEQ ID NO:18, SEQ ID NO:52, and SEQ ID NO:60.

10 A primer is considered to be "substantially identical" to any of SEQ ID NOS:3 to 51 and 61 to 113 if the primer has at least about 80% or 85%, generally at least about 90%, usually at least about 95%, and particularly at least about 99% sequence identity with one of SEQ ID NOS:3 to 51 and 61 to 113, and has a 5' region and adjacent PKD1-specific 3' region, wherein the 5' region has a nucleotide sequence that 15 can hybridize to a PKD1 gene sequence or to a PKD1 gene sequence and a PKD1 gene homolog sequence, and the 3' region has a nucleotide sequence that selectively hybridizes only to a PKD1 gene sequence, and particularly not to a PKD1 gene homolog sequence, as defined herein, except that a primer of the invention does not have a sequence as set forth in SEQ ID NO:11, SEQ ID NO:18, SEQ ID NO:52, or 20 SEQ ID NO:60. As such, a primer of the invention can include one or a few, but no more than about four or five, more or fewer nucleotide than a primer as set forth in SEQ ID NOS:3 to 51 and 61 to 113, provided the primer meets the functional requirements as defined herein.

25 The present invention also provides primer pairs. In one embodiment, a primer pair of the invention comprising a forward and reverse PKD1-specific primer as disclosed herein. As such, a primer pair of the invention can amplify a portion of SEQ ID NO:1 including about nucleotides 2043 to 4209; nucleotides 17907 to 22489; nucleotides 22218 to 26363; nucleotides 26246 to 30615; nucleotides 30606 to 33957; 30 nucleotides 36819 to 37140; nucleotides 37329 to 41258; nucleotides 41508 to 47320; or a combination thereof. In general, a primer pair of the invention can produce an amplification product of about ten kilobases or shorter, generally about 7500 bases or

shorter, and particularly about six kilobases or shorter. Primer pairs of the invention are exemplified by a forward primer and a reverse primer selected from SEQ ID NOS:3 to 18, for example, by any of SEQ ID NOS:3 and 4; SEQ ID NOS:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9 and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; SEQ ID NOS:17 and 18; and SEQ ID NOS:9 and 113, which can be used to produce PKD1-specific amplification products of about 0.3 kilobases to about 5.8 kilobases.

As disclosed herein, a set of eight polymerase chain reaction (PCR) primer pairs 10 can be used to prepare PKD1-specific amplification products that encompass all of the exons and their flanking introns within the replicated region of the PKD1 gene. In view of the disclosed nucleotide sequences of the primers and of SEQ ID NO:1, it will be 15 recognized that additional PCR primer pairs useful for a preparing PKD1-specific first amplification product can be based on the exemplified primers and primer pairs, but can include one or few additional nucleotides (based on SEQ ID NO:1) at one or both ends of the exemplified primers, or can have one or a few nucleotides of an exemplified primer deleted, and their usefulness can be determined by comparing an amplification product generated using the derived or modified primer with a PKD1-specific amplification product as disclosed herein. As such, a primer pair based, for example, on 20 SEQ ID NOS: 3 and 4 can be used to generate a PKD-1 specific amplification product containing about nucleotides 2043 to 4209 of SEQ ID NO:2, where in reference to "about" nucleotides 2043 to 4209 of SEQ ID NO:2 accounts for the disclosure that a primer pair used for amplification can be identical or substantially identical to SEQ ID NOS: 3 and 4.

25

Accordingly, the present invention provides primer pairs comprising a forward primer and a reverse primer having nucleotide sequences as set forth in SEQ ID NOS:3 to 18; primer pairs exemplified by SEQ ID NOS:3 and 4; SEQ ID NOS:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9 and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; SEQ ID NOS:17 and 18; and SEQ ID NOS:9 and 113; and substantially identical primer pairs that comprise primers based on or derived from the exemplified primers, such primer pairs being useful for preparing a PKD1-specific

amplification product. The primer pairs shown as SEQ ID NOS: 9 and 10 and SEQ ID NOS: 11 and 12 have been described by Phakdeekitcharoen *et al.* (*supra*, 2000), as have the PKD1 specific amplification products generated using these primers.

5 It should be recognized that certain primers and certain primer pairs exemplified herein are not considered to be encompassed within the present invention. For example, the primer set forth in SEQ ID NO:11 has been described in U.S. Pat. No. 6,017,717 (which is incorporated herein by reference; column 24, SEQ ID NO:15); and the primer set forth in SEQ ID NO:18 has been described by Watnick *et al.* (*Hum. Mol. Genet.* 10 6:1473-1481, 1997, which is incorporated herein by reference; see page 1479; KG8R25), and, therefore, neither of these primers is considered to be a primer of the invention. Nevertheless, the primers set forth as SEQ ID NOS: 11 and 18 can be encompassed within the primer pairs of the invention, including within various disclosed and exemplified primer pairs, for example, the primer pairs set forth as SEQ ID NOS:11 15 and 12 and as SEQ ID NOS:17 and 18, as well as within combinations of two or more primer pairs, for example, a combination comprising SEQ ID NOS:11 and 12 and SEQ ID NOS:13 and 14.

The primers set forth in SEQ ID NO:9 and SEQ ID NO:10 have been described 20 by Watnick *et al.* (*Am. J. Hum. Genet.* 65:1561-1571, 1999, which is incorporated herein by reference) and, therefore, can be specifically excluded from certain embodiments of the invention, as desired, for example, as encompassed within the primers of the invention. It should be recognized, however, that the combination of SEQ ID NOS:9 and 10 as a primer pair is not described by Watnick *et al.* (*supra*, 1999). SEQ 25 ID NOS:49 to 51 and 61 to 105 also have been described by Watnick *et al.* (*supra*, 1999) and, therefore, can be specifically excluded from certain embodiments of the invention, as desired.

Except as provided herein, a primer of the invention is exemplified by any of 30 SEQ ID NOS:3 to 51 and 61 to 113, as well as substantially identical oligonucleotide primers that are based on or derived from SEQ ID NOS:3 to 51 and 61 to 113. It should be recognized, however, that the primer set forth as SEQ ID NO:12 is substantially

similar to the primer designated TWR2 by Watnick *et al.* (Mol. Cell 2:247-251, 1998, which is incorporated herein by reference; page 250; 5'-GCAGGGTGAGCAGGTGGGCCATCCTA-3'; SEQ ID NO:60), and that the primer set forth as SEQ ID NO:10 is substantially identical to SEQ ID NO:13 in U.S. 5 Pat. No. 6,071,717 (5'-AGGTCAACGTGGGCCTCCAAGTAGT-3'; SEQ ID NO:52). As such, a primer having the nucleotide sequence of SEQ ID NO:52 or of SEQ ID NO:60 is specifically excluded from the primers that otherwise would be encompassed within the scope of primers that have a sequence substantially identical to the sequence of the primer set forth as SEQ ID NO:12 or SEQ ID NO:10, respectively.

10

The present invention also provides an isolated mutant PKD1 polynucleotide, or an oligonucleotide portion thereof comprising a mutation as disclosed herein. As used herein, the term "isolated" or "purified," when used in reference to a polynucleotide, oligonucleotide, or polypeptide, means that the material is in a form other than that in which it normally is found in nature. Thus, where a polynucleotide or polypeptide occurs in a cell in nature, an isolated polynucleotide or purified polypeptide can be one that separated, at least in part, from the materials with which it is normally associated. In general, an isolated polynucleotide or a purified polypeptide is present in a form in which it constitutes at least about 5 to 10% of a 15 composition, usually 20% to 50% of a composition, particularly about 50% to 75% of a composition, and preferably about 90% to 95% or more of a composition. Methods for isolating a polynucleotide or polypeptide are well known and routine in the art. 20

As part of or following isolation, a polynucleotide can be joined to other 25 polynucleotides, such as DNA molecules, for example, for mutagenesis studies, to form fusion proteins, or for propagation or expression of the polynucleotide in a host. The isolated polynucleotides, alone or joined to other polynucleotides, such as vectors, can be introduced into host cells, in culture or in whole organisms. Such polynucleotides, when introduced into host cells in culture or in whole organisms, 30 nevertheless are considered "isolated" because they are not in a form in which they exist in nature. Similarly, the polynucleotides, oligonucleotides, and polypeptides can be present in a composition such as a media formulation (solutions for introduction of

polynucleotides, oligonucleotides, or polypeptides, for example, into cells or compositions or solutions for chemical or enzymatic reactions which are not naturally occurring compositions) and, therein remain isolated polynucleotides, oligonucleotides, or polypeptides within the meaning of that term as it is employed 5 herein. An isolated polynucleotide can be a polynucleotide that is not immediately contiguous with nucleotide sequences with which it is immediately contiguous in a genome or other naturally occurring cellular DNA molecule in nature. Thus, a recombinant polynucleotide, which can comprise a polynucleotide incorporated into a vector, an autonomously replicating plasmid, or a virus; or into the genomic DNA of a 10 prokaryote or eukaryote, which does not normally express a PKD1 polypeptide.

As used herein, the term "polynucleotide" or "oligonucleotide" or "nucleotide sequence" or the like refers to a polymer of two or more nucleotides or nucleotide analogs. The polynucleotide can be a ribonucleic acid (RNA) or deoxyribonucleic 15 acid (DNA) molecule, and can be single stranded or double stranded DNA or RNA, or a double stranded DNA:RNA hybrid. A polynucleotide or oligonucleotide can contain one or more modified bases, for example, inosine or a tritylated base. The bonds linking the nucleotides in a polymer generally are phosphodiester bonds, but can be other bonds routinely used to link nucleotides including, for example, 20 phosphorothioate bonds, thioester bonds, and the like. A polynucleotide also can be a chemically, enzymatically or metabolically modified form.

As used herein, the term "mutant PKD1 polynucleotide" means a nucleotide sequence that has one or a few nucleotide changes as compared to the nucleotide 25 sequence set forth as SEQ ID NO:1. The nucleotide change can be a deletion, insertion or substitution, and can be silent such that there is no change in the reading frame of a polypeptide encoded by the PKD1 polynucleotide, or can be a change that results in an amino acid change or in the introduction of a STOP codon into the polynucleotide, or a change in a nucleotide sequence involved in transcription or translation of the PKD1 30 polynucleotide, for example, a change that results in altered splicing of a PKD1 gene transcript into an mRNA (see Example 2). As disclosed herein, a mutant PKD1 polynucleotide can be a polymorphic variant, which, other than one or a few nucleotide

changes with respect to SEQ ID NO:1, encodes a PKD1 polypeptide and does not correlate with a PKD1 associated disorder, particularly ADPKD, or can be a mutant PKD1 polynucleotide that contains one or more mutations that correlate with a PKD1 associated disorder such as ADPKD (see Example 2).

5

For convenience of discussion and for use as a frame of reference, the PKD1 nucleotide sequence set forth in SEQ ID NO:1 is referred to as a "wild type PKD1 polynucleotide" or a "wild type PKD1 gene" sequence, and, similarly, the polypeptide set forth as SEQ ID NO:2 is referred to as a "wild type PKD1 polypeptide." However, 10 while the presence of the wild type PKD1 gene sequence (i.e., SEQ ID NO:1) in an individual correlates to the absence of ADPKD in the individual, it should be recognized that polymorphic variants of SEQ ID NO:1 also are found in individuals that do not exhibit ADPKD or other PKD1-associated disorder. The term "variants" or "polymorphic variants" is used herein to refer to mutant PKD1 polynucleotide sequences 15 (with respect to SEQ ID NO:1) that do not correlate with the signs or symptoms characteristic of a PKD1 associated disorder such as ADPKD. Variant PKD1 polynucleotides include, for example, nucleotide substitutions that do not result in a change in the encoded amino acid, i.e., silent mutations, such as G4885A, in which the wild type and mutant codons both encode a threonine (T1558T), and C6058T, in which 20 the wild type and mutant codons both encode a serine (S1949S; see Example 2; see, also, Phakdeekitcharoen *et al.*, *supra*, 2000); those that do not segregate with the disease, or those that are found in a panel of unaffected individuals. As such, it should be 25 recognized that the term "mutant PKD1 polynucleotide" broadly encompasses PKD1 variants, which do not correlate with a PKD1 associated disorder, as well as mutant PKD1 polynucleotides that correlate or are associated with a PKD1 associated disorder.

Examples of mutant PKD1 polynucleotide sequences, including variant PKD1 polynucleotide sequence, include sequences substantially as set forth in SEQ ID NO:1, but having a mutation at nucleotide 474, wherein nucleotide 474 is a T; nucleotide 487, 30 wherein nucleotide 487 is an A; nucleotide 3110, wherein nucleotide 3110 is a C; a position corresponding to nucleotide 3336, wherein nucleotide 3336 is deleted; nucleotide 3707, wherein nucleotide 3707 is an A; nucleotide 4168, wherein

nucleotide 4168 is a T; nucleotide 4885, wherein nucleotide 4885 is an A; nucleotide 5168, wherein nucleotide 5168 is a T; nucleotide 6058, wherein nucleotide 6058 is a T; nucleotide 6078, wherein nucleotide 6078 is an A; nucleotide 6089, wherein nucleotide 6089 is a T; nucleotide 6195, wherein 5 nucleotide 6195 is an A; nucleotide 6326, wherein nucleotide 6326 is a T; a position corresponding to nucleotides 7205 to 7211, wherein nucleotides 7205 to 7211 are deleted; nucleotide 7376, wherein nucleotide 7376 is a C; a nucleotide sequence corresponding to nucleotides 7535 to 7536, wherein a GCG nucleotide sequence is inserted between nucleotides 7535 and 7536; nucleotide 7415, wherein nucleotide 7415 10 is a T; nucleotide 7433, wherein nucleotide 7433 is a T; nucleotide 7696, wherein nucleotide 7696 is a T; nucleotide 7883, wherein nucleotide 7883 is a T; nucleotide 8021, wherein nucleotide 8021 is an A; a nucleotide sequence corresponding to nucleotide 8159 to 8160, wherein nucleotides 8159 to 8160 are deleted; nucleotide 8298, wherein nucleotide 8298 is a G; nucleotide 9164, wherein 15 nucleotide 9164 is a G; nucleotide 9213, wherein nucleotide 9213 is an A; nucleotide 9326, wherein nucleotide 9326 is a T; nucleotide 9367, wherein nucleotide 9367 is a T; nucleotide 10064, wherein nucleotide 10064 is an A; nucleotide 10143, wherein nucleotide 10143 is a G; nucleotide 10234, wherein nucleotide 10234 is a C; or nucleotide 10255, wherein nucleotide 10255 is a T; or a 20 combination thereof (see Example 2; see, also, Tables 3 and 4). Examples of a mutant PKD1 polynucleotide of the invention also include a polynucleotide that encodes a PKD1 polypeptide having substantially as set forth in SEQ ID NO:2, but having an A88V, W967R, G1166S; V1956E; R1995H; R2408C; D2604N; L2696R, R2985G, R3039C, V3285I, H3311R mutation, or a combination thereof, as well as 25 polypeptides that have, for example, an addition of a Gly residue between amino acid residues 2441 and 2442 of SEQ ID NO:2 due to an insertion, or that terminate with amino acid 3000 of SEQ ID NO:2 due to the presence of a STOP codon at the position in SEQ ID NO:1 that would otherwise encode amino acid 3001 (see, also, Table 4; Example 2).

30

Additional examples of mutant PKD1 polynucleotides of the invention include polynucleotide sequences that selectively hybridize to the complements of the

polynucleotide sequences, or oligonucleotide portions thereof, as disclosed herein, under highly stringent hybridization conditions, *e.g.*, hybridization to filter-bound DNA in 0.5M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C, and washing in 0.1 x SSC/0.1% SDS at 68°C (Ausubel *et al.*, *Current Protocols in Molecular Biology*, 5 (Green Publishing Associates, Inc., and John Wiley & Sons, Inc., New York 1989), and supplements; see p. 2.10.3; Sambrook *et al.*, *Molecular Cloning: A laboratory manual* (Cold Spring Harbor Laboratory Press, 1989), which are incorporated herein by reference), as well as polynucleotides that encode a PKD1 polypeptide substantially as set forth in SEQ ID NO:2, but having one or more mutations; or an RNA corresponding 10 to such a polynucleotide.

A polynucleotide or polypeptide sequence that is "substantially identical" to a PKD1 polynucleotide of SEQ ID NO:1 or a polypeptide sequence of SEQ ID NO:2 generally is at least 80% or 85%, usually at least about 90%, and particularly at least 15 about 95%, and preferably at least about 99% identical to the nucleotide sequence or amino acid sequence as set forth in SEQ ID NO:1 or SEQ ID NO:2, respectively. It should be recognized, however, that a mutation in a PKD1 gene sequence can result in the expression of a truncated PKD1 polypeptide, or even a complete loss of expression of the PKD1 polypeptide. As such, while a mutant PKD1 polynucleotide 20 is identified as being substantially identical to SEQ ID NO:1, it may not always be possible to make the same comparison with respect to the encoded polypeptides. In one aspect of the invention, a polynucleotide or polypeptide sequence that is substantially identical to SEQ ID NO:1 or 2 will vary at one or more sites having a mutation, for example, a mutation present in a mutant PKD1 polynucleotide as set 25 forth in the preceding paragraph. Sequence identity can be measured using sequence analysis software (*e.g.*, Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison WI 53705).

30 A polynucleotide or oligonucleotide portion thereof of the invention can be useful, for example, as a probe or as a primer for an amplification reaction. Reference to an "oligonucleotide portion" of a mutant PKD1 polynucleotide means a nucleotide

sequence of the mutant PKD1 polynucleotide that is less than the full length polynucleotide. Generally, a polynucleotide useful as a probe or a primer contains at least about 10 nucleotides, and usually contains about 15 to 30 nucleotides or more (see, for example, Tables 1 and 2). Polynucleotides can be prepared by any suitable 5 method, including, for example, by restriction enzyme digestion of an appropriate polynucleotide, by direct chemical synthesis using a method such as the phosphotriester method (Narang *et al.*, 1979, *Meth. Enzymol.*, 68:90-99); the phosphodiester method (Brown *et al.*, 1979, *Meth. Enzymol.*, 68:109-151); the diethylphosphoramidite method (Beaucage *et al.*, 1981, *Tetrahedron Lett.*, 22:1859-10 1862); the triester method (Matteucci *et al.*, 1981, *J. Am. Chem. Soc.*, 103:3185-3191), including by automated synthesis methods; or by a solid support method (see, for example, U.S. Pat. No. 4,458,066). In addition, a polynucleotide or oligonucleotide can be prepared using recombinant DNA methods as disclosed herein or otherwise known in the art.

15

An oligonucleotide of the invention can include a portion of a mutant PKD1 polynucleotide, including, for example, a sequence substantially identical to that of SEQ ID NO:1, except wherein nucleotide 474 is a T; or wherein nucleotide 487 is an A; or wherein nucleotide 3110 is a C; or wherein nucleotide 8298 is a G; or wherein 20 nucleotide 9164 is a G; or wherein nucleotide 9213 is an A; or wherein nucleotide 9326 is a T; or wherein nucleotide 9367 is a T; or wherein nucleotide 10064 is an A; or wherein nucleotide 10143 is a G; or wherein nucleotide 10234 is a C; or wherein nucleotide 10255 is a T; or wherein the oligonucleotide contains a combination of such 25 substitutions with respect to SEQ ID NO:1. Thus, as disclosed herein, the oligonucleotide can be any length and can encompass one or more of the above mutations.

An oligonucleotide of the invention can selectively hybridize to a mutant PKD1 polynucleotide sequence as disclosed herein. As such, the oligonucleotide does not 30 hybridize substantially, if at all, to a wild type PKD1 polynucleotide (i.e., to SEQ ID NO:1). As used herein, the term "selectively hybridize" refers to the ability of an oligonucleotide (or polynucleotide) probe to hybridize to a selected sequence, but not to

a highly related nucleotide sequence. For example, a oligonucleotide of the invention selectively hybridizes to a mutant PKD1 polynucleotide, but not substantially to a corresponding sequence of SEQ ID NO:1. As such, hybridization of the oligonucleotide to SEQ ID NO:1 generally is not above background, or, if some hybridization occurs, is 5 at least about ten-fold less than the amount of hybridization that occurs with respect to the mutant PKD1 polynucleotide.

In addition, the term "hybridize" is used herein to have its commonly understood meaning of two nucleotide sequences that can associate due to shared complementarity. 10 As disclosed herein, a primer of the invention can hybridize to PDK1 gene and may also hybridize to a PDK1 gene homolog, but generally does not substantially hybridize to a nucleotide sequence other than a PKD1 gene or PKD1 gene homolog. Desired hybridization conditions, including those that allow for selective hybridization, can be obtained by varying the stringency of the hybridization conditions, based, in part, on the 15 length of the sequences involved, the relative G:C content, the salt concentration, and the like (see Sambrook *et al.*, *supra*, 1989). Hybridization conditions that are highly stringent conditions are used for selective hybridization and can be used for hybridization of a primer or primer pair of the invention to a PKD1 gene or PKD1 gene homolog, and include, for example, washing in 6 x SSC/0.05% sodium pyrophosphate at 20 about 37°C (for 14 nucleotide DNA probe), about 48°C (for 17 nucleotide probe), about 55°C (for a 20 nucleotide probe), and about 60°C (for a 23 nucleotide probe). As disclosed herein, polynucleotides that selectively hybridize to a mutant PKD1 polynucleotide provide a means to distinguish the mutant PKD1 polynucleotide from a wild type PKD1 polynucleotide.

25

A polynucleotide or oligonucleotide of the invention can be used as a probe to screen for a particular PKD1 variant or mutant of interest. In addition, the oligonucleotides of the invention include a PKD1 antisense molecule, which can be useful, for example, in PKD1 polynucleotide regulation and amplification reactions of 30 PKD1 polynucleotide sequences, including mutant PKD1 polynucleotide sequences. Further, such oligonucleotides can be used as part of ribozyme or triple helix sequence for PKD1 gene regulation. Still further, such oligonucleotides can be used as a

component of diagnostic method, whereby the level of PKD1 transcript can be determined or the presence of an ADPKD-causing allele can be detected. Further, such oligonucleotides can be used, for example, to screen for and identify PKD1 homologs from other species.

5

The term "primer" or "PCR primer" refers to an isolated natural or synthetic oligonucleotide that can act as a point of initiation of DNA synthesis when placed under conditions suitable for primer extension. Synthesis of a primer extension product is initiated in the presence of nucleoside triphosphates and a polymerase in an 10 appropriate buffer at a suitable temperature. A primer can comprise a plurality of primers, for example, where there is some ambiguity in the information regarding one or both ends of the target region to be synthesized. For instance, if a nucleic acid sequence is determined from a protein sequence, a primer generated to synthesize nucleic acid sequence encoding the protein sequence can comprise a collection of 15 primers that contains sequences representing all possible codon variations based on the degeneracy of the genetic code. One or more of the primers in this collection will be homologous with the end of the target sequence or a sequence flanking a target sequence. Likewise, if a conserved region shows significant levels of polymorphism in a population, mixtures of primers can be prepared that will amplify adjacent 20 sequences.

During PCR amplification, primer pairs flanking a target sequence of interest are used to amplify the target sequence. A primer pair typically comprises a forward primer, which hybridizes to the 5' end of the target sequence, and a reverse primer, 25 which hybridizes to the 3' end of the target sequence. Except as otherwise provided herein, primers of the present invention are exemplified by those having the sequences set forth as SEQ ID NOS:3 to 51 and 61 to 113 (see Tables 1 and 2). Forward primers are exemplified by SEQ ID NOS:3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47 and 49; and reverse primers are 30 exemplified by SEQ ID NOS:4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, and 50. A primer pair of the invention includes at least one forward primer and at least one reverse primer that allows for generation of an

amplification product, which can be a long range PKD1-specific amplification product or a nested amplification product of such an amplification product, including a forward and reverse primer as set forth in SEQ ID NOS:3 to 18 and of SEQ ID NOS:19 to 51 and 61 to 113, provided that the forward primer is 5' (or upstream) of 5 the reverse primer with reference to a target polynucleotide sequence, and that the primers are in sufficient proximity such that an amplification product can be generated.

Nucleic acid sequences that encode a fusion protein can be produced and can 10 be operatively linked to expression control sequences. Such fusion proteins and compositions are useful in the development of antibodies or to generate and purify peptides and polypeptides of interest. As used herein, the term "operatively linked" refers to a juxtaposition, wherein the components so described are in a relationship permitting them to function in their intended manner. For example, an expression 15 control sequence operatively linked to a coding sequence is ligated such that expression of the coding sequence is achieved under conditions compatible with the expression control sequences, whereas two operatively linked coding sequences can be ligated such that they are in the same reading frame and, therefore, encode a fusion protein.

20

As used herein, the term "expression control sequences" refers to nucleic acid sequences that regulate the expression of a nucleic acid sequence to which it is operatively linked. Expression control sequences are operatively linked to a nucleic acid sequence when the expression control sequences control and regulate the 25 transcription and, as appropriate, translation of the nucleic acid sequence. Thus, expression control sequences can include appropriate promoters, enhancers, transcription terminators, a start codon (*i.e.*, ATG) in front of a protein-encoding gene, splicing signals for introns, maintenance of the correct reading frame of that gene to permit proper translation of the mRNA, and STOP codons. Control 30 sequences include, at a minimum, components whose presence can influence expression, and can also include additional components whose presence is

advantageous, for example, leader sequences and fusion partner sequences.

Expression control sequences can include a promoter.

A polynucleotide of the invention can comprise a portion of a recombinant
5 nucleic acid molecule, which, for example, can encode a fusion protein. The
polynucleotide, or recombinant nucleic acid molecule, can be inserted into a vector,
which can be an expression vector, and can be derived from a plasmid, a virus or the
like. The expression vector generally contains an origin of replication, a promoter,
and one or more genes that allow phenotypic selection of transformed cells containing
10 the vector. Vectors suitable for use in the present invention include, but are not
limited to the T7-based expression vector for expression in bacteria (Rosenberg *et al.*,
Gene 56:125, 1987), the pMSXND expression vector for expression in mammalian
cells (Lee and Nathans, J. Biol. Chem. 263:3521, 1988); baculovirus-derived vectors
for expression in insect cells; and the like.

15

The choice of a vector will also depend on the size of the polynucleotide
sequence and the host cell to be employed in the methods of the invention. Thus, the
vector used in the invention can be plasmids, phages, cosmids, phagemids, viruses (*e.g.*,
retroviruses, parainfluenzavirus, herpesviruses, reoviruses, paramyxoviruses, and the
20 like), or selected portions thereof (*e.g.*, coat protein, spike glycoprotein, capsid protein).
For example, cosmids and phagemids are typically used where the specific nucleic acid
sequence to be analyzed or modified is large because these vectors are able to stably
propagate large polynucleotides. Cosmids and phagemids are particularly suited for the
expression or manipulation of the PKD1 polynucleotide of SEQ ID NO:1 or a mutant
25 PKD1 polynucleotide.

In yeast, a number of vectors containing constitutive or inducible promoters
can be used (see Ausubel *et al.*, *supra*, 1989; Grant *et al.*, Meth. Enzymol. 153:516-
544, 1987; Glover, DNA Cloning, Vol. II, IRL Press, Washington D.C., Ch. 3, 1986;
30 and Bitter, Meth. Enzymol. 152:673-684, 1987; and The Molecular Biology of the
Yeast *Saccharomyces*, Eds. Strathern *et al.*, Cold Spring Harbor Press, Vols. I and II,
1982). A constitutive yeast promoter such as ADH or LEU2 or an inducible promoter

such as GAL can be used ("Cloning in Yeast," Ch. 3, Rothstein, In "DNA Cloning" Vol. 11, A Practical Approach, ed. Glover, IRL Press, 1986). Alternatively, vectors can be used which promote integration of foreign DNA sequences into the yeast chromosome. The construction of expression vectors and the expression of genes in

5 transfected cells involves the use of molecular cloning techniques also well known in the art (see Sambrook *et al.*, *supra*, 1989; Ausubel *et al.*, *supra*, 1989). These methods include *in vitro* recombinant DNA techniques, synthetic techniques and *in vivo* recombination/genetic recombination.

10 A polynucleotide or oligonucleotide can be contained in a vector and can be introduced into a cell by transformation or transfection of the cell. By "transformation" or "transfection" is meant a permanent (stable) or transient genetic change induced in a cell following incorporation of new DNA (*i.e.*, DNA exogenous to the cell). Where the cell is a mammalian cell, a permanent genetic change is

15 generally achieved by introduction of the DNA into the genome of the cell.

A transformed cell or host cell can be any prokaryotic or eukaryotic cell into which (or into an ancestor of which) has been introduced, by means of recombinant DNA techniques, a polynucleotide sequence of the invention or fragment thereof.

20 Transformation of a host cell can be carried out by conventional techniques as are well known to those skilled in the art. Where the host is prokaryotic, such as *E. coli*, competent cells which are capable of DNA uptake can be prepared from cells harvested after exponential growth phase and subsequently treated by the CaCl_2 method by procedures well known in the art, or using MgCl_2 or RbCl .

25 Transformation can also be performed after forming a protoplast of the host cell or by electroporation.

When the host is a eukaryote, such methods of transfection include the use of calcium phosphate co-precipitates, conventional mechanical procedures such as

30 microinjection, electroporation, insertion of a plasmid encased in liposomes, or the use of virus vectors, or other methods known in the art. One method uses a eukaryotic viral vector, such as simian virus 40 (SV40) or bovine papillomavirus, to

transiently infect or transform eukaryotic cells and express the protein. (Eukaryotic Viral Vectors, Cold Spring Harbor Laboratory, Gluzman ed., 1982). Preferably, a eukaryotic host is utilized as the host cell as described herein. The eukaryotic cell can be a yeast cell (e.g., *Saccharomyces cerevisiae*), or can be a mammalian cell, 5 including a human cell.

A variety of host-expression vector systems can be utilized to express a PKD1 polynucleotide sequence such as SEQ ID NO:1, a coding sequence of SEQ ID NO:1 or a mutant PKD1 polynucleotide. Such host-expression systems represent vehicles by 10 which the nucleotide sequences of interest can be produced and subsequently purified, and also represent cells that, when transformed or transfected with the appropriate nucleotide coding sequences, can express a PKD1 protein, including a PKD1 variant or mutant polypeptide or peptide portion thereof *in situ*. Such cells include, but are not limited to, microorganisms such as bacteria (e.g., *E. coli*, *B. subtilis*) transformed with 15 recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing a PKD1 polynucleotide, or oligonucleotide portion thereof (wild type, variant or other mutant); yeast (e.g., *Saccharomyces*, *Pichia*) transformed with recombinant yeast expression vectors containing a PKD1 polynucleotide, or oligonucleotide portions thereof (wild type, variant or other PKD1 mutant); insect cell systems infected with 20 recombinant virus expression vectors (e.g., baculovirus) containing a PKD1 polynucleotide, or oligonucleotide portion thereof (wild type, PKD1 variant or other mutant); plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus or tobacco mosaic virus) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing a mutant PKD1 polynucleotide, 25 or oligonucleotide portion thereof; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 3T3) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter).

30

In bacterial systems, a number of expression vectors can be advantageously selected depending upon the use intended for the PKD1 protein (wild type, variant or

other PKD1 mutant) being expressed. For example, when a large quantity of such a protein is to be produced, for the generation of antibodies, which can be used to identify or diagnose PKD1-associated diseases or disorders, or to screen peptide libraries, vectors that direct the expression of high levels of fusion protein products that are readily purified can be desirable. Such vectors include, but are not limited to, the *E. coli* expression vector pUR278 (Ruther *et al.*, 1983, EMBO J. 2:1791), in which a PKD1 polynucleotide, or oligonucleotide portion thereof (wild type, variant or other mutant) can be ligated individually into the vector in frame with the lac Z coding region so that a fusion protein is produced; pIN vectors (Inouye and Inouye, Nucl. Acids Res. 13:3101-3109, 1985; Van Heeke and Schuster, J. Biol. Chem. 264:5503-5509, 1989); and the like. pGEX vectors can also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. The pGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned PKD1 protein, variant or mutant can be released from the GST moiety.

In an insect system, *Autographa californica* nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in *Spodoptera frugiperda* cells. A PKD1 polynucleotide, or oligonucleotide portion thereof can be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter). Successful insertion of a PKD1 polynucleotide, or oligonucleotide portion thereof will result in inactivation of the polyhedrin gene and production of non-occluded recombinant virus (*i.e.*, virus lacking the proteinaceous coat coded for by the polyhedrin gene). These recombinant viruses are then used to infect *Spodoptera frugiperda* cells in which the inserted gene is expressed (see Smith *et al.*, 1983, J. Virol. 46:584; U.S. Pat. No. 4,215,051).

30 In mammalian host cells, a number of viral-based expression systems can be utilized. In cases where an adenovirus is used as an expression vector, a PKD1 polynucleotide, or oligonucleotide portion thereof, can be ligated to an adenovirus

transcription/translation control complex, *e.g.*, the late promoter and tripartite leader sequence. This chimeric gene can then be inserted in the adenovirus genome by *in vitro* or *in vivo* recombination. Insertion in a non-essential region of the viral genome such as the E1 or E3 region results in a recombinant virus that is viable and capable of

5 expressing a PKD1 protein (*e.g.*, wild-type, variants or mutants thereof) in infected hosts (Logan and Shenk, Proc. Natl. Acad. Sci., USA 81:3655-3659, 1984). Specific initiation signals can also be required for efficient translation of an inserted PKD1 sequence. These signals include the ATG initiation codon and adjacent sequences. Where an entire PKD1 polynucleotide, including its own initiation codon and adjacent sequences, is

10 inserted into the appropriate expression vector, no additional translational control signals can be needed. However, where only a portion of a PKD1 sequence is inserted, exogenous translational control signals, including, for example, an ATG initiation codon, must be provided. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These

15 exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression can be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, and the like (see Bittner *et al.*, Meth. Enzymol. 153:516-544, 1987).

20 In addition, a host cell strain can be chosen which modulates the expression of the inserted sequences, or modifies and processes the expressed polypeptide in a specific fashion. Such modifications (*e.g.*, glycosylation) and processing (*e.g.*, cleavage) of protein products can be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the post-translational processing and

25 modification of proteins. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein being expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the polypeptide can be used. Such mammalian host cells include, but are not limited to, CHO, VERO, BHK,

30 HeLa, COS, MDCK, 293, 3T3, WI38, and the like.

For long term, high yield production of recombinant proteins, stable expression is preferred. For example, cell lines that stably express a PKD1 protein, including wild-type, variants or mutants of PKD1, can be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with

5 DNA controlled by appropriate expression control elements (e.g., promoter and/or enhancer sequences, transcription terminators, polyadenylation sites, and the like), and a selectable marker. Following the introduction of the foreign DNA, engineered cells can be grown for 1-2 days in an enriched media, then switched to selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and

10 allows cells to stably integrate the plasmid into their chromosomes and grow to form foci, which can be cloned and expanded into cell lines. This method can advantageously be used to engineer cell lines that express a PKD1 variant or mutant polypeptide. Such engineered cell lines can be particularly useful in screening and evaluation of compounds that affect the endogenous activity of a variant or mutant PKD1 polypeptide.

15 Such engineered cell lines also can be useful to discriminate between factors that have specific vs. non-specific effects. In particular, mutant cell lines should lack key functions, and various mutations can be used to identify key functional domains using *in vivo* assays.

20 A number of selection systems can be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler *et al.*, Cell 11:223, 1977), hypoxanthine-guanine phosphoribosyltransferase (Szybalska and Szybalski, Proc. Natl. Acad. Sci. USA 48:2026, 1962), and adenine phosphoribosyltransferase (Lowy *et al.*, Cell 22:817, 1980) genes can be employed in tk⁻, hgprt⁻ or aprt⁻ cells, respectively. Also,

25 antimetabolite resistance can be used as the basis of selection for dhfr, which confers resistance to methotrexate (Wigler *et al.*, Proc. Natl. Acad. Sci. USA 77:3567, 1980; O'Hare *et al.*, Proc. Natl. Acad. Sci. USA 78:1527, 1981); gpt, which confers resistance to mycophenolic acid Mulligan and Berg, Proc. Natl. Acad. Sci. USA 78:2072, 1981); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin *et al.*,

30 J. Mol. Biol. 150:1, 1981); and hygro, which confers resistance to hygromycin (Santerre *et al.*, Gene 30:147, 1984) genes. Accordingly, the invention provides a vector that contains a mutant PKD1 polynucleotide, or oligonucleotide portion thereof, or one or

more primers or their complements, including an expression vector that contains any of the foregoing sequences operatively associated with a regulatory element that directs the expression of a coding sequence or primer; and also provides a host cell that contains any of the foregoing sequences, alone or operatively associated with a 5 regulatory element, which can directs expression of a polypeptide encoded the polynucleotide, as appropriate.

In addition to mutant PKD1 polynucleotide sequences disclosed herein, homologs of mutant PKD1 polynucleotide of the invention, including a non-human 10 species, can be identified and isolated by molecular biological techniques well known in the art. Further, mutant PKD1 alleles and additional normal alleles of the human PKD1 polynucleotide, can be identified using the methods of the invention. Still further, there can exist genes at other genetic loci within the human genome that encode proteins having extensive homology to one or more domains of the PKD1 15 polypeptide (SEQ ID NO:2). Such genes can also be identified including associated variants and mutants by the methods of the invention.

A homolog of a mutant PKD1 polynucleotide sequence can be isolated by performing a polymerase chain reaction (PCR; see U.S. Pat. No. 4,683,202, which is 20 incorporated herein by reference) using two oligonucleotide primers, which can be selected, for example, from among SEQ ID NOS:3 to 51, preferably from among SEQ ID NOS: 3 to 18, or can be degenerate primer pools designed on the basis of the 25 amino acid sequences of a PKD1 polypeptide such as that set forth in SEQ ID NO:2 or a mutant thereof as disclosed herein. The template for the reaction can be cDNA obtained by reverse transcription of mRNA prepared from human or non-human cell lines or tissue known to express a PKD1 allele or PKD1 homologue. The PCR product can be subcloned and sequenced or manipulated in any number of ways (e.g., further manipulated by nested PCR) to insure that the amplified sequences represent 30 the sequences of a PKD1 or a PKD mutant polynucleotide sequence. The PCR fragment can then be used to isolate a full length PKD1 cDNA clone (including clones containing a mutant PKD1 polynucleotide sequence) by labeling the amplified fragment and screening a nucleic acid library (e.g., a bacteriophage cDNA library).

Alternatively, the labeled fragment can be used to screen a genomic library (for review of cloning strategies, see, for example, Sambrook *et al.*, *supra*, 1989; Ausubel *et al.*, *supra*, 1989).

5 The present invention also provides a purified mutant PKD1 polypeptide, or a peptide portion thereof. As disclosed herein, a mutant PKD1 polypeptide has an amino acid sequence substantially identical to SEQ ID NO:2, and includes a mutation resulting in the deletion, addition (insertion), or substitution of an amino acid of SEQ ID NO:2, or is truncated with respect to SEQ ID NO:2. Examples of such mutations 10 include, with respect to SEQ ID NO:2, an A88V, W967R, G1166S; V1956E; R1995H; R2408C; D2604N; L2696R, R2985G, R3039C, V3285I, or H3311R mutation, an addition of a Gly residue between amino acid residues 2441 and 2442 of SEQ ID NO:2 due to an insertion, or a truncated PKD1 polypeptide terminates with amino acid 3000 of SEQ ID NO:2 due to the presence of a STOP codon at the 15 position in SEQ ID NO:1 that would otherwise encode amino acid 3001; as well as mutant PKD1 polypeptides having a combination of such mutations (see Table 4).

A mutant PKD1 polypeptide or peptide portion thereof can contain one or more of the exemplified mutations. As used herein, reference to a peptide portion of 20 SEQ ID NO:2 or of a mutant PKD1 polypeptide refers to a contiguous amino acid sequence of SEQ ID NO:2 or of SEQ ID NO:2 including a mutation as disclosed herein, respectively, that contains fewer amino acids than full length wild type PKD1 polypeptide. Generally, a peptide portion of a PKD1 polypeptide or a mutant PKD1 polypeptide contains at least about five amino acids (or amino acid derivatives or 25 modified amino acids), each linked by a peptide bond or a modified form thereof, usually contains at least about eight amino acids, particularly contains about ten amino acids, and can contain twenty or thirty or more amino acids of SEQ ID NO:2. In particular, where the peptide is a peptide portion of a mutant PKD1 polypeptide, the peptide includes a mutant amino acid with respect to SEQ ID NO:2.

30

The mutant PKD1 polypeptides and peptide fragments thereof of the invention include a PKD1 polypeptide or peptide having a sequence substantially identical to that

set forth in SEQ ID NO:2, and having one or a combination of the following mutations: A88V, W967R, L2696R, R2985G, R3039C, V3285I, or H3311R, or a mutation resulting in termination of the mutant PKD1 polypeptide at amino acid 3000 (with respect to SEQ ID NO:2) due to the presence of a STOP codon at the position that 5 otherwise would encode amino acid 3001. The wild type PKD1 polypeptide (SEQ ID NO:2) contains 4303 amino acid residues and has a predicted molecular mass of approximately 467 kilodaltons (kDa). Further encompassed by the present invention are mutant PKD1 polypeptides that are truncated with respect to SEQ ID NO:2, for example, a mutation of SEQ ID NO:1 resulting in a G9213A, which results in premature 10 termination of the encoded PKD1 polypeptide (see Example 2). Such truncated products can be associated with PKD1-associated disorders such as ADPKD (see, also, Table 4).

PKD1 polypeptides that are functionally equivalent to a wild type PKD1 polypeptide, including variant PKD1 polypeptides, which can contain a deletion, 15 insertion or substitution of one or more amino acid residues with respect to SEQ ID NO:2, but that nevertheless result in a phenotype that is indistinguishable from that conferred by SEQ ID NO:2, are encompassed within the present invention. Such amino acid substitutions, for example, generally result in similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, amphipatic nature or the like of the residues 20 involved. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; amino acids with uncharged polar head groups having similar hydrophilicity values include the following: leucine, isoleucine, valine, glycine, alanine, asparagine, glutamine, serine, threonine, phenylalanine and tyrosine. In many cases, however, a nucleotide substitution 25 can be silent, resulting in no change in the encoded PKD1 polypeptide (see Example 2). Such variant PKD1 polynucleotides are exemplified by those encoded by the variant PKD1 polynucleotide sequences substantially identical to SEQ ID NO:1 (SEQ ID NO:2), but containing (encoding) G487A (A92A), C9367T (G3052G), T10234C (L3341L), and G10255T (R3348R) as shown in Table 3 (see, also, Example 2), and by 30 C9494T (L3095L).

Mutant PKD1 polypeptides and peptide portions thereof that are substantially identical to the PKD1 polypeptide SEQ ID NO:2 or peptide portions thereof, which cause ADPKD symptoms, are encompassed within the scope of the invention. Such mutant PKD1 polypeptides and peptide portions thereof can include dominant mutant

5 PKD1 polypeptides, or PKD1 related polypeptides functionally equivalent to such mutant PKD1 polypeptides. Examples of mutant PKD1 polypeptide sequences include a polypeptide sequences substantially identical to SEQ ID NO:2 having one or more amino acid substitutions such as A88V, W967R, L2696R, R2985G, R3039C, V3285I, or H3311R, or truncated after amino acid 3000. A peptide portion of a mutant PKD1

10 polypeptide can be 3, 6, 9, 12, 20, 50, 100 or more amino acid residues in length, and includes at least one of the mutations identified above.

A PKD1 wild type or mutant polypeptide, or peptide portions thereof, can be purified from natural sources, as discussed below; can be chemically synthesized; or can

15 be recombinantly expressed. For example, one skilled in the art can synthesize peptide fragments corresponding to a mutated portion of the PKD1 polypeptide as set forth in SEQ ID NO:2 (e.g., including residue 3110) and use the synthesized peptide fragment to generate polyclonal and monoclonal antibodies. Synthetic polypeptides or peptides can be prepared by chemical synthesis, for example, solid-phase chemical peptide synthesis

20 methods, which are well known (see, for example, Merrifield, *J. Am. Chem. Soc.*, 85:2149-2154, 1963; Stewart and Young, *Solid Phase Peptide Synthesis*, Second ed., Pierce Chemical Co., Rockford, Ill., pp. 11-12), and have been employed in commercially available laboratory peptide design and synthesis kits (Cambridge Research Biochemicals). Such commercially available laboratory kits have generally

25 utilized the teachings of Geysen *et al.*, *Proc. Natl. Acad. Sci., USA*, 81:3998 (1984) and provide for synthesizing peptides upon the tips of a multitude of rods or pins, each of which is connected to a single plate. When such a system is utilized, a plate of rods or pins is inverted and inserted into a second plate of corresponding wells or reservoirs, which contain solutions for attaching or anchoring an appropriate amino acid to the tips

30 of the pins or rods. By repeating such a process step, *i.e.*, inverting and inserting the tips of the rods or pins into appropriate solutions, amino acids are built into desired peptides.

A number of available Fmoc peptide synthesis systems are available. For example, assembly of a polypeptide or fragment can be carried out on a solid support using an Applied Biosystems, Inc., Model 431A automated peptide synthesizer. Such equipment provides ready access to the peptides of the invention, either by direct 5 synthesis or by synthesis of a series of fragments that can be coupled using other known techniques. Accordingly, methods for the chemical synthesis of polypeptides and peptides are well-known to those of ordinary skill in the art, e.g., peptides can be synthesized by solid phase techniques, cleaved from the resin and purified by preparative high performance liquid chromatography (see, e.g., Creighton, 1983, *Proteins: Structures 10 and Molecular Principles*, W. H. Freeman & Co., N.Y., pp. 50-60). The composition of the synthetic peptides can be confirmed by amino acid analysis or sequencing; e.g., using the Edman degradation procedure (see e.g., Creighton, 1983, *supra* at pp. 34-49). Thus, fragments of the PKD1 polypeptide, variant, or mutant can be chemically synthesized. Peptides can then be used, for example, to generate antibodies useful in the detection 15 of PKD1 variants and mutants, as well as the diagnosis of PKD1-associated disorder (e.g., ADPKD).

A PKD1 polypeptide or peptide, including variants or mutants of the invention, can be substantially purified from natural sources (e.g., purified from cells) using protein 20 separation techniques, well known in the art. Such methods can separate the PKD1 polypeptide away from at least about 90% (on a weight basis), and from at least about 99% of other proteins, glycoproteins, and other macromolecules normally found in such natural sources. Such purification techniques can include, but are not limited to ammonium sulfate precipitation, molecular sieve chromatography, and/or ion exchange 25 chromatography. Alternatively, or additionally, the PKD1 polypeptide, variant, or mutant can be purified by immunoaffinity chromatography using an immunoabsorbent column to which an antibody is immobilized that is capable of specifically binding the PKD1 polypeptide, variant, or mutant. Such an antibody can be monoclonal or polyclonal in origin. For example, an antibody that specifically binds to a mutant PKD1 30 polypeptide does not bind to a wild-type PKD1 polypeptide or peptide thereof. If the PKD1 polypeptide is glycosylated, the glycosylation pattern can be utilized as part of a purification scheme via, for example, lectin chromatography.

The cellular sources from which the PKD1 polypeptide, variant, or mutants thereof can be purified include, for example, those cells that are shown by northern and/or western blot analysis to express a PKD1 polynucleotide, variant, or mutant sequence. Preferably, such cellular sources are renal cells including, for example, renal tubular epithelial cells, as well as biliary duct cells, skeletal muscle cells, lung alveolar epithelial cell, placental cells, fibroblasts, lymphoblasts, intestinal epithelial cells, and endothelial cells. Other sources include biological fluids, fractionated cells such as organelle preparations, or tissues obtained from a subject. Examples of biological fluids of use with the invention are blood, serum, plasma, urine, mucous, and saliva. Tissue or cell samples can also be used with the invention. The samples can be obtained by many methods such as cellular aspiration, or by surgical removal of a biopsy sample.

PKD1 polypeptides, variants, or mutants of the invention can be secreted out of the cell. Such extracellular forms of the PKD1 polypeptide or mutants thereof can preferably be purified from whole tissue rather than cells, utilizing any of the techniques described above. PKD1 expressing cells such as those described above also can be grown in cell culture, under conditions well known to those of skill in the art. PKD1 polypeptide or mutants thereof can then be purified from the cell media using any of the techniques discussed above.

A PKD1 polypeptide, variant, or mutant can additionally be produced by recombinant DNA technology using the PKD1 nucleotide sequences, variants and mutants described above coupled with techniques well known in the art. Alternatively, RNA capable of encoding PKD1 polypeptides, or peptide fragments thereof, can be chemically synthesized using, for example, automated or semi-automated synthesizers (see, for example, "Oligonucleotide Synthesis", 1984, Gait, ed., IRL Press, Oxford, which is incorporated herein by reference).

30

When used as a component in the assay systems described herein, the mutant PKD1 polypeptide or peptide can be labeled, either directly or indirectly, to facilitate

5 detection of a complex formed between the PKD1 polypeptide and an antibody or nucleic acid sequence, for example. Any of a variety of suitable labeling systems can be used including, but not limited to, radioisotopes such as ^{125}I , enzyme labeling systems such as biotin-avidin or horseradish peroxidase, which generates a detectable colorimetric signal or light when exposed to substrate, and fluorescent labels.

10 The present invention also provides antibodies that specifically bind a PKD1 mutant or PKD1 variant, except that, if desired, an antibody of the invention can exclude an antibody as described in U.S. Pat. No. 5,891,628, which is incorporated herein by reference, or an antibody that specifically binds a PKD1 mutant as described in U.S. Pat. No. 5,891,628. Antibodies that specifically bind a mutant PKD1 polypeptide are useful as diagnostic or therapeutic reagents and, therefore, can be used, for example, in a diagnostic assay for identifying a subject having or at risk of having ADPKD, and are particularly convenient when provided as a kit.

15 As used herein, the term "specifically binds," when used in reference to an antibody and an antigen or epitopic portion thereof, means that the antibody and the antigen (or epitope) have a dissociation constant of at least about 1×10^{-7} , generally at least about 1×10^{-8} , usually at least about 1×10^{-9} , and particularly at least about $20 1 \times 10^{-10}$ or less. Methods for identifying and selecting an antibody having a desired specificity are well known and routine in the art (see, for example, Harlow and Lane, "Antibodies: A Laboratory Manual" (Cold Spring Harbor Pub. 1988), which is incorporated herein by reference.

25 Methods for producing antibodies that can specifically bind one or more PKD1 polypeptide epitopes, particularly epitopes unique to a mutant PKD1 polypeptide, are disclosed herein or otherwise well known and routine in the art. Such antibodies can be polyclonal antibodies or monoclonal antibodies (mAbs), and can be humanized or chimeric antibodies, single chain antibodies, anti-idiotypic antibodies, and epitope-binding fragments of any of the above, including, for example, Fab fragments, $\text{F}(\text{ab}')_2$ fragments or fragments produced by a Fab expression library. Such antibodies can be used, for example, in the detection of PKD1 polypeptides, or mutant PKD1

polypeptides, including variant PKD1 polypeptides, which can be in a biological sample, or can be used for the inhibition of abnormal PKD1 activity. Thus, the antibodies can be utilized as part of ADPKD treatment methods, as well as in diagnostic methods, for example, to detect the presence or amount of a PKD1 polypeptide.

5

For the production of antibodies that bind to PKD1, including a PKD1 variant or PKD1 mutant, various host animals can be immunized by injection with a PKD1 polypeptide, mutant polypeptide, variant, or a portion thereof. Such host animals can include but are not limited to, rabbits, mice, and rats. Various adjuvants can be used to 10 increase the immunological response, depending on the host species, including, but not limited to, Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lyssolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, dinitrophenol, and potentially useful human adjuvants such as BCG (Bacillus Calmette-Guerin) or *Corynebacterium* 15 *parvum*.

Antibodies that bind to a mutant PKD1 polypeptide, or peptide portion thereof, of the invention can be prepared using an intact polypeptide or fragments containing small peptides of interest as the immunizing antigen. The polypeptide or a peptide used 20 to immunize an animal can be derived from translated cDNA or chemical synthesis, and can be conjugated to a carrier protein, if desired. Such commonly used carriers that can be chemically coupled to the peptide include keyhole limpet hemocyanin, thyroglobulin, bovine serum albumin, tetanus toxoid and others as described above or otherwise known in the art. The coupled polypeptide or peptide is then used to immunize the animal and 25 antiserum can be collected. If desired, polyclonal or monoclonal antibodies can be purified, for example, by binding to and elution from a matrix to which the polypeptide or a peptide to which the antibodies were raised is bound. Any of various techniques commonly used in immunology for purification and/or concentration of polyclonal 30 antibodies, as well as monoclonal antibodies, can be used (see for example, Coligan, *et al.*, Unit 9, Current Protocols in Immunology, Wiley Interscience, 1991, which is incorporated herein by reference).

Anti-idiotype technology can be used to produce monoclonal antibodies that mimic an epitope. For example, an anti-idiotypic monoclonal antibody made to a first monoclonal antibody will have a binding domain in the hypervariable region that is the image of the epitope bound by the first monoclonal antibody. Antibodies of the 5 invention include polyclonal antibodies, monoclonal antibodies, and fragments of polyclonal and monoclonal antibodies that specifically bind to a mutant PKD1 polypeptide or peptide portion thereof.

The preparation of polyclonal antibodies is well known to those skilled in the art 10 (see, for example, Green *et al.*, Production of Polyclonal Antisera, in Immunochemical Protocols (Manson, ed.), pages 1-5 (Humana Press 1992); Coligan *et al.*, Production of Polyclonal Antisera in Rabbits, Rats, Mice and Hamsters, in Current Protocols in Immunology, section 2.4.1 (1992), which are incorporated herein by reference). The preparation of monoclonal antibodies likewise is conventional (see, for example, Kohler 15 and Milstein, *Nature*, 256:495, 1975, which is incorporated herein by reference; see, also Coligan *et al.*, *supra*, sections 2.5.1-2.6.7; and Harlow *et al.*, *supra*, 1988). Briefly, monoclonal antibodies can be obtained by injecting mice with a composition comprising 20 an antigen, verifying the presence of antibody production by removing a serum sample, removing the spleen to obtain B lymphocytes, fusing the B lymphocytes with myeloma cells to produce hybridomas, cloning the hybridomas, selecting positive clones that produce antibodies to the antigen, and isolating the antibodies from the hybridoma cultures.

Monoclonal antibodies can be isolated and purified from hybridoma cultures by 25 a variety of well-established techniques. Such isolation techniques include affinity chromatography with Protein-A Sepharose, size-exclusion chromatography, and ion-exchange chromatography (see Coligan *et al.*, sections 2.7.1-2.7.12 and sections 2.9.1-2.9.3; Barnes *et al.*, Purification of Immunoglobulin G (IgG), in Methods in Molecular Biology, Vol. 10, pages 79-104 (Humana Press 1992)). Methods of *in vitro* and *in vivo* 30 multiplication of hybridoma cells expressing monoclonal antibodies is well-known to those skilled in the art. Multiplication *in vitro* can be carried out in suitable culture media such as Dulbecco's Modified Eagle Medium or RPMI 1640 medium, optionally

replenished by a mammalian serum such as fetal calf serum or trace elements and growth-sustaining supplements such as normal mouse peritoneal exudate cells, spleen cells, bone marrow macrophages. Production *in vitro* provides relatively pure antibody preparations and allows scale-up to yield large amounts of the desired antibodies. Large 5 scale hybridoma cultivation can be carried out by homogenous suspension culture in an airlift reactor, in a continuous stirrer reactor, or in immobilized or entrapped cell culture. Multiplication *in vivo* can be carried out by injecting cell clones into mammals histocompatible with the parent cells, *e.g.*, syngeneic mice, to cause growth of antibody-producing tumors. Optionally, the animals are primed with a hydrocarbon, especially 10 oils such as pristane tetramethylpentadecane prior to injection. After one to three weeks, the desired monoclonal antibody is recovered from the body fluid of the animal.

Therapeutic applications for antibodies disclosed herein are also part of the present invention. For example, antibodies of the present invention can be derived from 15 subhuman primate antibodies. General techniques for raising therapeutically useful antibodies in baboons can be found, for example, in Goldenberg *et al.*, International Application Publication No. WO 91/11465, 1991; Losman *et al.*, Int. J. Cancer, 46:310, 1990, which are incorporated herein by reference.

20 An anti-PKD1 antibody also can be derived from a "humanized" monoclonal antibody. Humanized monoclonal antibodies are produced by transferring mouse complementarity determining regions from heavy and light variable chains of the mouse immunoglobulin into a human variable domain, and then substituting human residues in the framework regions of the murine counterparts. The use of antibody components 25 derived from humanized monoclonal antibodies obviates potential problems associated with the immunogenicity of murine constant regions. General techniques for cloning murine immunoglobulin variable domains are described, for example, by Orlandi *et al.*, Proc. Natl. Acad. Sci. USA 86:3833, 1989, which is incorporated herein by reference. Techniques for producing humanized monoclonal antibodies are described, for example, 30 by Jones *et al.*, Nature, 321:522, 1986; Riechmann *et al.*, Nature 332:323, 1988; Verhoeyen *et al.*, Science 239:1534, 1988; Carter *et al.*, Proc. Natl. Acad. Sci. USA,

89:4285, 1992; Sandhu, Crit. Rev. Biotech. 12:437, 1992; and Singer *et al.*, J. Immunol. 150:2844, 1993, which are incorporated herein by reference.

Antibodies of the invention also can be derived from human antibody fragments
5 isolated from a combinatorial immunoglobulin library (see, for example, Barbas *et al.*, Methods: A Companion to Methods in Enzymology, Vol. 2, page 119, 1991; Winter *et al.*, Ann. Rev. Immunol. 12:433, 1994, which are incorporated herein by reference). Cloning and expression vectors that are useful for producing a human immunoglobulin phage library can be obtained, for example, from Stratagene (La Jolla CA).

10

In addition, antibodies of the present invention can be derived from a human monoclonal antibody. Such antibodies are obtained from transgenic mice that have been "engineered" to produce specific human antibodies in response to antigenic challenge. In this technique, elements of the human heavy and light chain loci are introduced into
15 strains of mice derived from embryonic stem cell lines that contain targeted disruptions of the endogenous heavy and light chain loci. The transgenic mice can synthesize human antibodies specific for human antigens, and the mice can be used to produce human antibody-secreting hybridomas. Methods for obtaining human antibodies from transgenic mice are described by Green *et al.*, Nature Genet., 7:13 (1994); Lonberg *et al.*, Nature, 368:856 (1994); and Taylor *et al.*, Int. Immunol., 6:579 (1994), which are
20 incorporated herein by reference.

Antibody fragments of the invention can be prepared by proteolytic hydrolysis of an antibody or by expression in *E. coli* of DNA encoding the fragment. Antibody
25 fragments can be obtained by pepsin or papain digestion of whole antibodies by conventional methods. For example, antibody fragments can be produced by enzymatic cleavage of antibodies with pepsin to provide a 5S fragment denoted F(ab')₂. This fragment can be further cleaved using a thiol reducing agent, and optionally a blocking group for the sulfhydryl groups resulting from cleavage of disulfide linkages, to produce
30 3.5S Fab' monovalent fragments. Alternatively, an enzymatic cleavage using pepsin produces two monovalent Fab' fragments and an Fc fragment directly. These methods are described, for example, by Goldenberg, U.S. Pat. Nos. 4,036,945 and 4,331,647, and

references contained therein, each of which is incorporated herein by reference (see, also, Nisonhoff *et al.*, Arch. Biochem. Biophys., 89:230, 1960; Porter, Biochem. J. 73:119, 1959; Edelman *et al.*, Meth. Enzymol. 1:422, 1967; and Coligan *et al.*, at sections 2.8.1-2.8.10 and 2.10.1-2.10.4). Other methods of cleaving antibodies, such as 5 separation of heavy chains to form monovalent light-heavy chain fragments, further cleavage of fragments, or other enzymatic, chemical, or genetic techniques can also be used, provided the fragments bind to the antigen that is recognized by the intact antibody.

10 Fv fragments comprise an association of V_H and V_L chains, for example, which can be noncovalent (see Inbar *et al.*, Proc. Natl. Acad. Sci. USA 69:2659, 1972). The variable chains also can be linked by an intermolecular disulfide bond, can be crosslinked by a chemical such as glutaraldehyde (Sandhu, *supra*, 1992), or F_v fragments comprising V_H and V_L chains can be connected by a peptide linker. These single chain 15 antigen binding proteins (sFv) are prepared by constructing a structural gene comprising DNA sequences encoding the V_H and V_L domains connected by an oligonucleotide. The structural gene is inserted into an expression vector, which is subsequently introduced into a host cell such as *E. coli*. The recombinant host cells synthesize a single polypeptide chain with a linker peptide bridging the two V domains. Methods for 20 producing sFvs are described, for example, by Whitlow *et al.*, Methods: A Companion to Meth. Enzymol., 2:97, 1991; Bird *et al.*, Science 242:423, 1988; Ladner *et al.*, U.S. Patent No. 4,946,778; Pack *et al.*, BioTechnology 11:1271, 1993; and Sandhu, *supra*, 1992).

25 Another form of an antibody fragment is a peptide coding for a single complementarity determining region (CDR). CDR peptides ("minimal recognition units") can be obtained by constructing genes encoding the CDR of an antibody of interest. Such genes are prepared, for example, by using the polymerase chain reaction to synthesize the variable region from RNA of antibody-producing cells (see, for 30 example, Larrick *et al.*, Methods: A Companion to Meth. Enzymol., 2:106, 1991).

A variety of methods can be employed utilizing reagents such as a mutant PKD1 polynucleotide, or oligonucleotide portion thereof and antibodies directed against a mutant PKD1 polypeptide or peptide. Specifically, such reagents can be used for the detection of the presence of PKD1 mutations, *e.g.*, molecules present in diseased tissue but absent from, or present in greatly reduced levels compared or relative to the corresponding non-diseased tissue.

The methods described herein can be performed, for example, by utilizing pre-packaged kits, which can be diagnostic kits, comprising at least one specific oligonucleotide portion of a PKD1 gene or mutant PKD1 polynucleotide, a primer pair, or an anti-PKD1 antibody reagent as disclosed herein, which can be conveniently used, for example, in a clinical setting to diagnose subjects exhibiting PKD1 abnormalities or to detect PKD1-associated disorders, including ADPKD. Any tissue in which a PKD1 polynucleotide is expressed can be utilized in a diagnostic method of the invention.

15

Nucleic acids from a tissue to be analyzed can be isolated using procedures that are well known in the art, or a diagnostic procedures can be performed directly on a tissue section (fixed or frozen), which can be obtained from a subject by biopsy or resection, without further purification. Oligonucleotide sequences of the invention can be used as probes or primers for such *in situ* procedures (Nuovo, 1992, PCR *in situ* hybridization: protocols and applications, Raven Press, N.Y.). For example, oligonucleotide probes useful in the diagnostic methods of the invention include nucleotide sequences having at least 10 contiguous nucleotides and having a sequence substantially identical to a portion of SEQ ID NO:1, and including nucleotide 474, wherein nucleotide 474 is a T; nucleotide 487, wherein nucleotide 487 is an A; nucleotide 3110, wherein nucleotide 3110 is a C; nucleotide 8298, wherein nucleotide 8298 is a G; nucleotide 9164, wherein nucleotide 9164 is a G; nucleotide 9213, wherein nucleotide 9213 is an A; nucleotide 9326, wherein nucleotide 9326 is a T; nucleotide 9367, wherein nucleotide 9367 is a T; nucleotide 10064, wherein nucleotide 10064 is an A; nucleotide 10143, wherein nucleotide 10143 is a G; nucleotide 10234, wherein nucleotide 10234 is a C; nucleotide 10255, wherein nucleotide 10255 is a T, or a combination thereof. Primers

useful in the present invention include those set forth in SEQ ID NOS:3 to 18 and SEQ ID NOS: 19 to 51 and 61 to 112. Such primers flank and can be used to amplify sequences containing one or more mutated nucleotides of a mutant PKD1 polynucleotide.

5

PKD1 polynucleotide sequences, either RNA or DNA, can be used in hybridization or amplification assays of biological samples to detect abnormalities of PKD1 expression; *e.g.*, Southern or northern blot analysis, single stranded conformational polymorphism (SSCP) analysis including *in situ* hybridization assays, or 10 polymerase chain reaction analyses, including detecting abnormalities by a methods such as denaturing high performance liquid chromatography (DHPLC; also referred to as temperature-modulated heteroduplex chromatography) or conformation sensitive gel electrophoresis (CSGE), both of which are readily adaptable to high throughput analysis (see, for example, Kristensen et al., *BioTechniques* 30:318-332, 2001; Leung et al., 15 *BioTechniques* 30:334-340, 2001, which are incorporated herein by reference). Such analyses can reveal quantitative abnormalities in the expression pattern of the PKD1 polynucleotide, and, if the PKD1 mutation is, for example, an extensive deletion, or the result of a chromosomal rearrangement, can reveal more qualitative aspects of the PKD1 abnormality.

20

Diagnostic methods for detecting a mutant PKD1 polynucleotide can involve, for example, contacting and incubating nucleic acids derived from a tissue sample being analyzed, with one or more labeled oligonucleotide probes of the invention or with a primer or primer pair of the invention, under conditions favorable for the specific 25 annealing of these reagents to their complementary sequences within the target molecule. After incubation, non-annealed oligonucleotides are removed, and hybridization of the probe or primer, if any, to a nucleic acid from the target tissue is detected. Using such a detection scheme, the target tissue nucleic acid can be immobilized, for example, to a solid support such as a membrane, or a plastic surface such as that on a microtiter plate 30 or polystyrene beads. In this case, after incubation, non-annealed, labeled nucleic acid reagents are easily removed. Detection of the remaining, annealed, labeled nucleic acid reagents is accomplished using standard techniques well known to those in the art.

Oligonucleotide probes or primers of the invention also can be associated with a solid matrix such as a chip in an array, thus providing a means for high throughput methods of analysis. Microfabricated arrays of large numbers of oligonucleotide probes 5 (DNA chips) are useful for a wide variety of applications. Accordingly, methods of diagnosing or detecting a PKD1 variant or mutant can be implemented using a DNA chip for analysis of a PKD1 polynucleotide and detection of mutations therein. A methodology for large scale analysis on DNA chips is described by Hacia *et al.* (Nature Genet. 14:441-447, 1996; U.S. Pat. No. 6,027,880, which are incorporated herein by 10 reference; see, also, Kristensen *et al.*, *supra*, 2001). As described in Hacia *et al.*, high density arrays of over 96,000 oligonucleotides, each about 20 nucleotides in length, are immobilized to a single glass or silicon chip using light directed chemical synthesis. Contingent on the number and design of the oligonucleotide probe, potentially every 15 base in a sequence can be examined for alterations.

15

Polynucleotides or oligonucleotides applied to a chip can contain sequence variations, which can be used to identify mutations that are not yet known to occur in the population, or they can only those mutations that are known to occur, including those disclosed herein (see Example 2). Examples of oligonucleotides that can be applied to 20 the chip include oligonucleotides containing at least 10 contiguous nucleotides and having a sequence substantially identical to a portion of SEQ ID NO:1, and including nucleotide 474, wherein nucleotide 474 is a T; nucleotide 487, wherein nucleotide 487 is an A; nucleotide 3110, wherein nucleotide 3110 is a C; a position corresponding to nucleotide 3336, wherein nucleotide 3336 is deleted; nucleotide 3707, wherein 25 nucleotide 3707 is an A; nucleotide 4168, wherein nucleotide 4168 is a T; nucleotide 4885, wherein nucleotide 4885 is an A; nucleotide 5168, wherein nucleotide 5168 is a T; nucleotide 6058, wherein nucleotide 6058 is a T; nucleotide 6078, wherein nucleotide 6078 is an A; nucleotide 6089, wherein nucleotide 6089 is a T; nucleotide 6195, wherein nucleotide 6195 is an A; 30 nucleotide 6326, wherein nucleotide 6326 is a T; a position corresponding to nucleotides 7205 to 7211, wherein nucleotides 7205 to 7211 are deleted; nucleotide 7376, wherein nucleotide 7376 is a C; a nucleotide sequence corresponding to

nucleotides 7535 to 7536, wherein a GCG nucleotide sequence is inserted between nucleotides 7535 and 7536; nucleotide 7415, wherein nucleotide 7415 is a T; nucleotide 7433, wherein nucleotide 7433 is a T; nucleotide 7696, wherein nucleotide 7696 is a T; nucleotide 7883, wherein nucleotide 7883 is a T;

5 nucleotide 8021, wherein nucleotide 8021 is an A; a nucleotide sequence corresponding to nucleotide 8159 to 8160, wherein nucleotides 8159 to 8160 are deleted; nucleotide 8298, wherein nucleotide 8298 is a G; nucleotide 9164, wherein nucleotide 9164 is a G; nucleotide 9213, wherein nucleotide 9213 is an A; nucleotide 9326, wherein nucleotide 9326 is a T; nucleotide 9367, wherein

10 nucleotide 9367 is a T; nucleotide 10064, wherein nucleotide 10064 is an A; nucleotide 10143, wherein nucleotide 10143 is a G; nucleotide 10234, wherein nucleotide 10234 is a C; nucleotide 10255, wherein nucleotide 10255 is a T; or a combination thereof.

15 Prior to hybridization with oligonucleotide probes on the chip, the test sample is isolated, amplified and labeled (*e.g.* fluorescent markers). The test polynucleotide sample is then hybridized to the immobilized oligonucleotides. The intensity of sequence-based techniques of the target polynucleotide to the immobilized probe is quantitated and compared to a reference sequence. The resulting genetic information

20 can be used in molecular diagnosis. A common utility of the DNA chip in molecular diagnosis is screening for known mutations.

In addition to DNA chip methodology, methods using machinery adapted to DNA analysis can allow for commercialization of the disclosed methods of detection of

25 PKD1 mutations and diagnosis of ADPKD. For example, genotyping by mass spectrometry can be used, or matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry can be used for mass genotyping of single-base pair and short tandem repeat mutant and variant sequences. For example, PCR amplification of the region of the mutation with biotin attached to one of the primers can be conducted,

30 followed by immobilization of the amplified DNA to streptavidin beads. Hybridization of a primer adjacent to the variant or mutant site is performed, then extension with DNA polymerase past the variant or mutant site in the presence of dNTPs and ddNTPs is

performed. When suitably designed according to the sequence, this results in the addition of only a few additional bases (Braun, Little, Koster, 1997). The DNA is then processed to remove unused nucleotides and salts, and the short primer plus mutant site is removed by denaturation and transferred to silicon wafers using a piezoelectric pipette.

5 The mass of the primer+variant or mutant site is then determined by delayed extraction MALDI-TOF mass spectrometry. Single base pair and tandem repeat variations in sequence are easily determined by their mass. This final step is very rapid, requiring only 5 sec per assay, and all of these steps can be automated, providing the potential of performing up to 20,000 genotypings per day. This technology is rapid, extremely

10 accurate, and adaptable to any variant or mutation, can identify both single base pair and short tandem repeat variants, and adding or removing variant or mutant sequences to be tested can be done in a few seconds at trivial cost.

Another diagnostic methods for the detection of mutant PKD1 polynucleotides 15 involves amplification, for example, by PCR (see U.S. Patent No. 4,683,202), ligase chain reaction (Barany, Proc. Natl. Acad. Sci. USA 88:189-193, 1991a), self sustained sequence replication (Guatelli *et al.*, Proc. Natl. Acad. Sci. USA 87:1874-1878, 1990), transcriptional amplification system (Kwoh *et al.*, Proc. Natl. Acad. Sci. USA 86:1173-1177, 1989), Q-Beta Replicase (Lizardi *et al.*, Bio/Technology 6:1197, 1988), or any 20 other RNA amplification method, followed by the detection of the amplification products. The present invention provides reagents, methods and compositions that can be used to overcome prior difficulties with diagnosing ADPKD.

Using the primer pairs and methods described herein, the entire replicated 25 segment of the PKD1 gene, including exons 1 and 22, can be amplified from genomic DNA to generate a set of eight long range amplification products, which range in size from about 0.3 kb to 5.8 kb (Table 1; see, also, Figure 1). The availability of widely scattered PKD1-specific primers provides a means to anchor PKD1-specific amplification, and the ability to use various primer combinations provides a means to 30 produce longer or shorter amplification products as desired. For example, the largest PKD1 fragment, which is amplified by primers BPF13 and KG8R25 (see Table 1; SEQ ID NOS: 17 and 18, respectively), can be divided into two shorter segments by

using the PKD1-specific primer, KG85R25 (SEQ ID NO:18), with forward nested primer F32 (5'-GCCTTGCGCAGCTTGGACT-3'; SEQ ID NO:53), and using BPF13 (SEQ ID NO:17) and a second specific primer, 31R (5'-ACAGTGTCTTGAGTCCAAGC-3'; SEQ ID NO:54).

5

It should be recognized that, while many of the primers disclosed herein are positioned with intronic sequences of the PKD1 gene, others such as SEQ ID NO:16 are positioned in coding sequences. As such, a cDNA molecule can be obtained from a target RNA molecule, for example, by reverse transcription of the RNA molecule using a 10 primer such as SEQ ID NO:16 and an appropriate second primer positioned 5' or 3' to SEQ ID NO:16. In this embodiment, a PKD1 RNA can be isolated from any tissue in which wild type PKD1 is known to be expressed, including, for example, kidney tissue, nucleated peripheral blood cells, and fibroblasts. A target sequence within the cDNA is then used as the template for a nucleic acid amplification reaction, such as a PCR 15 amplification reaction, or the like. An amplification product can be detected, for example, using radioactively or fluorescently labeled nucleotides or the like and an appropriate detection system, or by generating a sufficient amount of the amplification product such that it can be visualized by ethidium bromide staining and gel electrophoresis.

20

Genomic DNA from a subject, including from a cell or tissue sample, can be used as the template for generating a long range PKD1-specific amplification product. Methods of isolating genomic DNA are well known and routine (see Sambrook et al., *supra*, 1989). Amplification of the genomic PKD1 DNA has advantages over the 25 cDNA amplification process, including, for example, allowing for analysis of exons and introns of the PKD1 gene. As such, a target sequence of interest associated with either an intron or exon sequence of a PKD1 gene can be amplified and characterized. A target sequence of interest is any sequence or locus of a PKD1 gene that contains or is thought to contain a mutation, including those mutations that correlate to a PKD1- 30 associated disorder or disease.

Using primers flanking the target sequence, a sufficient number of PCR cycles is performed to provide a PKD1-specific amplification product corresponding to the target sequence. If desired, additional amplification can be performed, for example, by performing a nested PCR reaction. Examples of primers useful for generating a

5 PKD1-specific first amplification product from genomic DNA include the primer pairs having sequences as exemplified in SEQ ID NO:3 and 4; SEQ ID NOS:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9 and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; and SEQ ID NOS:17 and 18. The PKD1-specific first amplification product can be further amplified using nested primers specific

10 for a target sequence, including the primer pairs exemplified as SEQ ID NOS:19 and 20; SEQ ID NOS:21 and 22; SEQ ID NOS:23 and 24; SEQ ID NOS:25 and 26; SEQ ID NOS:27 and 28; SEQ ID NOS:29 and 30; SEQ ID NOS:31 and 32; SEQ ID NOS:33 and 34; SEQ ID NOS:35 and 36; SEQ ID NOS:37 and 38; SEQ ID NOS:39 and 40; SEQ ID NOS:41 and 42; SEQ ID NOS:43 and 44; SEQ ID NOS:45 and 46; SEQ ID

15 NOS:47 and 48; SEQ ID NOS:49 and 50; SEQ ID NOS:51 and 61; and the primer pairs formed using consecutive primers set forth in Table 2 as SEQ ID NOS:62 to 96, 113, and 97 to 112.

The amplified target sequences can be examined for changes (i.e., mutations)

20 with respect to SEQ ID NO:1 using any of various well known methods as disclosed herein or otherwise known in the art. For example, the amplification products can simply be sequenced using routine DNA sequencing methods, particularly where only one or few amplification products are to be examined. However, DNA sequencing will be more valuable as a method of detecting mutations according to a method of the

25 invention as sequencing technology improves and becomes more adaptable to high throughput screening assays. In addition, methods that are useful for detecting the presence of a mutation in a DNA sequence include, for example, DHPLC (Huber et al., Nucl. Acids Res. 21:1061-10666, 1993; Liu et al., Nucl. Acids Res. 26:1396-1400, 1998; Choy et al., Ann. Hum. Genet. 63:383-391, 1999; Ellis et al., Hum. Mutat. 15:556-564,

30 2000; which are incorporated herein by reference; see, also, Kristensen et al., *supra*, 2001); CSGE (Leung et al., *supra*, 2001); single-stranded conformation analysis (SSCA; Orita et al., Proc. Natl. Acad. Sci., USA 86:2766-2770, 1989); denaturing gradient gel

electrophoresis (DGGE; Sheffield *et al.*, Proc. Natl. Acad. Sci., USA 86:232-236, 1989); RNase protection assays; allele-specific oligonucleotides (ASOs; Handelin and Shuber, Current Protocols in Human Genetics, Suppl. 16 (John Wiley & Sons, Inc. 1998), 9:9.4.1-9.4.8); the use of proteins that recognize nucleotide mismatches, such as the 5 *E. coli* mutS protein; and allele-specific PCR.

For allele-specific PCR, primers are used that hybridize at their 3' ends to a particular mutations. Examples of primers that can be used for allele specific PCR include an oligonucleotide of at least 10 nucleotide of SEQ ID NO:1 and that has at its 10 3' end nucleotide 474, wherein nucleotide 474 is a T; nucleotide 487, wherein nucleotide 487 is an A; nucleotide 3110, wherein nucleotide 3110 is a C; nucleotide 8298, wherein nucleotide 8298 is a G; nucleotide 9164, wherein nucleotide 9164 is a G; nucleotide 9213, wherein nucleotide 9213 is an A; nucleotide 9326, wherein nucleotide 9326 is a T; nucleotide 9367, wherein 15 nucleotide 9367 is a T; nucleotide 10064, wherein nucleotide 10064 is an A; nucleotide 10143, wherein nucleotide 10143 is a G; nucleotide 10234, wherein nucleotide 10234 is a C; or nucleotide 10255, wherein nucleotide 10255 is a T. If the particular mutation is not present, an amplification product is not observed. Amplification Refractory Mutation System (ARMS) can also be used (see European 20 Patent Application Publ. No. 0332435; Newton *et al.*, Nucl. Acids. Res. 17:2503-2516, 1989).

In the SSCA, DGGE and RNase protection methods, a distinctive electrophoretic band appears. SSCA detects a band that migrates differentially because the sequence 25 change causes a difference in single-strand, intramolecular base pairing. RNase protection involves cleavage of the mutant polynucleotide into two or more smaller fragments. DGGE detects differences in migration rates of mutant sequences compared to wild-type sequences, using a denaturing gradient gel. In an allele-specific oligonucleotide assay, an oligonucleotide is designed that detects a specific sequence, 30 and the assay is performed by detecting the presence or absence of a hybridization signal. In the mutS assay, the protein binds only to sequences that contain a nucleotide mismatch in a heteroduplex between mutant and wild-type sequences.

Denaturing gradient gel electrophoresis is based on the melting behavior of the DNA fragments and the use of denaturing gradient gel electrophoresis as shown by Fischer and Lerman, Proc. Natl. Acad. Sci. USA 80:1579-83, 1983; Myers *et al.*; Nucl. Acids Res. 13:3111-3129, 1985; Lerman *et al.*, in Molecular Biol. of Homo Sapiens, Cold Spring Harbor Lab. (1986) pp. 285-297. DNA fragments differing by single base substitutions can be separated from each other by electrophoresis in polyacrylamide gels containing an ascending gradient of the DNA denaturants urea and formamide. Two identical DNA fragments differing by only one single base pair, will initially move through the polyacrylamide gel at a constant rate. As they migrate into a critical concentration of denaturant, specific domains within the fragments melt to produce partially denatured DNA. Melting of a domain is accompanied by an abrupt decrease in mobility. The position in the denaturant gradient gel at which the decrease in mobility is observed corresponds to the melting temperature of that domain. Since a single base substitution within the melting domain results in a melting temperature difference, partial denaturation of the two DNA fragments will occur at different positions in the gel. DNA molecules can therefore be separated on the basis of very small differences in the melting temperature. Additional improvements to this DGGE have been made as disclosed by Borresen in US Patent No. 5,190,856. In addition, after a first DGGE analysis, an identified product can be cloned, purified and analyzed a second time by DGGE.

Denaturing high performance liquid chromatography (DHPLC; Kristensen *et al.*, *supra*, 2001) and high throughput conformation sensitive gel electrophoresis (HTCSGD; 25 Leung *et al.*, *supra*, 2001) are particularly useful methods for detecting a mutant PKD1 polynucleotide sequence because the methods are readily adaptable to high throughput analysis. In addition, these methods are suitable for detecting known mutations as well as identifying previously unknown mutations. As such, these methods of detection can be adopted for use in clinical diagnostic settings. DHPLC, for example, can be used to 30 rapidly screen a large number of samples, for example, 96 samples prepared using a 96 well microtiter plate format, to identify those showing a change in the denaturation properties. Where such a change is identified, confirmation that the PKD1

polynucleotide in the sample showing the altered denaturation property is a mutant PKD1 polynucleotide can be confirmed by DNA sequence analysis, if desired.

An oligonucleotide probe specific for a mutant PKD1 polynucleotide also can 5 be used to detect a mutant PKD1 polynucleotide in a biological sample, including in a biological fluid, in cells or tissues obtained from a subject, or in a cellular fraction such as an organelle preparation. Cellular sources useful as samples for identifying a mutant PKD1 polynucleotide include, for example, renal cells including renal tubular epithelial cells, bile duct cells, skeletal muscle cells, lung alveolar epithelial cells, 10 placental cells, fibroblasts and lymphocytes. Biological fluids useful as samples for identifying a mutant PKD1 polynucleotide include, for example, whole blood or serum or plasma fractions, urine, mucous, and saliva. A biological sample such as a tissue or cell sample can be obtained by any method routinely used in a clinical setting, including, for example, by cellular aspiration, biopsy or other surgical 15 procedure.

The oligonucleotide probe can be labeled with a compound that allows detection of binding to a mutant PKD1 polynucleotide in the sample. A detectable compound can be, for example, a radioactive label, which provides a highly sensitive 20 means for detection, or a non-radioactive label such as a fluorescent, luminescent, chemiluminescent, or enzymatically detectable label or the like (see, for example, Matthews *et al.*, *Anal. Biochem.* 169:1-25, 1988).

The method of detection can be a direct or indirect method. An indirect 25 detection process can involve, for example, the use of an oligonucleotide probe that is labeled with a hapten or ligand such as digoxigenin or biotin. Following hybridization, the target-probe duplex is detected by the formation of an antibody or streptavidin complex, which can further include an enzyme such as horseradish peroxidase, alkaline phosphatase, or the like. Such detection systems can be prepared 30 using routine methods, or can be obtained from a commercial source. For example, the GENIUS detection system (Boehringer Mannheim) is useful for mutational analysis of DNA, and provides an indirect method using digoxigenin as a tag for the

oligonucleotide probe and an anti-digoxigenin-antibody-alkaline phosphatase conjugate as the reagent for identifying the presence of tagged probe.

Direct detection methods can utilize, for example, fluorescent labeled 5 oligonucleotides, lanthanide chelate labeled oligonucleotides or oligonucleotide-enzyme conjugates. Examples of fluorescent labels include fluorescein, rhodamine and phthalocyanine dyes. Examples of lanthanide chelates include complexes of europium (Eu^{3+}) or terbium (Tb^{3+}). Oligonucleotide-enzyme conjugates are particularly useful for detecting point mutations when using target-specific 10 oligonucleotides, as they provide very high sensitivities of detection.

Oligonucleotide-enzyme conjugates can be prepared by a number of methods (Jablonski *et al.*, Nucl. Acids Res. 14:6115-6128, 1986; Li *et al.*, Nucl. Acids. Res. 15:5275-5287, 1987; Ghosh *et al.*, Bioconjugate Chem. 1:71-76, 1990). The detection of target nucleic acids using these conjugates can be carried out by filter 15 hybridization methods or by bead-based sandwich hybridization (Ishii *et al.*, Bioconjugate Chem. 4:34-41, 1993).

Methods for detecting a labeled oligonucleotide probe are well known in the art and will depend on the particular label. For radioisotopes, detection is by 20 autoradiography, scintillation counting or phosphor imaging. For hapten or biotin labels, detection is with antibody or streptavidin bound to a reporter enzyme such as horseradish peroxidase or alkaline phosphatase, which is then detected by enzymatic means. For fluorophor or lanthanide chelate labels, fluorescent signals can be measured with spectrofluorimeters, with or without time-resolved mode or using 25 automated microtiter plate readers. For enzyme labels, detection is by color or dye deposition, for example, p-nitrophenyl phosphate or 5-bromo-4-chloro-3-indolyl phosphate/nitroblue tetrazolium for alkaline phosphatase, and 3,3'-diaminobenzidine- NiCl_2 for horseradish peroxidase, fluorescence by 4-methyl umbelliferyl phosphate for alkaline phosphatase, or chemiluminescence by the alkaline phosphatase dioxetane 30 substrates LumiPhos 530 (Lumigen Inc., Detroit MI) or AMPPD and CSPD (Tropix, Inc.). Chemiluminescent detection can be carried out with X-ray or Polaroid film, or

by using single photon counting luminometers, which also is a useful detection format for alkaline phosphatase labeled probes.

Mutational analysis can also be carried out by methods based on ligation of 5 oligonucleotide sequences that anneal immediately adjacent to each other on a target DNA or RNA molecule (Wu and Wallace, *Genomics* 4:560-569, 1989; Landren *et al.*, *Science* 241:1077-1080, 1988; Nickerson *et al.*, *Proc. Natl. Acad. Sci. USA* 87:8923-8927, 1990; Barany, *supra*, 1991a). Ligase-mediated covalent attachment occurs only when the oligonucleotides are correctly base-paired. The ligase chain reaction (LCR) 10 and the oligonucleotide ligation assay (OLA), which utilize the thermostable Taq ligase for target amplification, are particularly useful for interrogating mutation loci. The elevated reaction temperatures permit the ligation reaction to be conducted with high stringency (Barany, *PCR Methods and Applications* 1:5-16, 1991b; Grossman *et al.*, *Nucl. Acids. Res.* 22:4527-4534, 1994, which are incorporated herein by 15 reference).

Analysis of point mutations in DNA can also be carried out by using PCR and variations thereof. Mismatches can be detected by competitive oligonucleotide priming under hybridization conditions where binding of the perfectly matched primer 20 is favored (Gibbs *et al.*, *Nucl. Acids. Res.* 17:2437-2448, 1989). In the amplification refractory mutation system technique (ARMS), primers can be designed to have perfect matches or mismatches with target sequences either internal or at the 3' residue (Newton *et al.*, *supra*, 1989). Under appropriate conditions, only the perfectly annealed oligonucleotide can function as a primer for the PCR reaction, thus 25 providing a method of discrimination between normal and mutant sequences.

Detection of single base mutations in target nucleic acids can be conveniently accomplished by differential hybridization techniques using sequence-specific oligonucleotides (Suggs *et al.*, *Proc. Natl. Acad. Sci. USA* 78:6613-6617, 1981; 30 Conner *et al.*, *Proc. Natl. Acad. Sci. USA* 80:278-282, 1983; Saiki *et al.*, *Proc. Natl. Acad. Sci. USA* 86:6230-6234, 1989). Mutations can be diagnosed on the basis of the higher thermal stability of the perfectly matched probes as compared to the

mismatched probes. The hybridization reactions can be carried out in a filter-based format, in which the target nucleic acids are immobilized on nitrocellulose or nylon membranes and probed with oligonucleotide probes. Any of the known hybridization formats can be used, including Southern blots, slot blots, reverse dot blots, solution hybridization, solid support based sandwich hybridization, bead-based, silicon chip-based and microtiter well-based hybridization formats.

An alternative strategy involves detection of the mutant sequences by sandwich hybridization methods. In this strategy, the mutant and wild type target 10 nucleic acids are separated from non-homologous DNA/RNA using a common capture oligonucleotide immobilized on a solid support and detected by specific oligonucleotide probes tagged with reporter labels. The capture oligonucleotides can be immobilized on microtiter plate wells or on beads (Gingeras *et al.*, *J. Infect. Dis.* 164:1066-1074, 1991; Richen *et al.*, *Proc. Natl. Acad. Sci. USA* 88:11241-11245, 15 1991).

Another method for analysis of a biological sample for specific mutations in a PKD1 polynucleotide sequence (e.g., mutant PKD1 polynucleotides, or oligonucleotide portions thereof) is a multiplexed primer extension method. In this 20 method primer is hybridized to a nucleic acid suspected of containing a mutation such that the primer is hybridized 3' to the suspected mutation. The primer is extended in the presence of a mixture of one to three deoxynucleoside triphosphates and one of three chain terminating deoxynucleoside triphosphates selected such that the wild-type extension product, the mutant DNA-derived extension product and the primer 25 each are of different lengths. These steps can be repeated, such as by PCR or RT-PCR, and the resulting primer extended products and primer are then separated on the basis of molecular weight to thereby enable identification of mutant DNA-derived extension product.

30 In one aspect of the invention, the OLA is applied for quantitative mutational analysis of PKD1 polynucleotide sequences (Grossman, *et al.*, *supra*, 1994). In this embodiment of the invention, a thermostable ligase-catalyzed reaction is used to link

a fluorescently labeled common probe with allele-specific probes. The latter probes are sequence-coded with non-nucleotide mobility modifiers that confer unique electrophoretic mobilities to the ligation products.

5 Oligonucleotides specific for wild type or mutant PKD1 sequences can be synthesized with different oligomeric nucleotide or non-nucleotide modifier tails at their 5' termini. Examples of nucleotide modifiers are inosine or thymidine residues, whereas examples of non-nucleotide modifiers include pentaethyleneoxide (PEO) and hexaethyleneoxide (HEO) monomeric units. The non-nucleotide modifiers are
10 preferred and most preferably PEO is used to label the probes. When a DNA template is present, a thermostable DNA ligase catalyzes the ligation of normal and mutant probes to a common probe bearing a fluorescent label. The PEO tails modify the mobilities of the ligation products in electrophoretic gels. The combination of PEO tails and fluorophor labels (TET and FAM (5-carboxy-fluorescein derivatives)), HEX
15 and JOE (6-carboxy-fluorescein derivatives), ROX (6-carboxy-x-rhodamine), or TAMRA (N, N, N', N'-tetramethyl-6-carboxy-rhodamine; Perkin-Elmer, ABI Division, Foster City CA) allow multiplex analysis based on size and color by providing unique electrophoretic signatures to the ligation products. The products are separated by electrophoresis, and fluorescence intensities associated with wild type
20 and mutant products are used to quantitate heteroplasmy. Thus, wild type and mutant, including variant, sequences are detected and quantitated on the basis of size and fluorescence intensities of the ligation products. This method further can be configured for quantitative detection of multiple PKD1 polynucleotide mutations in a single ligation reaction.

25

Mismatch detection or mutation analysis can also be performed using mismatch specific DNA intercalating agents. Such agents intercalate at a site having a mismatch followed by visualization on a polyacrylamide or agarose gel or by electrocatalysis. Accordingly, PKD1 polynucleotide sequences can be contacted with
30 probes specific for a PKD1 mutation or probes that are wild type for an area having a specific mutation under conditions such that the PKD1 polynucleotide and probe hybridize. The hybridized sequences are then contacted with a mismatch intercalating

agent and, for example, separated on a gel. Visualized bands on the gel correspond to a sequence having a mismatch. If the probes are wild-type probes mismatches will occur if the target PKD1 sequence contains a mismatch. If the probes are specific for a mutated sequence mismatches will be present where the target PKD1 sequence is 5 wild type, but the hybridized or duplex sequences will not contain mismatches where the probe sequence hybridizes to a PKD1 sequence containing the same mutation.

For quantitative analysis of PKD1 mutations using OLA, oligonucleotide probes are preferably labeled with fluorophor labels that provide spectrally 10 distinguishable characteristics. In one embodiment, oligonucleotides are labeled with 5' oligomeric PEO tails. Synthesis of such 5' labeled oligonucleotides can be carried out, for example, using an automated synthesizer using standard phosphoramidite chemistry. Following cleavage from resin and deprotection with ammonium hydroxide, the (PEO)_n-oligonucleotides can be purified by reverse phase HPLC. 15 Oligonucleotides with 3'-FAM or TET dyes (Perkin Elmer) and 5'-phosphates can be synthesized and purified by the procedure of Grossman *et al.*, *supra*, 1994. The 5'-PEO-labeled probes can be synthesized to have 5'-PEO-tails of differing lengths to facilitate distinguishing the ligated probe products both electrophoretically by size and by spectral characteristics of the fluorophor labels.

20

The oligonucleotide probes are used for identifying mutant PKD1 polynucleotides, which can be indicative of a PKD1-associated disorder such as ADPKD. Preferably, the probes are specific for one or more PKD1 nucleotide 25 positions of SEQ ID NO:1 selected from nucleotide 474, wherein nucleotide 474 is a T; nucleotide 487, wherein nucleotide 487 is an A; nucleotide 3110, wherein nucleotide 3110 is a C; nucleotide 8298, wherein nucleotide 8298 is a G; nucleotide 9164, wherein nucleotide 9164 is a G; nucleotide 9213, wherein nucleotide 9213 is an A; nucleotide 9326, wherein nucleotide 9326 is a T; nucleotide 9367, wherein nucleotide 9367 is a T; nucleotide 10064, wherein 30 nucleotide 10064 is an A; nucleotide 10143, wherein nucleotide 10143 is a G; nucleotide 10234, wherein nucleotide 10234 is a C; or nucleotide 10255, wherein nucleotide 10255 is a T. The oligonucleotide probes for the OLA assay are typically

designed to have calculated melting temperatures of about 40°C to 50°C, generally about 48°C, by the nearest neighbor method (Breslaur *et al.*, Proc. Natl. Acad. Sci. USA 83:9373-9377, 1986) so that the ligation reaction can be performed at a temperature range of about 40°C to 60°C, typically from about 45°C to about 55°C.

5 The wild type and mutant, including variant, oligonucleotide probes can be synthesized with various combinations of PEO oligomeric tails and fluorescein dyes such as TET and FAM. These combinations of mobility modifiers and fluorophor labels furnish electrophoretically unique ligation products that can enable the monitoring of two or more PKD1 nucleotide sites in a single ligation reaction.

10

In one embodiment, a method of diagnosing a PKD1-associated disorder in a subject is performed by amplifying a portion of a PKD1 polynucleotide in a nucleic acid sample from a subject suspected of having a PKD1-associated disorder with at least a first primer pair to obtain a first amplification product, wherein said first 15 primer pair is a primer pair of claim 3; amplifying the first amplification product with at least a second primer pair to obtain a nested amplification product, wherein the second primer pair is suitable for performing nested amplification of the first amplification product; and determining whether the nested amplification product has a mutation associated with a PKD1-associated disorder, wherein the presence of a 20 mutation associated with a PKD1-associated disorder is indicative of a PKD1-associated disorder, thereby diagnosing a PKD1-associated disorder in the subject. The method can be performed using a first primer pair selected from SEQ ID NOS:3 and 4; SEQ ID NOS:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9 and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; SEQ ID NOS:17 25 and 18; and a combination thereof, and a second primer pair selected from SEQ ID NOS:19 and 20; SEQ ID NOS:21 and 22; SEQ ID NOS:23 and 24; SEQ ID NOS:25 and 26; SEQ ID NOS:27 and 28; SEQ ID NOS:29 and 30; SEQ ID NOS:31 and 32; SEQ ID NOS:33 and 34; SEQ ID NOS:35 and 36; SEQ ID NOS:37 and 38; SEQ ID NOS:39 and 40; SEQ ID NOS:41 and 42; SEQ ID NOS:43 and 44; SEQ ID NOS:45 30 and 46; SEQ ID NOS:47 and 48; SEQ ID NOS:49 and 50; SEQ ID NOS:51 and 61; SEQ ID NOS:62 and 63; SEQ ID NOS:64 and 65; SEQ ID NOS:66 and 67; SEQ ID NOS:68 and 69; SEQ ID NOS:70 and 71; SEQ ID NOS:72 and 73; SEQ ID NOS:74

and 75; SEQ ID NOS:76 and 77; SEQ ID NOS:78 and 79; SEQ ID NOS:80 and 81; SEQ ID NOS:82 and 83; SEQ ID NOS:84 and 85; SEQ ID NOS:86 and 87; SEQ ID NOS:88 and 89; SEQ ID NOS:90 and 91; SEQ ID NOS:92 and 93; SEQ ID NOS:94 and 95; SEQ ID NOS:96 and 113; SEQ ID NOS:97 and 98; SEQ ID NOS:99 and 100; 5 SEQ ID NOS:101 and 102; SEQ ID NOS:103 and 104; SEQ ID NOS: 105 and 106; SEQ ID NOS:107 and 108; SEQ ID NOS:109 and 110; or SEQ ID NOS:111 and 112; and a combination thereof.

In another embodiment, a method of diagnosing a PKD1-associated disorder 10 in a subject is performed by amplifying a portion of PKD1 polynucleotide in a nucleic acid sample from a subject suspected of having a PKD1-associated disorder with a first primer pair to obtain a first amplification product; amplifying the first amplification product using a second primer pair to obtain a second amplification product; and detecting a mutation in the second amplification product, wherein the 15 mutation comprises SEQ ID NO:1 wherein nucleotide 3110 is a C; nucleotide 3336 is deleted; nucleotide 3707 is an A; nucleotide 5168 is a T; nucleotide 6078 is an A; nucleotide 6089 is a T; nucleotide 6326 is a T; nucleotides 7205 to 7211 are deleted; nucleotide 7415 is a T; nucleotide 7433 is a T; nucleotide 7883 is a T; or nucleotides 8159 to 8160 are deleted; nucleotide 8298 is a G; nucleotide 9164 is a G; 20 nucleotide 9213 is an A; or nucleotide 9326 is a T; nucleotide 10064 is an A; or wherein a GCG nucleotide sequence is inserted between nucleotides 7535 and 7536; or a combination thereof, thereby diagnosing a PKD1-associated disorder in the subject.

The present invention also provides a method of identifying a subject having 25 or at risk of having a PKD1-associated disorder. Such a method can be performed, for example, by comprising contacting nucleic acid molecules in a sample from a subject with at least one primer pair of the invention under conditions suitable for amplification of a PKD1 polynucleotide by the primer pair, thereby generating a PKD1-specific amplification product; and testing an amplification product for the 30 presence or absence of a mutation indicative of a PKD1-associated disorder, wherein the absence of the mutation identifies the subject a not having or at risk of the having a PKD1-associated disorder, and wherein the presence of the mutation identifies the

subject as having or is at risk of having a PKD1-associated disorder. The primer pair can be, for example, selected from SEQ ID NO:3 and 4; SEQ ID NO:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9 and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; or SEQ ID NOS:17 and 18. The PKD1-associated disorder can be autosomal dominant polycystic kidney disease, acquired cystic disease, or any other PKD-1 associated disorder, and the subject can be, for example, a vertebrate, particularly a human subject.

Such a method is particularly adaptable to a high throughput format, and, if desired, can include a step of contacting the PKD1-specific amplification product with at least a second primer pair, under conditions suitable for nested amplification of the PKD1-specific amplification product by a second primer pair, thereby generating a nested amplification product, then testing the nested amplification product for the presence or absence of a mutation indicative of a PKD1-associated disorder. The second primer pair can be any primer pair suitable for nested amplification of the PKD1-specific amplification product, for example, a primer pair selected from SEQ ID NOS:19 and 20; SEQ ID NOS:21 and 22; SEQ ID NOS:23 and 24; SEQ ID NOS:25 and 26; SEQ ID NOS:27 and 28; SEQ ID NOS:29 and 30; SEQ ID NOS:31 and 32; SEQ ID NOS:33 and 34; SEQ ID NOS:35 and 36; SEQ ID NOS:37 and 38; SEQ ID NOS:39 and 40; SEQ ID NOS:41 and 42; SEQ ID NOS:43 and 44; SEQ ID NOS:45 and 46; SEQ ID NOS:47 and 48; SEQ ID NOS:49 and 50; SEQ ID NOS:51 and 61; SEQ ID NOS:62 and 63; SEQ ID NOS:64 and 65; SEQ ID NOS:66 and 67; SEQ ID NOS:68 and 69; SEQ ID NOS:70 and 71; SEQ ID NOS:72 and 73; SEQ ID NOS:74 and 75; SEQ ID NOS:76 and 77; SEQ ID NOS:78 and 79; SEQ ID NOS:80 and 81; SEQ ID NOS:82 and 83; SEQ ID NOS:84 and 85; SEQ ID NOS:86 and 87; SEQ ID NOS:88 and 89; SEQ ID NOS:90 and 91; SEQ ID NOS:92 and 93; SEQ ID NOS:94 and 95; SEQ ID NOS:96 and 113; SEQ ID NOS:97 and 98; SEQ ID NOS:99 and 100; SEQ ID NOS:101 and 102; SEQ ID NOS:103 and 104; SEQ ID NOS:105 and 106; SEQ ID NOS:107 and 108; SEQ ID NOS:109 and 110; or SEQ ID NOS:111 and 112; and a combination thereof.

Testing an amplification product for the presence or absence of the mutation can be performed using any of various well known methods for examining a nucleic acid molecule. For example, nucleotide sequence of the amplification product can be determined, and compared with the nucleotide sequence of a corresponding

5 nucleotide sequence of SEQ ID NO:1. The amplification product also can be tested by determining the melting temperature of the amplification product, and comparing the melting temperature to the melting temperature of a corresponding nucleotide sequence of SEQ ID NO:1. The melting temperature can be determined, for example, using denaturing high performance liquid chromatography.

10 Where a nested amplification is to be performed, the method can include a step directed to reducing contamination of the PKD1-specific amplification product by genomic DNA prior to contacting the PKD1-specific amplification product with the at least second set of primer pairs. For example, contamination of the PKD1- specific amplification product can be reduced by diluting the PKD1-specific amplification product.

The mutation indicative of a of PKD1 associated disorder can be, for example, a nucleotide sequence substantially identical to SEQ ID NO:1, wherein

20 nucleotide 3110 is a C; nucleotide 8298 is a G; nucleotide 9164 is a G; nucleotide 9213 is an A; nucleotide 9326 is a T; or nucleotide 10064 is an A; or can be a nucleotide sequence substantially identical to SEQ ID NO:1, wherein nucleotide 3336 is deleted; nucleotide 3707 is an A; nucleotide 5168 is a T; nucleotide 6078 is an A; nucleotide 6089 is a T; nucleotide 6326 is a T; nucleotides 7205 to 7211 are deleted;

25 nucleotide 7415 is a T; nucleotide 7433 is a T; nucleotide 7883 is a T; or nucleotides 8159 to 8160 are deleted; or wherein a GCG nucleotide sequence is inserted between nucleotides 7535 and 7536.

30 Data that is collected pursuant to a step of detecting the presence or absence of a mutation indicative of a PKD1-associated disorder in an amplification product, which can be an amplification product generated according to a method of the invention, including, for example, a PKD1-specific amplification product or a nested

amplification product, can be accumulated, and can be formatted into a form that facilitates determining, for example, whether a subject is at risk of a PKD1-associated disorder. As such, the data can be formatted into a report that indicates whether a subject is at risk of a PKD1-associate disorder. The report can be in any of various 5 forms, including, for example, contained in a computer random access or read-only memory, or stored on a diskette, CD, DVD, magnetic tape; presented on a visual display such as a computer monitor or other cathode ray tube or liquid crystal display; or printed on paper. Furthermore, the data, which can be formatted into a report, can be transmitted to a user interested in or privy to the information. The data or report 10 can be transmitted using any convenient medium, for example, via the internet, by facsimile or by mail, depending on the form of the data or report.

Also provided is a method of detecting the presence of a mutant PKD1 polynucleotide in a sample by contacting a sample suspected of containing a mutant 15 PKD1 polynucleotide with an oligonucleotide of the invention under conditions that allow the oligonucleotide to selectively hybridize with a mutant PKD1 polynucleotide; and detecting selective hybridization of the oligonucleotide and a mutant PKD1 polynucleotide, thereby detecting the presence of a mutant PKD1 polynucleotide sequence in the sample. In another embodiment, a method of detecting 20 the presence of a mutant PKD1 polypeptide in a sample is provided, for example, by contacting a sample suspected of containing a mutant PKD1 polypeptide with an antibody of the invention under conditions that allow the antibody to specifically bind a mutant PKD1 polypeptide; and detecting specific binding of the antibody and the mutant PKD1 polypeptide in the sample, thereby detecting the presence of a mutant 25 PKD1 polypeptide in a sample. The mutant PKD1 polypeptide can have a sequence, for example, substantially as set forth in SEQ ID NO:2, and having a mutation of A88V, W967R, L2696R, R2985G, W3001X, R3039C, V3285I, H3311R, or a combination thereof (see, also, Table 4).

30 Antibodies that can specifically bind wild type or mutant PKD1 polypeptides, or peptide portions thereof, can also be used as ADPKD diagnostic reagents. Such reagents provide a diagnostic method that can detect the expression of abnormal PKD1 proteins

or of abnormal levels of PKD1 protein expression, including the detection of mutant PKD1 polypeptides or aberrant cellular localization of a PKD1 protein. For example, differences in the size, electronegativity, or antigenicity of the mutant PKD1 protein relative to a wild type PKD1 protein can be detected.

5

Diagnostic methods for the detection of mutant PKD1 polypeptides or peptide portions thereof can involve, for example, immunoassays wherein epitopes of a mutant PKD1 polypeptide are detected by their interaction with an anti-PKD1 specific antibody (e.g., an anti-mutant PKD1 specific antibody). For example, an antibody that

10 specifically binds to a mutant PKD1 polypeptide does not bind to a wild-type PKD1 polypeptide or peptide thereof. Particular epitopes of PKD1 to which antibodies can be developed include peptides that are substantially identical to SEQ ID NO:2, and having at least five amino acids, including amino acid residue 88, wherein residue 88 is a V; residue 967, wherein residue 967 is an R; residue 2696, wherein residue 2696

15 is an R; residue 2985, wherein residue 2985 is a G; residue 3039, wherein residue 3039 is a C; residue 3285, wherein residue 3285 is an I; or residue 3311, wherein residue 3311 is an R; or a C-terminal peptide including amino acid residue 3000, where residue 3001 is absent and the mutant PKD1 polypeptide is truncated due to the presence of a STOP codon in the encoding mutant PKD1

20 polynucleotide.

Antibodies, or fragments of antibodies, such as those described, above, are useful in the present invention and can be used to quantitatively or qualitatively detect the presence of wild type or mutant PKD1 polypeptides or peptide portions thereof, for example. This can be accomplished, for example, by immunofluorescence techniques employing a fluorescently labeled antibody (see below) coupled with light microscopic, flow cytometric, or fluorimetric detection.

The antibodies (or fragments thereof) useful in the present invention can, 30 additionally, be employed histologically, as in immunofluorescence or immunoelectron microscopy, for *in situ* detection of PKD1 polypeptide, peptides, variants or mutants thereof. Detection can be accomplished by removing a histological specimen from a

subject, and applying thereto a labeled antibody of the present invention. The histological sample can be taken from a tissue suspected of exhibiting ADPKD. The antibody (or fragment) is preferably applied by overlaying the labeled antibody (or fragment) onto a biological sample. Through the use of such a procedure, it is possible

5 to determine not only the presence of PKD1 polypeptides, but also their distribution in the examined tissue. Using the present invention, those of ordinary skill will readily perceive that any of a wide variety of histological methods (such as staining procedures) can be modified in order to achieve such *in situ* detection.

10 Immunoassays for wild type or mutant PKD1 polypeptide or peptide portions thereof typically comprise incubating a biological sample, such as a biological fluid, a tissue extract, freshly harvested cells, or cells that have been incubated in tissue culture, in the presence of a detectably labeled antibody capable of identifying a PKD1 polypeptide, mutant PKD1 polypeptide and peptide portions thereof, and detecting the

15 bound antibody by any of a number of techniques well-known in the art. The biological sample can be brought in contact with and immobilized onto a solid phase support or carrier such as nitrocellulose, or other solid support that is capable of immobilizing cells, cell particles or soluble proteins. The support can then be washed with suitable buffers followed by treatment with the detectably labeled mutant PKD1 specific antibody,

20 preferably an antibody that recognizes a developed include peptides that are substantially identical to SEQ ID NO:2, and having at least five amino acids, including amino acid residue 88, wherein residue 88 is a V; residue 967, wherein residue 967 is an R; residue 2696, wherein residue 2696 is an R; residue 2985, wherein residue 2985 is a G; residue 3039, wherein residue 3039 is a C; residue 3285, wherein residue 3285 is an I; or residue 3311, wherein residue 3311 is an R; or a

25 C-terminal peptide including amino acid residue 3000, where residue 3001 is absent and the mutant PKD1 polypeptide is truncated due to the presence of a STOP codon in the encoding mutant PKD1 polynucleotide (see, also, Table 4). The solid phase support can then be washed with the buffer a second time to remove unbound antibody,

30 and the amount of bound label on solid support can be detected by conventional means specific for the label.

A "solid phase support" or "carrier" can be any support capable of binding an antigen or an antibody. Well-known supports or carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amyloses, natural and modified celluloses, polyacrylamides, and magnetite. The nature of the carrier can be either soluble to some extent or insoluble for the purposes of the present invention. The support material can have virtually any possible structural configuration so long as the coupled molecule is capable of binding to an antigen or antibody. Thus, the support configuration can be spherical, as in a bead, or cylindrical, as in the inside surface of a test tube, or the external surface of a rod. Alternatively, the surface can be flat such as a sheet, test strip, or the like. Those skilled in the art will know many other suitable carriers for binding antibody or antigen, or will be able to ascertain the same by use of routine experimentation.

The binding activity of a given lot of an anti-mutant PKD1 antibody can be determined according to well known methods. Those skilled in the art will be able to determine operative and optimal assay conditions for each determination by employing routine experimentation. One of the ways in which the mutant PKD1-specific antibody can be detectably labeled is by linking the antibody to an enzyme and use the enzyme labeled antibody in an enzyme immunoassay (EIA; Voller, "The Enzyme Linked Immunosorbent Assay (ELISA):, Diagnostic Horizons 2:1-7, 1978; Microbiological Associates Quarterly Publication, Walkersville, Md.); Voller *et al.*, *J. Clin. Pathol.* 31:507-520, 1978; Butler, *Meth. Enzymol.* 73:482-523, 1981; Maggio (ed.), "Enzyme Immunoassay", CRC Press, Boca Raton FL, 1980; Ishikawa *et al.*, (eds.), "Enzyme Immunoassay", Kgaku Shoin, Tokyo, 1981). The enzyme that is bound to the antibody will react with an appropriate substrate, preferably a chromogenic substrate, in such a manner as to produce a chemical moiety that can be detected, for example, by spectrophotometric, fluorimetric or by visual means.

Enzymes that can be used to detectably label the antibody include, but are not limited to, malate dehydrogenase, staphylococcal nuclease, delta-5-steroid isomerase, yeast alcohol dehydrogenase, α -glycerophosphate, dehydrogenase, triose phosphate isomerase, horseradish peroxidase, alkaline phosphatase, asparaginase, glucose oxidase,

beta-galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase and acetylcholinesterase. The detection can be accomplished by colorimetric methods that employ a chromogenic substrate for the enzyme. Detection can also be accomplished by visual comparison of the extent of enzymatic reaction of a substrate in comparison with similarly prepared standards. In addition, detection can be accomplished using any of a variety of other immunoassays, including, for example, by radioactively labeling the antibodies or antibody fragments and detecting PKD1 wild type or mutant peptides using a radioimmunoassay (RIA; see, for example, Weintraub, Principles of Radioimmunoassays, Seventh Training Course on Radioligand Assay Techniques, The Endocrine Society, March, 1986, which is incorporated herein by reference). The radioactive isotope can be detected by such means as the use of a gamma counter or a scintillation counter or by autoradiography.

The antibody also can be labeled with a fluorescent compound. When the fluorescently labeled antibody is exposed to light of the proper wave length, its presence can then be detected due to fluorescence. Among the most commonly used fluorescent labeling compounds are fluorescein isothiocyanate, rhodamine, phycoerythrin, phycocyanin, allophycocyanin, o-phthaldehyde and fluorescamine. The antibody can also be detectably labeled using fluorescence emitting metals such as ¹⁵²Eu, or others of the lanthanide series. These metals can be attached to the antibody using such metal chelating groups as diethylenetriaminepentacetic acid (DTPA) or ethylenediaminetetraacetic acid (EDTA).

The antibody also can be detectably labeled by coupling it to a chemiluminescent compound. The presence of the chemiluminescent-tagged antibody is then determined by detecting the presence of luminescence that arises during the course of a chemical reaction. Examples of particularly useful chemiluminescent labeling compounds are luminol, isoluminol, theromatic acridinium ester, imidazole, acridinium salt and oxalate ester. Likewise, a bioluminescent compound can be used to label the antibody of the present invention. Bioluminescence is a type of chemiluminescence found in biological systems in, which a catalytic protein increases the efficiency of the chemiluminescent reaction. The presence of a bioluminescent protein is determined by detecting the

presence of luminescence. Important bioluminescent compounds for purposes of labeling are luciferin, luciferase and aequorin.

In vitro systems can be designed to identify compounds capable of binding a

5 mutant PKD1 polynucleotide of the invention (e.g., a polynucleotide having a sequence substantially identical to SEQ ID NO:1 and having a mutation such as C474T; G487A; T3110C; T8298G; A9164G; G9213A; C9326T; C9367T; G10064A; A10143G; T10234C; or G10255T). Such compounds can include, but are not limited to, peptides made of D-and/or L-configuration amino acids in, for example, the form of random

10 peptide libraries (see, e.g., Lam *et al.*, *Nature* 354:82-84, 1981), phosphopeptides in, for example, the form of random or partially degenerate, directed phosphopeptide libraries (see, e.g., Songyang *et al.*, *Cell* 72:767-778, 1993), antibodies, and small or large organic or inorganic molecules. Compounds identified can be useful, for example, in modulating the activity of PKD1 proteins, variants or mutants. For example, mutant

15 PKD1 polypeptides of the invention can be useful in elaborating the biological function of the PKD1 protein. Such mutants can be utilized in screens for identifying compounds that disrupt normal PKD1 interactions, or can in themselves disrupt such interactions.

The principle of the assays used to identify compounds that bind to a mutant

20 PKD1 protein involves preparing a reaction mixture of the PKD1 protein, which can be a mutant, including a variant, and the test compound under conditions and for a time sufficient to allow the two components to interact, then isolating the interaction product (complex) or detecting the complex in the reaction mixture. Such assays can be conducted in a heterogeneous or homogeneous format. Heterogeneous assays involve

25 anchoring PKD1 or the test substance onto a solid phase and detecting PKD1 test substance complexes anchored on the solid phase at the end of the reaction. In homogeneous assays, the entire reaction is carried out in a liquid phase. In either approach, the order of addition of reactants can be varied to obtain different information about the compounds being tested.

30

In addition, methods suitable for detecting protein-protein interactions can be employed for identifying novel PKD1 cellular or extracellular protein interactions based

upon the mutant or variant PKD1 polypeptides of the invention. For example, some traditional methods that can be employed are co-immunoprecipitation, crosslinking and copurification through gradients or chromatographic columns. Additionally, methods that result in the simultaneous identification of the genes coding for the protein

5 interacting with a target protein can be employed. These methods include, for example, probing expression libraries with labeled target protein, using this protein in a manner similar to antibody probing of λ gt libraries. One such method for detecting protein interactions *in vivo* is the yeast two hybrid system. One version of this system has been described (Chien *et al.*, Proc. Natl. Acad. Sci. USA 88:9578-9582, 1991) and can be

10 performed using commercially available reagents (Clontech; Palo Alto CA).

A PKD1 polypeptide (*e.g.*, a variant or mutant) of the invention can interact with one or more cellular or extracellular proteins *in vivo*. Such cellular proteins are referred to herein as "binding partners". Compounds that disrupt such interactions can be useful

15 in regulating the activity of a PKD1 polypeptide, especially mutant PKD1 polypeptides. Such compounds include, for example, molecules such as antibodies, peptides, peptidomimetics and the like.

In instances whereby ADPKD symptoms are associated with a mutation within

20 the PKD1 polynucleotide (*e.g.*, SEQ ID NO:1 having a mutation at T3110C; T8298G; A9164G; G9213A; C9326T; G10064A or the like; see Example 2), which produces PKD1 polypeptides having aberrant activity, compounds identified that disrupt such activity can therefore inhibit the aberrant PKD1 activity and reduce or treat ADPKD1-associated symptoms or ADPKD disease, respectively (see Table 4). For example,

25 compounds can be identified that disrupt the interaction of mutant PKD1 polypeptides with cellular or extracellular proteins, for example, the PKD2 gene product, but do not substantially effect the interactions of the normal PKD1 protein. Such compounds can be identified by comparing the effectiveness of a compound to disrupt interactions in an assay containing normal PKD1 protein to that of an assay containing mutant PKD1

30 polypeptide, for example, a two hybrid assay.

The basic principle of the assay systems used to identify compounds that interfere with the interaction between the PKD1 protein, preferably a mutant PKD1 protein, and its cellular or extracellular protein binding partner or partners involves preparing a reaction mixture containing the PKD1 protein and the binding partner under 5 conditions and for a time sufficient to allow the two proteins to interact or bind, thus forming a complex. In order to test a compound for inhibitory activity, reactions are conducted in the presence or absence of the test compound, *i.e.*, the test compound can be initially included in the reaction mixture, or added at a time subsequent to the addition of PKD1 and its cellular or extracellular binding partner; controls are incubated without 10 the test compound or with a placebo. The formation of any complexes between the PKD1 protein and the cellular or extracellular binding partner is then detected. The formation of a complex or interaction in the control reaction, but not in the reaction mixture containing the test compound indicates that the compound interferes with the interaction of the PKD1 protein and the binding partner. As noted above, complex 15 formation or component interaction within reaction mixtures containing the test compound and normal PKD1 protein can also be compared to complex formation or component interaction within reaction mixtures containing the test compound and mutant PKD1 protein. This comparison can be important in those cases wherein it is desirable to identify compounds that disrupt interactions of mutant but not normal PKD1 20 proteins.

Any of the binding compounds, including but not limited to, compounds such as those identified in the foregoing assay systems can be tested for anti-ADPKD activity. ADPKD, an autosomal dominant disorder, can involve underexpression of a wild-type 25 PKD1 allele, or expression of a PKD1 polypeptide that exhibits little or no PKD1 activity. In such an instance, even though the PKD1 polypeptide is present, the overall level of normal PKD1 polypeptide present is insufficient and leads to ADPKD symptoms. As such increase in the level of expression of the normal PKD1 polypeptide, to levels wherein ADPKD symptoms are ameliorated would be useful. Additionally, the 30 term can refer to an increase in the level of normal PKD1 activity in the cell, to levels wherein ADPKD symptoms are ameliorated.

The identified compounds that inhibit PKD1 expression, synthesis and/or activity can be administered to a patient at therapeutically effective doses to treat polycystic kidney disease. A therapeutically effective dose refers to that amount of the compound sufficient to result in amelioration of symptoms of polycystic kidney disease. Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, *e.g.*, for determining the LD₅₀ (the dose lethal to 50% of the population) and the ED₅₀ (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio 5 LD₅₀/ED₅₀. Compounds that exhibit large therapeutic indices are preferred. While compounds that exhibit toxic side effects can be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.

10

15 The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage can vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the 20 method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose can be formulated in animal models to achieve a circulating plasma concentration range that includes the IC₅₀ (*i.e.*, the concentration of the test compound that achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses 25 in humans. Levels in plasma can be measured, for example, by high performance liquid chromatography. Additional factors that can be utilized to optimize dosage can include, for example, such factors as the severity of the ADPKD symptoms as well as the age, weight and possible additional disorders that the patient can also exhibit. Those skilled in the art will be able to determine the appropriate dose based on the above factors.

30

Pharmaceutical compositions for use in accordance with the present invention can be formulated in conventional manner using one or more physiologically acceptable

carriers or excipients. Thus, the compounds and their physiologically acceptable salts and solvates can be formulated for administration by inhalation (either through the mouth or the nose) or oral, buccal, parenteral or rectal administration.

5 For oral administration, the pharmaceutical compositions can take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium 10 stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycollate); or wetting agents (e.g., sodium lauryl sulphate). The tablets can be coated by methods well known in the art. Liquid preparations for oral administration can take the form of, for example, solutions, syrups or suspensions, or they can be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations can 15 be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., almond oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid). The preparations can also contain 20 buffer salts, flavoring, coloring and sweetening agents as appropriate.

Preparations for oral administration can be suitably formulated to give controlled release of the active compound. For buccal administration the compositions can take the form of tablets or lozenges formulated in conventional manner.

25 For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant such as dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon 30 dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit can be determined by providing a valve to deliver a metered amount. Capsules and cartridges

of *e.g.*, gelatin, for use in an inhaler can be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.

The compounds can be formulated for parenteral administration by injection,

5 *e.g.*, by bolus injection or continuous infusion. Formulations for injection can be presented in unit dosage form, *e.g.*, in ampoules or in multi-dose containers, with an added preservative. The compositions can take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and can contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient can

10 be in powder form for constitution with a suitable vehicle, *e.g.*, sterile pyrogen-free water, before use. The compounds can also be formulated in rectal compositions such as suppositories or retention enemas, *e.g.*, containing conventional suppository bases such as cocoa butter or other glycerides.

15 In addition to the formulations described previously, the compounds can also be formulated as a depot preparation. Such long acting formulations can be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds can be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion

20 exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

25 The compositions can, if desired, be presented in a pack or dispenser device that can contain one or more unit dosage forms containing the active ingredient. The pack can for example comprise metal or plastic foil, such as a blister pack. The pack or dispenser device can be accompanied by instructions for administration.

30 Alternatively, ADPKD can be caused by the production of an aberrant mutant form of the PKD1 protein, that either interferes with the normal allele product or introduces a novel function into the cell, which then leads to the mutant phenotype. For example, a mutant PKD1 protein can compete with the wild type protein for the binding of a substance required to relay a signal inside or outside of a cell.

Cell based and animal model based assays for the identification of compounds exhibiting anti-ADPKD activity are also encompassed within the present invention. Cells that contain and express mutant PKD1 polynucleotide sequences (e.g., a sequence 5 substantially identical to the sequence as set forth in SEQ ID NO:1 and having one or more mutations of a C474T; G487A; T3110C; T8298G; A9164G; G9213A; C9326T; C9367T; G10064A; A10143G; T10234C; G10255T or the like; see Example 2), which encode a mutant PKD1 polypeptide, and thus exhibit cellular phenotypes associated with ADPKD, can be utilized to identify compounds that possess anti-ADPKD activity. Such 10 cells can include cell lines consisting of naturally occurring or engineered cells that express mutant or express both normal and mutant PKD1 polypeptides. Such cells include, but are not limited to renal epithelial cells, including primary and immortalized human renal tubular cells, MDCK cells, LLPCK1 cells, and human renal carcinoma cells. Methods of transforming cell with PKD1 polynucleotide sequences encoding 15 wild-type or mutant proteins are described above.

Cells that exhibit ADPKD-like cellular phenotypes, can be exposed to a compound suspected of exhibiting anti-ADPKD activity at a sufficient concentration and for a time sufficient to elicit an anti-ADPKD1 activity in the exposed cells. After 20 exposure, the cells are examined to determine whether one or more of the ADPKD-like cellular phenotypes has been altered to resemble a more wild type, non-ADPKD phenotype.

Among the cellular phenotypes that can be followed in the above assays are 25 differences in the apical/basolateral distribution of membrane proteins. For example, normal (i.e., non-ADPKD) renal tubular cells *in situ* and in culture under defined conditions have a characteristic pattern of apical/basolateral distribution of cell surface markers. ADPKD renal cells, by contrast, exhibit a distribution pattern that reflects a partially reversed apical/basolateral polarity relative to the normal 30 distribution. For example, sodium-potassium ATPase generally is found on the basolateral membranes of renal epithelial cells, but also can be found on the apical surface of ADPKD epithelial cells, both in cystic epithelia *in vivo* and in ADPKD

cells in culture (Wilson *et al.*, Am. J. Physiol. 260:F420-F430, 1991). Another marker that exhibits an alteration in polarity in normal versus ADPKD affected cells is the EGF receptor, which is normally located basolaterally, but in ADPKD cells is mislocated to the apical surface. Such a apical/basolateral marker distribution 5 phenotype can be followed, for example, by standard immunohistology techniques using antibodies specific to a markers of interest.

Assays for the function of PKD1 also can include a measure of the rate of cell growth or apoptosis, since dysregulation of epithelial cell growth can be a key step in 10 cyst formation. The cysts are fluid filled structures lined by epithelial cells that are both hyper-proliferative and hyper-apoptotic (Evan *et al.*, Kidney International 16:743-750, 1979; Kovacs and Gomba, Kidney Blood Press. Res. 21:325-328, 1998; Lanoix *et al.*, Oncogene 13: 1153-1160, 1996; Woo, New Engl. J. Med. 333:18-25, 1995, each of which is incorporated herein by reference). The cystic epithelium has a 15 high mitotic rate *in vivo* as measured by PCNA staining (Nadasdy *et al.*, J. Am. Soc. Nephrol. 5:1462-1468, 1995, which is incorporated herein by reference), and increased levels of expression of other markers of proliferation (Klingel *et al.*, Amer. J. Kidney Dis. 19:22-30, 1992, which is incorporated herein by reference). In addition, cultured cells from ADPKD cystic kidneys have increased growth rates 20 *in vitro* (Wilson *et al.*, Kidney Int. 30:371-380, 1986; Wilson, Amer. J. Kidney Dis. 17:634-637, 1991, each of which is incorporated herein by reference).

Further, in studies of rodent models of polycystic kidney disease, the epithelial 25 cells that line cysts of animals with naturally occurring forms of PKD showed abnormalities similar to those reported in human ADPKD (Harding *et al.*, 1992; Ramasubbu *et al.*, J. Am. Soc. Nephrol. 9:937-945, 1998; Rankin *et al.*, J. Cell Physiol. 152:578-586, 1992; Rankin *et al.*, *In Vitro* Cell Devel. Biol. Anim. 32:100-106, 1996, each of which is incorporated herein by reference). Moreover, mice that have transgenic over-expression of either c-myc or SV40-large T antigen developed 30 PKD (Kelley *et al.* J. Am. Soc. Nephrol. 2:84-97, 1991; Trudel *et al.*, Kidney Int. 39:665-671 1991, each of which is incorporated herein by reference). Also, expression of recombinant full length PKD1 in epithelial cells reduced their rate of

growth and induced resistance to apoptosis when challenged with stimuli such as serum starvation or exposure to UV light, which are known to stimulate apoptosis (Boletta *et al.*, Mol. Cell 6:1267-1273, 2000, which is incorporated herein by reference). As such, biochemical pathways that are activated by PKD1 expression, 5 including, for example, JAK2, STAT1/3, PI3 kinase, p21, and AKT, can provide surrogate markers for PKD1 activity.

The propensity of an epithelial cell to form tubules provides still another assay for the function of PKD1. *In vivo*, PKD is characterized by cystic transformation of 10 renal tubules and pancreatic and biliary ductules. *In vitro*, expression of full length PKD1 induces spontaneous tubulogenesis in MDCK cells (Boletta *et al.*, *supra*, 2000). In this model system, control MDCK cells, which did not express recombinant wild type full length PKD1, formed cystic structures unless treated with hepatocyte growth factor or with fibroblast conditioned medium when cultured suspended in 15 collagen. In contrast, MDCK cells that expressed the full length wild type recombinant form of PKD1 spontaneously formed tubules in the absence of exogenous factors when cultured in this manner. As such, this model system can be used to identify ligands that bind to and activate the PKD1 protein, to determine pathways that are targeted for activation by therapeutic agents, and as an assay system 20 to evaluate the effect of sequence variants on PKD1 function.

Additionally, assays for the function of a PKD1 polypeptide can, for example, include a measure of extracellular matrix (ECM) components, such as proteoglycans, laminin, fibronectin and the like, in that studies in both ADPKD and in rat models of 25 acquired cystic disease (Carone *et al.*, Kidney International 35:1034-1040, 1989) have shown alterations in such components. Thus, any compound that serves to create an extracellular matrix environment that more fully mimics the normal ECM should be considered as a candidate for testing for an ability to ameliorate ADPKD symptoms.

30 In addition, it is contemplated that the present invention can be used to measure the ability of a compound, such as those identified in the foregoing binding assays, to prevent or inhibit disease in animal models for ADPKD. Several naturally-

occurring mutations for renal cystic disease have been found in animals, and are accepted in the art as models of ADPKD and provide test systems for assaying the effects of compounds that interact with PKD1 proteins. Of these models, the Han:SPRD rat model, provides an autosomal dominant model system (see, for 5 example, Kaspareit-Rittinghausen *et al.*, *Vet. Path.* 26:195, 1989), and several recessive models also are available (Reeders, *Nature Genetics* 1:235, 1992). In addition, knock-out mice, in which the PKD1 or PKD2 gene has been disrupted, are available and provide a relevant model system for genetic forms of ADPKD. As such, the PKD1 and PKD2 knock-out mice can be useful for confirming the 10 effectiveness *in vivo* of compounds that interact with PKD1 proteins *in vitro* (see, for example, Wu *et al.*, *Nat. Genet.* 24:75-78, 2000; Kim *et al.*, *Proc. Natl. Acad. Sci., USA* 97:1731-1736, 2000; Lu *et al.*, *Nat. Genet.* 21:160-161, 1999; Wu *et al.*, *Cell* 93:177-188, 1998; Lu *et al.*, *Nat. Genet.* 17:179-181, 1997, each of which is incorporated herein by reference).

15

Animal models exhibiting ADPKD-like symptoms associated with one or more of the mutant PKD1 polynucleotide sequences as disclosed herein can also be engineered by utilizing the PKD1 polynucleotide sequences such in conjunction with well known methods for producing transgenic animals. Animals of any species, 20 including, but not limited to, mice, rats, rabbits, guinea pigs, pigs, mini-pigs, goats, and non-human primates, *e.g.*, baboons, squirrels, monkeys, and chimpanzees can be used to generate such ADPKD animal models or transgenic animals. In instances where the PKD1 mutation leading to ADPKD symptoms causes a drop in the level of PKD1 protein or causes an ineffective PKD1 protein to be made (*e.g.*, the PKD1 mutation is a 25 dominant loss-of-function mutation, such as a W3001X, *i.e.*, truncated after amino acid residue 3000, or a T3110C mutation; see, also, Table 4) various strategies can be utilized to generate animal models exhibiting ADPKD-like symptoms.

The present invention also provides transgenic non-human organisms, including 30 invertebrates, vertebrates and mammals. For purposes of the subject invention, these animals are referred to as "transgenic" when such animal has had a heterologous DNA sequence, or one or more additional DNA sequences normally endogenous to the animal

(collectively referred to herein as "transgenes") chromosomally integrated into the germ cells of the animal. The transgenic animal (including its progeny) will also have the transgene integrated into the chromosomes of somatic cells.

5 Various methods to make the transgenic animals of the subject invention can be employed. Generally speaking, three such methods can be employed. In one such method, an embryo at the pronuclear stage (a "one cell embryo") is harvested from a female and the transgene is microinjected into the embryo, in which case the transgene will be chromosomally integrated into both the germ cells and somatic cells of the 10 resulting mature animal. In another such method, embryonic stem cells are isolated and the transgene incorporated therein by electroporation, plasmid transfection or microinjection, followed by reintroduction of the stem cells into the embryo where they colonize and contribute to the germ line. Methods for microinjection of mammalian species is described in U.S. Pat. No. 4,873,191.

15

 In yet another such method, embryonic cells are infected with a retrovirus containing the transgene whereby the germ cells of the embryo have the transgene chromosomally integrated therein. When the animals to be made transgenic are avian, because avian fertilized ova generally go through cell division for the first twenty hours 20 in the oviduct, microinjection into the pronucleus of the fertilized egg is problematic due to the inaccessibility of the pronucleus. Therefore, of the methods to make transgenic animals described generally above, retrovirus infection is preferred for avian species, for example as described in U.S. Pat. No. 5,162,215. If microinjection is to be used with avian species, however, the method of Love *et al.*, (Biotechnology, 12, 1994) can be 25 utilized whereby the embryo is obtained from a sacrificed hen approximately two and one-half hours after the laying of the previous laid egg, the transgene is microinjected into the cytoplasm of the germinal disc and the embryo is cultured in a host shell until maturity. When the animals to be made transgenic are bovine or porcine, microinjection can be hampered by the opacity of the ova thereby making the nuclei difficult to identify 30 by traditional differential interference-contrast microscopy. To overcome this problem, the ova can first be centrifuged to segregate the pronuclei for better visualization.

The non-human transgenic animals of the invention include, for example, bovine, porcine, ovine and avian animals (e.g., cow, pig, sheep, chicken, turkey). Such transgenic non-human animals are produced by introducing a transgene into the germline of the non-human animal. Embryonal target cells at various developmental stages can

5 be used to introduce transgenes. Different methods are used depending on the stage of development of the embryonal target cell. The zygote is the best target for microinjection. The use of zygotes as a target for gene transfer has a major advantage in that in most cases the injected DNA will be incorporated into the host gene before the first cleavage (Brinster *et al.*, Proc. Natl. Acad. Sci. USA 82:4438-4442, 1985). As a

10 consequence, all cells of the transgenic non-human animal will carry the incorporated transgene. This will in general also be reflected in the efficient transmission of the transgene to offspring of the founder since 50% of the germ cells will harbor the transgene.

15 The term "transgenic" is used to describe an animal that includes exogenous genetic material within all of its cells. A transgenic animal can be produced by cross-breeding two chimeric animals that include exogenous genetic material within cells used in reproduction. Twenty-five percent of the resulting offspring will be transgenic *i.e.*, animals that include the exogenous genetic material within all of their cells in both

20 alleles. Fifty percent of the resulting animals will include the exogenous genetic material within one allele and 25% will include no exogenous genetic material.

In the microinjection method useful in the practice of the invention, the transgene is digested and purified free from any vector DNA *e.g.* by gel electrophoresis. It is

25 preferred that the transgene include an operatively associated promoter that interacts with cellular proteins involved in transcription, ultimately resulting in constitutive expression. Promoters useful in this regard include those from cytomegalovirus (CMV), Moloney leukemia virus (MLV), and herpes virus, as well as those from the genes encoding metallothionein, skeletal actin, P-enolpyruvate carboxylase (PEPCK),

30 phosphoglycerate (PGK), DHFR, and thymidine kinase. Promoters for viral long terminal repeats (LTRs) such as Rous Sarcoma Virus can also be employed. When the animals to be made transgenic are avian, preferred promoters include those for the

chicken β -globin gene, chicken lysozyme gene, and avian leukosis virus. Constructs useful in plasmid transfection of embryonic stem cells will employ additional regulatory elements well known in the art such as enhancer elements to stimulate transcription, splice acceptors, termination and polyadenylation signals, and ribosome binding sites to permit translation.

Retroviral infection can also be used to introduce transgene into a non-human animal, as described above. The developing non-human embryo can be cultured *in vitro* to the blastocyst stage. During this time, the blastomeres can be targets for retro viral infection (Jaenich, Proc. Natl. Acad. Sci. USA 73:1260-1264, 1976). Efficient infection of the blastomeres is obtained by enzymatic treatment to remove the zona pellucida (Hogan *et al.*, In "Manipulating the Mouse Embryo" (Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY 1986)). The viral vector system used to introduce the transgene is typically a replication-defective retro virus carrying the transgene (Jahner *et al.*, Proc. Natl. Acad. Sci. USA 82:6927-6931, 1985; Van der Putten *et al.*, Proc. Natl. Acad. Sci USA 82:6148-6152, 1985). Transfection is easily and efficiently obtained by culturing the blastomeres on a monolayer of virus-producing cells (Van der Putten, *supra*; Stewart, *et al.*, EMBO J. 6:383-388, 1987). Alternatively, infection can be performed at a later stage. Virus or virus-producing cells can be injected into the blastocoele (Jahner *et al.*, Nature 298:623-628, 1982). Most of the founders will be mosaic for the transgene since incorporation occurs only in a subset of the cells that formed the transgenic nonhuman animal. Further, the founder can contain various retroviral insertions of the transgene at different positions in the genome that generally will segregate in the offspring. In addition, it is also possible to introduce transgenes into the germ line, albeit with low efficiency, by intrauterine retroviral infection of the midgestation embryo (Jahner *et al.*, *supra*, 1982).

A third type of target cell for transgene introduction is the embryonal stem cell (ES). ES cells are obtained from pre-implantation embryos cultured *in vitro* and fused with embryos (Evans *et al.* Nature 292:154-156, 1981; Bradley *et al.*, Nature 309:255-258, 1984; Gossler *et al.*, Proc. Natl. Acad. Sci. USA 83:9065-9069, 1986; and Robertson *et al.*, Nature 322:445-448, 1986). Transgenes can be efficiently introduced

into the ES cells by DNA transfection or by retro virus-mediated transduction. Such transformed ES cells can thereafter be combined with blastocysts from a nonhuman animal. The ES cells thereafter colonize the embryo and contribute to the germ line of the resulting chimeric animal (for review see Jaenisch, *Science* 240:1468-1474, 1988).

5

The transgene can be any piece of DNA that is inserted by artifice into a cell, and becomes part of the genome of the organism (*i.e.*, either stably integrated or as a stable extrachromosomal element) that develops from that cell. Such a transgene can include a gene that is partly or entirely heterologous (*i.e.*, foreign) to the transgenic organism, or 10 can represent a gene homologous to an endogenous gene of the organism. Included within this definition is a transgene created by the providing of an RNA sequence that is transcribed into DNA, then incorporated into the genome. The transgenes of the invention include DNA sequences that encode a mutant PKD1 polypeptide, for example, a polypeptide having an amino acid sequence substantially identical to SEQ ID NO:2 15 and having a mutation of a A88V, a W967R, a L2696R, an R2985G, an R3039C, a V3285I, a H3311R, or any combination thereof; or encoding a truncated PKD1 polypeptide ending at amino acid 3000 (also referred to herein as "W3001X", where "X" indicates STOP codon; see, also, Table 4) and include sense, antisense, and dominant negative encoding polynucleotides, which can be expressed in a transgenic 20 non-human animal. The term "transgenic" as used herein also includes any organism whose genome has been altered by *in vitro* manipulation of the early embryo or fertilized egg or by any transgenic technology to induce a specific gene knockout. The term "gene knockout" as used herein, refers to the targeted disruption of a gene *in vivo* with complete or partial loss of function that has been achieved by any transgenic technology 25 familiar to those in the art. In one embodiment, transgenic animals having a gene knockout are those in which the target gene has been rendered nonfunctional by an insertion targeted to the gene to be rendered non-functional by homologous recombination.

30

The invention also includes animals having heterozygous mutations in or partial inhibition of function or expression of a PKD1 polypeptide. One of skill in the art would readily be able to determine if a particular mutation or if an antisense molecule was able

to partially inhibit PKD1 expression. For example, *in vitro* testing can be desirable initially by comparison with wild-type (e.g., comparison of northern blots to examine a decrease in expression). After an embryo has been microinjected, colonized with transfected embryonic stem cells or infected with a retrovirus containing the transgene

5 (except for practice of the subject invention in avian species, which is addressed elsewhere herein), the embryo is implanted into the oviduct of a pseudopregnant female. The progeny are tested for incorporation of the transgene by Southern blot analysis of blood samples using transgene specific probes. PCR is particularly useful in this regard. Positive progeny (P_0) are crossbred to produce offspring (P_1) that are analyzed for

10 transgene expression by northern blot analysis of tissue samples.

In order to distinguish expression of like species transgenes from expression of an endogenous PKD1-related gene, a marker gene fragment can be included in the construct in the 3' untranslated region of the transgene and the northern blot probe

15 designed to probe for the marker gene fragment. The serum levels of a PKD1 polypeptide can also be measured in the transgenic animal to determine the level of PKD1 expression. A method of creating a transgenic organism also can include methods of inserting a transgene into, for example, an embryo of an already created transgenic organism, the organism being transgenic for a different unrelated gene or polypeptide.

20 Transgenic organisms of the invention are highly useful in the production of organisms for study of, for example, polycystic kidney disease or PKD1-related diseases or disorders and in identifying agents or drugs that inhibit or modulate polycystic kidney disease, PKD1 associated disorders and inheritance. Expression of

25 a mutant human PKD1 polynucleotide can be assayed, for example, by standard northern blot analysis, and the production of the mutant human PKD1 polypeptide can be assayed, for example, by detecting its presence using an antibody directed against the mutant human PKD1 polypeptide. Those animals found to express the mutant human PKD1 polypeptide can then be observed for the development of ADPKD-like

30 symptoms.

As discussed above, animal models of ADPKD can be produced by engineering animals containing mutations in a copy of an endogenous PKD1 gene that correspond to mutations within the human PKD1 polynucleotide. Utilizing such a strategy, a PKD1 homologue can be identified and cloned from the animal of interest, using techniques such as those described herein. One or more mutations can be engineered into such a PKD1 homologue that correspond to mutations within the human PKD1 polynucleotide, as discussed above (*e.g.*, resulting in a mutation of the amino acid sequence as set forth in SEQ ID NO:2 and having a mutation of a A88V, a W967R, a L2696R, an R2985G, a W3001X, an R3039C, a V3285I, a H3311R, or any combination thereof; see, also, 5 Table 4). As disclosed herein, a mutant polypeptide produced by such an engineered corresponding PKD1 homologue can exhibit an aberrant PKD1 activity that is substantially similar to that exhibited by a mutant human PKD1 protein. The engineered PKD1 homologue can then be introduced into the genome of the animal of interest, using techniques such as those described, above. Accordingly, any of the ADPKD 10 animal models described herein can be used to test compounds for an ability to ameliorate ADPKD symptoms, including those associated with the expression of a mutant PKD1 polypeptide substantially identical to SEQ ID NO:2 and having the mutation A88V, W967R, L2696R, R2985G, W3001X, R3039C, V3285I, H3311R, or 15 a combination thereof (see Example 2 and Table 4).

20 As discussed above, mutations in the PKD1 polynucleotide that cause ADPKD can produce a form of the PKD1 protein that exhibits an aberrant activity that leads to the formation of ADPKD symptoms. A variety of techniques can be utilized to inhibit the expression, synthesis, or activity of such mutant PKD1 polynucleotides and 25 polypeptides. For example, compounds such as those identified through assays described, above, which exhibit inhibitory activity, can be used in accordance with the invention to ameliorate ADPKD symptoms. Such molecules can include, but are not limited, to small and large organic molecules, peptides, and antibodies. Further, antisense and ribozyme molecules that inhibit expression of a PKD1 polynucleotide, 30 (*e.g.*, a mutant PKD1 polynucleotide), can also be used to inhibit the aberrant PKD1 activity. Such techniques are described, below. In yet another embodiment, triple helix molecules can be utilized in inhibiting aberrant PKD1 activity.

Among the compounds that can exhibit anti-ADPKD activity are antisense, ribozyme, and triple helix molecules. Such molecules can be designed to reduce or inhibit mutant PKD1 activity by modulating the expression or synthesis of PKD1 5 polypeptides. Techniques for the production and use of such molecules are well known to those of skill in the art.

Double stranded interfering RNA molecules are especially useful to inhibit expression of a target gene. For example, double stranded RNA molecules can be 10 injected into a target cell or organism to inhibit expression of a gene and the resultant polypeptide's activity. It has been found that such double stranded RNA molecules are more effective at inhibiting expression than either RNA strand alone (Fire *et al.*, *Nature*, 19:391(6669):806-11, 1998).

15 When a disorder is associated with abnormal expression of a PKD1 polypeptide (e.g., overexpression, or expression of a mutated form of the protein), a therapeutic approach that directly interferes with the translation of a PKD1 polypeptide (e.g., a wild type, variant or mutant PKD1 polypeptide) is possible. Alternatively, similar methodology can be used to study gene activity. For example, antisense nucleic acid, 20 double stranded interfering RNA or ribozymes could be used to bind to a PKD1 mRNA sequence or to cleave it. Antisense RNA or DNA molecules bind specifically with a targeted gene's RNA message, interrupting the expression of that gene's protein product. The antisense binds to the messenger RNA forming a double stranded molecule that cannot be translated by the cell. Antisense oligonucleotides of about 15 to 25 25 nucleotides are preferred since they are easily synthesized and have an inhibitory effect just like antisense RNA molecules. In addition, chemically reactive groups, such as iron-linked ethylenediaminetetraacetic acid (EDTA-Fe) can be attached to an antisense oligonucleotide, causing cleavage of the RNA at the site of hybridization. Antisense nucleic acids are DNA or RNA molecules that are complementary to at least a portion of 30 a specific mRNA molecule (Weintraub, *Scientific American*, 262:40, 1990). In the cell, the antisense nucleic acids hybridize to the corresponding mRNA, forming a double-stranded molecule. The antisense nucleic acids interfere with the translation of the

mRNA, since the cell will not translate a mRNA that is double-stranded. Antisense oligomers of at least about 15 nucleotides also are preferred because they are less likely to cause problems when introduced into the target PKD1 polypeptide producing cell. The use of antisense methods to inhibit the *in vitro* translation of genes is well known in the art (Marcus-Sakura, *Anal. Biochem.*, 172:289, 1988).

Use of an oligonucleotide to stall transcription is known as the triplex strategy since the oligomer winds around double-helical DNA, forming a three-strand helix. Therefore, these triplex compounds can be designed to recognize a unique site on a chosen gene (Maher *et al.*, *Antisense Res. and Devel.*, 1:227, 1991; Helene, *Anticancer Drug Design*, 6:569, 1991).

Ribozymes are RNA molecules possessing the ability to specifically cleave other single-stranded RNA in a manner analogous to DNA restriction endonucleases.

15 Through the modification of nucleotide sequences that encode these RNAs, it is possible to engineer molecules that recognize specific nucleotide sequences in an RNA molecule and cleave it (Cech, *J. Amer. Med. Assn.*, 260:3030, 1988). A major advantage of this approach is that, because they are sequence-specific, only mRNAs with particular sequences are inactivated.

20 There are two basic types of ribozymes namely, tetrahymena-type (Hasselhoff, *Nature*, 334:585, 1988) and "hammerhead"-type. Tetrahymena-type ribozymes recognize sequences that are four bases in length, while "hammerhead"-type ribozymes recognize base sequences 11-18 bases in length. The longer the recognition sequence, 25 the greater the likelihood that the sequence will occur exclusively in the target mRNA species. Consequently, hammerhead-type ribozymes are preferable to tetrahymena-type ribozymes for inactivating a specific mRNA species and 18-base recognition sequences are preferable to shorter recognition sequences. These and other uses of antisense and ribozymes methods to inhibit the *in vivo* translation of genes are known in the art (e.g., 30 De Mesmaeker *et al.*, *Curr. Opin. Struct. Biol.*, 5:343, 1995; Gewirtz *et al.*, *Proc. Natl. Acad. Sci. USA*, 93:3161, 1996b; Stein, *Chem. and Biol.* 3:319, 1996).

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, which include the following sequence: GUA, GUU and GUC. Once identified, short RNA sequences of about 15 to 30 ribonucleotides corresponding to the region of the target gene containing

5 the cleavage site can be evaluated for predicted structural features, such as secondary structure, that can render the oligonucleotide sequence unsuitable. The suitability of candidate targets can also be evaluated by testing their accessibility to hybridization with complementary oligonucleotides, using ribonuclease protection assays.

10 It is possible that the antisense, ribozyme, or triple helix molecules described herein can reduce or inhibit the translation of mRNA produced by mutant PKD1 alleles of the invention. In order to ensure that substantial normal levels of PKD1 activity are maintained in the cell, nucleic acid molecules that encode and express PKD1 polypeptides exhibiting normal PKD1 activity can be introduced into cells that do not

15 contain sequences susceptible to whatever antisense, ribozyme, or triple helix treatments. Such sequences can be introduced via gene therapy methods such as those described, below. Alternatively, it can be preferable to coadminister normal PKD1 protein into the cell or tissue in order to maintain the requisite level of cellular or tissue PKD1 activity.

20 Antisense RNA and DNA molecules, ribozyme molecules and triple helix molecules of the invention can be prepared by any method known in the art for the synthesis of DNA and RNA molecules. These include techniques for chemically synthesizing oligodeoxyribonucleotides and oligoribonucleotides well known in the art such as for example solid phase phosphoramidite chemical synthesis. Alternatively,

25 RNA molecules can be generated by *in vitro* and *in vivo* transcription of DNA sequences encoding the antisense RNA molecule. Such DNA sequences can be incorporated into a wide variety of vectors that incorporate suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters. Alternatively, antisense cDNA constructs that

30 synthesize antisense RNA constitutively or inducibly, depending on the promoter used, can be introduced stably into cell lines.

Various well known modifications to the DNA molecules can be introduced as a means of increasing intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences of ribonucleotide or deoxyribonucleotides to the 5' or 3' end or both of the molecule or the use of 5 phosphorothioate or 2'-O-methyl rather than phosphodiesterase linkages within the oligodeoxyribonucleotide backbone.

As discussed above, mutations in the PKD1 polynucleotide that cause ADPKD can lower the level of expression of the PKD1 polynucleotide or; alternatively, can cause 10 inactive or substantially inactive PKD1 proteins to be produced. In either instance, the result is an overall lower level of normal PKD1 activity in the tissues or cells in which PKD1 is normally expressed. This lower level of PKD1 activity, then, leads to ADPKD symptoms. Thus, such PKD1 mutations represent dominant loss-of-function mutations. For example, a polynucleotide having a sequence as set forth in SEQ ID NO:1 and 15 having a mutation of a G9213A results in early termination of PKD1.

For example, normal PKD1 protein, at a level sufficient to ameliorate ADPKD symptoms can be administered to a patient exhibiting such symptoms or having a mutant PKD1 polynucleotide. Additionally, DNA sequences encoding normal PKD1 protein 20 can be directly administered to a patient exhibiting ADPKD symptoms or administered to prevent or reduce ADPKD symptoms where they have been diagnosed as having a PKD1 mutation identified herein but have not yet demonstrated symptoms. Such administration can be at a concentration sufficient to produce a level of PKD1 protein such that ADPKD symptoms are ameliorated.

25

Further, subjects with these types of mutations can be treated by gene replacement therapy. A copy of the normal PKD1 polynucleotide can be inserted into cells, renal cells, for example, using viral or non-viral vectors that include, but are not limited to vectors derived from, for example, retroviruses, vaccinia virus, adeno- 30 associated virus, herpes viruses, bovine papilloma virus or non-viral vectors, such as plasmids. In addition, techniques frequently employed by those skilled in the art for introducing DNA into mammalian cells can be utilized. For example, methods including

but not limited to electroporation, DEAE-dextran mediated DNA transfer, DNA guns, liposomes, direct injection, and the like can be utilized to transfer recombinant vectors into host cells. Alternatively, the DNA can be transferred into cells through conjugation to proteins that are normally targeted to the inside of a cell. For example, the DNA can 5 be conjugated to viral proteins that normally target viral particles into the targeted host cell.

Administering the whole gene or polypeptide is not necessary to avoid the appearance of ADPKD symptoms. The use of a "minigene" therapy approach also can 10 serve to ameliorate such ADPKD symptoms (see Ragot *et al.*, *Nature* 3:647, 1993; Dunckley *et al.*, *Hum. Mol. Genet.* 2:717-723, 1993). A minigene system uses a portion of the PKD1 coding region that encodes a partial, yet active or substantially active PKD1 polypeptide. As used herein, "substantially active" means that the polypeptide serves to 15 ameliorate ADPKD symptoms. Thus, the minigene system utilizes only that portion of the normal PKD1 polynucleotide that encodes a portion of the PKD1 polypeptide capable of ameliorating ADPKD symptoms, and can, therefore represent an effective and even more efficient ADPKD therapy than full-length gene therapy approaches. Such a minigene can be inserted into cells and utilized via the procedures described, 20 above, for full-length gene replacement. The cells into which the PKD1 minigene are to be introduced are, preferably, those cells, such as renal cells, which are affected by ADPKD. Alternatively, any suitable cell can be transfected with a PKD1 minigene so long as the minigene is expressed in a sustained, stable fashion and produces a polypeptide that ameliorates ADPKD symptoms.

25 A therapeutic minigene for the amelioration of ADPKD symptoms can comprise a nucleotide sequence that encodes at least one PKD1 polypeptide peptide domain, particularly a domain having an amino acid sequence substantially identical to a peptide portion SEQ ID NO:2 and having a mutation as shown in Table 4, for example, an A88V, W967R, L2696R, R2985G, W3001X, R3039C, V3285I, or 30 H3311R mutation. Minigenes that encode such PKD1 polypeptides can be synthesized and/or engineered using the PKD1 polynucleotide sequence (SEQ ID NO:1).

The materials for use in the assay of the invention are ideally suited for the preparation of a kit. Such a kit can comprise a carrier means containing one or more container means such as vials, tubes, and the like, each of the container means comprising one of the separate elements to be used in the method. One of the 5 container means can comprise a probe that is or can be detectably labeled. Such probe can be an oligonucleotide comprising at least 10 contiguous nucleotides and having a sequence of a fragment of SEQ ID NO:1 including: nucleotide 474, wherein nucleotide 474 is a T; nucleotide 487, wherein nucleotide 487 is an A; nucleotide 3110, wherein nucleotide 3110 is a C; nucleotide 8298, wherein nucleotide 8298 is a G; 10 nucleotide 9164, wherein nucleotide 9164 is a G; nucleotide 9213, wherein nucleotide 9213 is an A; nucleotide 9326, wherein nucleotide 9326 is a T; nucleotide 9367, wherein nucleotide 9367 is a T; nucleotide 10064, wherein nucleotide 10064 is an A; nucleotide 10143, wherein nucleotide 10143 is a G; nucleotide 10234, wherein nucleotide 10234 is a C; or nucleotide 10255, wherein 15 nucleotide 10255 is a T (see, also, Example 2).

A kit containing one or more oligonucleotide probes of the invention can be useful, for example, for qualitatively identifying the presence of mutant PKD1 polynucleotide sequences in a sample, as well as for quantifying the degree of binding 20 of the probe for determining the occurrence of specific strongly binding (hybridizing) sequences, thus indicating the likelihood for a subject having or predisposed to a disorder associated with PKD1. Where the kit utilizes nucleic acid hybridization to detect the target nucleic acid, the kit can also have containers containing reagents for amplification of the target nucleic acid sequence. When it is desirable to amplify the 25 mutant target sequence, this can be accomplished using oligonucleotide primers, which are based upon identification of the flanking regions contiguous with the target nucleotide sequence. For example, primers such as those listed below in Tables 1 and 2 can be included in the kits of the invention. The kit can also contain a container comprising a reporter means such as an enzymatic, fluorescent, or radionuclide label, 30 which can be bound to or incorporated into the oligonucleotide and can facilitate identification of the oligonucleotide.

The following examples are intended to illustrate but not limit the invention.

EXAMPLES

The present invention is based upon the use of widely spaced PKD1-specific
5 anchor primers in long range PCR to generate 5 kb to 10 kb PKD1 polynucleotide
segments. After appropriate dilution, the PCR products can be used as a template for
mutation screening using any one of a variety of methods. Accordingly, a number of
mutants have been identified in families with PKD1-associated disorders.

10 Using a number of PKD1-specific primers, eight templates ranging in size
from about 0.3 to 5.8 kb were generated that span from the 5' untranslated region to
intron 34 and cover all exons in the replicated region including exon 1 and exon 22
(Example 1). These reagents were used to evaluate 47 Asian PKD1 families
(Example 2). Variant nucleotide sequences were found throughout the PKD1
15 polynucleotide sequence.

Forty-one Thai and 6 Korean ADPKD families were studied. Samples from
50 healthy Thai blood donors collected in blood banks served as normal controls.
Genomic DNA was extracted from either fresh or frozen whole blood that had been
20 stored for up to five years using commercially available kits (Puregene, Gentra) or
standard phenol-chloroform methods. For the N23HA and 145.19 cell lines (Cell
77:881-894, 1994; Germino *et al.*, Am J. Hum. Genet. 46:925-933, 1990; Ceccherini
et al., Proc. Natl. Acad. Sci. USA 89:104-108, 1992, each of which is incorporated
herein by reference; see, also, Watnick *et al.*, *supra*, 1997), genomic DNA was
25 isolated using the Puregene DNA isolation kit.

EXAMPLE 1

LONG RANGE SPECIFIC TEMPLATES

A two-part strategy was used to generate and validate PKD1-specific primers
30 that could be used to amplify the replicated portion of PKD1. The sequence of PKD1
(SEQ ID NO:1) was aligned with that of two homologues present in GenBank
(Accession Number AC002039) and identified potential sequence differences.

Candidate primers were designed such that the mismatches were positioned at or adjacent to the 3' end of the oligonucleotide so as to maximize their specificity for PKD1.

5 The primers were tested for specificity using rodent-human somatic cell hybrids that either contained only human 16p13.3 and therefore, human PKD1 (145.19, a radiation hybrid), or that lacked 16p13.3 and contained only the human PKD1-homologues (N23HA). Figure 2 presents a representative example of this approach using the primer pair, BPF6 and the PKD1-specific primer BPR6. This
10 primer pair amplified a product of the correct length (4.5 kb) under the stated conditions only when total human genomic DNA or 145.19 DNA is used as template. Similar results were obtained when BPR6 was used in combination with the non-specific primer 28F to generate a much shorter product.

15 As a final control, the absence of amplified product was verified using N23HA as template to confirm that the results obtained using total human genomic DNA and 145.19 DNA were due to the specificity of the primer and not the result of other causes (*i.e.*, difference in quality of DNA or ratio of human/rodent template). A primer specific for the homologues (BPR6HG) was designed that was positioned the
20 same distance from BPF6 as BPR6 and used to amplify a specific band of the same size as the corresponding PKD1-long range product. As predicted, a product of the correct size was amplified from both N23HA and total genomic DNA, but not from 145.19.

25 A total of eight primer pairs can be used to generate a series of templates that range in size from about 0.3kb to 5.8kb and include all exons and their flanking intron sequences in the replicated portion of PKD1 (exons 1 to 34). Table 1 summarizes the details for each product and includes the sequence of each primer, its respective position within the gene, its expected size, and the optimal annealing temperature and
30 extension time for its amplification. Figure 1 illustrates the relative position of each product with respect to the overall gene structure. It should be noted that exon 1 and its flanking sequences were particularly problematic to evaluate. Primer design was

Table 1
Oligonucleotide primers for Long-range specific templates
from exon 1-34 of PKD1 gene

Template	Primers	Sequence 5'→3'	Position (5')	Size (kb)	Tm (°C)	ET (Min)	SEQ ID NO:
T1	BPF14*	CCATCCACCTGCTGTGTGAC CTGGTAAAT	2043	2.2	69	7	3
	BPR9	CCACCTCATCGCCCCCTTCCT AAGCAT	4290				4
T2-7	BPF9*	ATTTTTGAGATGGAGCTTC ACTCTTGCAGG	17907	4.6	68	7	5
	BPR4	CGCTCGGCAGGCCCTAACCC	22489				6
T8-12	BPF12	CCGCCCCCAGGAGGCCTAGAC G	22218	4.2	68	7	7
	BPR5*	CATCCTGTTCATCCGCTCCA CGGTTAC	26363				8
T13-15	F13	TGGAGGGAGGGACGCCAAT C	26246	4.4	68	7	9
	R27*	GTCAACGTGGGCCTCCAAGT	30612				10
T15-21	F26*	AGCGCAACTACTTGGAGGCC C	30603	3.4	70	4.5	11
	R2	GCAGGGTGAGCAGGTGGGG CCATCCTAC	33953				12
T22	BPF15	GAGGCTGTGGGGTCCAGTC AAAGTGG	36815	0.3	72	1	13
	BPR12*	AGGGAGGCAGAGGAAAGGG CCGAAC	37136				14
T23-28	BPF6	CCCCGTCCCTCCCCGTCTTTT GTC	37325	4.2	69	7	15
	BPR6*	AAGCGCAAAAGGGCTGCGT CG	41524				16
T29-34	BPF13*	GGCCCTCCCTGCCTTCTAGG CG	41504	5.8	68	8	17
	KG8R25*	GTTGCAGCCAAGGCCATGTT A	47316				18

5 Tm - annealing temperature; ET – extension time; * - PKD1-specific primer.

Bold type in BPR12 primer sequence identifies intentional replacement of C by A to enhance discrimination of PKD1 from homologs.

10 greatly limited by the high degree of homology and extreme GC bias in the region. A combination of widely space primers (to generate a fragment considerably larger than the segment of interest) and the GC melt system were used to circumvent these obstacles.

Specific details concerning the primer sequences, annealing temperatures and extension times used for each long-range (LR) template are provided in Table 1 (all sequences in Tables 1 and 2 are shown in 5' to 3' orientation from left to right). Three hundred to 400 ng of genomic DNA was used as template for each LR product, except 5 for exon 1 (see below). The long range PCR amplification was performed as follows in a Perkin Elmer 9600 thermal cycler: denaturation at 95°C for 3 min followed by 35 cycles of a two-step protocol that included denaturation at 95°C for 20 sec followed by annealing and extension at a temperature and for a time specific for each primer pair (Table 1). A final extension at 72°C for 10 min was included in each 10 program. The total PCR volume was 50 µl using 4 U of *rTth* DNA polymerase XL (Cetus, Perkin Elmer) and a final MgOAC₂ concentration of 0.9 mM. A hot start protocol as recommended by the manufacturer was used for the first cycle of amplification. For the exon 1 LR product (T1), the LR was generated using 500 ng of genomic DNA. The long range PCR amplification was modified as follows: 15 denaturation 95 C for 1 min followed by 35 two-step cycles of denaturation at 95°C for 30 sec followed by annealing and extension at 69°C for 7 min. The total PCR volume was 50 µl using 1 µl of Advantage-GC genomic polymerase (Clontech), GC melt of 1.5 M and final MgOAC₂ concentration of 1.1 mM.

20 The long-range templates were serially diluted (1:10⁴ or 1:10⁵) to remove genomic contamination, then used as templates for nested PCR of 200-400 bp exonic fragments. A total of 17 new primer pairs were developed for exons 1-12 and exon 22. The sequences and PCR conditions for each new pair are summarized in Table 2. Primer sequences and PCR conditions for exons 13-21 and 23-34 are 25 described in Watnick *et al.*, Am. J. Hum. Genet. 65:1561-1571, 1999; and Watnick *et al.*, Hum. Mol. Genet. 6:1473-1481, 1997, which are incorporated herein by reference. Intron based primers were positioned approximately 30-50 bp away from consensus splice sites. Exons larger than approximately 400 bp were split into overlapping fragments of less than or equal to 350 bp. Two µl of diluted long range 30 (LR) product was used as template for amplification of each exon. Single strand conformation analysis was performed using standard protocols. SSCA analysis was performed by use of 8% polyacrylamide gels with 5% glycerol added. The

Table 2
Nested Primers Used for Mutation Detection

Exons	Primer	Primer Sequence 5' 3'	Fragment size (bp)	T _m (°C)	SEQ ID NO:
T1	1F1	GGTCGCGCTGTGGCGAAGG	328	67	19
T1	1R1	CGGCAGGGCGGCATCGT			20
T1	1F2	ACGGCGGGGCCATCGG	348	67	21
T1	1R2	GCGTCCTGGCCCAGCTCC			22
T2-7	2F	TTGGGGATGCTGGCAATGTG	272	62	23
T2-7	2R	GGGATTCTGGCAAAGCTGATG			24
T2-7	3F	CCATCAGCTTGCCGAATCC	171	62	25
T2-7	3R	AGGGCAGAAGGGATATTGGG			26
T2-7	4F	AGACCCCTCCCACCAAGACCT	299	62	27
T2-7	4R	TGAGCCCTGCCAGTGTCT			28
T2-7	5F1	GAGCCAGGAGGAGCAGAACCC	259	65	29
T2-7	5R1	AGAGGGACAGGCAGGCAAAAGG			30
T2-7	5F2	CCCAGCCCTCCAGTGCCT	284	65	31
T2-7	5R2	CCCAGGCAGCACATAGCGAT			32
T2-7	5F3	CCGAGGTGGATGCCGCTG	294	65	33
T2-7	5R3	GAAGGGGAGTGGGCAGCAGAAC			34
T2-7	6F	CACTGACCGTTGACACCCCTCG	281	65	35
T2-7	6R	TGCCCCAGTGCTTCAGAGATC			36
T2-7	7F	GGAGTGCCCTGAGCCCCCT	311	65	37
T2-7	7R	CCCCTAACACAGCCAGCG			38
T8-12	8F	TCTGTTCGTCCTGGTGTCTG	215	65	39
T8-12	8R	GCAGGAGGGCAGGTTGAGAA			40
T8-12	9F	GGTAGGGGAGTCTGGCCTT	253	65	41
T8-12	9R	GAGGCCACCCCGAGTCC			42
T8-12	10F	GTTGGGCATCTCTGACGGTG	364	65	43
T8-12	10R	GGAAGGTGGCCTGAGGAGAT			44
T8-12	11F2	GGGGTCCACGGGCCATG	311	67	45
T8-12	11R2	AAGCCCAGCAGCACGGTGAG			46
T8-12	11midF	GCTTGAGCCACGGAAC	386	65	47
T8-12	11midR	GCAGTGCTACCACTGAGAAC			48
T8-12	11F1	TGCCCTGGGAGACCAACGATAC	303	67	49
T8-12	11R1	GGCTGCTGCCCTCACTGGAGA			50

TABLE 2 (cont.)

Exons	Primer	Sequence 5' 3'	Fragment size (bp)	T _m (°C)	SEQ ID NO:
12	12F	GAGGCGACAGGGCTAAGGG	286	64	51
	12R-2	CATGAAGCAGAGCAGAAGG			61
13	13F:	TGGAGGGAGGGACGCCAATC	308	67	62
	13R:	GAGGCTGGGCTGGGACAA			63
14	14F:	CCCGGTTCACTCACTGCG	220	64	64
	14R:	CCGTGCTCAGAGCCTGAAAG			65
15	15F16:	CGGGTGGGGAGCAGGTGG	280	67	66
	15R16:	GCTCTGGGTCAAGGACAGGGG			67
	A				
15	15F15:	CGCCTGGGGTGTCTTT	270	64	68
	15R15:	ACGTGATGTTGTCGCCCG			69
15	15F14:	GCCCCCGTGGTGGTCAGC	250	67	70
	15R14:	CAGGCTGCGTGGGGATGC			71
15	15F13:	CTGGAGGTGCTGCGCGTT	256	67	72
	15R13:	CTGGCTCCACGCAGATGC			73
15	15F12:	CGTAAACAGGGCGCATTAA	270	65	74
	15R12:	GCAGCAGAGATGTTGTTGGA			75
	C				
15	15F11:	CCAGGCTCCTATCTTGTGACA	259	60	76
	15R11:	TGAAGTCACCTGTGCTGTTGT			77
15	15F10:	CTACCTGTGGGATCTGGGG	217	67	78
	15R10:	TGCTGAAGCTCACGCTCC			79
15	15F9:	GGGCTCGTCGTCAATGCAAG	267	67	80
	15R9:	CACCAACCTGCAGCCCCCTCA			81
15	15F8:	5CCGCCAGGACAGCATCTTC	261	64	82
	15R8:	CGCTGCCAGCATGTTGG			83
15	15F7:	CGGCAAAGGCTTCTCGCTC	288	64	84
	15R7:	CCGGGTGTGGGGAAAGCTATG			85
15	15F6:	CGAGCCATTACCAACCCATA	231	65	86
	G				
	15R6:	GCCCAGCACCAAGCTCACAT			87
15	15F5:	CCACGGGCACCAATGTGAG	251	64	88
	15R5:	GGCAGCCAGCAGGATCTGAA			89
15	15F4:	CAGCAGCAAGGTGGTGGC	333	67	90
	15R4:	GCGTAGGCGACCCGAGAG			91
15	15F3:	ACGGGCACTGAGAGGAACCT	206	64	92
	C				
	15R3:	ACCAGCGTGGGTTCTCACT			93
15	15F2:	GCCGCGACGTCACCTACAC	265	67	94
	15R2:	TCGGCCCTGGGCTCATCT			95
15	15F1:	GTCGCCAGGGCAGGACACAG	228	68	96
	R27':	AGGTCAACGTGGGCTCCAA			113
15	15F1-1:	ACTTGGAGGCCACGTTGAC	276	69	97
	C				
	15R1-1:	TGATGGGCACCAAGGGCGCTC			98
15	15F1-2:	CATCCAGGCCAATGTGACGG	266	64	99
	T				
	15R1-2:	CCTGGTGGCAAGCTGGGTGT			100
	T				
16	16F:	TAAAACGTGGATGGGGCTCTC	294	56	101
	16R:	GGCCTCCACCAAGCACTAA			102

TABLE 2 (cont.)

Exons	Primers	Primer Sequence 5'-3'	Fragment size (bp)	T _m (°C)	SEQ ID NO:
17	17F:	GGGTCCCCAGTCCTCCAG	244	67	103
	17R:	TCCCCAGCCGCCACA			104
18	18F:	GCCCCCTCACCAACCCCTCT	342	67	105
	18R:	TCCCGCTGCTCCCCCAC			106
19	19F:	GATGCCGTGGGGACCGTC	285	67	107
	19R:	GTGAGCAGGTGGCAGTCTCG			108
20	20F:	CCACCCCCCTCTGCTCGTAGGT	232	64	109
	20R:	GGTCCAAGCACGCATGCA			110
21	21F:	TGCCGGCCTCTGCGCTGCTGA	232	67	111
	TWR2-1:	GTAGGATGGCCCCACCTGCTCACCTGC			112

5 radiolabeled PCR products were diluted with loading buffer, were denatured by heating at 95°C for 5 min, then were placed on ice prior to being loaded and run on the gel at room temperature. Gels were run at 400 V overnight, dried, and placed on X-Omat XAR film (Kodak) at room temperature. Aberrantly migrating bands detected by SSCA were cut from the gel and eluted into 100 µl of sterile water

10 overnight. The eluted products were re-amplified using the same set of primers, purified using Centricon-100 columns (Amicon) and then sequences.

15 Variants that were predicted to alter a restriction site were confirmed by restriction enzyme digestion analysis of re-amplified products. In cases where the change did not alter a restriction site, primers were designed with mismatches that create a new restriction site when combined with the point mutation in question. The following primer combinations were utilized:

ASP1+26R (ASP1; 5'-CTGGTGACCTACATGGTCATGGCC GAGATC-3';
SEQ ID NO:55);

20 ASP2+30R (ASP2; 5'-GGTTGTCTATCCCGTCTACCTGGCCCTCCT-3';
SEQ ID NO:56);

ASP3 + 30F (ASP3; 5'-GTCCCCAGCCCCAGGCCACCTGGCC-3'; SEQ ID NO:57).

When possible, segregation of the variant with the disease phenotype was tested. In cases where a missense change was unable to be determined on the normal haplotype (and thus be a normal variant) the mutation was tested for in a panel of 50 normal controls.

5

EXAMPLE 2
MUTATION SCREENING

10 The new PKD1-specific products were generated from one affected member of each of the 47 Asian families and then used as template for mutation detection of exons 1-12 and 22-34. Table 2 lists the sequence and PCR condition for primer pairs that were used for nested amplification of individual exons and their adjacent intronic sequence. Overlapping pairs were designed for segments >400 base pairs in length.

15 A total of 13 novel variants were detected by SSCA using the conditions described above. Two are highly likely to be pathogenic mutations, four are predicted to encode missense substitutions not found in normals and seven are normal variants (see Table 3).

20 The first pathogenic mutation is a G to A transition at position 9213 in exon 25 that is predicted to result in a nonsense codon (W3001X). Its presence was confirmed by restriction analysis using the enzyme *Mae I* and it was found to segregate with disease. This variant is predicted to truncate the protein near the carboxyl end of the Receptor for Egg Jelly (REJ) domain. The W3001X mutation results in a greatly truncated product missing all of the membrane spanning elements, 25 intervening loops and carboxy terminus. The second mutation (T3110C) is predicted to result in a non-conservative amino acid substitution (W967R) at a critical position of one of the PKD repeats. The mutation is unique to the family in which it was found and was not observed in a screen of over 100 normal Thai chromosomes. The W967R missense mutation is predicted to disrupt the secondary structure of PKD 30 domain 3. The WDFGDGS (SEQ ID NO:58) motif within the CC' loop region is the most conserved sequence of the PKD domains. The tryptophan is replaced is the first

104

residue of the turn at the end of the C strand and is conserved in 14 out of 16 PKD domains. Moreover, it is evolutionarily conserved in mouse and *Fugu* polycystin-1.

Table 3

5 Mutations Identified in the PKD1 Gene in a Thai population

Patient	Exon	Nucleic Acid Change	Codon Change	Consequence	Confirmation Enzyme
Pathogenic					
<i>RAMA28-01</i> ⁰	12	T3110C	W967R	Missense (disrupt PKD domain3)	<i>Bsa</i> W 1 (cut NC)
<i>RAMA59-02*</i>	25	G9213A	W3001X	Nonsense (early termination)	<i>Mae</i> I
Variants not found in 100 chromosomes					
<i>RAMA3-02*</i>	22	T8298G	L2696R	Missense	<i>Hin</i> P1 I
<i>RAMA87-01*</i>	25	A9164G	R2985G	Missense	<i>Bsr</i> B 1
<i>RAMA87-01*</i>	25	C9326T	R3039C	Missense	<i>Fau</i> I (cut NC)
<i>RAMA45-03*</i>	29	G10064A	V3285I	Missense	<i>Bsm</i> I
Probable normal variants					
<i>RAMA7-06</i>	2	C474T	A88V	Missense	<i>Hph</i> I
<i>RAMA107-01</i>	2	G487A	A92A	Silent change	<i>Tsp</i> R I
<i>RAMA94-01</i>	25	C9367T	G3052G	Silent change	<i>Sfo</i> I (cut NC)
<i>RAMA66-01</i>	30	A10143G ^{HG}	H3311R	Missense	<i>Nsp</i> I (cut NC)
<i>RAMA66-01</i>	30	T10234C ^{HG}	L3341L	Silent change	<i>ASP</i> 1 + <i>Bse</i> R I
<i>RAMA51-01</i>	30	G10255T	R3348R	Silent change	<i>ASP</i> 2 + <i>MSC</i> I

* - Segregation with disease; 0 - cannot test for segregation; NC - Normal control;

HG - Present in one copy of the homologues; ASP - Allele-specific primer.

10

These pathogenic mutations add to previously identified pathogenic mutations, including a deletion of G3336 (Δ G3336) in exon 13, resulting in a frame shift after amino acid 1041 (FS1041); C4168T (Q1653)X, C6089T (Q1960X) and C6326T (Q2039X) mutations in exon 15, each resulting in a nonsense termination;

15 Δ G7205-G7211 in exon 16, resulting in a FS2331; a C7415T (R2402X) mutation in exon 18, resulting in a nonsense termination; a C7883T (Q2558X) mutation in exon 19, resulting in a nonsense termination; and a Δ C8159-T8160 mutation in

105

exon 21, resulting in a FS2649 (Phakdeekitcharoen et al., *supra*, 2000). In addition, probable pathogenic mutations including G3707A (G1166S) and T6078A (V1956E) missense mutations in exon 15, and a C7433T (R2408C) missense mutation and an insertion of a GCG trinucleotide between G7535 and G7536 (extra Gly2422) in 5 exon 18 have been identified (Phakdeekitcharoen et al., *supra*, 2000).

Four additional mutations unique to one of the families also were identified (see Table 3). The mutants segregate with disease, and were not observed in a screen of over 100 normal Thai chromosomes. Three of the four variants are predicted to 10 result in non-conservative amino acid substitutions. Two of them (A9164G, C9326T) are present in the same allele of a single family (*RAMA87*). As such, these mutations meet several criteria expected of disease-producing mutations, including they are not found in normal, ethnically matched chromosomes, they segregate with the disease, and they result in non-conservative substitutions.

15

In one case a heteroduplex pattern was discovered for the exon 22 product of the proband by standard agarose electrophoresis. The heteroduplex pattern was confirmed to segregate with disease and subsequently determined that the novel variant was the result of a T to G transversion at position 8298. This mutation is 20 predicted to substitute arginine for leucine at position 2696 of the protein sequence. This non-conservative substitution is within the REJ domain. Interestingly, the R3039C substitution occurs near a newly described putative proteolytic cleavage site of polycystin-1, His(3047)-Leu-Thr-Ala(3050) (SEQ ID NO:59). In the corresponding position of *Fugu* and murine polycystin-1, glutamic acid and arginine, 25 respectively, are present, suggesting a non-critical role for a non-polar residue at this location.

Seven nucleotide substitutions that are likely normal variants were also 30 identified. Two are missense variants that do not segregate with disease in the family in which they were discovered. The C474T substitution results in the conservative replacement of valine by alanine at position 88 in the first leucine rich (LRR) repeat. The amino acid is not conserved between species and is not predicted to disrupt the

LRR structure. The second missense variant, A10143G, substitutes arginine for histidine at position 3311 within the first extracellular loop between TM2 and TM3. It too, is a conservative change involving a residue whose identity is not evolutionarily conserved at this position. The other five variants were silent

5 nucleotide substitutions that were unique to the pedigree in which they were found and not found in more than 100 normal chromosomes. It is possible that these variants can be pathogenic by affecting gene splicing in the region. Two of the normal variants of exon 30, A10143G (H3311R) and T10234C (L3341L), were clustered together in a single PKD1 haplotype. Interestingly, both variants also are

10 present in at least one of the homologues, suggesting a previous gene conversion event as the original of these PKD1 variants. Additional PKD1 variants, which do not appear to be associated with a PKD1-associated disorder, include two silent mutations, G4885A (T1558T) and C6058T (S1949S), and a missense mutation, G6195A (R1995H), in exon 15; a silent T7376C (L2389L) mutation in exon 17; a

15 silent C7696T (C2495C) mutation in exon 18; and a missense G8021A (D2604N) mutation in exon 20 (Phakdeekitcharoen et al., *supra*, 2000).

Table 4 summarizes the clinical findings for the probands of 17 Thai families. The genotypes and phenotypes for patients with ADPKD are shown. It has been

20 estimated on the basis of studies of Caucasian populations that approximately 15% of mutations are localized to the nonreplicated portion of the PKD1 gene. If the same frequency is true for the Thai population (the patients were not screened for mutations in the nonreiterated portion), then the present studies have identified approximately 45% to 54 percent of all mutations present in the nonreplicated region. This detection

25 rate likely can be increased by using more sensitive detection methods such as DHPLC (Kristensen et al., *supra*, 2001), HTCSGD (Leung et al., *supra*, 2001), or the like.

Table 4
Genotypes and phenotypes in Thai ADPKD1

Patients	Age	Genotype	Phenotype							Ref.	
			Exon	Codon	Change	Consequence	HT	Renal insuff. (Cr>2)	Renal stone	Palpable kidneys	
<i>RAMA28-0</i>	30	12		W967R		Missense	+	-	-	-	(*)
<i>RAMA103-</i>	57	13		FS after 1041		Frameshift	+	+	-	+	(*)
<i>RAMA449-0</i>	26	15		G1166S		Missense	+	-	-	-	(*)
<i>RAMA36-0</i>	47	15		Q1653X		Nonsense	+	-	-	-	(*)
<i>RAMA108-</i>	57	15		V1956E		Missense	+	-	-	-	(*)
<i>RAMA77-0</i>	53	15		Q1960X		Nonsense	+	+	+	+	(*)
<i>RAMA32-0</i>	36	15		Q2039X		Nonsense	+	+	-	-	(*)
<i>RAMA97-0</i>	45	17		R2402X		Nonsense	+	-	-	-	(*)
<i>RAMA96-0</i>	30	18		R2408C		Missense	-	+	-	+	(*)
<i>RAMA99-0</i>	56	18		R2430X		Nonsense	+	+	-	-	(*)
<i>RAMA66-0</i>	39	18		2442 add'l. Gly		Extra Glycine	+	+	-	-	(*)
<i>RAMA55-0</i>	52	19		Q2558X		Nonsense	-	-	-	+	(*)
<i>RAMA5-01</i>	53	21		FS after 2649		Frameshift	+	+	+	+	(*)
<i>RAMA3-02</i>	40	22		L2696R		Missense	+	+	+	+	(*)
<i>RAMA87-0</i>	61	25		R2985G		Missense	-	-	-	-	(*)
<i>RAMA59-0</i>	35	25		W3001X		Nonsense	+	+	-	-	(*)
<i>RAMA45-0</i>	59	29		V3285I		Missense	+	+	-	-	(*)

HT - hypertension; Renal insuff. - renal insufficiency; Heart Valv. Abnorm. - heart valvular abnormalities; Brain Aneur. - brain aneurysms; * - Phakdeekitcharoen et al., *supra*, 2000.

Although the invention has been described with reference to the above examples, it will be understood that modifications and variations are encompassed within the spirit and scope of the invention. Accordingly, the invention is limited only by the following claims.

What is claimed is:

1. A primer, comprising a 5' region and adjacent 3' region,
said 5' region comprising a nucleotide sequence that selectively hybridizes to a
PKD1 gene sequence and, optionally, to a PKD1 gene homolog sequence, and
5 said 3' region comprising a nucleotide sequence that selectively hybridizes to a
PKD1 gene sequence, and not to a PKD1 gene homolog sequence,
provided the primer does not consist of a sequence as set forth in SEQ ID
NO:11, SEQ ID NO:18, SEQ ID NO:52, or SEQ ID NO:60.

- 10 2. The primer of claim 1, wherein said 5' region comprises at least about ten
contiguous nucleotides,
wherein the 3' region comprises at least one 3' terminal nucleotide identical to
a nucleotide that is 5' and adjacent to the nucleotide sequence of the PKD1 gene to
which the 5' region of the primer can hybridize, and
15 wherein said 3' terminal nucleotide is different from a nucleotide that is 5' and
adjacent to a nucleotide sequence of the PKD1 homolog to which the 5' region of the
primer can hybridize.

- 20 3. The primer of claim 2, wherein the 3' region comprises about 2 to 4
3' terminal nucleotides.

4. The primer of claim 2, comprising a 5' region of about 14 to 18 nucleotides
and a 3' region of about 2 to 6 nucleotides.

- 25 5. The primer of claim 1, which can selectively hybridize to a nucleotide
sequence flanking and within about fifty nucleotides of a sequence of SEQ ID NO:1
selected from about nucleotides 2043 to 4209; nucleotides 17907 to 22489;
nucleotides 22218 to 26363; nucleotides 26246 to 30615; nucleotides 30606 to 33957;
nucleotides 36819 to 37140; nucleotides 37329 to 41258; and nucleotides 41508
30 to 47320, or to a nucleotide sequence complementary to said sequence of SEQ ID
NO:1.

6. The primer of claim 5, comprising a nucleotide sequence substantially identical to any of SEQ ID NOS:3 to 51 and 61 to 113.
7. A primer pair, which can amplify a portion of SEQ ID NO:1 comprising about nucleotides 2043 to 4209; nucleotides 17907 to 22489; nucleotides 22218 to 26363; nucleotides 26246 to 30615; nucleotides 30606 to 33957; nucleotides 36819 to 37140; nucleotides 37329 to 41258; nucleotides 41508 to 47320; or a combination thereof.
8. The primer pair of claim 7, comprising a forward primer and a reverse primer, each of which is selected from SEQ ID NOS:3 to 18.
9. The primer pair of claim 7, wherein the primer pair comprises SEQ ID NOS:3 and 4; SEQ ID NOS:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9 and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; or SEQ ID NOS:17 and 18.
10. The primer pair of claim 7, comprising a forward primer and a reverse primer, each of which is selected from SEQ ID NOS:19 to 51 and 61 to 113.
11. The primer pair of claim 10, wherein the primer pair comprises SEQ ID NOS:19 and 20; SEQ ID NOS:21 and 22; SEQ ID NOS:23 and 24; SEQ ID NOS:25 and 26; SEQ ID NOS:27 and 28; SEQ ID NOS:29 and 30; SEQ ID NOS:31 and 32; SEQ ID NOS:33 and 34; SEQ ID NOS:35 and 36; SEQ ID NOS:37 and 38; SEQ ID NOS:39 and 40; SEQ ID NOS:41 and 42; SEQ ID NOS:43 and 44; SEQ ID NOS:45 and 46; SEQ ID NOS:47 and 48; SEQ ID NOS:49 and 50; SEQ ID NOS: 51 and 61; SEQ ID NOS:62 and 63; SEQ ID NOS:64 and 65; SEQ ID NOS:66 and 67; SEQ ID NOS:68 and 69; SEQ ID NOS:70 and 71; SEQ ID NOS:72 and 73; SEQ ID NOS:74 and 75; SEQ ID NOS:76 and 77; SEQ ID NOS:78 and 79; SEQ ID NOS:80 and 81; SEQ ID NOS:82 and 83; SEQ ID NOS:84 and 85; SEQ ID NOS:86 and 87; SEQ ID NOS:88 and 89; SEQ ID NOS:90 and 91; SEQ ID NOS:92 and 93; SEQ ID NOS:94 and 95; SEQ ID NOS:96 and 113; SEQ ID NOS:97 and 98; SEQ ID NOS:99 and 100; SEQ ID NOS:101 and 102;

SEQ ID NOS:103 and 104; SEQ ID NOS: 105 and 106; SEQ ID NOS:107 and 108; SEQ ID NOS:109 and 110; or SEQ ID NOS:111 and 112.

12. A plurality of primer pairs comprising at least two primers pairs, wherein the
5 primer pairs in the plurality can amplify a portion of SEQ ID NO:1 comprising about
nucleotides 2043 to 4209; nucleotides 17907 to 22489; nucleotides 22218 to 26363;
nucleotides 26246 to 30615; nucleotides 30606 to 33957; nucleotides 36819 to 37140;
nucleotides 37329 to 41258; nucleotides 41508 to 47320; or a combination thereof.

10 13. The plurality of primer pairs of claim 12, wherein at least one primer pair is
selected from SEQ ID NOS:3 and 4; SEQ ID NOS:5 and 6; SEQ ID NOS:7 and 8; SEQ
ID NOS:9 and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15
and 16; and SEQ ID NOS:17 and 18.

15 14. The plurality of primer pairs of claim 12, wherein the primer pairs comprise
SEQ ID NOS:3 and 4; SEQ ID NOS:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9
and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; and
SEQ ID NOS:17 and 18.

20 15. The plurality of primer pair of claim 12, wherein at least one primer pair is
selected from SEQ ID NOS:19 and 20; SEQ ID NOS:21 and 22; SEQ ID NOS:23
and 24; SEQ ID NOS:25 and 26; SEQ ID NOS:27 and 28; SEQ ID NOS:29 and 30;
SEQ ID NOS:31 and 32; SEQ ID NOS:33 and 34; SEQ ID NOS:35 and 36; SEQ ID
NOS:37 and 38; SEQ ID NOS:39 and 40; SEQ ID NOS:41 and 42; SEQ ID NOS:43
and 44; SEQ ID NOS:45 and 46; SEQ ID NOS:47 and 48; SEQ ID NOS:49 and 50;
SEQ ID NOS: 51 and 61; SEQ ID NOS:62 and 63; SEQ ID NOS:64 and 65; SEQ ID
NOS:66 and 67; SEQ ID NOS:68 and 69; SEQ ID NOS:70 and 71; SEQ ID NOS:72
and 73; SEQ ID NOS:74 and 75; SEQ ID NOS:76 and 77; SEQ ID NOS:78 and 79;
SEQ ID NOS:80 and 81; SEQ ID NOS:82 and 83; SEQ ID NOS:84 and 85; SEQ ID
NOS:86 and 87; SEQ ID NOS:88 and 89; SEQ ID NOS:90 and 91; SEQ ID NOS:92
and 93; SEQ ID NOS:94 and 95; SEQ ID NOS:96 and 113; SEQ ID NOS:97 and 98;
SEQ ID NOS:99 and 100; SEQ ID NOS:101 and 102; SEQ ID NOS:103 and 104; SEQ

ID NOS: 105 and 106; SEQ ID NOS:107 and 108; SEQ ID NOS:109 and 110; and SEQ ID NOS:111 and 112.

16. A solid matrix, comprising the primer of claim 5, wherein the primer is
5 immobilized on the solid matrix.

17. The solid matrix of claim 16, which comprises a plurality of immobilized
primers.

10 18. The solid matrix of claim 17, wherein the matrix comprises a plurality of
primers, wherein said primers are degenerate with respect to one or more codons
encoding a polypeptide having an amino acid sequence as set forth in SEQ ID NO:2.

19. The solid matrix of claim 16, wherein the solid matrix is a microchip.
15

20. An isolated polynucleotide, comprising a contiguous sequence of at least
about ten nucleotides substantially identical to a nucleotide sequence of SEQ ID NO:1 or
to a nucleotide sequence complementary thereto, the contiguous nucleotide sequence
comprising with respect to SEQ ID NO:1:

20 nucleotide 474, wherein nucleotide 474 is a T;
nucleotide 487, wherein nucleotide 487 is an A;
nucleotide 3110, wherein nucleotide 3110 is a C;
a position corresponding to nucleotide 3336, wherein nucleotide 3336 is
deleted;

25 nucleotide 3707, wherein nucleotide 3707 is an A;
nucleotide 4168, wherein nucleotide 4168 is a T;
nucleotide 4885, wherein nucleotide 4885 is an A;
nucleotide 5168, wherein nucleotide 5168 is a T;
nucleotide 6058, wherein nucleotide 6058 is a T;

30 nucleotide 6078, wherein nucleotide 6078 is an A;
nucleotide 6089, wherein nucleotide 6089 is a T;
nucleotide 6195, wherein nucleotide 6195 is an A;

nucleotide 6326, wherein nucleotide 6326 is a T;
a position corresponding to nucleotides 7205 to 7211, wherein
nucleotides 7205 to 7211 are deleted;
nucleotide 7376, wherein nucleotide 7376 is a C;
5 a nucleotide sequence corresponding to nucleotides 7535 to 7536,
wherein a GCG nucleotide sequence is inserted between nucleotides 7535
and 7536;
nucleotide 7415, wherein nucleotide 7415 is a T;
nucleotide 7433, wherein nucleotide 7433 is a T;
10 nucleotide 7696, wherein nucleotide 7696 is a T;
nucleotide 7883, wherein nucleotide 7883 is a T;
nucleotide 8021, wherein nucleotide 8021 is an A;
a nucleotide sequence corresponding to nucleotide 8159 to 8160, wherein
nucleotides 8159 to 8160 are deleted;
15 nucleotide 8298, wherein nucleotide 8298 is a G;
nucleotide 9164, wherein nucleotide 9164 is a G;
nucleotide 9213, wherein nucleotide 9213 is an A;
nucleotide 9326, wherein nucleotide 9326 is a T;
nucleotide 9367, wherein nucleotide 9367 is a T;
20 nucleotide 10064, wherein nucleotide 10064 is an A;
nucleotide 10143, wherein nucleotide 10143 is a G;
nucleotide 10234, wherein nucleotide 10234 is a C;
nucleotide 10255, wherein nucleotide 10255 is a T;
or a combination thereof.
25

21. A vector, comprising the polynucleotide of claim 20.
22. A host cell containing the vector of claim 20.

30 23. A solid matrix, comprising the polynucleotide of claim 20, wherein said polynucleotide is immobilized on the solid matrix.

24. The solid matrix of claim 23, wherein the polynucleotide comprises one of a plurality of polynucleotides, each of which is immobilized on the solid matrix.

25. A method of detecting the presence or absence of a mutation in a PKD1 5 polynucleotide in a sample, the method comprising:

contacting nucleic acid molecules in a sample with at least one primer pair of claim 7 under conditions suitable for amplification of a PKD1 polynucleotide by the primer pair, thereby generating a PKD1-specific amplification product under said conditions; and

10 identifying the presence or absence of a mutation in the PKD1-specific amplification product, thereby detecting the presence or absence of a mutation in the PKD1 polynucleotide in the sample.

26. The method of claim 25, wherein the primer pair comprises SEQ ID NO:3 15 and 4; SEQ ID NOS:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9 and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; SEQ ID NOS:17 and 18; or a combination thereof.

27. The method of claim 25, wherein, upon generating a PKD1-specific 20 amplification product, the method further comprises:

contacting the PKD1-specific amplification product with at least a second primer pair selected from SEQ ID NOS:19 and 20; SEQ ID NOS:21 and 22; SEQ ID NOS:23 and 24; SEQ ID NOS:25 and 26; SEQ ID NOS:27 and 28; SEQ ID NOS:29 and 30; SEQ ID NOS:31 and 32; SEQ ID NOS:33 and 34; SEQ ID NOS:35 and 36; SEQ ID NOS:37 and 38; SEQ ID NOS:39 and 40; SEQ ID NOS:41 and 42; SEQ ID NOS:43 and 44; SEQ ID NOS:45 and 46; SEQ ID NOS:47 and 48; SEQ ID NOS:49 and 50; SEQ ID NOS:51 and 61; SEQ ID NOS:62 and 63; SEQ ID NOS:64 and 65; SEQ ID NOS:66 and 67; SEQ ID NOS:68 and 69; SEQ ID NOS:70 and 71; SEQ ID NOS:72 and 73; SEQ ID NOS:74 and 75; SEQ ID NOS:76 and 77; SEQ ID NOS:78 and 79; SEQ ID NOS:80 and 81; SEQ ID NOS:82 and 83; SEQ ID NOS:84 and 85; SEQ ID NOS:86 and 87; SEQ ID NOS:88 and 89; SEQ ID NOS:90

and 91; SEQ ID NOS:92 and 93; SEQ ID NOS:94 and 95; SEQ ID NOS:96 and 113; SEQ ID NOS:97 and 98; SEQ ID NOS:99 and 100; SEQ ID NOS:101 and 102; SEQ ID NOS:103 and 104; SEQ ID NOS: 105 and 106; SEQ ID NOS:107 and 108; SEQ ID NOS:109 and 110; SEQ ID NOS:111 and 112; and a combination thereof, under conditions suitable for nested amplification of the PKD1-specific amplification product by the second primer pair, thereby generating a nested amplification product; and

5 identifying the presence or absence of a mutation in the nested amplification product, thereby detecting the presence or absence of a mutation 10 in the PKD1 polynucleotide in the sample.

28. The method of claim 25, wherein amplification is performed by a polymerase chain reaction.

15 29. The method of claim 25, wherein the PKD1 polynucleotide is a variant PKD1 polynucleotide.

20 30. The method of claim 29, wherein the variant PKD1 polynucleotide comprises a nucleotide sequence substantially identical to SEQ ID NO:1, wherein nucleotide 474 is a T; nucleotide 487 is an A; nucleotide 4884 is an A; nucleotide 6058 is a T; nucleotide 6195 is n A; nucleotide 7376 is a C; nucleotide 7696 is a T; nucleotide 8021 is an A; nucleotide 9367 is a T; nucleotide 10143 is a G; nucleotide 10234 is a C; or nucleotide 10255 is a T.

25 31. The method of claim 25, wherein identifying the presence or absence of a mutation in the amplification product comprises determining the nucleotide sequence of the amplification product.

30 32. The method of claim 25, wherein identifying the presence or absence of a mutation in the amplification product comprises determining the melting temperature of the amplification product, and comparing the melting temperature to the melting temperature of a corresponding nucleotide sequence of SEQ ID NO:1.

33. The method of claim 25, wherein identifying the presence or absence of a mutation in the amplification product is performed using denaturing high performance liquid chromatography.

5

34. The method of claim 25, wherein identifying the presence or absence of a mutation in the amplification product is performed using matrix-assisted laser desorption time of flight mass spectrometry.

10

35. The method of claim 25, wherein identifying the presence or absence of a mutation in the amplification product is performed using high throughput conformation-sensitive gel electrophoresis.

15

36. The method of claim 25, wherein identifying the presence or absence of a mutation in the amplification product is performed by a method selected from single stranded conformation analysis, denaturing gradient gel electrophoresis, an RNase protection assay, allele-specific oligonucleotide detection, an allele-specific polymerase chain reaction, and an oligonucleotide ligation assay.

20

37. The method of claim 25, wherein identifying the presence or absence of a mutation in the amplification product is performed using a primer extension reaction assay,

wherein the primer extension reaction is performed using a detectably labeled primer and a mixture of deoxynucleotides and dideoxynucleotides, and

25

wherein the primer and mixture are selected so as to enable differential extension of the primer in the presence of a wild type PKD1 polynucleotide as compared to a mutant PKD1 polynucleotide.

30

38. The method of claim 25, wherein the method is performed using a plurality of primer pairs.

39. The method of claim 25, wherein the method is performed in a high throughput format using a plurality of samples.

40. The method of claim 39, wherein plurality of samples are in an array.

5

41. The method of claim 40, wherein the array comprises a microtiter plate.

42. The method of claim 40, wherein the array is on a microchip.

10 43. The method of claim 25, wherein identifying the presence or absence of a mutation in the amplification product comprises:

contacting the amplification product with the polynucleotide of claim 20, under condition suitable for selective hybridization of the polynucleotide to an identical nucleotide sequence; and

15 detecting the presence or absence of selective hybridization of the polynucleotide to the amplification product,

wherein the detecting the presence of selective hybridization identifies the presence of a mutation in the PKD1 polynucleotide in the sample, and

20 wherein detecting the absence of selective hybridization identifies the absence of a mutation in the PKD1 polynucleotide in the sample.

44. A method of identifying a subject at risk for a PKD1-associated disorder, the method comprising:

25 contacting nucleic acid molecules in a sample from a subject with at least one primer pair of claim 7 under conditions suitable for amplification of a PKD1 polynucleotide by the primer pair, thereby generating an amplification product; and

detecting the presence or absence of a mutation indicative of a PKD1-associated disorder in the amplification product,

30 wherein the absence of the mutation identifies the subject a not at risk for a PKD1-associated disorder, and

wherein the presence of the mutation identifies the subject as at risk for a PKD1-associated disorder.

45. The method of claim 44, wherein the at least one primer pair is selected from
5 SEQ ID NO:3 and 4; SEQ ID NO:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9
and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; and
SEQ ID NOS:17 and 18.

46. The method of claim 44, wherein the PKD1-associated disorder is
10 autosomal dominant polycystic kidney disease.

47. The method of claim 44, wherein the PKD1-associated disorder is
acquired cystic disease.

15 48. The method of claim 44, wherein the method is performed in a high
throughput format.

49. The method of claim 44, wherein detecting the presence or absence of a
mutation indicative of a PKD1-associated disorder in the amplification product
20 comprises accumulating data representative of the presence or absence of the
mutation.

50. The method of claim 49, wherein the data is formatted into a report
indicating whether a subject is at risk of a PKD1-associate disorder.

25 51. The method of claim 50, further comprising transmitting the report to a
user.

52. The method of claim 51, wherein transmitting the report comprises
30 sending the report over the internet, by facsimile or by mail.

53. The method of claim 44, further comprising contacting the amplification product with at least a second primer pair, under conditions suitable for nested amplification of the amplification product by a second primer pair, thereby generating a nested amplification product,

5 and detecting the presence or absence of a mutation indicative of a PKD1-associated disorder in the nested amplification product.

54. The method of claim 53, wherein the second primer pair is selected from SEQ ID NOS:19 and 20; SEQ ID NOS:21 and 22; SEQ ID NOS:23 and 24; SEQ ID 10 NOS:25 and 26; SEQ ID NOS:27 and 28; SEQ ID NOS:29 and 30; SEQ ID NOS:31 and 32; SEQ ID NOS:33 and 34; SEQ ID NOS:35 and 36; SEQ ID NOS:37 and 38; SEQ ID NOS:39 and 40; SEQ ID NOS:41 and 42; SEQ ID NOS:43 and 44; SEQ ID NOS:45 and 46; SEQ ID NOS:47 and 48; SEQ ID NOS:49 and 50; SEQ ID NOS:51 and 61; SEQ ID NOS:62 and 63; SEQ ID NOS:64 and 65; SEQ ID NOS:66 and 67; 15 SEQ ID NOS:68 and 69; SEQ ID NOS:70 and 71; SEQ ID NOS:72 and 73; SEQ ID NOS:74 and 75; SEQ ID NOS:76 and 77; SEQ ID NOS:78 and 79; SEQ ID NOS:80 and 81; SEQ ID NOS:82 and 83; SEQ ID NOS:84 and 85; SEQ ID NOS:86 and 87; SEQ ID NOS:88 and 89; SEQ ID NOS:90 and 91; SEQ ID NOS:92 and 93; SEQ ID NOS:94 and 95; SEQ ID NOS:96 and 113; SEQ ID NOS:97 and 98; SEQ ID NOS:99 20 and 100; SEQ ID NOS:101 and 102; SEQ ID NOS:103 and 104; SEQ ID NOS: 105 and 106; SEQ ID NOS:107 and 108; SEQ ID NOS:109 and 110; SEQ ID NOS:111 and 112; and a combination thereof.

55. The method of claim 53, detecting the presence or absence of the mutation 25 comprises determining the nucleotide sequence of the amplification product, and comparing the nucleotide sequence to a corresponding nucleotide sequence of SEQ ID NO:1.

56. The method of claim 53, wherein detecting the presence or absence of the 30 mutation comprises determining the melting temperature of the amplification product, and comparing the melting temperature to the melting temperature of a corresponding nucleotide sequence of SEQ ID NO:1.

57. The method of claim 53, wherein detecting the presence or absence of the mutation is performed using denaturing high performance liquid chromatography.

5 58. The method of claim 44, wherein the mutation indicative of a of PKD1 associated disorder comprises a nucleotide sequence substantially identical to SEQ ID NO:1, wherein nucleotide 3110 is a C; nucleotide 8298 is a G; nucleotide 9164 is a G; nucleotide 9213 is an A; nucleotide 9326 is a T; or nucleotide 10064 is an A.

10 59. The method of claim 44, wherein the mutation indicative of a of PKD1 associated disorder comprises a nucleotide sequence substantially identical to SEQ ID NO:1, wherein nucleotide 3336 is deleted; nucleotide 3707 is an A; nucleotide 5168 is a T; nucleotide 6078 is an A; nucleotide 6089 is a T; nucleotide 6326 is a T; nucleotides 7205 to 7211 are deleted; nucleotide 7415 is a T; nucleotide 7433 is a T; 15 nucleotide 7883 is a T; or nucleotides 8159 to 8160 are deleted; or wherein a GCG nucleotide sequence is inserted between nucleotides 7535 and 7536.

60. A method of diagnosing a PKD1-associated disorder in a subject, the method comprising:

20 amplifying a portion of a PKD1 polynucleotide in a nucleic acid sample from a subject with at least a first primer pair to obtain a first amplification product, wherein said first primer pair is a primer pair of claim 7;

25 amplifying the first amplification product with at least a second primer pair to obtain a nested amplification product, wherein the second primer pair is suitable for performing nested amplification of the first amplification product; and

determining whether the nested amplification product has a mutation associated with a PKD1-associated disorder,

30 wherein the presence of a mutation associated with a PKD1-associated disorder is indicative of a PKD1-associated disorder, thereby diagnosing a PKD1-associated disorder in the subject.

61. The method of claim 60, wherein the method is performed in a high throughput format using a plurality of nucleic acid samples.

5 62. A method of detecting the presence of a mutant PKD1 polynucleotide in a sample, the method comprising:

contacting a sample suspected of containing a mutant PKD1 polynucleotide with a polynucleotide of claim 20 under conditions that allow the polynucleotide to selectively hybridize with a mutant PKD1 polynucleotide; and

detecting selective hybridization of the polynucleotide and a mutant PKD1 polynucleotide, thereby detecting the presence of a mutant PKD1 polynucleotide sequence in the sample.

15 63. A kit for detecting the presence or absence of a mutation in a PKD1 gene, the kit comprising a primer, said primer comprising a 5' region and adjacent 3' region, said 5' region comprising a nucleotide sequence that selectively hybridizes to a PKD1 gene sequence and, optionally, to a PKD1 gene homolog sequence, and said 3' region comprising a nucleotide sequence that selectively hybridizes to a 20 PKD1 gene sequence, and not to a PKD1 gene homolog sequence, provided the primer does not consist of a sequence as set forth in SEQ ID NO:11, SEQ ID NO:18, SEQ ID NO:52, or SEQ ID NO:60.

64. The kit of claim 63, comprising a plurality of said primers.

25 65. A kit for detecting the presence or absence of a mutation in a PKD1 gene, the kit comprising a primer pair, said primer pair comprising a forward primer and a reverse primer, wherein the primer pair can amplify a portion of SEQ ID NO:1 comprising about nucleotides 2043 to 4209; nucleotides 17907 to 22489; nucleotides 22218 30 to 26363; nucleotides 26246 to 30615; nucleotides 30606 to 33957; nucleotides 36819

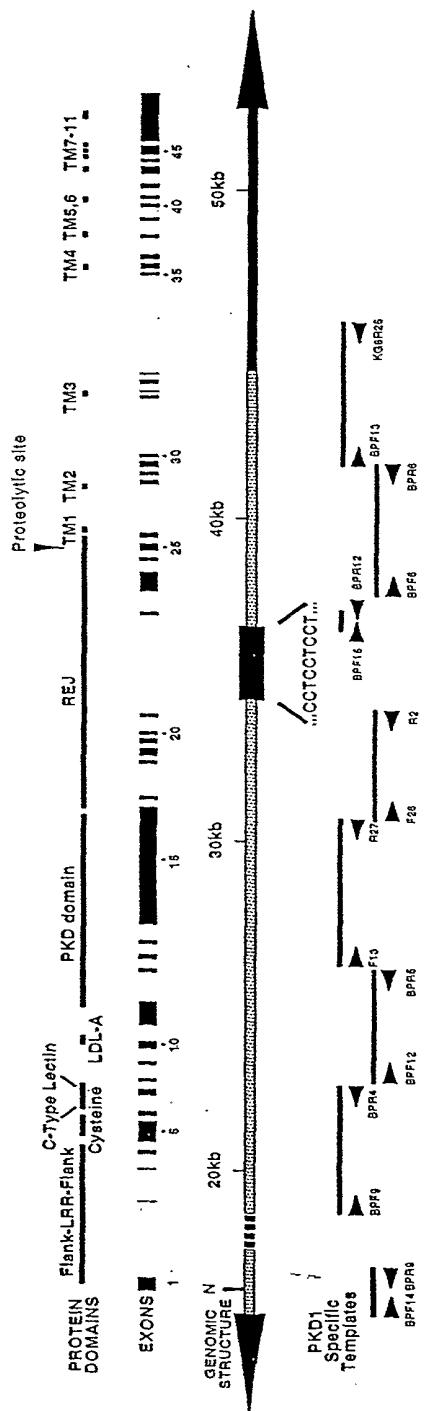
to 37140; nucleotides 37329 to 41258; nucleotides 41508 to 47320; or a combination thereof.

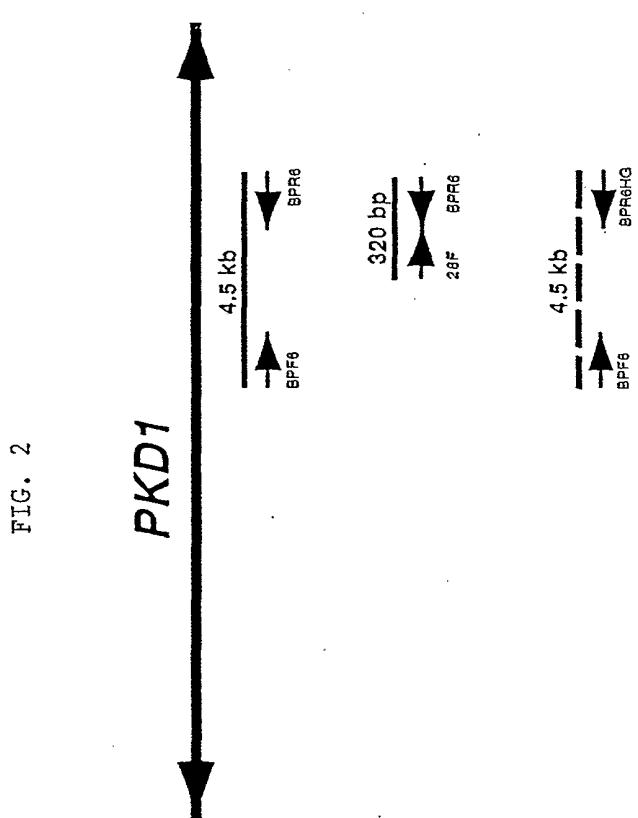
66. A kit for detecting the presence or absence of a mutation in a PKD1 gene,

5 the kit comprising an isolated polynucleotide, said polynucleotide comprising a contiguous sequence of at least about ten nucleotides substantially identical to a nucleotide sequence of SEQ ID NO:1 or to a nucleotide sequence complementary thereto, wherein the contiguous nucleotide sequence comprises with respect to SEQ ID NO:1, nucleotide 474, wherein nucleotide 474 is a T; nucleotide 487, wherein nucleotide 487 is an A; nucleotide 3110, wherein nucleotide 3110 is a C; a position corresponding to nucleotide 3336, wherein nucleotide 3336 is deleted; nucleotide 3707, wherein nucleotide 3707 is an A; nucleotide 4168, wherein nucleotide 4168 is a T; nucleotide 4885, wherein nucleotide 4885 is an A; nucleotide 5168, wherein nucleotide 5168 is a T; nucleotide 6058, wherein nucleotide 6058 is a T;

10 nucleotide 6078, wherein nucleotide 6078 is an A; nucleotide 6089, wherein nucleotide 6089 is a T; nucleotide 6195, wherein nucleotide 6195 is an A; nucleotide 6326, wherein nucleotide 6326 is a T; a position corresponding to nucleotides 7205 to 7211, wherein nucleotides 7205 to 7211 are deleted; nucleotide 7376, wherein nucleotide 7376 is a C; a nucleotide sequence corresponding to nucleotides 7535 to 7536, wherein a GCG nucleotide sequence is inserted between nucleotides 7535 and 7536; nucleotide 7415, wherein nucleotide 7415 is a T; nucleotide 7433, wherein nucleotide 7433 is a T; nucleotide 7696, wherein nucleotide 7696 is a T; nucleotide 7883, wherein nucleotide 7883 is a T; nucleotide 8021, wherein nucleotide 8021 is an A; a nucleotide sequence corresponding to nucleotide 8159 to 8160, wherein nucleotides 8159 to 8160 are deleted; nucleotide 8298, wherein nucleotide 8298 is a G; nucleotide 9164, wherein nucleotide 9164 is a G; nucleotide 9213, wherein nucleotide 9213 is an A; nucleotide 9326, wherein nucleotide 9326 is a T; nucleotide 9367, wherein nucleotide 9367 is a T; nucleotide 10064, wherein nucleotide 10064 is an A;

15 nucleotide 10143, wherein nucleotide 10143 is a G; nucleotide 10234, wherein nucleotide 10234 is a C; nucleotide 10255, wherein nucleotide 10255 is a T; or a combination thereof.


20


25

30

67. A kit for detecting the presence or absence of a mutation in a PKD1 gene, the kit comprising an antibody that specifically binds to a mutant PKD1 polypeptide.

FIG. 1

SEQUENCE LISTING

<110> THE JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE
GERMINO, Gregory
WATNICK, Terry
PHAKDEEKITCHAROEN, Bunyong

<120> DETECTION AND TREATMENT OF POLYCYSTIC KIDNEY DISEASE

<130> JHU1680WO

<150> US 60/283,691
<151> 2001-07-13

<150> US 60/218,261
<151> 2000-07-13

<160> 113

<170> PatentIn version 3.0

<210> 1
<211> 53522
<212> DNA
<213> Homo sapiens

<400> 1

ttgaaaacttt	ttgagacagc	atctcaccct	gttccccagg	ctggagtgc	gtgggtgtat	60
catggctcac	tgcagcgtca	acctcctggg	tctacttgat	ctgtaaaactt	cgagggaaagg	120
tgtaataaac	cctccctgcaa	tgtctttgtt	tttcaaaaatc	tttgtatttc	acagtttagc	180
ttcgtgggtt	gatgttctat	tttgtttttg	tgtgtgtgtg	tgtgtgtttt	gtgtttttt	240
ttgagacaca	gtcttgctct	tgttgcccaag	gctggagtgc	aatgggtgtga	tcttggctca	300
ctgcaacttc	cacctcttgg	gttcaagaga	ttctcctgcc	tcagccttcc	gagtagctag	360
gattacaggc	gccgccacca	caccccgcta	attttgtatt	tttagtagag	atggggtttc	420
tccatattgg	tcaggctgg	ctcaaactcc	cgacccctagg	tgatccgccc	acctcagccct	480
cccaaaatgc	tgggattaca	ggcgtgagtc	accgcacctg	gccaatgttc	tattttgag	540
aacacaacag	ttcataatat	attctacata	gaccataacct	gttatgtgt	gataaacaga	600
ctctttccc	atthaacacc	tttgcctta	ggtttatttt	tctggatatca	atactggcac	660
acttactttg	tttgcagttt	cctgtctttt	tttttttttt	tttttttttt	gagacagagt	720
ctcactctgt	cacccaggct	ggagtgaagt	ggcgggatct	cggctcactg	caacctctac	780
ctcctgggtt	catgcgattc	tcctgcctca	gttcccgaa	tagctgagac	cacaactgtg	840
tgccaccatg	cccagccaat	ttttgtattt	tttagtagaca	cggggtttca	ccatactggc	900
caggatggct	caatctcttg	acctcgat	ccacccctgc	ccgcctccca	aagtgcgtgg	960
attacaggca	tgagccactg	tgccctggcct	ttttttttct	ttttgagatg	gagtcact	1020
ctgtcaccca	ggctggagtgc	cagtgggta	acccaggc	actgcgaccc	ccgcctcccg	1080

ggttccagtg attctcctgc ctcagcctcc cgagtagctg ggattacagg caccaccac 1140
catgcctggc taattttgtt attttttagta gagacggggt tttgccacgt tggccagggt 1200
ggtctcgaac tcttggcctc atgtgacccg cctgccttgg cctcccaaag tgctggatt 1260
acaggtgtga gccactgtgc ctggcctggc tttcttgttt ctttctctt cttctagttt 1320
ccccctttta ggctaacaat tattcactgt taataaaaac cctcaggctt gtattttatc 1380
aagaaacatt tccctcacgt cttttccctt gaaccaaaca agatctctgg cacattttat 1440
ttgctctgtc tcaccacatg gattttgttt ttttgccttct ttgttttttgc agatggagtc 1500
tcactcttgt tgcccaggct ggagtgcatt ggcacaatct cagctcactg caacccctccac 1560
ctcctgggtt caagcgattc tcctgtctca gcctcctgag tagctggat tacaggcg 1620
tggcaccacc cccagctaat ttttgcattt tttagtagaga cggggtttca ccatgttgg 1680
caggctggtc tcgaactcctt gaccttgcata tctgcccacc ttggcctccc aaagtgcgtt 1740
gattacagggc atgagccacc acggccggcc cccatgggtt ttcaaatagt tttagaatttc 1800
atttccagggt aactaatttg cttttttaaa catatgtctt ttctattttaa gaaatccttt 1860
ctaaacaattt gcattttattt ccacaaccgc cttcaaacaa tcattgagac ttgggttata 1920
tggggcttc atttggcagc agtttcttgtt ggctgtttct tccctccactt ggagtccttgc 1980
aatcttaagt ctgtcatttg actgcaattttaa aagctgggt ttggaaataca atcgcagcc 2040
taccatccac ctgctgtgtg acctggtaaa tttttttttt ttttttttgc acggagtttt 2100
gctctgttgc ccaggctggc gtgcagtggc acaacctctg cctccagggt tcaagcgatt 2160
ctactgcctc aggctcccta gtagctggga ttataggtgc ctgcccaccat gcccagctga 2220
tttttgcattttt tttagtagag atgaggtttc accatgttgg ctggctggc ttcgaacttc 2280
tgatcttgc atctgcccgc ctggcctcc cttttttttt ccattttttt ttttttgc acaggatctt 2340
cactcccagc cagttttttt tttttttttt ccattttttt ttttttgc acaggatctt 2400
actcttttgc ccaggcgggga gtgcagtggc acaatcacgg ctcagcgccag ccactgccta 2460
ctgggctcac acgctcctcc gcctcagcc tctcgactac ctgggactac aagcgtgagc 2520
cagtttgggtt aattttgggtt aattttttttttaa gaaacggggtt ctcggccatgt tggccagggt 2580
ggtctccaaac tcctggactc aaggatcca ctttcctccc cttctcaaag ttctgggatt 2640
accggagtgaa gccactgtgc cctgctggca aattttttttttaa actgtctgtg cttcagggt 2700
ctcattttttttaa aaaggaaata attgttagcac acttttttttttaa gagctgtgaa gattcaatgg 2760
aataaataaag gcaataaaatg aatggatggg gaatgaagga tttgggtttc ctcccttttgc 2820
tctttcaataa agcttcaccatcaaccctcc cattgcctgt ttcctctttt cccctcttctt 2880

ccctctgtct ctctctcagc caggaaacct ggggttaggga ggcttggagc cagcgggtgc	2940
gtcgggaggc tgcgggtact gactcgggcc ggcacggag atcgcggag aaggatccac	3000
aaccgcggaa gaaggatcag ggtggagcct gtggctgctg caggaggagg aaccgcggc	3060
ctggcccaca ccacaggaga agggcggagc agatggcacc ctgcccaccc ctccccccc	3120
acgcacttta gcctgcagcg gggcggagcg tgaaaaatag ctgcgtctcc tcggccgact	3180
ctgcagtgcg acggcggtgc ttccagacgc tccgccccac gtgcgtgcg ccccgaaac	3240
gcgtggggcg gagcttccgg aggccccccc ctgcgtccga ccctgtggag cggagggtga	3300
agcctccgga tgccagtcgg tcatcgctgg cccggcgcg ctgtggcgaa gggggcggag	3360
cctgcaccccg ccccgcccccc cctgcggcc tccgccccgc gccgcgcggg gaggaggagg	3420
aggagccgcg gcggggccccg cactgcagcg ccagcgtccg agcgggcggc cgagctcccg	3480
gagcggcctg gccccgagcc ccgagcgggc gtgcgtcagc agcaggtcgc ggccgcagcc	3540
ccatccagcc cgcccccggcc atgcgtccg cggggccccgc ctgagctgcg gcctccgcgc	3600
gcgggcgggc ctggggacgg cggggccatg cgccgcgtgc cctaacgatg ccgcggcccg	3660
cgcccgccccg cctggcgctg gcccctggcc tgggcctgtg gtcggggcg ctggcggggg	3720
gccccggggcg cggctgcggg ccctgcgagc cccctgcct ctgcggccca gcgcggcccg	3780
ccgcctgcgg cgtcaactgc tcgggcccgg ggctgcggac gtcgggtccc gcgcgtgcga	3840
tccccgcgga cgccacagcg ctgtgagtag cggggccagc ggcacccggg agaggccgcg	3900
ggacgggcgg gcgtgggggg gttccctggc ccgggacggg aaggcaggacg cggggccagga	3960
cgctcccagg ggcgaggctc cggcgccggca cggcgggccc tgctaaataa ggaacgcctg	4020
gagccgcgggt tggcacggcc cggggagcc gaaaaacccc gggcttggag acagacgtcc	4080
cacccgggggg ctctgcagac gccagcgggg gcggggcgccg gaggccgcgc tcagctggga	4140
ggacaaacag tcgctaattt gaggaaatt gggatgcggc ctggggctgc ggggtaccccg	4200
gagaggtgg gatggctgtt gggggcgcc gggaaagatgg ccaggaggtg tctggaaaag	4260
gatttgcgtt atgtgcagaatttggctgtt tgcttagaa gggcgatgtt ggtgggttcca	4320
gaagaagggg ggtgaacgggt gtgagcaaag accgtgaggc tggaggctgg ccacgggagg	4380
tgtgagggggt aggggcaggc tggggagggtt gtcgcgggtt gggctgggggt catgaaggcc	4440
ctcaggcgct ctgcattttttt gttccaaaggc tatttttttttta acagggtgtt ggggggattt	4500
ccgtgggggg tttaaggcattt gtcatttttttgc ctggggaggat taaaaacaa cagggtggcct	4560
ttatggagac gctgcccaga gccaggctgtt tgccaggctc ctgttgggggg tcgtcatgcg	4620
gaatcctgac tctgaccatc cgaggcatag ggaccgttgg gatttgcatt tcacagatgtt	4680
ggaaacaggt ttggagaggt gacacgaccc gtcggccaggca tcacagccgg gatgtgcata	4740

gcaggggttt ggaactatga ggtgccagg acccagggtt ggattgaaaa gggcggaggg 4800
gactaagata agcagacagt tgtccccagc gctggggaga gtcttggac cagtctgatg 4860
ccttgtattt cccaggctcc aggctcctcg ccggacagt gtctccttgg gtgcgtgctg 4920
gatccctggg ggacgtggca catccccagg cttgctaaac attgggtggg ttctggcatt 4980
tggttttgta acgtttctgg gtcactcccg cctgtggcca cccttcctta ggggagccgt 5040
gtgtccttgg ggcttgctg ggtggctcg agggtggag aagaatgggt tctcctggac 5100
caatggagcc cgtgcccctc ggggccacat tgctcctgctg ctccctgact gcggacgcgt 5160
gtgtctcgag gtcgtctctg tggagatggc ctccctctgc ctggcaacag caccacaga 5220
attgcatcag acctacccca cccgttgttt gtgatgctgt agctgagggc tcctctgtct 5280
gccaggccgg tcactgggaa ctctgtccag ggcctgggtt ttccctgcttc ccagcacctg 5340
atggtgtcca tgagagcagc ccctcaggag ctgtccggaa gagaagggcg ctggtgctg 5400
ctgagcggag agcaaggccc gtgttctcca ggcccttggc acagcagtgg agccccccgccc 5460
cctgccttgt gttgtcctct taggctctgg tcctggggtt tggaggaggg ggaccctggg 5520
agttggtggc ctgtcccagc ctgagctggc aagattccga atgccaggcc ccccaagtgt 5580
gcaacagggc acagggtgac ctcatgtggg caggtgggtg ctgttctgtt cacacctggg 5640
gccgcgcgtg ggagagttct ggaagggtggg gtgaggggac ccatggcaaa cttagggcctt 5700
aggaaggatg tgaaggccc ggctggcccc ccaggccacc ctctgtgctg tggggcagcc 5760
cagccatttt gctgtctacc ctgcaaactc ctccctgggg agacggctgg gttttccccca 5820
gggaagaggg gtcaagctgg gagaggtgaa ggacacagat cacagctgtt ggcaggtgtt 5880
caagggtcca agagcgttgc tgcgtgggtt tcaccagtag ctttcctggg gggctcacgc 5940
aggtgcctct ccacttgtgg ctccctggct gctgaagctc agcagggaca gctgtgtcca 6000
gttccaggtg gaggacagcc ggggcttctg aggccacagc ctgccttggg ttaatgtatgc 6060
tgccgagagg tgggtggcttt tggaaaagat ggcgtactgc aaaacgtgtt gctctgcgtg 6120
gctcgaagct tcgtggggag acgtgggcag agccgtggct gactcacaga ccccccaccc 6180
cagagcctgc cttgcctcc ctgccccgac ctttcctccct cttgcacccat gtgtttttt 6240
ttttttttt ttttttgag acagagttca ctcttgttgc caaggctgga gtgcaatggc 6300
acgatctcggtt ctcatggcaa cttccgcctc ctgggttcaa ggcgttttc ctgcctcagc 6360
ctcccgagta gctgggattt caggcgtgca ccaccatgcc tggcttaattt tgtatttta 6420
gtagagacag ggtttctcca tattggtcag gctggtcttgc aactcctgac ctcagatgtat 6480
ccgccccgcctt cggcctccca aagtgtggg attacaggca tgagccacca cgcccagccc 6540

tgacccatgt tttgaaccaa attccagcca cccttttatac tgcaagcatt ttggagggca 6600
tcgcaataact gcagacccac ctaacacaac agacagttcc ttcatgccac cgaaggcctg 6660
gtgtgttac attttggtt taatagttt aattaagagc caaataaggt ccacacactg 6720
caatttagttt atgtctttt tttttttttt tttttttttt ttttgagacg gagtcttgct 6780
cttgcctcca ggccgcagtg cagtgccatg atctcagctc accgcaacct ccgactccct 6840
ggttcaagcg attctcctgc ctcagcctcc cgagtacctg gtagctgggt ttacaggcat 6900
gcaccaccgt gcccagctaa tttttgtatt ttttagtagag acggggttt actgtgttgg 6960
ccaggatggt ctcgatctcc tgacctcgtg atctgcccac ctcggcctcc caaagtgctg 7020
ggattacagg cgtgagccac cgccacccggc caatgtcttt taaaaatata tactttttt 7080
tttttttga gacggagttt cgctcttggt gcccaggctg gagtgcagtg ggcgcgtctc 7140
acctcacggc aacctccgccc tcccggttc aagtgattct cctgcctcag cctctccagt 7200
agctgggatt acaggcatgt gccaccatgc ctggctaatt ttgtatttt aggagagacg 7260
gggtttctcc acgttggtca ggctggtctc aaactcctga ctcaggtga tccgcctgcc 7320
ttggcctccc aaagtgttgg gattacaggt gtgagccaac ggcgcagac aaaaatata 7380
gtgtgtcttt aaggctggtc aagcaaagca gtaggactgg agaaagaatg aagaattcta 7440
ctggctgtg atcaattcgt tgtgaacacc actgtgttgc gaccagctag ctgatgtctt 7500
ttgtttgtt ttgttgaga cggagtctgg ctctgtcacc caggctggag gacaatggtg 7560
tgatctcggc tcactgcagc ctccatctcc cgggttcaag cgattctcct gcctcagcct 7620
cctgagtagc tgggattaga ggccgcgcgc accacgcccc gctaattttt aaaaatattt 7680
tttagtagaga tgggtttca ccatgttggt caggctggtc ttgaactctt ggccttaggt 7740
gatctgcttg ctcggcctc ccaaagtgtc gggattacag gtgtgagtga tgtattttat 7800
ttatattttt atttattttt ttttatttt tgagatggag tctcactctg ttgcccaggc 7860
tggagtgcag cagtgcacatc tcagctcact gcaagctccg ctcctgggt tcacgcatt 7920
ctcctgcctc agcctcctga gtagcctgga ctgggtccccg ccaccatgcc cagctaattt 7980
tttgtatttt tagtagagac ggggtttcac cgtgttagcc aggtggctc ggatctcctg 8040
acctcgat ctcggcctc cagcctccca aagtgtggg attacaggct tgagccaccg 8100
cctgtctttt aaatgtccga tgatgtctag gagcttcctt tccctctctt ttccctgtgc 8160
aatttggta agaaactggc tcctgcagcc tggatttctc gctgtgtctt ggggtgcc 8220
cctccatggt gtcaccccg tgggtgtgtg agtgtgtgt ttgtgtttct taaaattgg 8280
tcgttggagc cgacatccca ttgtcccaga gttgtcctg gctggcactg gccttaggt 8340
agatgtcatac agctcaggcc cccctgtctt aaaggccact tctggtgctg gttgccactc 8400

accctggctg ggggtcacct gggctctgctg ctgtctcgca aatgctgggg tccaggactg 8460
ggcacatcga gggacttggt aggtgcttgg ttcactgatg taaaatata tag ggcacccgg 8520
ggccttgc cttcccacct gcatccctga atgacaggag agtgtggag agttaggga 8580
cagcaggcgc agaccccggg gcccctgcct gggattggcg tcgggaaaga caggcattct 8640
ggagcgaccc ctaggcctga tgccttagag cgcaactgcc agagacacag cttccttggg 8700
gggctggcca ggccacggag gggccctg cccatttct ggtccctgga tcctgagagc 8760
gaggactagg gattgtcacc aaggcctcca tgagccctca gcagaaggag ggccaccctc 8820
gagggctccg ttatcaactgg agcccgctt caaccaacac gcagatgatt ctccaaggac 8880
agagatggat gatggggagg gggctggcct ggaaggaccc ccagtgcagg tgacattgaa 8940
gccaggttcc aaagctccca cagggagctg cccagagaga gtccccaagg ggcaaggtga 9000
ctcggggca gggtagggc ctctgtcagg agagcctagg agaggcctgt gtcttctagg 9060
aagagccctg gcagccgagc ggaggcagtg gtgaggaccc gcatcctgca tgtccagctg 9120
gcctcaccctg gggccctgca gcccggtctt acgtggctcc cgcactcggg cgttcagaac 9180
gtgcctgcgt gagaaacggt agtttcttta ttagacgcgg atgcaaactc gccaacttg 9240
tggacaaaaaa tgtggacaag aagtcacacg ctcactcctg tacgcgattt ccggcagggg 9300
tgggggaagg gatggggagg ctttggttgt gtctgcagca gttggaaatg tgggcaccc 9360
gagctcccac tgcagaggcg actgtggaga cagagacac ctgcaggtca tccatgcagt 9420
atcggcttgc atccagatca tacagggAAC actatgattc aacaacagac agggaccccg 9480
tttaaacatg gacaagggtt cactcacgcc tggaaatccca gcagtttggg aggccagggt 9540
gggtggatcg cttgagccca ggagtttgc accagcctgg gcaacagggt gagaccccg 9600
tctctaaaaaa ataaaagaac attggccggg cgtggtgta tgcacatgtg gtcccagcta 9660
ttcaggagac tgaggtggg catcaactgca gccgaggagg tcaaggctgc agttagctgt 9720
gatcacacca ctgcactcca ggctgggtca cagagcaaga ccctgtctca aaaaaaaaaaa 9780
aaaaaaaaaaa aaaaaatcac aggtatgaa cagagatttcc tccaaagaag acgcacagat 9840
ggccaacagc gtgtgagaag atggtcggcc tcattagtca tgagggaaac gtaaatcaaa 9900
accactgtcc agccggcgc ggtgcctcac gcctgtatc ccagcacttt aggagagcag 9960
atggctttag gccaggagtt tgaggccagc ctgggcaaca tagegagacc aataaataga 10020
tatttagtggt ggccgcctgta gtcccagcta gttgggaggc tgagggggga ggattccctg 10080
agtctatgag gttgagactg cagttagctg tgatggtgcc actgcactcc agcctggcg 10140
actaggaaac ggtctttaaa aaaaaaaaaaa aaaaacaggg tgggcgcgg gttcacgccc 10200

tgtaatctca gcactttggg aggccaaagg ggggggatca caaggtcagg agtttgtac 10260
cagcctgacc aacatggtga aaccccggtc tactaaaaat aaaaaaatta gcgaggtgtg 10320
gtcgtggcg cctgtatcc cagctaatta ggaggcttag gcaggagaat cacttgaacc 10380
cgggaggcgg agttgcagt gagccaatat cacaccactg cactctagcc tggtaacag 10440
agcgagactc tgtctcaaaa aaaaaaaatg ctgagcgtgg tggcgcatgc ctgtagtctc 10500
agctacttg ggggctgagg caggagaatc gcttgaacct gggaggcaga ggtcgcagtg 10560
aggcaagatt gcaccattgc actccagctt gggagacaga gtgaaactct gtctcaaaa 10620
gaaaaggctt aggaagagtc cgcaccctct ccccgcggtg gccacgccc gctccgcgt 10680
gagccctctg ttttcttgc tctccatacc tcatacggc accgcagggt tgcagccact 10740
cctggctctca ttttacacac cagggaaattt aggcttttgg agaaggccgtg gtgtatgatt 10800
catcagcatg ctctggggca gaccctgca gccgcacagg gtgcctggg cccacactag 10860
tgccctggtt tatagacaga cagaggtggc agtggcgctt ccgagtcggg ctgcgtatgt 10920
cttgcactcc ccgaggggct gagggggccct gcgcggcagg gtgactgctt gggtgctgcc 10980
agccccctccc acctctccct ccctgcacgc ccctccccc tctccctccc tgccagcccc 11040
tcccacctct ccctccctgc cagccctcc cacctctccc tccctgccag cccctccac 11100
ctctccctcc ctgccagccc ctcccacctc tccctccctg ccagccctc ccacctctcc 11160
ctccctgcca gcccctccca cctctccctc cctccagccc ctcccacctc tccctccctg 11220
ccagccctcc ccacctctcc ctccctgcca gcccctccca cctctccctc cctgccagcc 11280
cctcccacct ctccctccct gcagccccc cccacctctc cctccctgcca agccccctccc 11340
acctctccct ccctgccagc ccctccaccc tctccctccc tggctcatcc ctgctgtgtc 11400
ccttctctct agtttctgt tcagtttcag gaaggaggct gggaaacccag atgttagggaa 11460
tttgcgcctt ggagtcagac ctgggttcac gtcccagcgc ctccacctct ggtgtgaccc 11520
tggccagtc ttcagccctc agtttctca cctgtaaaagt gggctccatg attagatgca 11580
ccctgcaggg cagtgttagca gtgacctggc tcagccactg gcagccccaa caatcatacc 11640
ttgttaaaagt agctctgtcg gttccctcag gggttccggg ggcccatcc cctgtcctcc 11700
atgcactgtg agacctgccc tgccacagag cagagtgtaa cagcctgagg gtgagagcca 11760
gacactgtgc ctgtgcttag accagacact ggacgacggg agccagtgca gcctggcgg 11820
gtggactcct atggaccctt cagcacccag cctcggtgcc ttcagcgcag ggccgcgtgg 11880
ctgtggggc tcacaagacc cggcccaactc ctgcttgtc ctacatctgg gtgtttgcc 11940
attgggtgcct tttgacgcgt tctgggtgtgt gtgagacgtg cggggctggg aagtgttggc 12000
agagccgcga gtaccgtctt cactcccttt gtcttttga cgtaagctgg cgagtggcac 12060

tgccctgagtt ccgctcagtg cccgcctga tgtgcggacc ccgctgcatt cttgctgtta 12120
ggtgtggcg gtgtgcgctg tcgctggtgg gcaccgagag tctttggag ctttgggag 12180
gttgtgccaa gcctgagcct cgacgtcccc cttccggct ttctgttggc tcttctgagg 12240
ccagggcattc tctatgaggg ctcctgctg gagccgtctc tgtggatctc ctatgcccattc 12300
ctggcccatg agtgggtgat ggcgtggcca ccatctggtg acagtggccg ggcacccgctg 12360
ccaaatgtgg gtcccgcatc tgcaagcccc tccctgggtc ccctaggta tgggggtggtt 12420
ctgccactgc ctcgcctccc ccaccttggg gtgcctatcc ccctgctcgt gggggagacc 12480
ctgcctggga tctgctttcc agcaaggaat atactttgga gggagacaca catgttcttt 12540
tctggagctc tgcagtggcc acggcagccc agcccgccaa gcaccctgga atgaaaacat 12600
cccgctgctg tctggcctg gcctgcactc tgctgcctgc gctccagctg gctgaggccg 12660
ggcacgtctg cgggcacagc agcggggccg ccacagtctc cctgcagagt gagcgcagct 12720
ggaaaatgca gtcacgccc tttccagaa cacctcgctc ttcatggctt ggcagctgtc 12780
cttgcctagg ggccaggggtg cccaggcact ggtggcagga gaagggctac atctgggct 12840
gaggcgggct gggccctttt ctccctgcag ctcccgaggc ccagccctgg cccagcctgg 12900
cattcctgac cttagcagcg ccatgatctg aagacaggct ggcttctgtg aggccacctc 12960
agaaagggtt ttgtgcccag gcagaggcgg aagccagctc ttccctctgg ttgaggcagg 13020
aatgaggcca ggcgtggca agcccatgcc cagggAACgt cacagctgtg ggagtagcagg 13080
ggctccgggt tctgagcccg tccactgtgc atcgtggccc tggcctcagg atggctcgta 13140
ccatcattgg ctgtgcccac agccgagtgg gtgatggat tccggctgcc ccgctggatc 13200
tgtgctgctg ccctctccag ggcactgctg tgcccgacca gcccggcga gatggccagt 13260
ttgcttgccc cccccccac catcctcttc ctaccttggc ttccctccatt gacacactgg 13320
accctgctgg ctgccccggg aggtgtttgg gggatgggtgt tgggggagga ggaggccccc 13380
ttgagcctca gtgtgcccatt caggagcgtt aggtcagtgc agcacctgcc cacacaggct 13440
gtgaagggtt ggagtggaga gggatgcaag ggggtcacaa cgcctggctc catgtcagct 13500
gcgtgcaggg gcaccaggag cccggccctca ttctccctt gaactggaaag ggtggccccc 13560
accccagcgg caggttagcat acgtatgaag cgctctccctt cctacacccc acaggtggc 13620
tgcgtctccag acggcccttt ttgagctggc tgtgttttc catctgtgtt ggcaggaca 13680
tcgcagactc cccttctca tccctcgt tcagcctccg aggccggagt ctccatccct 13740
gtgcctgcct gtgggtcccc ggaggacctg aggctgccc tgcacccccc ggcacatctcat 13800
cctggggaca gttcagccgt gggagggatc tgtaaggaca gaatgccgt ggcctgggg 13860

ctccccagct agtctcacac cccgtgtctg ggaccaggag accctgtgc agggctctgt 13920
tgcttggggc ctggcagcct cgtcctgtat cagaggctgc cacccccacc cctcgtgggg 13980
ccagggttgtt ggccggcctc cctggccctc cccatggaag tggtaggcgg agccagcagc 14040
catctgccccca gcccggggct gcactgtttt ttttcaaatacg agcaccgtcc caaactgcag 14100
cccgtaatt taaacaggat cattccggc cctggaagcc gcctcactct ccttaaatag 14160
aaaggagcac agcgcagagg gaaacagatg aggtcatggc tcggctggcc cagcgaggaa 14220
ggggccgcag tgggggtggc actgcccctgcgtccctgc ctctccagcg cccacactgc 14280
agcccatttc ctcaccctgg gcctgctctc gggagggacg ggcctggggg tcctcttgct 14340
gggcgggaggga gaaccagctc ctccaggaga ggacggggcc tggcaggggg catggggcct 14400
ccctgggtctt ggcgtcctgt cctgcccctg ccgagggagg agcggttaca taagctccgc 14460
aggcggccccc tccgagccgg tccccccagc ccagttcca gtgaggcggc cagcgcggc 14520
gggggtgcccggc ggcctggcgc acacccgctg ctgaccacac gtgtctggaa tgtgcagatg 14580
tttctttgggg ggctccgtcc ggccccccaga ccccactcag catctggtct ggggagtggg 14640
cgccctggggc actcagctct gagtgtgaga ctctgaggca ggtctggttt gtctggggcc 14700
attccctctg ctgtggatttgggagggccccc gggagctgcc ccacacccag ggaagttctc 14760
ctcagttccca ctgttgcatt ccccgacccc ggctccccggc gcccaggagc gcctgtgggg 14820
cagaaggccc agccccaaaga cttcccgccctc ctcgcggcct caggcttccac ccaccctcgc 14880
gccaactgtg ggcagagccc agggggaggg caggagagcc agcgcctggc tggaaacacc 14940
cctgagggggc cgaggctcca gggcgagggg gcccggacctg gggttcacac gcccgggtgg 15000
cgggcagacc cgctgcagca tgagacacgt gtcagctacc tcggggccggc aggctggccc 15060
tgctgcccac agccctggga cgtggcccca cctgtgacgg gtgtggaggg gcagcctcca 15120
ggcctggcca caccctctgc tggctgtct cctgctccag gattggcaag ggtgtggga 15180
aggggtgaag acccgtactg tggccacaca cctggggactt ctttctccac ccagtgggtgc 15240
cccagcagcc gctaaggagc ccgctgggtc ccacgcctagg atggtcctaa ctccctccgc 15300
cttccagatc ggacgctcgg cgctggggac cccttgcgtc ccggggctgg ggcaccgtcc 15360
tgccccatg ggggtgtact cctcccgaca agcttggctt cagcttccct gggagcacat 15420
cctggccctc gggcacccat caggctgtcc ctgtgcaccc ggctcccacc cttccagctc 15480
atagcaggaa ctggggtgag gagtgcgtgg ggcagcaagg gcctgggacc ccagaggacc 15540
ctgcactctg ctctgtgctc ttgcctgggc tttagggccgc tcgggtggcc tgctgccaga 15600
tgccctggggcc ctgctgtgtc ccccatcctt gcagggaaacc agaacgtggg ggcagggcat 15660
cagacagcgg cgatgatgtc acctggcgaaa tgcagaggaa gcccgggggg cgggggtgggg 15720

gggctggcgc gaggctgcct ggctaggcct tggcgttccc ccagaacggc gatggcaaaa 15780
gcagatggag acgtaaaaaa gtacgggagc aagcgaggtg aggactccac ggggaccct 15840
gtgctgttcc ctgtccctga agcccacacc tgagtccctgc ccagggcaga tgcttccaca 15900
cccagggggc acctgagtcc tacccagggc agacgcttcc acaccctggg ggctggggga 15960
ctgcacctgg ctccctgtctg ggccccagct tcattccact gcccctggcc ctgggagctc 16020
ggccgagcgg ggtcccaag accttgcgtc atttctggc cttggctgg ggtgagggcc 16080
gggagaagga gccagcctgg agcctggcac gcagggagtg catggccaga accggtgaca 16140
ggcagggctg cctgctggcg tggaaagaagt gtccatggca cccccaggcc tggttcacag 16200
tgggatgggc ggggagccgg ggggctctgg ggtccctggc tgacctgccc ccaccctgc 16260
cctggcttgc cagctcccag cagcagccac tcttgcgttgc tttccagaa aatgaggtgt 16320
ggccaaacat cttcaggcct ttccttcttt cctttctccc gtggcctggg tgggagctgc 16380
tccccatgcc tggggcagg tgcgagagcc tgcgtccctc cctggggcag tttcacagct 16440
gtgtcccttc cagggggcct gcctgtgttc accgtggcct ctgcagcacc tctcgccct 16500
tagggctcct gcgcctcggg tcccggtgcc tcatttctcc ctaaaggcatt gtttgcgt 16560
ccgcccgcgc cgctggaaag tccctcctca ggtctaactg cagttcctca cggcacagtg 16620
ttccccctcg ggcattggcgc ttgggcagtg ggtgtgagtc cagctgcctc accctgtctc 16680
gagaatggcc ttttgcgtt ctcctcagcca ccaccctgtc ccacccacg gggggatgg 16740
tgtggatgcc tagcagcgcg gctgtggcc caccatcct tatgggcagt ggggagcacc 16800
tcagcccgtg tccctacctt ggtgttagagg aggggacggc agagaagcag gtttgcgtt 16860
ggggggaaat ggtggccctg cggagggggc cttccctgt gtgcctggcc cccagatcct 16920
ctccccctccc ggagcccagg gcacaggcat aggctctctg agtgcctccac agccctggg 16980
ggaaagggaac tgcaccccca accgtgcctt ccattccgcag atggaaacgag aagctccggg 17040
agccagtgcc cagcgtctca tctgtctggg caccatccc aggtgagggc ctggctccac 17100
cgtccgtggc tgggtgtgtc tcctggcact gagaaggcct cggctgctct gtccctcag 17160
ctgggggtggc ctctggtccc cttctttgtt gttcccttc tcaagctttt gcccggccc 17220
cggggccccac cgggcagcct gtgtgtgcgt ctctcctgcg cggggtaggc tctgtggga 17280
gcggagctcc ggtggggagga gcagggctgg aggctggcag gggctggccg ggtgttcagg 17340
gatggaggcc gccccggctt ggggctggct gcccgggtgtt cattgctggg aagagcaagt 17400
ctaggcggag gcacctgctg ggtcactctgt ggggaggggtg acacctgggg aagtagaggc 17460
ccgtggcagg aggtgaggcc tcggggctt ggggagcagg ggggtgggtgt gcagacctgc 17520

ggagccatag tcctgtgcca ggagcaactac tgggagtgcg tgggaccagg aggggtgccc 17580
agggtggcgc gcagagtgac ccccgaggtg cttgaggccg aggggaggtg gagttctcg 17640
tttgccccag ctctctgtct actcacctcc gcatcaccag ctccaggacc tggtttgtaa 17700
ctcgggcagc tctgaaaaga gagacatgtc gcccctgt ggtttctgtt gcttttctt 17760
cactgactac tgacatggga tgttttctt acggctgtga ccaattgtgc ttcttcta 17820
tgcctggttt ttctttttt gttttggag ttttctttt ctttcctccc tccctctcac 17880
cctccatcct ttttttttt atttttattt tttgagatgg agcttcactc ttgcaggatg 17940
gggtgctgga gtgcaggggt gcatctcag ctcactgcaa cctctgcctc gcgggttcaa 18000
gtgattctcc tgcctaagcc tcctgagtag ctggaaattac aggtgcttc caccacgccc 18060
gactaattct gtagtttgg tagagacagg gtgtctccgt gttggtcggt ctggtcttga 18120
actcctgacc tcaggtgatg cggccgcctc agcctccaa agtgcggga ttacaggcag 18180
gagccattgc acccggtctt ttcccatttc cttttcttc tctctctcct ccctttttt 18240
cttttctttt ctttttttt tcttttggaa tggagtctcg ctctgtcacc aggctggatt 18300
gcagtggcgt gatcttggct cactgcaacc ttgcctccc ggttcacgt gattctcctg 18360
cctcagcctc ctgagtggtt ggcactacag gtcggcccg ccatgcccgg ctaattttt 18420
catttttagt agagacaggg tttcacccctg ttggccagga tggctctgat ctcttgcatt 18480
catgatccac ccaccccttggc ctcccaaagt tctggcatta caggagttag ccaccgtgcc 18540
cgcccatctt ttttccttg ctttctttt gttttcttc gagaccgggt cttgctctgt 18600
cgcccaggct ggactgcagt ggcacaatca tagctcaactg cagcctcgac ttccctggct 18660
caagcgatcc ttccctctca gccccccgag tagctggAAC tacagttaca cactaccatg 18720
cctggctgat ttttttttc ttgttagaga tggggcttc ctagctgtc catcctggtc 18780
tcaaactccctt ggcctccca aagcactggg tttacaggca taagccacca caccagttt 18840
ccttttcttc ttttaactg gaatagttga cgttttctttt attagctgtg tgtcaggagg 18900
gtatttttgg ccttagtat gtcgtgtaag ttgcttagtgc ttttctgaga ttgttagttt 18960
ttttctaatt ttatttatatt ttgcgtaga agttgtgtat tttagatggaa gtttagtcgg 19020
ctggcttttgc atgttttattt tattaattt gtatgtattt atttattttt gaggttagagt 19080
ctcgccgttt cacccaggctt ggagtacagt gatgcgtatct cagctccctg tagccttgac 19140
ctctctgggc tcaagtgtt tttctctcctt ctacccctccg agtacttggg accccaggcg 19200
catgccgcca tgcctggcta atgtgtattt ttgttagata cggggctctca ctgtgttgcc 19260
cagggtggtt tcaaaaatccctt gggcccaaggc gatcctccg tctcagctcc cacgggtgt 19320
tgttaccggc gtgtgcccag tgcctggccg tcttggaggtt ttgtttctc tgggtttatg 19380

cctcgaggtg ggcgcctgctc ccctgtgctc cctggtagcc tggtagtgag cctgcttc 19440
acacagtcat acctggttgt ggtcccacag tgggaccacc ctgttgggtt cagaacagga 19500
gatgggggcc cctcgagtct gtgtgggggc tgtggacagg gttgggagac cttggctatg 19560
tgggggactg tggacagggg atggggggcc ttggccctgc gtgggatggg ttgggggtcc 19620
gtgcccctcc tggccctggg tggacaggc catgtggcac tcggcatagg gctgagatgg 19680
gtgcagaggg ctgaggcccc caggcctctc ctggcttgtt ttccccagat gagtgttcat 19740
ttgggtcttc catcagaaag tcccctcctg acctctgggaa gtggggagct caagggtggg 19800
aggccatagc ttggggatgc tggcaatgtg tggatgggc ccagggaaagg cctctggcct 19860
actaggggct ctggccctga cccacggcca ctcactcctc agagacgtct cccacaacct 19920
gctccggcg ctggacgttg ggctcctggc gaacctctcg gagctggcag agctgtgagt 19980
gtcccccagt cgtgccagca tgcggggctc actccgggtg ggctggcggc accgcctctt 20040
gctgctcagc tgtggggct tccatcagct ttgccaatc cccctgtctc tccagggata 20100
taagcaacaa caagatttct acgttagaaag aaggaatatt tgctaattta tttaatttaa 20160
gtgaaatgta agttgtggtt ctttgggtgg ggtcctggct ggaccccagg ccccaatat 20220
cccttctgcc ctcccagttg gtccgtgtcc cttccaggc ttgagaccag atcctggggg 20280
cagttcactg cctgcttggg gccccccagt gccggcttgg ttggggcagg ggaggcggtg 20340
ctgtcagggt ggctccaggg cctgggtgcc agtggggggc tggcatagac cttcccacc 20400
agacctggtc cccaaacacct gcccctgccc tgcagaaacc tgagtggaa cccgttttag 20460
tgtgactgtg gcctggcggtg gtcggcgca tggcgaggagg agcagcaggt ggggtggtg 20520
cagcccgagg cagccacgtg tgctgggcct ggctccctgg ctggccagcc tctgcttggc 20580
atccccttgc tggacagtgg ctgtggtgag tgccgggtgg tggggccagc tctgtccttc 20640
ccagccaggt gggacctggg ccctgcagac actggcagg gtcaggaag gcctctctgg 20700
ggggggccctc cgggccaagg gaacagcatg ggagcctgtg agtgcggcgg gggatgtgg 20760
gggcgtgggg tggagccagg aggagcagaa cccgggtcc agtggctgcc tcttcttaggt 20820
gaggagtatg tcgcctgcct ccctgacaaac agtcaggca ccgtggcagc agtgccttt 20880
tcagctggcc acgaaggccct gttcagcca gaggcctgca gcgccttctg cttccacc 20940
ggccaggggcc tcgcagccct ctcggagcag ggctgggtcc tggatggggc ggccagccc 21000
tccagtgcct ctttgcctg cctgtccctc tgctccggcc cccggccacc tcctggcccc 21060
acctgttaggg gccccaccct ctcaggcac acgttccctg cctccccagg ggccaccctg 21120
gtggggccccc acggacctct ggcctctggc cagctagcag cttccacat cgctggcccc 21180

ctccctgtca ctgccacacg ctgggacttc ggagacggct ccggcgaggt gnatgccgct 21240
gggcggctg ctcgcacatcg ctatgtgctg cctggcgct atcacgtgac ggccgtgctg 21300
gcccctgggg ccggctcagc cctgctgggg acagacgtgc aggtggaagc ggcacctgcc 21360
gcccctggagc tctgtgtgccc gtcctcggtg cagagtgacg agagcctcga ctcagcatc 21420
cagaaccgcg gtgggtcagg cctggaggcc gctacagca tctgtggccct gggcgaggag 21480
ccggcccgag gtgagtgtct gctgcccact ccccttcctc cccagggcca tccagatggg 21540
gcagagcctg gtaccccgat cttgggcca cactgaccgt tgacaccctc gttcccaccg 21600
gtctccagcg gtgcacccgc tctgcccact ggacacggag atcttccctg gcaacgggca 21660
ctgctaccgc ctgggtgtgg agaaggcggc ctggctgcag ggcgaggagc agtgcaggc 21720
ctggggccggg gccgcctgg caatggtgga cagtcccgcc gtgcagcgt tccctggctc 21780
ccgggtcacc aggtgcctgc ccccaccccc cgaggggcca taggttgga gatctctgaa 21840
gcactggggc agagactgcg gctggggagt ctcaggagga aggaggtggg agctggggcg 21900
gccctggtga gcaggtggcg ccggccggtg gggccgttcc tgcagctct gcagatgcag 21960
agggtggacat gagctggggg cagcctccgg acactctgg gcacgccata cgggaggtgg 22020
cctgcacggg gatccctgccc ggtacccaca ggccccgtgg gtgggtgctg ctgtgagcct 22080
gggctggtgg gccctggctc cgggctctg agcctcagtt tccccatctg gaaaggggga 22140
cagtgtggg gctcccaagcg ggctgctgtg aggggtggag gatggaggag tgccctgagc 22200
ccccctgccc cccacacccg cccccaggag cctagacgtg tggatcggt tctcactgt 22260
gcaggggggtg gaggtgggccc cagcgccgca gggcgaggcc ttcagcctgg agagctgcca 22320
gaactggctg cccggggagc cacacccagc cacagccgag cactgcgtcc ggctcgcc 22380
caccgggtgg tgtaacacccg acctgtgctc agcgcgcac agctacgtct gcgagctgca 22440
gcccggaggt gtgcggggggg ccaggcaggc gcctgagacg ctggctgtgg ttaggggcct 22500
ggcgagcgcc cgcgggtggag cctgggctga ggaggagggg ctgggtgggg ggtttccgg 22560
cggctcggtc cccagtcgt tgcgtctgt gtcctggcc ctggcccgcc gcctcactgt 22620
gcactcgcca ccccaaggccc agtgcaggat gccgagaacc tccctgtgg agcgcggc 22680
ggggacactgc agggacccct gacgcctctg gcacagcagg acggcctctc agcccccgcac 22740
gagccctgtgg aggttagtcgg ccccccacgt tctacaacct gccctcctgc ctgcggctgg 22800
aggccttgc tgcctgccc actgtgggtc tcgcacaaaaa acttgggggc cttaatgttg 22860
cttgcgtccca gtgaagatgg ttgggaaaat ccagagtgcg gagaggaaag cgtttactca 22920
cattacctcc aggccttttc tctgagcgtg tgcgtttat tccctgaaagg caggtcagg 22980
gtcctgcccc ccatggacag tttccaccgg agtcttcctc tcgagcgcaca ggagccaggc 23040

ctgtgggggt ctgatggctc gctctccttc cctccctct tcctgggaag ttccggtagg 23100
gggagtctgg gcttcaggct gggatgggggt ctgtggagct gaggcggccc cctgcccacc 23160
aggtcatggt attcccgccc ctgcgtctga gccgtgaagc cttcctcacc acggccgaat 23220
ttgggaccctt ggagctccgg cggcccgccc agctgcggct gcaggtgtac cggctcctca 23280
gcacagcagg tggactctg ggtggtgggt ggtgggtggt gggcgccgca ggactcgggg 23340
tggcctctct gagcttcac gtctgctggt cctgtggcca ccagagtggt tcccagtctt 23400
agggtggacag agcaggggtt ccagagacac cagtcattc caggtgtcct ggggtggat 23460
tgggtggggc ctgcctgggg gccggcctgg gtcagtcggc tggccggaga cggacgcagc 23520
actgggctgg gagtgctgcc caggtggggta gacctgtcct cacagcaagg ccaggattgc 23580
tggtgcaggc agttggcat ctctgacggt ggcctgtggg caaatcaggg ccccaacacc 23640
ctccccctcct cacagggacc cggagaacg gcagcgagcc tgagagcagg tccccggaca 23700
acaggaccctt gctggccccc gcgtgcatgc cagggggacg ctgggtccct ggagccaaca 23760
tctgcttgccc gctggacgccc tcctgccacc cccaggcctg cgccaatggc tgcacgtcag 23820
ggccaggggctt acccgggggcc ccctatgcgc tatggagaga gttcccttcc tccgttcccg 23880
cgggggccccc cgcgcagtac tcggtgtgtg gcccgtaccc gggctgttc cctgcatttc 23940
ctcaggccac ctccctgtct gctgcccagg gtctgggtct gtgcaccaga cacacccagc 24000
ctgcaggccc ctcccacgtc cttgccaccc ctgacccctcg acctctgcag tgccctcggc 24060
cctctcccaag tgggagaagc tctcgccctgg gcccattggca cgagctgtgc ctccctttcc 24120
tctctcccaag cacagctgtt cttcctgtc tgccaggtct tggcctgtgt cctctcccg 24180
tgtgtccccc ggtctgcaac tgcctgcct gtccattgtca cgagcactgt gggagggtc 24240
cttgagggtgt ggctgacgaa gcggggagcc ctgcgtgtcc accctcatcc gtcgtgcggg 24300
ggtccacggg ccatgaccgt gaggacgtga tgcagccctg cttcccttc cacaggtcac 24360
cctccacggc caggatgtcc tcatgctccc tggtgacccctc gttggcttgc agcacgacgc 24420
tggccctggc gccccttcgc actgctcggc ggctccggc caccctggc cccggggccc 24480
gtacccctcc gccaacgcct cgtcatggct gccccacttg ccagcccagc tggagggcac 24540
ttgggcctgc cctgcctgtg ccctgcggct gcttgcagcc acggaacagc tcaccgtct 24600
gctgggcttg aggcccaacc ctggactgctg gctgcctggg cgctatgagg tccgggcaga 24660
ggtgggcaat ggcgtgtcca ggcacaacct ctccctgcagc tttgacgtgg tctccccagt 24720
ggctgggctg cgggtcatct accctgcccc ccggacggc cgcctctacg tgcccaccaa 24780
cggctcagcc ttggtgctcc aggtggactc tggtgccaaac gccacggcca cggctcgctg 24840

gcctgggggc agtgtcagcg cccgcttga gaatgtctgc cctgcccctgg tggccacctt 24900
cgtccccggc tgccccctggg agaccaacga taccctgttc tcagtggtag cactgccgtg 24960
gctcagttag ggggagcacg tgggtggacgt ggtgggtggaa aacagcgcca gccggggccaa 25020
cctcagcctg cgggtgacgg cggaggagcc catctgtggc ctccgcgcaca cgcccagccc 25080
cgaggcccgt gtactgcagg gagtcctagt ggtgagtagt gccgaggctc caccaccagc 25140
ccccaggcag gtgcctgcag acagggtgct cacacaggcgt gtgaggcctg gcttcccagt 25200
gagggcagca gcccagttac tggggacgtc ggccccggc aggtcctgct ggctggctcc 25260
tcgggctacc tgggtggctt taaattcctg gaaagtcaag gctctgacag tggctccgct 25320
aactcattcc actgtctcat ttcacaaaaat gaattaaaaa ctctgctccc tgacccatcaca 25380
cgagcccccg tgagtctctc acgcctctg ctgtgtctc gcctggctaa agcgagtggc 25440
tttgagggtg gagtctgaac ccctgatggg aaactgcggg ctgcccggg tgccaccatg 25500
ctgggtacat gggggacagg gctgtctcca tcttgcgggt acctgcctct tcaccagggg 25560
ccttgggagg ggccatcaga aatggcgtga cctgtgcagc ctgtcctggg ttctgttaagc 25620
cagtgttaggt gcctcccctc actgctccga gctctctggg tgaggagctg gggcaagagc 25680
gccgggaggg tctgagaaga ctcagagaga ggtggactct ttgtagctgg tactaggttt 25740
gctttacaga tggggaaact gaggcacaga gaggttgagg cattagtagt actacatggc 25800
tggctggaga gccggacagt gagtgcctca gcccggctt ggctccatg gcatgcagag 25860
ccccgggacac ctccctctct ctgtgccccg cgtggactc tccagccca cgggaggtgt 25920
gtccaggagg cgacaggcta agggcagagt cctccacaga gcccaggctg acaccattcc 25980
cccccgagag gtacagcccc gtggtgagg cccgctcggc catggcttc cgggtggacca 26040
tcaacgacaa gcagtcctc accttcaga acgtggtctt caatgtcatt tatcagagcg 26100
cgccggtctt caagctctca gtaggtggc ggggggtgggg agggggagggg atggggcggg 26160
gcagggcggg ggcgggctcc accttcaccc ctgccttctg ctctgcttca tgctgcccga 26220
ggacgcgtcc atggctgtgg gtgagtgagg ggagggacgc caatcaggcgc caggcctctc 26280
acctgcccacc tgggctcaact gacgcctgtc cctgcagctg acggcctcca accacgtgag 26340
caacgtcacc gtgaactaca acgttaaccgt ggagcggatg aacaggatgc agggtctgca 26400
ggtctccaca gtgcggcccg tgctgtcccc caatgccacg ctagcactga cggcggcgt 26460
gctggtggac tggccgtgg aggtggcctt cctgtgagtg actcgggggc cgggttgggg 26520
tgggcaccag gctctgtcc cagccccagc ctcagccgag ggaccccccac atcacggggt 26580
tgctttctg agcctcggtt tccctgtctg ttgggaggtt actgggtgca caggagccct 26640
gaggctgcac gggagccggg agaggcctca gcacagccgg gtggccctg aatggaggcc 26700

cgggggcgtga ctgcagagtg gagcctcggc tgggtcccaa gcaccccccgt ccccgccacc 26760
gcccacccct gtcccggttc actcaactgcg tcccacccgccc cggcaggtg gacctttggg 26820
gatggggagc aggccctcca ccagttccag cctccgtaca acgagtcctt cccggttcca 26880
gaccctcgg tggcccaggt gctggtggag cacaatgtca tgcacacacca cgctgcccc 26940
ggtgagggat gaggggggtga gggggccact gccttcagg ctctgagcac gggtccccc 27000
agctccccag tcaagctgcc ccccttcctc cccaaacagcc ctcactgtga cctcacctgg 27060
gctgatggct taggcctac tgggtgagg gagggggccag gcgtgggggg agtggacagg 27120
gaagctgggc ccctgaactg cggcccccgc cctccccggg cctggcttt gctgctctgc 27180
tgccccgagt gcagctgcac ttggaggcgg tgcgtcctcg ccaggcagcc ctcagtgctg 27240
ctacacctgt gtcggcgtccc gcacgtggat tggagccctg ggacccttaa ggctggccg 27300
caggtgcagc cgttacaccc gggctcctca ggcggggggc ttctgcccag cgggtgggaa 27360
gcaggtgggg gtgcgcggc tgccccactc gggcctgtcc ccacaggtga gtacccctg 27420
accgtgctgg catctaattgc cttcgagaac cggacgcagc aggtgcctgt gagegtgcgc 27480
gcctccctgc ctcggcgtggc tgtgggtgtg agtgcggcgg tcctgggtggc cggccggccc 27540
gtcacccctt acccgcaccc gtcggcctcg ctcgggggtg ttctttacac gtggacttc 27600
ggggacggct cccctgtcct gacccagagc cagccggctg ccaaccacac ctatgcctg 27660
aggggcaccc accacgtgcg ctcggagggtc aacaacacgg tgagcggtgc ggcggccag 27720
gcggatgtgc gcgtcttga ggagctccgc ggactcagcg tggacatgag ctcggccgtg 27780
gagcagggcg ccccccgtggt ggtcagcggc gcgggtgcaga cgggcgacaa catcacgtgg 27840
acttcgaca tgggggacgg caccgtgctg tcggggccgg aggcaacagt ggagcatgtg 27900
tacctgcggg cacagaactg cacagtgacc gtgggtgcgg ccagccccgc cggccacctg 27960
gcccggagcc tgcacgtgct ggtcttcgtc ctggaggtgc tgcgcgttga acccggcc 28020
tgcattccca cgcagcctga cgcgcggctc acggcctacg tcaccggaa cccggcccac 28080
tacctcttcg actggacctt cggggatggc tcctccaaca cgaccgtgcg ggggtgccc 28140
acggtgacac acaacttcac gcggagcggc acgttccccc tggcgctgtt gctgtccagc 28200
cgcgtaaca gggcgcatca cttcaccaggc atctgcgtgg agccagaggt gggcaacgtc 28260
accctgcagc cagagaggca gtttgcgtcag ctgcgggacg aggccctggct ggtggcatgt 28320
gcctggccccc cggtccctca ccgtacacc tgggactttg gcaccgagga agccggccccc 28380
accctgtccca ggggcctga ggtgacgttc atctaccgag acccaggctc ctatcttgc 28440
acagtcacccg cgtccaaacaa catctctgtt gccaatgact cagccctggc ggggtgcag 28500

gagccccgtgc tggtcaccag catcaaggc aatggctccc ttgggctgga gctgcagcag 28560
ccgtacctgt tctctgtgt gggccgtggg cgccccgcca gctacctgtg ggatctgggg 28620
gacgggtgggt ggctcgaggg tccggaggtc acccacgctt acaacagcac aggtgacttc 28680
accgttaggt ggccggctgg aatgaggtga gccgcagcga ggcctggctc aatgtgacgg 28740
tgaagcggcg cgtgcggggg ctcgtcgtca atgcaagccc cacgggtggg cccctgaatg 28800
ggagcgtgag cttcagcacg tcgctggagg ccggcagtga tgtgcgctat tcctgggtgc 28860
tctgtgaccg ctgcacgccc atccctgggg gtcctaccat ctcttacacc ttccgctccg 28920
tgggcacctt caatatcatc gtcacggctg agaacgaggt gggctccgcc caggacagca 28980
tcttcgtcta tgtcctgcag ctcatagagg ggctgcaggt ggtgggcggt ggccgctact 29040
tccccaccaa ccacacggta cagctgcagg ccgtggtag ggatggcacc aacgtctcct 29100
acagctggac tgcctggagg gacaggggcc cggccctggc cggcagcggc aaaggcttct 29160
cgctcaccgt ctcgaggccg gcacctacca tgtgcagctg cgggcccacca acatgctggg 29220
cagcgcctgg gccgactgca ccatggactt cgtggagcct gtggggtggc tggatggcgg 29280
cgccctcccg aaccctagct ccccccacacc cggccctgcac ttgggtcacca tgacggcagg 29340
tggcagtgggt gtcgtataca cttggtcctt ggaggagggg ctgagctggg agacccctcga 29400
gcattttacc acccatagct ccccccacacc cggccctgcac ttgggtcacca tgacggcagg 29460
gaacccgctg ggctcagcca acgccaccgt ggaagtggat gtgcaggtgc ctgtgagtgg 29520
cctcagcatac agggccagcg agcccgagg cagcttcgtg gggccgggt cctctgtgcc 29580
cttttggggg cagctggcca cgggcaccaa tgtgagctgg tgctggctg tgcccgccgg 29640
cagcagcaag cgtggccctc atgtcaccat ggtctcccg gatgctggca ctttctccat 29700
ccggctcaat gcctccaacg cagtcagctg ggtctcagcc acgtacaacc tcacggcgg 29760
ggagcccatc gtggccctgg tgctgtggc cagcagcaag gtgggtggcgc cggggcagct 29820
ggtcatttt cagatcctgc tggctgcggg ctcagctgtc accttccgcc tgcaaggcgg 29880
cggggccaac cccgaggtgc tccccgggcc ccgtttctcc cacagcttcc cccgcgtcgg 29940
agaccacgtg gtgagcgtgc gggcaaaaa ccacgtgagc tgggcccagg cgcaggtgcg 30000
catcgtggtg ctggaggccg tgagtggct gcaggtgccc aactgctgcg agcctggcat 30060
cgccacgggc actgagagga acttcacagc ccgcgtcag cgcggctctc gggtcgccta 30120
cgccctggta ctttcgtgc agaaggtcca gggcgactcg ctggtcattcc tgctggcccg 30180
cgacgtcacc tacacgcccg tggccgcggg gctgttggag atccaggtgc ggcgcattcaa 30240
cgccctgggc agtgagaacc gcacgctggt gctggaggtt caggacgccc tccagttatgt 30300
ggccctgcag agcggccct gcttcaccaa ccgctcggcg cagtttgggg ccgcaccag 30360

ccccagcccc cggcggtgtgg cctaccactg ggactttggg gatgggtcgc cagggcagga 30420
cacagatgag cccagggccg agcactccta cctgaggcct ggggactacc gcgtgcaggt 30480
gaacgcctcc aacctggtga gcttcttcgt ggcgcaaggcc acggtgaccg tccaggtgct 30540
ggcctgccgg gagccggagg tggacgtggt cctgccccctg caggtgtga tgcggcgatc 30600
acagcgcaac tacttggagg cccacgttga cctgacgcac tgcgtcacct accagactga 30660
gtaccgctgg gaggtgtatc gcacccgcag ctgcccggg ccggggcgcc cagcgcgtgt 30720
ggccctgccc ggcgtggacg tgagccggcc tcggctggt ctgcccggc tggcgctgcc 30780
tgtggggcac tactgctttg tgtttgcgt gtcatttggg gacacgcccac tgacacagag 30840
catccaggcc aatgtgacgg tggcccccga gcgcctggt cccatcatcg agggtggctc 30900
ataccgcgtg tggtcagaca cacgggaccc ggtgtggat gggagcggagt cctacgaccc 30960
caacctggag gacggcgacc agacgcccgt cagttccac tggccctgtg tggcttcgac 31020
acaggtcagt gcgtggcagg gccgtcctcc atgccttca cccgtccaca cccatgagcc 31080
cagagaacac ccagcttgcc accagggctg gcccgtcctc agtgcctggt gggcccccgtc 31140
ccagcatggg gaggggggtct cccgcgtgt ctccctggcc gggctctgt taaaaactgg 31200
atggggctct caggccacgt cgccccttgt tctccgtcgt cagagggagg ctggcgggtg 31260
tgcgtgaac tttggccccc gcgggagcag cacggtcacc attccacggg agcggctggc 31320
ggctggcgtg gagtacaccc tcagcctgac cgtgtggaaag gccggccgca aggaggaggc 31380
caccaaccag acggtggttg cccggccccc ctccggccact tgccttggac agccacccgt 31440
ccctggtcat ctactgtttt ccgtgttttta gtgctgggttgg aggccgcacg ctctccctc 31500
tctgtttctg atgcaaattc tatgtAACAC gacagcctgc ttcaGCTTTG ctcccttcca 31560
aacctgccac agttccacgt acagtcttca agccacatat gctctagttgg caaaagctac 31620
acagtccttccatcc agcaataccaa acagtggaggaa agagccctt cccacccagc aggttagccac 31680
tgtccccagc ccatgtccct gttgtggat gtgggtggcc ggttctcacc ctcacgctcc 31740
cctctctggaa ccggccagga ggcttgggtga ccctgagccc gtgggtggctg ctccatgtgc 31800
tgtcaggcgg ggcctgctgg tgccccagag tggccgtctg ttccccagtc cctgtttcc 31860
tcagctggcc tgattggggg tcttccaga ggggtcgctt gaggggagggg tgtgggagca 31920
ggttccatcc cagctcagcc tcctgacccaa ggccctggct aagggtgcgaa ggagtctgtg 31980
agtcaGGGcct acgtggcagc tgccgtcctc acacccacac atacgtctct tctcacacgc 32040
atccccccag gggccctcag tgagcattgc ctgcctcctg cttagggtcca gctgggtcca 32100
gtacaccaga acgcacactc cagtgtcctc tgccctgtgt atgccttcc gccgtccaag 32160

ttggaaagggtg gcaaaccgga tgagtatcct gggagggagt gagctcacccg gcagtggcca 32220
ggccccctggg aaacctggag tttgggagca gcattccca tgggtccccca agtccttcca 32280
gcaggccaaa tagacctgtg ttggaggtaa ccccactccc acgccagggtg ctgatccgga 32340
gtggccgggt gcccattgtg tccttggagt gtgtgtctg caaggcacag gccgtgtacg 32400
aagtgagccg cagctcctac gtgtacttgg agggccgctg cctcaattgc agcagcggct 32460
ccaagcgagg ggtgagtggtt gagcgggggtg tggggggct gggatgggt cccatggccg 32520
aggggacggg gcctgcaggc agaagtgggg ctgacaggc agagggttgc gccccctcac 32580
cacccttct gcctgcagcg gtgggctgca cgtacgttca gcaacaagac gctggtgctg 32640
gatgagacca ccacatccac gggcagtgca ggcatgcac tggtgctgctg gggggcgtg 32700
ctgcgggacg gcgagggata cacccacg ctcacggtgc tggggccctc tggcgaggag 32760
gagggctgctg cctccatccg cctgtccccca acccgccccgc cgctgggggg ctcttgcgc 32820
ctcttccac tgggcgtgt gcacgcctc accaccaagg tgcacttcga atgcacgggt 32880
gagtgcaggc ctgcgtgggg ggagcagcgg gatccccca ctctgtgacg tcacggagcc 32940
ctcccggtat gccgtggggca ccgtccctca ggctggcatg acgcggagga tgctggcgcc 33000
ccgctgggt acgcctgct gctgcggcgc tgcggccagg gccactgcga ggagttctgt 33060
gtctacaagg gcagcctatc cagctacggc gccgtgtgc cccgggttt cagggcacac 33120
ttcgaggtgg gcctggccgt ggtggtgcag gaccagctgg gagccgctgt ggtgcgcctc 33180
aacaggtgag ccaggccgtg ggagggcgcc cccgagactg ccacctgctc accacccct 33240
ctgctcgtag gtcttggcc atcaccctcc cagagccaa cggcagcgcac acggggctca 33300
cagtctggat gcacggcctc accgctagtg tgctcccagg gctgctgcgg cagggcgtc 33360
cccagcacgt catcgagtac tcgttggccc tggtcaccgt gctgaacgag gtgagtgca 33420
cctgggaggg gacgtcacat ctgctgcacat cgtgtttggg accaagacct gtacccctgc 33480
ctggagcttt gcagagggct catccgggc cccagagata aatcccagtg accctgaagc 33540
agcaccccgaa cttccgcctc ccagcagcca cacccaccgg gccctctccg gcgtctgctt 33600
tccacaatgc agccccggcc caggagggcc catgtgctta ccctgttttgc cccatgaaga 33660
aacagctcag tgggtgggt cagtgccgc atcacacagc gtctagcactg taactgcacc 33720
ccgggagtcg tgggcattctg ctggcctctt gccggcctcc tgctgcgtg acagcttgc 33780
gtgccccctg cctgccccag tacgagcggg ccctggacgt ggccgcagagc ccaagcacga 33840
gcggcagcac cgagccaga tacgcaagaa catcacggag actctgggtt ccctgagggt 33900
ccacactgtg gatgacatcc agcagatcgc tgctgcgtg gcccagtgc tgtaggatg 33960
gccccacctg ctcaccctgc cccgcattgc tgccaggca ctgggttca gccccccagg 34020

cagacgggca gcttggccga ggagctgagc ctccagcctg ggatccatcc tgccatggcg 34080
ttcctcggtc tctgacactgc ttcagtagcc tcagccgttc tgcctgtgt gaacgcaggg 34140
tgccctcggtc gggaccagg gtgtaaagag gggcccaat gtggggaggg actaagaaga 34200
tgctgctctg tgccctccac tctccctcc cctccctcc ccattccctc ccctagcccc 34260
tccctccctc ccctccctca gccctccccc tcctccctc ccctagccct ttcccttctt 34320
cccccccaagc ccctccctc ctccctccccc cttagccctc ccctccctcc ctccctacc 34380
ccctccctc ctccctccccc cttagacccctc ccctcacccctc ctcccgctga gcccctccac 34440
tgcgtccca gcccctccat cccctagccc ctccctccccc cttccctccctc ctccctccccc 34500
tccctccctc ccctccctca ttccctccccc tccctccctc ccctccctcc ccctccctcc 34560
ccctccctat ccgtttccccc tcctccctat ccctccctat ccctccctcc ccctccctcc 34620
tccctccat ccctccctcc tcctccctat ccctccctcc ccctccctcc tcctccctcc 34680
ctccctccat ccctccctcc tcctccctat ccctccctcc ccctccctcc ccctccctcc 34740
ccctccctcc tcccatccat ccctccatcc ctccctccccc ttccctattct ctccctccccc 34800
ccctccattt ctccctccctc ccctgcctt ccctccctcc tcacccctcc ttctccgctc 34860
ctttcttctc ctccctccat ttctccctcc ccctccctcc tccccttctc ctccctccccc 34920
cttctccat ctttcatcc ttcccttctt ccctccctcc ccctcccttcc ccctccctcc 34980
cccccctccat ccctccctcc tcctccctat ccctccctcc ccctccctcc tcctccctcc 35040
tccctccat ccctccctcc tcctccctcc tcctccctcc tcctccctcc ccctccctcc 35100
ccgggtccat ctccctccat ccctccatcc ctccctccat ccctccctaa ccctccctat 35160
ctccctccat ccctccatcc ctccctccat ccctccctcc tcctccctcc tcctccctcc 35220
ccctccctccat ttccctccat tcctccatcc tcctccctcc tcctccctcc ccatgggggg 35280
tcctccctccat ccctccatcc ccctccatcc tcctccctcc tcctccatcc tcctccctcc 35340
ctccctccat ccctccatcc tcctccatcc ccctccatcc tcctccatcc tcctccctcc 35400
ctcccatccat ccctccatcc atccctccat ccctccatcc cactccatcc ctcccatcc 35460
ctccatccat ccctccatcc tcctccatcc tcctccatcc ccctccatcc tcctccatcc 35520
ttccctccat tcctccatcc tcctccatcc ccctccatcc tcctccatcc ccctccatcc 35580
tcctccatcc tcctccatcc tcctccatcc tcctccatcc tcctccatcc tcctccatcc 35640
ctccatccat ccctccatcc tcctccatcc ccctccatcc tcctccatcc tcctccatcc 35700
tcctccatcc tcctccatcc tcctccatcc tcctccatcc tcctccatcc tcctccatcc 35760
tcctccatcc tcctccatcc ccctccatcc tcctccatcc tcctccatcc tcctccatcc 35820

tttcccccttc ctttccccctc tcctttctcc ttccctttctt ctcccccttct cttcccttttc 35880
ctctctccccc ttctttccccc tcttccccctc ccctccctttt ccctcccccctt cctcttcccc 35940
tccccctccctc ttccccctccc ctcctatcc cctatccctcc tcttccccctc ccctccctttt 36000
tccccctccat cttctccctcc ctcctatcc cctatccccc tccccctccctc ttccccctccc 36060
ttccccctccctc ctccctttcc ctcctatcc cctcccccctcc tcttccccctc ccctcccccctc 36120
ctcttccttc ctctatccccc tccccctctt cttccctccctc ctcttccccctt ccctccctatct 36180
tctccctccccc ttctcttccccc tccccctttt cttccctccctc ctgtcttcc ctgcctccct 36240
cttcctccccc ctccctttcc ctcctatcc cctatccctt cctatccctt ccctcttcc 36300
tctttccat tccccctcccc tccctccctcc tccctttcc cctatccccc tccccctccgc 36360
ttccccctccccc ttctctcccccc tccctatccctcc ccccttctat cccctccccat 36420
ctcccccttc tctccctatcc cctctccccc ttctctccccc tctccctccctcc cccttctatcc 36480
cccttctat ccccttctatcc tctcccttc tctcccccctt ctatcccttc ccccttctatcc 36540
tccccctcccc tctcccccatt ctctcccttc cccctccccc tgcctctcc tctccacccct 36600
tctctcccccctt cccttctatcc ctcccccttc cctcttctat ccccttctatcc tccccctcccc 36660
tctcccttc ccccttttctt ccactccccc tctcccttc cccctccctatcc ccgcctctatcc 36720
gtgaagaggt gccttgggtg gtcgggtggc tgcacatcacgt ggtccccagg tggaggccct 36780
gggtcatgca gagccacaga aaatgcttag tgaggaggct gtgggggtcc agtcaagtgg 36840
gtctccage tgcaggggctg ggggtgggag ccaggtgagg acccgtagtgc agaggagggc 36900
gtgtgcaagg agtggggcca ggagcggggc tggacactgc tggctccaca cagggggccca 36960
gcagggagct cgtatgccgc tcgtgcctga agcagacgct gcacaagctg gaggccatga 37020
tgctcatccat gcaggcagag accaccgcgg gcaccgtgac gcccaccgcc atcggagaca 37080
gcatccctcaa catcacaggt gcccggccccc gtgcggccatg ccacccggccccc gcccggccatg 37140
gcctttccct ctgcctccctt ctcctccccc accgcgtgcgc ctggccccc tcccatcttc 37200
gtccccctcc cctcccccata attcccatcc tcataccccc cccccaatttc ccattctatcc 37260
ccccctcccc cttccctattt accatccctt ttctccatct ctatccccc ttctccatattt 37320
cccccccggtt cctcccccgtc ctggccatcc ttccctccatctt ctatccccc cccctccatcc 37380
cccttcccccctt cccttccatcc ctcctccccc tgcctccatcc ttctccatcc 37440
ctctttcttc tacccttttc ctgcacatcc ctcctccatcc cccatccatcc ccctcatcc 37500
cgatccatcc cccatccatcc tccctccccc ccctccacca ctatccatcc agatccccc 37560
ttcccttctgc ctgcacatcc ctcctccatcc ctcctccatcc ttccctccatcc ccagccccc 37620
ccctccggat cccctttttt gcctgcccccc accctccctc tacctccctg tctctgcact 37680

gacctcacgc atgtctgcag gagacctcat ccacctggcc agctcggacg tgcgggcacc 37740
acagccctca gagctggag ccgagtcacc atctcggatg gtggcgtccc aggacctaca 37800
cctgacctct gcacctcatgc gcacctcat gcgctcccgc gtgctcaacg aggagccct 37860
gacgctggcg ggcgaggaga tcgtggccca gggcaagcgc tcggaccgcg ggagcctgct 37920
gtgctatggc ggcccccag gcacctggctg ccacttctcc atccccgagg ctttcagcgg 37980
ggccctggcc aacctcagtg acgtggtgca gtcacatctt ctgggtgact ccaatccctt 38040
tcccttggc tatatcagca actacaccgt ctccaccaag gtggcctcga tggcattcca 38100
gacacaggcc ggcccccaga tccccatcga gcgggtggcc tcagagcgcg ccatcaccgt 38160
gaagggtgccc aacaactcgg actgggctgc ccggggccac cgcagctccg ccaactccgc 38220
caactccgtt gtggccagc cccaggcctc cgtgggtgct gtggtcaccc tggacagcag 38280
caaccctgcg gccgggctgc atctcagct caactatacg ctgctggacg gtgcgtgcag 38340
cgggtggggc acacgcggcc ccctggcctt gttttgggg ggaaggcggtt ttcgttaggg 38400
cttccatggg tgtctctggt gaaatttgct ttctgtttca tgggctgctg gggcctggc 38460
cagagaggag ctgggggcca cggagaagca ggtgccagct ctggcgcaga ggctccatg 38520
cttcaggcc cgtggcagag ggtgggctca ggagggccat cgtgggtgtc cccgggtgg 38580
ttgagttcc cggcaggcgt gtgacctgcg cgttctgccc caggccacta cctgtctgag 38640
gaacctgagc cttacactggc agtctaccta cactcggagc cccggcccaa tgagcacaac 38700
tgctcggcta gcaggaggat ccgcggcagag tcactccagg gtgctgacca ccggccctac 38760
accttcttca tttccccggg gtgagctctg cggccagcc tggcagggca gggcagggca 38820
tcatgggtca gcattgcctg gtttactggc cccatggga cggcaggcag cgagggact 38880
ggaccgggta tgggctctga gactgcgaca tccaaacctgg cggagcctgg gtcacgtcc 38940
gctaccctt ccctgcccag gagcagagac ccagcgggaa gttaccatct gaacctctcc 39000
agccacttcc gctggcggc gctgcagggtg tccgtggcc tgtacacgtc cctgtgccag 39060
tacttcagcg aggaggacat ggtgtggcgg acagagggc tgctgcccct ggaggagacc 39120
tcgccccgoc aggccgtctg ctcacccgc cacctcaccg cttcggcgc cagcctttc 39180
gtgcccccaa gccatgtccg ctttgtgtt cctgtgagtg accctgtgct cctggagcc 39240
tctgcagagt cgaggagggc ctgggtggc tcggctctat cctgagaagg cacagcttgc 39300
acgtgacctc ctggggccgg cggctgtgtc ctcacaggag cgcacagcgg atgtaaacta 39360
catcgcatg ctgacatgtg ctgtgtgcct ggtgacctac atggcatgg ccgcacatcc 39420
gcacaagctg gaccagttgg atgccagcgcg gggccgcgc atcccttct gtggcagcg 39480

ggcccgcttc aagtacgaga tcctcgtaa gacaggctgg ggccggggct caggtgaggg 39540
gcgcagcggg gtggcaggc ctcccctgtc ctcactggct gtgctggttg caccctctgg 39600
gagtgagtct cgtcgagggc gtcagaacaa ggcagtttt gcagtgtgt gtgaaggc 39660
cgtgtgttca tcctggaaat gacctcgta gcactcaactg tccctgagga ctaggacagc 39720
tcctagctgg aagtaggtgc cagtcagtca gggtgggcag cccacgttct gcacagtagc 39780
gtggccccac aagtgacgtg agcatcgcta ccactgtggg agactgtgca tccacccgcg 39840
atccctgactg catagctcgat ctctcagacg gaggcgccag caccctcccc gtggctgttt 39900
cttcagtagtacc tccatttcc tttcatttggaa attgccttc tggcattccc tttttgtttt 39960
cgttttctt ttttagaga cggagtctca ctctgttgc caggctggag tgcaatggca 40020
tgatcttggc tcacagcaac ttccagctcc cgggttaag ccattccct taagcgattc 40080
tcctgagtag ctgggagtagc aggtgcacac caccacaccc agttaatttt tcaccatgtc 40140
agccaggcga actcctgacc tcaggtgatc cgcctgcctc ggcctgcccag agtgcggaa 40200
tgacaggtgt gagccaccac acctggctgt gttccattt tttatctctg tgctgctttc 40260
ctcttcattt cccagttctt tcttttgcattt acctactttt aaaaactgtc ggccgggcgc 40320
ggtggctcac acctgttaatc cgagcacttt gggaggccag gcaggcaaat cacgggtca 40380
ggagatcgag accatcctgg ctaacggtga aaccctgtct ctaataaaaaa gtacaaaaaaa 40440
attagcccg cgtagtgca ggccctgtta gtcccagctc cttgggagac tgaggcagga 40500
gaatggcgtg aacccgggag gcccggcttg cagtggatc agattgcgcc actgcactcc 40560
agcctgggtg acacagcaag actccatctc aaaaaaaaaa gaaaaaaaaat actgtcacct 40620
gggtctgtca ctgggagagg aggtgacaca gttcacgtt ttgcagtctg tgcatgaact 40680
gagggacggg tttgtgggtgc gggcacccgg ttgtggcatg actgaggcgt ggacaggtgt 40740
gcagtgccgg tcactggttt tgggtggac tgaggcgtgt gcagccatgt ttgcacgtca 40800
caagttacag ttctttccat gtaacttaat catgtccttg aggtcctgtc gttaatttgg 40860
caaattgcag taaccgcagc tccttgcgtt tggcagagcc gtgcaaaagcc gggactgcct 40920
gtgtggctcc ttgagtgccgc acaggccaaa gctgagatga cttgcctggg atgccacacg 40980
tggggcagc cagaccgagc ctcccacccccc tccctttgc ctcccaggta ccacggccca 41040
cgtgggcattc atgctgtatg ggggtggacag ccggagccggc caccggcacc tggacggcga 41100
cagagccttc caccgcaaca gcctggacat cttccggatc gccaccccgcc acagcctggg 41160
tagcgtgtgg aagatccgag tttggcaca caacaaaggt ttgtgcggac cctgccaagc 41220
tctgcccctc tgcccccgca ttggggcgcc ctgcgagcct gacctccctc ctgcgcctct 41280
gcagggctca gccctgcctg gttcctgcag cacgtcatcg tcagggacact gcagacggca 41340

cgcagcgcct tcttcctggc caatgactgg ctttcggtgg agacggaggc caacgggggc 41400
ctgggtggaga aggaggtgct ggccgcgagt aaggcctcggtcc cactccgtgg 41460
gagggtgggc aggggtggtcc tgccccgtgg ctcctgcag tgcggccctc cctgccttct 41520
aggcgacgcga gcccctttgc gttccggcg cctgctggtg gctgagctgc aegtggctt 41580
ctttgacaag cacatctggc tctccatatg ggaccggccg ctcgtagcc gtttcactcg 41640
catccagagg gccacactgct gcgttctcct catctgcctc ttctggcg ccaacgcgt 41700
gtggtacggg gctgttggcg actctgccta caggtgggtg ccgtaggggt cggggcagcc 41760
tcttcctgcc cagcccttcc tgccccctaag ctcacactgt gtggcctcct ctccctccaca 41820
cagcacgggg catgtgtcca ggctgagccc gctgagcgtc gacacagtcg ctgttggcct 41880
ggtgtccagc gtggtgtct atcccgctta cttggccatc cttttctct tccggatgtc 41940
ccggagcaag gtgggctggg gctggggacc cgggagttact gggaaatggag cctggccctc 42000
ggcaccatgc ctagggccgc cactttccag tgctgcagcc agagggaaag gcgtccacca 42060
aaggctgctc gggaaagggtc aacacacttg agcagcctta gctagactga ccagggagaa 42120
agagagaaga ctcagaagcc agaatggtga aagaacgagg gcactttgct aagcagacgc 42180
cacggacgac tgcacagcag cacgccagat aactcagaag aagcaagcac gcggctgtgc 42240
acgcttccga aatgcactcc agaagaaaat ctcagttacat ctataggaag tgaagaggct 42300
gagttagtcc cttagaaacg tcccagtggc cggggccgggt gtggtggctc acgcctgtaa 42360
tcccaacact tcaggtggcc gaggtggcg gatctgagtc caggagtttgc agaccagcct 42420
gggcaacata gcaagacccc atctatataa aacattaaaa agggccaggc gcggtggctc 42480
acgcctgtaa tcccagcaact ttgggaggcc gagggccggca gatcacttgc ggtcaggagt 42540
tcgagaccag cctggccaac acaatgaaac cccgactcta ctacaaatac aaaaacttag 42600
ctgggcatgg tggcggcgcc ctgtagtcctt agctactcga gaggctgagg caggagaatg 42660
gcatgaacccc aggaggcgga gcttgcagtg agccgagatt gcccactgc actccatcct 42720
gggcaacgga gcaagactcc atctccaaaa aaaaaaaaaaaa aaaatcccac aaagaaaagc 42780
tcaggctcaag agccttcacg atagaatttt tctaagcagt taaggaagaa ttaacaccaa 42840
tccttcacag actctttcca agaatacagc aggtgggaac gttcccatt catacgaaaa 42900
cgggaggccg caccccttag gaatgcacac gtggggctt caagaggtta catgcaaact 42960
aaccccaagca gcacacagag aaggcgcata agccgcgacc aggaggggtt gctcccgagt 43020
ccgtggcagg aaccagaggc cacatgtggc tgctcgatt taagtttaatt aaaatggAAC 43080
gatggccggg tgtggtggct cacacctgtta atcccagcac tttgggaggc ggaggcgggc 43140

agatcacttg aggtcaggag ttccaagacc agcctggcca acacagtcaa accccgtctc 43200
tactaaaaat acaaaaaatt agctggcat ggtggcaggc acctgtatc ccagctactc 43260
aggaggctga gccaggacaa tcgcctgaac gcgggaggtg gaggttgcag tgagctgaga 43320
ttgcgccatt gcactccagc ctgggtgaca gcgagactcc atctaaaaaa gaaaatatga 43380
aatttaaaac tctgttcattt agctgcacca gtctgctgtc aagtgttcag tggcacacgt 43440
cgcgaggggc tgccatcacg gacggtgcag atgtcccata tatccagcat tctaggacat 43500
tctgtcagat ggcaccgggc tctgtcctgt ctgctgagga ggtggcttct catccctgtc 43560
ctgagcaggt ctgagctgcc gcccgtgac cactgcccctc gtcctgcagg tggctggag 43620
cccgagcccc acacctgccc ggcagcaggt gctggacatc gacagctgcc tggactcgtc 43680
cgtgctggac agtccttcc tcacgttctc aggctccac gctgaggtga ggactctact 43740
gggggtcctg ggctggctg ggggtcctgc cgccttggcg cagcttggac tcaagacact 43800
gtgcacctct cagcaggcct ttgttggaca gatgaagagt gacttgttgc tggatgattc 43860
taagaggtgg gttccctaga gaaacctcga gccctggc aggtcactgt gtctgggtg 43920
ccgggggtgt gcgggctgctg tgccttgc ggggtctgt ggctccatgt ggtcacacca 43980
cccgaggagca gtttgctcg gaagcccagg gtgtccgtgc gtgactggac ggggggtggc 44040
tgtgtgtgtg acacatcccc tggtaaccttgc ctgaccccgcc acacctgcag tctgtgtgc 44100
tggccctccg gcgagggaac gtcagttgg ccggacactgc tcagtgaccc gtccattgtg 44160
ggtagcaatc tgccgcagtc ggcacggggc caggcggggc atgggctggg cccagaggag 44220
gacggcttct ccctggccag cccctactcg cctgccaaat ctttcagtc atcaggtgag 44280
ctgggggtgag aggagggggc tctgaagctc acccttgcag ctggggccac cctatgcctc 44340
ctgtacctct agatgaagac ctgatccagc aggtccttgc cgagggggtc agcagcccag 44400
cccttaccca agacacccac atggaaacgg acctgctcag cagcctgtga gtgtccggct 44460
ctcgaaaaaggg gggggattgc cagaggaggg gcggggactc aggccaggca gccgtggttc 44520
ccgcctgggg taggggtgggg tgggtgcca gggcagggt gtggctgcac cacttcactt 44580
ctctgaacct ctgttgtctg tggaaagagc ctcatggat ccccaggggc ccagaacctt 44640
ccctctaggg agggagcagg ctcatggggc tttgttaggag cagaaaggct cctgtgtgag 44700
gctggccggg gccacgtttt tatcttggtc tcagagcagt gagaattat gggcggttt 44760
ttaaataccc cattttggc cgggcgcggg ggctcacacg tgtaatccca gcactttggg 44820
aggccgaggt gggcagatga ctcgaggtca gcagttcgag accagcctgg ccaacatggc 44880
gaaacccgt ctctactaaa aataaaaaa attagccggg catgctggca ggcgcctgt 44940
gtccccagtta ctggggagac tgaggttagga gaatcgattg aacctggtag gtgaaggtt 45000

tagtgagccg agatcgcgcc actgcactcc agcctggca acaagagcga aactccgtct 45060
caaaaacaaa aaaattcctc aatttottgg ttgtttgtta acttatcaac aaatggtcat 45120
atagagggtta cttgttatgt agtcacgcac atagtcacgc acatggcagc cggcggcgg 45180
gcccacccac ggcgtgttcc cacgcgtgtg acccccggct ctgccatgcc ctccatgct 45240
caggtgtgct gaggtccaca cggccctgcc gttgcactgc agtcgcctgc aggattcagt 45300
gcagtggcat gcagtgcagg tgccgtgccc cggagccaca ggccacacca cagggcctgc 45360
atgcacaggg gctgcggtgt ctgggtttgg gtaactacgc cctgtgacat ttgcacagca 45420
acagaattac ctaatgacgc atttctcaga acacatccct ggcactaagt ggtgcgtgac 45480
tgctgcttt gcatccacat ctagtttgat ttgtgtgtta ttccttgag tgcttctcat 45540
tgttaagcaa ccaagaacta aagaggtatg aactgccccct ggactcaaac aaaaaggaaa 45600
acttcctgat ttacaaaagg cagataacca tcacatgagg gcatctttat gaataaattg 45660
ctgggtggtt ttaaaaatac agagtatgg gaaatccagg ggtagtcact acatgctgac 45720
cagccccagg tatctccggc ccaaagctct gtgaaatcca gattcagtgc ttccgcgggg 45780
atttctgacg gcagctcaga ctccgcacatcc acacagagcg cgtggccctc accctcccg 45840
cttcctcaac cttggccgt cccttgctcg gacagtgcctt cgggctgacc aggtcggagg 45900
cttgggtttg tcctggaccc ctctgcgtcc ttccctactg cagcctccag cgcgtcccg 45960
ggctccttcc ccaacgcaga gcacggcctt ccctgcgcct gaggcgtcac cctccgtcct 46020
ggcggcgcct ctgcccctggc attccctgcc actccatgcc tccctattgg ccattctccg 46080
tctctgccag cgagagcctg ctccctgagt cagaccctga gtcattgtg ttgctataaa 46140
ggaatagttg aggctgggtt attttttatt tttatatttatt tttttgagat ggagtctctg 46200
ttgcccagac tggagtgcag tcgcacatgc tcggctcact gcaaagtctg cctcccacgt 46260
tcaaggcagtt atctgcctca gcctcccaag tagctaagat tacaggcgcc cgccgcccaca 46320
gcccggctaat tttttgtgtg tgtgttttag tagagaggag gtttcaccat cttagccagg 46380
ctggcttga actcctgacc tcgtgatcca cccatctcag cctccaaaaa tgctgagatt 46440
acaggcgtga gccaccacgc ctgaccaagt tgaggctagg tcattttta atttttgtat 46500
aagacagggt ctcactgtct ccaactcctg agctcaagtg atcctcctgc ctcagcctcc 46560
tgaagtgcgtg ggattacagg cttgagacac tgccggcaggc caagagtgtc ttttattcctc 46620
cgagagacag caaaacagga agcattcagt gcagtgtgac cctgggtcag gccgttctt 46680
cggtgatggg ctgacgaggg cgccggatcg ggagagcgac ctgagagccc gggactcggc 46740
gtctcgcaagt tggtctcgtc ctccctccatca acgtgtcttc gtcgcctctg taccttctt 46800

ctagcagctc tgggaccggg catatcagca tggtgcccg atgcagtggc acagcctcg 46860
tggtaactgg ctcctggaga cacaaggaga tctctggcct cagggagccc tacacactgt 46920
tgggatttga aaggcattca tatgtttcct tgtccagaag ttaattttag gccataaacc 46980
tgcacatggac agacacactg gcgtctctag attgttagaga tgcttggg 47040
ccaaatcata gtttgcaggg ttgaaggggg gctcattgca ccctgagaga ctgtgcactg 47100
ctgtaagggc agctggtcag gctgtggcg atgggttat cagcagcaag cgggcgggag 47160
agggacgcag gcggacgcct gacttcggtg cctggagtgg ctcttggg 47220
agcaccactc ccactctcg 47280
tgacccaaga ggctcaagaa actgcccgc caggttaaca tgggcttggc tgcaactgcc 47340
tcctggagggc cgggatgaat tcacagccta ccatgtccct caggtccagc actcctgggg 47400
agaagacaga gacgctggcg ctgcagaggc tggggagct gggccaccc agccaggcc 47460
tgaactggga acagccccag gcagcggaggc tgcaggac aggtgtgc 47520
gggatgcccc tagccctcc ctgtgagctg ccttcacag gtctgtctct gcttccccag 47580
gactggtgga gggatgcgg aagcgcctgc tgccggctg gtgtgcctcc ctggccacg 47640
ggctcagcct gctctgggtg gctgtggctg tggctgtctc agggtgggtg ggtgcgagct 47700
tccccccggg cgtgagtgtt gcgtggctcc tgccagcag cggccatcc ctggcctcat 47760
tcctcggtcg ggagccactg aaggtgaggg ggctgccagg ggtaggctac aggcctccat 47820
cacgggggac ccctctgaag ccacccctc cccaggtctt gctggaaagcc ctgtacttct 47880
caactggtggc caagcggctg cacccggatg aagatgacac cctggtagag agccggctg 47940
tgacgcctgt gagcgcacgt gtggcccg 48000
tggccaagga agaagccccgc aaggtcaaga ggctacatgg catgctgcgg gtgagcctgg 48060
gtgcggcctg tgccctgccc acctccgtct cttgtctccc acctcccacc catgcacgca 48120
ggacactcctt ctcacccatca gaaggccctt aggggttcaa tgctctgc 48180
ccttgc 48240
gcccagctcc aatgcccact cctgcctggc cctgaaggcc cctaagcacc actgcagtgg 48300
cctgtgtgtc tgcccccagg tggggttccg ggcagggtgt gtgctgccat taccctggcc 48360
aggttagagtc ttggggcgcc ccctgccagg tcacccatgc 48420
catggctcca gccgttgcca aagccctgtc gtcactgtgg gctggggcca ggctgaccac 48480
agggcccccc cgtccaccag agcctccctgg tgtacatgct ttttctgc 48540
tggccagcta tggggatgcc tcacccatgc 48600
agcaggagct gcacagccgg gccttcctgg ccatcacgcg gtacggcat ccgggtgcact 48660

ggtctgtctt ctgggcttta gttttgcctt tagtccagcc agaccctagg ggacatgtgg 48720
acatgtgtag atacctttgt ggctgctaga actggaggta ggtgctgctg gcatcagtag 48780
gcagagggga gggacacagg tccgtgtctt gcagtgcaca ggacgggccc atgacagaca 48840
actgtctgcc ccagaacatc ccaggataa ggctgagaag cccaggtcta gccgtggcca 48900
gcagggcagt gggagccatg ttccctgggt ctctggtggc cgctcactcg aggccggcat 48960
ggggcagtag gggctggagc gtgtgactga tgctgtggca ggtctgagga gctctggcca 49020
tggatggccc acgtgctgct gccctacgtc cacggaaacc agtccagccc agagctgggg 49080
cccccacggc tgcggcaggt gcggctgcag gaaggtgagc tggcagggcg tgcccaaga 49140
cttaaatcgt tcctttgtt gagagagcag ccttagcgg agctctggca tcagccctgc 49200
tccctagctg tgtgaccttt gccctattaa caccccggtt tccttctctg tatatgagag 49260
atggtaacgt tgtctaattg atggctgctg ggagggttcc ctggggtggc gccgaaccag 49320
agctcaggcg agctggccag cagaaacac tcctgttggg tttttagatgag gccctggccc 49380
cggcctgggg ctctgtgtt ttcagcactc taccagacc ctcccgccc cagggtccac 49440
acgtgctcg ccgcaggagg cttagcacc agcgattacg acgttggctg ggagagtcct 49500
cacaatggct cggggacgtg ggcctattca gcgcggatc tgctgggtg agcagagcga 49560
gggccccggg cgtctacgcc aaggacaagg gagtagttct ccaggagtgc cgcggcctcc 49620
tgaccagcct ggctccgggg tgccggaagg gctgggtgc ggcacccacg ccacccctct 49680
ccggcagggc atggctctgg ggctcctgtc ccgttatga cagcgggggc tacgtgcagg 49740
agctggcct gagcctggag gagagccgag accggctgcg cttcctgcag ctgcacaact 49800
ggctggacaa caggtggag ctccctcccc tgccctctcc ggggtggccg cagtcaccag 49860
ccaggagccc accctcactc ctccggcccc cgctggccta ggccggcttcc acagccctc 49920
agccacgcct gcactgcgcg gtcccccag ctcccgccct gccacccgct cctactgacc 49980
cgcaccctct gcgcaggagc cgcgctgtgt tcctggagct cacgcgtac agccggccg 50040
tggggctgca cgccgcccgtc acgctgcgcc tcgagttccc ggccggccggc cgcccccctgg 50100
ccgcctctcag cgtccggccc tttgcgtgc gcccgcctcag cgccggccctc tcgctgcctc 50160
tgctcacctc ggtacgcccc tccccggcca gaccccgccg ctcccacccgg cagcgtcccg 50220
ccccctcgcg gggcccgccc cggcagcgtc tcacccctcg cagcgccccg cccctcgca 50280
gcttcccgcc ccctcgcagg gccccggccc ggcagcgtcc cgcccccctcg tagggccccg 50340
ccccggcagc gtcccgcccc ctcgcaggc cccgggggg cagcgtccct cccggccctcc 50400
tgaccgcgcc ccccacaggt gtgcctgctg ctgttcggcc tgcaattcgc cgtggccgag 50460

gccccgtactt ggcacaggga agggcgctgg cgcggtgtgc ggctcgaggc ctggcgcg 50520
tggctgctgg tggcgctgac ggccggccacg gcactggtac gcctcgccca gctgggtgcc 50580
gtgtaccgccc agtggacccg tttcggtgcg ggccgccccgc gcccgttac tagcttcgac 50640
cagggtggcgc agctgagctc cgcagccgt ggccctggcgg cctcgctgtc cttcctgtt 50700
ttgggtcaagg tgagggctgg gccgggtggc gcggggctgg gcccacaccc cagggctgca 50760
agcagacaga tttctcggtcc gcaggctgac cagcagctac gttcggtgcg ccagtggtcc 50820
gtctttggca agacattatg ccgagctctg ccagagctcc tgggggtcac cttgggcctg 50880
gtgggtgtcg gggtagccta cgcccaagctg gccatcctgg taggtgactg cgcggccggg 50940
gagggcgtct tagctcagct cagctcagct gtacgcccctc actgggtgtcg cttccccgc 51000
agctcggtgtc ttccctgtgtg gactccctct ggagcgtggc ccaggccctg ttgggtgtgt 51060
gccctgggac tgggctctct accctgtgtc ctgcccagtc ctggcacctg tcacccctgc 51120
tgtgtgtggg gctctgggca ctgcggctgt gggggccct acggctgggg gctgttattc 51180
tccgctggcg ctaccacgccc ttgcgtggag agctgtaccg gcccggctgg gagccccagg 51240
actacgagat ggtggagttg ttccctgcgca ggctgcgcct ctggatgggc ctcagcaagg 51300
tcaaggaggt ggtacggcc cagtgggggg gagagggaca cgcctgggc tctgcccagg 51360
gtgcagccgg actgactgag cccctgtgcc gcccccaagtt cgcacacaaa gtccgctttg 51420
aagggtatgga gcccgtgccc tctcgctctt ccaggggctc caaggtatcc ccggatgtgc 51480
ccccacccag cgctggctcc gatgcctcgc accccctccac ctccctccagc cagctggatg 51540
ggctgagcgt gagcctgggc cggctgggga caaggtgtga gcctgagccc tcccgctcc 51600
aagccgtgtt cgaggccctg ctcacccagt ttgaccgact caaccaggcc acagaggacg 51660
tctaccagct ggagcagcag ctgcacagcc tgcaaggccg caggagcagc cggcgcccc 51720
ccggatcttc ccgtggccca tccccggggc tgccggccagc actgcccagc cgccttggcc 51780
gggccagtcg ggggtgtggac ctggccactg gccccagcag gacacccctt cgggccaaga 51840
acaagggtcca ccccagcagc acttagtcct cttccctggc ggggggtgggc cgtggagtcg 51900
gagtggacac cgctcagtat tactttctgc cgctgtcaag gcccggggcc aggcagaatg 51960
gctgcacgta ggttccccag agagcaggca ggggcattctg tctgtctgtg ggcttcagca 52020
ctttaaagag gctgtgtggc caaccaggac ccagggtccc ctcccccagct cccttggaa 52080
ggacacagca gtattggacg gtttctagcc tctgagatgc taatttattt ccccgagtcc 52140
tcaggtacag cgggcgtgtgc cggccccac cccctggca gatgtcccc actgctaagg 52200
ctgctggctt cagggagggt tagcctgcac cggcccccacc ctgcccctaa gttattacct 52260
ctccagttcc taccgtactc cctgcaccgt ctcactgtgt gtctcggtgc agtaatttat 52320

atggtgttaa aatgtgtata ttttgtatg tcactattt cactaggct gaggggcctg 52380
 cgcggcagagc tggcctcccc caacacctgc tgcgcttggt aggtgtggtg gcgttatggc 52440
 agcccggtcg ctgcttggat gcgagcttgg ctttggcccg gtgctgggg cacagctgtc 52500
 tgcaggcac tctcatcacc ccagaggcct tgtcatcctc ctttgcggca ggccaggtag 52560
 caagagagca gcgcccaggc ctgctggcat caggtctggg caagtagcag gactaggcat 52620
 gtcagaggac cccagggtgg ttagaggaaa agactcctcc tgggggctgg ctcccagggt 52680
 ggaggaaggt gactgtgtgt gtgtgtgtgt gcgcgcgc acgcgcgagt gtgctgtatg 52740
 gcccaggcag cctcaaggcc ctcggagctg gctgtgcctg cttctgtta ccacttctgt 52800
 gggcatggcc gcttctagag cctcgacacc ccccaaccc ccgcaccaag cagacaaagt 52860
 caataaaaga gctgtctgac tgcaatctgt gcctctatgt ctgtgcactg ggtcaggac 52920
 tttatatttatt tcactgacag gcaataccgt ccaaggccag tgcaggaggg agggcccccgg 52980
 cctcacacaa actcggtgaa gtcctccacc gaggagatga ggccgttccg ctggcccacc 53040
 tcatagccag gtgtgggctc ggctggagtc tgtgcagggg ctttgctatg ggacggaggg 53100
 tgcaccagag gtaggctggg gttggagtag gcggcttccct cgcagatctg aaggcagagg 53160
 cggcttgggc agtaagtctg ggaggcgtgg caaccgcctc gcccacacac ccgccccaca 53220
 gcttggcag ccagcacacc ccgctgaggg agccccatat tccctacccg ctggcggagc 53280
 gcttgatgtg gcggagcggg caatccactt ggagggtag atatcggtgg gttggagcg 53340
 gctatgatgc acctgtgagg ccatctgggg acgtaggcag ggggtgagct cactatcagg 53400
 tggcacctgg gcctgtccca ccagctcacg cctggaccca ccccaactca catttgcgtg 53460
 cagggccatc tggcgggcca cgaagggcag gttgcggtca gacacgatct tggccacgct 53520
 gg 53522

<210> 2
 <211> 4303
 <212> PRT
 <213> Homo sapiens

<400> 2

Met	Pro	Pro	Ala	Ala	Pro	Ala	Arg	Leu	Ala	Leu	Ala	Leu	Gly	Leu	Gly
1															
10															
15															
Leu	Trp	Leu	Gly	Ala	Leu	Ala	Gly	Gly	Pro	Gly	Arg	Gly	Cys	Gly	Pro
20															
25															
Cys	Glu	Pro	Pro	Cys	Leu	Cys	Gly	Pro	Ala	Pro	Gly	Ala	Ala	Cys	Arg
35															
40															
45															
Val	Asn	Cys	Ser	Gly	Arg	Gly	Leu	Arg	Thr	Leu	Gly	Pro	Ala	Leu	Arg

50 55 60

Ile Pro Ala Asp Ala Thr Glu Leu Asp Val Ser His Asn Leu Leu Arg
65 70 75 80

Ala Leu Asp Val Gly Leu Leu Ala Asn Leu Ser Ala Leu Ala Glu Leu
85 90 95

Asp Ile Ser Asn Asn Lys Ile Ser Thr Leu Glu Glu Gly Ile Phe Ala
100 105 110

Asn Leu Phe Asn Leu Ser Glu Ile Asn Leu Ser Gly Asn Pro Phe Glu
115 120 125

Cys Asp Cys Gly Leu Ala Trp Leu Pro Gln Trp Ala Glu Glu Gln Gln
130 135 140

Val Arg Val Val Gln Pro Glu Ala Ala Thr Cys Ala Gly Pro Gly Ser
145 150 155 160

Leu Ala Gly Gln Pro Leu Leu Gly Ile Pro Leu Leu Asp Ser Gly Cys
165 170 175

Gly Glu Glu Tyr Val Ala Cys Leu Pro Asp Asn Ser Ser Gly Thr Val
180 185 190

Ala Ala Val Ser Phe Ser Ala Ala His Glu Gly Leu Leu Gln Pro Glu
195 200 205

Ala Cys Ser Ala Phe Cys Phe Ser Thr Gly Gln Gly Leu Ala Ala Leu
210 215 220

Ser Glu Gln Gly Trp Cys Leu Cys Gly Ala Ala Gln Pro Ser Ser Ala
225 230 235 240

Ser Phe Ala Cys Leu Ser Leu Cys Ser Gly Pro Pro Ala Pro Pro Ala
245 250 255

Pro Thr Cys Arg Gly Pro Thr Leu Leu Gln His Val Phe Pro Ala Ser
260 265 270

Pro Gly Ala Thr Leu Val Gly Pro His Gly Pro Leu Ala Ser Gly Gln
275 280 285

Leu Ala Ala Phe His Ile Ala Ala Pro Leu Pro Val Thr Asp Thr Arg
290 295 300

Trp Asp Phe Gly Asp Gly Ser Ala Glu Val Asp Ala Ala Gly Pro Ala
305 310 315 320

Ala Ser His Arg Tyr Val Leu Pro Gly Arg Tyr His Val Thr Ala Val
325 330 335

Leu Ala Leu Gly Ala Gly Ser Ala Leu Leu Gly Thr Asp Val Gln Val
340 345 350

Glu Ala Ala Pro Ala Ala Leu Glu Leu Val Cys Pro Ser Ser Val Gln
355 360 365

Ser Asp Glu Ser Leu Asp Leu Ser Ile Gln Asn Arg Gly Gly Ser Gly
370 375 380

Leu Glu Ala Ala Tyr Ser Ile Val Ala Leu Gly Glu Glu Pro Ala Arg
385 390 395 400

Ala Val His Pro Leu Cys Pro Ser Asp Thr Glu Ile Phe Pro Gly Asn
405 410 415

Gly His Cys Tyr Arg Leu Val Val Glu Lys Ala Ala Trp Leu Gln Ala
420 425 430

Gln Glu Gln Cys Gln Ala Trp Ala Gly Ala Ala Leu Ala Met Val Asp
435 440 445

Ser Pro Ala Val Gln Arg Phe Leu Val Ser Arg Val Thr Arg Ser Leu
450 455 460

Asp Val Trp Ile Gly Phe Ser Thr Val Gln Gly Val Glu Val Gly Pro
465 470 475 480

Ala Pro Gln Gly Glu Ala Phe Ser Leu Glu Ser Cys Gln Asn Trp Leu
485 490 495

Pro Gly Glu Pro His Pro Ala Thr Ala Glu His Cys Val Arg Leu Gly
500 505 510

Pro Thr Gly Trp Cys Asn Thr Asp Leu Cys Ser Ala Pro His Ser Tyr
515 520 525

Val Cys Glu Leu Gln Pro Gly Gly Pro Val Gln Asp Ala Glu Asn Leu
530 535 540

Leu Val Gly Ala Pro Ser Gly Asp Leu Gln Gly Pro Leu Thr Pro Leu
545 550 555 560

Ala Gln Gln Asp Gly Leu Ser Ala Pro His Glu Pro Val Glu Val Met
565 570 575

Val Phe Pro Gly Leu Arg Leu Ser Arg Glu Ala Phe Leu Thr Thr Ala
580 585 590

Glu Phe Gly Thr Gln Glu Leu Arg Arg Pro Ala Gln Leu Arg Leu Gln
595 600 605

Val Tyr Arg Leu Leu Ser Thr Ala Gly Thr Pro Glu Asn Gly Ser Glu
610 615 620

Pro Glu Ser Arg Ser Pro Asp Asn Arg Thr Gln Leu Ala Pro Ala Cys
625 630 635 640

Met Pro Gly Gly Arg Trp Cys Pro Gly Ala Asn Ile Cys Leu Pro Leu
645 650 655

Asp Ala Ser Cys His Pro Gln Ala Cys Ala Asn Gly Cys Thr Ser Gly
660 665 670

Pro Gly Leu Pro Gly Ala Pro Tyr Ala Leu Trp Arg Glu Phe Leu Phe
675 680 685

Ser Val Pro Ala Gly Pro Pro Ala Gln Tyr Ser Val Thr Leu His Gly
690 695 700

Gln Asp Val Leu Met Leu Pro Gly Asp Leu Val Gly Leu Gln His Asp
705 710 715 720

Ala Gly Pro Gly Ala Leu Leu His Cys Ser Pro Ala Pro Gly His Pro
725 730 735

Gly Pro Arg Ala Pro Tyr Leu Ser Ala Asn Ala Ser Ser Trp Leu Pro
740 745 750

His Leu Pro Ala Gln Leu Glu Gly Thr Trp Gly Cys Pro Ala Cys Ala
755 760 765

Leu Arg Leu Leu Ala Gln Arg Glu Gln Leu Thr Val Leu Leu Gly Leu
770 775 780

Arg Pro Asn Pro Gly Leu Arg Leu Pro Gly Arg Tyr Glu Val Arg Ala
785 790 795 800

Glu Val Gly Asn Gly Val Ser Arg His Asn Leu Ser Cys Ser Phe Asp
805 810 815

Val Val Ser Pro Val Ala Gly Leu Arg Val Ile Tyr Pro Ala Pro Arg
820 825 830

Asp Gly Arg Leu Tyr Val Pro Thr Asn Gly Ser Ala Leu Val Leu Gln
835 840 845

Val Asp Ser Gly Ala Asn Ala Thr Ala Thr Ala Arg Trp Pro Gly Gly
850 855 860

Ser Leu Ser Ala Arg Phe Glu Asn Val Cys Pro Ala Leu Val Ala Thr
865 870 875 880

Phe Val Pro Ala Cys Pro Trp Glu Thr Asn Asp Thr Leu Phe Ser Val
885 890 895

Val Ala Leu Pro Trp Leu Ser Glu Gly Glu His Val Val Asp Val Val
900 905 910

Val Glu Asn Ser Ala Ser Arg Ala Asn Leu Ser Leu Arg Val Thr Ala
915 920 925

Glu Glu Pro Ile Cys Gly Leu Arg Ala Thr Pro Ser Pro Glu Ala Arg
930 935 940

Val Leu Gln Gly Val Leu Val Arg Tyr Ser Pro Val Val Glu Ala Gly
945 950 955 960

Ser Asp Met Val Phe Arg Trp Thr Ile Asn Asp Lys Gln Ser Leu Thr
965 970 975

Phe Gln Asn Val Val Phe Asn Val Ile Tyr Gln Ser Ala Ala Val Phe
980 985 990

Lys Leu Ser Leu Thr Ala Ser Asn His Val Ser Asn Val Thr Val Asn
995 1000 1005

Tyr Asn Val Thr Val Glu Arg Met Asn Arg Met Gln Gly Leu Gln
1010 1015 1020

Val Ser Thr Val Pro Ala Val Leu Ser Pro Asn Ala Thr Leu Ala

1025 1030 1035
Leu Thr Ala Gly Val Leu Val Asp Ser Ala Val Glu Val Ala Phe
1040 1045 1050
Leu Trp Thr Phe Gly Asp Gly Glu Gln Ala Leu His Gln Phe Gln
1055 1060 1065
Pro Pro Tyr Asn Glu Ser Phe Pro Val Pro Asp Pro Ser Val Ala
1070 1075 1080
Gln Val Leu Val Glu His Asn Val Thr His Thr Tyr Ala Ala Pro
1085 1090 1095
Gly Glu Tyr Leu Leu Thr Val Leu Ala Ser Asn Ala Phe Glu Asn
1100 1105 1110
Leu Thr Gln Gln Val Pro Val Ser Val Arg Ala Ser Leu Pro Ser
1115 1120 1125
Val Ala Val Gly Val Ser Asp Gly Val Leu Val Ala Gly Arg Pro
1130 1135 1140
Val Thr Phe Tyr Pro His Pro Leu Pro Ser Pro Gly Gly Val Leu
1145 1150 1155
Tyr Thr Trp Asp Phe Gly Asp Gly Ser Pro Val Leu Thr Gln Ser
1160 1165 1170
Gln Pro Ala Ala Asn His Thr Tyr Ala Ser Arg Gly Thr Tyr His
1175 1180 1185
Val Arg Leu Glu Val Asn Asn Thr Val Ser Gly Ala Ala Ala Gln
1190 1195 1200
Ala Asp Val Arg Val Phe Glu Glu Leu Arg Gly Leu Ser Val Asp
1205 1210 1215
Met Ser Leu Ala Val Glu Gln Gly Ala Pro Val Val Val Ser Ala
1220 1225 1230
Ala Val Gln Thr Gly Asp Asn Ile Thr Trp Thr Phe Asp Met Gly
1235 1240 1245
Asp Gly Thr Val Leu Ser Gly Pro Glu Ala Thr Val Glu His Val
1250 1255 1260
Tyr Leu Arg Ala Gln Asn Cys Thr Val Thr Val Gly Ala Gly Ser
1265 1270 1275
Pro Ala Gly His Leu Ala Arg Ser Leu His Val Leu Val Phe Val
1280 1285 1290
Leu Glu Val Leu Arg Val Glu Pro Ala Ala Cys Ile Pro Thr Gln
1295 1300 1305
Pro Asp Ala Arg Leu Thr Ala Tyr Val Thr Gly Asn Pro Ala His
1310 1315 1320
Tyr Leu Phe Asp Trp Thr Phe Gly Asp Gly Ser Ser Asn Thr Thr
1325 1330 1335

Val Arg Gly Cys Pro Thr Val Thr His Asn Phe Thr Arg Ser Gly
 1340 1345 1350

Thr Phe Pro Leu Ala Leu Val Leu Ser Ser Arg Val Asn Arg Ala
 1355 1360 1365

His Tyr Phe Thr Ser Ile Cys Val Glu Pro Glu Val Gly Asn Val
 1370 1375 1380

Thr Leu Gln Pro Glu Arg Gln Phe Val Gln Leu Gly Asp Glu Ala
 1385 1390 1395

Trp Leu Val Ala Cys Ala Trp Pro Pro Phe Pro Tyr Arg Tyr Thr
 1400 1405 1410

Trp Asp Phe Gly Thr Glu Glu Ala Ala Pro Thr Arg Ala Arg Gly
 1415 1420 1425

Pro Glu Val Thr Phe Ile Tyr Arg Asp Pro Gly Ser Tyr Leu Val
 1430 1435 1440

Thr Val Thr Ala Ser Asn Asn Ile Ser Ala Ala Asn Asp Ser Ala
 1445 1450 1455

Leu Val Glu Val Gln Glu Pro Val Leu Val Thr Ser Ile Lys Val
 1460 1465 1470

Asn Gly Ser Leu Gly Leu Glu Leu Gln Gln Pro Tyr Leu Phe Ser
 1475 1480 1485

Ala Val Gly Arg Gly Arg Pro Ala Ser Tyr Leu Trp Asp Leu Gly
 1490 1495 1500

Asp Gly Gly Trp Leu Glu Gly Pro Glu Val Thr His Ala Tyr Asn
 1505 1510 1515

Ser Thr Gly Asp Phe Thr Val Arg Val Ala Gly Trp Asn Glu Val
 1520 1525 1530

Ser Arg Ser Glu Ala Trp Leu Asn Val Thr Val Lys Arg Arg Val
 1535 1540 1545

Arg Gly Leu Val Val Asn Ala Ser Arg Thr Val Val Pro Leu Asn
 1550 1555 1560

Gly Ser Val Ser Phe Ser Thr Ser Leu Glu Ala Gly Ser Asp Val
 1565 1570 1575

Arg Tyr Ser Trp Val Leu Cys Asp Arg Cys Thr Pro Ile Pro Gly
 1580 1585 1590

Gly Pro Thr Ile Ser Tyr Thr Phe Arg Ser Val Gly Thr Phe Asn
 1595 1600 1605

Ile Ile Val Thr Ala Glu Asn Glu Val Gly Ser Ala Gln Asp Ser
 1610 1615 1620

Ile Phe Val Tyr Val Leu Gln Leu Ile Glu Gly Leu Gln Val Val
 1625 1630 1635

Gly Gly Gly Arg Tyr Phe Pro Thr Asn His Thr Val Gln Leu Gln
 1640 1645 1650

Ala Val Val Arg Asp Gly Thr Asn Val Ser Tyr Ser Trp Thr Ala
 1655 1660 1665

Trp Arg Asp Arg Gly Pro Ala Leu Ala Gly Ser Gly Lys Gly Phe
 1670 1675 1680

Ser Leu Thr Val Leu Glu Ala Gly Thr Tyr His Val Gln Leu Arg
 1685 1690 1695

Ala Thr Asn Met Leu Gly Ser Ala Trp Ala Asp Cys Thr Met Asp
 1700 1705 1710

Phe Val Glu Pro Val Gly Trp Leu Met Val Ala Ala Ser Pro Asn
 1715 1720 1725

Pro Ala Ala Val Asn Thr Ser Val Thr Leu Ser Ala Glu Leu Ala
 1730 1735 1740

Gly Gly Ser Gly Val Val Tyr Thr Trp Ser Leu Glu Glu Gly Leu
 1745 1750 1755

Ser Trp Glu Thr Ser Glu Pro Phe Thr Thr His Ser Phe Pro Thr
 1760 1765 1770

Pro Gly Leu His Leu Val Thr Met Thr Ala Gly Asn Pro Leu Gly
 1775 1780 1785

Ser Ala Asn Ala Thr Val Glu Val Asp Val Gln Val Pro Val Ser
 1790 1795 1800

Gly Leu Ser Ile Arg Ala Ser Glu Pro Gly Gly Ser Phe Val Ala
 1805 1810 1815

Ala Gly Ser Ser Val Pro Phe Trp Gly Gln Leu Ala Thr Gly Thr
 1820 1825 1830

Asn Val Ser Trp Cys Trp Ala Val Pro Gly Gly Ser Ser Lys Arg
 1835 1840 1845

Gly Pro His Val Thr Met Val Phe Pro Asp Ala Gly Thr Phe Ser
 1850 1855 1860

Ile Arg Leu Asn Ala Ser Asn Ala Val Ser Trp Val Ser Ala Thr
 1865 1870 1875

Tyr Asn Leu Thr Ala Glu Glu Pro Ile Val Gly Leu Val Leu Trp
 1880 1885 1890

Ala Ser Ser Lys Val Val Ala Pro Gly Gln Leu Val His Phe Gln
 1895 1900 1905

Ile Leu Leu Ala Ala Gly Ser Ala Val Thr Phe Arg Leu Gln Val
 1910 1915 1920

Gly Gly Ala Asn Pro Glu Val Leu Pro Gly Pro Arg Phe Ser His
 1925 1930 1935

Ser Phe Pro Arg Val Gly Asp His Val Val Ser Val Arg Gly Lys

1940	1945	1950
Asn His Val Ser Trp Ala Gln Ala Gln Val Arg Ile Val Val Leu		
1955	1960	1965
Glu Ala Val Ser Gly Leu Gln Val Pro Asn Cys Cys Glu Pro Gly		
1970	1975	1980
Ile Ala Thr Gly Thr Glu Arg Asn Phe Thr Ala Arg Val Gln Arg		
1985	1990	1995
Gly Ser Arg Val Ala Tyr Ala Trp Tyr Phe Ser Leu Gln Lys Val		
2000	2005	2010
Gln Gly Asp Ser Leu Val Ile Leu Ser Gly Arg Asp Val Thr Tyr		
2015	2020	2025
Thr Pro Val Ala Ala Gly Leu Leu Glu Ile Gln Val Arg Ala Phe		
2030	2035	2040
Asn Ala Leu Gly Ser Glu Asn Arg Thr Leu Val Leu Glu Val Gln		
2045	2050	2055
Asp Ala Val Gln Tyr Val Ala Leu Gln Ser Gly Pro Cys Phe Thr		
2060	2065	2070
Asn Arg Ser Ala Gln Phe Glu Ala Ala Thr Ser Pro Ser Pro Arg		
2075	2080	2085
Arg Val Ala Tyr His Trp Asp Phe Gly Asp Gly Ser Pro Gly Gln		
2090	2095	2100
Asp Thr Asp Glu Pro Arg Ala Glu His Ser Tyr Leu Arg Pro Gly		
2105	2110	2115
Asp Tyr Arg Val Gln Val Asn Ala Ser Asn Leu Val Ser Phe Phe		
2120	2125	2130
Val Ala Gln Ala Thr Val Thr Val Gln Val Leu Ala Cys Arg Glu		
2135	2140	2145
Pro Glu Val Asp Val Val Leu Pro Leu Gln Val Leu Met Arg Arg		
2150	2155	2160
Ser Gln Arg Asn Tyr Leu Glu Ala His Val Asp Leu Arg Asp Cys		
2165	2170	2175
Val Thr Tyr Gln Thr Glu Tyr Arg Trp Glu Val Tyr Arg Thr Ala		
2180	2185	2190
Ser Cys Gln Arg Pro Gly Arg Pro Ala Arg Val Ala Leu Pro Gly		
2195	2200	2205
Val Asp Val Ser Arg Pro Arg Leu Val Leu Pro Arg Leu Ala Leu		
2210	2215	2220
Pro Val Gly His Tyr Cys Phe Val Phe Val Val Ser Phe Gly Asp		
2225	2230	2235
Thr Pro Leu Thr Gln Ser Ile Gln Ala Asn Val Thr Val Ala Pro		
2240	2245	2250

Glu Arg Leu Val Pro Ile Ile Glu Gly Gly Ser Tyr Arg Val Trp
2255 2260 2265

Ser Asp Thr Arg Asp Leu Val Leu Asp Gly Ser Glu Ser Tyr Asp
2270 2275 2280

Pro Asn Leu Glu Asp Gly Asp Gln Thr Pro Leu Ser Phe His Trp
2285 2290 2295

Ala Cys Val Ala Ser Thr Gln Arg Glu Ala Gly Gly Cys Ala Leu
2300 2305 2310

Asn Phe Gly Pro Arg Gly Ser Ser Thr Val Thr Ile Pro Arg Glu
2315 2320 2325

Arg Leu Ala Ala Gly Val Glu Tyr Thr Phe Ser Leu Thr Val Trp
2330 2335 2340

Lys Ala Gly Arg Lys Glu Glu Ala Thr Asn Gln Thr Val Leu Ile
2345 2350 2355

Arg Ser Gly Arg Val Pro Ile Val Ser Leu Glu Cys Val Ser Cys
2360 2365 2370

Lys Ala Gln Ala Val Tyr Glu Val Ser Arg Ser Ser Tyr Val Tyr
2375 2380 2385

Leu Glu Gly Arg Cys Leu Asn Cys Ser Ser Gly Ser Lys Arg Gly
2390 2395 2400

Arg Trp Ala Ala Arg Thr Phe Ser Asn Lys Thr Leu Val Leu Asp
2405 2410 2415

Glu Thr Thr Ser Thr Gly Ser Ala Gly Met Arg Leu Val Leu
2420 2425 2430

Arg Arg Gly Val Leu Arg Asp Gly Glu Gly Tyr Thr Phe Thr Leu
2435 2440 2445

Thr Val Leu Gly Arg Ser Gly Glu Glu Glu Gly Cys Ala Ser Ile
2450 2455 2460

Arg Leu Ser Pro Asn Arg Pro Pro Leu Gly Gly Ser Cys Arg Leu
2465 2470 2475

Phe Pro Leu Gly Ala Val His Ala Leu Thr Thr Lys Val His Phe
2480 2485 2490

Glu Cys Thr Gly Trp His Asp Ala Glu Asp Ala Gly Ala Pro Leu
2495 2500 2505

Val Tyr Ala Leu Leu Leu Arg Arg Cys Arg Gln Gly His Cys Glu
2510 2515 2520

Glu Phe Cys Val Tyr Lys Gly Ser Leu Ser Ser Tyr Gly Ala Val
2525 2530 2535

Leu Pro Pro Gly Phe Arg Pro His Phe Glu Val Gly Leu Ala Val
2540 2545 2550

Val Val Gln Asp Gln Leu Gly Ala Ala Val Val Ala Leu Asn Arg
2555 2560 2565

Ser Leu Ala Ile Thr Leu Pro Glu Pro Asn Gly Ser Ala Thr Gly
2570 2575 2580

Leu Thr Val Trp Leu His Gly Leu Thr Ala Ser Val Leu Pro Gly
2585 2590 2595

Leu Leu Arg Gln Ala Asp Pro Gln His Val Ile Glu Tyr Ser Leu
2600 2605 2610

Ala Leu Val Thr Val Leu Asn Glu Tyr Glu Arg Ala Leu Asp Val
2615 2620 2625

Ala Ala Glu Pro Lys His Glu Arg Gln His Arg Ala Gln Ile Arg
2630 2635 2640

Lys Asn Ile Thr Glu Thr Leu Val Ser Leu Arg Val His Thr Val
2645 2650 2655

Asp Asp Ile Gln Gln Ile Ala Ala Ala Leu Ala Gln Cys Met Gly
2660 2665 2670

Pro Ser Arg Glu Leu Val Cys Arg Ser Cys Leu Lys Gln Thr Leu
2675 2680 2685

His Lys Leu Glu Ala Met Met Leu Ile Leu Gln Ala Glu Thr Thr
2690 2695 2700

Ala Gly Thr Val Thr Pro Thr Ala Ile Gly Asp Ser Ile Leu Asn
2705 2710 2715

Ile Thr Gly Asp Leu Ile His Leu Ala Ser Ser Asp Val Arg Ala
2720 2725 2730

Pro Gln Pro Ser Glu Leu Gly Ala Glu Ser Pro Ser Arg Met Val
2735 2740 2745

Ala Ser Gln Ala Tyr Asn Leu Thr Ser Ala Leu Met Arg Ile Leu
2750 2755 2760

Met Arg Ser Arg Val Leu Asn Glu Glu Pro Leu Thr Leu Ala Gly
2765 2770 2775

Glu Glu Ile Val Ala Gln Gly Lys Arg Ser Asp Pro Arg Ser Leu
2780 2785 2790

Leu Cys Tyr Gly Gly Ala Pro Gly Pro Gly Cys His Phe Ser Ile
2795 2800 2805

Pro Glu Ala Phe Ser Gly Ala Leu Ala Asn Leu Ser Asp Val Val
2810 2815 2820

Gln Leu Ile Phe Leu Val Asp Ser Asn Pro Phe Pro Phe Gly Tyr
2825 2830 2835

Ile Ser Asn Tyr Thr Val Ser Thr Lys Val Ala Ser Met Ala Phe
2840 2845 2850

Gln Thr Gln Ala Gly Ala Gln Ile Pro Ile Glu Arg Leu Ala Ser

2855 2860 2865
Glu Arg Ala Ile Thr Val Lys Val Pro Asn Asn Ser Asp Trp Ala
2870 2875 2880
Ala Arg Gly His Arg Ser Ser Ala Asn Ser Ala Asn Ser Val Val
2885 2890 2895
Val Gln Pro Gln Ala Ser Val Gly Ala Val Val Thr Leu Asp Ser
2900 2905 2910
Ser Asn Pro Ala Ala Gly Leu His Leu Gln Leu Asn Tyr Thr Leu
2915 2920 2925
Leu Asp Gly His Tyr Leu Ser Glu Glu Pro Glu Pro Tyr Leu Ala
2930 2935 2940
Val Tyr Leu His Ser Glu Pro Arg Pro Asn Glu His Asn Cys Ser
2945 2950 2955
Ala Ser Arg Arg Ile Arg Pro Glu Ser Leu Gln Gly Ala Asp His
2960 2965 2970
Arg Pro Tyr Thr Phe Phe Ile Ser Pro Gly Ser Arg Asp Pro Ala
2975 2980 2985
Gly Ser Tyr His Leu Asn Leu Ser Ser His Phe Arg Trp Ser Ala
2990 2995 3000
Leu Gln Val Ser Val Gly Leu Tyr Thr Ser Leu Cys Gln Tyr Phe
3005 3010 3015
Ser Glu Glu Asp Met Val Trp Arg Thr Glu Gly Leu Leu Pro Leu
3020 3025 3030
Glu Glu Thr Ser Pro Arg Gln Ala Val Cys Leu Thr Arg His Leu
3035 3040 3045
Thr Ala Phe Gly Ala Ser Leu Phe Val Pro Pro Ser His Val Arg
3050 3055 3060
Phe Val Phe Pro Glu Pro Thr Ala Asp Val Asn Tyr Ile Val Met
3065 3070 3075
Leu Thr Cys Ala Val Cys Leu Val Thr Tyr Met Val Met Ala Ala
3080 3085 3090
Ile Leu His Lys Leu Asp Gln Leu Asp Ala Ser Arg Gly Arg Ala
3095 3100 3105
Ile Pro Phe Cys Gly Gln Arg Gly Arg Phe Lys Tyr Glu Ile Leu
3110 3115 3120
Val Lys Thr Gly Trp Gly Arg Gly Ser Gly Thr Thr Ala His Val
3125 3130 3135
Gly Ile Met Leu Tyr Gly Val Asp Ser Arg Ser Gly His Arg His
3140 3145 3150
Leu Asp Gly Asp Arg Ala Phe His Arg Asn Ser Leu Asp Ile Phe
3155 3160 3165

Arg Ile Ala Thr Pro His Ser Leu Gly Ser Val Trp Lys Ile Arg
3170 3175 3180

Val Trp His Asp Asn Lys Gly Leu Ser Pro Ala Trp Phe Leu Gln
3185 3190 3195

His Val Ile Val Arg Asp Leu Gln Thr Ala Arg Ser Ala Phe Phe
3200 3205 3210

Leu Val Asn Asp Trp Leu Ser Val Glu Thr Glu Ala Asn Gly Gly
3215 3220 3225

Leu Val Glu Lys Glu Val Leu Ala Ala Ser Asp Ala Ala Leu Leu
3230 3235 3240

Arg Phe Arg Arg Leu Leu Val Ala Glu Leu Gln Arg Gly Phe Phe
3245 3250 3255

Asp Lys His Ile Trp Leu Ser Ile Trp Asp Arg Pro Pro Arg Ser
3260 3265 3270

Arg Phe Thr Arg Ile Gln Arg Ala Thr Cys Cys Val Leu Leu Ile
3275 3280 3285

Cys Leu Phe Leu Gly Ala Asn Ala Val Trp Tyr Gly Ala Val Gly
3290 3295 3300

Asp Ser Ala Tyr Ser Thr Gly His Val Ser Arg Leu Ser Pro Leu
3305 3310 3315

Ser Val Asp Thr Val Ala Val Gly Leu Val Ser Ser Val Val Val
3320 3325 3330

Tyr Pro Val Tyr Leu Ala Ile Leu Phe Leu Phe Arg Met Ser Arg
3335 3340 3345

Ser Lys Val Ala Gly Ser Pro Ser Pro Thr Pro Ala Gly Gln Gln
3350 3355 3360

Val Leu Asp Ile Asp Ser Cys Leu Asp Ser Ser Val Leu Asp Ser
3365 3370 3375

Ser Phe Leu Thr Phe Ser Gly Leu His Ala Glu Gln Ala Phe Val
3380 3385 3390

Gly Gln Met Lys Ser Asp Leu Phe Leu Asp Asp Ser Lys Ser Leu
3395 3400 3405

Val Cys Trp Pro Ser Gly Glu Gly Thr Leu Ser Trp Pro Asp Leu
3410 3415 3420

Leu Ser Asp Pro Ser Ile Val Gly Ser Asn Leu Arg Gln Leu Ala
3425 3430 3435

Arg Gly Gln Ala Gly His Gly Leu Gly Pro Glu Glu Asp Gly Phe
3440 3445 3450

Ser Leu Ala Ser Pro Tyr Ser Pro Ala Lys Ser Phe Ser Ala Ser
3455 3460 3465

Asp Glu Asp Leu Ile Gln Gln Val Leu Ala Glu Gly Val Ser Ser
 3470 3475 3480

Pro Ala Pro Thr Gln Asp Thr His Met Glu Thr Asp Leu Leu Ser
 3485 3490 3495

Ser Leu Ser Ser Thr Pro Gly Glu Lys Thr Glu Thr Leu Ala Leu
 3500 3505 3510

Gln Arg Leu Gly Glu Leu Gly Pro Pro Ser Pro Gly Leu Asn Trp
 3515 3520 3525

Glu Gln Pro Gln Ala Ala Arg Leu Ser Arg Thr Gly Leu Val Glu
 3530 3535 3540

Gly Leu Arg Lys Arg Leu Leu Pro Ala Trp Cys Ala Ser Leu Ala
 3545 3550 3555

His Gly Leu Ser Leu Leu Leu Val Ala Val Ala Val Ala Val Ser
 3560 3565 3570

Gly Trp Val Gly Ala Ser Phe Pro Pro Gly Val Ser Val Ala Trp
 3575 3580 3585

Leu Leu Ser Ser Ser Ala Ser Phe Leu Ala Ser Phe Leu Gly Trp
 3590 3595 3600

Glu Pro Leu Lys Val Leu Leu Glu Ala Leu Tyr Phe Ser Leu Val
 3605 3610 3615

Ala Lys Arg Leu His Pro Asp Glu Asp Asp Thr Leu Val Glu Ser
 3620 3625 3630

Pro Ala Val Thr Pro Val Ser Ala Arg Val Pro Arg Val Arg Pro
 3635 3640 3645

Pro His Gly Phe Ala Leu Phe Leu Ala Lys Glu Glu Ala Arg Lys
 3650 3655 3660

Val Lys Arg Leu His Gly Met Leu Arg Ser Leu Leu Val Tyr Met
 3665 3670 3675

Leu Phe Leu Leu Val Thr Leu Leu Ala Ser Tyr Gly Asp Ala Ser
 3680 3685 3690

Cys His Gly His Ala Tyr Arg Leu Gln Ser Ala Ile Lys Gln Glu
 3695 3700 3705

Leu His Ser Arg Ala Phe Leu Ala Ile Thr Arg Ser Glu Glu Leu
 3710 3715 3720

Trp Pro Trp Met Ala His Val Leu Leu Pro Tyr Val His Gly Asn
 3725 3730 3735

Gln Ser Ser Pro Glu Leu Gly Pro Pro Arg Leu Arg Gln Val Arg
 3740 3745 3750

Leu Gln Glu Ala Leu Tyr Pro Asp Pro Pro Gly Pro Arg Val His
 3755 3760 3765

Thr Cys Ser Ala Ala Gly Gly Phe Ser Thr Ser Asp Tyr Asp Val

3770 3775 3780
Gly Trp Glu Ser Pro His Asn Gly Ser Gly Thr Trp Ala Tyr Ser
3785 3790 3795
Ala Pro Asp Leu Leu Gly Ala Trp Ser Trp Gly Ser Cys Ala Val
3800 3805 3810
Tyr Asp Ser Gly Gly Tyr Val Gln Glu Leu Gly Leu Ser Leu Glu
3815 3820 3825
Glu Ser Arg Asp Arg Leu Arg Phe Leu Gln Leu His Asn Trp Leu
3830 3835 3840
Asp Asn Arg Ser Arg Ala Val Phe Leu Glu Leu Thr Arg Tyr Ser
3845 3850 3855
Pro Ala Val Gly Leu His Ala Ala Val Thr Leu Arg Leu Glu Phe
3860 3865 3870
Pro Ala Ala Gly Arg Ala Leu Ala Ala Leu Ser Val Arg Pro Phe
3875 3880 3885
Ala Leu Arg Arg Leu Ser Ala Gly Leu Ser Leu Pro Leu Leu Thr
3890 3895 3900
Ser Val Cys Leu Leu Leu Phe Ala Val His Phe Ala Val Ala Glu
3905 3910 3915
Ala Arg Thr Trp His Arg Glu Gly Arg Trp Arg Val Leu Arg Leu
3920 3925 3930
Gly Ala Trp Ala Arg Trp Leu Leu Val Ala Leu Thr Ala Ala Thr
3935 3940 3945
Ala Leu Val Arg Leu Ala Gln Leu Gly Ala Ala Asp Arg Gln Trp
3950 3955 3960
Thr Arg Phe Val Arg Gly Arg Pro Arg Arg Phe Thr Ser Phe Asp
3965 3970 3975
Gln Val Ala His Val Ser Ser Ala Ala Arg Gly Leu Ala Ala Ser
3980 3985 3990
Leu Leu Phe Leu Leu Val Lys Ala Ala Gln His Val Arg Phe
3995 4000 4005
Val Arg Gln Trp Ser Val Phe Gly Lys Thr Leu Cys Arg Ala Leu
4010 4015 4020
Pro Glu Leu Leu Gly Val Thr Leu Gly Leu Val Val Leu Gly Val
4025 4030 4035
Ala Tyr Ala Gln Leu Ala Ile Leu Leu Val Ser Ser Cys Val Asp
4040 4045 4050
Ser Leu Trp Ser Val Ala Gln Ala Leu Leu Val Leu Cys Pro Gly
4055 4060 4065
Thr Gly Leu Ser Thr Leu Cys Pro Ala Glu Ser Trp His Leu Ser
4070 4075 4080

Pro Leu Leu Cys Val Gly Leu Trp Ala Leu Arg Leu Trp Gly Ala
 4085 4090 4095

Leu Arg Leu Gly Ala Val Ile Leu Arg Trp Arg Tyr His Ala Leu
 4100 4105 4110

Arg Gly Glu Leu Tyr Arg Pro Ala Trp Glu Pro Gln Asp Tyr Glu
 4115 4120 4125

Met Val Glu Leu Phe Leu Arg Arg Leu Arg Leu Trp Met Gly Leu
 4130 4135 4140

Ser Lys Val Lys Glu Phe Arg His Lys Val Arg Phe Glu Gly Met
 4145 4150 4155

Glu Pro Leu Pro Ser Arg Ser Ser Arg Gly Ser Lys Val Ser Pro
 4160 4165 4170

Asp Val Pro Pro Pro Ser Ala Gly Ser Asp Ala Ser His Pro Ser
 4175 4180 4185

Thr Ser Ser Ser Gln Leu Asp Gly Leu Ser Val Ser Leu Gly Arg
 4190 4195 4200

Leu Gly Thr Arg Cys Glu Pro Glu Pro Ser Arg Leu Gln Ala Val
 4205 4210 4215

Phe Glu Ala Leu Leu Thr Gln Phe Asp Arg Leu Asn Gln Ala Thr
 4220 4225 4230

Glu Asp Val Tyr Gln Leu Glu Gln Gln Leu His Ser Leu Gln Gly
 4235 4240 4245

Arg Arg Ser Ser Arg Ala Pro Ala Gly Ser Ser Arg Gly Pro Ser
 4250 4255 4260

Pro Gly Leu Arg Pro Ala Leu Pro Ser Arg Leu Ala Arg Ala Ser
 4265 4270 4275

Arg Gly Val Asp Leu Ala Thr Gly Pro Ser Arg Thr Pro Leu Arg
 4280 4285 4290

Ala Lys Asn Lys Val His Pro Ser Ser Thr
 4295 4300

<210> 3

<211> 29

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer BPF14

<400> 3

ccatccaccc gctgtgtgac ctggtaaat

<210> 4

<211> 26

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer BPR9

<400> 4

ccacacctatc gccccttcctt aagcat

26

<210> 5

<211> 31

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer BPF9

<400> 5

atttttgag atggagcttc actcttgac g

31

<210> 6

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer BPR4

<400> 6

cgctcggcag gcccctaacc

20

<210> 7

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer BPF12

<400> 7

ccggcccccag gagcctagac g

21

<210> 8

<211> 27

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer BPR5

<400> 8

catcctgttc atccgctcca cggttac

27

<210> 9

<211> 20

<212> DNA

<213> Artificial sequence

<220>
<223> PCR primer F13

<400> 9
tggagggagg gacgccaaatc 20

<210> 10
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer R27

<400> 10
gtcaacgtgg gcctccaaatg 20

<210> 11
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer F26

<400> 11
agcgcaacta cttggaggcc c 21

<210> 12
<211> 28
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer R2

<400> 12
gcagggttag caggtggggc catcctac 28

<210> 13
<211> 26
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer BPF15

<400> 13
gaggctgtgg gggtcaggc aagtgg 26

<210> 14
<211> 25
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer BPR12

<400> 14
agggaggcag aggaaaggc cgaac 25

<210> 15
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer BPF6

<400> 15
ccccgtcctc cccgtccttt tgtc 24

<210> 16
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer BPR6

<400> 16
aagcgaaaaa gggctgcgtc g 21

<210> 17
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer BPF13

<400> 17
ggccctccct gccttctagg cg 22

<210> 18
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer KG8R25

<400> 18
gttgcagcca agcccatgtt a 21

<210> 19
<211> 19
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 1F1

<400> 19
ggtcgcgtg tggcgaagg 19

<210> 20
<211> 16
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 1R1

<400> 20
cggcgggcgg catcgt 16

<210> 21
<211> 16
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 1F2

<400> 21
acggcggggc catgcg 16

<210> 22
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 1R2

<400> 22
gcgtcctggc ccgcgtcc 18

<210> 23
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 2F

<400> 23
ttggggatgc tggcaatgtg 20

<210> 24
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 2R

<400> 24
gggattcggc aaagctgatg 20

<210> 25
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 3F

<400> 25
ccatcagctt tgccgaatcc 20

<210> 26
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 3R

<400> 26
agggcagaag ggatattggg 20

<210> 27
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 4F

<400> 27
agacccttcc caccagacct 20

<210> 28
<211> 19
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 4R

<400> 28
tgagccctgc ccagtgtct 19

<210> 29
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 5F1

<400> 29

gagccaggag gagcagaacc c

21

<210> 30
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 5R1

<400> 30
agagggacag gcaggcaaag g

21

<210> 31
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 5F2

<400> 31
cccagccctc cagtgcct

18

<210> 32
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 5R2

<400> 32
cccaggcagc acatagcgat

20

<210> 33
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 5F3

<400> 33
ccgaggtgga tgccgctg

18

<210> 34
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 5R3

<400> 34
gaaggggagt gggcagcaga c

21

<210> 35
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 6F

<400> 35
cactgaccgt tgacaccctc g

21

<210> 36
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 6R

<400> 36
tgcccccagtg cttcagagat c

21

<210> 37
<211> 19
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 7F

<400> 37
ggagtgccct gagccccct

19

<210> 38
<211> 19
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 7R

<400> 38
cccttaacca cagccagcg

19

<210> 39
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 8F

<400> 39
tctgttcgtc ctggtgtcct g

21

<210> 40
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 8R

<400> 40
gcaggagggc aggtttaga a

21

<210> 41
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 9F

<400> 41
ggtaggggg a gtctgggctt

20

<210> 42
<211> 17
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 9R

<400> 42
gaggccaccc cgagtcc

17

<210> 43
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 10F

<400> 43
gttgggcatc tctgacggtg

20

<210> 44
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 10R

<400> 44
ggaaggtggc ctgaggagat

20

<210> 45
<211> 17
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 11F2

<400> 45
gggtccacg ggccatg

17

<210> 46
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 11R2

<400> 46
aagccagca gcacggtag

20

<210> 47
<211> 17
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 11midF

<400> 47
gcttgagcc acggaac

17

<210> 48
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 11midR

<400> 48
gcagtgtac cactgagaac

20

<210> 49
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 11F1

<400> 49
tgccctggg agaccaacga tac

23

<210> 50

<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 11R1

<400> 50
ggctgctgcc ctcactggga ag 22

<210> 51
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 12F

<400> 51
gaggcgacag gctaaggg 18

<210> 52
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Primer for PCR

<400> 52
aggtcaacgt gggctccaa gtagt 25

<210> 53
<211> 19
<212> DNA
<213> Artificial sequence

<220>
<223> Forward nested primer F32

<400> 53
gccttgcgca gcttggact 19

<210> 54
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Second specific primer 31R

<400> 54
acagtgtctt gagtccaagc 20

<210> 55
<211> 30

<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer

<400> 55
ctggtgacct acatggtcat gcccgagatc 30

<210> 56
<211> 30
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer

<400> 56
ggttgtctat cccgtctacc tggccctcct 30

<210> 57
<211> 25
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer

<400> 57
gtccccagcc ccagcccacc tggcc 25

<210> 58
<211> 7
<212> PRT
<213> Homo sapiens

<400> 58
Trp Asp Phe Gly Asp Gly Ser
1 5

<210> 59
<211> 4
<212> PRT
<213> Homo sapiens

<400> 59
His Leu Thr Ala
1

<210> 60
<211> 27
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer

<400> 60
gcagggtgag caggtggggc catccta 27

<210> 61
<211> 19
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 12R-2

<400> 61
catgaaggcag agcagaagg 19

<210> 62
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 13F

<400> 62
tggagggagg gacgccaatc 20

<210> 63
<211> 19
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 13R

<400> 63
gaggctgggg ctgggacaa 19

<210> 64
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 14F

<400> 64
cccggttcac tcactgcg 18

<210> 65
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 14R

<400> 65
ccgtgctcag agcctgaaag 20

<210> 66
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15F16

<400> 66
cgggtgggga gcaggtgg 18

<210> 67
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15R16

<400> 67
gctctgggtc aggacagggg a 21

<210> 68
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15F15

<400> 68
cgcctggggg tgttcttt 18

<210> 69
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15R15

<400> 69
acgtgatgtt gtcgcccc 18

<210> 70
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15F14

<400> 70

gcccccggtgg tggtcagc

18

<210> 71
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15R14

<400> 71
caggctgcgt gggatgc

18

<210> 72
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15F13

<400> 72
ctggaggtgc tgcgcgtt

18

<210> 73
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15R13

<400> 73
ctggctccac gcagatgc

18

<210> 74
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15F12

<400> 74
cgtaacagg gcgcattt

18

<210> 75
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15R12

<400> 75
gcagcagaga tgggttttggaa c

21

<210> 76
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15F11

<400> 76
ccaggctcct atcttgtgac a

21

<210> 77
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15R11

<400> 77
tgaagtcacc tgtgctgttg t

21

<210> 78
<211> 19
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15F10

<400> 78
ctacctgtgg gatctgggg

19

<210> 79
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15R10

<400> 79
tgctgaagct cacgctcc

18

<210> 80
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15F9

<400> 80
gggctcgatcg tcaatgcaag

20

<210> 81
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15R9

<400> 81
caccacacctgc agccccctcta

20

<210> 82
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15F8

<400> 82
ccgccccagga cagcatcttc

20

<210> 83
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15R8

<400> 83
cgctgccccag catgttgg

18

<210> 84
<211> 19
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15F7

<400> 84
cggcaaaggc ttctcgctc

19

<210> 85
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15R7

<400> 85
ccgggtgtgg ggaagctatg

20

<210> 86
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15F6

<400> 86
cgagccattt accacccata g

21

<210> 87
<211> 19
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15R6

<400> 87
gcccgaggcacc agctcacat

19

<210> 88
<211> 19
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15F5

<400> 88
ccacgggcac caatgtgag

19

<210> 89
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15R5

<400> 89
ggcagccagc aggatctgaa

20

<210> 90
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15F4

<400> 90
cagcagcaag gtgggtggc

18

<210> 91

<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15R4

<400> 91
gcgttaggcgaa cccgagag

18

<210> 92
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15F3

<400> 92
acgggcactg agaggaactt c

21

<210> 93
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15R3

<400> 93
accagcgtgc ggtttctcact

20

<210> 94
<211> 19
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15F2

<400> 94
gccgcgacgt cacctacac

19

<210> 95
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15R2

<400> 95
tcggccctgg gctcatct

18

<210> 96
<211> 20

<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15F1

<400> 96
gtcgccaggg caggacacag 20

<210> 97
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15F1-1

<400> 97
acttggaggc ccacgttgac c 21

<210> 98
<211> 19
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15R1-1

<400> 98
tgatggcac caggcgctc 19

<210> 99
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15F1-2

<400> 99
catccaggcc aatgtgacgg t 21

<210> 100
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 15R1-2

<400> 100
cctgggtggca agctgggtgt t 21

<210> 101
<211> 20
<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer 16F

<400> 101

taaaaactgga tggggctctc

20

<210> 102

<211> 18

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer 16R

<400> 102

ggcctccacc agcactaa

18

<210> 103

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer 17F

<400> 103

gggtccccca gtccttccag

20

<210> 104

<211> 17

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer 17R

<400> 104

tccccagccc gcccaca

17

<210> 105

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer 18F

<400> 105

gccccctcac caccccttct

20

<210> 106

<211> 18

<212> DNA

<213> Artificial sequence

<220>
<223> PCR primer 18R

<400> 106
tcccgctgct ccccccac 18

<210> 107
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 19F

<400> 107
gatgccgtgg ggaccgtc 18

<210> 108
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 19R

<400> 108
gtgagcaggt ggcagtctcg 20

<210> 109
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 20F

<400> 109
ccacccccc tgcgtcgtt 21

<210> 110
<211> 19
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 20R

<400> 110
ggtcccaagg acgcattt 19

<210> 111
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer 21F

<400> 111
tgccggcctc ctgcgctgct ga 22

<210> 112
<211> 28
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer TWR2-1

<400> 112
gttaggatggc cccacctgct caccctgc 28

<210> 113
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer R27'

<400> 113
aggtaaacgt gggcctccaa 20