(51) International Patent Classification 5:
C01D 211/26, A61K 31/445

(11) International Publication Number: WO 91/17116
(43) International Publication Date: 14 November 1991 (14.11.91)

(21) International Application Number: PCT/EP91/00717
(22) International Filing Date: 12 April 1991 (12.04.91)

(30) Priority data:
9009604.1 28 April 1990 (28.04.90) GB
9027100.8 13 December 1990 (13.12.90) GB

(71) Applicant (for all designated States except US): DR. LO. ZAMBELETTI S.P.A. [IT/IT]; Via Zambeletti, I-20021 Baranzate (IT).

(72) Inventors; and
(75) Inventors/Applicants (for US only): VECCHIETTI, Vittorio [IT/IT]; COLLE, Roberto [IT/IT]; GIARDINA, Giuseppe [IT/IT]; Dr. Lo. Zambeletti S.p.A, Via Zambeletti, I-20021 Baranzate (IT).

(74) Agent: RUSSELL, Brian, John; SmithKline Beecham, Corporate Patents, Great Burgh, Yew Tree Bottom Road, Epsom, Surrey KT18 5XQ (GB).

(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, KR, LU (European patent), NL (European patent), SE (European patent), US.

Published
With international search report.

(54) Title: NOVEL 1-[(2H-1-OXO-3,4-DIHYDRONAPHTYL-6)-ACETYL-PIPERIDINES, PROCESS FOR THEIR PREPARATION AND THERAPEUTIC USE

![Chemical structure](I)

(57) Abstract

Novel azacyclic derivatives of formula (I), in which R₁ and R₃ are each linear or branched alkyl, cycloalkyl, cycloalkylalkyl, alkenyl, cycloalkenyl or alkynyl; R₃ and R₄ are identical, and each is a hydrogen or alkyl; and R₅ is hydrogen or alkyl. Process for their preparation and their use in medicine.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
<th>Code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>ES</td>
<td>Spain</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>FI</td>
<td>Finland</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>FR</td>
<td>France</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KP</td>
<td>Democratic People's Republic</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>MR</td>
<td>Mauritania</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>NL</td>
<td>Netherlands</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>PL</td>
<td>Poland</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
<td>SU</td>
<td>Soviet Union</td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
<td>TC</td>
<td>Togo</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This invention is concerned with novel azacyclic derivatives, processes for their preparation, and their use in medicine.

Compounds which are kappa-receptor agonists act as analgesics through interaction with kappa opioid receptors. The advantage of kappa-receptor agonists over the classical \(\mu \)-receptor agonists, such as morphine, lies in their ability to cause analgesia while being devoid of morphine-like behavioural effects and addiction liability.

European Published Application Nos. 333315 and 361791 disclose groups of azacyclic derivatives which exhibit kappa-receptor agonism without some of the behavioural effects of morphine and morphine analogues, and which are thus of potential therapeutic utility as analgesics.

Certain azacyclic derivatives falling within the scopes of the above European Applications, but not specifically disclosed therein, have now been discovered which also exhibit potent kappa-receptor agonism and are potentially useful as analgesics, including peripheral analgesics for treating inflammatory pain.

These derivatives show a diminished affinity for kappa brain receptors while retaining effective analgesic activity. The derivatives are also of potential use in the treatment of cerebral ischaemia.

According to the present invention there is provided a compound, or a solvate or salt thereof, of formula (I):
5 in which:

R₁ and R₂ are each linear or branched C₃-₄ alkyl, C₃-₆ cycloalkyl, C₄-₆ cycloalkylalkyl, C₃-₄ alkenyl, C₃-₆ cycloalkenyl or C₃-₄ alkynyl,

R₃ and R₄ are identical, and each is hydrogen or C₁-₄ alkyl; and

R₅ is hydrogen or C₁-₃ alkyl.

10 Preferably, when R₃ and R₄ are C₁-₄ alkyl they are both bonded to the same carbon atom of the piperidine ring, thereby forming a gem-dialkyl grouping.

When R₅ is C₁-₃ alkyl, R₃ and R₄ are preferably hydrogen.

Examples of R₁ and R₂ are methyl, ethyl, propyl, isopropyl, tert-butyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclopropymethyl, allyl, and propynyl.

Examples of R₃ and R₄ are hydrogen, 3,3 gem-dimethyl, 4,4 gem-dimethyl and 5,5 gem-dimethyl.

Examples of R₅ are hydrogen and methyl.

The compounds of formula I or their salts or solvates are preferably in pharmaceutically acceptable or substantially
pure form. By pharmaceutically acceptable form is meant, inter alia, of a pharmaceutically acceptable level of purity excluding normal pharmaceutical additives such as diluents and carriers, and including no material considered toxic at normal dosage levels.

A substantially pure form will generally contain at least 50% (excluding normal pharmaceutical additives), preferably 75%, more preferably 90% and still more preferably 95% of the compound of formula I or its salt or solvate.

One preferred pharmaceutically acceptable form is the crystalline form, including such form in a pharmaceutical composition. In the case of salts and solvates the additional ionic and solvent moieties must also be non-toxic.

Examples of a pharmaceutically acceptable salt of a compound of formula I include the acid addition salts with the conventional pharmaceutical acids, for example, maleic, hydrochloric, hydrobromic, phosphoric, acetic, fumaric, salicylic, citric, lactic, mandelic, tartaric, succinic, benzoic, ascorbic and methanesulphonic.

Examples of pharmaceutically acceptable solvates of a compound of formula I include hydrates.

The compounds of formula I have an asymmetric centre and therefore exist in more than one stereoisomeric form. The invention extends to all such forms and to mixtures thereof, including racemates.

The present invention also provides a process for the preparation of a compound of formula I which comprises reacting a compound of formula (II):
in which \(R_1, R_2, R_3, R_4, \) and \(R_5 \) are as defined for formula 10 (I), with a compound of formula (III):

\[
\text{COOH}
\]

(III)

or an active derivative thereof,

and then optionally forming a salt and/or solvate of the obtained compound of formula (I).

Suitable active derivatives of the compound of formula (III) are the acid chloride or acid anhydride. Another suitable derivative is a mixed anhydride formed between the acid and an alkyl chloroformate.

For example, in standard methods well known to those skilled in the art, the compound of formula (II) may be coupled:

a) with an acid chloride in the presence of an inorganic or organic base,
b) with the acid in the presence of dicyclohexyl carbodiimide, N-dimethylaminopropyl-N'-ethyl carbodiimide or carbonyl diimidazole,

c) with a mixed anhydride generated in situ from the acid and an alkyl (for example ethyl) chloroformate.

The compounds of formula I may be converted into their pharmaceutically acceptable acid addition salts by reaction with the appropriate organic or mineral acids. Solvates of the compounds of formula I may be formed by crystallization or recrystallization from the appropriate solvent. For example hydrates may be formed by crystallization or recrystallization from aqueous solutions, or solutions in organic solvents containing water.

Also salts or solvates of the compounds of formula I which are not pharmaceutically acceptable may be useful as intermediates in the production of pharmaceutically acceptable salts or solvates. Accordingly such salts or solvates also form part of this invention.

As mentioned before, the compounds of formula I exist in more than one stereoisomeric form and the processes of the invention produces mixtures thereof. The individual isomers may be separated one from another by resolution using an optically-active acid such as tartaric acid. Alternatively, an asymmetric synthesis would offer a route to the individual form.

Compounds of formula (II) may be prepared according to the following reaction Scheme I:
In this scheme, an acid of formula (VI) is firstly nitrogen-protected with an ethoxycarbonyl protecting group to form a compound of formula (V) which is then reacted with an amine NHR$_1$R$_2$ (in which R$_1$ and R$_2$ are as defined earlier) to obtain an N-deprotected amide of formula (IV). This amide is then reduced to a diamine of formula (II) by conventional means.

Alternatively, compounds of formula (II) may be prepared according to the following reaction Scheme II:
Scheme II

In this Scheme, a compound of formula (VIII) is treated with a secondary amine NHR₁R₂ (in which R₁ and R₂ are as defined earlier) in the presence of a reducing hydride, such as NaCNBH₃, to form a compound of formula (VII). The latter is then reduced catalytically using hydrogen/PtO₂ to form a diamine of formula (II).

The compounds of formulae (VII), (VI), (V) and (IV) are generically or specifically disclosed in the above mentioned European Application No. 361791.

The compounds of formula (VIII) are known compounds or can be prepared from known compounds by known methods, such as those disclosed in Chem. Berichte 34, 4253; J. Org. Chem. 26(1961), 4415; J. Am. Chem. Soc. 78(1956), 5842.

The compound of formula (III) and its active derivatives, as hereinbefore defined, are also known compounds, and are disclosed in EP-A-333315.

The activity of the compounds of formula (I) in standard tests indicates that they are of potential therapeutic...
utility in the treatment of pain and of cerebral ischaemia.

Accordingly the present invention also provides a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, for use as an active therapeutic substance.

The present invention further provides a pharmaceutical composition comprising a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier.

The present invention also provides the use of a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, in the manufacture of a medicament for the treatment of pain, or in the manufacture of a medicament for the treatment of cerebral ischaemia.

Such a medicament, and a composition of this invention, may be prepared by admixture of a compound of the invention with an appropriate carrier. It may contain a diluent, binder, filler, disintegrant, flavouring agent, colouring agent, lubricant or preservative in conventional manner.

These conventional excipients may be employed for example as in the preparation of compositions of known analgesic agents or agents for the treatment of cerebral ischaemia.

Preferably, a pharmaceutical composition of the invention is in unit dosage form and in a form adapted for use in the medical or veterinary fields. For example, such preparations may be in a pack form accompanied by written or printed instructions for use as an agent in the treatment of pain or for the treatment of cerebral ischaemia.
The suitable dosage range for the compounds of the invention depends on the compound to be employed and on the condition of the patient. It will also depend, inter alia, upon the relation of potency to absorbability and the frequency and route of administration.

The compound or composition of the invention may be formulated for administration by any route, and is preferably in unit dosage form or in a form that a human patient may administer to himself in a single dosage. Advantageously, the composition is suitable for oral, rectal, topical, parenteral, intravenous or intramuscular administration. Preparations may be designed to give slow release of the active ingredient.

Compositions may, for example, be in the form of tablets, capsules, sachets, vials, powders, granules, lozenges, reconstitutable powders, or liquid preparations, for example solutions or suspensions, or suppositories.

The compositions, for example those suitable for oral administration, may contain conventional excipients such as binding agents, for example syrup, acacia, gelatin, sorbitol, tragacanth, or polyvinylpyrrolidone; fillers, for example lactose, sugar, maize-starch, calcium phosphate, sorbitol or glycine; tableting lubricants, for example magnesium stearate; disintegrants, for example starch, polyvinyl-pyrrolidone, sodium starch glycollate or microcrystalline cellulose; or pharmaceutically acceptable setting agents such as sodium lauryl sulphate.

Solid compositions may be obtained by conventional methods of blending, filling, tableting or the like. Repeated blending operations may be used to distribute the active agent throughout those compositions employing large
quantities of fillers. When the composition is in the form of a tablet, powder, or lozenge, any carrier suitable for formulating solid pharmaceutical compositions may be used, examples being magnesium stearate, starch, glucose, lactose, sucrose, rice flour and chalk. Tablets may be coated according to methods well known in normal pharmaceutical practice, in particular with an enteric coating. The composition may also be in the form of an ingestible capsule, for example of gelatin containing the compound, if desired with a carrier or other excipients.

Compositions for oral administration as liquids may be in the form of, for example, emulsions, syrups, or elixirs, or may be presented as a dry product for reconstitution with water or other suitable vehicle before use. Such liquid compositions may contain conventional additives such as suspending agents, for example sorbitol, syrup, methyl cellulose, gelatin, hydroxyethylcellulose, carboxymethylcellulose, aluminium stearate gel, hydrogenated edible fats; emulsifying agents, for example lecithin, sorbitan monooleate, or acacia; aqueous or non-aqueous vehicles, which include edible oils, for example almond oil, fractionated coconut oil, oily esters, for example esters of glycerine, or propylene glycol, or ethyl alcohol, glycerine, water or normal saline; preservatives, for example methyl or propyl p-hydroxybenzoate or sorbic acid; and if desired conventional flavouring or colouring agents.

The compounds of this invention may also be administered by a non-oral route. In accordance with routine pharmaceutical procedure, the compositions may be formulated, for example for rectal administration as a suppository. They may also be formulated for presentation in an injectable form in an aqueous or non-aqueous solution, suspension or emulsion in a pharmaceutically acceptable liquid, e.g. sterile.
pyrogen-free water or a parenterally acceptable oil or a mixture of liquids. The liquid may contain bacteriostatic agents, anti-oxidants or other preservatives, buffers or solutes to render the solution isotonic with the blood, thickening agents, suspending agents or other pharmaceutically acceptable additives. Such forms will be presented in unit dose form such as ampoules or disposable injection devices or in multi-dose forms such as a bottle from which the appropriate dose may be withdrawn or a solid form or concentrate which can be used to prepare an injectable formulation.

As mentioned earlier, the effective dose of compound depends on the particular compound employed, the condition of the patient and on the frequency and route of administration. A unit dose will generally contain from 20 to 1000 mg and preferably will contain from 30 to 500 mg, in particular 50, 100, 150, 200, 250, 300, 350, 400, 450, or 500 mg. The composition may be administered once or more times a day for example 2, 3 or 4 times daily, and the total daily dose for a 70 kg adult will normally be in the range 100 to 3000 mg. Alternatively the unit dose will contain from 2 to 20 mg of active ingredient and be administered in multiples, if desired, to give the preceding daily dose.

Within the above indicated dosage range, no adverse toxicological effects are observed with compounds of the invention.

The present invention also provides a method for the treatment and/or prophylaxis of pain and/or cerebral ischaemia in mammals, particularly humans, which comprises administering to the mammal in need of such treatment and/or prophylaxis an effective amount of a compound of formula (I) or a pharmaceutically acceptable salt or solvate thereof.
Compounds of this invention and their preparation are illustrated in the following Examples and compounds of the Examples are summarised in Table I. The pharmacological data are summarised in Table II.
Example 1

(2S)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-dimethylaminomethyl piperidine hydrochloride.

2.0 g (14.08 mmoles) of (2S)-2-dimethylaminomethyl piperidine were dissolved in 50 ml of dry chloroform. 1.94 g (14.06 mmoles) of anhydrous potassium carbonate were added and the mixture cooled at -10°C.

3.6 g (16.17 mmoles) of crude 1-oxo-3,4-dihydro-(2H)-napht-6-yl acetyl chloride [obtained from 3.3 g of 1-oxo-3,4-dihydro-(2H)-napht-6-yl acetic acid as described in EP-0333315], dissolved in 20 ml of dry chloroform, were added dropwise and the reaction mixture allowed to reach room temperature. After three hours 30 ml of water were added and the resulting biphasic solution stirred for additional 30'. The separated organic layer was washed with water, dried over \(\text{Na}_2\text{SO}_4 \) and concentrated in vacuo.

The residue was purified by flash column chromatography on 230-400 mesh silica gel, eluting with a mixture of \(\text{CH}_2\text{Cl}_2/\text{MeOH}/28\% \text{ NH}_4\text{OH} \), 94:4.5:0.4 respectively, to afford 2.6 g of the free base, which was dissolved in 50 ml of acetone and the solution brought to acidic pH with \(\text{HCl/Et}_2\text{O} \).

The precipitate was filtered, washed and dried, to yield 2.3 g of the title compound.

\(\text{C}_{20}\text{H}_{28}\text{N}_2\text{O}_2\cdot\text{HCl} \)

M.P. = 208-210°C
M.W. = 364.905

\([\alpha]_D^{20} = -64.0 \) (C=1, MeOH)

Elemental analysis: Calcd. C, 65.83; H, 8.01; N, 7.68; Cl, 9.72;
Found C, 65.32; H, 7.98; N, 7.53; Cl, 9.54.

I.R. (KBr): 3450; 2950; 1680; 1625; 1605 cm\(^{-1}\)

N.M.R. (\text{CDCl}_3): \delta 11.80 (s broad, 1H); 8.00 (d, 1H); 7.05-7.40 (m, 2H); 5.10-5.45 (m, 1H); 3.10-4.30 (m, 5H); 2.40-3.10 (m, 11H); 1.90-2.30 (m, 2H);
1.10-1.85 (m, 6H).
Example 2

(2S)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-(N-methyl-N-ethyl)aminomethyl piperidine hydrochloride.

Prepared as described in Ex. No. 1, from 1.1 g (7.04 mmoles) of (2S)-2-(N-methyl-N-ethyl)aminomethyl piperidine, 1.0 g (7.24 mmoles) of anhydrous potassium carbonate and 1.8 g (8.09 mmoles) of crude 1-oxo-3,4-dihydro-(2H)-napht-6-yl acetyl chloride in 40 ml of dry chloroform.

The crude product was purified by 230-400 mesh silica gel flash column chromatography, eluting with a mixture of CH₂Cl₂/MeOH/28% NH₄OH, 94:6:0.5 respectively, to afford 1.2 g of the free base, which was dissolved in 30 ml of acetone and the solution brought to acidic pH with HCl/Et₂O.

The precipitate was filtered, washed and dried, to yield 0.9 g of the title compound.

C₂₁H₃₀N₂O₂·HCl

M.P. = 163-165°C

M.W. = 378.931

[α]₂₀°D = -62.5 (C=1, MeOH)

Elemental analysis: Calcd. C,66.56; H,8.25; N,7.39; Cl,9.36.

Found C,66.34; H,8.29; N,7.28; Cl,9.23.

I.R. (KBr): 3440; 2950; 1680; 1630; 1610 cm⁻¹

N.M.R. (CDCl₃): δ 11.75 (s broad, 1H); 8.00 (d, 1H); 7.10-7.30 (m, 2H); 5.10-5.40 (m, 1H); 2.50-4.25 (m, 15H); 1.90-2.20 (m, 2H); 1.20-1.80 (m, 9H).

Example 3

(2S)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-diethylaminomethyl piperidine hydrochloride.

Prepared as described in Ex. No. 1, from 1.0 g (5.87 mmoles) of (2S)-2-diethylaminomethyl piperidine, 0.83 g (6.01 mmoles) of anhydrous potassium carbonate and 1.5 g (6.75 mmoles) of crude 1-oxo-3,4-dihydro-(2H)-napht-6-yl acetyl chloride in 35 ml of dry chloroform.
The crude product was purified by 230-400 mesh silica gel flash column chromatography, eluting with a mixture of CH$_2$Cl$_2$/MeOH/28% NH$_4$OH, 94:5:0.5 respectively, to afford 800 mg of the free base, which was dissolved in 30 ml of ethyl acetate, containing 5% of acetone, and the solution was brought to acidic pH with HCl/Et$_2$O. The precipitate was filtered, washed and dried, to yield 600 mg of the title compound.

C$_{22}$H$_{32}$N$_2$O$_2$.HCl

M.P. = 136-137°C
M.W. = 392.957

[^20]$_D$ = -61.6 (C=1, MeOH)

Elemental analysis: Calcd. C, 67.24; H, 8.47; N, 7.13; Cl, 9.02; Found C, 66.65; H, 8.30; N, 7.00; Cl, 8.98.

I.R. (KBr): 3440; 2955; 1685; 1620; 1610 cm$^{-1}$

Example 4

(±)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-dimethylamino-methyl-3,3-dimethyl piperidine hydrochloride.

Prepared as described in Ex. No. 1, from 1.53 g (9.0 mmoles) of (±)-2-dimethylaminomethyl-3,3-dimethyl piperidine, 1.2 g (9.2 mmoles) of anhydrous potassium carbonate and 2.0 g (9.2 mmoles) of crude 1-oxo-3,4-dihydro-(2H)-napht-6-yl acetyl chloride in 40 ml of dry chloroform. The crude product was purified by 230-400 mesh silica gel flash column chromatography, eluting with a mixture of CH$_2$Cl$_2$/MeOH/28% NH$_4$OH, 94:6:0.5 respectively, to afford 1.2 g of the free base, which was dissolved in 30 ml of ethyl acetate and the solution brought to acidic pH with HCl/Et$_2$O. The precipitate was filtered, washed and dried, to yield 0.4 g of the title compound.

C$_{22}$H$_{32}$N$_2$O$_2$.HCl

M.P. = 253–255°C
M.W. = 392.957
Elemental analysis: Calcd. C, 67.23; H, 8.46; N, 7.13; Cl, 9.02; Found C, 65.95; H, 8.19; N, 7.00; Cl, 8.98.

I.R. (KBr): 3440; 2950; 1685; 1620; 1605 cm⁻¹

N.M.R. (CDCl₃): δ 12.1-11.1 (s broad, 1H); 8.1-7.9 (m, 1H); 7.4-7.1 (m, 2H); 4.9-4.6 (m, 1H); 4.2-3.1 (m, 5H); 3.1-2.8 (m, 9H); 2.8-1.9 (m, 4H); 1.6-1.1 (m, 4H); 1.1-0.7 (m, 6H).

Example 5

(±)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-dimethylamino-methyl-4,4-dimethyl piperidine hydrochloride.

Prepared as described in Ex. No. 1, from 0.7 g (4.11 mmoles) of (±)-2-dimethylaminomethyl-4,4-dimethyl piperidine, 0.57 g (4.2 mmoles) of anhydrous potassium carbonate and 1.0 g (4.2 mmoles) of crude 1-oxo-3,4-dihydro-(2H)-napht-6-yl acetyl chloride in 30 ml of dry chloroform.

The crude product was purified by 230-400 mesh silica gel flash column chromatography, eluting with a mixture of CH₂Cl₂/MeOH/28% NH₄OH, 94:5:0.5 respectively, to afford 0.9 g of the free base, which was dissolved in 20 ml of ethyl acetate and the solution brought to acidic pH with HCl/Et₂O.

The precipitate was filtered, washed and dried, to yield 0.3 g of the title compound.

C₂₂H₃₂N₂O₂.HCl

M.P.: = 214-216°C
M.W. = 392.957

Elemental analysis: Calcd. C, 67.23; H, 8.46; N, 7.13; Cl, 9.02; Found C, 64.00; H, 8.14; N, 6.68; Cl, 8.65.

I.R. (KBr): 3440; 2955; 1685; 1625; 1605 cm⁻¹

N.M.R. (CDCl₃): δ 12.1-11.5 (s broad, 1H); 8.0-7.8 (m, 1H); 7.3-7.0 (m, 2H); 5.2-4.8 (m, 1H); 4.2-3.2 (m, 5H); 3.0-2.7 (m, 9H); 2.7-1.8 (m, 4H); 1.6-1.1 (m, 4H); 0.9 (ds, 6H).
Example 6

(±)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-dimethylamino-methyl-5,5-dimethyl piperidine hydrochloride.

Prepared as described in Ex. No. 1, from 1.0 g (5.9 mmoles) of (±)-2-dimethylaminomethyl-5,5-dimethyl piperidine, 1.0 g (6.5 mmoles) of anhydrous potassium carbonate and 1.6 g (6.5 mmoles) of crude 1-oxo-3,4-dihydro-(2H)-napht-6-yl acetyl chloride in 40 ml of dry chloroform.
The crude product was purified by 230-400 mesh silica gel flash column chromatography, eluting with a mixture of CH\textsubscript{2}Cl\textsubscript{2}/MeOH/28% NH\textsubscript{4}OH, 94:5:0.5 respectively, to afford 1.1 g of the free base, which was dissolved in 30 ml of ethyl acetate and the solution brought to acidic pH with HCl/Et\textsubscript{2}O.
The precipitate was filtered, washed and dried, to yield 0.4 g of the title compound.

C\textsubscript{22}H\textsubscript{32}N\textsubbox{2}O\textsubbox{2}.HCl

M.P. = 188-190°C
M.W. = 392.957

Elemental analysis: Calcd. C, 67.23; H, 8.46; N, 7.13; Cl, 9.02; Found C, 66.39; H, 8.43; N, 7.00; Cl, 8.81.

I.R. (KBr): 3440; 2950; 1690; 1620; 1605 cm-1

N.M.R. (CDCl\textsubscript{3}): 8 12.0-11.2 (s broad, 1H); 8.1-7.9 (m, 1H);
7.3-7.1 (m, 2H); 5.4-5.0 (m, 1H); 4.4-3.1 (m, 6H); 3.1-2.8 (m, 8H); 2.8-2.5 (m, 2H);
2.4-1.8 (m, 2H); 1.7-1.2 (m, 4H);
0.9 (dd, 6H).

Example 7

(±)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-(1-dimethylamino) ethyl piperidine hydrochloride Diastereoisomer A.

Prepared as described in Ex. No. 1, from 1.95 g (12.50 mmoles) of (±)-2-(1-dimethylamino)ethyl piperidine [1/1 diastereo-isomeric mixture], 1.8 g (13.0 mmoles) of anhydrous potassium carbonate and 3.3 g (14.83 mmoles) of crude 1-oxo-3,4-dihydro-
(2H)-napht-6-yl acetyl chloride in 60 ml of dry chloroform.
The crude mixture was purified by 230-400 mesh silica gel flash
column chromatography, eluting with a mixture of AcOEt/28% NH₄OH,
50:0.3 respectively, to afford 0.8 g of the less polar free
base, which was dissolved in 25 ml of acetone and the solution
brought to acidic pH with HCl/Et₂O.
The precipitate was filtered, washed and dried, to yield 600 mg
of the title compound.

C₂₁H₃₀N₂O₂·HCl

M.P. = 199-200 °C
M.W. = 378.931

Elemental analysis: Calcd. C,66.56; H,8.25; N,7.39; Cl,9.36;
Found C,65.35; H,8.23; N,7.20; Cl,9.41.

I.R. (KBr): 3450; 2940; 1680; 1625; 1605; 1435 cm⁻¹

Example 8

(±)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-(1-dimethylamino)
ethyl piperidine hydrochloride Diastereoisomer B.

Continuing the elution of the chromatographic column of the
previous example with a mixture of AcOEt/MeOH/28% NH₄OH,
50:1.5:0.4 respectively, 1.1 g of a second free base were
obtained.
This product was dissolved in 30 ml of acetone and brought to
acidic pH with HCl/Et₂O.
The precipitate was filtered, washed and dried, to yield 800 mg
of the title compound.

C₂₁H₃₀N₂O₂·HCl

M.P. = 215-216°C
M.W. = 378.931

Elemental analysis: Calcd. C,66.56; H,8.25; N,7.39; Cl,9.36;
Found C,65.68; H,8.29; N,7.25; Cl,9.83.

I.R. (KBr): 3460; 2940; 1675; 1635; 1615; 1440; 1285; 1235 cm⁻¹
Example 9

(2S)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-(N-methyl-N-propyl) aminomethyl piperidine hydrochloride.

Prepared as described in Ex. No. 1, from 1.14 g (6.69 mmoles) of (2S)-2-(N-methyl-N-propyl)aminomethyl piperidine, 1.00 g (7.24 mmoles) of anhydrous potassium carbonate and 1.53 g (6.87 mmoles) of crude 1-oxo-3,4-dihydro-(2H)-napht-6-yl acetyl chloride in 45 ml of dry chloroform.

The crude product was purified by 230-400 mesh silica gel flash column chromatography, eluting with a mixture of Et₂O/MeOH/28% NH₄OH, 100:1.5:0.6 respectively, to afford 1.0 g of the free base, which was dissolved in 30 ml of ethyl acetate and the solution brought to acidic pH with HCl/Et₂O. The precipitate was filtered, washed and dried, to yield 0.8 g of the title compound.

C₂₂H₃₂N₂O₂.HCl
M.P. = 155-158°C
M.W. = 392.957

[α]₀° = -56.6 (C=1, MeOH)

Elemental analysis: Calcd. C,67.24; H,8.46; N,7.13; Cl,9.02;
Found C,66.69; H,8.41; N,7.02; Cl,9.10.

I.R. (KBr): 3440; 2940; 1685; 1635; 1605 cm⁻¹

Example 10

(2S)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-(N-methyl-N-isopropyl) aminomethyl piperidine hydrochloride emihydrate.

Prepared as described in Ex. No. 1, from 1.1 g (6.46 mmoles) of (2S)-2-(N-methyl-N-isopropyl)aminomethyl piperidine, 1.0 g (7.24 mmoles) of anhydrous potassium carbonate and 1.9 g (8.54 mmoles) of crude 1-oxo-3,4-dihydro-(2H)-napht-6-yl acetyl chloride in 40 ml of dry chloroform.

The crude product was purified by 230-400 mesh silica gel flash column chromatography, eluting with a mixture of CH₂Cl₂/MeOH/28% NH₄OH, 94:6:0.5 respectively, to afford 1.4 g
of the free base, which was dissolved in 30 ml of ethyl acetate, containing 20% of diethyl ether, and the solution brought to acidic pH with HCl/Et\(_2\)O.
The precipitate was filtered, washed and dried, to yield 1.2 g of the title compound.

\[\text{C}_{22}\text{H}_{32}\text{N}_{2}\text{O}_{2}\cdot \text{HCl} \cdot 1/2 \text{H}_2\text{O} \]

M.P. = 159-160°C
M.W. = 401.965

\([\alpha]_D^{20} = -62.1 \ (\text{C}=1, \text{MeOH})\]

Elemental analysis: Calcd. C, 65.73; H, 8.53; N, 6.97; Cl, 8.82;
Found C, 65.70; H, 8.41; N, 6.87; Cl, 9.13.

I.R. (KBr): 3550; 3480; 2940; 1680; 1635; 1605 cm\(^{-1}\)

N.M.R. (CDCl\(_3\)): \(\delta\) 11.30 (s broad, 1H); 8.00 (d, 1H); 7.10-7.30 (m, 2H); 5.10-5.40 (m, 1H); 3.20-4.50 (m, 6H);
2.40-3.10 (m, 8H); 1.10-2.30 (m, 14H).

Example 11

(2S)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-(N-allyl-N-methyl) aminomethyl piperidine hydrochloride.

Prepared as described in Ex. No. 1, from 1.15 g (6.80 mmoles) of (2S)-2-(N-allyl-N-methyl)aminomethyl piperidine, 1.00 g (7.24 mmoles) of anhydrous potassium carbonate and 1.67 g (7.50 mmoles) of crude 1-oxo-3,4-dihydro-(2H)-napht-6-yl acetyl chloride in 35 ml of dry chloroform.
The crude product was purified by 230-400 mesh silica gel flash column chromatography, eluting with a mixture of EtOAc/n-hexane 6:4, containing 0.2% of 28% NH\(_4\)OH, to afford 0.5 g of the free base, which was dissolved in 15 ml of ethyl acetate and the solution brought to acidic pH with HCl/Et\(_2\)O.
The precipitate was filtered, washed and dried, to yield 0.35 g of the title compound.

\[\text{C}_{22}\text{H}_{30}\text{N}_{2}\text{O}_{2}\cdot \text{HCl} \]
M.P. = 183-184°C
M.W. = 390.941

$\left[\alpha\right]_D^{21} = -60.3 \ (C=1, \text{MeOH})$

Elemental analysis: Calcd. C, 67.59; H, 7.74; N, 7.16; Cl, 9.07; Found C, 67.31; H, 7.83; N, 7.06; Cl, 9.02.

I.R. (KBr): 3430; 2940; 1685; 1625; 1605 cm$^{-1}$

Example 12

(2S)-1-[[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-(N-cyclopropyl-N-methyl) aminomethyl piperidine hydrochloride.

Prepared as described in Ex. No. 1, from 1.4 g (8.32 mmoles) of (2S)-2-(N-cyclopropyl-N-methyl) aminomethyl piperidine, 1.2 g (8.69 mmoles) of anhydrous potassium carbonate and 2.0 g (8.98 mmoles) of crude 1-oxo-3,4-dihydro-(2H)-napht-6-yl acetyl chloride in 40 ml of dry methylene chloride. The crude product was purified by 230-400 mesh silica gel flash column chromatography, eluting with a mixture of EtOAc/n-hexane 6:4, containing 0.2% of 28% NH$_4$OH, to afford 0.85 g of the free base, which was dissolved in 20 ml of ethyl acetate and the solution brought to acidic pH with HCl/Et$_2$O. The precipitate was filtered, washed and dried, to yield 0.65 g of the title compound.

C$_{22}$H$_{30}$N$_2$O$_2$.HCl

M.P. = 172-174°C
M.W. = 390.941

$\left[\alpha\right]_D^{20} = -55.6 \ (C=1, \text{MeOH})$

Elemental analysis: Calcd. C, 67.59; H, 7.99; N, 7.17; Cl, 9.07; Found C, 67.65; H, 7.98; N, 7.18; Cl, 9.04.

I.R. (KBr): 3440; 2930; 1675; 1625; 1605 cm$^{-1}$
Example 13

(2S)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-(N-methyl-N-tbutyl) aminomethyl piperidine hydrochloride.

Prepared as described in Ex. No. 1, from 0.41 g (2.23 mmoles) of (2S)-2-(N-methyl-N-tbutyl)aminomethyl piperidine, 0.4 g (2.90 mmoles) of anhydrous potassium carbonate and 0.6 g (2.70 mmoles) of crude 1-oxo-3,4-dihydro-(2H)-napht-6-yl acetyl chloride in 20 ml of dry chloroform.

The crude product was purified by 230-400 mesh silica gel flash column chromatography, eluting with a mixture of EtOAc/n-hexane 6:4, containing 0.3% of 28% NH₄OH, to afford 0.35 g of the free base, which was dissolved in 15 ml of ethyl acetate and the solution brought to acidic pH with HCl/Et₂O. The very hygroscopic material was filtered, washed and dried, to yield 0.25 g of the title compound.

\[C_{23}H_{34}N_2O_2 \cdot HCl \]
M.P. = 110-114°C
M.W. = 406.983

[\(\alpha \)]D20 = -19.7 (C=1, MeOH)

I.R. (KBr): 3450; 2940; 1675; 1630; 1605 cm-1

Example 14

(+)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-dimethylaminomethyl-4,4-dimethylpiperidine L(+) tartrate.

2.2 g (6.2 mmoles) of the compound of Ex. No. 5 (as free base) were dissolved in 30 ml of abs. ethanol. 0.95 g (6.4 mmoles) of L(+) tartaric acid, dissolved in 30 ml of abs. ethanol, were added to the hot solution of the free base. After a gentle warming, the solution was filtered and the less soluble diastereoisomeric salt crystallized on standing.

The salt was recrystallized from ethanol, up to a constant rotatory power, to give 0.7 g of the title compound.

\[C_{22}H_{32}N_2O_2 \cdot L(+) \cdot C_4H_6O_6 \]
M.P. = 174-175°C
M.W. = 506.580

[\(\alpha \)]D20 = +44.5 (C=1, MeOH)
A sample of the L(+) tartrate salt was transformed into the free base by dissolving in acq. NH₃ solution, extracting with diethyl ether and evaporating the solvent in vacuo. The obtained free base was dissolved in ethyl acetate and transformed into the hydrochloride salt by treatment with HCl/Et₂O. The salt gave an

\[\alpha^D_D = +47.0 \] (C=1, MeOH)

The I.R. and N.M.R. spectra were identical to those obtained for the racemate.

Example 15

(-)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-dimethylaminomethyl-4,4-dimethylpiperidine D(-) tartrate.

The mother liquors of the first crystallization of Ex. No. 14 were evaporated in vacuo to dryness. The residue was treated with acq. NH₃ solution and extracted with diethyl ether to afford 1.12 g (3.14 mmoles) of the enriched free base, which was dissolved in 30 ml of abs. ethanol. 0.47 g (3.14 mmoles) of D(-) tartaric acid, dissolved in abs. ethanol, were added to the warm solution and the diastereoisomeric salt crystallized on standing. The salt was recrystallized from ethanol, up to a constant rotatory power, to give 0.5 g of the title compound.

\[\text{C}_{22}\text{H}_{32}\text{N}_2\text{C}_2\text{D}(-) \text{C}_4\text{H}_6\text{O}_6 \]

M.P. = 173-174°C
M.W. = 506.580

\[\alpha^D_D = -43.5 \] (C=1, MeOH)

A sample of the D(-) tartrate was transformed into the corresponding hydrochloride salt following the same procedure described in the Ex. No. 14. This salt gave an

\[\alpha^D_D = -46.2 \] (C=1, MeOH)

The I.R. and N.M.R. spectra were identical to those obtained for the racemate.
Example 16

(2S)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-(N-methyl-N-propargyl)aminomethyl piperidine hydrochloride

Prepared as described in Ex. No. 1, from 700 mg (4.21 mmoles) of crude (2S)-2-(N-methyl-N-propargyl)aminomethyl piperidine, 600 mg (4.34 mmoles) of anhydrous potassium carbonate and 1.08 g (4.83 mmoles) of crude 1-oxo-3,4-dihydro-(2H)-napht-6-yl acetyl chloride in 30 ml of dry chloroform. The crude product was purified by 230-400 mesh silica gel flash column chromatography, eluting with a mixture of ethyl acetate/n-hexane 8:2, containing 0.5% of 28% NH₄OH, to afford 250 mg of the free base, which was dissolved in 15 ml of ethyl acetate containing 20% of ethyl ether and the solution brought to acidic pH with HCl/Et₂O. The precipitate was filtered, washed and dried, to yield 100 mg of the title compound.

C₂₂H₂₈N₂O₂ .HCl

M.P. = 169-170°C
M.W. = 388.925

I.R. (KBr): 3430; 2940; 1680; 1630; 1608 cm⁻¹

N.M.R. (CDCl₃): δ 11.80 (s broad, 1H); 8.00 (d, 1H); 7.15-7.30 (m, 2H); 4.20-5.40 (m, 2H); 3.10-4.15 (m, 6H); 2.80-3.05 (m, 5H); 2.50-2.70 (m, 3H); 1.90-2.30 (m, 3H); 1.30-1.80 (m, 6H).

Example 17

(2S)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-(N-cyclobutyl-N-methyl)aminomethyl piperidine hydrochloride

Prepared as described in Ex. No. 1, from 1.7 g (9.32 mmoles) of (2S)-2-(N-cyclobutyl-N-methyl)aminomethyl piperidine, 1.5 g (10.86 mmoles) of anhydrous potassium carbonate and 2.08 g (9.35 mmoles) of crude 1-oxo-3,4-dihydro-(2H)-napht-6-yl acetyl chloride in 50 ml of dry chloroform. The crude product was purified by 230-400 mesh silica gel flash column chromatography, eluting with ethyl acetate containing 0.6% c-
28% NH₄OH, to afford 1.7 g of the free base, which was rechromatographed on silica gel, eluting with a mixture of CH₂Cl₂/MEOH/28% NH₄OH, 94:15:0.3 respectively, to afford 1.4 g of the pure free base. The compound was dissolved in 30 ml of ethyl acetate and the solution brought to acidic pH with HCl/Et₂O. The precipitate was filtered, washed and dried, to yield 1.3 g of the title compound.

C₂₃H₃₂N₂O₂ .HCl

M.P. = 184-186°C
M.W. = 404.967

[α]₂⁰°D = -58.8 (C=1, MeOH)

Elemental analysis: Calcd.: C, 68.21; H, 8.21; N, 6.92; Cl, 8.76; Found : C, 68.46; H, 8.18; N, 6.59; Cl, 8.30.

I.R. (KBr): 3440; 2940; 1685; 1625; 1605 cm⁻¹

Example 18

(2S)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-(N-cyclopentyl-N-methyl)aminomethyl piperidine hydrochloride .1/4 H₂O

Prepared as described in Ex. No. 1, from 1.70 g (8.66 mmoles) of (2S)-2-(N-cyclopentyl-N-methyl)aminomethyl piperidine, 1.37 g (9.92 mmoles) of anhydrous potassium carbonate and 2.19 g (9.80 mmoles) of crude 1-oxo-3,4-dihydro-(2H)-napht-6-yl acetyl chloride in 50 ml of dry chloroform. The crude product was purified by 230-400 mesh silica gel flash column chromatography, eluting with ethyl acetate containing 0.6% of 28% NH₄OH, to afford 1.90 g of the pure free base, which was dissolved in 40 ml of ethyl acetate and the solution brought to acidic pH with HCl/Et₂O. The precipitate was filtered, washed and dried, to yield 1.55 g of the title compound.

C₂₄H₃₄N₂O₂ .HCl .1/4 H₂O

M.P. = 126-129°C
M.W. = 423.497
\[[\alpha]_{D}^{20} = -62.1 \text{ (C}=1, \text{ MeOH}) \]

Elemental analysis: Calcd.: C, 68.06; H, 8.45; N, 6.61; Cl, 8.37; Found: C, 68.11; H, 8.42; N, 6.54; Cl, 8.33.

I.R. (KBr): 3450; 2940; 1680; 1630; 1605 cm\(^{-1}\)

Example 19

\((2S)-1-(1\text{-oxo-3,4\text{-dihydro-(2H\text{-napht-6-yl})acetyl-2-(N-cyclopropylmethyl-N-methyl)aminomethyl piperidine hydrochloride}}\)

Prepared as described in Ex. No. 1, from 1.35 g (7.40 mmoles) of \((2S)-2-(N\text{-cyclopropylmethyl-N-methyl)aminomethyl piperidine, 1.22 g (8.84 mmoles) of anhydrous potassium carbonate and 1.97 g (8.81 mmoles) of crude 1\text{-oxo-3,4\text{-dihydro-(2H\text{-napht-6-yl acetyl chloride in 40 ml of dry chloroform.}}}}\)

The crude product was purified by 230-400 mesh silica gel flash column chromatography, eluting with a mixture of CH\(_2\)Cl\(_2\)/MeOH/28% NH\(_4\)OH, 94:2.5:0.4 respectively, to afford 1.4 g of the title compound.

\(\text{C}_{23}\text{H}_{32}\text{N}_{2}\text{O}_{2} \cdot \text{HCl} \)

M.P. = 148-150°C

M.W. = 404.967

\[[\alpha]_{D}^{20} = -54.8 \text{ (C}=1, \text{ MeOH}) \]

I.R. (KBr): 3440; 2940; 1685; 1625; 1605; 1425 cm\(^{-1}\)

\text{N.M.R. (CDCl\(_3\)):} \delta 11.80 (s broad, 1H); 8.00 (d, 1H); 7.10-7.30 (m, 2H); 5.10-5.45 (m, 1H); 2.80-4.25 (m, 13H); 2.60 (t, 2H); 1.90-2.30 (m, 2H); 1.05-1.85 (m, 7H); 0.60-0.90 (m, 2H); 0.30-0.55 (m, 2H).
<table>
<thead>
<tr>
<th>Example No.</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>Molecular Formula</th>
<th>Melting Point (°C)</th>
<th>[α]D° (C=1, MeOH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C₂₀H₂₈N₂O₂·HCl</td>
<td>208-210</td>
<td>-64.0</td>
</tr>
<tr>
<td>2</td>
<td>CH₃</td>
<td>CH₂CH₃</td>
<td></td>
<td></td>
<td></td>
<td>C₂₁H₃₀N₂O₂·HCl</td>
<td>163-165</td>
<td>-62.5</td>
</tr>
<tr>
<td>3</td>
<td>CH₃</td>
<td>CH₂CH₃</td>
<td>3-CH₃</td>
<td></td>
<td></td>
<td>C₂₂H₂₇N₂O₂·HCl</td>
<td>136-137</td>
<td>-61.6</td>
</tr>
<tr>
<td>4</td>
<td>CH₃</td>
<td>CH₂CH₃</td>
<td>4-CH₃</td>
<td></td>
<td></td>
<td>C₂₂H₂₇N₂O₂·HCl</td>
<td>253-255</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>CH₃</td>
<td>CH₂CH₃</td>
<td>5-CH₃</td>
<td></td>
<td></td>
<td>C₂₂H₂₇N₂O₂·HCl</td>
<td>214-216</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>CH₃</td>
<td>CH₂CH₃</td>
<td></td>
<td></td>
<td></td>
<td>C₂₁H₂₉N₂O₂·HCl</td>
<td>189-190</td>
<td>--</td>
</tr>
<tr>
<td>7</td>
<td>CH₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C₂₁H₂₉N₂O₂·HCl</td>
<td>199-200</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>CH₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C₂₁H₂₉N₂O₂·HCl</td>
<td>215-216</td>
<td>--</td>
</tr>
</tbody>
</table>

TABLE I
<table>
<thead>
<tr>
<th>Example No</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>Molecular Formula</th>
<th>Melting Point (°C)</th>
<th>*</th>
<th>[α]D²⁰</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>CH₃</td>
<td>CH₂CH₂CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>C₂₂H₃₂N₂O₂.HCl</td>
<td>155-158</td>
<td>S</td>
<td>-56.6</td>
</tr>
<tr>
<td>10</td>
<td>CH₃</td>
<td>CH=C=CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>C₂₂H₃₂N₂O₂.HCl.1/2 H₂O</td>
<td>159-160</td>
<td>S</td>
<td>-62.1</td>
</tr>
<tr>
<td>11</td>
<td>CH₃</td>
<td>CH₂CH=CH₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>C₂₂H₃₀N₂O₂.HCl</td>
<td>183-184</td>
<td>S</td>
<td>-60.3</td>
</tr>
<tr>
<td>12</td>
<td>CH₃</td>
<td>CH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>C₂₂H₃₀N₂O₂.HCl</td>
<td>172-174</td>
<td>S</td>
<td>-55.6</td>
</tr>
<tr>
<td>13</td>
<td>CH₃</td>
<td>CH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>C₂₃H₃₄N₂O₂.HCl</td>
<td>110-114</td>
<td>S</td>
<td>-19.7</td>
</tr>
<tr>
<td>14</td>
<td>CH₃</td>
<td>CH₃</td>
<td>CH₃</td>
<td>CH₃</td>
<td>H</td>
<td>C₂₂H₃₂N₂O₂.L(+) C₄H₆O₆</td>
<td>174-175</td>
<td>R</td>
<td>444.5</td>
</tr>
<tr>
<td>15</td>
<td>CH₃</td>
<td>CH₃</td>
<td>CH₃</td>
<td>CH₃</td>
<td>H</td>
<td>C₂₂H₃₂N₂O₂.D(-) C₄H₆O₆</td>
<td>173-174</td>
<td>S</td>
<td>-43.5</td>
</tr>
<tr>
<td>Example No</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
<td>R4</td>
<td>R5</td>
<td>Molecular Formula</td>
<td>Melting Point (°C)</td>
<td>*</td>
<td>[α]_{D}^{20} (C=1, MeOH)</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>---------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-------------------</td>
<td>---------------------</td>
<td>---</td>
<td>-----------------------</td>
</tr>
<tr>
<td>16</td>
<td>CH₃</td>
<td>CH₃C≡CH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>C₂₂H₂₈N₂O₂.HCl</td>
<td>169-170</td>
<td>S</td>
<td>--</td>
</tr>
<tr>
<td>17</td>
<td>CH₃</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>C₂₃H₃₂N₂O₂.HCl</td>
<td>184-186</td>
<td>S</td>
<td>-58.8</td>
</tr>
<tr>
<td>18</td>
<td>CH₃</td>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>C₂₄H₃₄N₂O₂.HCl.1/₄H₂O</td>
<td>126-129</td>
<td>S</td>
<td>-62.1</td>
</tr>
<tr>
<td>19</td>
<td>CH₃</td>
<td>CH₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>C₂₃H₃₂N₂O₂.HCl</td>
<td>148-150</td>
<td>S</td>
<td>-54.8</td>
</tr>
</tbody>
</table>
The pharmacological activity of the compounds of this invention is illustrated by the mouse writhing test, described as follows:

P-phenylquinone-induced abdominal writhing test in mice

Male Charles River mice (Swiss Strain), 25-36g body weight, were used. Animals were allowed food and water ad libitum and were randomized into groups of 10 prior to experimentation. Test compounds were dissolved in either distilled water or distilled water plus 0.1 M AMS, and administered by the subcutaneous route in a final volume of 10 ml/Kg. Control animals received 10 ml/Kg of the appropriate vehicle alone. Following a pretreatment period of 20 min., mice were injected intraperitoneally with p-phenylquinone, 2 mg/Kg at 37°C in a final volume of 10 mg/Kg. Next, the mice were placed, in groups of 3, in a compartmented perspex box maintained at room temperature and were observed for a period of 8 min. During this period the number of abdominal writhing responses per animal were recorded where writhing consists of an intermittent contraction of the abdomen associated with hind leg extension.

The degree of antinociceptive protection afforded by the test compound was determined as the mean number of writhing responses observed in the treated group (T) expressed as a percentage of the mean number of writhing responses in the control group (C) according to the following formula:

\[1 - \frac{(T/C) \times 100}{\% \text{ graded protection}} \]
RECEPTOR AFFINITY STUDY

Tissue Preparation

Radio receptor binding to kappa site is performed on fresh guinea pig brain homogenates prepared according to Kosterlitz (1981).

Whole brain without cerebellum is homogenized in 50 mM Tris-buffer (pH 7.4 at 0°C) and centrifuged at 49,000 xg for 10 min.

The pellet is then resuspended in the same buffer, incubated at 37°C for 45 min and centrifuged again.

1.9 ml of the final homogenate (1:100 in Tris pH 7.4, 0°C) is used for the binding assay.

Binding to kappa sites

The binding to the kappa sites is performed using a tritiated kappa selective compound. Final homogenate with solutions of the cold ligand and of the labelled ligand is incubated for 40 min at 25°C, filtered through Whatman GF/C glass filter discs and washed.

The radioactivity bound to the filters is counted by liquid scintillation spectrophotometry.

The non-specific binding is determined in the presence of 500 nM of the benzomorphan non-selective compound Mr 2266.

Binding to mu sites (Magnan J., 1982)

3H[D-Ala2, MePhe4, Gly-$	ext{o1}^5$] Enkephalin (3H-DAGO), an enkephalin analogue that binds selectively to mu receptor, is added to the biological substrate and incubated at 25°C for 40 min, filtered through Whatman GF-C and washed with ice-cold Tris-buffer.

The filters are then dried, solubilized in Filtercount and the radioactivity monitored. Non-specific binding is determined in the presence of 10^{-6} M naloxone.
Binding to delta sites (Magnan J., 1982)

For binding experiments, 3H-DADLE, which binds to mu and delta sites, is used in the presence of 30 nM of unlabelled DAGO to prevent mu binding. A concentration of radioligand near KD is used in the binding assays evaluating compounds of the invention. Non-specific binding is determined by addition of Mr 2266 2.5 μM.

The tubes are incubated for 40 min at 25°C and bound ligand is separated from free by filtration through Whatman GF/C filters. The level of bound radioactivity of the filters is measured by liquid scintillation after solubilization in Filtercount.

The equilibrium dissociation constant (KD) and the maximum binding capacity (Bmax) are determined from the analysis of saturation curves, while the inhibition constant (Ki) is determined from the analysis of competition experiments (Hill 1910; Scatchard 1949; Cheng and Prusoff 1973; Gillan et al 1980).

Published references are summarized as follows:

TABLE II
Pharmacological data

<table>
<thead>
<tr>
<th>Example N°</th>
<th>ANALGESIA MOUSE WRITHING (GRADED) ED50 mg/kg s.c.</th>
<th>KAPPA BRAIN RECEPTOR BINDING Ki nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.154</td>
<td>47.0</td>
</tr>
<tr>
<td>2</td>
<td>0.061</td>
<td>10.3</td>
</tr>
<tr>
<td>3</td>
<td>0.427</td>
<td>80.3</td>
</tr>
<tr>
<td>5</td>
<td>0.377</td>
<td>65.0</td>
</tr>
<tr>
<td>6</td>
<td>0.641</td>
<td>88.7</td>
</tr>
<tr>
<td>9</td>
<td>0.221</td>
<td>10-50</td>
</tr>
<tr>
<td>10</td>
<td>0.078</td>
<td>2.85</td>
</tr>
<tr>
<td>11</td>
<td>0.130</td>
<td>ca 50</td>
</tr>
<tr>
<td>12</td>
<td>0.141</td>
<td>50</td>
</tr>
<tr>
<td>15</td>
<td>0.115</td>
<td>22.9</td>
</tr>
<tr>
<td>16</td>
<td>0.056</td>
<td>---</td>
</tr>
<tr>
<td>17</td>
<td>0.127</td>
<td>---</td>
</tr>
<tr>
<td>18</td>
<td>0.210</td>
<td>---</td>
</tr>
</tbody>
</table>

Mu and delta binding affinities for the above Examples were found to be > 1000 nM.
Claims

1. A compound, or a solvate or salt thereof, of formula (I):

\[
\begin{align*}
\text{R}_1 & \quad \text{R}_2 \\
\text{R}_3 & \quad \text{R}_4 \\
\text{R}_5 & \quad \text{R}_6 \\
\end{align*}
\]

(I)

in which:

15
\[
\begin{align*}
\text{R}_1 \text{ and } \text{R}_2 & \text{ are each linear or branched C}_{3-4} \text{ alkyl, } \\
\text{C}_{3-6} \text{ cycloalkyl, } \text{C}_{4-6} \text{ cycloalkylalkyl, C}_{3-4} \text{ alkenyl, C}_{3-6} \\
\text{cycloalkenyl or C}_{3-4} \text{ alkynyl,} \\
\text{R}_3 \text{ and } \text{R}_4 & \text{ are identical, and each is hydrogen or C}_{1-4} \text{ alkyl;} \\
\text{and} \\
\text{R}_5 & \text{ is hydrogen or C}_{1-3} \text{ alkyl.}
\end{align*}
\]

2. A compound according to claim 1, in which \text{R}_3 \text{ and } \text{R}_4

25
are both C_{1-4} \text{ alkyl and are bonded to the same carbon atom of the piperidine ring.}

3. A compound according to claim 1 or 2, in which each of

30
\text{R}_1 \text{ and } \text{R}_2 \text{ is methyl, ethyl, propyl, isopropyl, tert-butyl, } \\
cyclopropyl, \text{cyclobutyl, cyclopentyl, cyclopropylmethyl,} \\
allyl or propynyl.

4. A compound according to any one of claims 1 to 3, in

35
which \text{R}_3 \text{ and } \text{R}_4 \text{ are together } 3,3 \text{ gem-dimethyl, } 4,4 \text{ gem-} \\
dimethyl or 5,5 \text{ gem-dimethyl.}
5. (2S)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-dimethyl-aminomethyl piperidine.

6. (2S)-1-[1-oxo-3,4-dihydro-(2H)-napht-6yl]acetyl-2-(N-5 methyl-N-ethyl)aminomethyl piperidine.

7. (2S)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-y1]acetyl-2-diethylamino-methyl piperidine.

8. (±)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-dimethylamino-methyl-3,3-dimethyl piperidine.

9. (±)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-dimethylamino-methyl-4,4-dimethyl piperidine.

10. (±)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-dimethylamino-methyl-5,5-dimethyl piperidine.

11. (±)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-(1-dimethylamino)ethyl piperidine Diastereoisomer A.

12. (±)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-(1-dimethylamino)ethyl piperidine Diastereoisomer B.

13. (2S)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-(N-methyl-N-propyl) aminomethyl piperidine.

14. (2S)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-(N-methyl-N-isopropyl) aminomethyl piperidine.

15. (2S)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-(N-allyl-N-methyl) aminomethyl piperidine.
16. (2S)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-(N-cyclopropyl-N-methyl) aminomethyl piperidine.

17. (2S)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-(N-5 methyl-N-tbutyl) aminomethyl piperidine.

18. (+)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-dimethylaminomethyl-4,4-dimethylpiperidine L(+) tartrate.

19. (-)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-dimethylaminomethyl-4,4-dimethylpiperidine D(-) tartrate.

20. (2S)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-(N-methyl-N-propargyl) aminomethyl piperidine.

21. (2S)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-(N-cyclobutyl-N-methyl) aminomethyl piperidine.

22. (2S)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-(N-cyclopentyl-N-methyl) aminomethyl piperidine.

23. (2S)-1-[1-oxo-3,4-dihydro-(2H)-napht-6-yl]acetyl-2-(N-cyclo-propylmethyl-N-methyl) aminomethyl piperidine.

24. A compound according to claim 1, substantially as hereinbefore described in any one of the Examples.

25. A process for the preparation of a compound of formula (I) according to any one of claims 1 to 24, which comprises

reacting a compound of formula (II):
in which R₁, R₂, R₃, R₄, and R₅ are as defined for formula (I) in claim 1, with a compound of formula (III):

![Chemical Structure](image)

(III)

or an active derivative thereof,

and then optionally forming a salt and/or solvate of the obtained compound of formula (I).

26. A compound of formula (II)

![Chemical Structure](image)

in which R₁, R₂, R₃, R₄ and R₅ are as defined in claim 1.
27. A compound according to claim 26, substantially as hereinbefore described in any of the Examples.

28. A pharmaceutical composition comprising a compound according to any one of claims 1 to 24 and a pharmaceutically acceptable carrier.

29. A compound according to any one of claims 1 to 24 for use as an active therapeutic substance.

30. A compound according to any one of claims 1 to 24 for use in the treatment of pain or cerebral ischaemia.

31. The use of a compound according to any one of claims 1 to 24 in the manufacture of a medicament for the treatment of pain, or cerebral ischaemia.

32. A method for the treatment and/or prophylaxis of pain and/or cerebral ischaemia in mammals, particularly humans, which comprises administering to the mammal in need of such treatment and/or prophylaxis an effective amount of a compound according to any one of claims 1 to 24.
INTERNATIONAL SEARCH REPORT

International Application No PCT/EP 91/00717

I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both National Classification and IPC

<table>
<thead>
<tr>
<th>IPC</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 01 D 211/00</td>
<td></td>
</tr>
</tbody>
</table>

II. FIELDS SEARCHED

Minimum Documentation Searched 7

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC</td>
<td>C 01 D 211/00</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, 17 with indication, where appropriate, of the relevant passages 12</th>
<th>Relevant to Claim No. 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP, A, 0232612 (ZAMBELETTI) 19 August 1987 see the whole document; for claims 26, 27, see examples on pages 14-22 with CN 60717-51-3, 100158-60-9, 112419-07-5; claims 1,2,4,5,6,8,9,10-14</td>
<td>1-3, 26, 28-32</td>
</tr>
<tr>
<td>X</td>
<td>DE, A, 3523002 (THOMAE) 2 January 1987 see compounds with CN 64168-09-8, 100158-61-0 on page 12</td>
<td>26</td>
</tr>
<tr>
<td>X</td>
<td>DE, A, 3409237 (THOMAE) 19 September 1985 see compounds with CN 100158-63-2, 100158-66-5 on page 63; example at top of page 66</td>
<td>26</td>
</tr>
<tr>
<td>X</td>
<td>DE, A, 3643667 (THOMAE) 30 June 1988 see compound with CN 116881-79-9 on page 9, example C</td>
<td>26</td>
</tr>
</tbody>
</table>

* Special categories of cited documents: 19

A document defining the general state of the art which is not considered to be of particular relevance

E earlier document but published on or after the international filing date

L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

Z document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

27th June 1991

International Searching Authority

EUROPEAN PATENT OFFICE

Date of Mailing of this International Search Report

08.08.91

Signature of Authorizing Officer

TORIBIO
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP, A, 0275696 (ZAMBELETTI) 27 July 1988 see compounds with CN 118026-12-3, 118026-13-4 on page 10; claims 1,2,4,5, 8,9,10-14</td>
<td>1-3,26,28-32</td>
</tr>
<tr>
<td>X</td>
<td>EP, A, 0356247 (SANKYO) 28 February 1990 see claims; examples 12,13</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>Journal of Medicinal Chemistry, volume 32, no. 8, August 1989, American Chemical Society, (Washington, DC, US), W.W. Engel et al.: "Tricyclic compounds as selective muscarinic receptor antagonists. 3. Structure-selectivity relationships in a series of cardioselective (M₁) anti-muscarinics", pages 1718-1724 see compounds with CN 120990-86-5, 120990-87-6, 100158-61-0, 120990-85-4, 100158-60-9, 121053-96-1, 120990-90-1, 120990-96-7, 120990-95-6, 120990-94-5; formula 8 on page 1719, scheme II</td>
<td>26</td>
</tr>
<tr>
<td>X,Y</td>
<td>EP, A, 0333315 (ZAMBELETTI) 20 September 1989 see the whole document; claims 1-2,4,5, 6,7,9,10-15; CN 125564-29-6</td>
<td>1-3,25-26, 1-4</td>
</tr>
<tr>
<td>Y</td>
<td>EP, A, 0330467 (GLAXO) 30 August 1989 see formula 1 of claim; suggestion of geminal 3,3 and 4,4 substituted piperidines; compounds with CN 125348-71-2, 125348-73-4</td>
<td>28-32</td>
</tr>
</tbody>
</table>
VI. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE

This international search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons:

1. Claim numbers, because they relate to subject matter not required to be searched by this Authority, namely:

2. Claim numbers, because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

* Claims 24, 27.
Reason: Claims 24 and 27 do not comply with Rule 6.2(a) PCT. They refer to examples given in the descriptive part of the application and have not been searched.

3. Claim numbers, because they are dependent claims and are not drafted in accordance with the second and third sentences of PCT Rule 6.4(a).

VII. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This International Searching Authority found multiple inventions in this international application as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims of the international application.

2. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the international application for which fees were paid, specifically claims:

3. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:

4. As all searchable claims could be searched without effort justifying an additional fee, the International Searching Authority did not invite payment of any additional fee.

Remark on Protest

☐ The additional search fees were accompanied by applicant's protest.
☐ No protest accompanied the payment of additional search fees.
ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO. EP 9100717
SA 46435

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.

The members are as contained in the European Patent Office EDP file on 31/07/91.

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU-A- 6682486</td>
<td>25-06-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 62167759</td>
<td>24-07-87</td>
</tr>
<tr>
<td>DE-A- 3523002</td>
<td>02-01-87</td>
<td>AU-B- 582249</td>
<td>16-03-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A- 5928786</td>
<td>08-01-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 1269374</td>
<td>22-05-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP-A- 0213293</td>
<td>11-03-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 62004288</td>
<td>10-01-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4724236</td>
<td>09-02-88</td>
</tr>
<tr>
<td>DE-A- 3409237</td>
<td>19-09-85</td>
<td>AU-B- 571315</td>
<td>14-04-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A- 3981585</td>
<td>19-09-85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 1244016</td>
<td>01-11-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP-A, B 0156191</td>
<td>02-10-85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 60215683</td>
<td>29-10-85</td>
</tr>
<tr>
<td>DE-A- 3643667</td>
<td>30-06-88</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A- 8286787</td>
<td>23-06-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 1246258</td>
<td>02-10-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4994450</td>
<td>19-02-91</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.