(12) 特許協力条約に基づいて公開された国際出願
(10) 国際公開番号
WO 2016/088817 A1

(19) 世界知的所有権機関
国際事務局
(43) 国際公開日
2016 年 6 月 9 日
(09.06.2016)

(51) 国際特許分類:
C08L 25/00 (2006.01)
B29C 33/02 (2006.01)
C08K 3/04 (2006.01)
C08L 11/00 (2006.01)

(21) 国際出願番号:
PCT/JP2015/083943

(22) 出願番号:
WO 2016/088817 A1

(71) 申请人:
横浜ゴム株式会社 (THE YOKOHAMA RUBBER CO., LTD.)

(72) 発明者:
土谷 裕 (SUCHITANI, Shuji)

(74) 代理人:
野田 茂 (NODA, Shigenu)

(54) Title: RUBBER COMPOSITION FOR TIRE-VULCANIZING BLADDER, AND TIRE-VULCANIZING BLADDER PRODUCED USING SAME

(57) Abstract:
Conventionally, a bladder having a multi-layer structure has been proposed. However, a lot of effort is required for the production of the bladder, and therefore a bladder having a desired bladder life has not been produced yet. Then, the present invention provides a rubber composition for a tire-vulcanizing bladder, said rubber composition being characterized by containing a rubber component that contains a butyl rubber in an amount of 92 parts by mass or more relative to 100 parts by mass of the rubber component, wherein the butyl rubber is composed of 30 to 100% by mass of a butyl rubber (1) having an unsaturation degree of 0.6 to 1.1% and 0 to 70% by mass of a butyl rubber (2) having an unsaturation degree of 1.5 to 2.0%.

(57) 要約:
従来、多層構造であるブレーカーが提案されているが、その製造に手間がかかりともに所望のブレーカーライフを得ることは至っていない。そこで本発明では、ブレーカーを92質量部以上含むゴム成分100質量部に対し、前記ブレーカーで、0.6～1.1%の不飽和度を有するブレーカー (1) 30～100質量％および1.5～2.0%の不飽和度を有するブレーカー (2) 0～70質量％から構成されることを特徴とするタイヤ加硫ブレーカー用ゴム組成物を提供する。
明細書

発明の名称:
タイヤ加硫ブラダー用ゴム組成物およびそれを用いたタイヤ加硫ブラダー

技術分野
[0001] 本発明は、加硫ブラダーの製造に用いるゴム組成物およびそれを用いたタイヤ加硫ブラダーに関する。

背景技術
[0002] 一般に空気入れタイヤは、未加硫タイヤを加硫型に装入し、その未加硫タイヤの内腔にゴム袋状の加硫ブラダーを挿入し、加硫ブラダー内にスチーム等の加熱加圧媒体を圧入して膨張させ、未加硫タイヤの外面を加硫金型の内面に押圧しながら加硫を行なう工程を経て製造される。

加硫ブラダーを繰り返し使用すると、コンパウンドの熱老化やタイヤから移行してくる硫黄によりゴム同士が架橋して硬くなり、クラックを生じさせ、ブラダーライフ（ブラダーの使用寿命）が終了する。

そこでブラダーライフを延長させるために、当業界では様々な試みがなされている。

例えば下記特許文献1には、複数層からなるタイヤ製造用ブラダーであって、シリコーンゴム組成物を含む最外層と、ブチルゴム組成物を含むブチルゴム層と、を有し、前記最外層と前記ブチルゴム層との間に、シリコーンゴム組成物と樹脂化合物とを含む中間層を有するタイヤ製造用ブラダーが開示されている。

しかし、前記のような従来技術では多層構成であるためにその製造に手間がかかるとともに所望のブラダーライフを得るには至らなかった。

先行技術文献

特許文献
[0003] 特許文献1：特開2011-161766号公報

発明の概要
発明が解決しようとする課題
[0004] したがって本発明の目的は、従来技術よりも簡単な方法で、タイヤ加硫ブラダーに求められる物性を損なうことなく、プラダーライフを大幅に延長することのできる、タイヤ加硫ブラダー用ゴム組成物およびそれを用いたタイヤ加硫ブラダーを提供することにある。

課題を解決するための手段
[0005] 本発明者らは鋭意研究を重ねた結果、特定の不飽和度を有するプチルゴムを特定量で配合することにより、上記課題を解決できることを見ており、本発明を完成することができた。

[0006] すなわち本発明は以下の通りである。

1. プチルゴムを92質量部以上含むゴム成分100質量部に対し、前記プチルゴムが、0.6〜1.1%の不飽和度を有するプチルゴム（1）30〜100質量％および1.5〜2.0%の不飽和度を有するプチルゴム（2）0〜70質量％から構成されることを特徴とするタイヤ加硫ブラダー用ゴム組成物。

2. 前記プチルゴム（1）の不飽和度が、0.6〜1.0%であることを特徴とする前記1に記載のタイヤ加硫ブラダー用ゴム組成物。

3. 前記ゴム成分が、プチルゴム92〜97質量部およびクロロプレンゴム3〜8質量部からなることを特徴とする前記1に記載のタイヤ加硫ブラダー用ゴム組成物。

4. 前記ゴム成分100質量部に対し、窒素吸着比表面積（N₂SＡ）が70〜120m²/gのカーボンプラックを20〜80質量部およびフェノール系樹脂を1〜15質量部配合することを特徴とする前記1に記載のタイヤ加硫ブラダー用ゴム組成物。

5. 前記1〜4のいずれかに記載のタイヤ加硫ブラダー用ゴム組成物を用いて成形したタイヤ加硫ブラダー。

6. 前記タイヤ加硫ブラダーの複合伸び率が15〜50%となるように、前記タイヤ加硫ブラダー用を用いてタイヤ成形が行われることを特徴とする前
記4に記載のタイヤ加硫ブラダーを使用する方法。

7. 前記タイヤ加硫ブラダーの複合伸び率が30～40%となるように、前記タイヤ加硫ブラダーを用いてタイヤ成形が行われることを特徴とする前記6に記載のタイヤ加硫ブラダーを使用する方法。

発明の効果

[0007] 本発明によれば、特定の不飽和度を有するプチルゴムを特定量で配合したので、従来技術よりも簡単な方法で、タイヤ加硫ブラダーに求められる物性を損うことなく、ブラダー・ライフを大幅に延長することのできる、タイヤ加硫ブラダー用ゴム組成物およびそれを用いたタイヤ加硫ブラダーを提供することができる。

本発明で使用するプチルゴム（1）は、0.6〜1.1％という低い不飽和度を有している。このように分子中の二重結合量が少ないことから、タイヤから移行してくる硫黄によりゴム同士が架橋する現象が抑制される。また、低い不飽和度を有するプチルゴム（1）は、これよりも高い不飽和度を有するプチルゴムに比べ、良好な破断伸びを有する。したがって、熟老化によるゴムの硬化をも抑制することができる。

発明を実施するための形態

[0008] 以下、本発明をさらに詳細に説明する。

（ゴム成分）

本発明の加硫ブラダー用ゴム組成物は、ゴム成分全体を100質量部としたときに、プチルゴム（IIR）を92質量部以上含む。そしてこのプチルゴムは、0.6〜1.1％の不飽和度を有するプチルゴム（1）30〜100質量％および1.5〜2.0％の不飽和度を有するプチルゴム（2）0〜70質量％から構成される。

前記プチルゴム（1）の配合量は、本発明の効果が向上するという観点から、40〜80質量％が好ましく、50〜60質量％がさらに好ましい。

また前記プチルゴム（2）が配合される場合、その配合量は、プチルゴム全体に対し、30〜70質量％が好ましい。
ここで本発明でいう不飽和度は、H—NMRを用いて求めることができる。

本発明の効果が向上するという観点から、プチルゴム（1）の不飽和度は0.6〜1.0%が好ましい。また、プチルゴム（2）の不飽和度は、1.6〜1.8を好ましい。

また本発明におけるゴム成分は、前記のプチルゴム以外に、他のゴム成分を配合することもできる。

とくに本発明においては、クロロブレンゴム（CR）を配合するのが好ましく、その配合量は、ゴム成分全体を100質量部としたときに、プチルゴム92〜97質量部およびクロロブレンゴム3〜8質量部からなることが好ましい。

（カーボンブラック）

本発明では、熱伝導性をさらに高めるために、カーボンブラックを配合することができる。カーボンブラックの窒素吸着比表面積（N₂Sₐ）は、70〜120 m²/gであることが本発明の効果の観点から好ましい。

カーボンブラックの配合量は、ゴム成分100質量部に対し、例えば20〜80質量部であり、好ましくは40〜70質量部である。

なお窒素吸着比表面積（N₂Sₐ）は、JISK6217-2に準拠して求めるものとする。

（フエノール系樹脂）

本発明では、不飽和度の低いプチルゴム（1）を配合することから、架橋剤としてフエノール系樹脂を配合するのが好ましい。

フエノール系樹脂としては、ノボラック型フエノール樹脂、ノボラック型クレゾール樹脂、ノボラック型レジンシン樹脂等が挙げられる。

フエノール系樹脂の配合量は、ゴム成分100質量部に対し、例えば1〜15質量部であり、好ましくは5〜10質量部である。

本発明に係る加硫プラダー用ゴム組成物には、前記した成分に加えて、カロ硫又は架橋剤、加硫又は架橋促進剤、老化防止剤、可塑剤などのゴム組成物
に一般的に配合されている各種添加剤を配合することができ、かかる添加剤は一般的な方法で混練して組成物とすることができる。これらの添加剤の配合量も、本発明の目的に反しない限り、従来の一般的な配合量とすることができる。また本発明の加硫ブラダー用ゴム組成物は従来のタイヤ加硫ブラダーの製造方法に従ってタイヤ加硫ブラダーを製造することができる。

なお本発明のタイヤ加硫ブラダーは、下記の式1により算出される複合伸び率があらかじめ算出されるように、タイヤ成形を行うことが好ましい。

式1：複合伸び率 = 縦方向伸び率 × 周方向伸び率

縦方向伸び率 = タイヤベリフェリ/ ブラダーベリフェリ
周方向伸び率 = （タイヤ外径 - ブラダー外径）/ ブラダー外径

複合伸び率が上記範囲にあることにより、不飽和度の低いプチルゴム（1）の配合により生じる経時によるモジュラス低下を抑制することができる。これにより、経時によるタイヤ加硫ブラダー表面のシワ発生を防止でき、好ましい。

さらに好ましい前記複合伸び率は、30〜40%である。

実施例

以下、本発明を実施例および比較例によりさらに説明するが、本発明は下記例に制限されるものではない。

実施例1〜8および比較例1〜5

サンプルの調製

表1に示す配合（質量部）において、90リットルの密閉式バンパリーミキサーで5分間混練し、180℃でミキサー外に放出させて室温冷却した後、さらにオープンロールにて混練し、ゴム組成物を得た。次に得られたゴム組成物を所定の金型中で190℃、20分間プレス加硫し、タイヤ加硫ブラダーを得た。得られたタイヤ加硫ブラダーについて、以下の試験を行った。なお、タイヤ加硫ブラダーは、タイヤサイズ195/65R15の空気入りタイヤの製造する際に、前記の式1に基づいて求めた複合伸び率が15%（実施例1）、50%（実施例2）または30%（その他の実施例および比較
例）となるサイズに調整した。

プラダー使用回数：タイヤサイズ 195/65 R 15 の空気入りタイヤを製造し、プラダーの表面荒れが発生するまでのタイヤ加硫本数を調べた。結果は比較例 1 の値を 100 として指数表示した。この指数が高いほどプラダー－ライフが延長されていることを示す。

破断伸び：JIS K 6251 に準拠して引張試験にて評価した。結果は比較例 1 の値を 100 として指数表示した。この指数が高いほど破断伸びが高いことを示す。

結果を併せて表 1 に示す。
	実施例1	実施例2	実施例3	実施例4	実施例5	実施例6	実施例7	実施例8	比較例1	比較例2	比較例3	比較例4	比較例5	
プチルゴム(1) *1	不飽和度0% 5%	95	95	95	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5
	不飽和度1% 1%	95	95	95	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5
	不飽和度1.5% 1.5%	95	95	95	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5
プチルゴム(2) *2	不飽和度2% 2%	95	95	95	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5
	不飽和度2% 2%	95	95	95	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5
クロロプレンゴム *3	5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5												
カーボンブラック *4	50 50 50 50 50 50 50 50 50 50 50 50 50 50	50 50 50 50 50 50 50 50 50 50 50 50 50 50												
オイル *5	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6												
酸化度 *6	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5												
ベネール系樹脂 *7	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8												
測定結果	15 30 50 30 30 30 30 30 30 30 30 30 30 30	138 148 140 147 120 118 118 115 100 105 103 103 103 101												
総合使用回数	138 148 140 147 120 118 118 115 100 105 103 103 103 101	140 140 140 125 120 115 118 113 100 105 103 103 103 102												
[0019] *1:プチルゴム（1）（ランクスラバー社製 B U T Y L 1 0 0 シリーズ
0.6%または1.1%の不飽和度を有する。）
*2:プチルゴム（2）（ランクスラバー社製 B U T Y L 3 0 1 シリーズ
1.5%または2.0%の不飽和度を有する。）
*3:クロロブレングム（昭和電工（株）製ショウブレングW）
*4:カーボンプラック（キャバ ナチュラランプン（株）製ショウプラックN 2
20、N₂Sₐ = 1 1 1 m²/g）
*5:オイル（昭和シエル石油（株）製エキストラクト4号S）
*6:酸化亜鉛（正同化学工業（株）製酸化亜鉛3種）
*7:フェノール系樹脂（日立化成（株）製 ヒタノール）

前記の表1から明らかのように、実施例1〜8で調製されたゴム組成物は
特定の不飽和度を有するプチルゴム（1）を特定量で配合したので、従来の代表的な比較例1に比べて、破断伸びを悪化させることなく、ブラーダーライフが顕著に改善されている。
これに対し、比較例2〜5は、プチルゴム（1）の配合量が本発明で規定する下限未満であるので、ブラーダーライフの改善効果が僅かな範囲に留まっていることが判明した。
請求の範囲
[請求項1] ブチルゴムを92質量部以上含むゴム成分100質量部に対し、前記ブチルゴムが、0.6〜1.1％の不飽和度を有するブチルゴム（1）30〜100質量％および1.5〜2.0％の不飽和度を有するブチルゴム（2）0〜70質量％から構成されることを特徴とするタイヤ加硫ブラダー用ゴム組成物。
[請求項2] 前記ブチルゴム（1）の不飽和度が、0.6〜1.0％であることを特徴とする請求項1に記載のタイヤ加硫ブラダー用ゴム組成物。
[請求項3] 前記ゴム成分が、ブチルゴム92〜97質量部およびクロロプレンゴム3〜8質量部からなることを特徴とする請求項1に記載のタイヤ加硫ブラダー用ゴム組成物。
[請求項4] 前記ゴム成分100質量部に対し、窒素吸着比表面積（N₂SＡ）が70〜120m²/gのカーボンプラックを20〜80質量部およびフェノール系樹脂を1〜15質量部配合することを特徴とする請求項1に記載のタイヤ加硫ブラダー用ゴム組成物。
[請求項5] 請求項1〜4のいずれかに記載のタイヤ加硫ブラダー用ゴム組成物を用いて成形したタイヤ加硫ブラダー。
[請求項6] 前記タイヤ加硫ブラダーの複合伸び率が15〜50％となるように、前記タイヤ加硫ブラダーを用いてタイヤ成形が行われることを特徴とする請求項4に記載のタイヤ加硫ブラダーを使用する方法。
[請求項7] 前記タイヤ加硫ブラダーの複合伸び率が30〜40％となるように、前記タイヤ加硫ブラダーを用いてタイヤ成形が行われることを特徴とする請求項6に記載のタイヤ加硫ブラダーを使用する方法。
INTERNATIONAL SEARCH REPORT

International application No.

PCT / JP2 015/ 083943

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>C08L23/22</th>
<th>B29C33 / 02</th>
<th>C08K30 / 04</th>
<th>C08L 11 / 00</th>
<th>B29K2 1 / 00</th>
<th>B29L3 0 / 00</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2006.01)</td>
<td>(2006.01)</td>
<td>(2006.01)</td>
<td>(2006.01)</td>
<td>(2006.01)</td>
<td>(2006.01)</td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C08L23/22, B29C3 3 / 02, C08K3 / 04, C08L 11 / 00, C08L 61 / 04, B29K2 1 / 00, B29L3 0 / 00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1922-1996
Kokai Jitsuyo Shinan Koho 1971-2015
Toroku Jitsuyo Shinan Koho 1996-2015

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CAlplus / REGI STRY (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2010-285525 A (Sumitomo Rubber Industries), Ltd. 24 December 2010 (24.12.2010), claims; paragraph [0017]; example s (Family: none)</td>
<td>1-7</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2012-092243 A (Sumitomo Rubber Industries), Ltd. 17 May 2012 (17.05.2012), claims; paragraph [0024]; example s & CN 102453284 A & KR 10-2012-0044255 A</td>
<td>1-7</td>
</tr>
<tr>
<td>X</td>
<td>JP 61-185548 A (The Yokohama Rubber Co., Ltd.), 19 August 1986 (19.08.1986), claims; page 2, lower left column, lines 3 to 11; example s (Family: none)</td>
<td>1-7</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search

25 December 2015 (25.12.15)

Date of mailing of the international search report

23 February 2016 (23.02.16)

Name and mailing address of the ISA/Authorized officer

Japan Patent Office, 3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan

Telephone No.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 62-068838 A (The Yokohama Rubber Co., Ltd.), 28 March 1987 (28.03.1987), claims; page 2, lower left column, lines 2 to 8; examples</td>
<td>1-7</td>
</tr>
<tr>
<td>Y</td>
<td>JP 10-086156 A (Continental AG.), 07 April 1998 (07.04.1998), claims; paragraph [0015]; examples</td>
<td>1-7</td>
</tr>
<tr>
<td>X</td>
<td>JP 2014-184579 A (The Yokohama Rubber Co., Ltd.), 02 October 2014 (02.10.2014), claims; examples</td>
<td>1-7</td>
</tr>
<tr>
<td>Y</td>
<td>JP 10-130441 A (Bridge Stone Corp.), 19 May 1998 (19.05.1998), claims; examples</td>
<td>1-7</td>
</tr>
</tbody>
</table>
A. 発明の属す分野の分類（国際特許分類（IPC））
Int.Cl. C08L23/22 (2006.01) i, B29C33/02 (2006.01) i, C08K3/04 (2006.01) i, C08L61/04 (2006.01) i, B29K2 1/00 (2006.01) n, B29L30/00 (2006.01) n

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））
Int.Cl. C08L23/22, B29C33/02, C08K3/04, C08L1 1/00, C08L61/04, B29K2 1/00, B29L30/00

C. 関連すると認められる文献
引用文献のカテゴリー※

<table>
<thead>
<tr>
<th>パタントファミリーに関する別紙を参照。</th>
</tr>
</thead>
<tbody>
<tr>
<td>引用文献（カテゴリー）</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>& CN 102453284 A & KR 10-20 12-0044255 A</td>
</tr>
</tbody>
</table>

国際調査機関の名称及びあて先
日本国特許庁（ISA／JP）
郵便番号 100－8915
東京都千代田区霞が丘三丁目４番３号

特許庁審査官（権限のある職員） 4J 3445
安田 周史
電話番号 03-3581-1101 内線 3457

様式 PCT／ISA／210 (第2ページ) (2009年7月)
<table>
<thead>
<tr>
<th>C（続き）: 関連すると認められる文献</th>
<th>関連する文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 61-185548 A (横浜ゴム株式会社) 1986. 08. 19,</td>
<td>1 - 7</td>
</tr>
<tr>
<td>Y</td>
<td>特許請求の範囲、第2頁左下欄第3行〜第11行、実施例 (ファミリーなし)</td>
<td>1 - 7</td>
</tr>
<tr>
<td>X</td>
<td>JP 62-068838 A (横浜ゴム株式会社) 1987. 03. 28,</td>
<td>1 - 7</td>
</tr>
<tr>
<td>Y</td>
<td>特許請求の範囲、第2頁左下欄第2行〜第8行、実施例 (ファミリーなし)</td>
<td>1 - 7</td>
</tr>
<tr>
<td>X</td>
<td>JP 10-086156 A (コンテイネル・アチエンジング、セルジャック) 1998. 04. 07, 特許請求の範囲、[0015]、実施例 (ファミリーなし)</td>
<td>1 - 7</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2014-184579 A (横浜ゴム株式会社) 2014. 10. 02,</td>
<td>1 - 7</td>
</tr>
<tr>
<td>特許請求の範囲、実施例 (ファミリーなし)</td>
<td>特許請求の範囲、実施例 (ファミリーなし)</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>JP 10-130441 A (株式会社ブリヂストン) 1998. 05. 19,</td>
<td>1 - 7</td>
</tr>
<tr>
<td>特許請求の範囲、実施例 (ファミリーなし)</td>
<td>特許請求の範囲、実施例 (ファミリーなし)</td>
<td></td>
</tr>
</tbody>
</table>

様式PCT/ISA/210（第2ページの続き）（2009年7月）