(54) Title: INDUCER FOR DIFFERENTIATION OF EMBRYO STEM CELLS INTO ECTODERMAL CELLS, METHOD OF OBTAINING THE SAME AND USE THEREOF

(57) Abstract: A method of obtaining a solution having an activity of inducing the differentiation of embryo stem cells into ectodermal cells or ectoderm-origin cells which involves the step of culturing stroma cells with the use of a liquid medium containing a polyanion compound and then recovering the liquid medium; a solution having an activity of inducing the differentiation of embryo stem cells into ectodermal cells or ectoderm-origin cells which is obtained by using the above method; and an inducer for the differentiation of embryo stem cells into ectodermal cells or ectoderm-origin cells.

(57) 要約:

ポリアニオン化合物を含む培養液を用いてストローマ細胞を培養した後、該
培養液を回収する工程を含む、胚性幹細胞を外胚葉細胞または外胚葉由来の細
胞に分化誘導する活性を有する溶液を取得する方法、該方法を用いることによ
って取得される、胚性幹細胞を外胚葉細胞または外胚葉由来の細胞に分化誘導
する活性を有する溶液、および胚性幹細胞から外胚葉細胞または外胚葉由来の
細胞への分化誘導剤。

指定国（広域）: ARIPPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:
— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイドダンスノート」を参照。
明細書

胚性幹細胞から外胚葉系細胞への分化誘導剤、その取得方法及びその用途

技術分野

本発明は、胚性幹細胞から機能性細胞を分化誘導する因子の取得方法に関する。さらに詳しくは、本発明は、細胞医療として有用な、胚性幹細胞から外胚葉または外胚葉由来の細胞への分化誘導剤または分化誘導因子、それらの取得方法、並びにそれらの用途に関する。本発明はまた、胚性幹細胞を該因子を用いて分化させた細胞、並びにその用途にも関する。

背景技術

通常、胚幹細胞（embryonic stem cell）とは、インビトロにおいて培養することが可能で、かつ、他の個体の着床前の胚、例えば、胚盤胞胞で後に注入すると生殖細胞をも含むすべての細胞に分化できる細胞のことを意味しており、胚性幹細胞あるいはES細胞とも呼ばれている。

初期胚の発生と胚性幹細胞の関係をマウスを例として以下に説明する。

マウス受精卵は、卵管から子宮に向かって移動しながら2細胞、4細胞、8細胞と分裂を行い16細胞期になった時点で細胞間の接着が強まるコンパクション（compaction）が起こり、細胞間の境界が不明瞭になった桑実胚（morula）と呼ばれる段階に至る。さらに、受精後3.5日には、胚内部に製腔（blastocoe1）と呼ばれる空間ができ胚盤胞（blastocyst）になる。このとき胚盤胞は外側の栄養外胚葉（trophectogerm）層と内部細胞塊（inner cell mass：ICM）から構成されている。胚盤胞は受精後4.5〜5.5日にかけて子宮壁に着床する。着床の時期には、内部細胞塊の中で製腔に面した表面の細胞が原始内胚葉（primitive endoderm）細胞に分化している。これらのうち、一部の細胞は胚本体から離れ栄養外胚葉層の中側へ遊走し遠位内胚葉（parietal endoderm）細
胞となり、細胞外マトリックスを分泌してライヘルト膜（Reichert’s membrane）をつくる。

一方、胚体部分近くの原始内胚葉細胞は近位内胚葉（visceral endoderm）と呼ばれる細胞層をつくる。これら遠位および近位内胚葉は、やがて胎児本体を保護して栄養物や老廃物を母体との間で交換するための支持組織となる。将来胎児本体をつくる内部細胞塊の細胞は増殖して原始外胚葉（primitive ectoderm）と呼ばれる細胞層をつくる。原始外胚葉は、胚性外胚葉（embryonic ectoderm）あるいは上葉細胞層（epiblast）とも呼ばれている。

着床後の胚は全体として円筒形に成長するため、受精後5.5〜7.5日の胚は卵筒胚（egg cylinder）と呼ばれる。卵筒胚の子宮との付け根側半分には、将来胎盤をつくる胚体外組織（extraembryonic tissue）が栄養外胚葉から分化し形成されている。受精後6.5日には原始外胚葉層に原条（primitive streak）と呼ばれる溝が現れ、この部分で原始外胚葉が間充繊細胞様に変化して原始外胚葉層と近位内胚葉層との間に入り込み、原条から左右および前後に移動して胚性中胚葉細胞層（embryonic mesoderm）を形成する。この細胞層の中には、将来胎児本体の内胚葉（definitive endoderm）になる細胞も含まれている。

このように、原始外胚葉からは外胚葉のみならず、胎児の中胚葉および内胚葉の3胚葉が作られることが明らかにされており、胎児のすべての組織は原始外胚葉由来であることが示されている。なお、神経系や表皮系の細胞は外胚葉から作られることが明らかにされており、神経系の細胞へ分化が運命づけられた外胚葉を神経性外胚葉（neural ectoderm）、表皮系の細胞へ分化が運命づけられた外胚葉は非神経性外胚葉（non-neural ectoderm）と呼ばれている。

以上述べた胚発生過程における細胞系譜の中で、受精卵からはじまり桑実胚までの個々の割球細胞、胚盤胚における内部細胞塊の細胞、および原始外胚葉層を構成している細胞は全能性を持ち未分化な胚性幹細胞としての性質を有している。原始外胚葉が各胚葉に分化をはじめるとそのほとんどどの細胞は全能性を失うが、その一部が次世代への遺伝子を伝達する役目を担う始原生殖細胞
(primordial germ cell) として残される。始原生殖細胞は、原始外胚葉が各
胚葉に分化するときに原条から陥入する胚性中胚葉細胞層の中にまで含まれ後方
に移動し、尿膜（allantois）基部の胚体外中胚葉（extraembryonic mesoderm）の中の特定の部位に出る。始原生殖細胞は、やがて、生殖障原
基へ向かって移動し生殖段の性分化にしたがって卵子や精子を形成する。

胚性幹細胞は、胚盤胞の内部に存在する未分化幹細胞である内部細胞塊を構
成している細胞を培養に移し、頻繁に細胞塊の解離と継代を繰り返すことで樹
立できる。この細胞は正常核型を維持しながらほぼ無限に増殖と継代を繰り返
すことが可能であり、内部細胞塊と同じようにあらゆる種類の細胞に分化する
ことができる多分化能を保つことが知られている。

胚性幹細胞を他個体の胚盤胞の中に注入すると、宿主胚の内部細胞塊の細胞
と混ざり合って胚と胎児の形成に寄与しキメラ個体をつくる。極端な場合には、
胎児本体がほぼ注入した胚性幹細胞だけからなる個体が生まれることもある。キメラ個体の中で、注入した胚性幹細胞が将来卵や精子をつくる始原生殖細胞
の形成に寄与した個体を生殖系列キメラと呼び、この生殖系列キメラを交配させ
ることによって注入した胚性幹細胞由来の個体を得ることができるから、胚
性幹細胞はあらゆる細胞に分化することができる全能性を有していることが
ニピュレイティング・ザ・マウス・エンブリオ・ア・ラボラトリー・マニュア
ル」と略す); Gene Targeting, A Practical Approach, IRL Press at Oxford
University Press (1993) (以下、「ジーン・ターゲッティング」と略す); バ
イオマニュアルシリーズ8 ジーンターゲッティング, ES細胞を用いた変異マウ
スの作製, 羊土社 (1995) (以下、「ES細胞を用いた変異マウスの作製」と略
す)）。

胚盤胞の内部細胞塊を通常の初代培養のように培養すると、ほとんどの場合、
直に繊維芽細胞様の細胞に分化してしまう。未分化な状態を維持しながら培養

3
するためには、通常、胎児から調製した初代纖維芽細胞やSIHMマウス由来のSTO細胞などをフィーダー細胞として用いる必要がある（ジーン・ターゲッティング；ES細胞を用いた変異マウスの作製）。フィーダー細胞の上で適切な細胞密度を保ち、頻繁に培養液を交換しながら細胞の解離と継代を繰り返すことで未分化幹細胞の性質を保持したまま維持することが可能となる（マニピュレーション・ザ・マウス・エンプリオ・ア・ラボラトリー・マニュアル）。

されるが（C.L. Stewartら、Nature, 359, 76 (1992); J.L. Escaryら、
Development, 121, 1283 (1995)）、gp130遺伝子を破壊したマウスにおいては、
胎生12.5日から出産に至る過程で胎生死することからも支持されている（K.

マウスにおいて胚性幹細胞が初めて樹立されて以来（M.J. Evansら、Nature,
292, 154 (1981); G.R. Martin、Proc. Natl. Acad. Sci. USA, 78,
7634 (1981)）、効率的な胚性幹細胞の樹立方法、例えば非マウスにおける胚性
幹細胞の樹立法（米国特許5,453,357号；米国特許5,670,372号）などが研究さ
れ、これまでに、ラット（P.M. Iannacconeら、Dev. Biol., 163, 288
(1994)）、ニワトリ（B. Painら、Development, 122, 2339 (1996); 米国特許
（J.A. Thomsonら、Science, 282, 1145 (1998); M.J. Shamblottら、Proc.
Natl. Acad. Sci. USA, 95, 13726 (1998)）の胚性幹細胞が樹立されている。

胚性幹細胞を、胚性幹細胞と同系統の動物の皮下などに移植すると、様々な
組織が発生し、様々な軟組織、骨、皮膚等が形成されることが知られている（マニピュレイテ
ィング・ザ・マウス・エンプリオ・ア・ラボラトリー・マニュアル）。

また、インビトロの培養においても、胚性幹細胞を凝集させ、いったん擬似
胚状態にしたエンドプライトボディと呼ばれる細胞塊（embryoid body; 以下、
「EB」とも略す）を形成させることによって分化を誘導し、内胚葉細胞、外胚
葉細胞、中胚葉細胞、血液細胞、内皮細胞、軟骨細胞、骨格筋細胞、平滑筋細
胞、心筋細胞、グリア細胞、神経細胞、上皮細胞、メラノサイト、ケラチノサ
イトの各種細胞を出現させることが可能であることが報告されている（P.D.
養方法による分化の誘導では、細胞凝集塊の形成による自発的な分化が引き起
こされ、結果として目的とした細胞の出現が観察されているのであって、ある特定の細胞集団を効率的に誘導するまでには至っておらず、同時に多種類の組織細胞の出現も観察されている。

さらに、グリア細胞様の形態をとる細胞を対象としてパッチクランプの手法を用い活動電位を測定したところ、5-HT（5-hydroxytryptamin）、GABA、カイニン酸、グルタミン酸、ドーパミン、カルバコール刺激による電位の発生が調べた数数の細胞で観察されるが、対照として用いたEB形成後のレチノイン酸処理で誘導される神経細胞様の細胞では、カルバコール刺激による活動電位の発生が観察されず、代わりにノルアドレナリン刺激による活動電位の発生が観

通常、胚性幹細胞からのEBの形成は、LIFおよび10〜20%のウシ胎児血清を含む培地中で未分化状態で維持増殖させた胚性幹細胞を、トリプシン-EDTA処理等でばらばらにした後、培養ディッシュに付着しないように、何もコートしていないプラスチックディッシュ上で、LIFを除いた10〜20%のウシ胎児血清を含む培地を用いて培養することにより行われている。EBの形成は培地中に含まれる血清のロットによって左右されることが経験的に知られており、血清中の何らかの因子が胚性幹細胞のEBの形成に影響を与えていることが示唆されているが、このような因子の同定は未だされておらず、無血清培養状態で胚性幹細胞の分化増殖を支持し効率的にEBの形成させることは難しい。

生体において、神経細胞とグリア細胞がネスチン陽性の共通の前駆細胞から分化することはレトロウイルスを用いたラベリング実験で示唆され（U. Lendahlら、Cell, 60, 585 (1990); J. Priceら、Development Supplement, 2, 23 (1991); J. Priceら、Brain Pathol., 2, 23 (1992)）、その後、成体の脳に存在する前駆細胞が神経系幹細胞として単離されたことで証明されている

しかしながら、レチノン酸を胚性幹細胞の分化誘導に用いる際には、生理的に存在している濃度より非常に高い濃度 (10倍〜500倍) で用いられる。生理的に存在している濃度より高いレチノン酸を用いることは、毒性の面から懸念されているため、得られた細胞を移植等の医療に用いるのは難しい。そこでレチノン酸を用いず、より生理的条件に近い状態で胚性幹細胞を神経系の細胞に分化誘導する試みもなされている。

を有するストローマ細胞を4%パラフォルムアルデヒドで処理しても、SDIA活性は細胞膜表面上に残存することが示されている。一方、これらストローマ細胞の培養上清中にはSDIA活性は観察されていない。さらに、分化に関与する既知の分子、例えば、塩基性線維芽細胞増殖因子（basic fibroblast growth factor；以下、「bFGF」とも略す）、線維芽細胞増殖因子8（fibroblast growth factor 8；以下、「FGF8」とも略す）、ノックヘッジホッグ（sonic hedgehog；以下、「shh」とも略す）、肝細胞増殖因子（hepatocyte growth factor；以下、「HGF」とも略す）、上皮増殖因子（epidermal growth factor；以下、「EGF」とも略す）、血小板由来増殖因子（platelet-derived growth factor；以下、「PDGF」とも略す）、LIF、Wnt、インターロイキン1（interleukin 1；以下、「IL1」とも略す）、インターロイキン11（interleukin 11；以下、「IL11」とも略す）、グリア細胞株由来神経栄養因子（glial cell-line derived neurotropic factor；以下、「GDNF」とも略す）には、胚性幹細胞を外胚葉系の細胞に分化誘導するSDIAのような活性はないと報告されている（H. Kawasakiら、Neuron, 28, 31 (2000))。

SDIA活性が単独の因子に起因するのか否かを含め、その実態は明らかにされておらず、ストローマ細胞からの効率的なSDIA活性の回収法や、回収したSDIA活性を利用したストローマ細胞を用い、ストローマ細胞を用いない無細胞系で胚性幹細胞を分化誘導する方法なども知られていなかった。

SFRP1: FrzA, FRP-1, SARP2, sFRP-1
SFRP2: SDF-5, SARP1, sFRP-2
SFRP3: Frzb-1, FrzB, Flitz, Frezzled, sFRP-3
SFRP4: DDC-4, sFRP-4, frpAP, frpHE, FrzB-2
SFRP5: SARP3, hFRP-1b, Frzb-1b

SFRP1〜5いずれの蛋白質も10個のシステイン残基を含むCysteine rich domain (CRD) を介してWntまたはWntの受容体と相互作用し、Wntによって惹起される様々なシグナル伝達のネットワークを制御していることが知られている。Wntは350〜400個のアミノ酸からなる分泌性の糖蛋白質で、中枢神経系の発生、胚発生初期における体軸の決定、内臓器官の形成、細胞の増殖や分化の決定などに関与する。現在までにヒトゲノムには少なくとも19種類以上のWnt分子が同定されている。Wntの受容体には7回膜貫通型の糖蛋白質で、Frizzledと命名されているものがある。現在までに10種類以上のFrizzled膜受容体が同定されている。本受容体は細胞外領域に位置するN末端部分にCRDを有しており、このドメインがWntとの結合に重要であると考えられる。Wnt、Wntの受容体およびSFRPなどの分子群が発生、増殖、分化などの段階で、いつどのように発現し、機能していくかについては、マウスやXenopusなど一部の生物種で研究されているものの、その結合特異性などについてはまだ十分明らかになっていない。

SFRPについてはこれまでにSFRP1およびSFRP3が軟骨形成に重要な役割を担っていることが報告されている（WO 01/19855 A2、およびInt. J. Dev. Biol., 43, 495 (1999)）他、SFRP3については内胚葉、心臓、神経への分化誘導への関与も示唆されている（US 20020128439）。なおヒト由来SFRP3とヒト由来SFRP1のアミノ酸配列上の相同性は30％程度である。一方でSFRPに関してはこれまでに胚性幹細胞を外胚葉細胞又は外胚葉由来の細胞に分化誘導する活性については報告されていない。

このようにしてインビトロで誘導された神経系細胞が、生体内において正常に機能しうるかについても検討されている。

上述のITSFn培地を用いて誘導したマウスの神経上皮細胞様の前駆細胞を胎生16日～18日のラットの脳室に移植すると、移植した前駆細胞が移動し脳組織に取り込まれ、神経、アストロサイト、オリゴデンドロサイトに分化し、形態的には宿主の細胞と区別がつかないことが観察されている（O. Brustleら、Proc. Natl. Acad. Sci. USA, 94, 14809 (1997))。しかしながら、移植部位には、盛んに分裂を繰り返す神経管様の構造体やアルカリフォスファターゼ陽性の未分化細胞からなる小さなクラスターの形成など、本来の組織には観察されない奇形腫瘍組織の形成が観察されている。

その後、胚性幹細胞からグリア細胞の前駆細胞を誘導し、その前駆細胞を先天的にミエリン雛雑を欠損しているラットの脳や脊髄に移植することで、奇形腫の形成にミエリン雛雑の修復が観察されることが報告されている（O. Brustleら、Science, 285, 754 (1999)）。この移植では、上述のEB形成後、ITSFn培地を用いて誘導した神経上皮細胞様の前駆細胞から、さらに分化が進んだグリア細胞の前駆細胞を誘導し移植に用いている。

すなわち、誘導した神経上皮細胞様の前駆細胞をポリオルニチンでコートしたデシュ上でインスリン、トランスフェリン、プロジェステロン、プロテシオン、塩化セレン、FGF2 (fibroblast growth factor 2)、ラミンを含む培地で5日間培養し、カルシウムおよびマグネシウムを含有していないハンクスの緩衝液を用いて細胞を剥がし、5分の1の細胞密度でFGF2とEGF (epidermal growth factor) を含む培地で継代培養し、ほぼコンフルエンテ状態に達したらもう一度5分の1の細胞密度でFGF2およびPDGF-AA (platelet-derived growth factor-AA) を含む培地で継代培養を続けることでグリア細胞の前駆細胞へと分化を誘導することが可能であることから、移植に用いることが可能であることが示されている。このようにして分化誘導した細胞は、A2B5陽性であること（M. C. Raffら、Nature, 303, 390 (1983)）、FGF2およびEGFを含まない培地で培養するとアストロサイトおよびオリゴデンドロサイトへの分化が抑制され、細胞の前駆細胞であることが明らかにされている。

上記胚性幹細胞と同様の機能を有する細胞について、胚性幹細胞との関係を以下に説明する。

悪性奇形腫 (teratocarcinoma) より胚性幹細胞と同様多分化能を有する細胞株として、種々の胚性癌腫細胞 (embryonal carcinoma cell: EC細胞) が樹立されている (M. J. Evans、J. Embryol. Exp. Morph., 28, 163 (1972))。

これらの細胞は、胚性幹細胞のマーカーとなる遺伝子を発現していること (E. G. Bernstineら、Proc. Natl. Acad. Sci. USA, 70, 3899 (1973); S. B.

一方、発生工学の進歩により、個々人の胚性幹細胞を作成する可能性について報告されている。1997年、Wilmutらによって哺乳動物ではじめて、体細胞の

次に、臓器移植における細胞医療の有効性について例をあげて説明する。

パーキンソン病は、黒質線条体ドーパミン神経細胞の変性を主体とする慢性進行性疾患である。従来より、L-DOPA（L-ジヒドロキシフェニルアラニン）を中心とする内服療法が行われてきたが、長期にわたる内服が必要なため、多くの患者においてその効果が次第に減弱し、wearing off現象、ジェスキネジアなどの副作用になやすされるようになる。このため、より有効な治療法の開発が模索され、パーキンソン病患者に対して中絶胎児脳を移植する治療が行われ始めた。全世界では、これまでに、数百例の中絶胎児脳を移植する治療が施行されている。最近、米国では、40人のパーキンソン病患者を対象に、中絶胎児脳
細胞の移植手術の二重盲検試験が行われ、その有用性が証明された。さらに、このような中絶児の脳細胞移植を受けた患者の中には、10年以上にもわたって移植した細胞が定着し移植した細胞が線条体とシナプスを形成している例が報告されている。このように、中絶児の脳を移植する細胞療法がパーキンソン病に対して高い有効性を示すことが分かっているが、中絶児を利用することに倫理的な問題を指摘する声が強い。また、実際には、一人の患者を治療するのに10体近い胎児が必要であるために、現実的な医療への応用に大きな障害となっている。したがって、ドーパミン作動性神経細胞を、社会通念上許容される方法で、かつ多量に調製する方法の開発が望まれている。

細胞医療の観点から、分化能を保持したまま培養可能な未分化幹細胞から目的とする機能性細胞を選択的に、かつ効率的に分化誘導するための方法の開発が注目され、様々な試みがなされている。しかしながら、目的とする機能細胞を人為的にコントロールされた生理的環境下、例えば、血清やレチノイド酸あるいはストローマ細胞を用いない培養条件で誘導することが望まれているが、そのような方法は知られていない。特に、外胚葉由来の細胞、具体的には正常な機能を有するドーパミン作動性神経細胞を、未分化幹細胞から効率的に分化誘導し、その分化した細胞を移植する方法は、パーキンソン病をはじめとする脳疾患患者への医療の観点から重要であり期待されているが、未だ開発されていない。

発明の開示

本発明は、ストローマ細胞が有する、胚性幹細胞を外胚葉細胞または外胚葉由来の細胞に分化誘導する活性（以下、「SDIA活性」とも略記する）を効率的に回収する方法を提供することを目指すものである。

さらに、本発明は、回収したSDIA活性を利用し、細胞及び繊維性移植医療に利用可能な機能性細胞を胚性幹細胞から分化誘導する方法、その方法のために用いる分化誘導剤、該分化誘導した細胞、並びにこれらの利用方法を提供することを目指すものである。
本発明者らは、SDIA活性をストローマ細胞から回収する条件を鋭意検討した結果、該方法を見出すことに成功し、本発明を完成するに至った。

即ち、本発明は、以下の（1）～（4）に関する。

（1）ポリアニオン化合物を含む培養液を用いてストローマ細胞を培養した後、該培養液を回収する工程を含む、胚性幹細胞を外胚葉細胞または外胚葉由来の細胞に分化誘導する活性を有する溶液を取得する方法。

（2）ポリアニオン化合物が、培養液中で陰性電荷を有するコポリマーまたはホモポリマーである、上記（1）に記載の方法。

（3）培養液中で陰性電荷を有するコポリマーが、ムコ多糖である、上記（2）に記載の方法。

（4）ムコ多糖が、以下の（a）、（b）、（c）、（d）、（e）、（f）、（g）、（h）、（i）および（j）からなる群から選ばれる化合物である、上記（3）に記載の方法。

(a) コンドロイチン4-硫酸;
(b) コンドロイチン5-硫酸;
(c) コンドロイチン6-硫酸;
(d) デルマタン硫酸;
(e) ヘパラン硫酸;
(f) ヘパリン;
(g) ケラタン硫酸I;
(h) ケラタン硫酸II;
(i) ヒアルロン酸;
(j) コンドロイチン。

（5）培養液中で陰性電荷を有するホモポリマーが、以下の（a）、（b）、（c）、（d）、（e）、（f）、（g）、（h）、（i）、（j）および（k）からなる群から選ばれる化合物である、上記（2）に記載の方法。

(a) デキストラン硫酸;
(b) カルボキシメチルデキストラム；
(c) 硫酸化ポリビニール；
(d) ポリビニルサルファイト；
(e) スルホン化ポリスチレン；
(f) ポリアクリル酸；
(g) カルボキシメチルセルロース；
(h) セルロース硫酸；
(i) ポリグルタミン酸；
(j) ポリマレイン酸；
(k) ポリメタクリル酸。

（6）培養液が、細胞培養に用いられる基礎培地または平衡塩溶液である、
上記（1）～（5）のいずれか1項に記載の方法。

（7）ストローマ細胞が、ハイプリドーマFERM BP-7573が産生するモノクローナル抗体で認識されるストローマ細胞である、上記（1）～（6）のいずれか1項に記載の方法。

（8）ストローマ細胞が、以下の（a）、（b）、（c）、（d）、（e）、（f）および
(g) からなる群から選ばれる細胞である、上記（1）～（6）のいずれか1項に記載の方法。
(a) 胎児初代培養繊維芽細胞；
(b) SIHHマウス由来STO細胞；
(c) マウス胎児由来NIH/3T3細胞；
(d) マクロファージコロニー刺激因子（M-CSF）欠損マウス頭蓋冠由来OP9細胞；
(e) マウス頭蓋冠由来MC3T3-G2/PA6細胞；
(f) 胚性幹細胞由来のストローマ細胞；
(g) 骨髄間葉系幹細胞由来のストローマ細胞。
（9） 上記（1）～（8）のいずれか1項に記載の方法を用いることによって取得される、胚性幹細胞を外胚葉細胞または外胚葉由来の細胞に分化誘導する活性を有する溶液。

（10） 上記（9）記載の溶液を有効成分として含有してなる胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

（11） 上記（9）記載の溶液中に含まれる胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

（12） 配列番号7で表されるアミノ酸配列からなるポリペプチドを有効成分として含有してなる胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

（13） 配列番号7で表されるアミノ酸配列において1以上のアミノ酸残基が欠失、置換、挿入もしくは付加されたアミノ酸配列からなるポリペプチドを有効成分として含有してなる胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

（14） 配列番号7で表されるアミノ酸配列と60％以上の相同期を有するアミノ酸配列からなるポリペプチドを有効成分として含有してなる胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

（15） 配列番号7で表されるアミノ酸配列をコードするDNAを含有する組換えペクターを有効成分として含有してなる胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

（16） 配列番号9で表される塩基配列を有するDNAを含有する組換えペクターを有効成分として含有してなる胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

（17） 配列番号7で表されるアミノ酸配列をコードするDNAを含有する組換えペクターをストローマ細胞に導入して得られる形質転換体を有効成分として含有してなる胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

19
（18）配列番号9で表される塩基配列を有するDNAを含有する組換えベクターをストローマ細胞に導入して得られる形質転換体を有効成分として含有してなる胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

（19）配列番号8で表されるアミノ酸配列からなるポリペプチドを有効成分として含有してなる胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

（20）配列番号8で表されるアミノ酸配列において1以上のアミノ酸残基が欠失、置換、挿入もしくは付加されたアミノ酸配列からなるポリペプチドを有効成分として含有してなる胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

（21）配列番号8で表されるアミノ酸配列と60%以上の相同性を有するアミノ酸配列からなるポリペプチドを有効成分として含有してなる胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

（22）配列番号8で表されるアミノ酸配列をコードするDNAを含有する組換えベクターを有効成分として含有してなる胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

（23）配列番号10で表される塩基配列を有するDNAを含有する組換えベクターを有効成分として含有してなる胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

（24）配列番号7で表されるアミノ酸配列をコードするDNAを含有する組換えベクターをストローマ細胞に導入して得られる形質転換体を有効成分として含有してなる胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

（25）配列番号10で表される塩基配列を有するDNAを含有する組換えベクターをストローマ細胞に導入して得られる形質転換体を有効成分として含有してなる胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。
（26） Wntアンタゴニストを有効成分として含有してなる胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。
（27） 上記（9）に記載の溶液または上記（12）～（26）のいずれか1項に記載の分化誘導剤を用い、胚性幹細胞を非凝集状態で培養する工程を含む、胚性幹細胞を外胚葉細胞または外胚葉由来の細胞に分化誘導する方法。
（28） 上記（9）に記載の溶液または上記（12）～（26）のいずれか1項に記載の分化誘導剤を固定化した培養器を用いることを特徴とする、上記（27）に記載の方法。
（29） 外胚葉細胞が、神経系細胞または表皮系細胞に分化し得る能力を有している細胞である、上記（1）～（8）、（27）および（28）のいずれか1項に記載の方法。
（30） 外胚葉由来の細胞が、神経系細胞または表皮系細胞である、上記（1）～（8）、（27）および（28）のいずれか1項に記載の方法。
（31） 表皮系細胞が表皮細胞である、上記（29）または（30）に記載の方法。
（32） 神経系細胞が、以下の（a）、（b）、（c）、（d）および（e）からなる群から選ばれる細胞である、上記（29）または（30）に記載の方法。
（a）神経幹細胞；
（b）神経細胞；
（c）神経管の細胞；
（d）神経堤の細胞；
（e）網膜色素細胞。
（33） 神経幹細胞が、ネスチンを発現している神経幹細胞である、上記（32）に記載の方法。
（34） 神経細胞が、以下の（a）、（b）、（c）および（d）からなる群から選ばれる神経細胞である、上記（32）に記載の方法。
（a）ドーパミン作動性神経細胞；
(b) アセチルコリン作動性神経細胞；
(c) γアミノ酪酸作動性神経細胞；
(d) セロトニン作動性神経。

（35）アセチルコリン作動性神経細胞が、islet 1を発現している運動神経細胞である、上記（34）に記載の方法。

（36）神経管の細胞が、以下の（a）、（b）、（c）および（d）からなる群から選ばれる細胞である、上記（32）に記載の方法。

(a) 神経管の腹側化因子であるソニックヘッジホック（Sonic hedgehog）に反応し腹側に位置する細胞に分化し、かつ神経管の背側因子である骨形成因子4（Bone Morphogenetic Protein 4）に反応し背側に位置する細胞に分化する能力を有する、背腹軸が決定される前の段階の神経管の細胞；

(b) 神経管の最も腹側の底板に位置するHNF-3β（Hepatocyte Nuclear Factor-3β）を発現している神経管腹側の細胞；

(c) 神経管の腹側からHNF-3β（Hepatocyte Nuclear Factor-3β）についてで2番目に存在するマーカーNkk2.2を発現している神経管腹側の細胞；

(d) Pax-7を発現している神経管背側の細胞。

（37）神経塩の細胞が、AP-2（Activator Protein 2）を発現している細胞である、上記（32）に記載の方法。

（38）骨形成因子（Bone Morphogenetic Protein 4）存在下で培養することを特徴とする、上記（27）～（37）のいずれか1項に記載の方法。

（39）ソニックヘッジホック（Sonic hedgehog）存在下で培養することを特徴とする、上記（27）～（38）のいずれか1項に記載の方法。

（40）非凝集状態が、エンブリオイドボディを介さない状態である、上記（27）～（39）のいずれか1項に記載の方法。

（41）無血清培養の条件下で培養する工程を含むことを特徴とする、上記（27）～（40）のいずれか1項に記載の方法。
（42） 培養工程にレチノイン酸を用いないことを特徴とする、上記（27）～（41）のいずれか1項に記載の方法。
（43） 胚性幹細胞が、以下の（a）、（b）および（c）からなる群から選ばれる細胞である、上記（27）～（42）のいずれか1項に記載の方法。
（a）着床以前の初期胚を培養することによって樹立した胚性幹細胞；
（b）体細胞の核を核移植することによって作製された早期胚を培養することによって樹立した胚性幹細胞；
（c）（a）または（b）の胚性幹細胞の染色体上の遺伝子を遺伝子工学の手法を用いて変更した胚性幹細胞。
（44） 胚性幹細胞を外胚葉細胞または外胚葉由来の細胞に分化誘導する効率が、5％以上である上記（1）～（8）および（27）～（43）のいずれか1項に記載の方法。
（45） 実質的に中胚葉系細胞の分化誘導を伴わない、上記（27）～（44）のいずれか1項に記載の方法。
（46） 上記（27）～（45）のいずれか1項に記載の方法を用いることによって誘導される、外胚葉細胞または外胚葉由来の細胞。
（47） 上記（46）に記載の細胞を、抗癌剤を含む培地中で培養する工程を含むことを特徴とする、胚性幹細胞から分化誘導された細胞の純度を高める方法。
（48） 抗癌剤が、マイトマイシンC、5-フルオロウラシル、アドリアマイシン、メトトレキセート及びアラCからなる群から選ばれる抗癌剤である、上記（47）に記載の方法。
（49） 上記（47）または（48）に記載の方法を用いて得られる細胞。
（50） 上記（46）または（49）に記載の細胞を含む医薬。
（51） 以下の（a）～（o）からなる群から選ばれる少なくとも1つを有効成分として含有してなる医薬。
（a）配列番号7で表されるアミノ酸配列からなるポリペプチド；
(b) 配列番号7で表されるアミノ酸配列において1以上のアミノ酸残基が欠失、置換、挿入もしくは付加されたアミノ酸配列からなるポリペプチド；
(c) 配列番号7で表されるアミノ酸配列と60％以上の同様性を有するアミノ酸配列からなるポリペプチド；
(d) 配列番号7で表されるアミノ酸配列をコードするDNAを含有する組換えベクター；
(e) 配列番号9で表される塩基配列を有するDNAを含有する組換えベクター；
(f) 配列番号7で表されるアミノ酸配列をコードするDNAを含有する組換えベクターをストローマ細胞に導入して得られる形質転換体；
(g) 配列番号9で表される塩基配列を有するDNAを含有する組換えベクターをストローマ細胞に導入して得られる形質転換体；
(h) 配列番号8で表されるアミノ酸配列からなるポリペプチド；
(i) 配列番号8で表されるアミノ酸配列において1以上のアミノ酸残基が欠失、置換、挿入もしくは付加されたアミノ酸配列からなるポリペプチド；
(j) 配列番号8で表されるアミノ酸配列と60％以上の同様性を有するアミノ酸配列からなるポリペプチド；
(k) 配列番号8で表されるアミノ酸配列をコードするDNAを含有する組換えベクター；
(l) 配列番号10で表される塩基配列を有するDNAを含有する組換えベクター；
(m) 配列番号7で表されるアミノ酸配列をコードするDNAを含有する組換えベクターをストローマ細胞に導入して得られる形質転換体；
(n) 配列番号10で表される塩基配列を有するDNAを含有する組換えベクターをストローマ細胞に導入して得られる形質転換体；
(o) Wntアンタゴニストを有効成分として含有してなる胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。
（52）外胚葉由来の細胞の障害に基づく疾患の診断、予防およびまたは治療のための医薬である、上記（50）または（51）に記載の医薬。
（53）外胚葉由来の細胞の障害に基づく疾患が、神経系細胞または表皮系細胞の障害に基づく疾患である、上記（52）に記載の医薬。
（54）神経系細胞の障害に基づく疾患が、アルツハイマー病、ハンチントン舞踏病、パーキンソン病、虚血性脳疾患、てんかん、脳外傷、脊椎損傷、運動神経疾患、神経変性疾患、網膜色素変性症、内耳性難聴、多発性硬化症、筋萎縮性側索硬化症、または神経毒物の障害に起因する疾患であり、表皮系細胞の障害に基づく疾患が火傷、外傷、創傷治癒、床触れ、または乾せんである、上記（53）に記載の医薬。
（55）被験物質存在下及び該被験物質非存在下で、上記（27）～（45）のいずれか1項に記載の方法を行い、該被験物質存在下及び該被験物質非存在下での胚性幹細胞から外胚葉細胞または外胚葉由来の細胞までの分化過程を比較することを特徴とする、胚性幹細胞から外胚葉細胞または外胚葉由来の細胞までの分化調節に関連する物質の評価方法。
（56）被験物質存在下及び該被験物質非存在下で、上記（27）～（45）のいずれか1項に記載の方法を行い、該被験物質存在下及び該被験物質非存在下での胚性幹細胞から外胚葉細胞または外胚葉由来の細胞までの分化過程を比較することを特徴とする、胚性幹細胞から外胚葉細胞または外胚葉由来の細胞までの分化調節に関連する物質のスクリーニング方法。
（57）被験物質存在下及び該被験物質非存在下で、上記（46）に記載の細胞を培養し、該被験物質存在下及び該被験物質非存在下での外胚葉細胞または外胚葉由来の細胞の機能を比較することを特徴とする、外胚葉細胞または外胚葉由来の細胞の機能調節に関連する物質の評価方法。
（58）被験物質存在下及び該被験物質非存在下で、上記（46）に記載の細胞を培養し、該被験物質存在下及び該被験物質非存在下での外胚葉細胞ま
たは外胚葉由来の細胞の機能を比較することを特徴とする、外胚葉細胞または
外胚葉由来の細胞の機能調節に関連する物質のスクリーニング方法。

以下、本発明の実施態様および実施方法について詳細に説明する。
1. 本発明の分化誘導方法
 (1) 適用動物
 本発明に係わる適用動物としては、脊椎動物、中でも温血動物、さらにはマ
ウス、ラット、モルモット、ハムスター、ウサギ、ネコ、イヌ、ヒツジ、ブタ、
ウシ、ヤギ、サル、ヒト等の哺乳動物が挙げられる。

 (2) 胚性幹細胞
 胚性幹細胞とは、インビトロにおいて培養することが可能で、かつ、生体を
構成するすべての細胞に分化しうる多分化能を有する細胞を包含する。その例
としては、(a) 着床前の初期胚を培養することによって樹立した哺乳動物等
の胚性幹細胞が挙げられ、具体的には、初期胚を構成する内部細胞塊より樹立
されたES細胞、始原生殖細胞から樹立されたEG細胞、着床前の初期胚の多分
化能を有する細胞集団（例えば、原始外胚葉）から単離した細胞、あるいはそ
の細胞を培養することによって得られる細胞が挙げられる。悪性奇形腫より樹
立されたEC細胞もES細胞と同様の性質を示すことが知られていることから、着
床前の初期胚を培養することによって樹立した哺乳動物等の胚性幹細胞に広
義に含まれる。

 本発明における胚性幹細胞としては、上記 (a) の胚性幹細胞、(b) 体細胞
の核を核移植することによって作製された初期胚を培養することによって樹立
した胚性幹細胞、および (c) (a) あるいは (b) の胚性幹細胞の染色体上の遺
伝子を遺伝子工学の手法を用いて改変した胚性幹細胞を包含する。
(3) 外胚葉細胞および外胚葉由来の細胞

本発明の分化誘導法によって、上述のような胚性幹細胞を非凝集状態で培養することにより、胚性幹細胞を外胚葉細胞あるいは外胚葉由来の細胞に分化誘導することができる。

本発明において、外胚葉細胞とは、神経系細胞や表皮系細胞に分化しうる能力を有した細胞から構成される胚葉細胞を包含する。その具体例としては、原始外胚葉から分化した胎児の外胚葉細胞があげられる。

本発明において、外胚葉由来の細胞とは、外胚葉細胞から分化した細胞で、かつ生体を構成する機能細胞を包含する。その具体例としては、神経系細胞や表皮系細胞があげられる。すなわち、本発明の方法によって、胚性幹細胞を神経系細胞または表皮系細胞へ誘導することができる。

(a) 神経系細胞

神経系細胞としては、神経幹細胞、神経細胞、神経管の細胞、神経堤の細胞などがあげられる。

(i) 神経細胞

神経細胞とは、他の神経細胞あるいは刺激受容細胞からの刺激を受け他の神経細胞、筋あるいは腺細胞に刺激を伝える機能を有する細胞を意味する。

神経細胞は、神経細胞が産生する神経伝達物質の違いにより分類されており、具体的には、神経伝達物質、神経伝達物質の合成酵素などの違いで分類されている。神経伝達物質としては、ペプチド性、非ペプチド性のいずれも含まれる。非ペプチド性の神経伝達物質としては、ドーパミン、ノルアドレナリン、アドレナリン、セロトニン、アセチルコリン、γアミノ酪酸、グルタミン酸があげられる。ドーパミン、ノルアドレナリン、アドレナリンの3種類をカテコールアミンと称す。
これらの神経伝達物質で分類される神経細胞としては、例えば、ドーパミン作動性神経細胞、アセチルコリン作動性神経細胞、γアミノ酪酸作動性神経細胞、セロトニン作動性神経細胞、ノルアドレナリン作動性神経細胞、アドレナリン作動性神経細胞、グルタミン酸作動性神経細胞などがあげられる。ドーパミン作動性神経細胞、ノルアドレナリン作動性神経細胞、アドレナリン作動性神経細胞を総称してカテーテールアミン作動性神経細胞と呼ぶ。

カテーテールアミン作動性神経細胞は共通してチロシン水酸化酵素を発現し、ノルアドレナリン作動性神経細胞とアドレナリン作動性神経細胞では共通してドーパミン-β-ヒドロキシラーゼを発現する。また、ノルアドレナリン作動性神経細胞ではフェニルエタノールアミン N-メチルトランスフェラーゼを発現し、セロトニン作動性神経細胞ではトリプトファンヒドロキシラーゼを発現し、アセチルコリン作動性神経細胞ではコリンアセチルトランスフェラーゼを発現し、γアミノ酪酸作動性神経細胞ではグルタミン酸デカルボキシラーゼをそれぞれ特異的に発現している。したがって、神経細胞を認識する方法としては、上記酵素を認識する抗体を用いた識別方法、上記酵素をコードするmRNAの発現を検出する方法などがあげられる。

ペプチド性の神経伝達物質としては、副腎皮質刺激ホルモン（Corticotropin (ACTH)）、ααγαβ－リポトロピン（Lipotropin）、α－メラニン細胞刺激ホルモン（MSH）、α－エンドルフィン（Endorphin）、β－エンドルフィン、γ－エンドルフィン、メチオニンエンドケファリン（Met－Enkephalin）、ロイシンエンドケファリン（Leu－Enkephalin）、α－ネオエンドルフィン（Neoendorphin）、β－ネオエンドルフィン、ダイノルフィンA（Dynorphin A）、ダイノルフィンB（Dynorphin B）、ロイモルフィン（Leumorphin）、バソプレッシン（Vasopressin）、ニューロフィシン（Neurophysin）、オキシトシン（Oxytocin）、ニューロフィシンI（Neurophysin I）、サブスタンスP（Substance P）、ニューロキニンA（Neurokinin A）、神経ペプチドK（Neuropeptide K）、神経ペプチド-γ（Neuropeptide-γ）、ニューロキニンB
(Neurokinin B)、ボンベシン (Bombesin)、ガストリン放出ペプチド (Gastrin-releasing peptide)、セクレチン (Secretin)、モチリン (Motilin)、グルカゴン (Glucagon)、パゾアクチブインテスティナルペプチド (Vasoactive intestinal peptide)、成長ホルモン放出因子 (Growth hormone-releasing factor)、インスリン (Insulin)、インスリン様増殖因子 (Insulin-like growth factors)、ソマトスタチン (Somatostain)、ガストリン (Gastrin)、コレシストキニン (Cholecystokin)、神経ペプチド Y (Neuropeptide Y)、腺体ポリペプチド (Pancreatic polypeptide)、ペプチド YY (Peptide YY)、副腎皮質刺激ホルモン放出因子 (Corticotropin-releasing factor)、カルシトニン (Calcitonin)、カルシトニン遺伝子関連ペプチド (Calcitonin gene-related peptide)、アングiotensin (Angiotensin)、ブランジキニン (Bradykinin)、甲状腺刺激ホルモン放出ホルモン (Thyrotropin-releasing hormone)、ニュートレレンシン (Neurotensin)、ガラニン (Galanin)、卵巣形成ホルモン放出ホルモン (Luteinizing hormone-releasing hormone) があげられる。これらのペプチド性神経伝達物質を産生する神経細胞は、神経伝達物質あるいは神経伝達物質前駆ペプチドを認識する抗体、神経伝達物質あるいは神経伝達物質前駆ペプチドをコードするmRNAの発現を検出することで識別することができる。

また、運動神経は、その神経終末よりアセチルコリンを分泌することで骨格筋に情報を伝えており、アセチルコリン作動性神経細胞に分類される。運動神経のマーカー蛋白質としては、islet 1 (O. Karlssonら、Nature, 344, 879 (1990)) があげられる。

本発明の分化誘導法は、神経細胞、好ましくはドーパミン作動性神経細胞、アセチルコリン作動性神経細胞、γアミノ酪酸作動性神経細胞、セロトニン作動性神経細胞への分化誘導に好適に用いられる。

特に、本発明の方法により胚性幹細胞から誘導されたドーパミン作動性神経細胞とは、前述したようにカテコールアミン作動性神経細胞に共通して発現が
観察されるチロシン水酸化酵素を発現しているが、ノルアドレナリン作動性神経細胞とアドレナリン作動性神経細胞に共通して発現が観察されるドーパミン-
β−ヒドロキシラーゼを発現しない細胞として特徴づかれ、移植により神経変性疾患、例えばパーキンソン病の症状を改善する能力を有する。

(ii) 神経幹細胞

神経幹細胞とは、神経細胞（neuron）、アストロサイト（astrocyte）およびオリゴデンドロサイト（oligodendrocyte）に分化しうる能力を有し、かつ自己複製能力を有する細胞として定義される。胚性幹細胞のようにすべての細胞に分化する多分化能を有していないが、脳内において神経細胞、アストロサイト、オリゴデンドロサイトを二途に供給する機能を有している。

したがって、神経幹細胞であることを確認する方法としては、実際に脳に移植してその分化能を確認する方法、インビトロで神経幹細胞を神経細胞、アストロサイト、オリゴデンドロサイトに分化誘導して確認する方法などがあげられる（Mol. Cell. Neuro Science, 8, 389 (1997); Science, 283, 534 (1999))。

また、このような機能を有した神経幹細胞は、神経前駆細胞での発現が確認されている細胞骨格蛋白質ネステシンを認識する抗体ネステシン抗体で染色可能である（R. Mckay、Science, 276, 66 (1997))。したがってネステシン抗体で染色することにより神経幹細胞を確認することもできる。

(iii) 神経管および神経帯の細胞

脊索動物の初期発生においては、原始外胚葉（primitive ectoderm）層に原条（primitive streak）が現れ神経誘導（neural induction）が開始される。神経誘導とは、初期胚の背側に位置する外胚葉が後方に内側部分に位置するオーガナイザー領域よりシグナルを受けて神経性外胚葉へと分化する過程を意味する。この神経誘導によって形成された神経性外胚葉は非神経性外胚葉、
すなわち表皮外胚葉から独立して神経板（neural tube）となり、これがやがて腹側に陥入して神経管（neural tube）を形成する。神経板と表皮外胚葉との間の部分に位置する外胚葉部分は陥入の際、神経溝（neural crest）を形成する。神経管を構成する一層の神経上皮組織から中樞神経系のすべての細胞群が発生する。すなわち、神経管の前方部は拡大して脳の原基となる脳胞（brain vesicle）を形成し、後方部は管のままで脳幹に分化していく。神経溝は中樞神経そのものの分化には直接関与せず、神経溝を構成する細胞は移動して種々の組織、例えば脳・脊髄神経節、交感神経およびその神経節、副腎髄質、あるいはメラニン色素細胞などに分化する。

神経管の細胞とは、上述の発生過程における神経管を構成する細胞を意味する。

神経溝の細胞とは、上述の発生過程における神経溝を構成する細胞を意味する。

本発明の分化誘導法は、神経管の細胞、神経溝の細胞への分化誘導に好適に用いられる。

本発明の方法により胚性幹細胞から誘導された神経管の細胞は、神経管の腹側化因子であるソニックヘッジホック（shh）に反応し腹側に位置する細胞に分化し、かつ神経管の背側因子である骨形成因子4（Bone Morphogenetic Protein 4、以下「BMP4」と略す）に反応し背側に位置する細胞に分化する能力を有する、背腹軸が決定される前の段階の神経管の細胞として特徴づけられる細胞を包含する。また、該細胞が分化し、神経管の最も腹側の底板に位置するマーカーHNF-3β（Hepatocyte Nuclear Factor-3β、以下「HNF-3β」と略す）を発現している神経管腹側の細胞、神経管の腹側からHNF-3βについて2番目に存在するマーカーNkx2.2を発現している神経管腹側の細胞、およびPax-7を発現している神経管背側の細胞も、本発明の方法により胚性幹細胞から誘導された神経管の細胞として含まれる。
本発明の方法により胚性幹細胞から誘導された神経堤の細胞は、AP-2（Activator Protein 2、以下「AP-2」と略す）を発現している細胞として特徴づけられる細胞を包含する。

HNF-3βは、生後の肝臓、小腸、肺、脾臓ラングルハンス島で発現していることが知られているが、発生過程では、前腸形成期以降の腸上皮や肝原基、または、原腸形成期を通じて、原口背唇部、前脊索板、脊索、神経管腹側中央部などのオーガナイザー領域などで発現しており、発生時には神経管や体節の体軸パターン形成のためのシグナルをコントロールする重要な因子であることが知られている（C. Vaisseら、Diabetes, 46, 1364 (1997); M. Levinson-Dushnikら、Mol. Cell. Biol., 17, 3817 (1997)）。

Nkx2.2は、発生過程において、神経管の腹側に発現している因子であり、これら細胞の分化や機能に重要な役割を担う因子であることが知られている（L. Susselら、Development, 125, 2213, (1998); J. Briscoeら、Nature, 398, 622, (1999)）。

AP-2は、胎生8.5日から12.5日のマウス胚で、神経堤細胞とそれに由来する主要な組織である頭部の知覚神経節、脊髄神経節及び顔面の間葉に発現し、こ

これら神経管および神経系の細胞は、そのマーカー遺伝子およびこれら細胞の発生の方向性に影響を与える因子が知られており、マーカー遺伝子のmRNAの検出、発現マーカー遺伝子産物そのものの検出、あるいは該因子に対する応答を調べることで細胞を特定することができる。

(iv) 網膜色素細胞

眼球の最も内側に位置する感覚神経上皮組織である網膜は、ともに眼原基（眼胞）から発生する神経層と色素上皮からなる。神経層は2種類の視細胞（かん体及び錐体）、神経細胞群およびそれらを支持するグリア細胞によって構成される。視細胞の基部はアセチルコリンエステラーゼに富み神経細胞と機能的なシナプスを形成している。視細胞外節部の膜構造に含まれる視色素に捕らえられた光のエネルギーは光科学的に変換され、視神経を経て脳に伝えられ、それによって視床の細胞が興奮し視覚が成立する。色素上皮は、通常メラニン色素粒を多量に含む色素上皮細胞からなり、多数の細胞質突起によって視細胞外節部に密着した暗膜を形つくっている。色素上皮細胞は、光の量に応じてその細胞質突起の中にメラニン色素粒を送り込み、視細胞に与えられる光量を調節するのみならず、食作用によって視細胞外節部の周期的更新にも関与する。

網膜色素細胞とは、上述の眼球の構造において、色素顆粒を含む網膜最外層に位置する細胞、すなわち色素上皮細胞を意味する。

色素上皮細胞は、そのマーカー遺伝子およびこの細胞の発生の方向性に影響を与える因子が知られており、マーカー遺伝子のmRNAの検出、発現マーカー遺伝子産物そのものの検出、あるいは該因子に対する応答を調べることで細胞を特定できる。
(b) 表皮系細胞

表皮系細胞としては、表皮細胞などがあげられる。

表皮系細胞、特に表皮細胞の識別は、上記各ケラチンに対する抗体や非神経性外胚葉細胞のマーカーであるEカドヘリオンに対する抗体で検出したり、またはこれらケラチンのタンパク質のmRNAを検出することで行うことができる。

本発明の方法により、好適に、高い細胞分裂能を有する基底層部の表皮細胞へ分化誘導することができる。
(4) ストローマ細胞

本発明で用いるストローマ細胞としては、SDIA活性を有するストローマ細胞であればいかなるものでもよい。ストローマ細胞がSDIA活性を有しているか否かは、Kawasakiらの報告（H. Kawasakiら、Neuron, 28, 31 (2000)）にしたがって判定することができる。

具体的には、
(a) 胎児初代培養纖維芽細胞（マニピュレイティング・ザ・マウス・エンブリオ・ア・ラボラトリー・マニュアル；ジーン・ターゲッティング；ES細胞を用いた変異マウスの作製）
(c) マウス胎児由来NIH/3T3細胞（J. L. Jainchillら、J. Virol, 4, 549 (1969)）
(d) マクロファージコロニー刺激因子（M-CSF）欠損マウス頭蓋冠由来OP9細胞（T. Nakanoら、Science, 272, 722 (1996)）、
(f) 既に多分化能を有していることが証明されている胚性幹細胞（マニピュレイティング・ザ・マウス・エンブリオ・ア・ラボラトリー・マニュアル）から分化誘導して得られるストローマ細胞、あるいは
(g) 各種ストローマ細胞への分化能を有していることが示されている骨髄間葉系幹細胞（Science, 284, 143 (1999)）から分化誘導して得られるストローマ細胞をあげることができる。

上記の中でも、好ましくは上記(c)、(d)、(e)のストローマ細胞であり、より好ましくは(e)のストローマ細胞である。

また、参考例１５（5）で得られるハイブリドーマFERM BP-7573が産生するモノクローナル抗体で識別されるストローマ細胞も好ましく用いられる。参考

(5) ポリアニオン化合物

本発明で用いるポリアニオン化合物としては、1種または2種以上の単位化合物分子が重合または緒合反応によって結合した化合物であって、構成する単位化合物分子が陰性電荷を有する重合度2以上の水溶性の化合物であればいかなるものでもよい。その例としては、単位化合物分子が1種類の単量体からなるホモポリマー (homopolymer) や、2種類以上からなるコポリマー (copolymer) があげられる。

陰性電荷を有するとは、ポリアニオン化合物が溶解している液中において、ポリアニオン化合物分子が全体として陰性荷電を帯びていることを意味する。

コポリマーとしては、ムコ多糖があげられる。

ムコ多糖とは、ヘキソサミンとウロン酸よりなる2糖の繰り返し単位からなる長鎖多糖であり、硫酸基を有するものを硫酸化ムコ多糖、硫酸基を有しないものを非硫酸化ムコ多糖という。

硫酸化ムコ多糖としては、コンドロイチン4-硫酸、コンドロイチン5-硫酸、コンドロイチン6-硫酸、デルマタン硫酸、ヘパラン硫酸、ヘパリン、ケラタン硫酸I及びケラタン硫酸IIなどがあげられる。

非硫酸化ムコ多糖としては、ヒアルロン酸、コンドロイチンなどがあげられる。

ホモポリマーとしては、デキストラン硫酸、カルボキシメチルデキストラン、硫酸化ポリビニール、ポリビニルアルファイト、スルホン化ポリスチレン、ポ
リアクリル酸、カルボキシメチルセルロース、セルロース硫酸、ポリグルタミン酸、ポリマレイン酸、ポリメタクリル酸などがあげられる。

(6) 基礎培地及び平衡塩溶液

本発明において、細胞培養に用いられる基礎培地及び平衡塩溶液とは、動物細胞の培養に用いられる通常の基礎培地及び平衡塩溶液であればいかなる培地及び平衡塩溶液も包含される。

平衡塩溶液としては、ダルベッコリン酸バッファー（Dulbecco’s Phospahte-Buffered Saline；D-PBS）、リン酸バッファー（Phospahte-Buffered Saline；PBS）、ハンクス平衡塩（Hanks’ Balanced Salt Solutions；HBSS）、ギー平衡塩（Gey’s Balanced Salt Solutions；GBSS）、アール平衡塩（Earle’s Balanced Salt Solutions；EBSS）など、動物細胞の培養に用いられる平衡塩溶液であればいずれも用いることができる。

(7) 非凝集状態での胚性幹細胞の培養

本発明の分化誘導法としては、具体的には、単一細胞状態の胚性幹細胞を調製する工程、本発明のSDIA活性を有する溶液を用いて、該胚性幹細胞を非凝集状態で培養する工程を含む方法が考えられる。

ここで、本発明のSDIA活性を有する溶液を用いるとは、後述の9（1）に記載の本発明の分化誘導剤を含む培地あるいは後述の1（11）に記載の分化誘導剤を固定化した培養器を用いることを包含する。

胚性幹細胞を非凝集状態で培養するとは、細胞同士の接着を解除した単一細胞状態（single cell）で培養を開始し、継続して培養することである。単一細胞状態とは、酵素消化等を施すことで細胞同士の接着がない個々の細胞がパラパラになった状態をいう。

この培養では、播種した細胞が凝集せず、エンブリオイドボディを形成しない。このような単一細胞状態で胚性幹細胞の培養を開始し、それを継続して培養するには、胚性幹細胞の培養において通常の胚性幹細胞の紛代に用いられる細胞密度よりも低い細胞密度で播種し培養することで行うことができる。即ち、酵素消化等の処理を胚性幹細胞に施し、培地を用いて単一細胞状態の細胞懸濁液を調製し、その細胞懸濁液を、培養系にお互いの細胞が接触しない状態で存在できる程度に培養する。このような培養は、細胞を積極的に凝集させ擬似胚状態を再現することで分化誘導を引き起こそうとするエンブリオイドボディを用いた従来の培養方法とは根本的に考え方を異にするものである。ここで、培
養系にお互いの細胞が接触しない状態で存在できる程度の播種用胚性幹細胞の細胞密度としては、好ましくは数十〜数百細胞/cm²、より好ましくは数十〜数百細胞/cm²であり、さらに好ましくは30〜300細胞/cm²である。

単一細胞状態の胚性幹細胞を取得する方法としては、組織細胞培養で用いられている、公知の酵素消化の方法があげられる。具体的には、前日培地交換を行い、数十%〜ほぼコンフルエンス状態にまで増殖した胚性幹細胞を培養している培養皿から培地を除いた後、リン酸緩衝生理食塩水溶液（以下、「PBS」略す）を用いて数回、好ましくは2〜3回洗浄する。洗浄後、胚性幹細胞の入った培養皿に適当な酵素消化液（例えば、1mM EDTAおよび0.25%トリプシンを含むPBS）を加え、37℃で数十分間、好ましくは5〜20分間培養する。酵素反応後、後述の2で調製した培地に懸濁し、遠心操作（例えば、4℃、200×gで5分間）を行ない、胚性幹細胞を再び培地に懸濁することにより、単一細胞状態の胚性幹細胞を回収することができる。

本発明の、胚性幹細胞から外胚葉および外胚葉由来の細胞を分化誘導する方法としては、用いる胚性幹細胞の分化誘導に適した培養法であればいずれも用いることができる。例えば、単層培養法、マイクロキャリア培養法、還流培養法、軟性培養法等を挙げることができる。具体的には、単一細胞状態とした胚性幹細胞を後述の2で調製した培地中で培養する方法、単一細胞状態の胚性幹細胞を、あらかじめ後述の4で調製したストラーマ細胞と後述の1（11）で調製した本発明の分化誘導剤を固定化した培養器を用い非凝集状態で数日間共培養する方法などが挙げられる。

本発明の、胚性幹細胞を非凝集状態で培養する工程は、無血清培養条件下で行われることが好ましいが、無血清培養条件下で行われた後に、血清を添加した培養条件で培養する工程（例えば、後述の2で記載した基礎培地に、好ましくは数十%、より好ましくは5〜20%の哺乳類血清を添加した培地を用い、37℃で数％、好ましくは5%の二酸化炭素を通気したCO₂インキュベーターにて培養する工程）を行うこともできる。特に表皮系細胞に分化誘導させる場合に
は、この血清を添加した培養条件で培養する工程を含むことにより、分化誘導率をより高くすることができる。

上記方法により、本発明の外胚葉細胞あるいは外胚葉由来の細胞を得ることができる。本発明の方法により、胚性幹細胞は外胚葉細胞および外胚葉由来の細胞へ分化誘導され、本発明の分化誘導法に供した胚性幹細胞の5％以上、好ましくは15％以上、より好ましくは40％以上、さらに好ましくは80％以上を外胚葉系の細胞（外胚葉細胞あるいは外胚葉由来の細胞）へ分化誘導することができる。

外胚葉細胞あるいは外胚葉由来の細胞を神経系細胞に分化誘導するには、上述の工程を含む方法で適宜培地交換を行ないながら培養を継続することで行うことができる。

外胚葉細胞または外胚葉由来の細胞を表皮系細胞に分化誘導するには、BMP4を上述の工程を含む培養系に添加することが好ましい。

外胚葉細胞または外胚葉由来の細胞から神経管または神経溝の細胞に分化誘導するには、BMP4を含まない培地を用いて上述の工程を行い、胚性幹細胞が神経性外胚葉へ分化を開始した後（例えば、培養開始から1〜14日、好ましくは2〜8日、より好ましくは4〜6日後）、shhやBMP4を含む培地を用いて適宜培地交換を行いながら培養を継続することで行うことができる。

(8) ストローマ細胞存在下での培養

SDIA活性を有する溶液を用い、胚性幹細胞を非凝集状態で培養する、本発明の分化誘導法において、胚性幹細胞はストローマ細胞共存下で培養されてもよいし、ストローマ細胞が除去されたSDIA活性を有する溶液を用いて培養されてもよい。

共存してもよいストローマ細胞としては、上記 (4) に記載のストローマ細胞があげられる。
本発明の分化誘導法において、ストローマ細胞と胚性幹細胞の培養系での比率は、胚性幹細胞を外胚葉細胞あるいは外胚葉由来の細胞に分化誘導することが可能である比率であればいかなる比率でもよいが、10^4～1対1（ストローマ細胞数対胚性幹細胞数）、好ましくは10^2～1対1、より好ましくは10^2～10対1である。

ここで、胚性幹細胞とストローマ細胞との共培養としては、胚性幹細胞とストローマ細胞が物理的に接触している場合や、両細胞が同じ培養系に存在するが物質の行き来が可能な隔壁により隔てられ細胞自体の物理的接触ができない場合も含まれる。

胚性幹細胞とストローマ細胞が同じ培養系に存在するが物質の行き来が可能な隔壁により隔てられ細胞自体の物理的接触ができない場合とは、例えば、通常の細胞培養に用いられるフィルターを用いて両細胞を隔てて培養する場合があげられる。フィルターの孔径としては、好ましくは0.01～数十μm、より好ましくは0.02～12μmが好ましい。このようなフィルターとしては、具体的には、メンブレンカルチャーインサート（岩城硝子社製）、NuncTCインサート（Nunc社製）、CO-CULTUREシャーレ（グライナー社製）、セルカルチャーインサート（ファルコン社製）、ケモタキシスチャンバー（Neuro Probe Inc.社製）等をあげることができる。胚性幹細胞とストローマ細胞のどちらをフィルター上に培養しても構わないが、ストローマ細胞をフィルター上で培養する方が好ましい。

胚性幹細胞とストローマ細胞を共培養し、胚性幹細胞から外胚葉細胞および神経系細胞を分化誘導する方法としては、具体的には、回収した胚性幹細胞を後述の2で調製した培地（例えば、Glasgow MEM培地中に10%のKNOCKOUT™ SR（GIBCOBRL社製）、2mMグルタミン、50U/mlペニシリン、50U/mlストレプトマイシン、100μM MEM Non-Essential Amino Acids溶液、1mMビルピン酸および100μM 2-メルカプトエタノールを添加した培地）に懸濁し、後述の4で調製したストローマ細胞が培養されている培養器（例えば、細胞培養用プラスコ）に、数十〜数百細胞/cm²、好ましくは100細胞/cm²の細胞密度で播種し、5〜20日間、
好ましくは7〜10日間37℃で数％、好ましくは5％の二酸化炭素を通気したCO₂インキュベーターにて培養する方法をあげることができる。

胚性幹細胞とストローマ細胞とを共培養し、胚性幹細胞から外胚葉細胞および表皮系細胞を分化誘導する方法としては、具体的には、回収した胚性幹細胞を2で調製した培地（例えば、Glasgow MEM 培地に10％のKNOCKOUT™ SR（GIBCOBRL社製）、2mMグルタミン、50U/mlペニシリン、50U/mlストレプトマイシン、100μM MEM Non-Essential Amino Acids溶液、1mMビルピン酸、100μM 2-メルカプトエタノールおよび0.1〜100ng/ml、好ましくは1〜50ng/mlの濃度のBMP4を添加した培地）に懸濁し、後述の4で調製したストローマ細胞が培養されている培養器（例えば、細胞培養用プラスコ）に、数十〜数百細胞/cm²、好ましくは100細胞/cm²の細胞密度で播種し、5〜20日間、好ましくは7〜10日間37℃で数％、好ましくは5％の二酸化炭素を通気したCO₂インキュベーターにて培養する方法をあげることができる。

(9) レチノイン酸を用いない培養

本発明の分化誘導法では、胚性幹細胞を非凝集状態で培養する工程において、レチノイン酸を用いず予培養することが好ましい。

ここで、「レチノイン酸を用いない予培養」とは、非生理的な濃度のレチノイン酸を用いない予培養することである。非生理的な濃度とは、生体に生理的

に存在する濃度の10倍以上の濃度を意味する。具体的には、通常ヒトの血中には約10^{-4}mol/lの濃度のレチノイン酸が存在することが知られていることから

（生化学辞典第2版、東京化学同人（1992））、10^{-7}〜10^{-4}mol/lの濃度範囲が非生理的な濃度である。レチノイン酸は発生分化の際に形態形成に影響を及ぼす形

態形成物質（モルフォゲン）として作用を有しており、また細胞種によっては

毒性なども強く、非生理的な濃度のレチノイン酸を用いた培養系を医療へ応用

する際には二次的な副作用が懸念されている。従って、レチノイン酸を用いない

で培養することは、上述のレチノイン酸使用にともなうリスクを回避するこ

とができるため有用である。

(10) 中胚葉系細胞の分化が実質的に誘導されない培養

本発明の分化誘導法において、培養系に中胚葉系細胞の分化が実質的に誘導

されないことが好ましい。

ここで、「中胚葉系細胞の分化が実質的に誘導されない」とは、培養系に分

化してくる中胚葉系細胞の割合が、培養系全体の細胞数に対して5%以下であ

ることを意味し、好ましくは2%以下である。

ここで、中胚葉系細胞とは、筋肉系、結合組織、骨格系、循環器系、泌尿器

系、生殖系などの器官や組織を構成する細胞を意味する。

中胚葉系細胞を識別するには、中胚葉系細胞を特異的に認識する抗体で検出

する方法、中胚葉系細胞で特異的に発現しているタンパク質のmRNAを検出する

方法、そのタンパク質を特異的に認識する抗体を用いて検出する方法等を用い

て行うことができる。
(11) 培養器

本発明で使用できる培養器としては、胚性幹細胞を培養できるものであればいかなる培養器でも用いることができるが、好ましくは細胞培養用に用いられる培養器が望ましい。細胞培養用の培養器としては、例えば、プラスコ、組織培養用プラスコ、デッシュ、ベトリデッシュ、組織培養用デッシュ、コンツアーデッシュ、パーマノックスデッシュ、マルチデッシュ、マイクロプレート、マイクロウェルプレート、マルチプレート、マルチウェルプレート、セパレートストリップウェル、テラサキプレート、組織培養用チャンバースライド、シャーレ、細胞培養用シャーレ、組織培養用チューブ、トレイ、細胞培養用トレイ、セルファクトリー、培養パック、テクノポット、ローラーポトル、スピナー、フォロファイバー等があげられる。培養器と細胞との接着性を制御するために、培養器の細胞と接触する側の表面を人工的に処理を施すこともできる。培養器の表面を人工的に処理する例としては、コラーゲンコート、ゼラチンコート、ポリ-レジンコート、フィブロネクチンコート、ラミンコート、プロテオグリカンコート、グリコプロテインコート、マトリゲルコート、シリコンコート等があげられる。また、プライマリア（Falcon社製）のように負の電荷を持つように処理することもできる。

2. 培地の調製

本発明の、胚性幹細胞から外胚葉細胞および外胚葉由来の細胞を分化誘導する方法で用いる培地とは、動物細胞の培養に用いられる培地を基礎培地として調製することができる。

基礎培地としては、上記1（6）に記載の培地があげられ、動物細胞の培養に用いることのできる培地であればいずれも用いることができる。

7634（1981））または無蛋白培地（例えば、CD-CHO（GIBCOBRL社製）、PFHM-II（GIBCOBRL社製）、UltraDOMA-PF™（BioWhittaker社製）など）があげられる。

これら基礎培地に、後述の9（1）に記載の本発明の分化誘導剤を数〜数十％、好ましくは2〜40％、より好ましくは2〜20％添加することで、胚性幹細胞を外胚葉細胞または外胚葉由来の細胞に分化誘導する方法で用いる培地を調整することができる。その好適な例としては、Dulbecco MEM培地に10％のKNOCKOUT™ SR（GIBCOBRL社製）、2mMグルタミン、50U/mlペンシリン、50U/mlストレプトマイシン、1mM 2-メルカプトエタノールおよび20％の後述の9（1）に記載の分化誘導剤を添加した培地が挙げられる。

本発明の分化誘導法では、上述のSDIA活性を有する分化誘導剤を添加した培地が好ましく用いられるが、胚性幹細胞を本発明の分化誘導剤を固定化した培養器を用いて培養する場合には、必ずしも上述した本発明の分化誘導剤を含む培地を用いる必要はなく、本発明の分化誘導剤が含まれていない以外は同一の成分からなる培地を用いることができる。

3. 胚性幹細胞の作製法

上記1（2）で述べた（a）、（b）および（c）の胚性幹細胞の作製法を具体的に説明する。

（1）着床以前の初期胚を培養することによって樹立した胚性幹細胞の作製

着床以前の初期胚を、文献（マニピュレイティング・ザ・マウス・エンブリオ・ア・ラボラトリー・マニュアル）に記載された方法に従って培養することで、該初期胚より胚性幹細胞を調製することができる。

得られた胚性幹細胞の培養方法としては、文献（マニピュレイティング・ザ・マウス・エンブリオ・ア・ラボラトリー・マニュアル; Methods in Enzymology volume, 225, Guide to Techniques in Mouse Development, Academic Press, (1993); E S細胞を用いた変異マウスの作製）等に記載の胚性幹細胞を培養
するための方法が挙げられる。無血清培養することも可能で、例えば、Dulbecco MEM培地に15～20％のKNOCKOUT™ SR（Life Technologies社製）、2mMグルタミン、100μM MEM Non-Essential Amino Acids溶液、50U/mLペニシリン、50U/mLストレプトマイシン、100μM 2-メルカプトエタノール、および1、000U/mL LIFを加えた培地を用い、未分化な胚性幹細胞としての形質を保ったまま継代培養することができる（M. D. Goldsboroughら; Focus, 20, 8, (1998)）。

(2) 体細胞の核を核移植した胚性幹細胞の作製

哺乳類動物細胞の核を摘出後初期化（核を再び発生を繰り返すことができるような状態に戻す操作）し、除核した哺乳動物の未受精卵に注入する方法を用いて発生を開始させ、発生を開始した卵を培養することによって、他の体細胞の核を有し、かつ正常な発生を開始した卵が得られる。

体細胞の核を初期化する方法としては複数の方法が知られている。例えば、以下の方法が知られている。

核を提供する側の細胞を培養している培地を、5～30％、好ましくは10％の仔ウシ胎児血清を含む培地（例えば、M2培地）から3～10日、好ましくは5日間、0～1％、好ましくは0.5％の仔ウシ胎児血清を含む貧栄養培地に変えて培養することで細胞周期を休止期状態（G0期もしくはG1期）に誘導することで初期化
することができる。この方法は、哺乳動物が、例えばヒツジ、ヤギ、ウシなどの場合に好適である。

また、同種の哺乳動物の除核した未受精卵に、核を提供する側の細胞の核を注入し、数時間、好ましくは約1〜6時間培養することで初期化することができる。この方法は、哺乳動物が、例えばマウスなどの場合に好適である。

初期化された核は除核された未受精卵中で発生を開始することが可能となる。初期化された核を除核された未受精卵中で発生を開始させる方法としては複数の方法が知られている。細胞周期を休止期状態（G0期もしくはG1期）に誘導し初期化した核を、電気融合法などによって同種の哺乳動物の除核した未受精卵に移植することで卵子を活性化し発生を開始させることができる。この方法は、哺乳動物が、例えばヒツジ、ヤギ、ウシなどの場合に好適である。

同種の哺乳動物の除核した未受精卵に核を注入することで初期化した核を、再度マイクロマニュレーターを用いた方法などによって同種の哺乳動物の除核した未受精卵に移植し、卵子活性化物質（例えば、ストロンチウムなど）で刺激後、細胞分裂の阻害物質（例えば、サイトカルシオンBなど）で処理し第二極体の放出を抑制することで発生を開始させることができる。この方法は、哺乳動物が、例えばマウスなどの場合に好適である。

いったん発生を開始した卵が得られれば、マニュレーティング・ザ・マウス・エンブリオ・ア・ラボラトリー・マニュアル；ジーン・ターゲッティング；ES細胞を用いた変異マウスの作製等に記載の公知の方法を用い、胚性幹細胞を取得することができる。

(3) 染色体上の遺伝子を改変した胚性幹細胞の作製

相同組換え技術を用いることによって、染色体上の遺伝子を改変した胚性幹細胞を作製することができる。

例えば、改変する染色体上の遺伝子としては、組織適合性抗原の遺伝子、神経系細胞または表皮系細胞の障害に基づく疾患関連遺伝子などがあげられる。
染色体上の標的遺伝子の変更は、マニュピュレイティング・ザ・マウス・エンプリオ・ア・ラボラトリー・マニュアル; ジーン・ターゲッティング; ES細胞を用いた変異マウスの作製等に記載の方法を用い、行なうことができる。

具体的には、例えば、変換する標的遺伝子（例えば、組織適合性抗原の遺伝子や疾患関連遺伝子など）のゲノム遺伝子を単離し、単離したゲノム遺伝子を用いて標的遺伝子を同名変換するためのターゲットベクターを作製する。作製したターゲットベクターを胚性幹細胞に導入し、標的遺伝子とターゲットベクターの間で同名変換を起こした細胞を選択することにより、染色体上の遺伝子を変換した胚性幹細胞を作製することができる。

標的遺伝子を同名変換するためのターゲットベクターは、ジーン・ターゲッティング; ES細胞を用いた変異マウスの作製等に記載の方法にしたがって作製することができる。ターゲットベクターは、リプレースメント型、インサーション型いずれでも用いることができる。

同名変換体を効率的に選別する方法として、例えば、ジーン・ターゲッティング; ES細胞を用いた変異マウスの作製等に記載のポジティブ選択、プロモーター選択、ネガティブ選択、ポリA選択などの方法を用いることができる。

選別した細胞株の中から目的とする同名変換体を選択する方法としては、ゲノムDNAに対するサザンハイブリダイゼーション法（モレキュラー・クローニング）を利用することもできる。
ニング第2版）やPCR法（PCR Protocols、Academic Press (1990)）等があげられる。

4. 本発明のSDIA活性を含む溶液の調製方法

本発明の方法により、胚性幹細胞をSDIA活性を有するストローマ細胞より該活性を有する溶液を取得することができる。具体的には、細胞培養に用いられる基礎培地または平衡塩溶液に、ポリアニオン化合物を0.00001～1%（w/v）、好ましくは0.00001～0.1%（w/v）、より好ましくは0.0001～0.01%（w/v）添加した培養液を調製し、ポリアニオン化合物を含まない基礎培地または平衡塩溶液で数回、好ましくは2～3回洗浄したストローマ細胞を、調製した培養液で数分～数時間、好ましくは15分～2時間、より好ましくは30分～1時間培養し、通常の動物細胞の培養で行われる細胞と培養液を分離する操作を行い該培養液を回収することで、ストローマ細胞からSDIA活性を有する溶液を取得することができる。

本発明の、SDIA活性を有するストローマ細胞より該活性を有する溶液を取得する方法では、ポリアニオン化合物を含む培養液が用いられるが、その際に、動物細胞の培養に用いられる基礎培地や平衡塩溶液をポリアニオン化合物を添加する培養液として用いることができる。動物細胞の培養に用いられる基礎培地や平衡塩溶液としては、具体的には、上記1（6）に記載した基礎培地や平衡塩溶液が挙げられる。

ポリアニオン化合物としては、ストローマ細胞膜上に存在するSDIA活性を抽出する能力を有する化合物であればいずれも用いることができ、培養液中で陰性荷電を有するホモポリマー、または、コポリマーである硫酸化ムコ多糖や非硫酸化ムコ多糖などを用いることができる。その具体的な例としては、上記1（5）に記載したポリアニオン化合物が挙げられる。
ストローマ細胞から取得したSDIA活性を含む溶液を用いた本発明の分化誘導法によって、上述のような胚性幹細胞を非凝集状態で培養することにより、胚性幹細胞を外胚葉細胞あるいは外胚葉由来の細胞に分化誘導することができる。

本発明で用いるストローマ細胞としては、SDIA活性を有するストローマ細胞であればいかなるものでもよい。胚性幹細胞の分化誘導活性を有しているか否かは、Kawasakiらの報告（H. Kawasakiら、Neuron, 28, 31（2000））にしたがって判定することができ、具体的には、上記1（4）に記載したストローマ細胞をあげることができる。

ストローマ細胞の培養は、樹立した際に用いられた方法を用いて離代培養することが好ましい。また、マニピュレーティング・ザ・マウス・エンプリオ・ア・ラボラトリー・マニュアル、Methods in Enzymology, Vol. 225, Guide to Techniques in Mouse Development, Academic Press (1993)、ジーン・ターゲッティング、ES細胞を用いた変異マウスの作製等に記載の胚性幹細胞の培養に用いるフィーダー細胞を培養するための方法を用いることもでき、例えば、Dulbecco MEM培地（GIBCOBRL社製）に10％ウシ胎児血清（GIBCOBRL社製）、2mMグルタミン、50U/mlペニシリン、および50U/mlストレプトマイシンを加えた培地を用いて培養することができる。

上述のストローマ細胞を離代培養し、離代後ほぼコンフルエンテ状態に達した細胞を用い、SDIA活性を抽出することが好ましい。

洗浄したストローマ細胞に加える、ポリアミオン化合物を含む基礎培地または平衡塩溶液の量は、ストローマ細胞の培養に用いている培地の量と同量もしくはその2分の1〜3分の1であることが好ましい。具体的には、25cm²の培養面積を持つ細胞培養用プラスコ（FALCON社製）を用いてストローマ細胞を培養した場合には、約3〜10mlのポリアミオン化合物を含む基礎培地または平衡塩溶液を用いることが望ましい。

ポリアミオン化合物を含む基礎培地または平衡塩溶液で培養したストローマ細胞の培養液は、通常の動物細胞の培養で行われる細胞と培養液を分離する操
作、例えば遠心操作や0.22～0.45μmの孔のフィルター（GILSON社製）を用いた分離の操作などを用いて回収することができる。

回収した溶液は、4℃あるいは凍結して保存することができる。

上述のストローム細胞を、胚性幹細胞から外胚葉細胞および外胚葉由来の細胞を分化誘導する培養に用いる場合、培養皿等の適当な支持体上で増殖させたストローム細胞を生きたまま用いても良好し、物理化学的処理を施すことにより増殖能力を失った細胞を用いても良い。物理化学的処理を施すことにより增殖能力を失った細胞とは、もはや遺伝子複製を伴う次世代子孫の形成能力が失われている細胞であり、具体的には、抗癌剤を含む培地を用いた培養、致死量の放射線照射、あるいは病理診断に用いられる組織固定のための処理を施すことにより得られた細胞である。

生きたままのストローム細胞は、例えば、前日に培地交換を行ない細胞密度がほぼコンフルエンツ状態にまで達した細胞を、PBSで数回洗浄後、上記2で得られる本発明の培地（例えば、胚性幹細胞から外胚葉細胞および外胚葉由来の細胞を分化誘導する培養に用いる無血清培地）を加えることで調製することができる。また、ほぼコンフルエンツに達した細胞を適当な消化酵素（例えば、0.02％EDTAを含み、0.05〜0.25％のトリプシンあるいはアクチナーゼを含むPBS）で消化して回収し、上記2で得られる本発明の培地（例えば、胚性幹細胞から外胚葉細胞および外胚葉由来の細胞を分化誘導する培養に用いる無血清培地）に懸濁後、培養器（例えば、0〜1％、好ましくは0.1％ゼラチンでコートした組織培養皿）に播種し約1日間培養することによっても調製することができる。

抗癌剤を含む培地を用いた培養により、増殖能力を失ったストローム細胞は、マニュピュレイティング・ザ・マウス・エンプリオ・ア・ラポラトリー・マニュアル、ジーン・ターゲッティング；ES細胞を用いた異変マウスの作製等に記載の方法を用い、調製することができる。例えば、前日に培地交換を行ない細胞密度がほぼコンフルエンツ状態にまで達した細胞を、1〜100μg/ml、好ましく
は10μg/mlの濃度のマイトマイシンCを含む培地で数時間、好ましくは2〜3時間培養し、PBSで数回洗浄し、適当な消化酵素（例えば、0.02％EDTAを含み、0.05〜0.25％のトリプシンあるいはアクチナーゼを含むPBS）で消化して回収し、上記2で得られる本発明の培地（例えば、胚性幹細胞から外胚葉細胞および外胚葉由来の細胞を分化誘導する培養に用いる無血清培地）に懸濁後、培養器（例えば、0〜1％、好ましくは0.1％ゼラチンでコートした組織培養皿）に播種し約1日間培養することによって調製することができる。また、マイトマイシンCの代わりに他の抗腫剤、例えば5-フルオロウラシル、アドリアマイシン、アラCまたはメトトレキセートなどの抗腫剤を、生体に用いる日本薬局方記載の濃度の10分の1〜10倍、好ましくは1倍の濃度で用いることでも、増殖能力を失ったストローマ細胞を調製することができる。

致死量の放射線照射によって増殖能力を失ったストローマ細胞は、組織培養の技術、朝倉書店（1982）、組織培養の技術（第二版）、朝倉書店（1988）、組織培養の技術（第三版）、朝倉書店（1996）等に記載の方法を用い、調製することができる。例えば、前日に培地交換を行ない細胞密度がほぼコアシキュート状態にまで達した細胞を、200〜5,000ラド、好ましくは500〜1,000ラドのX線あるいはγ線を照射し、PBSで数回洗浄後、上記2で得られる本発明の培地（例えば、胚性幹細胞から外胚葉細胞または外胚葉由来の細胞を分化誘導する培養に用いる無血清培地）を加えることで調製できる。また、放射線照射を施した細胞を適当な消化酵素（例えば、0.02％EDTAを含み、0.05〜0.25％のトリプシンあるいはアクチナーゼを含むPBS）で消化して回収し、上記2で得られる本発明の培地（例えば、胚性幹細胞から外胚葉細胞または外胚葉由来の細胞を分化誘導する培養に用いる無血清培地）に懸濁後、培養器（例えば、0〜1％、好ましくは0.1％ゼラチンでコートした組織培養皿）に播種し約1日間培養することによっても調製できる。

病理診断に用いられる組織固定操作によって増殖能力を失ったストローマ細胞は、日本組織細胞化学会が編集し毎年発行している組織細胞学，学際企画
（1987-1999）、Basic Techniques for Transmission Electron Microscopy, Acad. Press (1986)、電子顕微鏡チャートマニュアル、医学出版センター (1993) 等に記載の方法を用い、調製することができる。具体的には、マイクロウェーブ固定、急速凍結置換固定、ゲルタルアルデヒド固定、パラフォルムアルデヒド固定、ホルマリン固定、アセトン固定、ブラン固定、過ヨウ素酸固定、メタノール固定、またはオスミウム酸固定を行なうことによって調製できる。例えば、前日に培地交換を行なう細胞密度がほぼコンフルエンス状態にまで達した細胞を、4℃で、0.1～50％、好ましくは1～10％、より好ましくは3～5％のパラフォルムアルデヒドを含む溶液中に、例えば数分間～数時間、好ましくは5分間～1時間、より好ましくは30分間浸漬し、PBSで数回洗浄することによって調製することができる。

5. SDIA活性を有する溶液中のSDIA活性を有する因子の同定方法

上記4に記載した方法において、ポリアニオン化合物を含まない基準培地または平衡塩溶液を培養液として用いた場合には、SDIA活性はほとんど含まれていない。したがって、ポリアニオン化合物を含まない基準培地または平衡塩溶液を培養液として用いて調製したストローマ細胞の培養液を対照として、ポリアニオン化合物を含む基準培地または平衡塩溶液を培養液として用いて調製したストローマ細胞の培養液中に含まれる成分を比較することで、胚性幹細胞を外胚葉細胞または外胚葉由来の細胞に分化誘導する因子を同定することができる。培養液中の成分を比較同定する具体的な方法としては、プロテオーム解析やクロマトグラフィーを伴った精製の手段があげられる。

同定した成分の活性は、同定した成分を含む培地を調製し、上記1（7）に記載の本発明の胚性幹細胞の分化誘導方法を用いて胚性幹細胞を分化誘導させることで確認することができる。
6. SDIA活性を有するストローマ細胞由来の因子を取得する方法

具体的には、例えば、本発明におけるストローマ細胞よりcDNAを調製し、該cDNAを適当な発現ベクターのプロモーターの下流に挿入することにより、組換えベクターを作製し、cDNAライブラリーを作製する。該組換えベクターを、該発現ベクターに適合した宿主細胞に導入することにより、本発明におけるストローマ細胞が生産する遺伝子産物を産生する形質選択体を得、SDIA活性を有する遺伝子産物を産生する形質転換体を選択する。選択した該形質転換体に導入したcDNAにコードされている遺伝子配列を決定することにより、SDIA活性を有する因子を取得することができる。

以下に、詳細に説明する。

cDNAライブラリーを調製する方法としては、モレキュラー・クローニング第2版やカレント・プロトコールズ・イン・モレキュラー・バイオロジー等に記載された方法、あるいは市販のキット、例えばSuperScript Plasmid System for cDNA Synthesis and Plasmid Cloning（Life Technologies社製）、ZAP-cDNA Synthesis Kit（STRATAGENE社製）を用いる方法などがあげられる。

cDNAライブラリーを作製するためのベクターとしては、大腸菌K12株等の微生物中で自立複製でき、かつ宿主細胞において導入したcDNAを発現できるものであれば、ファージベクター、プラスミドベクター等いずれでも使用できる。

ファージを宿主細胞として用いる場合には、例えば、市販のキットRecombinant Phage Antibody System（Pharmacia社製）を用いることで、調製したcDNAを導入した形質転換体を得ることができる。

細菌等の原核生物を宿主細胞として用いる場合は、調製したcDNAを含有する組換えベクターは、原核生物内で自立複製可能であると同時に、プロモーター、リポソーム結合配列、cDNA遺伝子、転写終結配列、より構成されたベクターであることが好ましい。プロモーターを制御する遺伝子が含まれていてもよい。

発現ベクターとしては、例えば、pBTrip2、pBTac1、pBTac2（いずれもベーリンガーマンハイム社製）、pKK233-2（Pharmacia社製）、pSE280、pSE380、pSE420（Invitrogen社製）、pAX、pMEX（MOBITEC社製）、pGEMEX-1（Promega社

プロモーターとして、宿主細胞中で発現できるものであればいかなるものでもよい。例えば、trpプロモーター（P_{trp}）、lacプロモーター、P_{l}プロモーター、P_{g}プロモーター、T7プロモーター等の、大腸菌やファージ等に由来するプロモーターをあげることができる。またP_{trp}を2つ直列させたプロモーター（P_{trp} X 2）、tacプロモーター、lacT7プロモーター、let Iプロモーターのように人為的に設計改変されたプロモーター等も用いることができる。

リポソーム結合配列であるシャイン一ダルガノ（Shine-Dalgarno）配列と開始コドンとの間を適当な距離（例えば6〜18塩基）に調節したプラスミドを用いることが好ましい。

宿主細胞としては、エシュリヒア属、セラチア属、バチルス属、ブリビパクテリウム属、コリネパクテリウム属、ミクロパクテリウム属、シェードモナス属等に属する微生物、例えば、Escherichia coli XL1-Blue、Escherichia coli XL2-Blue、Escherichia coli DH1、Escherichia coli MC1000、Escherichia coli KY3276、Escherichia coli W1485、Escherichia coli JM109、Escherichia coli HB101、Escherichia coli No.49、Escherichia coli W3110、Escherichia coli NY49、Serratia ficaria、Serratia
fonticola、Serratia liquefaciens、Serratia marcescens、Bacillus subtilis、Bacillus amyloliquefaciens、Brevibacterium immariophilum ATCC14068、Brevibacterium saccharolyticum ATCC14066、Brevibacterium flavum ATCC14067、Brevibacterium lactofermentum ATCC13869、Corynebacterium glutamicum ATCC13032、Corynebacterium acetoxidophilum ATCC13870、Microbacterium ammoniphilum ATCC15354、Pseudomonas sp. D-0110等をあげることができる。

作製したcDNAライブラリーをそのまま用いてもよいが、目的とする遺伝子を濃縮するために、SDIA活性を有していない細胞のmRNAを用い、サブトラクション法（Proc. Natl. Acad. Sci. USA, 85, 5783 (1988)）を行なって作製したcDNAライブラリーを用いることもできる。

酵母を宿主細胞として用いる場合には、発現ベクターとして、例えば、YEP13（ATCC37115）、YEp24（ATCC37051）、YCp50（ATCC37419）等をあげることができる。

プロモーターとしては、酵母菌株中で発現できるものであればいずれものを用いてもよく、例えば、ヘキソースキナーゼの解糖系の遺伝子のプロモーター、PHO5プロモーター、PGKプロモーター、GAPプロモーター、ADHプロモーター、gal 1プロモーター、gal 10プロモーター、ヒートショック蛋白質プロモーター、MFα1プロモーター、CUP 1プロモーター等をあげることができる。

宿主細胞としては、サッカロミセス属、クリュイペロミセス属、トリコスポロン属、シュワニオミセス属等に属する微生物、例えば、Saccharomyces
Cerevisiae, Schizosaccharomyces pombe, Kluveromyces lactis, Trichosporon pullulans, Schwanniomyces alluvis等をあげることができる。

プロモーターとしては、動物細胞中で発現できるものであればいずれも用いることができ、例えば、サイトメガロウイルス（CMV）のIE（immediate early）遺伝子のプロモーター、SV40の初期プロモーター、レトロウイルスのプロモーター、メタロチオネインプロモーター、ヒートショックプロモーター、SRαプロモーター等をあげることができる。また、ヒトCMVのIE遺伝子のエンハンサーをプロモーターと共に出してもよい。

宿主細胞としては、ヒトの細胞であるナマルバ（Namalwa）細胞、サルの細胞であるCOS細胞、チャイニーズ・ハムスターの細胞であるCHO細胞、HBT5637（特開昭63-299）等をあげることができる。
組換えベクターの導入方法としては、動物細胞にDNAを導入する方法であればいずれも用いることができ、例えば、エレクトロポレーション法 (Cytotechnology, 3, 133 (1990))、リン酸カルシウム法（特開平2-227075）、リボフェクション法（Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)）等をあげることができる。

即ち、組換え遺伝子導入ベクターおよびバキュロウイルスを昆虫細胞に共導入して昆虫細胞培養上清中に組換えウイルスを得た後、さらに組換えウイルスを昆虫細胞に感染させ、タンパク質を発現させることができる。

該方法において用いられる遺伝子導入ベクターとしては、例えば、pVL1392、pVL1393、pBlueBacIII（ともにInvitrogen社製）等をあげることができる。

バキュロウイルスとしては、例えば、夜盗蛾科昆虫に感染するウイルスであるアウトグラファ・カリフォルニカ・ヌクレアー・ポリヘドロシス・ウイルス（Autographa californica nuclear polyhedrosis virus）等を用いることができる。

組換えウイルスを調製するための、昆虫細胞への上記組換え遺伝子導入ベクターと上記バキュロウイルスの共導入方法としては、例えば、リン酸カルシウム法（特開平2-227075）、リボフェクション法（Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)）等をあげることができる。
植物細胞を宿主細胞として用いる場合には、発現ベクターとして、例えば、Tiプラスミド、タバコモザイクウイルスベクター等をあげることができる。

プロモーターとしては、植物細胞中で発現できるものであればいずれのものを用いてもよく、例えば、カリフラワーモザイクウイルス（CaMV）の35Sプロモーター、イネアクチン1プロモーター等をあげることができる。

宿主細胞としては、タバコ、ジャガイモ、トマト、ニンジン、ダイズ、アブラナ、アルファルファ、イネ、コムギ、オオムギ等の植物細胞等をあげることができる。

組換えベクターの導入方法としては、植物細胞にDNAを導入する方法であればいずれも用いることができ、例えば、アグロバクテリウム（Agrobacterium）法（特開昭59-140885、特開昭60-70080、W094/00977）、エレクトロポレーション法（特開昭60-251887）、バーティクルガン（遺伝子銃）を用いる方法（日本特許第2606856号、日本特許第2517813号）等をあげることができる。

以上のようにして得られる形質転換体を培地に培養することにより、導入したcDNAがコードする遺伝子産物を発現させることができる。形質転換体を培地に培養する方法は、宿主の培養に用いられる通常の方法に従って行うことができる。

大腸菌等の原核生物あるいは酵母等の真核生物を宿主として得られた形質転換体を培養する培地としては、該生物が資化し得る炭素源、窒素源、無機塩類等を含有し、形質転換体の培養を効率的に行える培地であれば天然培地、合成培地のいずれを用いてもよい。

炭素源としては、該生物が資化し得るものであれば、グルコース、フラクトース、スクロース、これらを含有する糖蜜、デンプンあるいはデンプン加水分解物等の炭水化物、酢酸、プロピオン酸等の有機酸、エタノール、プロパノールなどのアルコール類等を用いることができる。

窒素源としては、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム、リン酸アンモニウム等の無機酸もしくは有機酸のアンモニウム
塩、その他の含窒素化合物、ならびに、ベプトン、肉エキス、酵母エキス、コーンスチーブリカー、カゼイン加水分解物、大豆粕および大豆粕加水分解物、各種発酵菌体およびその消化物等を用いることができる。

無機塩類としては、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウム等を用いることができる。

培養は、通常振盪培養または深部通気攪拌培養などの好気的条件下で行う。培養温度は15〜40℃がよく、培養時間は、通常16時間〜7日間である。培養中のpHは3.0〜9.0に保持する。pHの調整は、無機または有機の酸、アルカリ溶液、尿素、炭酸カルシウム、アンモニアなどを用いて行う。

また、培養中必要に応じて、アンピシリンやテトラサイクリン等の抗生物質を培地に添加してもよい。

プロモーターとして誘導性のプロモーターを用いた組換えベクターで形質転換した微生物を培養するときには、必要に応じてインデューサーを培地に添加してもよい。例えば、lacプロモーターを用いた組換えベクターで形質転換した微生物を培養するときにはイソプロピル-β-D-チオガラクトピラノシド等を、trpプロモーターを用いた組換えベクターで形質転換した微生物を培養するときにはインドールアクリル酸等を培地に添加してもよい。

動物細胞を宿主として得られた形質転換体を培養する培地としては、一般に使用されているRPMI1640培地（The Journal of the American Medical Association, 199, 519 (1967)）、EagleのMEM培地（Science, 122, 501 (1952)）、ダルベッコ変種MEM培地（Virology, 8, 396 (1959)）、199培地（Proceeding of the Society for the Biological Medicine, 73, 1 (1950)）またはこれら培地に牛胎児血清等を添加した培地等を用いることができる。

培養は、通常pH6〜8、30〜40℃、5％CO₂存在下等の条件下で1〜7日間行う。

また、培養中必要に応じて、カナマイシン、ペニシリン等の抗生物質を培地中に添加してもよい。
昆虫細胞を宿主として得られた形質転換体を培養する培地としては、一般に使用されているTNM-FH培地（Pharmingen社製）、Sf-900 II SFM培地（Life Technologies社製）、ExCell1400、ExCell1405（いずれもJRHI Biosciences社製）、Grace’s Insect Medium（Grace, T.C.C., Nature, 195, 788 (1962)）等を用いることができる。

培養は、通常pH6～7、25～30℃等の条件下で、1～5日間行う。

また、培養中必要に応じて、ゲンタマイシン等の抗生物質を培地に添加してもよい。

植物細胞を宿主として得られた形質転換体は、細胞として、または植物の細胞や器官に分化させて培養することができる。該形質転換体を培養する培地としては、一般に使用されているムラサキ・アンド・スクーグ（MS）培地、ホワイト（White）培地、またはこれら培地にオーキシン、サイトカイニン等、植物ホルモンを添加した培地等を用いることができる。

培養は、通常pH5～9、20～40℃の条件下で3～60日間行う。

また、培養中必要に応じて、カナマイシン、ハイグロマイシン等の抗生物質を培地に添加してもよい。

上記のとおり、本発明におけるストローマ細胞から調製したcDNAを組み込んだ組換え体ベクターを保有する微生物、動物細胞、あるいは植物細胞由来の形質転換体を、通常の培養方法に従って培養することにより、該cDNAがコードしている遺伝子産物を発現する形質転換体を得ることができる。

本発明の分化誘導法において、胚性幹細胞と形質転換体との共培養を行なうことで、SDIA活性を有する遺伝子産物を産生する形質転換体を選択することができる。

具体的には、アンチポディズ・ア・ラボラトリー・マニュアル、モノクローナル・アンチポディズ、アンチポディ・エンジニアリング、酵素免疫測定法、第3版、医学書院（1987）等に述べられている酵素免疫測定法、アンチポディズ・ア・ラボラトリー・マニュアル、モノクローナル・アンチポディズ、アンチポ

選択した形質転換体に導入したcDNAを単離する方法としては、宿主細胞において自立複製可能な発現ベクターを用いた場合には、モレキュラー・クローニング第2版やカレント・プロトコールズ・イン・モレキュラー・バイオロジー、Mol. Cell Biol., 8, 2837 (1988)等に記載の通常のファージベクター、プラスミドベクターを回収する方法、あるいはHirt法をあげることができる。染色体中への組込まれる発現ベクターの場合には、宿主細胞に導入するcDNAを複数種類（例えば、100〜1000種）からなる集団にプール分けし、目的とする形質転換体を与える集団を更に少ない種類（例えば、10〜100種）のcDNAからなる集団にプール分けすることを繰り返すことで、目的とするcDNAを単離することができる。

単離したcDNAの塩基配列を末端から、通常用いられる塩基配列解析方法、例えばサンガー（Sanger）らのジデオキシ法（Proc. Natl. Acad. Sci. USA, 74, 5463 (1977)）あるいはABIPRISM377DNAシークエンサー（PE Biosystems社製）等の塩基配列分析装置を用いて分析することにより、該DNAの塩基配列を決定することができる。

以上のように、発現クローニングの方法を用いて、本発明のSDIA活性を有する因子を取得することができる。

発現クローニングの手法以外にも、SDIA活性を有するストローマ細胞由来の因子を取得することができる。具体的には、本発明におけるストローマ細胞を出発原料とし、培地中に添加した際の胚性幹細胞から外胚葉由来の細胞を分化誘導する促進効果を指標として精製することができる。
具体的には、本発明におけるストローマ細胞を遠心分離により回収し、水系緩衝液に懸濁後、超音波破砕機、フレンチプレス、マントンガウリンホモゲナポイ、ダイノミル、界面活性剤処理等により細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られる上清から、通常の酵素の単離精製法、即ち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジェチルアミノエチル（DEAE）-セファロース、DIAION HPA-75（三菱化学社製）等レジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF（Pharmacia社製）等のレジンを用いた陽イオン交換クロマトグラフィー法、プロトセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティクロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の手法を単独あるいは組み合わせて用い、精製標品を得ることができる。

更に、ストローマ細胞由来の因子は、上記のポリアミオン化合物に吸着する性質を有しているので、ストローマ細胞を培養した培養系中、あるいはストローマ細胞存在下で胚性幹細胞を非凝集状態で培養した培養系中第因子をポリアミオン化合物と結合させ、その後ポリアミオン化合物に結合した前記ストローマ細胞由来の因子から該因子を取得することができる。例えば、ヘパリンを担体とするカラムクロマトグラフィーを用いてストローマ細胞由来の因子をヘパリンに結合させ、その後その結合した該因子を溶出させ、前記分化誘導促進効果を指標に該因子を取得することができる。

7. SDIA活性を有する因子の生産方法

本発明のSDIA活性を有するストローマ細胞由來の因子としては、配列番号7または8で表されるアミノ酸を含むポリペプチド等をあげることができる。さらに、配列番号7または8で表されるアミノ酸配列において1以上のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列からなり、かつ胚性幹細胞を外
胚葉細胞又は外胚葉由来の細胞に分化誘導する活性を有するポリペプチド等をあげることができる。

欠失、置換、挿入もしくは付加されるアミノ酸の数は特に限定されないが、上記の部位特異的変異法等の周知の方法により欠失、置換、挿入もしくは付加できる程度の数であり、1個から数十個、好ましくは1～20個、より好ましくは1～10個、さらに好ましくは1～5個である。

配列番号7または8で表されるアミノ酸配列において1以上のアミノ酸残基が欠失、置換、挿入もしくは付加されたとは、同一配列中の任意の位置において、1または複数のアミノ酸残基の欠失、置換、挿入もしくは付加があることを意味し、欠失、置換、挿入もしくは付加が同時に生じてもよく、欠失、置換、挿入もしくは付加されるアミノ酸残基は天然型と非天然型とを問わない。天然型アミノ酸残基としては、L-アラニン、L-アスパラギン、L-アスパラギン酸、L-グルタミン、L-グルタミン酸、グルシン、L-ヒスチジン、L-イソロイシン、L-ロイシン、L-リジン、L-アルギニン、L-メチオニン、L-フェニルアラニン、L-プロリン、L-セリン、L-スレオニン、L-トリプトファン、L-チロシン、L-パリン、L-システインなどがあげられる。
以下に、相互置換可能なアミノ酸残基の例を示す。同一群に属するアミノ酸残基は相互に置換可能である。

A群：ロイシン、イソロイシン、ノルロイシン、バリシン、ノルバリシン、アルニン、2-アミノブタン酸、メチオニン、0-メチルセリン、t-プチルグリシン、t-プチルアルニン、シクロヘキシルアルニン

B群：アスパラギン酸、グルタミン酸、イソアスパラギン酸、イソグルタミン酸、2-アミノアジビン酸、2-アミノスベリン酸

C群：アスパラギン、グルタミン

D群：リジン、アルギニン、オルニチン、2,4-ジアミノブタン酸、2,3-ジアミノプロピオン酸

E群：プロリン、3-ヒドロキシプロリン、4-ヒドロキシプロリン

F群：セリン、スレオニン、ホモセリン

G群：フェニルアルニン、チロシン

上記で得られる配列番号7または8で表されるアミノ酸配列において1以上のアミノ酸残基が欠失、置換、挿入もしくは付加されたアミノ酸配列からなる蛋白質が、胚性幹細胞を外胚葉細胞又は外胚葉由来の細胞に分化誘導する活性を有するポリペプチドであるためには、配列番号7または8で表されるアミノ酸配列と60%以上、通常は80%以上、好ましくは95%以上、より好ましくは98%以上の相同期性を有していることが好ましい。

本発明に用いられるポリペプチドは、該蛋白質をコードするDNAを用いて調製することができる。該DNAは該アミノ酸配列をコードするDNAを用いて、該蛋
白質を生産する細胞、組織等から調製されるcDNAライブラリーに対し、コロニーハイプリダイゼーション、またはブラークハイプリダイゼーション等の方法（モレキュラーナクローニング第2版）を用いることによって取得することができる。

また該アミノ酸配列をクエリーにして、公知のデータベースを検索することにより、該アミノ酸配列を有する蛋白質をコードするDNAの塩基配列を取得することもできる。

上記方法で取得することができるDNAとしては、具体的に言えば、（i）配列番号9または10で表される塩基配列を有するDNA、（ii）上記で述べた配列番号7または8で表されるアミノ酸配列において1以上のアミノ酸残基が欠失、置換、挿入もしくは付加されたアミノ酸配列からなる蛋白質をコードするDNA、（iii）配列番号9または10で表される塩基配列を有するDNAとストリンジェントな条件下でハイプリダイズし、かつ胚性幹細胞を外胚葉細胞又は外胚葉由来の細胞に分化誘導する活性を有する蛋白質をコードするDNA、をあげることができる。

ストリンジェントな条件下でハイプリダイズ可能なDNAとは、配列番号9または10で表される塩基配列を有するDNAの全部または一部をプロープとして、コロニー・ハイプリダイゼーション法、ブラーク・ハイプリダイゼーション法あるいはサザンプロットハイプリダイゼーション法等を用いることにより得られるDNAを意味し、具体的には、コロニーあるいはブラーク由来のDNAを固定化したフィルターを用いて、0.7～1.0mol/1の塩化ナトリウム存在下、65℃でハイプリダイゼーションを行った後、0.1～2倍濃度のSSC溶液（1倍濃度のSSC溶液の組成は、150mmol/1塩化ナトリウム、15mmol/1クエン酸ナトリウムよりなる）を用い、65℃条件下でフィルターを洗浄することにより同定できるDNAをあげることができる。ハイプリダイゼーションは、モレキュラーナクローニング第2版、カレント・プロトコールズ・イン・モレキュラーナバイオロジー、

本発明で用いられるポリペプチドは、モレキュラー・クローニング第 2 版やカレント・プロトコールズ・イン・モレキュラー・バイオロジー等に記載された方法等を用い、上記6で述べたように本発明のDNAを宿主細胞内で発現させて、製造することができる。さらに遺伝子の発現方法としては、直接発現以外に、モレキュラー・クローニング第 2 版に記載されている方法等に準じて、分泌生産、融合蛋白質発現等を行うことができる。

酵母、動物細胞、昆虫細胞または植物細胞により発現させた場合には、糖あるいは糖鎖が付加されたポリペプチドを得ることができる。

このようにして本発明におけるストローマ細胞から調製したcDNAまたは本発明で用いられるポリペプチドをコードするDNAを組み込んだ組換え体ベクターを保有する微生物、動物細胞、あるいは植物細胞由来の形質転換体を、通常の培養方法に従って培養し、該ポリペプチドを生成蓄積させ、該培養物より該ポリペプチドを採取することにより、該ポリペプチドを製造することができる。

本発明で用いられるポリペプチドの生産方法としては、宿主細胞内に生産させる方法、宿主細胞外に分泌させる方法、あるいは宿主細胞外膜上に生産させる方法があり、使用する宿主細胞や、生産させるポリペプチドの構造を変えることにより、該方法を選択することができる。

本発明で用いられるポリペプチドが宿主細胞内あるいは宿主細胞外膜上に生産される場合、ポールソンらの方法 (J. Biol. Chem., 264, 17619 (1989))

すなわち、遺伝子組換えの手法を用いて、本発明で用いられるポリペプチドの活性部位を含むポリペプチドの手前にシグナルペプチドを付加した形で発現させることにより、本発明で用いられるポリペプチドを宿主細胞外に積極的に分泌させることができる。

また、特開平2-227075に記載されている方法に準じて、ジヒドロ葉酸還元酵素遺伝子等を用いた遺伝子増幅系を利用して生産量を上昇させることもできる。

さらに、遺伝子導入した動物または植物の細胞を再分化させることにより、遺伝子が導入された動物個体（トランジェニック非ヒト動物）または植物個体（トランジェニック植物）を造成し、これらの個体を用いて本発明で用いられるポリペプチドを製造することもできる。

形質転換体が動物個体または植物個体の場合は、通常の方法に従って、飼育または栽培し、該ポリペプチドを生成蓄積させ、該動物個体または植物個体より該ポリペプチドを採取することにより、該ポリペプチドを製造することができる。

動物個体の場合は、例えば、本発明で用いられるポリペプチドをコードするDNAを導入したトランジェニック非ヒト動物を飼育し、該ポリペプチドを該動物中に生成・蓄積させ、該動物より該ポリペプチドを採取することにより、該ポリペプチドを製造することができる。該動物中の生成・蓄積場所とし
ては、例えば、該動物のミルク（特開昭63-309192）、卵等をあげることができ。この際に用いられるプロモーターとしては、動物で発現できるものであればいずれも用いることができるが、例えば、乳腺細胞特異的なプロモーターであるαカゼインプロモーター、βカゼインプロモーター、βラクトグロブリンプロモーター、ホエー酸性プロテインプロモーター等が好適に用いられる。

植物個体を用いて本発明で用いられるポリペプチドを製造する方法としては、例えば本発明で用いられるポリペプチドをコードするDNAを導入したトランスジェニック植物を公知の方法（組織培養、20（1994）、組織培養、21（1995）、Trends in Biotechnology、15、45（1997））に準じて栽培し、該ポリペプチドを該植物中に生成・蓄積させ、該植物中より該ポリペプチドを取り取ることにより、該ポリペプチドを生産する方法が考えられる。

本発明の形質転換体により製造されたポリペプチドを単離精製するためには、通常の酵素の単離精製法を用いることができる。例えば本発明で用いられるポリペプチドが、細胞内に溶解状態で発現した場合には、培養終了後、細胞を遠心分離により回収し、水系緩衝液にけん満後、超音波破砕機、フレンチプレス、マントンガウリンホモゲナイザー、ダイノミル等により細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られる上清から、通常の酵素の単離精製法、即ち、溶媒抽出法、洗浄等による塩析法、脱塩法、有機溶媒による沈殿法、ジェチルアミノエチル（DEAE）－セファロース、DIAION HPA－75（三菱化学製）等のレジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF（Pharmacia社製）等のレジンを用いた陽イオン交換クロマトグラフィー法、プチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の手法を単独あるいは組み合わせて用い、精製標品を得ることができる。
また、該ポリペプチドが細胞内に不溶体を形成して発現した場合は、同様に細胞を回収後、破砕し、遠心分離を行うことにより、沈殿化分としてポリペプチドの不溶体を回収する。回収したポリペプチドの不溶体を蛋白質変性剤で可溶化する。該可溶化液を希釈または透析し、該可溶化液中の蛋白質変性剤の濃度を下げることにより、該ポリペプチドを正常な立体構造に戻す。該操作の後、上記と同様の単離精製法により該ポリペプチドの精製標品を得ることができる。

本発明で用いられるポリペプチド、あるいは該ポリペプチドに糖鎖の付加されたポリペプチド等の誘導体が細胞外に分泌された場合には、培養上清に該ポリペプチドあるいは該ポリペプチドの誘導体を回収することができる。即ち、該培養物を上記と同様の遠心分離等の手法により処理することにより培養上清を取得し、該培養上清から、上記と同様の単離精製法を用いることにより、精製標品を得ることができる。

また、本発明で用いられるポリペプチドは、Fmoc法（フルオレニルメチルオキシカルボニル法）、tBoc法（t-ブチルオキシカルボニル法）等の化学合成法によっても製造することができる。また、Advanced ChemTech社、パーキン・エルマー社、Pharmacia社、Protein Technology Instrument社、Synthecell-Vega社、PerSeptive社、島津製作所等のペプチド合成機を利用して化学合成することもできる。

8. 本発明のSDIA活性を有する因子を含む医薬

本発明の、胚性幹細胞を外胚葉細胞または外胚葉由来の細胞に分化誘導する因子あるいは後述の9（1）に記載の該因子を含む分化誘導剤は、外胚葉由来の細胞の障害に基づく疾患の治療薬として用いることができる。

外胚葉由来の細胞の障害に基づく疾患としては、神経系細胞の障害に基づく疾患あるいは表皮系細胞の障害に基づく疾患があげられる。

神経系細胞の障害に基づく疾患としては、アルツハイマー病、ハンチントン舞蹈病、パーキンソン病、虚血性脳疾患、てんかん、脳外傷、被堆損傷、運動
神経疾患、神経変性疾患、網膜色素変性症、内耳性難聴、多発性硬化症、筋萎縮性側索硬化症、神経毒物の障害に起因する疾患などが、表皮系細胞の障害に基づく疾患としては、火傷、外傷、創傷治癒、床擦れ、乾せんなどがあげられる。

本発明のSDIA活性を有する因子を有効成分として含有する医薬は、該有効成分を単独で投与することも可能であるが、通常は該有効成分を薬理学的に許容される一つあるいはそれ以上の担体と一緒に混合し、製剤学の技術分野においてよく知られる任意の方法により製造した医薬製剤として提供するのが望ましい。好ましくは水、あるいは食塩、グリシン、グルコース、ヒトアルブミン等の水溶液等の水性担体に溶解した無菌的な溶液が用いられる。また、製剤溶液を生理的条件に近づけるための緩衝剤や塩張剤のような、薬理学的に許容される添加剤、例えば、酢酸ナトリウム、塩化ナトリウム、乳酸ナトリウム、塩化カリウム、クエン酸ナトリウム等を添加することもできる。また、凍結乾燥して貯蔵し、使用時に適当な溶媒に溶解させて用いることもできる。

投与経路は、治療に際し最も効果的なものを使用するのが望ましく、経口投与、あるいは口腔内、気道内、直腸内、皮下、筋肉内および静脈内等の非経口投与をあげることができる。投与形態としては、噴霧剤、カプセル剤、錠剤、顆粒剤、シロップ剤、乳剤、座剤、注射剤、軟膏、テープ剤等があげられる。

経口投与に適当な製剤としては、乳剤、シロップ剤、カプセル剤、錠剤、散剤、顆粒剤等があげられる。例えば乳剤およびシロップ剤のような液体調製物は、水、ショ糖、ソルビトール、果糖等の糖類、ポリエチレングリコール、プロビレングリコール等のグリコール類、ごま油、オリーブ油、大豆油などの油類、p-ヒドロキシン安息香酸エステル類等の防腐剤、ストロベリーフレーバー、ペパーミント等のフレーバー類等を添加剤として用いて製造できる。カプセル剤、錠剤、散剤、顆粒剤等は、乳糖、ブドウ糖、ショ糖、マンニトール等の賦形剤、デンプン、アルギン酸ナトリウム等の崩壊剤、ステアリン酸マグネシウム、タルク等の滑沢剤、ポリビニルアルコール、ヒドロキシプロピルセルロース
ス、ゼラチン等の結合剤、脂肪酸エステル等の界面活性剤、グリセリン等の可塑剤等を添加剤として用いて製造できる。

非経口投与に適当な製剤としては、注射剤、座剤、噴霧剤等があげられる。例えば、注射剤は、塩溶液、プドウ糖溶液、あるいは両者の混合物からなる担体等を用いて調製する。座剤はカカオ脂、水素化脂肪またはカルボン酸等の担体を用いて調製される。また、噴霧剤は有効成分そのもの、ないしは受容者の口腔および気道粘膜を刺激せず、かつ有効成分を微細な粒子として分散させ吸収を容易にさせる担体等を用いて調製する。担体として具体的には乳糖、グリセリン等が例示される。有効成分および用いる担体の性質により、エアロゾル、ドライパウダー等の製剤が可能である。また、これらの非経口剤においても経口剤で添加剤として例示した成分を添加することもできる。

投与量または投与回数は、目的とする治療効果、投与方法、治療期間、年齢、体重等により異なるが、通常成人1日当たり10μg/kg〜8mg/kgである。

9. 本発明の分化誘導剤とその利用

(1) 本発明の分化誘導剤

本発明の分化誘導剤としては、上記4に記載の方法によって取得された溶液上記6および7に記載の因子、該因子を構成するポリペプチドをコードするDNA、該DNAを含有する組換えベクター、該ベクターをストレーマ細胞に導入して得られる形質転換体、またはWntアンタゴニストを有効成分として含有するものであれば、いずれの態様でもよい。

上記4に記載の方法によって取得された溶液としては、胚性幹細胞を分化誘導することが可能な培地、SDIA活性を有する溶液などがあげられる。

因子としては、上記6または7に記載されたSDIA活性を有する物質であればいかなるものでもよいが、具体的には、配列番号7または8で表されるアミノ酸配列を有するポリペプチド、配列番号7または8で表されるアミノ酸配列において1以上のアミノ酸残基が欠失、置換、挿入もしくは付加されたアミノ酸配列
列からなるポリペプチド、配列番号7または8で表されるアミノ酸配列と60%以上の相対性を有するアミノ酸配列からなるポリペプチドなどがあげられる。

因子を構成するポリペプチドをコードするDNAとしては、例えば上記の配列番号7または8で表されるアミノ酸配列をコードするDNA、配列番号9または10で表される塩基配列を有するDNAなどがあげられる。

DNAを含有する組換えベクターとしては、ヒト細胞、好ましくはストローマ細胞に導入可能なベクターであれば、いかなるベクターでもよい。

上述の組換えベクターをストローマ細胞に導入して得られる形質転換体としては、本発明の胚性幹細胞を分化誘導する方法に使用可能なものであればいかなるものでもよい。

Wntアンタゴニストとしては、WntとWnt受容体との結合を阻害する作用を有する物質であればいかなるものでもよいが、具体的にはSFRPなどがあげられる。

外胚葉細胞から表皮系細胞への分化誘導薬としては、BMP4を含むことが好ましい。

(2) 本発明の分化誘導剤の利用

本発明の分化誘導剤は、上記8に記載したように、外胚葉由来の細胞の障害に基づく疾患の治療薬として用いることができる。また、上記1(7)に記載した胚性幹細胞を外胚葉細胞または外胚葉由来の細胞に分化誘導する方法に用いることができる。

10. 本発明の分化誘導法、細胞および分化誘導剤の利用

(1) 本発明の分化誘導方法を利用した物質の評価またはスクリーニング方法

本発明の、胚性幹細胞を外胚葉細胞および外胚葉由来の細胞へ分化誘導する培養方法は、これら細胞の分化過程あるいは細胞の機能調節における生理活性物質（例えば、薬物）や機能未知の新規遺伝子産物などの薬理評価および活性
評価に有用である。また、特定の遺伝子を変改した胚性幹細胞を用いることにより、胚性幹細胞が外胚葉細胞および外胚葉由来の細胞へ分化していく過程における、該遺伝子の機能評価にも有用である。

本発明の培養法の利用方法としては、例えば、以下のものがあげられる。

本発明の分化誘導方法を用いることにより、培地中に添加した被験物質の外胚葉細胞あるいは外胚葉由来の細胞への分化の過程、または外胚葉細胞あるいは外胚葉由来の細胞の機能調節に及ぼす影響を評価することができる。被験物質としては、培養系に加えることができるものであればどのようなものでもよく、例えば、低分子化合物、高分子化合物、有機化合物、無機化合物、蛋白質、遺伝子、ウイルス、細胞などがあげられる。遺伝子を除く被験物質は、培養培地中に直接添加すればよい。

これらの被験物質は、上記分化誘導法における培養系にどのような時期でも添加することができ、例えば、幹細胞が外胚葉細胞へ分化する過程に対する作用を評価したい場合には比較的培養の初期に、外胚葉細胞から外胚葉由来の細胞に分化する過程に対する作用を評価したい場合には比較的培養の後期に被験物質を添加することで評価することができる。培養系において分化の程度を判断するには、胚性幹細胞から分化の結果生じる各種分化細胞のマーカー蛋白質の発現を調べることで把握することができる。被験物質の評価あるいはスクリーニングは、所定時間の培養後、例えば、外胚葉細胞および外胚葉由来の細胞への分化効率の質的または量的な変化を測定することで行なうことができる。
質的な変化の測定方法としては、具体的には、van Inzenらが胚性幹細胞から分化誘導した神経細胞を用いて活動電位を測定した例があげられる（Biochim. Biophys. Acta., 1312, 21 (1996))。

（2）本発明の細胞を含有する医薬

本発明の、胚性幹細胞から分化誘導した外胚葉細胞および外胚葉由来の細胞は、外胚葉由来の細胞の障害に基づく疾患の治療薬として用いることができる。

外胚葉由来の細胞の障害に基づく疾患としては、神経系細胞の障害に基づく疾患あるいは表皮系細胞の障害に基づく疾患があげられる。

神経系細胞の障害に基づく疾患としては、アルツハイマー症、ハンチントン舞踏病、バーキンソン病、虚血性脳疾患、てんかん、脳外傷、脊椎損傷、運動神経疾患、神経変性疾患、網膜色素変性症、内耳性難聴、ダウン症候群、多発性硬化症、筋萎縮性側索硬化症、神経毒物の障害に起因する疾患などが、表皮系細胞の障害に基づく疾患としては、火傷、外傷、創傷治癒、床擦れ、乾せんなどがあげられる。

外胚葉由来の細胞の障害に基づく疾患の治療薬としては、移植医療に利用可能な、障害を受けた細胞の機能と同じ機能を有する細胞、障害を受けた細胞の前駆細胞、障害を受けた細胞の機能を代償する細胞、障害を受けた細胞の再生を促進する機能を有する細胞が用いられる。

本発明の治療薬は、本発明の方法で用いることにより、胚性幹細胞より分化誘導した外胚葉細胞または外胚葉由来の細胞を精製することにより製造できる。

本発明の治療薬は、移植医療の目的に用いられるため、血清やウイルス等の不純物の混入が無いことが求められる。本発明の方法によれば、無血清培養条件下で、また、非生産的な濃度のレチノイン酸等の分化誘導剤を用いる必要もなく、外胚葉および外胚葉由来の細胞を分化誘導することができ、移植医療の目的に適している。

本発明の分化細胞の純度を高める方法は、上述のような胚性幹細胞を分化誘導して得られた外胚葉細胞あるいは外胚葉由来の細胞を、抗癌剤を含む培地中で培養する工程を含む。これにより、未分化な状態の細胞を除去することができ、より純度の高い分化細胞を得ることが可能で、医薬としてより好適となる。即ち、抗癌剤で処理することにより、目的とする分化細胞以外の細胞、例えば未分化な細胞を除去することができる。こうのような未分化な細胞は奇形腫瘍デラトーマの原因になることが危惧されるが、抗癌剤で処理することでその危険性を回避できる。

ここで、抗癌剤としては、マイトマイシンC、5-フルオロウラシル、アドリアマイシン、アラCまたはメトトレキセートなどがあげられる。これら抗癌剤は、分化誘導した細胞よりも未分化な状態の細胞に、より細胞毒性を示す濃度
で用いることが好ましい。例えば、これら抗癌剤を体に用いる日本業界の記載の濃度の100分の1～1倍の濃度が望ましい。

胚性幹細胞を分化誘導して得られた外胚葉細胞あるいは外胚葉由来の細胞を、抗癌剤を含む培地中で培養する工程とは、具体的には、前日に培地交換を行った培養系に、適切な濃度の抗癌剤（例えば、1～100μg/ml、好ましくは10μg/mlのマイトマイシンC）を添加し、5％の二酸化炭素を通気したCO₂インキュベーターで、37℃で数時間、好ましくは2～3時間培養する方法をあげることができる。

ここで使用する培地としては、分化誘導した細胞を培養することが可能な培地であればいかなるものも用いることができる。具体的には、上記2に記載の培地等をあげることができる。

本発明の治療薬は、上記の細胞（外胚葉細胞または外胚葉由来の細胞）に、薬理学的に許容される生理食塩水、添加剤および／または培地を含んでも構わないが、移植医療の目的に用いられるため、血清やウイルス等の不純物の混入が無いことが好ましい。本発明によれば、無血清培養条件下で、また、非生理的な濃度のレチノイン酸等の分化誘導剤を用いる必要もなく、胚性幹細胞より外胚葉細胞および外胚葉由来の細胞を分化誘導することができ、移植医療に有用である。

移植医療においては、組織適合性抗原の違いによる拒絶がしばしば問題となるが、上記3（2）に記載の体細胞の核を核移植した胚性幹細胞あるいは上記3（3）に記載の染色体上の遺伝子を改変した胚性幹細胞を用いることで克服できる。

また、上記3（2）に記載の体細胞の核を核移植した胚性幹細胞を分化誘導することで、体細胞の提供した個々の外胚葉細胞および外胚葉由来の細胞を得ることができる。このような個々の細胞は、その細胞自身が移植医療として有効のみならず、既存の薬物がその個体的に有功か否かを判断する診断材料としても有用である。さらに、分化誘導した細胞を長期に培養することで酸化ストレスや老化に対する感受性の判定が可能であり、他の個体由来の細胞と機能や寿命
を比較することで神経変性疾患の疾患に対する個人のリスクを評価することができ、それら評価データは将来の発病率が高いと診断される疾患の効果的な予防法を提供するために有用である。

移植の方法としては、対象となる疾患に適した方法であればいずれの方法も用いることができ、疾患ごとにそれぞれの疾患に適した公知の方法が知られている。例えば、疾患患者より胚性幹細胞を取得し、該胚性幹細胞から外胚葉細胞または外胚葉由来の細胞を分化誘導させたのちに、患者の疾患部位に移植することにより疾患を治療できる。具体的に、パーキンソン病患者に対する中絶胎児の脳細胞を移植する方法としては、Nature Neuroscience, 2, 1137 (1999) 等に記載の方法があげられる。

以下の実施例により本発明をより具体的に説明するが、実施例は本発明の範囲を限定するものではない。

図面の簡単な説明

第1図は、ヘパリン溶液によりSDIA活性を回収した結果を示したグラフである。ヘパリン (heparin; 0.001%) を含むハンクス平衡塩溶液、またはヘパリンを含まないハンクス平衡塩溶液によりPA6細胞から回収した溶液の、ES細胞の神経分化に与える影響を、神経マーカークラスIII βチューブリンを発現するコロニーの割合で縦軸に示した。なお、算定は、任意に選んだ100以上のコロニーを対象とした。

第2図は、各種ポリアニオン溶液によりSDIA活性を回収した結果を示したグラフである。1) ポリアニオンを含まないハンクス平衡塩溶液、2) 0.001% (w/v) デキストランスルフエート、3) 0.001% (w/v) ポリビニルスルフエート、4) 0.001% (w/v) ポリスチレンスルホン酸、5) 0.1% (w/v) カルボキシメチルセルロース、または、6) 0.1% (w/v) ヒアルロン酸を含むハンクス平衡塩溶液を用いてPA6から回収した溶液の、ES細胞の神経分化に与える影響を、
神経マーカークラスIII βチューブリンを発現するコロニーの割合で縦軸に示した。なお、算定は、任意に選んだ100以上のコロニーを対象とした。

第3図は、SDIA活性を含む溶液を培養器表面に固定化した結果を示したグラフである。ヘパリン（heparin; 0.001％）を含むハンクス平衡塩溶液、またはヘパリンを含まないハンクス平衡塩溶液によりPA6細胞から回収した溶液を表面に固定化した培養器上での、ES細胞の神経分化効率を、神経突起を有するコロニーの割合で縦軸に示した。なお、算定は、任意に選んだ10以上のコロニーを対象とした。

第4図は、SDIA活性を含む溶液とSDIA活性を含まない溶液を電気泳動で解析した図である。レーン1は分子量マーカーであり、後に各々の蛋白質の分子量を示した。レーン2およびレーン3は各々SDIA活性を含む溶液とSDIA活性を含まない溶液のSYPRO-Ruby染色像であり、レーン2の左脇に印した矢印は、SFRP1の位置を示す。レーン4およびレーン5は各々SDIA活性を含む溶液とSDIA活性を含まない溶液の抗SFRP1抗体によるウェスタンブロッティング像である。

第5図は、ES細胞EB5とPA6細胞との共培養の結果を示したコロニーを、(A) NCAM、(B) チューブリン、(C) ネスチンに対する抗体で染色した結果を示した顕微鏡写真である。

第6図は、ES細胞EB5とMEF細胞との共培養の結果を示したコロニーを抗NCAM抗体で染色した結果を示した顕微鏡写真である。

第7図は、ES細胞EB5とPA6細胞との共培養の結果を示したコロニーをチロシン水酸化酵素に対する抗体で染色した結果を示した顕微鏡写真である。

第8図は、ES細胞EB5とPA6細胞との共培養の結果を示したコロニーの中で各種マーカー陽性のコロニーの割合を経時的に示したグラフである。

第9図は、BMP4無添加でES細胞EB5とPA6細胞との共培養の結果を示したコロニーの中で、(A) NCAMに対する抗体、(B) ネスチンに対する抗体、(C) Eカドヘリンに対する抗体および(G) ケラチン14に対する抗体を用いて染色した結果、およびBMP4添加でES細胞とPA6細胞との共培養の結果を示したコロニーの
中で、(D) NCAMに対する抗体、(E) ネスチンに対する抗体、(F) Eカドヘリンに対する抗体および(H、I) ケラチン14に対する抗体を用いて染色した結果を示した顕微鏡写真である。

第10図は、PA6細胞とES細胞EB5を、フィルターを介して共培養した場合(フィルター)、フィルターを介さないで共培養した場合(PA6)、およびPA6細胞なしにES細胞EB5をゼラチン上で培養した場合(ゼラチン)とで、出現したコロニーをチューブリンに対する抗体を用いて染色した結果を示したグラフである。

第11図は、ES細胞EB5とPA6細胞との共培養の結果出現した分化細胞中のNurr1、Ptx3およびG3PDHの発現量をRT-PCR法にて解析した結果を示した図である。胎生12日のマウス頭部の細胞(図中、Embryoと表記)、PA6細胞と12日間共培養したES細胞EB5(図中、ES+PA6と表記)および対照として12日間培養したES細胞EB5(図中、ESと表記)を材料として、RT-PCRを行いアガロース電気泳動にて解析した結果を示した。

第12図は、ES細胞EB5とPA6細胞との共培養の結果出現した分化細胞を脱分化刺激することで、培地中に分泌された成分をHPLC法にて解析した結果を示したクロマトグラフである。対照として、フィーダー細胞として用いたPA6細胞のみに対して同様の脱分化刺激を与えた際の分泌された成分の解析を行った結果を右上のクロマトグラフに示した。

第13図は、モノクローナル抗体KM1306とPA6細胞との反応性を、セルソーターを用い蛍光抗体法により解析した結果を示すものである。対照として、抗体の種およびサブクラスが一致したラットIgMモノクローナル抗体KM2070を用いて同様の解析を行った結果を示した。縦軸は細胞数、横軸は蛍光強度を示す。

第14図は、モノクローナル抗体KM1307とPA6細胞との反応性を、セルソーターを用い蛍光抗体法により解析した結果を示すものである。対照として、抗体の種およびサブクラスが一致したラットIgMモノクローナル抗体KM2070を用いて同様の解析を行った結果を示した。縦軸は細胞数、横軸は蛍光強度を示す。
第15図は、モノクローナル抗体KM1310とPA6細胞との反応性を、セルソーサーを用い蛍光抗体法により解析した結果を示すものである。対照として、抗体の種およびサブクラスが一致したラットIgMモノクローナル抗体KM2070を用いて同様の解析を行った結果を示した。縦軸は細胞数、横軸は蛍光強度を示す。

発明を実施するための最良の形態

実施例1

ストローマ細胞からのSDIA活性因子の回収:

ストローマ細胞に存在するSDIA活性因子の、溶液中への回収を試みた。

直径10cmのディッシュ上ほぼコンフルエンスにまで培養したPA6を、10mlのPBS（-）（インビトロジェン社製）で2回、10mlのハンクス平衡塩液溶液（インビトロジェン社製）で1回洗浄後、0.001%（w/v）〜0.1%（w/v）のヘパリン（ナカライ社製）を含むハンクス平衡塩液溶液3mlを加えて37℃で30分間放置した後溶液を回収した。得られた溶液を、上記と同様に洗浄した10cmディッシュ上のPA6に加え、同様に37℃で30分間放置した後溶液を回収した。さらにこの操作をもう一枚の10cmディッシュ上のPA6に対して行って回収した溶液について、ES細胞への効果を検討した。この時、ヘパリンを含まないハンクス平衡塩溶液を用いて同様に回収した溶液を陰性対照とした。

上記で得た溶液と、参考例1に記載の方法により無血清培地を用いて単一細胞状態に調整したES細胞EB5を含む溶液を1:2の割合で混合し、これをゼラチンコーティングを施したプラスチック培養容器に1,250細胞／cm²の細胞密度で播種して、37℃で5%の二酸化炭素を通気したCO₂インキュベーターにて14日間培養した。
培養後の細胞を4%バリフォルムアルデヒド溶液により固定し、汎神経マークーであるNCAMに対する抗体（Chemicon社製）、神経特異的なマーカーであるクラスIIIβチューブリンに対する抗体（Babco社製）、神経前駆細胞特異的なマーカーであるネスチンに対する抗体（Pharmingen社製）を用いて、Using Antibodies, Cold Spring Harbor Laboratory Press (1999)に記載の方法に従って免疫染色を行った。

得られたコロニーのうち任意に100以上のコロニーを選び神経マーカーを発現する割合を算定した結果、第1図に示すとおり、陰性対照であるヘパリンを含まないハンクス平衡塩溶液にて回収した溶液を添加した場合、クラスIIIβチューブリンを発現するコロニーの割合は9.9%（n=101）だったのに対し、0.001%（w/v）のヘパリンを含むハンクス平衡塩溶液にて回収した溶液を添加した場合では、68%（n=256）と有意に上昇した（第1図）。従って、ヘパリンを含むハンクス平衡塩溶液によって、SDIA活性因子を溶液中に回収できることが明らかとなった。

実施例2
SDIA活性因子の回収が可能なポリアミオン化合物の選択:

実施例1に記載したSDIA活性因子の回収法において、ヘパリン以外に活性の回収が可能な化合物を探索した。ヘパリンの代わりに、0.001%（w/v）デキストランスルフェート（シグマ社製）、0.001%（w/v）ポリビニルスルフェート（シグマ社製）、0.001%（w/v）ポリスチレンスルホン酸（東ソー社製）、0.1%（w/v）カルボキシメチルセルロース（和光純薬社製）、0.1%（w/v）ヒアルロン酸（紀文ケミカルフーズ社製）を含むハンクス平衡塩溶液を用いて、実施例1に記載の方法により溶液を回収し、ES細胞への効果を検討した。この時、これら化合物を含まないハンクス平衡塩溶液を用いて同様に回収した溶液を陰性対照とした。

84
得られたコロニーのうち任意に100以上のコロニーを選び神経マーカーを発現する割合を算定した結果、第2図に示すとおり、クラスIIIβチーブリンを発現するコロニーの割合が、陰性対照（10.2％、n=118）に比べて、デキストランスルフェート（67.2％、n=238）、ポリビニルスルフェート（54.8％、n=155）、ポリチレンスルホン酸（48.7％、n=229）、カルボキシメチルセルロース（34.6％、n=358）、およびヒアルロン酸（19.8％、n=372）を用いた場合有意に上昇した。従って、デキストランスルフェート、ポリビニルスルフェート、ポリチレンスルホン酸、カルボキシメチルセルロース、ヒアルロン酸等のポリアニオン化合物を用いることによってSDIA活性因子を回収できることが明らかとなった。

実施例3
回収したSDIA活性因子を含む溶液の培養器表面への固定:

溶液中に回収したSDIA活性因子の、培養器表面への固定を試みた。

無処理ポリチレン製24穴細胞培養ディッシュをPA-300AT型プラズマ処理装置（大熊エンジニアリング社製）の反応器内に加え、5Paの酸素雰囲気下でプラズマ処理を30秒間行った。処理後直ちに空気中へ取り出し、各穴へ2％のポリエチレンイミン溶液（シブマ社製）を400μl加えて5分間静置後上清を吸収し、60℃で6時間乾燥させるとともに、ポリエチレンイミンをポリチレン表面に固定化した。この操作の後、50℃の水中に30分間浸漬することで、表面に固定化されていないポリエチレンイミンを除去した。ポリエチレンイミンを固定化した2細胞培養ディッシュの各穴に、実施例1に記載の方法により0.001％(w/v)ヘパリン溶液を用いて回収したSDIA活性因子を含む溶液を1.5ml入れ37℃で24時間放置することで、SDIA活性因子を培養ディッシュの表面に固定化した。この時、陰性対照として、ヘパリンを含まないハンクス平衡塩溶液を用いて回収した溶液も同様に固定した。
以上のようにSDIA活性因子を固定化した培養ディッシュ上に、参考例1に記載の方法により単一細胞状態に調製したES細胞EB5を1.250細胞/cm²の細胞密度で播種し、実施例1に記載の方法と同様に培養した。

得られたコロニーのうち任意に10以上のコロニーを選び神経突起を有する割合を算定した結果、第3図に示すとおり、陰性対照の場合0％（n=13）だったのに対し、ヘパリンによって回収したSDIA活性因子を含む溶液をコートした培養器上では14.7％（n=56）と有意に上昇した。従って、SDIA活性因子を本法により培養器表面に固定できることが明らかとなった。

実施例4
SDIA活性を有する蛋白質の同定:

実施例1に示したように、PA6細胞に0.001％ヘパリンを含むハンクス平衡塩溶液とヘパリンを含まない溶液を加えて、SDIA活性を含む溶液と、SDIA活性を含まない溶液とを取得した。200μLの各溶液に100％（w/v）トリクロ酢酸溶液（ナカライテスク社製）を22μL添加した後、氷上で3時間放置した。18800gで20分間遠心分離後、上澄を取り除き、残渣を2％SDSおよび5％2-メチルカプロエタノールを含む62.5mmol/Lトリス塩酸緩衝液（pH6.8）に溶解した。各サンプルを分子量マーカーと共に12.5％SDS–PAGEに供し、メーカー推奨の方法に従いSYPRO–Ruby（BioRad社製）で蛻光染色した。染色後のゲルはMolecular Imager FX（BioRad社、励起波長532nm、555nm longpassフィルター）を使用して泳動像を取得した（第4図、レーン1～3）。

レーン2および3の泳動パターンを1次元電気泳動解析ソフトウェアQuantity One（BioRad社製）で比較することにより、第4図において矢印で示した分子量約38kDaのバンドがSDIA活性を含む溶液（レーン2）に多く存在することが判明した。このバンドをゲルより切り出した後、25mmol/L NH₄HCO₃中で25ngのSequencing Grade Modified Trypsin（プロメガ社製）と共に37℃で14時間反応させた。トリプシン消化によって生じたペプチド断片は逆相HPLC（Magic
C18カラム、Microm BioResources社製）を用いて、0.1％ギ酸を含む5〜60％のアセトニトリル直線濃度勾配によって分離し、イオントラップ型質量分析計LCQ（サーモクエスト社製）によってペプチドを検出した。検出したペプチドの質量数（MS）およびコレクションガスによってペプチド結合部位を開裂させて得た質量数（MS/MS）の値は、MASCOTソフトウェア（Matrics Sciences社製）を用いて、蛋白質データベースに対して検索した結果、マウス由来のSFRP1と同定した。

さらに上述したSDIA活性を含む溶液とSDIA活性を含まない溶液のトリクロ酢酸沈殿物は12.5％SDS-PAGEを行った後にPVDF膜へ電気的に転写し、5％スキムミルク溶液でプロッキングの後、抗SFRP1ポリクローナル抗体FRP-1（H-90）（Santacruz社製）とHRP標識抗ウサギIgG抗体（アマシャムバイオサイエンス社製）を用いたウェスタンプロッティングを行った。検出はECLウェスタンプロッティング検出システム（アマシャムバイオサイエンス社製）を用いて実施した（第4図、レーン4および5）。その結果、SDIA活性を含む溶液（レーン4）のみにSFRP1を検出した。

また、上述のSDIA活性を含む溶液を、抗SFRP1ポリクローナル抗体FRP-1（H-90）を結合させたプロテインGセファロース担体と4℃で15時間反応させ、溶液中のSFRP1を除去したサンプルを取得し、実施例1で述べた方法によりSDIA活性を評価したところ、未処理のSDIA活性を含む溶液と比較してSDIA活性の減弱が認められた。従って、SFRF1はSDIA活性を有する蛋白質であることが明らかとなった。

参考例1

脳性幹細胞のドーパミン作動性神経細胞への分化：

PA6細胞またはマウス胎児初代培養纖維芽細胞（MEF細胞）との共培養を行なった。

ES細胞EB5は、Dulbecco MEM培地に10％の牛胎児血清（Fetal Bovine Serum, ES Cell-Qualified；ライテックオリエンタル株式会社製）、2mMグルタミン、100μM MEM Non-Essential Amino Acids溶液、50U/mlペニシリン、50U/mlストレプトマイシン、100μM 2-メルカプトエタノール、および1,000 U/ml LIF（ESGRO Murine LIF；ライテックオリエンタル株式会社製）を加えた培地を用い、ゼラチンコートしたプラスチック培養皿上でマニピュレーティング・ザ・マウス・エンブリオ・ア・ラボラトリール・マニュアルに記載の方法に従って未分化な形質を保ちながら培養した。

PA6細胞は、10％牛胎児血清（GIBCO-BRL社製）を含むα-MEM培地を用い、児玉らの方法（H. Kodamaら、J. Cell Physiol., 112, 89 (1982)）に従って培養した。

MEF細胞は、Dulbecco MEM培地に10％の牛胎児血清（Fetal Bovine Serum, ES Cell-Qualified；ライテックオリエンタル株式会社製）、2mMグルタミン、50U/mlペニシリンおよび50U/mlストレプトマイシンを加えた培地を用い、マニュピュレーティング・ザ・マウス・エンブリオ・ア・ラボラトリール・マニュアルに記載の方法に従って調製し、培養した。

単一細胞状態としたES細胞と、PA6細胞またはMEF細胞とを共培養することで、ES細胞を分化誘導させた。

単一細胞状態としたES細胞EB5の調製は、以下のような行った。

培地交換を行い30％コンフルエント状態にまでES細胞EB5を増殖させた。培地を除き、PBS(-)を用いて2回洗浄した後、1mM EDTAおよび0.25％トリプシン
を含むPBS（-）を加え37℃で20分間培養した。該培養液を、Glasgow MEM培地に10％KNOCKOUT SR（GIBCOBRL社製）、2mMグルタミン、100μM MEM Non-Essential Amino Acids溶液、1mMビリピン酸、50U/mlペニシリン、50U/mlストレプトマイシンおよび100μM 2メルカプトエタノールを加えた培地（以下、「無血清培地」と略す）に懸濁した。該懸濁液を、4℃、200×gで5分間遠心分離を行い、沈殿した細胞を再び無血清培地に懸濁することで単一細胞状態としてES細胞EB5を調製した。

PA6細胞またはMEF細胞は、あらかじめ培地交換を行わない細胞密度がほぼコンフルエンツ状態にまで達した細胞を、PBS（-）で2回洗浄後、上述の無血清培地を加えることでフィーダー細胞として調製した。

調製したPA6細胞が培養されている培養器に、単一細胞状態に調製したES細胞EB5を10〜100細胞/cm²の細胞密度で播種し、4日目、6日目、7日目に新鮮な無血清培地を用いて培地交換を行い、37℃で5％の二酸化炭素を通気したCO₂インキュベーターにて8日間培養した。コントロールとしてゼラチンコートのだけの培養器に上記のES細胞を同様に播種し同様に培養した。

8日間培養後、培養器内の培地を除き、4％パラフォルムアルデヒド溶液を加え30分間固定した。固定した細胞を、代表的な神経マーカーであるNCAMに対する抗体（Chemicon社製、以下、「抗NCAM抗体」と略す）、神経特異的なマーカーであるクラスIIIβチューブリンに対する抗体（Babco社製、以下、「抗チューブリン抗体」と略す）、神経前駆細胞特異的なマーカーであるネスチンに対する抗体（Pharmingen社製、以下、「抗ネスチン抗体」と略す）を用い、Using Antibodies, Cold Spring Harbor Laboratory Press (1999)に記載の方法に従って免疫染色を行った。

上記と同様の方法で、PA6細胞とES細胞EB5とを10日間共培養した。培養器内の細胞を固定後、ドーパミン作動性神経のマーカーであるチロシン水酸化酵素に対する抗体（Chemicon社製）、コリン作動性神経のマーカーであるVAcHTに対する抗体（Chemisco社製）、GABA作動性神経のマーカーであるGADに対する抗体
(Chemicon社製）、セロトニン作動性神経のマーカーであるセロトニンに対する抗体（Dia Sorin社製）あるいはノルアドレナリン神経マーカーであるドーパミンβ水酸化酵素に対する抗体（PROTOS Biotech社製）を用いて免疫染色を行った。

培養器として組織培養用3cmデッシュ（プラスチック製、FALCON社製）を用い、1）PA6細胞をフィーダー細胞として調製したデッシュ、2）MEF細胞をフィーダー細胞として調製したデッシュ、3) ゼラチンコートしただけのデッシュのそれぞれに、200個のES細胞EB5を播種し培養した結果を図に示した。

単一細胞状態で播種されたES細胞EB5は互いに凝集することなくフィーダー細胞あるいはデッシュ表面に付着し、細胞分裂を繰り返しコロニーを形成した（以下、「ES細胞由来のコロニー」あるいは単に「コロニー」という）。

第5図はPA6細胞との共培養の結果、出現したコロニーを（A）抗NCAM抗体、（B）抗チロシン抗体、（C）抗ネスチン抗体で染色した結果を示した。

第6図はMEF細胞との共培養の結果、出現したコロニーを抗NCAM抗体で染色した結果を示した。

第7図はPA6細胞との共培養の結果出現したコロニーをチロシン水酸化酵素に対する抗体（以下、「チロシン水酸化酵素抗体」と略す）で染色した結果を示した。

第8図はPA6細胞との共培養の結果出現したコロニーの中で各種マーカー陽性のコロニーの割合を経時的に示した。コロニーの割合は、上述の1）、2）、3）のそれぞれの条件で共培養を行ったデッシュを160枚づつ用意し、出現した全てのコロニーの染色強度を顕微鏡で観察することによって算出した。

条件1）のPA6細胞をフィーダー細胞として調製した共培養系ではES細胞EB5由来のコロニーの90％(n=160)は第5図Aに示すようにNCAM陽性性であった。それらのコロニーでは抗チロシン抗体（第5図B）、抗ネスチン抗体（第5図C）とも染色陽性であった。一方、条件2）のMEF細胞との共培養では有意な神経マーカーの出現は認められなかった（第6図）。ゼラチンコートした培養
器上で培養したコロニーも、条件2）のMEF細胞との共培養で出现したコロニーと同様の染色結果であった。条件1）のPA6細胞をフィーダー細胞として調製した共培養系では抗チロシン水酸化酵素抗体に陽性のES細胞由来のコロニーが高頻度に出現した（89％）（第7図）。PA6細胞とES細胞EB5との共培養の結果、経時的には第8図に示すように、共培養開始3日後からネスチン陽性のコロニーが、4日後からチューブリン陽性のコロニーが出現している。また、チロシン水酸化酵素陽性のコロニーは5日後から出現し、10日後でピークに達した。この間、ノルアドレナリン神経マーカーであるドーパミンβ水酸化酵素に対する抗体による免疫染色は陰性であった。10日後におけるコリン作動性神経のマーカーであるVAcT陽性のコロニーは5％、GABA作動性神経のマーカーであるGADに陽性のコロニーは15％、セロトニンに陽性のコロニーは4％であった。

なお、ES細胞として代表的な129系マウス由来のCE細胞（M. R. Kuehnら、Nature, 326, 295 (1987); ES細胞を用いた変異マウスの作製）を用いた共培養の場合にも上記と同様の結果が得られた。

参考例2
胚性幹細胞の非神経系外胚葉細胞への分化:

参考例1に記載の無血清培地に、0.5nmol/lのBMP4（R&D社製）を添加した培地を作製した。作製したBMP4添加無血清培地を参考例1で用いた無血清培地の代わりに用い、参考例1に記載した方法に従ってES細胞EB5とPA6細胞の共培養を行なった。8日間の培養後、抗NCAM抗体、抗ネスチン抗体および非神経外胚葉細胞マーカーであるEカドヘリリンに対する抗体（宝酒造社製）を用いて細胞免疫染色を行なった。コントロールとして、BMP4未添加無血清培地を用いて共培養を行った。結果を第9図A、B、C、D、E、Fに示した。

また、BMP4添加無血清培地を用いて8日間培養した後、10％牛胎児血清（GIBCOBRL社製）を含むGlasgow MEM培地に交換し、さらに3日間培養した。培養細胞を4％パラフォルマールデヒド溶液を加えて30分間固定し、皮膚表皮細
胞マーカーであるケラチン14に対する抗体（Biomega社製）を用いて、細胞の免疫染色を行なった結果を、牛血清未添加培地を用いてさらに3日間培養した場合と比較して第9図G、H、Iに示した。

参考例1に示したように、BMP4未添加培地を用いた場合、ES細胞由来のコロニーは抗NCAM抗体陽性（第9図A）、抗ネスチン抗体陽性（第9図B）であった。それに対し、Eカドヘリン陽性のコロニーは少数（18％）であった（第9図C）。一方、BMP4添加無血清培地を用いた培養ではES細胞由来のコロニーは抗NCAM抗体陰性（第9図D）、抗ネスチン抗体陰性（第9図E）であったが、Eカドヘリン陽性のコロニーが高頻度に（98％）出現した（第9図F）。ケラチン14陽性のコロニーは、BMP4未添加培地を用いた場合全く出現しなかった（第9図G）が、BMP4添加無血清培地を用いた培養では34％の頻度で出現した（第9図H）。BMP4添加無血清培地を用いて8日間培養した後、10％牛胎児血清を含むGlasgow MEM培地を用いてさらに3日間培養したものでは、ケラチン14陽性のコロニーの頻度（47％）もコロニーのサイズも共に有意に増加した（第9図I）。

なお、ES細胞として代表的な129系マウス由来のCCE細胞（M. R. Kuehnら、Nature、326、295（1987）; ES細胞を用いた変異マウスの作製）を用いた共培養の場合にも上記と同様の結果が得られた。

参考例3
胚性幹細胞をドーパミン作動性神経細胞へ分化させる活性を有するストローマ細胞の選択:

PA6細胞、MEF細胞、STO細胞、NIH/3T3細胞、OP9細胞、CHO細胞、MDCK細胞、3Y1細胞あるいはCOS細胞（以下、「各種細胞」と呼ぶ）とES細胞EB5との共培養を行なった。

参考例1に記載の方法に従って、上述の各種細胞とES細胞EB5とを8日間共培養し、抗NCAM抗体で免疫染色し、陽性のES細胞由来のコロニーの割合を調べた。その結果、PA6細胞、OP9細胞、NIH/3T3細胞は、それぞれ95%、45％、10％の陽性率を示し、これら細胞はES細胞に対して有為な神経分化誘導活性を有することが分かった。一方、他の細胞は有意な神絨分化誘導活性を示さなかった。

次に、パラフォルムアルデヒドで固定した上述の各種細胞とES細胞との共培養を行なった。

あらかじめ培地交換を行ない細胞密度がほぼコンフルエント状態にまで達した各種細胞を、PBS(-)で2回洗浄後、4％パラフォルムアルデヒド溶液を加え4℃で30分間放置することで固定した。固定した細胞をPBS(-)溶液で数回洗浄することで各種細胞を調製した。

調製した各種細胞をフィーダー細胞として用い、参考例1に記載の方法に従ってES細胞EB5との共培養を行なった。パラフォルムアルデヒドで固定した細胞を用いた場合、PA6細胞、OP9細胞、NIH/3T3細胞、MEF細胞、STO細胞との共培養でES細胞の神経細胞への分化が高率に観察されたが、3Y1細胞、COS細胞、MDCK細胞、CHO細胞との共培養では観察されなかった。このことから、一群のストローマ細胞すなわち、PA6細胞、OP9細胞、NIH/3T3細胞、MEF細胞、STO細胞が神経分化誘導活性を有すること、またその活性がパラフォルムアルデヒドで固定しても残存することが分かった。また、MEF細胞、STO細胞では、パラホル
ムアルデヒド処理により神経分化誘導活性を阻害する機構が解明されることが示唆された。

参考例4
ストローマ細胞有する、胚性幹細胞を神経細胞へ分化させる活性の解析:
ストローマ細胞有する胚性幹細胞を神経細胞へと分化させる活性を解析するために、多孔性フィルターを介してES細胞とストローマ細胞との共培養を行なった。
多孔性フィルターとして孔径0.45μmの6穴用セルカルチャーインサート（商品番号3090、FALCON社製）を用いた。PA6細胞をセルカルチャーインサートの中側に培養し、フィルター上に接着したPA6細胞を参考例1に記載の方法に従ってフィーダー細胞として調製した。
ゼラチンコートした6穴カルチャーディッシュ（FALCON社製）に、参考例1に記載した無血清培地に懸濁したES細胞EB5を400個/穴で播種し、上述のPA6細胞をフィーダー細胞として調製したセルカルチャー・インサートを穴に挿入して培養した。即ち、6穴カルチャーディッシュ上に播種されたES細胞EB5と、フィーダー細胞としてセルカルチャー・インサート内に調製されたPA6細胞とをフィルター膜を介して共培養した。培養開始後4日目、6日目、7日目に新鮮な無血清培地を用いて培地交換を行い、37℃で5％の二酸化炭素を通気したCO₂インキュベーターにて8日間培養した。8日間培養後、培地を除き、4％パラフォルムアルデヒド溶液を加え30分間固定した。固定した細胞を、神経特異的なマーカーであるチューブリンに対する抗体（Babco社製）を用い、Using Antibodies, Cold Spring Harbor Laboratory Press（1999）に記載の方法に従って免疫染色を行なった。チューブリン陽性のコロニーの出現割合をフィルターを介さないで培養した場合として比較して第10図に示した。
PA6細胞とES細胞EB5とをフィルターを介して共培養した場合（第10図、フィルター）は25％のコロニーでチューブリン陽性となった。これはフィルター
を介さないで培養した場合（第10図、PA6）に比して1/3程度の効率であるが、PA6細胞なしでゼラチン上で培養した場合（第10図、ゼラチン；阳性率3%以下）に比して有意に高い神経分化が認められた。

参考例5

ドーパミン作動性神経細胞に分化した胚性幹細胞の脳内移植の解析（その1）:

参考例1に記載の方法に従い、PA6細胞をフィーダー細胞として用い、ES細胞EB5をBMP4未添加無血清培地で10日間培養した。すなわち、6cmの組織培養用デッシュ上ではほぼコンフルエンスにまで増殖したPA6細胞をフィーダー細胞として用い、このフィーダー細胞上にES細胞EB5を2000個/デッシュで播種し、4日目、6日目、8日目に新鮮な無血清培地を用いて培地交換を行い、37℃で5%の二酸化炭素を通じたCO₂インキュベーターにて10日間培養した。

培養の結果分化誘導された細胞を、細胞系塩トレーサーのDiI（Molecular Probe社製）を用い、添付資料に従って蛍光標識した。標識後、Papain Dissociation Systemキット（Worthington社製）を用い、キット添付書類の方法に従ってパピアイ酵素処理を室温で5分間行い、形成されたES細胞由来の各コロニーをほぼ一塊としてフィーダー細胞から分離した。なお、コロニー内の神経細胞にダメージを与えることを避けるため、分化誘導により形成された各コロニーをできるだけ一塊としてフィーダー細胞から分離し、移植に用いた。

キットに添付のパピアイ阻害剤で酵素を失活させた後、15mlの遠心チューブを用いて300rpmで5分間遠心分離し、分化誘導したES細胞塊を回収した。6cmデッシュ1枚分より回収された分化誘導ES細胞塊を5μlのN₂添加Glasgow MEM培地（Gibco LifeTech社製）に浮遊させ、下記の移植に用いた。

移植および薬物注入はCurrent Protocols in Neuroscience（John Wiley & Sons社（1999））3.10に記載の方法に従って行った。定位脳固定装置（ナリシゲ社製）にネプタールで麻酔したC57BL/6マウスを固定し、The Mouse Brain in Stereotaxic Coordinates（Academic Press社（1997））に従って線条体
を位置同定した。局所のドーパミン神経を破壊するために、6-
hydroxydopamine（2, 4, 5-trihydroxyphenethylamine）hydrobromide（以下、
「6-OHDA」という）をPBSに8 mg/ mlで溶解し、これを微小ガラス管を用いて、
片側の線条体の吻側と尾側に1個所4μlずつ計2個所注入した。一部のマウスで
は3日後、注入側の錐体外路症状を確認した上で、針先平坦の26Gハミルトンシ
リンジを用いて同側の線条体中央付近に上述の方法で神経細胞に分化誘導させ
たES細胞塊の浮遊液2μlを4分間かけて注入した。6-OHDA処理より8日後、マウ
ス脳を灌流固定して組織標本を作製し、それを、ドーパミン作動性神経のマー
カーであるチロシン水酸化酵素に対する抗体（Chemicon社製）とドーパミント
ランスポーターに対する抗体（Chemicon社製）を用いて免疫染色を行った。

ドーパミン神経の破壊のため6-OHDAで処理し細胞移植を行わなかった群では、
同側の線条体内においてチロシン水酸化酵素およびドーパミントラスポート
ーを発現している神経組織は正常の40％以下になっていた（n=6）。それに対
し、分化誘導したES細胞の移植を行った群ではDiI標識された移植片を中心に、
同側の線条体内におけるチロシン水酸化酵素およびドーパミントラスポート
ーの発現領域が有為に回復し、全体で75％程度となり（n=6）、移植によるド
ーパミン作動性神経細胞の回復が観察された。

参考例6

ドーパミン作動性神経細胞に分化した胚性幹細胞の胸内移植の解析（その2）：

参考例1に記載した方法に従い、PA6細胞をフィーダー細胞として用い、ES
細胞EB5をBMP4未添加無血清培地で8日間培養した。すなわち、6cmの組織培養
用デッシャ上でほぼコンフルエントにまで増殖したPA6細胞をフィーダー細胞
として用い、このフィーダー細胞上にES細胞EB5を2000個/デッシャで播種し、
4日目、6日目に新鮮な無血清培地を用いて培地交換を行い、37℃で5％の二酸
化炭素を通気したCO2インキュベーターにて8日間培養した。
その後さらに、2mmol/lグルタミン、1mmol/lビリビン酸、0.1mmol/l MEM Non-Essential Amino Acids溶液、0.1mmol/l 2-メルカプトエタノール、およびN₂（GIBCO BRL社製、100倍原液を100分の1添加）を添加したGlasgow MEM培地（以下、「N₂添加Glasgow MEM培地」と表記する。）を用い4日間培養した。

培養後、マニュアルに記載の方法に従い10μg/mlメイトマイシンC（MMC）を含む培地（上記Glasgow MEM培地）で2時間培養を行った。

上記培養の結果分化誘導された細胞を、Papain Dissociation systemキット（Worthington社製）を用い、添付書類の方法に従ってパパイン酵素処理を室温で5分間キット行い、形成されたES細胞由来の各コロニーをほぼ一塊としてフィーダー細胞から分離した（なお、コロニー内の神経細胞に損傷を与えることを避けるため、分化誘導により形成された各コロニーをできるだけ一塊としてフィーダー細胞から分離した）。コロニーを分離後、コロニーを形成する細胞を細胞系譜トレーサーのDiI（Molecular Probe社製）を用い添付資料に従い、5μg/ml CM-DiI、4mg/mlグルコースを含むPBS溶液で室温20分間反応させることで蛻光標識した。標識後、N₂添加Glasgow MEM培地を用いて洗浄し、N₂添加Glasgow MEM培地1μlに約4×10⁶個の細胞が含まれるように調製し、下記の移植に用いた。

移植および薬物注入はCurrent Protocols in Neuroscience（John Wiley & Sons 社、1999）3.10に記載の方法に従って行った。定位脳固定装置（ナリシゲ社製）にネプタールで麻酔したC57BL/6マウスを固定し、The Mouse Brain in Stereotaxic Coordinates（Academic Press社、1997）に従って線条体を位置同定した。局所のドーパミン神経を破壊する6-OHDAをPBSに8μg/μlで溶解し、これを微小ガラス管を用いてThe Mouse Brain in Stereotaxic Coordinates（Academic Press社製、1997）に従い片側の線条体に1カ所0.5μlずつ計3カ所((A+0.5, L+2.0, V+3.0) (A+1.2, L+2.0, V+3.0) (A+0.9, L+1.4, V+3.0))に注入した。一部のマウスでは3日後、注入側の雑体外路症状を確認した上で、
針先平坦の26Gハミルトンシリンジを用いて同側の線条体中央付近（A+0.9, L±2.0, V±3.0）に上述の方法で神経細胞に分化誘導させたES細胞塊の浮遊液1μlを3分間かけて注入した。対照群には1μlのN₂添加Glasgow MEM培地を注入した。6-OHDA処理により14日後マウス脳を摘出し、ドーパミン作動性神経のマーカーであるチロシン水酸化酵素に対する抗体（Chemicon社製）とドーパミントランスポーターに対する抗体（Chemicon社製）を用いて免疫染色を行った。

ドーパミン神経を破壊する6-OHDAで処理し細胞移植を行わなかった群では、同側の線条体内においてチロシン水酸化酵素およびドーパミントランスポーターを発現している神経組織は正常の15%以下になっていた（n=5）。それに対し、移植移植を行った群ではFigI標識された移植片を中心に、同側の線条体内におけるチロシン水酸化酵素およびドーパミントランスポーターの発現領域が有意に回復し、全体で50%程度となった（n=5）。また、移植2週間後においても奇形腫テラトオーマの形成は観察されなかった。

参考例7
胚性幹細胞の神経性外胚芽細胞への分化過程の解析:

参考例1に記載の方法に従い、PA6細胞をフィーダー細胞として用い、ES細胞EB5をBMP4未添加無血清培地で8日間培養した。すなわち、3cmの組織培養用デッシュ上でほぼコンフルエンスにまで増殖したPA6細胞をフィーダーとして用い、このフィーダー細胞上にES細胞EB5を200個/デッシュで播種し、4日目、6日目、7日目に新鮮な無血清培地を用いて培地交換を行い、37℃で5%の二酸化炭素を通気したCO₂インキュベーターにて8日間培養した。

8日間共培養後、参考例1に記載の方法に従って細胞を固定し、抗NCAM抗体、抗クラスIIIβチュープリン抗体、抗ネスチン抗体、プレシナップス特異的なマーカーであるシナプトフィジン（synaptophysin）に対する抗体（Sigma社製）、神経上皮細胞（neuroepithelium）を認識するRC2抗体（Developmental Studies Hybridoma Bank社製）、中胚葉細胞を認識するMF20抗体
(developmental Studies Hybridoma Bank社製)、同じく中胚葉細胞においてその発現が観察されているPDGF受容体αおよびFlk1に対する抗体（S.I. Nishikawaら、Development, 125, 1747 (1998)）を用いてES細胞EB5とPA6細胞との共培養の結果出現したコロニーの免疫染色を行った。

ES細胞EB5とPA6細胞の共培養の結果出現したコロニーのほとんどは、参考例1で示した結果同様、抗NCAM抗体で染色された。また、抗体二重染色の結果、抗チューブリン抗体陽性のコロニーは抗シナプトフィジン抗体によって染色され、ネスチン陽性のコロニーは抗RC2抗体によって染色された。一方、中胚葉細胞のマーカーであるPDGF受容体α、Flk1、およびMF20に対する各種抗体で染色されるコロニーは全コロニー2%以下とほとんど観察されなかった。従って、PA6細胞との共培養によるES細胞の神経細胞誘導の過程には中胚葉系細胞の誘導は実質的に伴わないことが示唆された。

なお、ES細胞として代表的な129系マウス由来のCCE細胞（M. R. Kuehnら、Nature, 326, 295 (1987); ES細胞を用いた変異マウスの作製）を用いた共培養の場合にも上記と同様の結果が得られた。

参考例8

胚性幹細胞の非神経性外胚葉細胞への分化過程の解析：

参考例1に記載の無血清培地に0.5mmol/LのBMP4（R&D社製）を添加した培地を作製した。作製したBMP4添加無血清培地を参考例1で用いた無血清培地の代わりに用い、参考例1に記載した方法に従ってES細胞EB5とPA6細胞との共培養を行った。すなわち、3cmの組織培養用デッシャ上でほぼコンフルエンントにまで増殖したPA6細胞をフィーダーとして用い、このフィーダー細胞上にES細胞を200個/デッシャで播種し、4日目、6日目、7日目に新鮮な培地を用いて培地交換を行い、37℃で5%の二酸化炭素を通気したCO₂インキュベーターにて8日間培養した。

99
8日間共培養後、参考例1に記載の方法に従って細胞を固定し、抗NCAM抗体、抗Eカドヘリン抗体、中胚葉細胞を認識するMF20抗体（Developmental Studies Hybridoma Bank社製）、同じく中胚葉細胞においてその発現が観察されているPDGF受容体αおよびFlik1に対する抗体（S.I. Nishikawaら、Development, 125, 1747 (1998)）を用いてES細胞とPA6細胞の共培養の結果出現したコロニーの免疫染色を行った。

ES細胞とPA6細胞をBMP4添加無血清培地を用い共培養することで、参考例2で示した結果と同様、NCAM陰性Eカドヘリン陽性のコロニーが高頻度に出現した。一方、中胚葉細胞のマーカーであるPDGF受容体α、Flik1、およびMF20に対する各種抗体で染色されるコロニーは全コロニーの5%以下とほとんど観察されなかった。従って、BMP4存在下、PA6細胞との共培養によるES細胞の非神経系外胚葉細胞への誘導の過程には中胚葉系細胞の誘導は実質的に伴わないことが示唆された。

なお、ES細胞として代表的な129系マウス由来のCCE細胞（M.R. Kuehnら、Nature, 326, 295 (1987); ES細胞を用いた変異マウスの作製）を用いた共培養の場合にも上記と同様の結果が得られた。

参考例9

胚性幹細胞から分化誘導された神経細胞コロニーの解析:

参考例1に記載の方法に従い、PA6細胞をフィーダー細胞として用い、ES細胞EB5をBMP4末添加無血清培地で12日間培養した。すなわち、3cmの組織培養用デシェ上ではほぼコンフルエンスにまで増殖したPA6細胞をフィーダーとして用い、このフィーダー細胞上にES細胞を200個/デシェで播種し、4日目、6日目、8日目、10日目に新鮮な無血清培地を用いて培地交換を行い、37℃で5%の二酸化炭素を通気したCO₂インキュベーターにて12日間培養した。

10日間共培養後、一部のデシェの細胞を参考例1に記載の方法に従って固定し、チロシン水酸化酵素、VAchT、GAD、セロトニンに対する抗体を用いてES
細胞EB5とPA6細胞との共培養の結果出現したコロニーの免疫染色を行った（n=200）。

ES細胞EB5とPA6細胞との共培養の結果出現したコロニーのうち、92％がドーパミン作動性神経細胞のマーカーであるチロシン水酸化酵素陽性、43％がGABA作動性神経細胞のマーカーであるGAD陽性、28％がコリン作動性神経細胞のマーカーであるVAcT陽性、7％がセロトニン陽性であった。

引き続き、残りのデッシュの培養を続け、12日間培養後に参考例1に記載の方法に従って細胞を固定し、クラスIIIβチューブリン、ネスチン、チロシン水酸化酵素に対する抗体を用いてES細胞EB5とPA6細胞との共培養の結果出現したコロニーの免疫染色を行った。また、コロニーを形成する全細胞の数を測定する為に、Molecular Probe社のキットYOYO-1を用いた染色を行った。染色後、ES細胞EB5とPA6細胞の共培養の結果出現したコロニー（n=20）をランダム選択し、共焦点顕微鏡で観察する事によって染色された細胞数をカウントした（n=5050）。

カウントした全細胞のうち、クラスIIIβチューブリン陽性細胞、ネスチン陽性細胞、チロシン水酸化酵素陽性細胞の割合はそれぞれ、52±9％、47±10％、30±4％であった。

なお、ES細胞として代表的な129系マウス由来のCCE細胞（M. R. Kuehnら、Nature, 326, 295 (1987); ES細胞を用いた変異マウスの作製）を用いた共培養の場合にも上記と同様の結果が得られた。

参考例10
胚性幹細胞から分化誘導されたドーパミン作動性神経細胞の解析（その1）：
参考例1に記載の方法によって、胚性幹細胞から分化誘導される神経細胞の性質をより詳細に解析する為に、中脳のドーパミン作動性神経細胞のマーカーであるNurr1（R. H. Zetterstromら、Science, 276, 248 (1997)）およびPtx3

細胞の調製は以下のよう行った。

参考例1に記載の方法に従い、PA6細胞をフィーダー細胞として用い、ES細胞EB5をBMP4未添加無血清培地で12日間培養した。すなわち、9cmの組織培養用デッシュ上でほぼコンフルエンスにまで増殖したPA6細胞をフィーダーとして用い、このフィーダー細胞上にES細胞EB5を5×10^4個/デッシュで播種し、4日目、6日目、8日目、10日日に新鮮な無血清培地を用いて培地交換を行い、37℃で5%の二酸化炭素を通気したCO₂インキュベーターにて12日間培養した。

また、参考例1で示したES細胞培養用培地を用い、9cmの組織培養用デッシュにES細胞EB5を5×10^4個/デッシュで播種し、4日目、6日目、8日目、10日日に新鮮な培地を用いて培地交換を行い、37℃で5%の二酸化炭素を通気したCO₂インキュベーターにて12日間培養した細胞を対照として調製した。

上記調製した分化誘導した細胞および対照ES細胞における、Nurr1およびPtX3のmRNAレベルでの発現を検出する為に、マウス胎生12日の胎児頭部をポジティブコントロールとして用い、渡井らによって報告されている方法（Y. Sasaiら、Nature, 376, 333 (1995)) に準じてRT-PCRを行った。すなわち、細胞を調製したデッシュおよび胎生12日の胎児頭部から、Trizol試薬（GIBCO BRL社製）を用いて添加マニュアルに従って全RNAを調製し、SUPER SCRIPT Preamplification System for first strand cDNA Synthesis（GIBCO BRL社製）を用いてcDNAを合成した。合成したcDNAを減菌水を用いて50倍に希釈した溶液を材料にして常法により反応液（10mmol/l Tris–HCl (pH8.3), 50mmol/l KCl, 1.5mmol/l MgCl₂, 0.2mmol/l dNTP, 0.2µmol/l遺伝子特異的プライマー（配列表に記載）、1 unit recombinant Ex Taq polymerase（宝酒造社製））を調製後、94℃で3分間反応させ、次いで94℃で30秒間、55℃で30秒間、72℃で1分間のサイクルを30サイクル反復し、最後に72℃で7分間反応させ、4℃で一夜保存する条件でPCRを行った。該反応液をアガロースゲル電気泳動し用いたプ
ライマーに特異的なDNAバンドの濃さを比較することで、各種因子の発現量の半定量的な比較を行った。

なお、配列番号1および2で表される塩基配列を有するオリゴヌクレオチドをNurrl特異的プライマーとして、配列番号3および4で表される塩基配列を有するオリゴヌクレオチドをPt33特異的プライマーとして、配列番号5および6で表される塩基配列を有するオリゴヌクレオチドをG3PDH特異的プライマーとして各々用いた。Pt33特異的プライマーを用いてPCRを行う場合にはDMSOを絶対濃度5%になるように反応液中に添加して行った。

ES細胞とPA6細胞を12日間共培養した結果、参考例1で示した結果と同様に神経細胞様のコロニーが出現した。また、この分化誘導されたコロニーを含む細胞集団では、ポジティブコントロールと同様に、有為なNurrlおよびPt33の発現が観察された（第11図：ES+PA6）。一方、対照としたES細胞ではNurrlおよびPt33の発現が検出されなかった（第11図：ES）。なお、9cmの組織培養用デッシャ上ではほぼコンフルエンスにまで増殖したPA6細胞を対照に上述の条件でRT-PCRを行っても、NurrlおよびPt33の発現は検出されなかった。従って、PA6細胞との共培養によって胚性幹細胞が神経細胞に分化誘導されるに伴い中脳のドーパミン作動性神経細胞のマーカーであるNurrlおよびPt33の発現が上昇していることが分かった。

なお、ES細胞として代表的な129系マウス由来のCCE細胞（M.R. Kuehnら、Nature, 326, 295 (1987); ES細胞を用いた変異マウスの作製）を用いた共培養の場合にも上記と同様の結果が得られた。

参考例11
胚性幹細胞から分化誘導されたドーパミン作動性神経細胞の解析（その2）：
参考例1に記載の方法によって、胚性幹細胞から分化誘導される神経細胞の性質をより詳細に解析する為に、ドーパミンの生産量を常法（K. Inoue & J.G. Kenimerら、J. Biol. Chem., 263, 8157 (1988); 今泉美佳、熊倉鴻之助、実
験医学別冊 神経生化学マニュアル、p191-200（1990）に従いHPLCを用いて定量した。

細胞からの測定試料の調製は以下のよう行った。

参考例1に記載の方法に従い、PA6細胞をフィーダー細胞として用い、ES細胞EB5をBMP4未添加無血清培地で8日間培養した。すなわち、9cmの組織培養用デッシュ上ではコンフルエンスにまで増殖したPA6細胞をフィーダーとして用い、このフィーダー細胞上にES細胞を5×10⁴個/デッシュで播種し、4日目、6日目に新鮮な無血清培地を用いて培地交換を行い、37℃で5%の二酸化炭素を通気したCO₂インキュベーターにて8日間培養した。その後さらに、2mmol/lグルタミン、1mmol/lビルピン酸、0.1mmol/l MEM Non-Essential Amino Acids溶液、0.1mmol/l 2-メルカプトエタノール、0.2mmol/l ラスカルピン酸、0.1mmol/lテトラヒドロビオプテリン（Tetrahydrobiopterin）、およびNADを添加したGlasgow MEM培地を用い6日間培養した。培養後、緩衝液HBSS（GIBCO BRL社製）を用いて2回洗浄し、洗浄した細胞を56mmol/l KClを含むHBSS溶液中で15分間培養した。15分後、培養液を回収し、終濃度が0.4mol/l 過塩素酸（Perchloric acid）および5mmol/l EDTAとなるように調整し、測定試料として-80℃で保存した。

上述のES細胞とPA6細胞との共培養により約100万細胞程度のES細胞由来多分化細胞が出現した。また、出現した細胞を用いて調製した測定試料中のドーパミンの定量は、逆相-HPLCを用いたMonoamine Analysis System（Eicom Corp., Kyoto, Japan）を用いて行った。結果を第12回に示した。

PA6細胞との共培養により胚性幹細胞から分化した神経細胞は、56mmol/l KClの脱分化刺激により有為な量のドーパミンを遊離していることが分かった（7.7pmol/10⁶細胞（ES細胞由来分化細胞））。また、ドーパミン派生物質であるDOPAC（3,4-dihydroxyphenylacetic acid）およびHVA（homovanillic acid）も、有為な量が検出された（それぞれ、2.5pmol/10⁶細胞（ES細胞由来分化細胞）および4.0pmol/10⁶細胞（ES細胞由来分化細胞））。
従って、PA6細胞との共培養によって胚性幹細胞から分化誘導されたドーパミン作動性神経細胞は、ドーパミンを産生し機能的な神経として作用し得る能力を有していることがインビトロにおいても示唆された。

参考例1.2
原始外胚葉を構成する細胞のドーパミン作動性神経細胞への分化:

ES細胞EB5の代わりにマウス胎生6日目の原始外胚葉（Pre-streak epiblast）から単離した細胞を用い、参考例1あるいは2に記載した方法に従ってPA6細胞との共培養を行った。

マウス胎生6日目の原始外胚葉を構成する細胞の単離および培養は、マニュピュレイティング・ザ・マウス・エンブリオ・ア・ラボラトリー・マニュアルに記載の方法に従って行った。

参考例1に記載の方法に従い、PA6細胞をフィーダー細胞として用い、単離した胚細胞をBMP4未添加無血清培地で8日間培養した。すなわち、3cmの組織培養用デッシュ上でほぼコントラクトにまで増殖したPA6細胞をフィーダーとして用い、このフィーダー細胞上に単離した原始外胚葉細胞を200個/デッシュで播種し、4日目、6日目、7日目に新鮮な無血清培地を用いて培地交換を行い、37℃で5％の二酸化炭素を通気したCO₂インキュベーターにて8日間培養した。

また、参考例1で用いた無血清培地に0.5nmol/1のBMP4（R&D社製）を添加した培地を用い、参考例1に記載した方法に従って単離した胚細胞とPA6細胞との共培養を行った。すなわち、3cmの組織培養用デッシュ上でほぼコントラクトにまで増殖したPA6細胞をフィーダーとして用い、このフィーダー細胞上にES細胞を200個/デッシュで播種し、4日目、6日目、7日目に新鮮な培地を用いて培地交換を行い、37℃で5％の二酸化炭素を通気したCO₂インキュベーターにて8日間培養した。
8日間共培養後、参考例1に記載の方法に従って細胞を固定し、抗NCAM抗体、抗チューブリン抗体、抗ネスチン抗体、抗Eカドヘリン抗体を用いて単離した胚細胞とPA6細胞の共培養の結果出現したコロニーの免疫染色を行った。

単離した原始外胚葉の胚細胞を用いた場合でも、ES細胞EB5を用いて行った参考例1および2の結果と同様の結果を得、神経系細胞および表皮系細胞の出現が観察された。

参考例3
ストローマ細胞が有する、胚性幹細胞を外胚葉系の細胞に分化誘導させる因子の回収：

参考例3に記載の方法に従い、パラフォルムアルデヒド固定したPA6細胞をフィーダー細胞として用い、ES細胞EB5をBMP4未添加無血清培地で8日間培養した。この際、PA6細胞をヘパリン（GIBCO BRL社製）を含む培地で培養した場合（以下、「ヘパリン処理」という）と、ヘパリン無添加の培地で培養した場合との比較を行った。すなわち、3cmの組織培養用デッシュ上に6cmのコンフルエンスにまで増殖したPA6細胞を200ng/mlヘパリンを含む培地で2日間培養したデッシュと、ヘパリン無添加の培地で2日間培養したデッシュを調製し、PBS（-）で2回洗浄後パラフォルムアルデヒド固定を行い、これらパラフォルムアルデヒド固定したPA6細胞上にES細胞EB5を200個/デッシュで播種し、4日目、6日目、7日目に新鮮な無血清培地を用いて培地交換を行い、37℃で5％の二酸化炭素を通気したCO2インキュベーターにて8日間培養した。

8日間培養後、参考例1に記載の方法に従って細胞を固定し、抗NCAM抗体、抗チューブリン抗体、抗ネスチン抗体を用いてES細胞EB5とPA6細胞との共培養の結果出現したコロニーの免疫染色を行った。

ヘパリン処理を施さなかったPA6細胞をフィーダー細胞として用いた場合には、参考例3で示した結果同様、90％近くのES細胞由来のコロニーがNCAM陽性であり、ES細胞の神経細胞への分化が高率で観察された。一方、ヘパリン処理
を施したPA6細胞をフィーダー細胞として用いた場合にはES細胞の神経細胞への有為な分化は観察されなかった。このことより、ストローマ細胞が有するSDIA活性は、Wnts分子で観察されている現象（R. S. Bradley & A. M. C. Brown、EMBO J., 9, 1569 (1990)）と同様に、ストローマ細胞をヘパリンを含む培地で培養することで培養上清中に回収できることが示唆された。

参考例1 4

胚性幹細胞の、背腹軸に沿った多様な神経系の細胞への分化誘導：

中枢神経系の発生において背腹軸に沿った神経の多様性を決定する因子であるshhやBMP4の効果を調べるために、以下のようにしてストローマ細胞上で分化を開始したES細胞にこれら因子を作用させその影響を調べた。

参考例1に記載の方法に従い、PA6細胞をフィーダー細胞として用い、ES細胞EB5をshhおよびBMP4を添加していない無血清培地で10日間培養した。すなわち、3cmの組織培養用デッシュ上でほぼコンフルエンスまで増殖したPA6細胞をフィーダーとして用い、このフィーダー細胞上にES細胞を200個/デッシュで播種し、4日目、6日目、8日目に新鮮な無血清培地を用いて培地交換を行い、37℃で5％CO₂を通気したインキュベーターにて10日間培養した。

shhの効果は、上記と同様の培養方法で、4日目、6日目、8日目の培地交換の際、300nmol/lのshh（R&D社製）を添加した無血清培地を用いることで評価した。

BMP4の効果は、上記と同様の培養方法で、6日目、8日目の培地交換の際、0.5nmol/lのBMP4（R&D社製）を添加した無血清培地を用いることで評価した。

10日間培養後、参考例1に記載の方法に従ってそれぞれの培養方法で培養した細胞を固定し、抗NCAM抗体、中枢神経系原基（神経管）の最も腹側に存在する底板のマーカーであるHNF-3βに対する抗体（Developmental Studies Hybridoma Bankより購入）、HNF-3βについて腹側から2番目に存在するマーカーであるNkx2.2に対する抗体（Developmental Studies Hybridoma Bankより購入）
入）、神経管背側のマーカーであるPax-7に対する抗体（Developmental Studies Hybridoma Bankより購入）、神経管細胞のマーカーであるAP-2に対する抗体（Developmental Studies Hybridoma Bankより購入）、運動神経のマーカーであるislet 1に対する抗体（Developmental Studies Hybridoma Bankより購入）、コリン作動性ニューロンのマーカーであるVAcTに対する抗体（Chemicon社製）をそれぞれ用いて、ES細胞とPA6細胞の共培養の結果出現したコロニーの免疫染色を行った。

shhあるいはBMP4添加に関わらず、ES細胞EB5とPA6細胞の共培養の結果出現したコロニーのほとんどは、参考例1で示した結果同様、抗NCAM抗体で染色され、いずれの場合も、ES細胞由来のコロニーの90％が陽性であった。

他のマーカーに対する抗体で染色されるES細胞由来的コロニーの割合と共に以下の表1に示す。

<table>
<thead>
<tr>
<th>抗体</th>
<th>対照</th>
<th>shh添加</th>
<th>BMP4添加</th>
</tr>
</thead>
<tbody>
<tr>
<td>抗NCAM抗体</td>
<td>90%</td>
<td>90%</td>
<td>90%</td>
</tr>
<tr>
<td>抗HNF-3 β抗体</td>
<td>70%</td>
<td>81%</td>
<td>9%</td>
</tr>
<tr>
<td>抗Nkx2.2抗体</td>
<td>44%</td>
<td>85%</td>
<td>19%</td>
</tr>
<tr>
<td>抗Pax-7抗体</td>
<td>30%</td>
<td>0%</td>
<td>72%</td>
</tr>
<tr>
<td>抗AP-2抗体</td>
<td>16%</td>
<td>0%</td>
<td>24%</td>
</tr>
<tr>
<td>抗islet 1抗体</td>
<td>82%</td>
<td>82%</td>
<td>36%</td>
</tr>
<tr>
<td>抗VAcT抗体</td>
<td>36%</td>
<td>58%</td>
<td>42%</td>
</tr>
</tbody>
</table>

以上の結果から、PA6細胞との共培養によるES細胞の神経細胞誘導では、神経マーカーであるNCAMのみならず、各種タイプのニューロン特異的なマーカーを発現する神経系の細胞が出現していることが示された。すなわち、PA6細胞との共培養によるES細胞の分化誘導では、中枢神経系原基（神経管）の最も腹側の底板に位置するHNF-3 βを発現している神経系の細胞、中枢神経系原基（神経管）の腹側からHNF-3 βについて2番目に存在するマーカーNkx2.2を発現している神経系の細胞、Pax-7を発現している神経管背側の神経細胞、AP-2を
発現している神経細胞の細胞、islet 1を発現している運動神経細胞に分化誘導される。

また、胚の神経発生過程で背腹軸の決定に関与することが明らかにされているshhやBMP4に、胚の神経前駆細胞がインピボにおいて示す分化能と同様の分化能を示したことから、PA6細胞とのES細胞を共培養することで、背腹軸が決定される前段階の神経管の細胞が誘導されていることが示された。すなわち、この神経管の細胞は、神経管の腹側化因子であるshhの作用により、腹側マーカーHNF-3βおよびNkx2.2の発現誘導が観察され、背側マーカーPax-7およびAP-2の発現抑制が観察される。また、神経管の背側化因子であるBMP4を作用させた場合には、逆に、腹側マーカーHNF-3βおよびNkx2.2の発現抑制が観察され、背側マーカーPax-7およびAP-2の発現誘導が観察される。

参考例１５
ストローマ細胞PA6を認識するモノクローナル抗体の作製：
（1）免疫原の調製
PA6細胞を免疫原として用いた。PA6細胞は、参考例１に記載した方法に従って培養した。細胞密度がほぼコンフルエンティ状態にまで達したPA6細胞を、PBS（-）で2回洗浄後の、10μg/mlアクチナーゼ（科研製薬社製）および0.02％EDTAを含むPBS（-）溶液を加え37℃で30分間培養し、10％牛胎児血清（GIBCO-BRL社製）を含むα-MEM培地を加えてアクチナーゼの作用を止め、4℃で1000×g、5分間遠心分離することで回収した。回収した細胞は、PBS（-）に再度懸濁し再び4℃で1000×g、5分間遠心分離することで洗浄した。PBS（-）で2度洗浄した細胞10⁷個を1ml PBS（-）に懸濁し免疫原として用いた。
（2）動物の免疫と抗体産生細胞の調製

上記（1）で調製した細胞10^7個を水酸化アルミニウムアジュバント（アンチポディ・ア・ラパラトリ・マニュアル, p. 99) 2mgおよび百日咳ワクチン（千葉県血清研究所製）1と10^8細胞とともに6〜8週令雌SDラット各3匹に投与した。
投与2週間後より、上記（1）で調製した細胞10^7個を1週間に1回、計4回投与した。
該ラットの頸動脈より採血し、その血清抗体価を以下に示す酵素免疫測定法で調べ、十分な抗体価を示したマウスから最終免疫3日後に脾臓を摘出した。

摘出した脾臓をMEM（Minimum Essential Medium）培地（日水製薬社製）の中で細断し、ピクセルで薄く、遠心分離（250×g、5分間）した。得られた沈殿物分にトリス塩化アンモニウム緩衝液（pH7.6）を添加し、1〜2分間処理することにより赤血球を除去した。得られた沈殿物分（細胞物分）をMEM培地で3回洗浄し、細胞融合に用いた。

（3）酵素免疫測定法（バインディングELISA）

PA6細胞を96ウェルのEIA用プレート（グライナー社製）の各ウェルに培養し、コンプロレント状態にまで増殖させたプレートを抗原プレートとして用いた。
該プレートに被免疫ラット抗血清あるいはモノクローナル抗体の培養上清を50μl/ウェルで分注し、37℃で1時間放置した。1時間後、添加した抗血清あるいは培養上清を除き、0.25%グルタルアルデヒドを含むPBS（-）を添加し室温で30分間放置した。該プレートを0.05%ポリオキシエチレン（20）ソルビタンモノラウレート（ICI社商標Tween20相当品：和光純薬社製）/ PBS（以下、Tween-PBS」と表記）で洗浄後、ペルオキシダーゼ標識ウサギ抗ラットイムノグロブリン（DAKO社製）を50μl/ウェル加えて室温、1時間放置した。該プレートをTween-PBSで洗浄後、ABTS基質液（2.2-アジノビン硫酸液、3-エチルベンゾチアゾール-6-スルホン酸）アンモニウム、1mMol/ABTS/0.1mol/1クエン酸バッファー（pH4.2）を添加し、415nmにおける吸光度をプレートリーダー（Molecular Devices社製）を用いて測定了。
(4) マウス骨髄腫細胞の調製
8-アザグアニン耐性マウス骨髄腫細胞株P3X63Ag8U.1（P3-U1: ATCCより購入）を正常培地（10％ウシ胎児血清添加RPMI培地）で培養し、細胞融合時に2×10⁷個以上の細胞を確保し、細胞融合に親株として供した。

(5) ハイブリドーマの作製
参考例15(2)で得られたマウス脾細胞と参考例15(4)で得られた骨髄腫細胞を10:1になるよう混合し、遠心分離（250×g、5分間）した。得られた沈澱画分の細胞群をよくほぐした後、摂拌しながら、37℃で、ポリエチレンジコール-1000（PEG-1000）2g、MEM培地2mlおよびジメチルスルホキシド0.7mlの混液を10⁴個のマウス脾細胞あたり0.5ml加え、該懸濁液に1〜2分間毎にMEM培地1mlを数回加えた後、MEM培地を加えて全量が50mlになるようにした。
該懸濁液を遠心分離（900rpm、5分間）し、得られた沈澱画分の細胞をゆるやかにほぐした後、該細胞を、メスビペットによる吸込み吸出しでゆるやかにHAT培地（10％ウシ胎児血清添加RPMI培地にHAT Media Supplement（ベーリンガー・マンハイム社製）を加えた培地）100ml中に懸濁した。該懸濁液を96ウェル培養用プレートに200μl/ウェルずつ分注し、5％CO₂インキュベーター中、37℃で10〜14日間培養した。
培養後、培養上清を参考例15(3)に記載した酵素免疫測定法で調べ、PA6細胞に反応して1％BSAを含むPBS(-)（以下、「1％BSA-PBS(-)」溶液と略す）でコートしたコントロールプレートに反応しないウェルを選び、そこに含まれる細胞から限界希釈法によるクローニングを2回繰り返し、抗PA6モノクローナル抗体産生ハイブリドーマを確立した。その結果、PA6細胞を抗原に用いて、3種類の抗ヒトPA6細胞抗体KM1306、KM1307、KM1310を取得した。
KM1310産生ハイブリドーマ細胞株は、FERM BP-7573として平成13年4月27日付けで、独立行政法人産業技術総合研究所 特許生物寄託センター（日本国茨城県つくば市東1丁目1番地1 中央第6（郵便番号305-8566））に寄託されている。

(6) モノクローナル抗体の精製

プリスタン処理した8週令ヌード雌マウス（BALB/c）に参考例15（5）で得られたハイブリドーマ株を5×10⁶～20×10⁶/匹それぞれ腹腔内注射した。10～21日後、ハイブリドーマが腫水病化することにより腹水のたまったマウスから、腹水を採取（1～8ml/匹）した。

該腹水を遠心分離（1200×g、5分間）し、固形分を除去した。精製IgMモノクローナル抗体は、硫安沈殿法（アンチポディ・A・ラボラトリー・マニュアル）により精製することにより取得した。モノクローナル抗体のサブクラスはサブクラスパスタイピングキットを用いたELISA法により、KM1306、KM1307、KM1310すべてがIgMと決定された。

(7) 蛍光抗体法（セルソーター解析）によるPA6細胞との反応性の解析

PA6細胞は、参考例1に記載した方法に従って培養した。細胞密度がほぼコンフルエンス状態にまで達したPA6細胞を、PBS（-）で2回洗浄後、10μg/mlアクリチナーゼ（科研製薬社製）および0.02％EDTAを含むPBS（-）溶液を加え37℃で30分間培養し、10％牛胎児血清（GIBCO-BRL社製）を含むα-MEM培地を加えてアクリチナーゼの作用を止め、4℃で1000×g、5分間遠心分離することで回収した。回収した細胞を10％牛胎児血清（GIBCO-BRL社製）を含むα-MEM培地に懸濁し、1×10⁶細胞ずつ1.5mlチューブに分注した。分注した細胞を、1％BSA-PBS（-）溶液に懸濁し1000×g、5分間遠心分離することで2度洗浄した。洗浄した細胞を、10μg/mlの精製抗体（あるいは50μg/ml硫安沈殿抗体画分）を含む1％BSA-PBS（-）溶液に懸濁し37℃で30分間培養することで抗体と反応させた。
抗体と反応させた細胞を常法に従い蛍光標識した二次抗体と反応させセルソーターを用いて解析した（アンチボディ・A・ラボラトリー・マニュアル）。すなわち、抗体と反応させた細胞を1000×g、5分間遠心分離することで回収し、二次抗体を含む1％BSA-PBS（-）溶液に懸濁し37℃で30分間培養し、1％BSA-PBS（-）溶液で2回洗浄後、2mlの1％BSA-PBS（-）溶液に懸濁しセルアナライザー（コールター社；EPICS XLsystemII）にて解析した。二次抗体としてFITC標識抗ラットイムノグロブリン抗体（FITC標識ヤギ抗ラットイムノグロブリン（H+L）；CALTAG社製）を30倍希釈した1％BSA-PBS（-）溶液を用い、100μl/チューブで使用した。コントロール抗体としてラットIgMの老化抑制タンパク質を認識するモノクローナル抗体であるKM2070を10μg/mlで反応させ、同様に検出した。ここでは、KM2070は、ハイプリドーマKM2070（FERM BP-6196；W098/29544）により、産生される抗体である。尚、KM2070が認識する抗原分子の発現がPA6細胞ではないことをあらかじめ確認の上、KM2070をコントロール抗体として用いた。

第13図、第14図、第15図にそれぞれ示したように、PA6細胞を免疫して得られたKM1306、KM1307、KM1310はPA6細胞を認識した。縦軸は細胞数、横軸は蛍光強度を示す。図中のnegaは、抗体を添加しなかった時の結果を示す。

産業上の利用可能性

本発明により、胚性幹細胞から外胚葉細胞および外胚葉由来の細胞への選択的且つ効率的分化誘導剤、その分化誘導剤を用いた分化誘導方法、該分化誘導した細胞並びにそれらの用途が提供される。

配列表フリーテキスト

配列番号1-人工配列の説明：合成DNA
配列番号2-人工配列の説明：合成DNA
配列番号3-人工配列の説明：合成DNA
配列番号4～人工配列の説明：合成DNA
配列番号5～人工配列の説明：合成DNA
配列番号6～人工配列の説明：合成DNA
請求の範囲

1. ポリアニオン化合物を含む培養液を用いてストローマ細胞を培養した後、該培養液を回収する工程を含む、胚性幹細胞を外胚葉細胞または外胚葉由来の細胞に分化誘導する活性を有する溶液を取得する方法。

2. ポリアニオン化合物が、培養液中で陰性電荷を有するコポリマーまたはホモポリマーである、請求の範囲1に記載の方法。

3. 培養液中で陰性電荷を有するコポリマーが、ムコ多糖である、請求の範囲2に記載の方法。

4. ムコ多糖が、以下の(a)、(b)、(c)、(d)、(e)、(f)、(g)、(h)、(i)および(j)からなる群から選ばれる化合物である、請求の範囲3に記載の方法。
 (a) コンドロイチン4-硫酸；
 (b) コンドロイチン5-硫酸；
 (c) コンドロイチン6-硫酸；
 (d) デルマタン硫酸；
 (e) ヘパラン硫酸；
 (f) ヘパリン；
 (g) ケラタン硫酸I；
 (h) ケラタン硫酸II；
 (i) ヒアルロン酸；
 (j) コンドロイチン。
5. 培養液中で陰性電荷を有するホモポリマーが、以下の (a)、(b)、(c)、
(d)、(e)、(f)、(g)、(h)、(i)、(j) および (k) からなる群から選ばれる化
合物である、請求の範囲 2 に記載の方法。
(a) デキストラント硫酸；
(b) カルボキシメチルデキストラン；
(c) 硫酸化ポリビニール；
(d) ポリビニルサルファイト；
(e) スルホン化ポリスチレン；
(f) ポリアクリル酸；
(g) カルボキシメチルセルロース；
(h) セルロース硫酸；
(i) ポリグルタミン酸；
(j) ポリマレイン酸；
(k) ポリメタクリル酸。

6. 培養液が、細胞培養に用いられる基礎培地または平衡塩溶液である、
請求の範囲 1 〜 5 のいずれか 1 項に記載の方法。

7. ストローマ細胞が、ハイブリドーマFERM BP-7573が産生するモノクロ
ーナル抗体で認識されるストローマ細胞である、請求の範囲 1 〜 6 のいずれか
1 項に記載の方法。

8. ストローマ細胞が、以下の (a)、(b)、(c)、(d)、(e)、(f) および
(g) からなる群から選ばれる細胞である、請求の範囲 1 〜 6 のいずれか 1 項に
記載の方法。
(a) 胎児初代培養繊維芽細胞；
(b) SIHMマウス由来STO細胞；
(c) マウス胎児由来NIH/3T3細胞；
(d) マクロファージコロニー刺激因子（M-CSF）欠損マウス頭蓋冠由来OP9細胞；
(e) マウス頭蓋冠由来MC3T3-G2/PA6細胞；
(f) 胚性幹細胞由来のストローマ細胞；
(g) 骨髄間葉系幹細胞由来のストローマ細胞。

9. 請求の範囲1～8のいずれか1項に記載の方法を用いることによって
 取得される、胚性幹細胞を外胚葉細胞または外胚葉由来の細胞に分化誘導する
 活性を有する溶液。

10. 請求の範囲9記載の溶液を有効成分として含有してなる胚性幹細胞
 から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

11. 請求の範囲9記載の溶液中に含まれる胚性幹細胞から外胚葉細胞ま
 たは外胚葉由来の細胞へ分化誘導する因子。

12. 配列番号7で表されるアミノ酸配列からなるポリペプチドを有効成
 分として含有してなる胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への
 分化誘導剤。

13. 配列番号7で表されるアミノ酸配列において1以上のアミノ酸残基
 が欠失、置換、挿入もしくは付加されたアミノ酸配列からなるポリペプチドを
 有効成分として含有してなる胚性幹細胞から外胚葉細胞または外胚葉由来の細
 胞への分化誘導剤。
14. 配列番号7で表されるアミノ酸配列と60%以上の同様性を有するアミノ酸配列からなるポリペプチドを有効成分として含有してなる胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

15. 配列番号7で表されるアミノ酸配列をコードするDNAを含有する組換えベクターを有効成分として含有してなる胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

16. 配列番号9で表される塩基配列を有するDNAを含有する組換えベクターを有効成分として含有してなる胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

17. 配列番号7で表されるアミノ酸配列をコードするDNAを含有する組換えベクターをストローマ細胞に導入して得られる形質転換体を有効成分として含有してなる胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

18. 配列番号9で表される塩基配列を有するDNAを含有する組換えベクターをストローマ細胞に導入して得られる形質転換体を有効成分として含有してなる胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

19. 配列番号8で表されるアミノ酸配列からなるポリペプチドを有効成分として含有してなる胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

20. 配列番号8で表されるアミノ酸配列において1以上のアミノ酸残基が欠失、置換、挿入もしくは付加されたアミノ酸配列からなるポリペプチドを
有効成分として含有する胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

21. 配列番号8で表されるアミノ酸配列と60％以上の相同性を有するアミノ酸配列からなるポリペプチドを有効成分として含有する胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

22. 配列番号8で表されるアミノ酸配列をコードするDNAを含有する組換えベクターを有効成分として含有する胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

23. 配列番号10で表される塩基配列を有するDNAを含有する組換えベクターを有効成分として含有する胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

24. 配列番号7で表されるアミノ酸配列をコードするDNAを含有する組換えベクターをストローマ細胞に導入して得られる形質転換体を有効成分として含有する胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

25. 配列番号10で表される塩基配列を有するDNAを含有する組換えベクターをストローマ細胞に導入して得られる形質転換体を有効成分として含有する胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

26. Wntアンタゴニストを有効成分として含有する胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。
27. 請求の範囲9に記載の溶液または請求の範囲12〜26のいずれか1項に記載の分化誘導剤を用い、胚性幹細胞を非凝集状態で培養する工程を含む、胚性幹細胞を外胚葉細胞または外胚葉由来の細胞に分化誘導する方法。

28. 請求の範囲9に記載の溶液または請求の範囲12〜26のいずれか1項に記載の分化誘導剤を固定化した培養器を用いることを特徴とする、請求の範囲27に記載の方法。

29. 外胚葉細胞が、神経系細胞または表皮系細胞に分化しうる能力を有している細胞である、請求の範囲1〜8、27および28のいずれか1項に記載の方法。

30. 外胚葉由来の細胞が、神経系細胞または表皮系細胞である、請求の範囲1〜8、27および28のいずれか1項に記載の方法。

31. 表皮系細胞が表皮細胞である、請求の範囲29または30に記載の方法。

32. 神経系細胞が、以下の(a)、(b)、(c)、(d)および(e)からなる群から選ばれる細胞である、請求の範囲29または30に記載の方法。

(a) 神経幹細胞;
(b) 神経細胞;
(c) 神経管の細胞;
(d) 神経堤の細胞;
(e) 網膜色素細胞。
３３．神経幹細胞が、ネスチンを発現している神経幹細胞である、請求の範囲３２に記載の方法。

３４．神経細胞が、以下の（a）、（b）、（c）および（d）からなる群から選ばれる神経細胞である、請求の範囲３２に記載の方法。
(a) ドーパミン作動性神経細胞；
(b) アセチルコリン作動性神経細胞；
(c) γアミノ酪酸作動性神経細胞；
(d) セロトニン作動性神経。

３５．アセチルコリン作動性神経細胞が、islet 1を発現している運動神経細胞である、請求の範囲３４に記載の方法。

３６．神経管の細胞が、以下の（a）、（b）、（c）および（d）からなる群から選ばれる細胞である、請求の範囲３２に記載の方法。
(a) 神経管の腹側化因子であるソニックヘッジホック（Sonic hedgehog）に反応し腹側に位置する細胞に分化し、かつ神経管の背側因子である骨形成因子４（Bone Morphogenetic Protein 4）に反応し背側に位置する細胞に分化する能力を有する、背腹軸が決定される前の段階の神経管の細胞；
(b) 神経管の最も腹側の底板に位置するHNF-3β（Hepatocyte Nuclear Factor-3 β）を発現している神経管腹側の細胞；
(c) 神経管の腹側からHNF-3β（Hepatocyte Nuclear Factor-3 β）について2番目に存在するマーカーNkx2.2を発現している神経管腹側の細胞；
(d) Pax-7を発現している神経管背側の細胞。

３７．神経管の細胞が、AP-2（Activator Protein 2）を発現している細胞である、請求の範囲３２に記載の方法。
３８．骨形成因子（Bone Morphogenetic Protein 4）存在下で培養することを特徴とする、請求の範囲２７～３７のいずれか１項に記載の方法。

３９．ソニックヘッジホッグ（Sonic hedgehog）存在下で培養することを特徴とする、請求の範囲２７～３８のいずれか１項に記載の方法。

４０．非凝集状態が、エンブリオイドボディを介さない状態である、請求の範囲２７～３９のいずれか１項に記載の方法。

４１．無血清培養の条件下で培養する工程を含むことを特徴とする、請求の範囲２７～４０のいずれか１項に記載の方法。

４２．培養工程にレチノイン酸を用いないことを特徴とする、請求の範囲２７～４１のいずれか１項に記載の方法。

４３．胚性幹細胞が、以下の（a）、（b）および（c）からなる群から選ばれる細胞である、請求の範囲２７～４２のいずれか１項に記載の方法。
(a) 着床前の初期胚を培養することによって樹立した胚性幹細胞；
(b) 体細胞の核を核移植することによって作製された初期胚を培養することによって樹立した胚性幹細胞；
(c) (a)または（b）の胚性幹細胞の染色体上の遺伝子を遺伝子工学の手法を用いて変換した胚性幹細胞。

４４．胚性幹細胞を外胚葉細胞または外胚葉由来の細胞に分化誘導する効率が、５％以上である請求の範囲１～８および２７～４３のいずれか１項に記載の方法。
45. 実質的に中胚葉系細胞の分化誘導を伴わない、請求の範囲27～44のいずれか1項に記載の方法。

46. 請求の範囲27～45のいずれか1項に記載の方法を用いることによって誘導される、外胚葉細胞または外胚葉由来の細胞。

47. 請求の範囲46に記載の細胞を、抗癌剤を含む培地中で培養する工程を含むことを特徴とする、胚性幹細胞から分化誘導された細胞の純度を高める方法。

48. 抗癌剤が、マイトマイシンC、5-フルオロウラシル、アドリアマイシン、メトトレキサート及びアラCからなる群から選ばれる抗癌剤である、請求の範囲47に記載の方法。

49. 請求の範囲47または48に記載の方法を用いて得られる細胞。

50. 請求の範囲46または49に記載の細胞を含む医薬。

51. 以下の(a)～(c)からなる群から選ばれる少なくとも1つを有効成分として含有してなる医薬。
(a) 配列番号7で表されるアミノ酸配列からなるポリペプチド；
(b) 配列番号7で表されるアミノ酸配列において1以上のアミノ酸残基が欠失、置換、挿入もしくは付加されたアミノ酸配列からなるポリペプチド；
(c) 配列番号7で表されるアミノ酸配列と60％以上の相同性を有するアミノ酸配列からなるポリペプチド；
(d) 配列番号 7 で表されるアミノ酸配列をコードする DNA を含有する組換えベクター；
(e) 配列番号 9 で表される塩基配列を有する DNA を含有する組換えベクター；
(f) 配列番号 7 で表されるアミノ酸配列をコードする DNA を含有する組換えベクターをストローマ細胞に導入して得られる形質転換体；
(g) 配列番号 9 で表される塩基配列を有する DNA を含有する組換えベクターをストローマ細胞に導入して得られる形質転換体；
(h) 配列番号 8 で表されるアミノ酸配列からなるポリペプチド；
(i) 配列番号 8 で表されるアミノ酸配列において 1 以上のアミノ酸残基が欠失、置換、挿入もしくは付加されたアミノ酸配列からなるポリペプチド；
(j) 配列番号 8 で表されるアミノ酸配列を 60% 以上の同様性を有するアミノ酸配列からなるポリペプチド；
(k) 配列番号 8 で表されるアミノ酸配列をコードする DNA を含有する組換えベクター；
(l) 配列番号 10 で表される塩基配列を有する DNA を含有する組換えベクター；
(m) 配列番号 7 で表されるアミノ酸配列をコードする DNA を含有する組換えベクターをストローマ細胞に導入して得られる形質転換体；
(n) 配列番号 10 で表される塩基配列を有する DNA を含有する組換えベクターをストローマ細胞に導入して得られる形質転換体；
(o) Wntアンタゴニストを有効成分として含有してなる胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤。

52．外胚葉由来の細胞の障害に基づく疾患の診断、予防および／または治療のための医薬である、請求の範囲 50 または 51 に記載の医薬。
53．外胚葉由来の細胞の障害に基づく疾患が、神経系細胞または表皮系細胞の障害に基づく疾患である、請求の範囲52に記載の医薬。

54．神経系細胞の障害に基づく疾患が、アルツハイマー病、ハンチントン舞踏病、パーキンソン病、虚血性脳疾患、てんかん、脳外傷、脊椎損傷、運動神経疾患、神経変性疾患、網膜色素変性症、内耳性難聴、多発性硬化症、筋萎縮性側索硬化症、または神経毒物の障害に起因する疾患であり、表皮系細胞の障害に基づく疾患が火傷、外傷、創傷治癒、床擦れ、または乾せんである、請求の範囲53に記載の医薬。

55．被験物質存在下及び該被験物質非存在下で、請求の範囲27～45のいずれか1項に記載の方法を行い、該被験物質存在下及び該被験物質非存在下での胚性幹細胞から外胚葉細胞または外胚葉由来の細胞までの分化過程を比較することを特徴とする、胚性幹細胞から外胚葉細胞または外胚葉由来の細胞までの分化調節に関連する物質の評価方法。

56．被験物質存在下及び該被験物質非存在下で、請求の範囲27～45のいずれか1項に記載の方法を行い、該被験物質存在下及び該被験物質非存在下での胚性幹細胞から外胚葉細胞または外胚葉由来の細胞までの分化過程を比較することを特徴とする、胚性幹細胞から外胚葉細胞または外胚葉由来の細胞までの分化調節に関連する物質のスクリーニング方法。

57．被験物質存在下及び該被験物質非存在下で、請求の範囲46に記載の細胞を培養し、該被験物質存在下及び該被験物質非存在下での外胚葉細胞または外胚葉由来の細胞の機能を比較することを特徴とする、外胚葉細胞または外胚葉由来の細胞の機能調節に関連する物質の評価方法。
58. 被験物質存在下及び該被験物質非存在下で、請求の範囲46に記載の細胞を培養し、該被験物質存在下及び該被験物質非存在下での外胚葉細胞または外胚葉由来の細胞の機能を比較することを特徴とする、外胚葉細胞または外胚葉由来の細胞の機能調節に関連する物質のスクリーニング方法。
第1図

第2図
第3図

コレステロール

低下

ヘパリン
第4図

1 2 3 4 5
(kDa)
97.4
66.2
45.0
31.0
21.5
14.4
第7図
第8図

培養日数

陽性コロニー（%）

- ネスチン
- β-チェーブリン
- チロシン水酸化酵素
- ドーパミン
- β水酸化酵素

6/12
第9図
第13図

細胞数

KM2070
nega
KM1306

蛍光强度
第14図
SEQUENCE LISTING

KYOWA HAKKO KOGYO CO., LTD.

YOSHIKI SASAI

HIROO IWATA

AGENT FOR INDUCING EMBRYONIC STEM CELL TO ECTODERMAL CELL, METHOD FOR OBTAINING THE SAME, AND USE OF THE SAME

P-42628

JP 2001-350724

2001-11-15

10

1

23

DNA

Artificial Sequence

Description of Artificial Sequence: Synthetic DNA

tgaagagac ggacaaggag atc

23

2

24

DNA

Artificial Sequence

Description of Artificial Sequence: Synthetic DNA

tctgagatt aagaaatcga gctg

24

3

19

DNA

Artificial Sequence

Description of Artificial Sequence: Synthetic DNA

aggacggtc tctgaagaa

19

4

20

DNA

Artificial Sequence

Description of Artificial Sequence: Synthetic DNA
<400> 4
ttgaccgagt tgaaggcgaas 20

<210> 5
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic DNA

<400> 5
gaccagtc catgccatca ct 22

<210> 6
<211> 13
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic DNA

<400> 6
tccaccaccc tgtggctgta g 21

<210> 7
<211> 314
<212> PRT
<213> Mus musculus

<400> 7
Met Gly Val Gly Arg Ser Ala Arg Gly Arg Gly Gly Ala Ala Ser Gly
1 5 10 15
Val Leu Leu Ala Ala Ala Leu Leu Ala Ala Gly Ser Ala Ser
20 25 30
Glu Tyr Asp Tyr Val Ser Phe Gln Ser Asp Ile Gly Ser Tyr Gln Ser
35 40 45
Gly Arg Phe Tyr Thr Lys Pro Pro Gln Cys Val Asp Ile Pro Val Asp
50 55 60
Leu Arg Leu Cys His Asn Val Gly Tyr Lys Lys Met Val Leu Pro Asn
65 70 75 80
Leu Leu Glu His Glu Thr Met Ala Glu Val Lys Gln Gln Ala Ser Ser
85 90 95
Trp Val Pro Leu Leu Asn Lys Asn Cys His Met Gly Thr Gln Val Phe
100 105 110
Leu Cys Ser Leu Phe Ala Pro Val Cys Leu Asp Arg Pro Ile Tyr Pro
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>120</td>
<td>125</td>
</tr>
<tr>
<td>Cys Arg Trp Leu Cys Glu Ala Val Arg Asp Ser Cys Glu Pro Val Met</td>
<td>130</td>
<td>135</td>
</tr>
<tr>
<td>145</td>
<td>150</td>
<td>155</td>
</tr>
<tr>
<td>Gln Phe Phe Gly Phe Tyr Trp Pro Glu Met Leu Lys Cys Asp Lys Phe</td>
<td>Pro Glu Gly Asp Val Cys Ile Ala Met Thr Pro Pro Asn Thr Thr Glu</td>
<td>165</td>
</tr>
<tr>
<td>180</td>
<td>185</td>
<td>190</td>
</tr>
<tr>
<td>Ala Ser Lys Pro Gln Gly Thr Thr Val Cys Pro Pro Cys Asp Asn Glu</td>
<td>Leu Lys Ser Glu Ala Ile Ile Glu His Leu Cys Ala Ser Glu Phe Ala</td>
<td>195</td>
</tr>
<tr>
<td>210</td>
<td>215</td>
<td>220</td>
</tr>
<tr>
<td>245</td>
<td>250</td>
<td>255</td>
</tr>
<tr>
<td>Lys Glu Leu Lys Ala Leu Val Leu Phe Leu Lys Asn Gly Ala Asp Cys</td>
<td>Pro Cys His Gln Leu Asp Asn Leu Ser His Asn Phe Leu Ile Met Gly</td>
<td>260</td>
</tr>
<tr>
<td>275</td>
<td>280</td>
<td>285</td>
</tr>
<tr>
<td>Arg Lys Val Lys Ser Gln Tyr Leu Leu Thr Ala Ile His Lys Thr Asp</td>
<td>Lys Lys Asn Lys Glu Phe Lys Asn Phe Met Lys Arg Met Lys Asn His</td>
<td>290</td>
</tr>
<tr>
<td>305</td>
<td>310</td>
<td></td>
</tr>
</tbody>
</table>

<210> 8

<211> 313

<212> PRT

<213> Homo sapiens

<400> 8

Met Gly Ile Gly Arg Ser Glu Gly Gly Arg Arg Gly Ala Leu Gly Val 1 5 10 15

Leu Leu Ala Leu Gly Ala Ala Leu Leu Ala Val Gly Ser Ala Ser Glu 20 25 30

Tyr Asp Tyr Val Ser Phe Gln Ser Asp Ile Gly Pro Tyr Gln Ser Gly 35 40 45

3/8
Arg Phe Tyr Thr Lys Pro Pro Gln Cys Val Asp Ile Pro Ala Asp Leu
 50 55 60
Arg Leu Cys His Asn Val Gly Tyr Lys Met Val Leu Pro Asn Leu
 65 70 75 80
Leu Glu His Thr Met Ala Glu Val Lys Gln Gln Ala Ser Ser Trp
 85 90 95
Val Pro Leu Leu Asn Lys Asn Cys His Ala Gly Thr Gln Val Phe Leu
 100 105 110
Cys Ser Leu Phe Ala Pro Val Cys Leu Asp Arg Pro Ile Tyr Pro Cys
 115 120 125
Arg Trp Leu Cys Glu Ala Val Arg Asp Ser Cys Glu Pro Val Met Gln
 130 135 140
Phe Phe Gly Phe Tyr Trp Pro Glu Met Leu Lys Cys Asp Lys Phe Pro
 145 150 155 160
Glu Gly Asp Val Cys Ile Ala Met Thr Pro Pro Asn Ala Thr Glu Ala
 165 170 175
Ser Lys Pro Gln Gly Thr Thr Val Cys Pro Pro Cys Asp Asn Glu Leu
 180 185 190
Lys Ser Glu Ala Ile Ile Glu His Leu Cys Ala Ser Glu Phe Ala Leu
 195 200 205
Arg Met Lys Ile Lys Glu Val Lys Gln Gly Asp Gly Lys Lys Ile
 210 215 220
Val Pro Lys Lys Lys Pro Leu Lys Leu Gly Pro Ile Lys Lys Lys
 225 230 235 240
Asp Leu Lys Leu Val Leu Tyr Leu Leu Gly Ala Asp Cys Pro
 245 250 255
Cys His Glu Leu Asp Asn Leu Ser His His Phe Leu Ile Met Gly Arg
 260 265 270
Lys Val Lys Ser Gln Tyr Leu Leu Thr Ala Ile His Lys Trp Asp Lys
 275 280 285
Lys Asn Lys Glu Phe Lys Asp Phe Met Lys Lys Met Lys Asn His Glu
 290 295 300
Cys Pro Thr Phe Glu Ser Val Phe Lys
 305 310
atg ggc gtc ggg cgc agc gcg cgg ggt cgc ggc ggg gcc gcc tcg gga 48
met gly val gly arg ser ala arg gly gly ala ala ser gly
1 5 10 15

gtg ctg ctg ggc ggc gcc gcct ctg ggc tcg ggt tcg gcc gcgc 96
val leu leu ala leu ala leu leu leu ser gly ser ala ser
20 25 30

gag tac gac tac gtc agc ttc cag tcc gac atc ggc tcg tat cag agc 144
glu tyr asp tyr val ser phe gln ser ile gly ser tyr gln ser
35 40 45

ggc cgc ttc tac acc aag ccc ccc cag tgc gtc gac atc ccc gtc gac 192
gly arg phe tyr thr lys pro pro gln cys val asp ile pro val asp
50 55 60

c tg aag ctg tgc cac aac gtc ggc tac aag aag atg gtc ctg ccc aac 240
leu arg leu cys his asn val gly tyr lys met val leu pro asn
65 70 75 80

c tg ctg gag cac gag acc atg gca gag gtc aag cag cag gcc agc agc 288
leu leu glu his glu thr met ala glu val lys gln gln ala ser ser
85 90 95

tgg ctg cgg ctg ctc aac aag aac tgc cac atg ggc acc cag gtc ttc 336
trp val pro leu leu asn lys asn cys his met gly thr gln val phe
100 105 110

c tct tgt tgc ttc ggc ctc tgc gtc gac cgg ccc atc tac cgc 384
leu cys ser leu phe ala pro val cys leu asp arg pro ile tyr pro
115 120 125

tgc cgc tgg ctc tgc gag gcc gtc gtc gac tcg tgc gag cgc gtc atg 432
cys arg trp leu cys glu ala val arg ser cys glu pro val met
130 135 140

cag ttc ttc ggc ttc tac tgg ccc gag atg ctc aaa tgc gag aag ttc 480
gln phe phe gly phe tyr trp pro glu met leu lys cys asp lys phe
145 150 155 160

ccc gag gcc gac gtc atc gcc atg acc ccc aat acc aag gaa 528
pro glu gly asp val cys ile ala met thr pro pro asn thr thr glu
165 170 175

gcc tct aag ccc cca ggt acc acc gtg tct cca tgc gac acc gag 576
ala ser lys pro gln gly thr thr val cys pro pro cys asp asn glu
180 185 190

5/8
ttg aag tca gag gcc atc att gaa cat ctc tgt gca agc gag ttt gca 624
Leu Lys Ser Glu Ala Ile Ile Glu His Leu Cys Ala Ser Glu Phe Ala 195 200 205
ctg agg atg aaa atc aaa gaa tgt aag aag gaa aac ggt gac aag aag 672
Leu Arg Met Lys Ile Lys Glu Val Lys Lys Glu Asn Gly Asp Lys Lys 210 215 220
att gtc ccc aag aag aag aaa ctc ttg aag ggg ccc atc aag aag 720
Ile Val Pro Lys Lys Lys Pro Leu Lys Leu Gly Pro Ile Lys Lys 225 230 235 240
aag gag ctg aag cgg ctt tgt ctg aag aac ggt gcc gac tgt 768
Lys Glu Leu Lys Arg Leu Val Leu Phe Leu Lys Asn Gly Ala Asp Cys 245 250 255
ccc tgc cac cag ctg gac aac ctc cac aac ctc ata ggc 816
Pro Cys His Glu Leu Asp Leu Ser His Asn Phe Leu Ile Met Gly 260 265 270
cgc aag tgt aag agc cag tac ctg ctg aca gcc att cac aag tgt gac 864
Arg Lys Val Lys Ser Glu Tyr Leu Leu Thr Ala Ile His Lys Thr Asp 275 280 285
aag aaa aac aag gag ttc aaa aac ttc atg aag aca tgt aaa aac cac 912
Lys Lys Asn Glu Phe Leu Lys Asn Phe Met Lys Arg Met Lys Asn His 290 295 300
gag tgt ccc acc ttc cag tct gtt ttt aag tga 945
Glu Cys Pro Thr Phe Glu Ser Val Phe Lys 305 310

<210> 10
<211> 942
<212> DNA
<213> Homo sapiens

<400> 10
atg ggc atc ggg cgc agc gag ggg ggc cgc cgc ggg ggc ctg ggc gtt 48
Met Gly Ile Gly Arg Ser Glu Gly Gly Arg Arg Gly Ala Leu Gly Val 1 5 10 15
ctg ctg gcc ctg gcc gcc ggc ctg gcc ggc ctg gcc gcc agc gac 96
Leu Leu Ala Leu Gly Ala Ala Leu Leu Ala Val Gly Ser Ala Ser Glu 20 25 30
tac gac tac tgt agc ttc cag tgt gac atc ggc cgc tac cag agc ggg 144
Tyr Asp Tyr Val Ser Phe Glu Ser Asp Ile Gly Pro Tyr Glu Ser Gly 35 40 45
cgc ttc tac acc aag cca cct cag tgc gtc gac atc ccc ggc gac ctg 192

6/8
Arg Phe Tyr Thr Lys Pro Pro Gln Cys Val Asp Ile Pro Ala Asp Leu
50 55 60

cgg ctg tgc cac aac gtc aac gtc ggc tac aag aag atg ctg ccc aac ctg 240
Arg Leu Cys His Asn Val Gly Tyr Lys Met Val Leu Pro Asn Leu
65 70 75 80

c tg gac cac gag acc atg gcg gag gtc aag cag cag ggc aac gag tgg 288
Leu Glu His Glu Thr Met Ala Glu Val Lys Gln Gln Ala Ser Ser Trp
85 90 95

gtg ccc ctg ctc aac aag aac tgc cac gcc ggg acc cag gtc ttc ctc 336
Val Pro Leu Leu Asn Lys Asn Cys His Ala Gly Thr Gln Val Phe Leu
100 105 110

tgc tgg ttc gcg ccc gtc tgc ctg ctg cac ccc atc tac cgg tgg 384
Cys Ser Leu Phe Ala Pro Val Cys Leu Asp Arg Pro Ile Tyr Pro Cys
115 120 125

cgc tgg ctc tgc gag gcc gtc gac ggc tgc tgc gag ccc gtc atg cag 432
Arg Trp Leu Cys Glu Ala Val Arg Asp Ser Cys Glu Pro Val Met Gln
130 135 140

ttc ttc ggc ttc tac tgg ccc gag atg ctt aag tgt gac aag ttc ccc 480
Phe Phe Gly Phe Tyr Trp Pro Glu Met Leu Lys Cys Asp Lys Phe Pro
145 150 155 160

gag ggc gac gtc tgc atc gcc atg acg ccc aat gcc acc gag gcc 528
Glu Gly Asp Val Cys Ile Ala Met Thr Pro Pro Asn Ala Thr Glu Ala
165 170 175

tcc aag ccc caa ggc aca acg gtg tgt cct ccc tgt gac aac gag tgg 576
Ser Lys Pro Gln Gly Thr Thr Val Cys Pro Pro Cys Asp Gln Ala Leu
180 185 190

aaa tct gag gcc atc att gaa cat ctc tgt gcc aac gac gac ggg tgg 624
Lys Ser Glu Ala Ile Ile Glu His Leu Cys Ala Ser Glu Phe Ala Leu
195 200 205

agg atg aat gaa gaa gaa aaa gaa aat ggc gac aag aag att 672
Arg Met Lys Ile Lys Glu Val Lys Lys Glu Asn Gly Asp Lys Lys Ile
210 215 220

gtc ccc aag aag aag ccc ctg aag tgt ggg ccc atc aag aag aag 720
Val Pro Lys Lys Lys Pro Leu Lys Leu Gly Pro Ile Lys Lys Lys
225 230 235 240

gac ctt gac ggt ggc ctg tac ctt gac aat ggg gct gac tgt ccc 768
Asp Leu Lys Leu Val Leu Tyr Leu Lys Asn Gly Ala Asp Cys Pro
245 250 255

tgc cac gag ctc atc gac cac cac ttc ctc ctc atg ggc cgc 816
Cys His Gln Leu Asp Asn Leu Ser His Phe Leu Ile Met Gly Arg
aag gtg aag agc cag tac ttg ctg acg gcc atc cac aag tgg gac aag
Lys Val Lys Ser Glu Tyr Leu Leu Thr Ala Ile His Lys Trp Asp Lys

aaa aac aag gag ttc aaa aac ttc atg aag aaa atg aaa aac cat gag
Lys Asn Lys Glu Phe Lys Asn Phe Met Lys Met Lys Asn His Glu

942

912

tgc ccc acc ttt cag tcc gtc ttt aag tga
Cys Pro Thr Phe Glu Ser Val Phe Lys

305 310
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl. C12N15/09, 15/12, 5/06, C07K14/47, C12Q1/02, G01N33/50, 33/15, A61K45/00, 38/00, A61P25/00, 25/28, 25/16, 17/00, 43/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl. C12N15/09, 15/12, 5/06, C07K14/47, C12Q1/02, G01N33/50, 33/15, A61K45/00, 38/00, A61P25/00, 25/28, 25/16, 17/00, 43/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

- BIOSIS (DIALOG)
- WPI (DIALOG)
- JICST_FILE (JOIS)
- SwissProt/PIR/GeneSeq
- GenBank/EMBL/DDBJ/GeneSeq

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>KAWASAKI, H. et al., Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity, Neuron, 2000, Vol.28, No.1, pages 31 to 40</td>
<td>1-58</td>
</tr>
</tbody>
</table>

[] Further documents are listed in the continuation of Box C. [] See patent family annex.

Date of the actual completion of the international search

11 February, 2003 (11.02.03)

Date of mailing of the international search report

04 March, 2003 (04.03.03)

Name and mailing address of the ISA/

Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1998)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CZYZ, J. et al., Embryonic stem cell differentiation: the role of extracellular factors, Differentiation, 2001 Oct., Vol. 68, Nos. 4 to 5, pages 167 to 174</td>
<td>1-58</td>
</tr>
<tr>
<td>A</td>
<td>KIM, A.S. et al., Wnt receptors and Wnt inhibitors are expressed in gradients in the developing telencephalon, Mech.Dev., 2001 May, Vol. 103, Nos. 1 to 2, pages 167 to 172</td>
<td>1-58</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☐ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. ☐ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ☐ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows: (See extra sheet)

1. ☒ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☐ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest ☐ The additional search fees were accompanied by the applicant's protest.

☒ No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)
Claims 1 to 10 and the parts concerning claims 1 to 10 in claims 27 to 46, 50 and 55 to 58 (1) provide inventions relating to a solution having an activity of inducing the differentiation of embryo stem cells into ectodermal cells or ectoderm-origin cells which is obtained by culturing stroma cells with the use of a liquid medium containing a polyvinyl compound and then recovering the liquid medium. Claims 11 to 25 and the parts concerning claims 11 to 25 in claims 27 to 46 and 50 to 58 (2) provide inventions relating to a factor which induces the differentiation of embryo stem cells into ectodermal cells or ectoderm-origin cells. Claim 26 and the parts concerning claim 26 in claims 27 to 46 and 50 to 58 (3) provide inventions relating to an inducer of the differentiation of embryo stem cells into ectodermal cells or ectoderm-origin cells which contains Wnt antagonist as the active ingredient.

Although the above groups of inventions (1) to (3) have a common technical feature of having an activity of inducing the differentiation of embryo stem cells into ectodermal cells or ectoderm-origin cells, there had been publicly known those having an activity of inducing the differentiation of embryo stem cells into ectodermal cells or ectoderm-origin cells (see, Dev Biol, 1995, Vol.168, p.342-357, if required). Thus, these groups of inventions have no technical relevancy having any special technical feature to each other.

Claims 47 to 49 and the part concerning claims 47 to 49 in claim 50 (4) provide inventions relating to a method of elevating the purity of cells which have been differentiated from embryo stem cells under induction, involving the step of culturing ectodermal cells or ectoderm-origin cells in a medium containing an anticancer agent. This group of inventions has any technical relevancy having a special technical feature to none of the groups of inventions (1) to (3) as described above.

Such being the case, these groups of inventions (1) to (4) are not considered as relating to a group of inventions so linked as to form a single general inventive concept. It is therefore recognized that the present application has 4 groups of inventions.
国際調査報告

国際出願番号 PCT/JP02/11894

A. 発明の属する分野の分類（国際特許分類（IPC））

Int. Cl. 7 C12N15/09, 15/12, 5/06, C07K14/47, C12Q1/02, G01N33/50, 33/15, A61K45/00, 38/00, A61P25/00, 25/28, 25/16, 17/00, 43/00

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. Cl. 7 C12N15/09, 15/12, 5/06, C07K14/47, C12Q1/02, G01N33/50, 33/15, A61K45/00, 38/00, A61P25/00, 25/28, 25/16, 17/00, 43/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

BIOSIS (DIALOG), WPI (DIALOG), JICSTファイアル(JOIS), SwissProt/PIR/GeneSeq, GenBank/EMBL/DDBJ/GeneSeq

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ*</th>
<th>引用文献名</th>
<th>及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>KAWASAKI, H. et al., Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity, Neuron, 2000, Vol.28, No.1, p.31-40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 引用文献のカテゴリ

「A」特に関連のある文献ではなく、一般的な技術水準を示すもの

「E」国際出願前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文書との、当業者にとって自明である組合せによつて進歩性がないと考えられるもの

「&」同一パラメータファミリー文献

国際調査を完了した日 11.02.03

国際調査報告の発送日 04.03.03

国際調査機関の名称及びあて先

日本国特許庁（ISA/JP）
郵便番号100－815
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

田村 明照

電話番号 03－3581－1101 内線 3448

様式PCT/ISA/210（第2ページ）（1998年7月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリ*</th>
<th>引用文献名 及び一部の箇所が関連するときには、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>KIM, A.S. et al., Wnt receptors and Wnt inhibitors are expressed in gradients in the developing telencephalon, Mech Dev, 2001 May, Vol. 103, No. 1-2, p. 167-172</td>
<td>1-58</td>
</tr>
</tbody>
</table>
第Ⅰ欄 請求の範囲の一部の調査ができないときの意見（第1ページの2の続き）

法第8条第3項（PCT.17条(2)(a)）の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。

1. □ 請求の範囲は、この国際調査機関が調査をすることを要しない対象に係るものである。つまり、

2. □ 請求の範囲は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、

3. □ 請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に従って記載されていない。

第Ⅱ欄 発明の単一性が欠如しているときの意見（第1ページの3の続き）

次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。

別紙参照

□	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能請求の範囲について作成した。
□	追加調査手数料を要求するまもなく、すべての調査可能請求の範囲について調査することができたので、追加調査手数料の納付を求めていない。
□	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
□	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。

追加調査手数料の異議の申立てに関する注意

□ 追加調査手数料の納付と共に出願人から異議申立てがあった。
× 追加調査手数料の納付と共に出願人から異議申立てがなかった。

様式PCT／ISA／210（第1ページの続き（1））（1998年7月）
請求の範囲１－１０、及び、請求の範囲２７－４６、５０、５５－５８のうち請求の範囲１－１０に関連する部分（１）は、ポリアニオン化合物を含む培養液を用いてストローマ細胞を培養した後、該培養液を回収することにより得られる、胚性幹細胞を外胚葉細胞または外胚葉由来の細胞に分化誘導する活性を有する溶媒に係る発明である。

請求の範囲１１－２５、及び、請求の範囲２７－４６、５０－５８のうち請求の範囲１１－２５に関連する部分（２）は、胚性幹細胞から外胚葉細胞または外胚葉由来の細胞へ分化誘導する因子に係る発明である。

請求の範囲２６、及び、請求の範囲２７－４６、５０－５８のうち請求の範囲２６に関連する部分（３）は、Wntアンタゴニストを有効成分とする胚性幹細胞から外胚葉細胞または外胚葉由来の細胞への分化誘導剤に係る発明である。

上記発明（１）－（３）は、胚性幹細胞から外胚葉細胞または外胚葉由来の細胞へ分化誘導する活性を有するものという点で共通する技術的特徴を有するが、胚性幹細胞から外胚葉細胞または外胚葉由来の細胞へ分化誘導する活性を有するものは、公知であるから（要すれば、『Dev Biol, 1995, Vol. 168, p. 342-357』等参照）、これらは、何ら特別な技術的特徴を含む技術的な関係にはない。

また、請求の範囲４７－４９、及び、請求の範囲５０のうち請求の範囲４７－４９に関連する部分（４）は、外胚葉細胞または外胚葉由来の細胞を抗癌剤を含む培地中で培養する工程を含む、胚性幹細胞から分化誘導された細胞の純度を高める方法に係る発明であり、上記発明（１）－（３）の何れとも、何ら特別な技術的特徴を含む技術的な関係にはない。

したがって、発明（１）－（４）は、単一の一般的発明概念を形成するように連関しているものとはいえないから、本出願の請求の範囲に記載された発明の数は４と認める。