Abstract:
Neuronal agents that inhibit cytokine activity, and methods of use therefor, have been identified. Immunological diseases, such as leukemia, autoimmune diseases, collagen diseases, diabetes mellitus, skin diseases, degenerative neuronal diseases and graft-versus-host disease (GVHD), are inhibited by the cyclic activity of yc-cytokine activity. The inhibitors are valuable therapeutic and cosmetic agents as well as research tools. The therapeutic activity of yc-cytokine activity involves raising neutralizing antibodies against each individual yc-cytokine family member/receptor subunit. However, success has been limited and often multiple yc-cytokine family members co-operate to cause the disease state. Combinatorial use of neutralizing antibodies raised against each factor is impractical and poses an increased risk of adverse immune reactions. The present embodiments overcome these shortcomings by utilizing peptide antagonists based on the consensus yc-subunit binding site to inhibit yc-cytokine activity.

Fig. 1A

Alignment of the D-helix region sequence of human yc-family cytokines

declarations under Rule 4.17:

- of inventorship (Rule 4.17(iv))
- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 52(a))

Title: COMPOSITIONS AND METHODS FOR MODULATING GAMMA-C-CYTOKINE ACTIVITY
COMPOSITIONS AND METHODS FOR MODULATING
GAMMA-C-CYTOKINE ACTIVITY

RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Application No. 61/433,890, filed on January 18, 2011, and U.S. Provisional Application No. 61/527,049, filed on August 24, 2011, the entire contents of which are incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The present embodiments relate to peptide antagonists of yc-family cytokines, a group of mammalian cytokines that are mainly produced by epithelial, stromal and immune cells and control the normal and pathological activation of a diverse array of lymphocytes. The present embodiments also relate to the therapeutic uses of such peptides for the treatment of certain human diseases. The present embodiments also relate to the cosmeceutical applications of such peptides. Description of target diseases, cosmeceutical applications, as well as methods of administration, production, and commercialization of the peptides are disclosed.

BACKGROUND

[0003] Cytokines are a diverse group of soluble factors that mediate various cell functions, such as, growth, functional differentiation, and promotion or prevention of programmed cell death (apoptotic cell death). Cytokines, unlike hormones, are not produced by specialized glandular tissues, but can be produced by a wide variety of cell types, such as epithelial, stromal or immune cells.

[0004] More than 100 cytokines have been identified so far and are considered to have developed by means of gene duplications from a pool of primordial genes (See Bazan, J.F. 1990, Immunol. Today 11:350-354). In support of this view, it is common for a group of cytokines to share a component in their multi-subunit receptor system. The most well-documented shared cytokine subunit in T cells is the common \(\gamma \) subunit (yc-subunit). The yc-subunit is shared by 6 known cytokines (Interleukin-2 (IL-2), Interleukin-4 (IL-4), Interleukin-7 (IL-7), Interleukin-9 (IL-9), Interleukin-15 (IL-15), and Interleukin-21 (IL-21),...
collectively called the "yc-cytokines" or "yc-family cytokines") and plays an indispensable role in transducing cell activation signals for all these cytokines. Additionally, for each of the yc-cytokines, there are one or two private cytokine-specific receptor subunits that when complexed with the yc-subunit, give rise to a fully functional receptor. (See Rochman et al., 2009, Nat Rev Immunol. 9: 480-90.)

[0005] The yc-family cytokines are a group of mammalian cytokines that are mainly produced by epithelial, stromal and immune cells and control the normal and pathological activation of a diverse array of lymphocytes. These cytokines are critically required for the early development of T cells in the thymus as well as their homeostasis in the periphery. For example, in the absence of the yc-subunit, T, B and NK cells do not develop in mice. (See Sugamura et al., 1996, Annu. Rev. Immunol. 14: 179-205).

Pathologies Associated with the yc-Cytokines

[0006] Recent studies have indicated that dysregulation of expression and dysfunction of the yc-cytokines could lead to a wide variety of human immunologic and hematopoietic diseases.

IL-2

[0007] While IL-2 was historically considered a prototype T cell growth factor, the generation of a knockout mouse lacking IL-2 expression revealed that IL-2 is not critical for the growth or developmental of conventional T cells in vivo. Over-expression of IL-2, however, leads to a preferential expansion of a subset of T-cells; the regulatory T cells (T-regs). (See Antony et al., 2006, J. Immunol. 176:5255-66.) T-regs suppress the immune responses of other cells and thus act to maintain peripheral tolerance (reviewed in Sakaguchi et al., 2008, Cell 133:775-87). Breakdown of peripheral tolerance is thought to cause autoimmune diseases in humans. Thus, the immunosuppressive function of T-regs is thought to prevent the development of autoimmune diseases (See Sakaguchi et al., 2008, Cell 133:775-87). T-regs have also been implicated in cancer, where solid tumors and hematologic malignancies have been associated with elevated numbers of T-regs (See De Rezende et al., 2010, Arch. Immunol. Ther. Exp. 58:179-190).

IL-4
IL-4 is a non-redundant cytokine involved in the differentiation of T helper cells into the Th2 (T-helper type 2) subset, which promotes the differentiation of premature B cells into IgE producing plasma cells. IgE levels are elevated in allergic asthma. Thus, IL-4 is implicated in the development of allergic Asthma. Antibodies targeting IL-4 can be used to treat or even prevent the onset of allergic asthma. (See Le Buanec et al., 2007, Vaccine 25:7206-16.)

IL-7

IL-7 is essential for B cell development and the early development of T cells in the thymus. In mice, the abnormal expression of IL-7 causes T-cell-associated leukemia. (See Fisher et al., 1993, Leukemia 2:S66-68.) However, in humans, misregulation of IL-7 does not appear to cause T-cell-associated leukemia. In humans, up-regulation of IL-7 either alone or in combination with another yc-cytokine family member, IL-15, has been implicated in Large Granular Lymphocyte (LGL) leukemia.

IL-9

The role of IL-9 is still rather uncharacterized compared to other yc-cytokine family members. Mice depleted of the IL-9 gene appear normal and do not lack any subsets of cells in the lymphoid and hematopoietic compartments. Recent studies, however, reveal an in vivo role for IL-9 in the generation of Thl7 (T-helper induced by interleukin-17) cells (See Littman et al., 2010, Cell 140(6):845-58; and Nowak et al., 2009, J. Exp. Med. 206: 1653-60).

IL-15

It is also suspected that IL-15-mediated autocrine mechanisms may be involved in the leukemic transformation of CD4 T lymphocytes. (See Azimi et al., 1998, Proc. Natl. Acad. Sci. 95:2452-7; Azimi et al., 1999, J. Immunol. 163:4064-72; Azimi et al., 2000,

In addition to leukemic transformation, recent studies implicate IL-15 in the pathological development of Celiac disease (CD), an autoimmune disease. IL-15 is known to stimulate the differentiation of NK, CD8 and intestinal intraepithelial lymphocyte (IEL) cells into lymphokine-activated killer (LAK) cells by inducing the expression of cytolitic enzymes (i.e., Granzyme and Perforin) as well as interferon-γ. Celiac Disease (denoted CD from herein) is an immune-mediated enteropathy that is triggered by the consumption of gluten-containing food in individuals that express specific HLA-DQ alleles. The prevalence of this disease is 1% in the western population. The only current treatment for CD is the complete elimination of gluten from the patient's diet. The pathology of CD is mainly caused by extensive damage to the intestinal mucosa, which is caused by activated CD8 T cells that have infiltrated to the intestinal lamina propria. These CD8 T cells appear to be activated through mechanisms involving IL-15. One recent publication demonstrated in mice that ectopic over-expression of IL-15 by enterocytes leads to the development of enteropathy, which closely resembles the lesions in CD patients. Neutralization of IL-15 activity dramatically diminished the pathological changes. Thus, an intervention blocking the activation of CD8 T cells by IL-15 appears to provide an alternative strategy in managing CD to the conventional gluten-free diet.

IL-21

IL-21 is the most recently discovered member of the yc-family. Unlike other family members, IL-21 does not appear to have potent growth-promoting effects. Instead, IL-21 is thought to function more as a differentiation factor than a factor controlling cellular proliferation (See Tagaya, 2010, J. Leuk. Biol. 87:13-15).

Current Strategies for Treating yc-Cytokine-Mediated Disorders

Because the yc-cytokines are thought to be involved in numerous human diseases, several methods of treating yc-cytokine-implicated diseases by inhibiting yc-cytokine family activities have been proposed. These methods include the use of cytokine-specific monoclonal antibodies to neutralize the targeted cytokine's activity in vivo; use of monoclonal
antibodies targeting the private cytokine-specific receptor subunits (subunits other than the shared yc-subunit) to selectively inhibit cytokine activity; and use of chemical inhibitors that block the downstream intracellular cytokine signal transduction pathway. While cytokine-specific antibodies are often the first choice in designing therapeutics, cytokines that share receptor components display overlapping functions (See Paul, W.E., 1989, Cell 57:521-24) and more than one cytokine can co-operate to cause a disease (see example described below). Thus, approaches involving neutralization of a single cytokine may not be effective in the treatment of cytokine-implicated human diseases.

[0016] Strategies for designing therapeutics that inhibit the function of multiple cytokines via antibodies which recognize a shared receptor component have also been proposed. However, the multi-subunit nature of cytokine receptor systems and the fact that functional receptors for a single cytokine can assume different configurations makes this approach difficult. For example, a functional IL-15 receptor can be either IL-15Rp/yc or IL-15Ra/p/yc. (See Dubois et al., 2002, Immunity 17:537-47.) An antibody against the IL-15RP receptor (TMβ1), is an efficient inhibitor of the IL-15 function, but only when the IL-15Ra molecule is absent from the receptor complex. (See Tanaka et al., 1991, J. Immunol. 147:2222-28.) Thus, the effectiveness of a monoclonal anti-receptor antibody, whether raised against a shared or a private subunit, can be context-dependent and is unpredictable in vivo.

[0017] Although clinical use of monoclonal antibodies against biologically active factors or receptors associated with the pathogenesis of diseases is an established practice, there are few demonstrations of successful outcomes. Moreover, establishment of a clinically-suited monoclonal antibody treatment is a long and difficult process, with the successful generation of a neutralizing antibody largely a matter of luck. For example, due to the critical importance of the yc-subunit in mediating signaling by yc-family cytokines, many attempts to generate polyclonal and monoclonal antibodies against the yc-subunit have been made and there exist many commercial antibodies recognizing the yc-subunit in mice and in humans. Curiously, however, none of these anti-yc-subunit antibodies block the function of the yc-cytokines.

[0018] Another problem with the therapeutic use of monoclonal antibodies is that monoclonal antibodies are usually generated by immunizing rodents with human proteins, so the generated antibody is a foreign protein and thus highly immunogenic. To circumvent this
problem, the amino acid sequence of the monoclonal antibody is molecularly modified so that the antibody molecule is recognized as a human immunoglobulin (a process called humanization), but this process requires time and expense.

Targeting JAK3, as an Existing Alternative Example for the Inhibition of Multiple yc-cytokines

[0019] The interaction between the yc-subunit and a yc-cytokine leads to the activation of an intracellular protein tyrosine kinase called Janus kinase 3 (Jak3). Jak3, in turn, phosphorylates multiple signaling molecules including STAT5, and PI3 kinase. The interaction of the yc-subunit and Jak3 is very specific. In fact, there is no other receptor molecule that recruits Jak3 for signal transduction. (See O'Shea, 2004, Ann. Rheum. Dis. 63:(suppl. U):ii67-7.) Thus, the inhibition of cytokine signaling through the yc-subunit can be accomplished by blocking the activity of Jak3 kinase. Accordingly, multiple chemical inhibitors that target the kinase activity of Jak3 have been introduced to the market. (See Pesu et al., 2008, Immunol. Rev. 223:132-142.) One such example is CP690,550.

[0020] The major shortcoming of these protein kinase inhibitors is the lack of specificity to Jak3 kinase. These drugs intercept the binding of ATP (adenosine-triphosphate) molecules to Jak3 kinase, a common biochemical reaction for many protein kinases, and thus tend to block the action of multiple intracellular protein kinases that are unrelated to Jak3 kinase whose actions are critically needed for the well-being of normal cells in various tissues. Thus, more specific inhibitors of signaling through the yc-subunit are needed.

[0021] There is therefore a great need for an alternative strategy for treating yc-cytokine-implicated diseases.

SUMMARY OF THE INVENTION

[0022] One embodiment relates to an isolated or purified peptide, consisting essentially of a 19-mer amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-N-T-S (SEQ ID NO: 1) (referred to herein as "BNZ-y" (BNZ-gamma)).

[0023] Another embodiment relates to a method for blocking signaling by one or more yc-cytokine family members, comprising contacting a cell with an isolated or purified peptide consisting essentially of amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-TTN-T-S (SEQ ID NO: 1).
Another embodiment relates to a method for blocking signaling by one or more yc-cytokine family members, comprising contacting a cell with an isolated or purified peptide consisting essentially of amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1), wherein the cell is an immune cell.

Another embodiment relates to a method for blocking signaling by one or more yc-cytokine family members, comprising contacting a cell with an isolated or purified peptide consisting essentially of amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1), wherein the yc-cytokine family member is selected from the group consisting of: IL-2, IL-4, IL-7, IL-9, IL-15, or IL-21.

Another embodiment relates to derivative peptides of a peptide consisting of amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1), wherein the derivative peptide has similar physico-chemical properties as the peptide consisting of amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1), but the derivative peptide has distinct biological activity.

Another embodiment relates to a custom peptide wherein the amino acid sequence of the custom peptide differs from amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1) by conservative substitution of one or more amino acids.

Another embodiment relates to a custom peptide, consisting essentially of a 19-mer amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1).

Another embodiment relates to a custom peptide wherein the amino acid sequence of the custom peptide differs from amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1) by substituting another polar amino acid for the glutamine (Q) at the 6-position.

Another embodiment relates to a custom peptide wherein the amino acid sequence of the custom peptide differs from amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1) by substitution of one or more amino acids with similar biochemical properties to the amino acids comprising sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1).

Another embodiment relates to custom peptide derivatives of the amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S, wherein the amino acid sequence of the
custom peptide has similar physico-chemical properties as a peptide of the amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1), but has distinct biological activity, wherein the amino acid sequence of the custom peptide shares at least 50% sequence homology to the amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1).

[0032] Another embodiment relates to a conjugation of a peptide consisting essentially of amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1) to the N-termini, C-termini and/or to the side residues of existing biological proteins/peptides for efficient delivery and improved biological stability in vivo. Examples of such conjugations are BSA, albumin, Fc region of IgG, other biological proteins that function as scaffold, Poly Ethylene Glycol or (PEG) at different molecular weights or other similar moieties.

[0033] Another embodiment relates to conjugation of custom peptide derivatives of the amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1) to the N-termini, C-termini and/or to the side residues of existing biological proteins/peptides, wherein the amino acid sequence of the custom peptide has similar physico-chemical properties as a peptide of the amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1), but has distinct biological activity, wherein the amino acid sequence of the custom peptide shares at least 50% sequence homology to the amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1). Examples of such conjugations are albumin, Fc region of IgG, other biological proteins that function as scaffold, or Poly Ethylene Glycol or (PEG) at different molecular weights or other similar moieties.

[0036] Another embodiment relates to polyclonal and monoclonal antibodies raised against custom peptide derivatives of the amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1), wherein the amino acid sequence of the custom peptide has similar physico-chemical properties as a peptide of the amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-
Q-S-I-I-N-T-S (SEQ ID NO: 1), but has distinct biological activity, and wherein the amino acid sequence of the custom peptide shares at least 50% sequence homology to the amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1).

BRIEF DESCRIPTION OF THE DRAWINGS

[0037] **Figure 1A** shows an alignment of the D-helix region of human yc-cytokine family members.

[0038] **Figure 1B** depicts the yc-box and IL-2/IL-15 box motifs which give rise to the consensus sequence around the D-helix region of the yc-cytokines.

[0039] **Figure 2** depicts a diagramed representation of the biochemical properties of amino acids.

[0040] **Figure 3A** shows inhibition of IL-2, IL-15, and IL-9 activity by BNZ-γ in a PT-18 proliferation assay.

[0041] **Figure 3B** shows a proliferation assay of CTTL2 cells grown in the presence of IL-2 or IL-15 and 0, 0.1, 1 or 10 uM BNZ-γ.

[0042] **Figure 3C** shows inhibition of IL-15-mediated tyrosine-phosphorylation of STAT5 by BNZ-γ.

[0043] **Figure 4A** shows an ex vivo T-cell proliferation assay using HAM/TSP peripheral blood. T-cell proliferation is inhibited by addition of BNZ-γ.

[0044] **Figure 4B** shows the population of CD4+CD25+ cells in an ex vivo T-cell proliferation assay using HAM/TSP peripheral blood is diminished after adding BNZ-γ to the culture.

[0045] **Figure 4C** shows the population of CD4+Ki67 cells in an ex vivo T-cell proliferation assay using HAM/TSP peripheral blood is reduced after adding BNZ-γ to the culture.

[0046] **Figure 4D** shows the percent of live cells by Guava staining in an ex vivo T-cell proliferation assay using HAM/TSP peripheral blood is not impacted after adding BNZ-γ to the culture.
DETAILED DESCRIPTION

Overview

[0047] The yc-cytokines are important players in the development of the lymphoid cells that constitute the immune system, particularly T, B, and NK cells. Further, yc-cytokines have been implicated in various human diseases. Thus, factors that inhibit yc-cytokine activity would provide useful tools to elucidate the developmental mechanism of subsets of lymphocytes and to treat immune disorders and yc-cytokine-mediated diseases.

[0048] Germ line depletion of the genes encoding the yc-subunit in mice or mutations of yc-subunit in humans are known to cause severe combine immunodeficiency (SCID) by disrupting the normal appearance or function of NK, T, and B cells. The importance of the yc-subunit in the signal transduction of the yc-cytokines, IL-2, -4, -7, -9, 15, -21, is indicated in studies demonstrating the a of response of lymphocytes from these mice and human patients to the yc-cytokines (reviewed in Sugamura et al., 1995 Adv. Immunol. 59:225-277). This indicates that disruption of the interaction between the yc-subunit and a yc-cytokine would efficiently block the intracellular signaling events by the yc-cytokine family members. Therefore antagonist peptides according to the present embodiments are expected to effectively block the pathogenic changes in humans suffering from the diseases mediated by misregulation of the yc-cytokine family members.

[0049] As an alternative to antibody-mediated approaches for modulating the activity of individual yc-cytokines, Applicants have devised novel, low molecular weight compounds herein referred to as "Simul-Block", which suppress the activity of multiple yc-cytokines. These low molecular weight compounds, which include both chemicals and peptides, are less immunogenic than antibodies. These properties distinguish Simul-Block as a more efficient strategy for mediating yc-cytokine activity in clinical interventions.

Discovery of the yc-box

[0050] The C-terminus (the D-helix) of the yc-cytokines contains the proposed site for interacting with the common yc-subunit of the multi-unit cytokine receptors. (Bernard et al., 2004 J. Biol. Chem. 279:24313-21.) Comparison of the biochemical properties of the amino acids of all yc-cytokines identified in mice and humans revealed that the chemical nature of the
amino acids, for example, hydrophobicity, hydrophilicity, base/acidic nature, are conserved, if
not identical, at many positions in the D-helix across the members of the yc-cytokine family. In
contrast, the sequence of IL-13, which is related to the yc-cytokine, IL-4, but does not bind to the
yc-subunit, does not exhibit significant homology in the D-helix region to the yc-cytokines,
suggesting that the sequence homology in the D-helix region is correlated with binding to the
yc-subunit. As shown in Figure 1, alignment of the amino acid sequences of the D-helix region
of yc-cytokine family members in humans reveals a motif of moderate sequence homology in
these cytokines referred to herein as "the yc-box".

[0051] The yc-box comprises 19 amino acids where out of the 19 positions, positions 4, 5, and 13 are fully conserved as Phenylalanine, Leucine, and Asparagine, respectively. Less conservation is observed at positions 6, 7 and 11 of the yc-box where the amino acid is one of two or three related amino acids that share physico-chemical properties: position 6 may be occupied by the polar amino acids Glutamate, Asparagine or Glutamine; non-polar amino acids Serine or Arginine can occupy position 7; and position 11 is occupied by either of the non-polar aliphatic amino acids Leucine or Isoleucine. Positions 9 and 16 may be occupied by the either the non-polar amino acid Isoleucine or the polar amino acid Lysine. See Figure 1B. Some differences in the amino acid composition of the yc-box are observed at positions 9 and 6 amongst subfamilies of the yc-cytokines. Comparison of the yc-cytokines across species indicates that Isoleucine is present at the 9 and 6 positions in the IL-2/15 subfamily, whereas the other yc-family members (e.g., IL-4, IL-21) possess Lysine in these positions. Not wishing to be bound by a particular theory, Isoleucine and Lysine are biochemically different and thus may impart specific conformational differences between the IL-2/15 subfamily and other yc-cytokines.

[0052] Conservation of the yc-box motif between yc-cytokines is supported by findings that an Asparagine (Asn, Q) residue located in the D-helix region is critical for the binding of the yc-cytokines to the yc-subunit. (Bernard et al., 2004 J. Biol. Chem. 279: 24313-21.)

Peptide Inhibitors of yc-Cytokine Activity

[0053] The activity of yc-family cytokines may be blocked by disrupting the interaction between the yc-cytokine and the yc-subunit, for example by introducing a competitive
inhibitor which can interact with the yc-subunit without stimulating signaling through the multi-subunit cytokine receptors. Not to be bound by a particular theory, the conserved yc-box motif, which participates in binding of the ye-family cytokines to the yc-subunit, presents a core base amino acid sequence which can be utilized to design peptide inhibitors of yc-cytokine signaling.

[0054] The core yc-box amino acid sequence comprises: D/E-F-L-E/Q/N-S/R-X-I/K-X-L/I-X-Q (SEQ ID NO: 2) (where X denotes any amino acid). Embodiments described herein relate to custom peptide derivatives of the core yc-box amino acid sequence which can inhibit the activity of one or more yc-cytokines. Custom peptide derivatives include any peptide whose partial amino acid sequence shows approximately 50%, 50-60%, 60-70%, 70-80%, 80%, 90%, 95%, 97%, 98%, 99% or 99.8% identity to the core yc-box amino acid sequence. Custom peptide derivatives further include any peptide wherein a partial amino acid sequence of that peptide derivative comprises amino acids with similar physico-chemical properties to the amino acids of the core yc-box. For example, amino acids with similar physico-chemical properties would include Phenylalanine, Tyrosine, Tryptophan, and Histidine, which are aromatic amino acids. Figure 2 shows a diagrammed representation of amino acids with similar physico-chemical properties which may be may be substituted for the amino acids comprising the core yc-box. Peptide derivatives of the core yc-box may be 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25-30, 30-35, 35-40, 40-45, 45-50, or more than 50 amino acids in length. In some embodiments, the custom peptide derivatives may be conjugated to the N-termini, C-termini and/or to the side residues of existing biological proteins/peptides.

[0055] Based on the identification of the conserved yc-box motif in cytokines which bind to the yc-subunit, Applicants have devised a novel, 19-mer custom derivative peptide which is an artificial composite peptide combining the amino acid sequence of the human IL-2 and IL-15 yc-box. The 19-mer peptide, herein referred to as BNZ-y, consists of the amino acid sequence: I-K-E-F-L-Q-R-F-I-H-I-Y-Q-S-I-I-N-T-S (SEQ ID NO: 1), where the amino acids depicted by bold characters are conserved between IL-2 and IL-15 and the underlined amino acids represent positions where the physico-chemical properties of the amino acids are conserved.

[0056] Applicants discovered that the 19-mer BNZ-y, suppresses IL-15 and IL-19 induced cellular proliferation, but not IL-2 or IL-4 induced cellular proliferation. See Figure 3A
and Example 2. Applicants further demonstrated that BNZ-γ inhibits IL-15 mediated phosphorylation of the intracellular cytokine signal transduction molecule, STAT-5. See Figure 3C and Example 5. These results demonstrate that custom peptide derivatives of the conserved yc-box motif can inhibit the activity of multiple yc-cytokines.

[0057] Several embodiments relate to custom derivative peptides of the 19-mer BNZ-γ amino acid sequence, I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1), which can inhibit the activity of one or more yc-cytokines. Custom peptide derivatives of the 19-mer BNZ-γ amino acid sequence include any peptide whose partial amino acid sequence shows approximately 50%, 50-60%, 60-70%, 70-80%, 80%, 90%, 95%, 97%, 98%, 99% or 99.8% identity to amino acid sequence: I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1). Custom peptide derivatives further include any peptide wherein a partial amino acid sequence of that peptide derivative comprises amino acids with similar physico-chemical properties to the amino acids of sequence: I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1). In several embodiments, the amino acid residues of the custom derivative peptides retain similar physico-chemical properties with the amino acid residues of BNZ-γ, but exhibit different biological inhibition specificity to the 6 yc-cytokine family members from that of the original 19-mer peptide. Peptide derivatives of BNZ-γ may be 19, 20, 21, 22, 24, 25-30, 30-35, 35-40, 40-45, 45-50, or more than 50 amino acids in length. In some embodiments, the custom peptide derivatives may be conjugated to the N-termini, C-termini and/or to the side residues of existing biological proteins/peptides.

[0058] Several embodiments relate to custom peptide derivatives of the yc-box motifs of IL-5, IL-2, IL-21, IL-4, IL-9, or IL-7, which are depicted in Figure 1A. Other embodiments relate to custom derivative peptides which are artificial composite peptides combining the amino acid sequence of two or more of the human IL-5, IL-2, IL-21, IL-4, IL-9, and IL-7 yc-box motifs. Several embodiments relate to custom peptide derivatives of the of the yc-box motifs of IL-5, IL-2, IL-21, IL-4, IL-9, or IL-7 having a partial amino acid sequence that shows approximately 50%, 50-60%, 60-70%, 70-80%, 80%, 90%, 95%, 97%, 98%, 99% or 99.8% identity to amino acid sequences of the of the yc-box motifs of IL-5, IL-2, IL-21, IL-4, IL-9, or IL-7. Custom peptide derivatives of the of the yc-box motifs of IL-5, IL-2, IL-21, IL-4, IL-9, or IL-7 further include any peptide wherein a partial amino acid sequence of that peptide derivative comprises
amino acids with similar physico-chemical properties to the amino acids of sequence of the yc-box motifs of IL-5, IL-2, IL-21, IL-4, IL-9, or IL-7.

[0059] Several embodiments relate to custom peptide derivatives that would inhibit the function of one, all, or selective members of the yc-cytokines. In some embodiments, the custom peptide derivatives selectively target individual yc-cytokine family members. For example, a custom peptide derivative can selectively inhibit the function of IL-2, IL-4, IL-7, IL-9, IL-15, or IL-21. In other embodiments, a custom peptide derivative can inhibit 2 or more yc-cytokine family members. For example, the custom peptide derivatives of the present embodiments can selectively inhibit the function of IL-2 in combination with one or more of IL-4, IL-7, IL-9, IL-15, and IL-21; IL-4 in combination with one or more of IL-7, IL-9, IL-15, and IL-21; IL-7 in combination with one or more of IL-9, IL-15, and IL-21; IL-9 in combination with one or more of IL-2, IL-4, IL-7, IL-15, and IL-21; IL-15 in combination with one or more of IL-2, IL-4, IL-7, IL-9, and IL-21; or IL-21 in combination with one or more of IL-2, IL-4, IL-7, IL-9, and IL-15. In other embodiments, custom peptide derivatives can comprehensively target all yc-cytokine family members. Not wishing to be bound by a particular theory, the custom peptide derivatives can inhibit the function of all or selective members of the yc-cytokines by diminishing the binding of yc-cytokines to the yc-subunit, for example, as a competitive inhibitor. Such custom peptide derivatives may be used in diverse applications, including as a clinical drug.

[0060] The terms "oligopeptide," "polypeptide," "peptide," and "protein" can be used interchangeably when referring to the custom peptide derivatives provided in accordance with the present embodiments and can be used to designate a series of amino acid residues of any length. Peptides according to the present embodiments may also contain non-natural amino acids. Linker elements can be joined to the peptides of the present embodiments through peptide bonds or via chemical bonds. The peptides of the present embodiments may be linear or cyclic, and may include (D) as well as (L) amino acids. Peptides of the present embodiments may also contain one or more rare amino acids (such as 4-hydroxyproline or hydroxyllysine), organic acids or amides and/or derivatives of common amino acids, such as amino acids having the C-terminal carboxylate esterified (e.g., benzyl, methyl or ethyl ester) or amidated and/or having modifications of the N-terminal amino group (e.g., acetylation or alkoxycarbonylamino), with or without any of a wide variety of side chain modifications and/or substitutions (e.g., methylation,
benzylation, t-butylation, tosylation, alkoxy carbonylamino, and the like). Residues other than common amino acids that may be present include, but are not limited to, penicillamine, tetramethylene cysteine, pentamethylene cysteine, mercaptopropionic acid, pentamethylene-mercaptopropionic acid, 2-mercaptopbenzene, 2-mercaptoaniline, 2-mercaptoproline, ornithine, diaminobutyric acid, amino adipic acid, m-aminomethylbenzoic acid, and diaminopropionic acid.

[0061] Peptides of the present embodiments can be produced and obtained by various methods known to those skilled in the art. For example, the peptide may be produced by genetic engineering, based on the nucleotide sequence coding for the peptide of the present embodiments, or chemically synthesized by means of peptide solid-phase synthesis and the like, or produced and obtained in their combination. One skilled in the art can synthesize the custom peptide derivatives based on the present disclosure of the conserved yc-box motif and knowledge of the biochemical properties of amino acids as described in Figure 2. Some embodiments also relate to polynucleotides comprising nucleotide sequences encoding the peptides of the present invention. "Nucleotide sequence," "polynucleotide," or "nucleic acid" can be used interchangeably, and are understood to mean either double-stranded DNA, a single-stranded DNA or products of transcription of the said DNAs (e.g., RNA molecules). Polynucleotides can be administered to cells or subjects and expressed by the cells or subjects, rather than administering the peptides themselves. Several embodiments also relate to genetic constructs comprising a polynucleotide sequence encoding the peptides of the present invention. Genetic constructs can also contain additional regulatory elements such as promoters and enhancers and, optionally, selectable markers.

Methods of treating ye-cytokine mediated diseases

[0062] Several embodiments relate to the use of ye-antagonist peptides in the treatment of ye-cytokine mediated diseases. Use of custom peptide derivative according to the present embodiments allows for flexibility in the design of the therapeutic agent (custom design of the peptide) and enables more comprehensive outcomes, which would not be accomplished by conventional strategies employing anti-cytokine or anti-cytokine receptor antibodies.

[0063] Described herein is a novel method of blocking the action of yc-family cytokines. Such manipulations can yield effective methods of clinical interventions in treating diseases related to the dysregulation or dysfunction of yc-cytokines. Examples of disease that
may be treated by disrupting the interaction between the yc-cytokine and the ye-subunit include autoimmune diseases such as systemic lupus erythematosus, Sjogren's syndrome, Wegener's granulomatosis Celiac disease, Hashimoto's or auto-immune thyroiditis; collagen diseases including rheumatoid arthritis, inflammatory bowel disease, diabetes mellitus, autoimmune diseases of the skin such as psoriasis; degenerative neuronal diseases such as multiple sclerosis, uveitis or inflammation of the eye and sympathetic ophthalmia, graft-versus-host disease (GvHD) and myasthenia gravis.

In some embodiments, the yc-antagonist peptides described herein may be used in the treatment of 1- Human T-cell Lymphotropic type I and II (HTLV-I and HTLV-II)-associated diseases including Adult T-cell Leukemia (ATL), HTLV-associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), and other non-neoplastic inflammatory diseases associated with HTLV such as uveitis (HU), arthropathy, pneumopathy, dermatitis, exocrinopathy and myositis. In some embodiments, the yc-antagonist peptides described herein may be used in the treatment of other viral diseases such as influenza, AIDS, HBV and Herpes or parasitic diseases.

In several embodiments, the yc-antagonist peptides may be administered before, during, and or after transplantation of various organs as an immunosuppressant agent.

In some embodiments, the yc-antagonist peptides described herein may be used in the treatment of immune-mediated diseases such as asthma and other inflammatory respiratory diseases, such as, but not limited to sinusitis, hay fever, bronchitis, chronic obstructive pulmonary disease (COPD), allergic rhinitis, acute and chronic otitis, lung fibrosis. In some embodiments, yc-antagonist peptides may be administered to treat or prevent allergic reactions due to exposure to allergens, chemical agents or other common causes of acute respiratory disease. In some embodiments, yc-antagonist peptides may be administered to treat or prevent inflammatory responses caused by viruses, bacteria, chemical reagents, and biochemical reagents.

In several embodiments, the yc-antagonist peptides may be administered to treat some types of malignancies such as LGL-leukemia, Intraepithelial lymphoma and leukemia in Refractory Celiac Disease, NK leukemia/lymphoma and NK-T leukemia/lymphoma.
In some embodiments, custom peptide derivatives according to the embodiments described herein can be used for cosmetic purposes, such as the treatment of acne, hair loss, sunburn and nail maintenance, included to ointment as anti-aging component because of the anti-inflammatory nature of them.

Several embodiments relate to therapeutic antagonist peptides that would inhibit the function of all or selective members of the yc-cytokines. In some embodiments, therapeutic antagonist peptides selectively inhibit individual yc-cytokine family members (custom peptides). In other embodiments, therapeutic antagonist peptides can comprehensively inhibit all yc-cytokine family members (Simul-Block). In some embodiments, therapeutic antagonist peptides selectively inhibit subsets of the yc-cytokines. Not wishing to be bound by a particular theory, the peptide antagonists can inhibit the function of all or selective members of the yc-cytokines by diminishing the binding of yc-cytokines to the yc-subunit, for example, as a competitive inhibitor.

Several members of the yc-cytokine family, IL-2, IL-7, and IL-15, but not IL-4 have been implicated as being involved in graft versus host disease (GvHD) in an experimental mouse model. (Miyagawa et al., 2008 J. Immunol. 181:1109-19.) One embodiment relates to the use of therapeutic antagonist peptides that selectively inhibit IL-2, IL-7, and IL-15 activity for the treatment of GvHD in humans, allowing survival of the grafted tissues or bone marrow cells. Other embodiments relate to the use of therapeutic antagonist peptides that selectively inhibit a combination of IL-2 and IL-7, IL-2, and IL-15, or IL-7 and IL-15 to treat GvHD. Other embodiments relate to the use of a combination of therapeutic antagonist peptides that selectively inhibit IL-2, IL-7, or IL-15.

Some embodiments relate to the use of therapeutic antagonist peptides that selectively inhibit IL-2 function for the treatment of autoimmune disorders where T-reg have been implicated as playing a role. In some embodiments, peptide-mediated inhibition of T-reg can enhance the natural anti-cancer immunity in humans, providing a novel means of anti-cancer therapy.

Several embodiments relate to the use of therapeutic antagonist peptides that selectively inhibit IL-4 to treat asthma.
Some embodiments relate to the use of therapeutic antagonist peptides that selectively inhibit IL-7 either alone or in combination with therapeutic antagonist peptides that selectively inhibit the yc-cytokine family member, IL-15, as a therapeutic agent for LGL leukemia. In some embodiments therapeutic antagonist peptides that selectively inhibit both IL-7 and IL-15 activity can be used to treat LGL leukemia. Several embodiments relate to the use of BNZ-γ to treat LGL leukemia. In some embodiments, specific yc-antagonist peptides that selectively IL-15 alone or specific yc-antagonist peptides that selectively IL-15 and IL-7 are used as a therapeutic agent for CD4/CD8 T lymphocyte-associated leukemia including that caused by the HTLV-I.

Several embodiments relate to the use of yc-antagonist peptides that selectively inhibit the activity of IL-9, either alone or in combination with the other yc-cytokine family members, as a therapeutic agent for human diseases that involve the abnormal development of Th17 cells.

Several embodiments relate to the use of therapeutic antagonist peptides that selectively inhibit IL-15 activity as a therapeutic agent for treating CD. One recent publication suggested that IL-21, in addition to IL-15, may play a role in CD pathogenesis. (See Bodd et al., 2010, Mucosal Immunol. 3:594-601.) This suggests that optimum treatment of CD by conventional anti-cytokine or cytokine-receptor antibodies would benefit from a combination of at least two antibodies recognizing component that belong to the IL-15 and IL-21 systems. In some embodiments, custom derivative antagonist peptides that selectively inhibit both IL-15 and IL-21 activity are used as a therapeutic agent for treating CD.

In addition to having therapeutic applications, yc-antagonist peptides have applications in consumer products as well. Several embodiments relate to the use of yc-antagonist peptides in skin care products such as anti-aging, anti-inflammatory, anti-acne, and other related applications. Some embodiments relate to the use of yc-antagonist peptides in hair products as anti-hair loss ingredient to treat hair loss caused by autoimmune disorders.

Another embodiment relates to the development of chemical compounds (non-peptide, non-protein) that have a spatial structure which resembles the 19-mer amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1) and can fit into the pocket of the yc-subunit to structurally hinder the access of a yc-cytokine to the yc-subunit for binding.
Some embodiments relate to the use of structurally similar chemical compounds as inhibitors of ye-cytokine activity. Such molecular mimicry strategy to further refine the development of synthetic compounds resembling in structure to existing biological peptide/proteins is described in Orzaez et al., 2009 Chem. Med. Chem. 4:146-160. Another embodiment relates to administration of chemical compounds (non-peptide, non-protein) that have a resembling 3D structure as the 19-mer amino acids sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1) to treat yc-cytokine-mediated diseases.

[0079] Several embodiments relate to administration of polyclonal and monoclonal antibodies raised against a peptide comprising of amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1) into patients as an immunogen to treat yc-cytokine-mediated diseases. Another embodiment relates to administration of polyclonal and monoclonal antibodies that were raised against derivative peptides of amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1) wherein the amino acid sequence of the derivative peptide has similar physico-chemical properties as a peptide of the amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1), but has distinct biological activity, into patients as an immunogen to treat yc-cytokine-mediated diseases.

Administration of yc-antagonist peptides

[0080] The present embodiments also encompass the use of yc-antagonist peptides for the manufacture of a medicament for the treatment of a disease. The present embodiments also encompass a pharmaceutical composition that includes yc-antagonist peptides in combination
with a pharmaceutically acceptable carrier. The pharmaceutical composition can include a pharmaceutically acceptable carrier and a non-toxic therapeutically effective amount of yc-antagonist peptides, or other compositions of the present embodiments.

[0081] The present embodiments provide methods of using pharmaceutical compositions comprising an effective amount of antagonists for yc-cytokines in a suitable diluent or carrier. A yc-antagonist of the present embodiments can be formulated according to known methods used to prepare pharmaceutically useful compositions. A yc-antagonist can be combined in admixture, either as the sole active material or with other known active materials, with pharmaceutically suitable diluents (e.g., phosphate, acetate, Tris-HCl), preservatives (e.g., thimerosal, benzyl alcohol, parabens), emulsifying compounds, solubilizers, adjuvants, and/or carriers such as bovine serum albumin. Suitable carriers and their formulations are described in Remington's Pharmaceutical Sciences, 16th ed. 1980 Mack Publishing CO. Additionally, such compositions can contain a yc-antagonist complexed with polyethylene glycol (PEG), metal ions, or incorporated into polymeric compounds such as polyacetic acid, polyglycolic acid, hydrogels etc., or incorporated into liposomes, microemulsions, micelles, unilamellar or multilamellar vesicles, erythrocyte ghosts, or spheroplasts. Such compositions will influence the physical state, solubility, stability, rate of in vivo release, and rate of in vivo clearance or a yc-antagonist. A yc-antagonist can be conjugated to antibodies against cell-specific antigens, receptors, ligands, or coupled to ligands for tissue-specific receptors.

[0082] Methods of administrating yc-antagonists of the present embodiments may be selected as appropriate, depending on factors, such as the type of diseases, the condition of subjects, and/or the site to be targeted. The yc-antagonists can be administered topically, orally, parenterally, rectally, or by inhalation. The term "parenteral" includes subcutaneous injections, intravenous, intramuscular, intraperitoneal, intracisternal injection, or infusion techniques. These compositions will typically include an effective amount of a yc-antagonist, alone or in combination with an effective amount of any other active material. The amount of the peptide contained in pharmaceutical compositions of the present embodiments, dosage form of the pharmaceutical compositions, frequency of administration, and the like may be selected as appropriate, depending on factors, such as the type of diseases, the condition of subjects, and/or the site to be targeted. Such dosages and desired drug concentrations contained in the
compositions may vary affected by many parameters, including the intended use, patient's body weight and age, and the route of administration. Pilot studies will first be conducted using animal studies and the scaling to human administration will be performed according to art-accepted practice.

[0083] In one embodiment, host cells that have been genetically modified with a polynucleotide encoding at least one yc-antagonist peptide are administered to a subject to treat a proliferation disorder and/or to reduce the growth of malignant cells. The polynucleotide is expressed by the host cells, thereby producing the peptides within the subject. Preferably, the host cells are allogeneic or autogeneic to the subject.

[0084] In a further aspect, yc-antagonist peptides can be used in combination with other therapies, for example, therapies inhibiting cancer cell proliferation and growth. The phrase "combination therapy" embraces the administration of yc-antagonist peptides and an additional therapeutic agent as part of a specific treatment regimen intended to provide a beneficial effect from the co-action of these therapeutic agents. Administration of these therapeutic agents in combination typically is carried out over a defined time period (usually minutes, hours, days or weeks depending upon the combination selected).

[0085] A combination therapy is intended to embrace administration of these therapeutic agents in a sequential manner, that is, wherein each therapeutic agent is administered at a different time, as well as administration of these therapeutic agents, or at least two of the therapeutic agents, in a substantially simultaneous manner. Substantially simultaneous administration can be accomplished, for example, by administering to the subject a single capsule having a fixed ratio of each therapeutic agent or in multiple, single capsules for each of the therapeutic agents. Sequential or substantially simultaneous administration of each therapeutic agent can be effected by an appropriate route including, but not limited to, oral routes, intravenous routes, intramuscular routes, and direct absorption through mucous membrane tissues. There therapeutic agents can be administered by the same route or by different routes. The sequence in which the therapeutic agents are administered is not narrowly critical.

[0086] Combination therapy also can embrace the administration of the therapeutic agents as described above in further combination with other biologically active ingredients (such as, but not limited to, a second and different therapeutic agent) and non-drug therapies (such as,
but not limited to, surgery or radiation treatment). Where the combination therapy further comprises radiation treatment, the radiation treatment may be conducted at any suitable time so long as a beneficial effect from the co-action of the combination of the therapeutic agents and radiation treatment is achieved. For example, in appropriate cases, the beneficial effect is still achieved when the radiation treatment is temporarily removed from the administration of the therapeutic agents, perhaps by days or even weeks.

[0087] In certain embodiments, yc-antagonist peptides can be administered in combination with at least one anti-proliferative agent selected from the group consisting of chemotherapeutic agent, an antimitabolite, and antitumorigenic agent, and antimitotic agent, and antiviral agent, and antineoplastic agent, an immunotherapeutic agent, and a radiotherapeutic agent.

[0088] In certain embodiments, yc-antagonist peptides can be administered in combination with at least one anti-inflammatory agent selected from the group consisting of steroids, corticosteroids, and nonsteroidal anti-inflammatory drugs.

[0089] Also provided are kits for performing any of the above methods. Kits may include a yc-antagonist according to the present embodiments. In some embodiments, the kit may include instructions. Instructions may be in written or pictograph form, or may be on recorded media including audio tape, audio CD, video tape, DVD, CD-ROM, or the like. The kits may comprise packaging.

Definitions

[0090] As used herein, the term "patient" refers to the recipient of a therapeutic treatment and includes all organisms within the kingdom animalia. In preferred embodiments, the animal is within the family of mammals, such as humans, bovine, ovine, porcine, feline, buffalo, canine, goat, equine, donkey, deer, and primates. The most preferred animal is human.

[0091] As used herein, the term "treat" or any variation thereof (e.g., treatment, treating, etc.), refers to any treatment of a patient diagnosed with a biological condition, such as CD4-, CD8-, and LGL-leukemia, an autoimmune disease, systemic lupus erythematosis, Sjoegren's syndrome, Wegener's granulomatosis, Celiac disease, Hashimoto's thyroiditis, a collagen disease, rheumatoid arthritis, inflammatory bowel disease, diabetes mellitus, psoriasis, a degenerative neuronal disease, multiple sclerosis, uveitis, inflammation of the eye, graft-versus-
host disease (GvHD), myasthenia gravis, 1. Human T-cell Lymphotropic type I and II (HTLV-I and HTLV-II)-associated diseases, Adult T-cell Leukemia (ATL), HTLV-associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), uveitis (HU), arthropathy, pneumopathy, dermatitis, exocrinopathy, myositis, influenza, AIDS, HBV, Herpes, asthma, sinusitis, hay fever, bronchitis, chronic obstructive pulmonary disease (COPD), allergic rhinitis, acute and chronic otitis, lung fibrosis, NK leukemia/lymphoma and NK-T leukemia/lymphoma. The term treat, as used herein, includes: (i) preventing or delaying the presentation of symptoms associated with the biological condition of interest in an at-risk patient who has yet to display symptoms associated with the biological condition; (ii) ameliorating the symptoms associated with the biological condition of interest in a patient diagnosed with the biological condition; (iii) preventing, delaying, or ameliorating the presentation of symptoms associated with complications, conditions, or diseases associated with the biological condition of interest in either an at-risk patient or a patient diagnosed with the biological condition; (iv) slowing, delaying or halting the progression of the biological condition; and/or (v) preventing, delaying, slowing, halting or ameliorating the cellular events of inflammation.

[0092] The term "symptom(s)" as used herein, refers to common signs or indications that a patient is suffering from a specific condition or disease.

[0093] The term "effective amount," as used herein, refers to the amount necessary to elicit the desired biological response. In accordance with the present embodiments, an effective amount of a yc-antagonist is the amount necessary to provide an observable effect in at least one biological factor for use in treating a biological condition.

[0094] "Recombinant DNA technology" or "recombinant" refers to the use of techniques and processes for producing specific polypeptides from microbial (e.g., bacterial, yeast), invertebrate (insect), mammalian cells or organisms (e.g., transgenic animals or plants) that have been transformed or transfected with cloned or synthetic DNA sequences to enable biosynthesis of heterologous peptides. Native glycosylation pattern will only be achieved with mammalian cell expression system. Prokaryotic expression systems lack the ability to add glycosylation to the synthesized proteins. Yeast and insect cells provide a unique glycosylation pattern that may be different from the native pattern.
[0095] A "Nucleotide sequence" refers to a polynucleotide in the form of a separate fragment or as a component of a larger DNA construct that has been derived from DNA or RNA isolated at least once in substantially pure form, free of contaminating endogenous materials and in a quantity or concentration enabling identification, manipulation, and recovery of its component nucleotide sequences by standard molecular biology methods (as outlined in Current Protocols in Molecular Biology).

[0096] "Recombinant expression vector" refers to a plasmid comprising a transcriptional unit containing an assembly of (1) a genetic element or elements that have a regulatory role in gene expression including promoters and enhances, (2) a structure or coding sequence that encodes the polypeptide according to the present embodiments, and (3) appropriate transcription and translation initiation sequence and, if desired, termination sequences. Structural elements intended for use in yeast and mammalian system preferably include a signal sequence enabling extracellular secretion of translated polypeptides by yeast or mammalian host cells.

[0097] "Recombinant microbial expression system" refers to a substantially homogenous monoculture of suitable hot microorganisms, for example, bacteria such as E. coli, or yeast such as S. cerevisiae, that have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit as a component of a residual plasmid. Generally, host cells constituting a recombinant microbial expression system are the progeny of a single ancestral transformed cell. Recombinant microbial expression systems will express heterologous polypeptides upon induction of the regulatory elements linked to a structural nucleotide sequence to be expressed.

[0098] The following Examples are presented for the purposes of illustration and should not be construed as limitations.

EXAMPLES

EXAMPLE 1

Method for Assessing the Inhibitory Activity of ye-Antagonist Peptide

[0099] The capacity of any custom derivative peptide prepared according to the present embodiments for inhibiting the action of one yc-cytokine family member is determined using mammalian cellular assays to measure their proliferative response to the yc-cytokine family member.
[0100] For each of the six yc-cytokines, indicator cell lines: CTLL-2, a murine CD8 T cells line available from American Type Culture Collection, and PT-18, a murine mast cell line and its subclone PT-18β, is transfected with human IL-2Rβ gene to make the cells responsive to IL-2 and IL-15 (Tagaya et al., 1996, EMBO J. 15:4928-39), and is used to quantitatively determine the yc-cytokine’s growth-promoting activity (See Current protocols in Immunology from Wiley and Sons for a methodological reference). The indicator cells demonstrate semilinear dose-dependent response when measured by a colorimetric WST-1 assay over a range of concentrations (See Clontech PT3946-1 and associated user manual, incorporated herein by reference, for a detailed description of the reagents and methods). Once the appropriate doses of the cytokine that yield the 50% and 95% maximum response from the indicator cell line is determined, various concentrations (ranging from 1 pM to 10 µM) of the purified or synthesized custom derivative peptide is added to each well containing the cytokine and indicator cells. The reduction in light absorbance at 450nm is used as an indicator of inhibition of cytokine-stimulated cellular proliferation. Typically, the cells are stimulated by the cytokines such that the absorbance of the well containing indicator cell line and the cytokine is between 2.0 and 3.0, which is reduced to a range of 0.1 to 0.5 by the addition of inhibitory peptides.

EXAMPLE 2

BNZ-γ Peptide Specifically Inhibits the Growth-Promoting Activities of IL-9 and IL-15

[0101] Using PT-18β cells as described above, the ability of the BNZ-γ peptide to specifically inhibit the growth-promoting activity of select yc-cytokines was determined (Figure 3A). IL-3, a non-yc-cytokine that supports the growth of PT-18β cells, was used as a negative control. Briefly, PT-18β cells were incubated either with two different dilutions of BNZ-γ peptide produced by HEK293T cells (1:20 or 1:50 dilution of the original supernatant of HEK293T cells transfected with a BNZ-γ expression construct) or without BNZ-γ peptide in the presence of IL-3, IL-9, IL-15, or IL-4 (1 nM of each cytokine in the culture). The growth-responses of the cells were determined 2 days after the introduction of BNZ-γ peptide and the cytokine using the WST-1 assay. The growth-promoting activity of IL-3 (a non yc-cytokine) was not inhibited by BNZ-γ. In contrast, the activity of IL-15 and IL-9 were significantly (p<0.01 Student’s T test) reduced by the BNZ-γ peptide. Cellular proliferation stimulated by IL-4,
another yc-cytokine, was not affected by the addition of BNZ-γ peptide. Results for IL-3, IL-9, IL-15, and IL-4 are shown at Figure 3A.

[0102] In a similar assay, the murine cell line CTTL2 was used. In this assay the cells were cultured with 0.5 nM of recombinant IL-2 in RPMI 10% fetal Calf Serum. To set up the proliferation assay, cells were washed from the cytokines 3 times. Cells were seeded at 1 x 10(5) cells per well of a 96-well plate with final concentration of 50 pM of IL-2 or IL-15. Various concentration of BNZ-γ peptide (0.1, 1, and 10 ug/ml) was added to each well. Cells were cultured for 20 hours and in the last 4 hours, ³H-thymidine was added to the plates. Cells were harvested using a plate reader. The data is shown in Figure 3B.

EXAMPLE 3

Method for Measuring Inhibition ye-Cytokine Activity by Assaying 3H-thymidine Incorporation of as a Marker of Cellular Proliferation

[0103] Inhibition of yc-cytokine-induced proliferation of an indicator cell population by antagonist custom derivative peptides is measured by the 3H-thymidine incorporation assay. Briefly, radiolabeled thymidine (1 microCi) is given to 20-50,000 cells undergoing proliferation in the presence of cytokines. The cell-incorporated radioactivity is measured by trapping cell-bound radioactivity to a glass-fiber filter using a conventional harvester machines (Example, Filtermate Universal Harvester from Perkin-Elmer), after which the radioactivity is measured using a b-counter (Example 1450, Trilux microplate scintillation counter).

EXAMPLE 4

Method for Measuring Inhibition yc-Cytokine Activity by Assaying Incorporation of a Cell-Tracker Dye as a Marker of Cellular Proliferation

[0104] Indicator cells are incubated in the presence of a selected yc-cytokine or in the presence of a selected yc-cytokine and a selected custom derivative peptide. The cell population is then labeled in vitro using a cell-tracker dye, for example, CMFDA, C2925 from Invitrogen, and the decay of cellular green fluorescence at each cellular division is monitored using a flow-cytometer (for example, Beckton-Dickinson FACScalibur). Typically, in response to yc-cytokine stimulation 7-10 different peaks corresponding to the number of divisions that the cells have undergone will appear on the green fluorescence channel. Incubation of the cells with the
selected γc-cytokine and antagonist custom derivative peptide reduces the number of peaks to only 1 to 3, depending on the degree of the inhibition.

EXAMPLE 5

Inhibition of Intracellular Signaling by BNZ-γ and its Derivative Antagonists

[0105] In addition to stimulating cellular proliferation, binding of the γc-cytokines to their receptors causes a diverse array of intracellular events. (Rochman et al. 2009 Nat. Rev. Immunol. 9:480-90, Pesu et al. 2005 Immunol. Rev. 203:127-142.) Immediately after the cytokine binds to its receptor, a tyrosine kinase called Jak3 (Janus-kinase 3) is recruited to the receptor at the plasma membrane. This kinase phosphorylates the tyrosine residues of multiple proteins including the γc-subunit, STAT5 (Signal Transducer and Activator of Transcription 5) and subunits of the PI3 (Phosphatidylinositol 3) kinase. Among these, the phosphorylation of STAT5 has been implicated in many studies as being linked to the proliferation of cells initiated by the γc-cytokine. (Reviewed in Hennighausen and Robinson, 2008 Genes Dev. 22:711-21.) In accordance with these published data, whether or not the BNZ-γ peptide inhibits the tyrosine phosphorylation of STAT5 molecule in PT-18β cells stimulated by IL-15 was examined (results shown in Figure 3C).

[0106] PT-18β cells were stimulated by IL-15 in the presence or absence of BNZ-γ peptide. Cytoplasmic proteins were extracted from the cells according to a conventional method as described in Tagaya et al. 1996 EMBO J. 15:4928-39. The extracted cytoplasmic proteins were resolved using a standard SDS-PAGE (Sodium Dodecyl-Sulfate PolyAcrylamide Gel Electrophoresis) and the phosphorylation status was confirmed by an anti-phospho-STAT5 antibody (Cell Signaling Technology, Catalog # 9354, Danvers MA) using immunoblotting (see Figure 3C, top panel). To confirm that each lane represented a similar total protein load, the membrane was then stripped, and re-probed with an anti-STAT5 antibody (Cell Signaling Technology, Catalog # 9358) (see Figure 3C, bottom panel).

[0107] These results demonstrated that tyrosine phosphorylation of STAT5, a marker of signal transduction, was induced by IL-15 in PT-18β cells, and tyrosine phosphorylation of STAT5 was markedly reduced by the BNZ-γ peptide.
EXAMPLE 6
Rational Design for ΒΝΖ-γ Derivative Antagonistic Peptides

[0108] Derivative peptides are prepared based from the core sequence D/E-F-L-E/Q/N-S/R-X-I/K-X-L/I-X-Q (SEQ ID NO: 2) (where X denotes any amino acid) by substituting the defined amino acids of the core sequence with amino acids having identical physico-chemical properties as designated in Figure 2.

EXAMPLE 7
Method of Identifying the Inhibitory Specificity of Antagonistic Custom Derivative Peptides

[0109] The yc-cytokine inhibitory specificity of antagonistic custom derivative peptides is determined by assaying the ability of a custom derivative peptide to inhibit the proliferative response of a cytokine-responsive cell line to each of the 6 yc-cytokines. For example, a mouse cell line, CTLL-2, is used to determine if a candidate peptide inhibits the function of IL-2 and IL-15. PT-18(β) cells are used to determine if a candidate peptide inhibits the function of IL-4 and IL-9. PT-18 (7a) cells are used to determine if a candidate peptide inhibits the function of IL-7, and PT-18(21oc) cells are used to determine if a candidate peptide inhibits the function of IL-21. PT-18(β) denotes a subclone of PT-18 cells that exogenously express human IL-2Rβ by gene transfection (See Tagaya et al. 1996), PT-18(7oc) denotes a subclone that expresses human IL-7Roc by gene transfection and PT-18(21Roc) cells express human IL-21RCC.

[0110] Another alternative is to use other cell lines that respond to an array of cytokines. An example of this cell line in a human NK cell line NK92 that is commercially available by ATCC (catalog # CRL-2407). This cell line is an IL-2 dependent cell line that responds to other cytokines including IL-9, IL-7, IL-15, IL-12, IL-18, IL-21 (Gong et al. 1994 Leukemia 8: 652-658., Kingemann et al., 1996, Biol Blood Marrow Transplant 2:68;75. Hodge DL et al., 2002 J. Immunol. 168:9090-8)

EXAMPLE 8
Preparation of yc-Antagonist Peptides

[0111] Custom derivative ye-antagonist peptides are synthesized chemically by manual and automated processes.
Manual synthesis: Classical liquid-phase synthesis is employed, which involves coupling the carboxyl group or C-terminus of one amino acid to the amino group or N-terminus of another. Alternatively, solid-phase peptide synthesis (SPPS) is utilized.

Automated synthesis: Many commercial companies provide automated peptide synthesis for a cost. These companies use various commercial peptide synthesizers, including synthesizers provided by Applied Biosystems (ABI). Custom derivative yc-antagonist peptides are synthesized by automated peptide synthesizers.

EXAMPLE 9
Biological Production of Custom Derivative yc-Antagonist Peptides Using Recombinant Technology

A custom derivative yc-antagonist peptides is synthesized biologically as a pro-peptide that consists of an appropriate tagging peptide, a signal peptide, or a peptide derived from a known human protein that enhances or stabilizes the structure of the BNZ-γ peptide and improves its biological activity. If desired, an appropriate enzyme-cleavage sequence proceeding to the N-terminus of the peptide shall be designed to remove the tag or any part of the peptide from the final protein.

A nucleotide sequence encoding the custom derivative peptide with a stop codon at the 3’ end is inserted into a commercial vector with a tag portion derived from thioredoxin of E. coli and a special peptide sequence that is recognized and digested by an appropriate proteolytic enzyme (for example, enterokinase) intervening between the tag portion and the nucleotide sequence encoding the custom derivative peptide and stop codon. One example of a suitable vector is the pThioHis plasmid available from Invitrogen, CA. Other expression vectors may be used.

EXAMPLE 10
Conjugation of the BNZ-γ and Derivative to Carrier Proteins for Immunization Purposes and Generation of anti-BNZ-γ Antibody

BNZ-γ and other custom derivative peptides are used to immunize animals to obtain polyclonal and monoclonal antibodies. Peptides are conjugated to the N- or the C-terminus of appropriate carrier proteins (for example, bovine serum albumin, Keyhold Limpet Hemocyanin (KLH), etc.) by conventional methods using Glutaraldehyde or
m-Maleimidobenzoyl-N-Hydroxysuccinimide Ester. The conjugated peptides in conjunction with an appropriate adjuvant are then used to immunize animals such as rabbits, rodents, or donkeys. The resultant antibodies are examined for specificity using conventional methods. If the resultant antibodies react with the immunogenic peptide, they are then tested for the ability to inhibit individual yε-cytokine activity according to the cellular proliferation assays described in Examples 1-3. Due to the composite nature of the derivative peptides it is possible to generate a single antibody that recognizes two different cytokines simultaneously, because of the composite nature of these peptides.

EXAMPLE 11
Method for Large Scale Production of Custom Derivative yε-Antagonist Peptides

[0117] Recombinant proteins are produced in large scale by the use of cell-free system as described elsewhere. (See Takai et al., 2010 Curr. Pharm. Biotechnol. ll(3):272-8.) Briefly, cDNAs encoding the yε-antagonist peptide and a tag are subcloned into an appropriate vector (See Takai et al., 2010 Curr. Pharm. Biotechnol. ll(3):272-8), which is subjected to in vitro transcription, followed immediately by an in vitro translation to produce the tagged peptide. The pro-polypeptide is then purified using an immobilized antibody recognizing the tagged epitope, treated by the proteolytic enzyme and the eluate (which mostly contains the custom derivative peptide of interest) is tested for purity using conventional 18% Tricine-SDS-PAGE (Invitrogen) and conventional comassie staining. Should the desired purity of the peptide not be met (>98%), the mixture is subjected to conventional HPLC (high-performance liquid chromatography) for further purification.

EXAMPLE 12
Use of Custom Derivative yε-Antagonist Peptides to Block Cytokine Function in HAM/TSP

[0118] HTLV-I-associated myelopathy (HAM)/tropical spastic paraparesis (TSP) is a chronic progressive myelopathy seen in some people infected with Human T-Lymphotropic Virus Type I (HTLV-I). Infiltration of lymphocytes in the spinal cord is associated with the immune response to HTLV-I and results in the release of certain cytokines. Some of these cytokines may also damage nerves.
[0119] Patients with HAM/TSP show an elevated state of the immune system that is similar to that observed in autoimmune diseases (Oh et al. 2008 Neurol Clin. 26:781-785). This elevated state is demonstrated by the ability of HAM/TSP patient’s T-cells to undergo spontaneous proliferation in an ex vivo culture for about a week in the absence of exogenously added cytokines. The spontaneous proliferation of T-cells in HAM/TSP patients is attributed, at least partly, to autocrine/paracrine loops of IL-2, IL-9, and IL-15. It has been shown that adding blocking antibody against the IL-2 or IL-15 receptors can inhibit spontaneous T-cell proliferation in a HAM/TSP ex vivo culture system. These observations, along with other data derived from ex vivo studies, have provided the rationale for taking two monoclonal antibodies (an anti-IL-2 receptor alpha or anti-Tac and an anti-IL-15 receptor beta chain) into the clinic for treatment of HAM/TSP (Azimi et al. 2001 Proc. Natl. Acad. Sci. 98:14559-64., Azimi et al., 1999 J. Immunol 163:4064-72). Anti-cytokine receptor antagonists according to the embodiments described herein, would not only be valuable as a therapeutic immuno-modulatory agent for treatment of HAM/TSP, but modulation of immune response in HAM/TSP by anti-cytokine receptor antagonists according to the present embodiments acts proof-of-concept for the use of the anti-cytokine receptor antagonists according to the present embodiments in the treatment of other auto-immune diseases.

[0120] To demonstrate the efficacy of custom derivative yc-antagonist peptides according to the embodiments described herein, we tested the ability of BNZ-γ peptide to block immune response to HTLV-I in a spontaneous T-cell proliferation assay using a HAM/TSP ex vivo culture system. Proliferation assays were performed on HAM/TSP patient blood samples with and without the addition of BNZ-γ. These assays evaluated the ability of BNZ-γ to block the function of cytokines, such as IL-2 and IL-15, present in the ex vivo HAM/TSP patient blood culture and prevent spontaneous T-cell proliferation in these samples.

[0121] In an ex vivo spontaneous T-cell proliferation assay, PBMC from HAM/TSP patient was cultured at 1 x 10(6) cells per well of a 96 well plate in RPMI-10% FCS. Increasing concentrations of BNZ-γ peptide were added to each well. As a control, an irrelevant peptide was used in similar fashion. The cells were incubated in a 37°C C02 incubator for 3, 4, and 6 days. The amount of 1 uCi of 3H-thymidine was added to the cells. After an additional 6 hour incubation, cells were harvested their proliferation rate was measured. The data for a
representative HAM/TSP patient is shown in Figure 4A-D. As indicated in Figure 4, BNZ-γ peptide inhibits the spontaneous proliferation of T-cells in HAM/TSP culture at a concentration of about 1 μg/ml.

[0122] Other immunological markers were additionally measured in this assay. The percentage of the viral specific CD8 cells was measured during the ex vivo culture using viral protein tetramers. The population of CD4+CD25+ cells, a marker of T-cell activation, as well as Ki67 staining, a marker of T-cell proliferation, was monitored in a flow cytometry assay.

[0123] Other forms of the conjugated BNZ-γ peptide derivative can be used in a similar future assay. They include albumin, BSA, PEG that can be conjugated to the peptide after chemical synthesis. Other biological forms of the BNZ-γ peptide conjugate may include regions of known protein entities (including but not limited to Fc region of human IgG) that are fused to the BNZ-γ peptide derivative.

EXAMPLE 13
Method of treating Adult T-cell Leukemia (ATL) in a Human Patient by Administration of

Custom Derivative yc-Antagonist Peptide

[0124] A human patient suffering from Adult T-cell Leukemia is identified. An effective dose, as determined by the physician, of custom derivative yc-antagonist peptide, for example, BNZ-γ is administered to the patient for a period of time determined by the physician. Treatment is determined to be effective if patient enters remission.

EXAMPLE 14
Method of treating HAM/TSP in a Human Patient by Administration of Custom Derivative

yc-Antagonist Peptide

[0125] A human patient suffering from HAM/TSP is identified. An effective dose, as determined by the physician, of custom derivative yc-antagonist peptide, for example, BNZ-γ is administered to the patient for a period of time determined by the physician. Treatment is determined to be effective if patient's symptoms improve or if the progression of the disease has been stopped or slowed down.
REFERENCES

Bodd, M., Raki, M., Tollefsen, S., Fallang, L.E., Bergseng, E., Lundin, K.E., Sollid, L.M., HLA-DQ2-restricted gluten-reactive T cells produce IL-21 but not IL-17 or IL-22. 2010 Mucosal Immunol. 3:594-601.

WHAT IS CLAIMED IS:

1. An isolated or purified peptide, comprising amino acid sequence D/E-F-L-E/Q/N-S/R-X-I/K-X-L/I-X-Q (SEQ ID NO: 2), wherein X denotes any amino acid and wherein the peptide can inhibit the activity of one or more yc-cytokines selected from the group consisting of: IL-2, IL-4, IL-7, IL-9, IL-15 or IL-21.

2. The isolated or purified peptide according to claim 1, wherein the peptide comprises the amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1) (BNZ-\(\gamma\)).

3. The isolated or purified peptide according to claim 1, wherein the peptide consists essentially of amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1) (BNZ-\(\gamma\)).

4. The isolated or purified peptide according to any one of claims 1 to 3, wherein the peptide inhibits the activity of IL-15 and IL-19.

5. An isolated or purified peptide comprising, a peptide derivative of the amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1), wherein the amino acid sequence of the derivative peptide has similar physico-chemical properties as a peptide of the amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1), but has distinct biological activity, wherein the biological activity is inhibition of the activity of IL-15 and IL-9.

6. The peptide of claim 5, where in the amino acid sequence of the derivative shares at least about 50% identity with a peptide of amino acid sequence I-K-E-F-L-Q-R-F-I-H-I-V-Q-S-I-I-N-T-S (SEQ ID NO: 1).

7. A method for blocking signaling by one or more yc-cytokine family members, comprising contacting a cell with the isolated or purified peptide of any one of claims 1 to 6.

8. A method of inhibiting yc-cytokine binding to a yc-subunit comprising contacting a yc-subunit with the isolated or purified peptide of any one of claims 1 to 6.

9. A pharmaceutical composition comprising a therapeutically effective amount of an isolated or purified peptide of any one of Claims 1 to 6, or a derivative thereof, and a pharmaceutically acceptable carrier, diluent, excipient or combination thereof.
10. Use of an isolated or purified peptide of any one of Claims 1 to 6, or a derivative thereof, or a pharmaceutical composition of Claim 9 for preparing a medicament for ameliorating or treating a yc-cytokine-mediated disease.

11. The use of claim 10, wherein the yc-cytokine-mediated disease is selected from the group consisting of: CD4-leukemia, CD8-leukemia, LGL-leukemia, systemic lupus erythematos, Sjoegren's syndrome, Wegener's granulomatosis, Celiac disease, Hashimoto's thyroiditis, rheumatoid arthritis, inflammatory bowel disease, diabetes mellitus, psoriasis, multiple sclerosis, uveitis, inflammation of the eye, and graft-versus-host disease (GvHD).

12. Use of an isolated or purified peptide of any one of Claims 1 to 6, or a derivative thereof, or a pharmaceutical composition of Claim 9 for preparing a medicament for ameliorating or treating a HTLV-1-associated myelopathy (HAM)/ tropical spastic paraparesis (TSP) associated disease.

13. The use of claim 12, wherein the HAM/TSP associated disease is selected from the group consisting of: Adult T-cell Leukemia (ATL), HTLV-associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), and other non-neeoplastic inflammatory diseases associated with HTLV such as uveitis (HU), arthropathy, pneumopathy, dermatitis, exocrinopathy and myositis.

14. Use of an isolated or purified peptide of any one of Claims 1 to 6, or a derivative thereof, or a pharmaceutical composition of Claim 9 for preparing a medicament for ameliorating or treating an inflammatory respiratory disease.

15. The use of claim 12, wherein the inflammatory respiratory disease is selected from the group consisting of: asthma, sinusitis, hay fever, bronchitis, chronic obstructive pulmonary disease (COPD), allergic rhinitis, acute and chronic otitis, and lung fibrosis.

16. A method of using a peptide of any one of Claims 1 to 6, or a derivative thereof, or a pharmaceutical composition of Claim 9 for a cosmetic purpose, wherein the cosmetic purpose is selected from the group consisting of: treatment of acne, treatment of hair loss, treatment of sunburn, nail maintenance, and reduction in the appearance of aging.
Alignment of the D-helix region sequence of human γ-family cytokines

<table>
<thead>
<tr>
<th></th>
<th>IL-15</th>
<th>IL-21</th>
<th>IL-4</th>
<th>IL-9</th>
<th>IL-7</th>
<th>DLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>SeqID NO.</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>P</td>
<td>L</td>
<td>A</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>K</td>
<td>E</td>
<td>L</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>I</td>
<td>F</td>
<td>T</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>F</td>
<td>L</td>
<td>F</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>F</td>
<td>F</td>
<td>E</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>N</td>
<td>S</td>
<td>I</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>F</td>
<td>T</td>
<td>S</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q</td>
<td>L</td>
<td>N</td>
<td>V</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q</td>
<td>K</td>
<td>M</td>
<td>K</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>W</td>
<td>T</td>
<td>M</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>R</td>
<td>I</td>
<td>R</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>S</td>
<td>F</td>
<td>K</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>F</td>
<td>L</td>
<td>L</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>H</td>
<td>V</td>
<td>V</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>F</td>
<td>I</td>
<td>M</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>S</td>
<td>T</td>
<td>L</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1A.
The consensus sequence for the γc- and the IL-2/IL-15-box.

<table>
<thead>
<tr>
<th>γc-Box</th>
<th>D/E</th>
<th>F</th>
<th>L</th>
<th>Polar E</th>
<th>Polar S/R</th>
<th>Non-polar</th>
<th>Non-polar L/K</th>
<th>Aliphatic L/I</th>
<th>Non-polar Q</th>
<th>Charged</th>
<th>L/K</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-2/IL-15 box</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Q</td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

Fig.1B.
Figure 3B
Figure 3C

Phospho-STAT5

STAT5 (loading control)

No stimulation
IL-15 + Bnz-gamma
IL-15 stimulation
Figure 4A
Figure 4B
Figure 4C
Figure 4D
A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - A61K 38/20 (2012.01)
USPC - 424/85.2
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC(8) - A61K 38/20, 38/08, 39/00, 39/395; C07K 7/06, 7/08, 16/00, 14/54; A61P 19/02, 17/06, 11/06, 35/00, 35/02; C12N15/24 (2012.01)
USPC - 424/85.2, 141.1, 185.1; 530/326, 327, 387.7, 351; 514/19.2, 18.7; 435/69.1

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of data base and, where practicable, search terms used)
MicroPatent, Google Scholar, Google Patents, Gencor

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 2006/023641 1 A1 (DREHER et al) 19 October 2006 (19.10.2006) entire document</td>
<td>1, 4-6</td>
</tr>
<tr>
<td>Y</td>
<td>US 2009/0148403 A1 (BOSIVERT et al) 11 June 2009 (11.06.2009) entire document</td>
<td>1, 4-6</td>
</tr>
</tbody>
</table>

Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" member of the same patent family

Date of the actual completion of the international search:
12 April 2012

Date of mailing of the international search report:
10 MAY 2012

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-3201

Authorized officer:
Blaine R. Copenheaver
PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774
Box No. Π Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. □ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. □ Claims Nos.: 7-16
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of First sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- □ The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.
- □ The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- □ No protest accompanied the payment of additional search fees.

Form PCT/ISA/2 10 (continuation of first sheet (2)) (July 2009)