
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization I

International Bureau
(10) International Publication Number

(43) International Publication Date WO 2013/085606 A2
13 June 2013 (13.06.2013) P O P C T

(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
G11C 7/00 (2006.01) G11C 8/00 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,

PCT/US2012/058039 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

(22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

28 September 2012 (28.09.2012) NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,

(25) Filing Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,

(26) Publication Language: English ZM, ZW.

(30) Priority Data: (84) Designated States (unless otherwise indicated, for every

13/3 14,079 7 December 201 1 (07. 12.201 1) US kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

(71) Applicant: XILINX, INC. [US/US]; Attn: Legal Dept., UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
2100 Logic Drive, San Jose, CA 95124 (US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
(72) Inventors: WU, Ephrem, C ; 2100 Logic Drive, San Jose,

MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
CA 95 124 (US). SAHARIA, Gyanesh; 2100 Logic Drive,

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
San Jose, CA 95 124 (US).

ML, MR, NE, SN, TD, TG).
(74) Agents: GEORGE, Thomas et al; Xilinx, Inc., Attn: Leg

Published
al Dept., 2100 Logic Drive, San Jose, CA 95 124 (US).

witho'u ti ii n ti e r n a t i oo n a l se a r c hn rt e pp o rt ti au nnda to be republished
(81) Designated States (unless otherwise indicated, for every upon receipt of that report (Rule 48.2(g))

kind of national protection available): AE, AG, AL, AM,

(54) Title: CONTENTION-FREE MEMORY ARRANGEMENT

209

<
©

t
00

I
© FIG. 2

(57) Abstract: A memory arrangement (200) includes a plurality of memory blocks (208), a first group of access ports (204), and a

o second group of access ports (206). Routing circuitry (209) couples each pair of the first and second groups of access ports to a re
spective one of the memory blocks. Each pair includes a first access port from the first group and a second access port from the

o second group. The first access port has write access to a first portion of the respective memory blocks but not to a second portion of
the memory block, and has read access to the second portion but not to the first portion. The second access port has write access to
the second portion but not to the first portion, and has read access to the first portion but not to the second portion.



CONTENTION-FREE MEMORY ARRANGEMENT

FIELD OF THE INVENTION

One or more embodiments generally relate to data storage and retrieval.

BACKGROUND

Many network devices include a bridge interface to translate data from

one protocol format to another, route data, or perform other processing. For

example, a bridge interface may be implemented to convert data packet formats

between networks.

As another example, a bridge interface may be used to translate data

formats between a network and a computing system. For ease of explanation,

the embodiments and examples are primarily described with reference to a

network bridge configured to provide an interface between an optical network

and a computing system connected thereto.

To reduce the time and investment required for design and debugging,

bridge interfaces may be implemented using programmable integrated circuits

(IC), which include a number of logic and routing resources that may be

configured to implement a circuit design. Programmable ICs allow a circuit

design to be implemented, tested, and revised without realizing the circuit design

as an application specific IC (ASIC). In this manner, development time and

costs may be reduced.

Bridge interfaces often buffer data packets in a memory for efficient

processing. Conventional bridge interfaces use off-chip memory {e.g., DRAM) to

implement data buffering. However, for high transmission speed applications

(e.g., 400Gbps full duplex), such as those employed in optical networks, there

are often not enough pins in a programmable IC package to compensate for

reductions in throughput posed by access conflicts to the memory.

One or more embodiments may address one or more of the above issues.

SUMMARY

One embodiment of a memory arrangement can include a plurality of

memory blocks, a first group of access ports, and a second group of access

ports. Routing circuitry can couple each pair of the first and second groups of



access ports to a respective one of the plurality of memory blocks. Each pair of

access ports can include a first access port from the first group and a second

access port from the second group. The first access port can have write access

to a first portion of the respective one of the plurality of memory blocks but not to

a second portion of the memory block, and can have read access to the second

portion of the memory block but not to the first portion of the memory block. The

second access port can have write access to the second portion of the

respective memory block but not to the first portion of the memory block, and can

have read access to the first portion of the memory block but not to the second

portion of the memory block.

In this embodiment, each first portion of each of the plurality of memory

blocks can be used exclusively for buffering egress data; and each second

portion of each of the plurality of memory blocks can be used exclusively for

buffering ingress data. The plurality of memory blocks can be implemented on a

plurality of stacked semiconductor dice. Each of the plurality of memory blocks

can be implemented on a respective one of the plurality of stacked

semiconductor dice.

In this embodiment, the memory arrangement can further comprise an

interposer, wherein the plurality of stacked semiconductor dice can be

electrically coupled to contacts on a front-side of the interposer. Each of the

plurality of memory blocks can include two memory slices. The routing circuitry

can include programmable delay circuitry that is configurable to adjust timing on

one or more paths between the plurality of memory blocks and the first and

second groups of access ports. The timing is not adjusted for the path of the

one or more paths that exhibits the least latency. The programmable delay

circuitry can include a plurality of MUX selectable paths, each of the MUX

selectable paths can include a different number of flip-flops. For each of the

plurality of memory blocks, the first and second portions of the memory block

each can include a whole number of memory banks.

In this embodiment, the routing circuitry can include a crossbar switch

coupled to the plurality of memory blocks and first and second groups of access

ports, the crossbar switch can be clocked at a rate that is greater than the rate at

which sequential accesses of the memory blocks may occur, to reduce head-of-

line blocking. The plurality of memory blocks and the routing circuitry can be



configured to: for each memory block, adjust an amount of the memory block

included in the respective first portion and the amount of the memory block

included in the respective second portion in response to a configuration

bitstream. In this embodiment, each of the plurality of memory blocks can

include: a plurality of memory banks, each memory bank can have one or more

access ports; and for each memory bank, a respective selection circuit can be

configured to forward read requests from one access port of the corresponding

pair of the first and second groups of access ports that is indicated by the

configuration bitstream to the one or more access ports of the memory bank, and

can be configured to forward write requests from the other access port of the

corresponding pair of the first and second groups of access ports to the one or

more access ports of the memory bank.

An embodiment of a network interface circuit can include a network-side

serializer/deserializer (SerDer) circuit, a first group of access ports coupled to the

network-side SerDes circuit, a system-side SERDES circuit, and a second group

of access ports coupled to the system-side SerDes circuit. A plurality of memory

blocks and routing circuitry can be included on a stack of semiconductor dice.

The routing circuitry can couple the plurality of memory blocks to the first and

second groups of access ports. For each memory block, a respective first

access port can have write access to a first portion of the memory blocks but not

to a second portion of the memory block, and can have read access to the

second portion of the memory block but not to the first portion of the memory

block. A second access port can have write access to the second portion of the

respective memory block but not to the first portion of the memory block, and can

have read access to the first portion of the memory block but not to the second

portion of the memory block.

In this embodiment, the routing circuit can include a crossbar switch

clocked at a rate that is greater than twice the rate at which sequential accesses

of the memory blocks may occur. Each first portion of each memory block can

be used exclusively for buffering egress data; and each second portion of each

memory block can be used exclusively for buffering ingress data. For each

memory block, the first and second portions of the memory block each can

include a whole number of memory banks.



An embodiment of a bridge interface circuit can include a first transceiver

circuit configured to receive and transmit data in a first data format. A second

transceiver circuit can be configured to receive and transmit data in a second

format. A translation circuit can be coupled to the first and second transceiver

circuits. The translation circuit can be configured to convert data from the first

format to the second format, and convert data from the second format to the first

format. A memory circuit can be coupled to the translation circuit. The memory

circuit can include a plurality of memory blocks, a first group of access ports, a

second group of access ports, and routing circuitry coupling each pair of the first

and second groups of access ports to a respective one of the plurality of memory

blocks. Each pair of access ports of the first and second groups of access ports

can include a first access port from the first group of access ports and a second

access port from the second group of access ports. Each first access port can

have write access to a first portion of the respective one of the plurality of

memory blocks but not to a second portion of the memory block, and can have

read access to the second portion of the memory block but not to the first portion

of the memory block. Each second access port can have write access to the

second portion of the respective memory block but not to the first portion of the

memory block, and can have read access to the first portion of the memory block

but not to the second portion of the memory block.

In this embodiment, the translation circuit can be configured to: route data

between the first transceiver circuit and the memory circuit through only the first

port group; and route data between the second transceiver circuit and the

memory circuit through only the second port group. The first port group can be

located closer to the first transceiver than the second port group; and the second

port group can be located closer to the second transceiver than the first port

group.

An embodiment of a method can comprise: coupling each pair of a first

group of access ports and a second group of access ports to a respective one of

a plurality of memory blocks, each pair of the first and second groups of access

ports can include a first access port from the first group of access ports and a

second access port from the second group of access ports; configuring each of

the first group of access ports to have write access to a first portion of a

respective one of a plurality of memory blocks, and to have read access to a



second portion of the respective one of the plurality of memory blocks;

configuring each of the first group of access ports to not have read access to the

first portion of the respective one of the plurality of memory blocks, and to not

have write access to the second portion of the respective one of the plurality of

memory blocks; configuring each of a second group of access ports to have

write access to a second portion of the respective one of the plurality of memory

blocks, and to have read access to the first portion of the respective one of the

plurality of memory blocks; and configuring each of the second group of access

ports to not have read access to the second portion of the respective one of the

plurality of memory blocks, and to not have write access to the first portion of the

respective one of the plurality of memory blocks.

This embodiment of the method can further comprise, for each memory

block, adjusting an amount of the memory block included in the respective first

portion and the amount of the memory block included in the respective second

portion in response to a configuration bitstream.

Other embodiments will be recognized from consideration of the Detailed

Description and Claims, which follow.

BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects and advantages of the disclosed embodiments will

become apparent upon review of the following detailed description and upon

reference to the drawings in which:

FIG. 1 shows a block diagram of a network interface implemented with a

programmable IC in accordance with one or more embodiments;

FIG. 2 shows a block diagram of the memory architecture;

FIG. 3 shows memory blocks partitioned respective groups of memory

banks for ingress data and for egress data;

FIG. 4 shows a block diagram of a circuit that may be configured to

control access to read/write ports of memory banks of a partitioned memory

slice;

FIG. 5 shows a block diagram of routing circuitry that may be used to

route data between ports groups and memory in accordance with one or more

embodiments;



FIG. 6 shows a side view of a memory arrangement implemented using a

plurality of dice stacked on an interposer that may be coupled to an integrated

circuit in accordance with one or more embodiments; and

FIG. 7 shows an example programmable IC that may be configured in

accordance with one or more embodiments.

DETAILED DESCRIPTION OF THE DRAWINGS

For high-speed bridge interface applications, there are often not enough

available pins in a programmable IC package to compensate for reductions in

throughput due to conflicting accesses of the memory. However, memory

capacity requirements for bridge interfaces are generally low enough {e.g., 1 GB

to 2 GB) to allow the memory to be integrated within a programmable IC

package using current processing technologies. Previous bridge interface

implementations utilize control logic to arbitrate memory accesses to avoid

access conflicts. However, implementing such control logic in a programmable

IC requires many programmable resources, and thereby reduces the number of

programmable resource available to implement logic of the bridge interface.

One or more embodiments provide an efficient memory arrangement that is

conflict-free. Because the system is conflict-free, programmable resources are

not required to implement arbitration circuitry.

In one or more embodiments, a memory arrangement is provided for

conflict-free memory access. The memory arrangement implements an efficient

routing system to direct access to specific memory addresses so that arbitration

is not needed.

FIG. 1 shows a block diagram of a bridge interface implemented with a

programmable IC in accordance with one or more embodiments. In this

example, the network bridge interface 100 is implemented using a

programmable IC 102. The programmable IC 102 includes a first set of

serial izer/de-serializer (SerDes) transceiver circuits 106 for transmission and

reception of data in a first protocol format used by a network and a second set of

SerDes transceiver circuits 110 for transmission and reception of data in a

second protocol format used by a system. For ease of reference, data received

from the network for transmission to the system side may be referred to as

ingress data, and data received from the system for transmission to the network



may be referred to an egress data. In this example, Arrows 120 and 122 depict

ingress dataflow through ingress memory buffer 104A. Arrows 124 and 126

depict egress dataflow through egress memory buffer 104B. Programmable

resources 108 are used to implement a translation circuit 109 that converts data

between first and second protocol formats and routes ingress and egress data to

and from respective memory buffers 104A and 104B.

FIG. 2 shows a block diagram of a memory architecture 200 that may be

used to implement a bridge interface circuit in accordance with one or more

embodiments. Data received from and directed to the network is written to and

read from memory 208 via a first port group 204 (port group A), and data

received from and directed to a system is written to and read from the memory

via a second port group 206 (port group B). The memory architecture organizes

ports of the two port groups into pairs and limits memory accesses of each pair

to a respective partition of the memory. In this example, the memory is

partitioned into four memory blocks, each memory block including a pair of

memory slices. For example, the routing circuitry 209 is configured to allow only

port 1A and port 1B access to a first memory block consisting of memory slices

1A and 1B. As another example, only ports 2A and 2B are allowed access to a

second memory block consisting of memory slices 2A and 2B. For each port

group pair, ingress data is processed using a first one of the memory slices of

the corresponding block, and egress data is processed using a second one of

the memory slices of the block. For example, in one implementation, for the port

group pair that includes ports 1A and 1B, ingress data is processed using

memory slice 1A and egress data is processed using memory slice 1B. So long

as each slice of the memory block is implemented to give exclusive write access

to one port of the port group pair (e.g., 1A and 1B) and exclusive read access to

the other, ingress data and egress data can be processed using different

portions of the data block (i.e., different memory slices) to prevent the ports in

the port group pair from competing for read or write access to the portion of

memory. In this manner, ingress and egress data can be processed in a conflict-

free manner.

While the above example partitions each memory block into one slice for

ingress data and one slice for egress data, it is recognized that in one or more

embodiments each memory block may be partitioned to use different amounts of



memory for ingress and egress data. For example, in many applications ingress

data buffering may require more memory to alleviate congestion than egress

data buffering. FIG. 3 shows memory blocks partitioned into respective groups

of memory banks for ingress data and for egress data in accordance with one or

5 more embodiments. Memory blocks 302 and 304 illustrate some different

partitioning arrangements of the memory blocks. In this example, each memory

block 302 and 304 includes two respective memory slices {e.g., slices 1A and

1B) that together comprise an address space that ranges from 0x000000 to

OxFFFFFF.

i o Each memory slice includes {e.g., slice 1A) four memory banks {e.g.,

banks 5-8) that may be independently accessed. For example, each bank may

be a multi-port memory {e.g., one-read one-write memory). The memory blocks

302 and 304 may be partitioned at any address boundary between memory

banks. A right facing arrow indicates memory banks used for ingress data and a

15 left-facing arrow indicates banks used for egress data. In this example, each of

memory blocks 302 and 304 are partitioned to allocate two memory banks for

egress data and six memory banks for ingress data. Memory block 302 is

partitioned into two contiguous groups of memory banks at boundary 306.

Addresses below the boundary 306 are used for ingress data and addresses

20 above the boundary are used for egress data. In another embodiment, memory

blocks may be partitioned in any manner between memory banks. For example,

as illustrated in memory block 304, banks 1-3 in memory slice 2B and banks 5,

6 , and 8 in memory slice 2A are for ingress data; bank 4 in memory slice 2B and

bank 7 in memory slice 2A are for egress data.

25 It is understood that the memory circuits used to implement each memory

block have a number of ports that may be used to read from or write to memory

cells of the memory circuit. To distinguish the ports of the individual memory

circuits from the ports of port groups A and B, the ports of the memory circuits

may be referred to as internal ports. To provide exclusive read and write access

30 for a partitioned slice, each slice is implemented with two internal write ports—

one for each port of the port group {e.g., port group A and port group B). This

allows a port from port group A to write data to a first partition of the slice, and a

port from port group B to write data to a second partition of the slice, without

contention. Likewise, each slice has two internal read ports. Depending on the



configuration of read and write internal ports of the memory used to implement

the memory slices, each memory slice can have two internal ports, each port

capable of reading and writing ("2RW"); or each memory slice can have two

dedicated read ports and two dedicated write ports ("2R2W").

In one or more embodiments, the memory slices may be dynamically

partitioned into ingress and egress portions depending on the requirements of

the particular application. For example, the memory banks of each slice may be

a 1R 1 memory. The internal read and write ports of each bank may be

independently programmed to be read by one port group and written by a

different port group. Such configurability requires programmable connections of

the read and write addresses from both port groups {e.g., internal ports of the

slice) to internal ports of every bank in the slice.

FIG. 4 shows a block diagram of circuitry that may be configured to

control read access to memory banks of a partitioned memory slice. Write

access to each memory bank may be implemented in a similar manner. In this

example, each bank {e.g., 402) has a read enable control input (RE) and a read

address input (RA). The RE input is coupled to the output of a 2:1 multiplexer

{e.g., 406). Multiplexer 406 selects an enable signal to input to the respective

bank based on a configuration signal {e.g., Config[0]). The two inputs to this 2:1

multiplexer 406 are in response to the read request signal from the port in Port

1A, and the read request signal from the Port 1B. The select input to the

multiplexer is a static signal (Config[0] or "Config" for short), which selects

whether this bank should be read by Port 1A or Port 1B. The Config signal is set

during initialization {e.g., as part of the FPGA configuration bit stream). AND

gates 408 forward enable signals RE_P1 A and RE_P1 B corresponding to ports

1A and 1B to the multiplexer 406 only if a bank address (BA) of the read address

{e.g., RAddr_P1A or RAddr_P1 B) is the bank address of the respective bank

{e.g., 402).

The read address port to bank 402 is similarly multiplexed by multiplexer

404. The multiplexer 404 selects an address signal {e.g., RAddr_P1 A or

RAddr_P1 B) based on the Config signal. For instance, in response to Config[0]

being 0, bank 402 is readable only by Port 1A and not Port 1B, and in response

to Config[0] being 1, bank 402 is readable only by Port 1B and not Port 1A . This

select signal effectively ignores illegal read addresses. Similar logic may be



used to detect access violations and generate an error signal. The error signal

may be used to signal to external circuit, e.g., a memory controller, that the

read/write request was denied access to the memory.

In one or more embodiments, the memory access of memory blocks of

each respective pair of ports (e.g., FIG. 2, Ports 1A and 1B), is enforced by

implementing a routing system for each pair of ports. FIG. 5 shows a block

diagram of a routing circuit 504 that may be used to route data between a pair of

ports 502 and a memory block 506 having memory slices 1A and 1B in

accordance with one or more embodiments. The routing circuitry 504 is

configured in a butterfly layout in which a read path and a write path are provided

from each port of the pair of ports 502 to each partition (i.e., slices 1A and 1B) of

the memory block 506.

Routing ingress or egress data between ports via the memory may incur

different amounts of delay depending on the length of each signal path. For

illustrative purposes, dashed flip-flops 516, 5 18, 522, 524, 526, and 528 are

provided in FIG. 5 to visually represent the delay for paths through memory slice

1A. It should be understood that the routing circuitry does not actually include

these flip-flops. Rather, each dashed flip-flop represents one clock cycle of

signal propagation delay. Similarly, the delay for paths through memory slice 1B

is depicted by dashed flip-flops 542, 544, 546, 548, 550, and 552. The diagonal

paths are longer in this example and, thus, incur more delay. If uncorrected,

differences in the path lengths may cause data read from two different memory

locations to arrive at port 1A of the pair of ports 502 at the same time, thereby

creating a conflict, or arrive in incorrect order. For example, suppose that

memory slice 1A is located close to the access ports 502 and memory slice 1B is

located a greater distance from the access ports 502. If a first ingress data

packet is written to and then read from memory slice 1B (e.g., written and read

over a long signal path) and the next ingress data packed is written to and then

read from memory slice 1A (e.g., written and read over a short signal path), the

second ingress data packet may be output before the first ingress data packet.

To avoid conflicts and out-of-order data, each ingress and egress path

between the pair of access ports 502 may include programmable delay circuitry

to adjust the delay of the ingress and egress paths and reduce delay variation.

In this example, two multiplexor (MUX) selectable paths (e.g., 510 and 560)



implement each of the programmable delay circuits. For each ingress and

egress path the routing circuitry 504 includes a flip-flop (560, 562, 564, and 566)

to provide additional delay that may be used for correction. A respective MUX

(570, 572, 574, and 578) routes data from one of the MUX-selectable paths as

5 directed by a respective control signal (Delay adjust 1-4). In this manner,

variation in propagation delay of the various paths may be compensated for.

The routing circuitry 504 shown in FIG. 5 implements a fixed routing

between access ports 502 and memory block 506 to avoid the memory access

conflicts as discussed above. One or more embodiments may implement similar

1 0 routing restriction using dynamic routing circuitry, such as a crossbar switch. In

one or more embodiments crossbar switches are used for routing and buffering

data of one port when another port is trying to write to the same memory address

in the same cycle. To provide sufficient throughput, the crossbar switch may be

clocked at rate that is at least twice the rate that accesses to a memory block

i s may occur. If a data packet is buffered at a port due to an access conflict, the

switch is capable of routing the buffered data packet and any new data packet in

the next cycle (assuming the data packets are to be written to different memory

locations). Details regarding congestion use of a crossbar switch reduce effects

of contention (such as head-of-line blocking) are explained further in Sundar Iyer

2 0 and Nick McKeown, On the Speedup Required for a Multicast Parallel Packet

Switch, IEEE Communication Letters, vol. 5, no. 6, pp. 269 (June 2001 ) , which is

fully herein.

In one or more embodiments, a contention-free memory arrangement, as

discussed with reference to the above examples, may be implemented using

2 5 ASIC circuitry on one or more dice that can be stacked on a programmable IC.

Because the memory arrangement is implemented separate from the

programmable IC, more programmable resources of the programmable IC

remain available for implementation of a circuit design.

FIG. 6 shows a side view of a memory arrangement implemented using a

3 0 plurality of dice stacked on an interposer that may be coupled to an integrated

circuit, in accordance with one or more embodiments. The interposer 606

electrically couples contacts of the memory arrangement 602 to an IC 604, which

accesses the memory arrangement. The interposer includes an interposer body

6 10 having a number of through-silicon vias (TSVs) 6 12 that are formed in the



body. A contact array having a plurality of solder ball contacts 614 is formed on

a backside of the interposer body 6 10 . The solder ball contacts 614 are coupled

to respective ones of the TSVs. One or more wiring layers 6 16 implement a

plurality of circuit paths, which couple the TSVs to respective contact pads 618

of a second contact array. The second contact array is configured to align with

microbump contacts 620 of the memory arrangement 602. Because the

interposer can be easily redesigned and implemented to adjust routing between

the IC 604 and the memory arrangement 602, circuits of the IC 604 may be

placed and routed (in the IC) without regard to which microbumps 620 of the

memory arrangement 602 correspond to which specific port groups. This allows

placement and routing of the IC 604 to be performed more optimally, and allows

a layout of the memory arrangement 602 to be easily used with a variety of

designs implemented on IC 604. While the examples and embodiments are

primarily described with reference to use of an interposer to connect the memory

arrangement 602 to an IC 604, it is recognized that the memory arrangement

602 may be directly coupled to the IC 604 without an interposer.

The memory dice of memory arrangement 602 may be arranged and

connected in a number of alternative configurations. For example, dice

implementing the memory arrangement may be arranged in a single stack of

multiple dice or in multiple stacks having one or more dice. In the example of

FIG. 6, the memory arrangement is depicted as being implemented in two

stacks. The routing circuits discussed with reference to FIGs. 1-4 may be

configured in a number of alternative die stack arrangements. For example, in

the left stack, memory dice 632A and 632B are stacked on an IC die 630 that

implements the routing circuitry. Because routing is implemented in die 630, the

routing circuit can be configured and constructed to be compatible with different

configurations of memory dice. As another example, each of memory dice 640A

and 640B of the right stack implement some memory blocks and routing circuitry

of the memory arrangement 602. Because each pair of ports has exclusive

access to a memory block, each pair of ports operates independent of the

others. As a result, memory and corresponding routing circuitry of different port

group pairs can be implemented in different ones of the stacked dice.

FIG. 7 shows an example programmable IC that may be configured in

accordance with one or more embodiments. The illustrated programmable IC is



known as a field programmable gate array (FPGA). FPGAs can include several

different types of programmable logic blocks in the array. For example, FIG. 7

illustrates an FPGA architecture (700) that includes a large number of different

programmable tiles including multi-gigabit transceivers (MGTs 701 ) , configurable

logic blocks (CLBs 702), random access memory blocks (BRAMs 703),

input/output blocks (lOBs 704), configuration and clocking logic

(CONFIG/CLOCKS 705), digital signal processing blocks (DSPs 706),

specialized input/output blocks (I/O 707), for example, e.g., clock ports, and

other programmable logic 708 such as digital clock managers, analog-to-digital

converters, system monitoring logic, and so forth. Some FPGAs also include

dedicated processor blocks (PROC 7 10) and internal and external

reconfiguration ports (not shown)

In some FPGAs, each programmable tile includes a programmable

interconnect element (INT 7 11) having standardized connections to and from a

corresponding interconnect element in each adjacent tile. Therefore, the

programmable interconnect elements taken together implement the

programmable interconnect structure for the illustrated FPGA. The

programmable interconnect element INT 7 11 also includes the connections to

and from the programmable logic element within the same tile, as shown by the

examples included at the top of FIG. 7 .

For example, a CLB 702 can include a configurable logic element CLE

7 12 that can be programmed to implement user logic plus a single

programmable interconnect element INT 7 11. A BRAM 703 can include a BRAM

logic element (BRL 7 13) in addition to one or more programmable interconnect

elements. Typically, the number of interconnect elements included in a tile

depends on the height of the tile. In the pictured embodiment, a BRAM tile has

the same height as five CLBs, but other numbers (e.g., four) can also be used.

A DSP tile 706 can include a DSP logic element (DSPL 714) in addition to an

appropriate number of programmable interconnect elements. An IOB 704 can

include, for example, two instances of an input/output logic element (IOL 7 15) in

addition to one instance of the programmable interconnect element INT 7 11. As

will be clear to those of skill in the art, the actual I/O pads connected, for

example, to the I/O logic element 7 15 are manufactured using metal layered



above the various illustrated logic blocks, and typically are not confined to the

area of the input/output logic element 7 15 .

In the pictured embodiment, a columnar area near the center of the die

(shown shaded in FIG. 7) is used for configuration, clock, and other control logic.

Horizontal areas 709 extending from this column are used to distribute the clocks

and configuration signals across the breadth of the FPGA

Some FPGAs utilizing the architecture illustrated in FIG. 7 include

additional logic blocks that disrupt the regular columnar structure making up a

large part of the FPGA. The additional logic blocks can be programmable blocks

and/or dedicated logic. For example, the processor block PROC 7 10 shown in

FIG. 7 spans several columns of CLBs and BRAMs

Note that FIG. 7 is intended to illustrate only an exemplary FPGA

architecture. The numbers of logic blocks in a column, the relative widths of the

columns, the number and order of columns, the types of logic blocks included in

the columns, the relative sizes of the logic blocks, and the interconnect/logic

implementations included at the top of FIG. 7 are purely exemplary. For

example, in an actual FPGA more than one adjacent column of CLBs is typically

included wherever the CLBs appear, to facilitate the efficient implementation of

user logic

The embodiments are thought to be applicable to a variety of applications

using memory. Other aspects and embodiments will be apparent to those skilled

in the art from consideration of the specification. The embodiments may be

implemented as one or more processors configured to execute software, as an

application specific integrated circuit (ASIC), or as a logic on a programmable

logic device. It is intended that the specification and illustrated embodiments be

considered as examples only, with a true scope of the invention being indicated

by the following claims.



CLAIMS

What is claimed is:

1. A memory arrangement, comprising:

a plurality of memory blocks;

a first group of access ports, and a second group of access ports;

routing circuitry coupling each pair of the first and second groups of

access ports to a respective one of the plurality of memory blocks, each pair of

the first and second groups of access ports including a first access port from the

first group of access ports and a second access port from the second group of

access ports; and

wherein:

each first access port has write access to a first portion of the

respective one of the plurality of memory blocks, has read access to a

second portion of the respective one of the plurality of memory blocks,

does not have read access to the first portion of the respective one of the

plurality of memory blocks, and does not have write access to the second

portion of the respective one of the plurality of memory blocks; and

each second access port has write access to the second portion of

the respective one of the plurality of memory blocks, has read access to

the first portion of the respective one of the plurality of memory blocks,

does not have read access to the second portion of the respective one of

the plurality of memory blocks, and does not have write access to the first

portion of the respective one of the plurality of memory blocks.

2 . The memory arrangement of claim 1, wherein:

each first portion of each of the plurality of memory blocks is used

exclusively for buffering egress data; and

each second portion of each of the plurality of memory blocks is used

exclusively for buffering ingress data.

3 . The memory arrangement of claim 1 or 2, wherein the plurality of memory

blocks is implemented on a plurality of stacked semiconductor dice.



4 . The memory arrangement of claim 3, wherein each of the plurality of

memory blocks is implemented on a respective one of the plurality of stacked

semiconductor dice.

5 5 . The memory arrangement of claim 3 or 4, further comprising:

an interposer, wherein the plurality of stacked semiconductor dice is

electrically coupled to contacts on a front-side of the interposer.

6 . The memory arrangement of any one of claims 1-5, wherein each of the

1 0 plurality of memory blocks includes two memory slices.

7 . The memory arrangement of any one of claims 1-6, wherein the routing

circuitry includes programmable delay circuitry that is configurable to adjust

timing on one or more paths between the plurality of memory blocks and the first

i and second groups of access ports.

8 . The memory arrangement of claim 7, wherein timing is not adjusted for

the path of the one or more paths that exhibits the least latency.

2 0 9 . The memory arrangement of claim 7, wherein the programmable delay

circuitry includes a plurality of MUX selectable paths, each of the MUX

selectable paths including a different number of flip-flops.

10 . The memory arrangement of any one of claims 1-9, wherein, for each of

2 5 the plurality of memory blocks, the first and second portions of the memory block

each include a whole number of memory banks.

11. The memory arrangement of any one of claims 1-9, wherein the routing

circuitry includes a crossbar switch coupled to the plurality of memory blocks and

3 0 first and second groups of access ports, the crossbar switch is clocked at a rate

that is greater than the rate at which sequential accesses of the memory blocks

may occur, to reduce head-of-line blocking.



12 . The memory arrangement of any one of claims 1- 1 1, wherein the plurality

of memory blocks and the routing circuitry are configured to:

for each memory block, adjust an amount of the memory block included in

the respective first portion and the amount of the memory block included in the

respective second portion in response to a configuration bitstream.

13 . The memory arrangement of claim 12, wherein each of the plurality of

memory blocks includes:

a plurality of memory banks, each memory bank having one or more

access ports; and

for each memory bank, a respective selection circuit configured to forward

read requests from one access port of the corresponding pair of the first and

second groups of access ports that is indicated by the configuration bitstream to

the one or more access ports of the memory bank, and configured to forward

write requests from the other access port of the corresponding pair of the first

and second groups of access ports to the one or more access ports of the

memory bank.

14. A method, comprising:

coupling each pair of a first group of access ports and a second group of

access ports to a respective one of a plurality of memory blocks, each pair of the

first and second groups of access ports including a first access port from the first

group of access ports and a second access port from the second group of

access ports;

configuring each of the first group of access ports to have write access to

a first portion of a respective one of a plurality of memory blocks, and to have

read access to a second portion of the respective one of the plurality of memory

blocks;

configuring each of the first group of access ports to not have read access

to the first portion of the respective one of the plurality of memory blocks, and to

not have write access to the second portion of the respective one of the plurality

of memory blocks;

configuring each of a second group of access ports to have write access

to a second portion of the respective one of the plurality of memory blocks, and



to have read access to the first portion of the respective one of the plurality of

memory blocks; and

configuring each of the second group of access ports to not have read

access to the second portion of the respective one of the plurality of memory

blocks, and to not have write access to the first portion of the respective one of

the plurality of memory blocks.

15 . The method of claim 14, further comprising:

for each memory block, adjusting an amount of the memory block

included in the respective first portion and the amount of the memory block

included in the respective second portion in response to a configuration

bitstream.
















	abstract
	description
	claims
	drawings

