使用激光康普顿X射线源和激光康普顿伽马射线源进行的超低剂量反馈成像

（57）摘要

超低剂量X射线或伽马射线成像基于对激光康普顿X射线源或激光康普顿伽马射线源（LCXS或LCGS）的输出进行的快速电子控制。通过对每个像素处实际检测器处的检测能力的阈值水平所要求的LCXS或LCGS射束能量进行监控来一次一个或一些像素的构造X射线影像图或伽马射线影像图。示例提供了：当达到检测的阈值时，向LCXS/LCGS发送用于开启快速开关的电信号或光信号，该快速开关用于生成康普顿光子的激光脉冲在空间上或时间上转向。以这种方式，防止对象进一步暴露于康普顿X射线或伽马射线，直到激光康普顿射束或对象被移动为止，以使新的像素位置可以被照射。
1. 一种方法，包括：
提供来自激光康普顿X射线源或激光康普顿伽马射线源的束；
将所述束引导至对象的第一位置上；
以检测器的检测阈值对所述束的穿过所述第一位置的第一部分进行检测，以产生第一检测信号；
当达到所述检测阈值并且产生所述第一检测信号时，防止所述束传播到所述第一位置上；
确定所述第一位置处的光子的第一数目或第一束能量，其中，光子的所述第一数目
或所述第一束能量是以所述检测阈值产生所述第一检测信号所需要的量；
将所述束引导至所述对象的第二位置上；
以所述检测器的检测阈值对所述束的穿过所述第二位置的第二部分进行检测，以产生第二检测信号；
当达到所述检测阈值并且产生所述第二检测信号时，防止所述束传播到所述第二位置上；
确定所述第二位置处的光子的第二数目或第二束能量，其中，光子的所述第二数目
或所述第二束能量是以所述检测阈值产生所述第二检测信号所需要的量；及
通过在空间中显示 (i) 光子的所述第一数目和光子的所述第二数目或 (ii) 所述第一束能量
和所述第二束能量来产生所述对象的密度图。
2. 根据权利要求1所述的方法，其中，通过由所述束实现检测能力的第一阈值水平
所需要的照射时间进行测量来确定达到第一阈值所需要的光子的所述第一数目或所述第一束能量。
3. 根据权利要求1所述的方法，其中，所述束是由以下源产生的，所述源包括用于提
供被引导至相互作用区中的一系列相对论电子束的线性加速器，其中，所述源还包括用于
提供被引导至所述相互作用区中以与所述电子束碰撞而产生单能束的激光脉冲
束的相互作用激光器。
4. 根据权利要求3所述的方法，其中，防止所述束传播的步骤包括：在空间上使所述
激光脉冲束转向，以免于与所述电子束碰撞。
5. 根据权利要求4所述的方法，其中，防止所述束传播的步骤防止所述对象进一步暴
露于所述单能束，直到所述单能束被移动为止，以使得新的位置可以被照射。
6. 根据权利要求3所述的方法，其中，防止所述束传播的步骤包括：在时间上使所述
激光脉冲束转向，以免于与所述电子束碰撞。
7. 根据权利要求6所述的方法，其中，防止所述束传播的步骤防止所述对象进一步暴
露于所述单能束，直到所述单能束被移动为止，以使得新的位置可以被照射。
8. 根据权利要求3所述的方法，其中，防止所述束传播的步骤不以任何方式扰乱所述
相互作用激光器或所述加速器的稳定操作，并且因此在每个成像位置处可用于曝光的束
在引导所述束的步骤期间随着位置变化是相同的。
9. 根据权利要求1所述的方法，其中，所述束是具有 <20% 的相对带宽的单能束。
权利要求书

10. 根据权利要求1所述的方法，其中，通过对由恒定功率源实现检测能力的所述阈值
所需的照射时间进行测量来确定达到阈值的所述射束能量。

11. 根据权利要求1所述的方法，其中，防止所述射束传播到所述第一位置上的步骤包
括：使种子激光脉冲在相互作用激光器的激光器链中进行放大之前转向。

12. 根据权利要求1所述的方法，其中，防止所述射束传播到所述第一位置上的步骤包
括：使生成所述线性加速器中的电子聚集的UV激光脉冲转向。

13. 根据权利要求1所述的方法，其中，防止所述射束传播到所述第一位置上的步骤包
括：使生成线性加速器中的电子聚集的UV激光脉冲的时间错开。

14. 根据权利要求1所述的方法，其中，防止所述射束传播到所述第一位置上的步骤包
括：使用于激光器放大链的种子激光脉冲的时间错开。

15. 根据权利要求1所述的方法，其中，使用具有激光和电子聚束通过相互作用区的渡
越时间的数量级的延迟来使所述种子激光脉冲的时间错开。

16. 根据权利要求1所述的方法，其中，确定达到检测能力的所述第一阈值水平所需要的
光子的第一数目或射束能量的步骤包括：测量稳定电子束参数，然后根据相互作用激光
束能量来校准x射线的产生或伽玛射线的产生。

17. 根据权利要求1所述的方法，其中，确定达到检测能力的所述第一阈值水平所需要的
光子的第一数目或射束能量的步骤包括：测量稳定电子束参数，然后根据相互作用激光
束能量来校准x射线的产生或伽玛射线的产生，其中，通过测量所述相互作用区之后的射束收集
器中的能量或测量环绕所述电子聚束的线圈中的电流来测量所述稳定电子束参数。

18. 根据权利要求1所述的方法，其中，确定达到检测能力的第一阈值水平所需要的光
子的第一数目或射束能量的步骤包括：使所述射束穿过孔以除去光子的一部分，其中，沉积
在所述孔中的x射线能量或伽玛射线能量与总激光能量的输出成比例并且与用于成像的同
轴通量成比例，所述步骤包括：确定沉积在所述孔中的能量。

19. 根据权利要求1所述的方法，其中，所述孔包括闪烁体材料，其中，闪烁光子被测量
并且是对总射束通量进行的成比例测量。

20. 根据权利要求1所述的方法，其中，确定达到检测能力的第一阈值水平所需要的光
子的第一数目或射束能量的步骤包括：使全部射束或所述射束的仅于轴部分或仅同轴部分
在照射所述对象之前穿过用于测量x射线剂量或伽玛射线剂量的标准电离室。

21. 一种设备，包括：

用于提供射束的激光系统x射线源或激光系统伽玛射线源，其中，所述源包括用于
提供被引导至相互作用区中的一系列相对论电子聚束的线性加速器，其中，所述源还包括
相互作用激光器，其用于提供被引导以与所述电子聚束在相互作用区中碰撞而产生所述射
束的激光脉冲。

检测器，其被配置成在所述射束穿过对象的位置之后检测所述射束的一部分；

用于确定由所述检测器达到检测能力的阈值水平所需的所述位置处的光子的数目
或第一射束能量的装置；

用于在所述检测器检测到所述检测能力的阈值水平时防止所述射束传播到所述位置
上的装置，其中，用于防止所述射束传播到所述位置上的装置基本上不影响或基本上不扰
乱所述相互作用激光器或所述线性加速器的稳态操作。
22. 根据权利要求21所述的设备，其中，用于确定所述位置处的光子的数目或第一射束能量的装置对由所述射束实现检测能力的阀值水平所需要的照射时间进行测量。

23. 根据权利要求21所述的设备，其中，用于防止所述射束传播的装置在空间上或在时间上使所述激光脉冲转向，以免于与所述电子束碰撞。

24. 根据权利要求21所述的设备，其中，所述射束是具有<20%的相对带宽的准单能射束。

25. 根据权利要求21所述的设备，其中，用于防止所述射束传播到所述位置上的装置使种子激光脉冲在所述相互作用激光器的激光器链中进行放大之前转向。

26. 根据权利要求21所述的设备，其中，用于防止所述射束传播到所述位置上的装置使生成所述线性加速器中的电子束的UV激光脉冲转向。

27. 根据权利要求21所述的设备，其中，用于防止所述射束传播到所述位置上的装置使生成所述线性加速器中的电子束的UV激光脉冲的时间错开。

28. 根据权利要求21所述的设备，其中，用于防止所述射束传播到所述位置上的装置用于所述相互作用激光器的激光器放大链的种子激光脉冲的时间错开。

29. 根据权利要求28所述的设备，其中，使用具有激光和电子束通过所述相互作用区的渡越时间的数量级的延迟来使所述种子激光脉冲的时间错开。

30. 根据权利要求21所述的设备，其中，用于确定所述位置处的光子的数目或第一射束能量的装置对所述线性加速器的稳态电子束参数进行测量，然后根据相互作用激光束能量来校准所述射束的产生。

31. 根据权利要求21所述的设备，其中，用于确定所述位置处的光子的数目或第一射束能量的装置对稳态电子束参数进行测量，然后根据相互作用激光束能量来校准x射线产生或伽玛射线产生，其中，通过测量所述相互作用区之后的射束收集器中的能量或测量环绕所述电子束的线圈中的电流来测量所述稳态电子束参数。

32. 根据权利要求21所述的设备，其中，用于确定所述位置处的光子的数目或所述第一射束能量的装置确定沉积在被配置成移除光子的一部分的孔中的能量，其中，沉积在所述孔中的x射线能量或伽玛射线能量与总激光光谱计输出成比例并且与用于成像的轴向通量成比例，步骤包括确定沉积在所述孔中的能量。

33. 根据权利要求32所述的设备，其中，所述孔包括闪烁体材料，其中，闪烁光子被测量并且是对总射束通量进行的成比例测量。

34. 根据权利要求21所述的设备，其中，用于确定所述位置处的光子的数目或第一射束能量的装置包括电离室，所述射束在到达所述对象的位置之前穿过所述电离室。
说明书

使用激光康普顿X射线源和激光康普顿伽马射线源进行的超低剂量反馈成像

[0001] 相关申请的交叉引用


[0003] 关于联邦政府赞助研究或开发的声明

[0004] 依照美国能源部与运营劳伦斯利弗莫尔国家实验室的劳伦斯利弗莫尔国家安全 LLC之间的合同编号DE-AC52-07NA27344,美国政府拥有本发明的权利。

技术领域

[0005] 本发明涉及x射线成像和伽马射线成像,并且更具体地,涉及用于降低在这样的成像技术中所必需的剂量的技术。

背景技术

[0006] 在常规2D x射线/伽马射线成像中,利用宽视场的x射线或伽马射线来照射患者或对象,并且在2D膜或检测器的阵列上记录透射信号。对象的密度的变化引起贯穿辐射的透射的变化,并且这些变化呈现为膜或检测器阵列上的阴影。通过检测器系统的响应函数来确定该成像技术的动态范围。此外,对象的所有部位经受相同的输入通量(每单位面积的光子),并且按照对象的面积和贯穿对象的最密集区所需要的通量(即分辨对象内的关注结构所需要的通量)来设置撞击到对象上的总剂量。在该成像模式中,整个对象经受高剂量。

[0007] 先前已经针对逐像素反馈成像提出了建议,在该建议中,使用旋转阳极式郁致辐射源来替换激光康普顿源。在这种情况下,当在检测器处累积光子的阈值量时,发送信号以禁用到阳极的电流或在物理上阻挡x射线束。相对于本公开内容的发明,该方法存在若干缺点。
[0008] a) 旋转阳极式源是CW或准CW装置，并且上面所提及的中断方法不是即时的。因此，
当源被关闭或在物理上被阻挡时，将存在累积的剂量。另一方面，在激光康普顿x射线源
(LCXS) 或激光康普顿伽马射线源 (LCGS) 的情况下，产生x射线或伽马射线以用于激光脉冲
与电子聚束的相互作用。如果来自检测器的用于使激光脉冲信号与从一个激光脉冲到
下个激光脉冲的时间间隔相比是快速的，并且电极开关操作与从一个激光脉冲到
下个激光脉冲的时间间隔相比是快速的，则可以在另外的曝光发生之前彻底关闭x射线
源或伽马射线源。

[0009] b) 旋转阳极式装置使用以恒定速率撞击在阳极材料上的电子束来进行操作。电子
束电流的中断可以改变阳极周围的电磁环境和阳极材料的热负荷。再次引发电子束不
一定瞬时产生相同的电子束聚焦或x射线通量，这是因为相同的电子束聚焦或x射线通量出现在
稳态操作期间。另一方面，在通过电光使激光脉冲形变以免于与电子束相互作用的LCXS
的情况下，不改变激光康普顿源中使用的电子束的电子束动学。如果不存在激光光子，
则电子束甚至可以在不产生x射线或伽马射线的情况下保持接通和操作。使激光光子返回
至激光电子相互作用区的电光开关的简单改变将产生激光康普顿源，其与用于使先前的像
素成像的激光康普顿源相同。

[0010] c) 旋转阳极式源不太适于产生x射线或伽马射线的高度准直束。旋转阳极式源
在所有方向上产生光，并且可以通过穿过窄孔 (进而大大地减小准直射束的通量) 来仅产生
准直射束。LCXS装置和LCGS装置本质上产生窄束光子。所有LCXS可以有效地用于单像素反
馈成像，而旋转阳极式源的输出的仅一小部分可以以这种方式被使用。

发明内容

[0011] 本发明提出了一种用于基于对激光康普顿x射线源或激光康普顿伽马射线源
(LCXS或LCGS) 的输出的快速电子控制的超低剂量x射线或伽马射线成像的新方法。在该方
法中，通过对在对象的每个像素处实现检测器处的检测能力的阈值水平所需要的LCXS射束
能量或LCGS射束能量进行监测来一次一个 (或一些) 像素地构造f射线影像图或伽马射线影像
图。达到检测阈值所需要的射束能量与对象的不透明度的倒数成比例。仅通过对由恒定
功率LCXS或LCGS实现检测器处的阈值检测能力所需要的照射时间进行测量来确定到达阈
值的射束能量。当达到检测阈值时，向LCXS/LCGS发送用于开启快速光开关的电信号或光信
号，该快速光开关进而使用于生成康普顿光子的激光脉冲在空间或时间上转向。以这种方式，
防止对象进一步暴露出康普顿x射线或伽马射线，直到激光康普顿源或对象被移动为
止，以使得新的像素位置可以被照射。该方法使用最小可能的x射线剂量或伽马射线剂量来
构造对象的图像。本发明的重要方面在于，对x射线源或伽马射线源进行反馈控制的方法不
以任何方式扰乱LCXS/LCGS的激光器或加速器系统性能，而通过警告在任何一个像素处停留的时
间来约束图像的动态范围。本发明在x射线放射成像及伽马射线放射成像的用途包括医疗成像、对象的工业无损评价和精密计量。

[0012] LCXS和LCGS具有多色的但与高角度关联的输出。使用适当的设计和孔，LCXS或
LCGS可以产生接近单能光子 (具有<1%的相对带宽) 的窄射束。单能射束与基于阳极的源
相比能够使用少得多的剂量来产生x射线影像图或伽马射线影像图，这是因为基于阳极的源缺乏吸收低能量的光子。可调的单能射束还可以用于对特定造影剂的边缘进行拍摄图像，并且以这种方式用于进一步减少到对象的剂量。

附图说明
[0013] 并入本公开内容中并且形成本公开内容的一部分的附图示出了本发明的实施方式，并且与说明书一起用于说明本发明的原理。

[0014] 图1示出了利用激光放大器之后的电光开关的本发明的实施方式的示例性总体布局。

[0015] 图2示出了相互作用激光器的输出的“空间转向”的示例。

[0016] 图3示出了相互作用激光器的脉冲的“时间转向”的示例。

具体实施方式
[0017] 在本发明中，激光康普顿x射线源（LCXS）或激光康普顿伽马射线源（LCGS）在反馈逐像素成像配置中用于生成材料和任意对象内的密度变化的高分辨率x射线影像图或伽马射线影像图。通过对在每个像素处实现检测能力的阈值水平所必要的LCXS或LCGS射束光子的数目进行监测来一次一个（或一些）像素地构造x射线影像图或伽马射线影像图。达到检测阈值所需的射束能量与对象的不透明度的倒数成比例。通过由恒定功率LCXS或LCGS实现阈值检测能力所必要的照射时间进行测量来确定达到阈值的射束能量。当达到检测阈值时，向LCXS/LCGS发送用于开启开关的信号，以使用于生成康普顿光子的激光脉冲在空间或时间上快速地（纳秒）转向。以这种方式，防止对象进一步暴露于康普顿x射线或伽马射线，直到激光康普顿射束或对象被移动为止，以使得新的像素位置准备好被照射。使用最低可能的x射线剂量或伽马射线剂量来构造对象的图像。本发明的重要方面在于，反馈控制的该方法不以任何方式扰乱LCXS/LCGS的激光器或加速器子系统的稳态操作，并且因此当电光开关被禁用时，在每个成像位置处可用于曝光的射束随着像素变化是相同的。该成像系统的另一重要方面在于，不是通过检测器动态范围而是通过愿意在任何一个像素处停留的时间来约束图像的动态范围。

[0018] 激光康普顿散射（有时也称为逆康普顿散射）是以下处理，在该处理中，能量激光脉冲被散射成短持续时间的相对论电子聚束。该处理已经被认为是用于产生准单能x射线和伽马射线辐射的短持续时间脉冲串的简便方法。在这种技术中，入射激光引起电子聚束的横向偶极子运动，当在实验室的静止坐标系中观察到电子聚束时，电子聚束呈现为辐射的被引导向前的多普勒加速束。任何激光康普顿源的能谱从DC扩大到4伽马的平方与用于激光电子正面碰撞时的入射激光光子的能量的乘积。（伽马是电子束的归一化能量，即电子的能量除以电子的静质量能量。当电子能量=511keV时，伽马＝1）。}

[0019] 通过改变电子聚束的能量，已经产生从大约10keV x射线到大约20MeV伽马射线范围的高能量辐射束并且高能量辐射束用于广范围的应用。辐射的康普顿光的能谱与仅沿正方向发射的具有最高能量光子的电子束的传播方向高角度关联。使用被放置在x射线束或伽马射线束的路径中的适当设计的孔，可以生成其带宽（DE/E）通常为10%或更小的光的准单能x射线或伽马射线脉冲。在劳伦斯利弗莫尔国家实验室（LLNL）中，已经设计了用于生成
说明书

可以用于激发特定同位素的核共振的窄带宽（具有0.1%的数量级的带宽）的伽马射线的系统。可以通过激光和电子的相互作用的优化设计并且使其相应的能谱为小于0.1%的高质量激光和电子束来产生这样的伽马射线束。

【0020】激光康普顿x射线源（LCXS）或激光康普顿伽马射线源（LCGS）尤其与常规旋转的x射线或伽马射线相比也是高度准直的。非单线带宽能谱的发射的圆锥角大约为对于伽马1弧度或具有毫弧度的数量级，而针对最窄带宽的同轴能谱的圆锥角可以为10毫弧度的数量级。通常的旋转阳极式源具有大约500毫弧度的射束散度。该高精度的准直使LCXS或LCGS装置理想地适合于逐像素成像模式。例如，0.1%带宽的LCGS可以甚至在距生成伽马射线的点一米的距离处具有100微米数量级的射束直径。

【0021】本领域已知激光康普顿x射线源和激光康普顿伽马射线源的基本设计。参见例如为“High Flux, Narrow Bandwidth Compton Light Sources Via Extended Laser-Electron Interactions”的美国专利第8,934,608号，其中全部分内容通过引用并入本文中。例如，在美国专利第8,934,608号中，激光系统提供用于驱动线性加速器的光电子枪的UV束。在一个实施方式中，该激光束的中段将关断从线性加速器提供的电子聚束。在剩余的公开内容中，可以将来自激光康普顿源的x射线或伽马射线的输出称为康普顿射束。图1示出了利用激光康普顿源的激光放大器之后的光束开关的本发明的实施方式的示例性总体布局。在该图中，RF时钟10使相互作用激光器12和光电子枪激光器14二者同步。光电子枪激光器14对线性加速器16的光阴极（其向本领域已知的相互作用区18提供电子聚束）进行照射。由偏转器20使来自相互作用激光器12的输出线性偏转，偏振器20的输出被引导至光电调制器22。在一个实施方式中，如果不同E-O调制器22施加电压，则将允许具有由偏振器20设置的线性偏振的激光穿过偏振器24并且传播进入相互作用区18。在相互作用区18中，激光与电子聚束碰撞，以产生被引导至要被成像的对象26的康普顿射束。基于本公开内容，本领域技术人员将认识到可以使用各种装置来替换上面所描述的偏振器和E-O调制器的组合，以用于允许或防止输出激光束传播进入相互作用区18。防止输出激光束与电子聚束碰撞将有效地断开系统，并且将不产生传播到对象上的x射线或伽马射线。在电子束收集器28中收集从与激光束碰撞而散射的电子。系统被配置成使得康普顿射束的穿过对象的一部分将在传播到检测器32上之前将而在穿过准直管30。具有数据采集和用于控制E-O开关的装置的计算机系统34被连接在检测器与E-O开关之间。在操作中，允许激光束传播进入相互作用区，以使得仅在检测器的至少一个像素登记预定信号阈值所需的一定段内产生康普顿射束。当满足该阈值时，计算机系统对E-O调制器进行操作以防止激光束进一步传播，从而关闭康普顿射束的产生。可以将对象或康普顿射束移动至对象上的不同位置，然后再次打开康普顿射束，直到满足检测阈值为止。以这种方式，可以产生对象密度的图像。通过允许如实现检测阈值所需要的的仅来自康普顿射束的辐射量传播到每个对象位置上，在进行测量的对象上的每个位置处由对象吸收的辐射量最小化。

【0022】如上面简要地讨论的，来自LCXS或LCGS的输出取决于碰撞点处的激光光子和电子的同时存在，该碰撞点有时被称为相互作用点，或在上面的示例中被称为相互作用区18。从到达碰撞点起移除激光光子或电子彻底排除了源的输出。如果想要快速关闭x射线输出或伽马射线输出，则存在若干替代方案，下面描述了其中的一些。基于本公开内容并且同样地在本发明的范围内，其他替代方案对于本领域技术人员而言将是明显的。
1) 一种切换方法使激光脉冲从相互作用区转向。这可以通过使偏振激光脉冲穿过包括棱克耳斯盒 (pockels cell) 和偏振器的光电开关来实现。上面在图 1 的实施方式中描述了这样的配置的示例。图 2 所示的在图 1 的实施方式中描述的对相互作用振子的输出的这样的“空间转移”的展开图。向 E-O 调制器 (棱克耳斯盒) 22 施加的电压 34’使激光脉冲的偏振旋转。半波电压将使偏振旋转 90°, 并且因此改变振子 24 上的射束的方向。该方法的优点在于: 因为可以使用纳秒脉冲对棱克耳斯盒施以脉冲, 所以该方法是快速的; 该方法能够切换能量激光脉冲 (焦耳级和以上), 并且该方法使用激光系统的大部分不论在温度上还是光学上均不改变。该方法当然也不扰乱电子加速器。该方法还具有在检测器与康普顿峰的“关闭”状态之间的最短延迟。

2) 另一种切换方法使种子激光脉冲在棱克耳斯盒中进行放大之前转向。这可以经由若干包括上述内容的光电方法但还要得由与电信行业中所使用的开关类似的马赫—曾德尔开关 (mach—zender switch) 或经由声光开关来完成。此处的优点在于: 开关可以更快 (亚纳秒), 这归因于激光束的更小的尺寸, 并且后级装置的成本和尺寸也可以更小。缺点在于: 激光器放大链的大部分在热学上不保持不变, 并且因此在放大链的重新接通时在激光束上可能存在瞬时失真。在该实施方式中, 马赫—曾德尔开关位于种子射束与放大器之间。马赫—曾德尔开关本身在本领域中已知。

3) 又一种切换方法使生成线性加速器中的电子聚束的 UV 激光脉冲转向。这种情况下的切换可以具有上面 2) 中所概述的优点。缺点在子: 稳态电子加速器性能取决于加速器结构中的电子束改变, 并因此当重新启动电子束时可能存在瞬时失真。

4) 另一种切换方法使生成线性加速器中的电子聚束的 UV 激光脉冲的轴线错开 (mismatch)。保持电子束性能但是错过激光脉冲所需要的延迟将是针对高频 RF 加速器的一个 RF 周期或标称的 100 ps。因为通过电子和激光脉冲相互作用时的区域的渡越时间可以比 100 ps 短很多, 所以更短的延迟可以有效地使电子束射出或伽马射线输出, 但是这些延迟还将使异常的电子注入到加速器中, 并且因此潜在地影响随后的电子聚束的动态学。

5) 又一种切换方法使用于激光器放大链的种子激光脉冲的稍微时间错开。这种情况下的所需的延迟为激光和电子聚束通过相互作用区的渡越时间的数量级, 其显著地小于 (皮秒) 激光放大器的增益寿命 (通常为数百微秒)。可以经由 (包括经由图 3 所示的棱克耳斯盒布置的) 若干电光学方法来生成这样的延迟。该方法再次使用激光器链的和加速器二者处于其稳态且电气配置中, 并因此开启操作的即时开启模式和即时关闭模式。参照图 3, 来自低能量种子激光器 50 的种子射束脉冲传播通过将偏振设置成与平面平行的棱克耳斯盒 52。在该配置中, 射束穿过偏振器 54 和 56, 并且进入相互作用激光放大器 58 中。向棱克耳斯盒 52 施加的充足的电压使种子激光的偏振旋转 90°。这使偏振器 54 将射束反射到镜 60, 镜 60 将射束反射到镜 62, 镜 62 将射束反射到偏振器 56, 偏振器 56 将射束反射进入相互作用放大器中。通过由棱克耳斯盒反射射束产生的射束路径距离的增大增加从种子激光器到激光放大器的射束的传播时间的延迟增加。如上面所阐述的, 如果该延迟是激光放大器增益介质的增益寿命的一小部分, 则激光器根本不会注意到该变化。在本案例中, 关闭康普顿射束所需要的改变少于 1,000,000 中之一。

上面所描述的方法中, 1 和 5 是优选的, 其中, 与 5 相比, 1 优选用到达利用紧密间隔的电子聚束的康普顿源。
为了准确地执行反馈成像，应当除了通过使用集成检测器截断全部射束之外通过辅助校准装置来获知源的输出。在激光康普顿的情况下，这可以以若干方式来完成。

获取有多少光子入射在对象上以达到检测能力的阈值是必要的。可以做出以下假设：康普顿射束具有恒定的输出，并且在达到阈值之前射束起作用的时间进行简单的监测。注意，如果康普顿射束根据时间而改变，则该假设可能产生错误的结果。下面的评述通过以下来避免该问题：使用康普顿射束的独特性质来确定照射对象的单个像素的绝对通量。

1）可以首先测量稳态电子束参数，然后根据相互作用激光束能量来校准x射线的产生或伽马射线的产生。由于相互作用激光束能量没有通过康普顿散射处理显著地衰减（10^{10} 中之一），所以测量相互作用区之后的激光脉冲能量提供了在与电子聚束相互作用期间存在的激光场的高准确度测量，该电子聚束可以经由先前的校准而用于确定产生的x射线或伽马射线的通量。

2）由激光康普顿散射产生的照谱与角度高度关联。对于大多数成像的情况而言，将期望使用较高能量的近轴光子用于反馈成像，并且将通过使射束穿过孔来移除低能量的（较高吸收的）离轴光子。沉积在该孔中的 x 射线能量或伽马射线能量与总激光康普顿输出形成比例并且与用于成像的同轴通量成比例。可以以取决于孔的材料组成的任何数量的方式表达该孔中的能量。如果孔例如由闪烁体材料制成，则可以收集闪烁光子作为对总射束通量的成比例测量。

3）可以使全部射束或射束的仅离轴部分或仅同轴部分在照射对象之前穿过用于测量 x 射线剂量或伽玛射线剂量的标准密度室。

在使对象退出之后，如图1所示，使未散射或未衰减的透射束穿过窄孔，该窄孔的直径是射束直径的尺寸。该孔用作抑制来自被照射的对象的任何小角度的散射辐射（医疗照线影像中常见的问题）。在孔之后放置高灵敏度检测器，该高灵敏度检测器的响应被优化成对照射 x 射线或伽马射线的单个光子敏感，但对周围的可见光或 UV 辐射（有时将这样的检测器称为“日光盲”检测器）不敏感。注意，在检测器的前面具有散射抑制孔并非关键所在，但是这样做将使用最低可能的剂量来生成图像。

x 射线成像或伽马射线成像的目的是根据位置来确定对象内的密度变化。在这种思想下，通过一次照射一个像素（或对象的小区域）来获得这样的密度变化图。入射在对象上的 x 射线光子或伽马射线光子的数目从零增加，直到由高效的检测器检测到单个（或一些）光子为止。当以上发生时，射束的持续时间和因此总入射光子的数目被记录，并且与像素相关联。然后，相对于射束来移动对象，或将射束扫描至对象上的新的位置，并且重复该过程。以这种方式，获得产生单个光子所需要位置的数目或检测器上的光子的阈值数目的 2D 图。由此并且根据 2D 位置的对象的总厚度的获知，可以根据 2D 位置来确定对象的衰减，从而可以构造可以经由常规装置获得的对象的等同的“射线照片”。还基于本公开内容，应当注意的是，可以由本领域技术人员扩展用于生成 2D 图像的该过程，以通过重复上面的过程而产生对象的不同视图来产生 3D 层析图像。以上述的方式生成 2D 图像具有以下明显优点。

1）照射对象的总通量是可以确定在给定位置处的衰减的绝对最小量。当在给定位置处已检测到阈值光子（或光子的数目）时，停止照射并且照射新的位置。设想以下对象，在
该对象中，作为图像区域的1/10的一个区域与对象的其余部分相比具有10倍高的衰减。在常规像成中，整个对象将经受充足的通量，以确定小密集群的衰减。如果通过上述的技术进行成像，则可以使用于对对象的区分上低10倍的数量级来获得相同的信息。

[0037] 2. 所获得的密度信息的动态范围不取决于光子检测系统的动态范围，而是取决于可以调节输入x射线束或伽马射线束的动态范围，该动态范围原则上可以比检测器的动态范围具有大许多的数量级。

[0038] 3. 有效地消除了对象内的光子散射对图像的影响。检测器前面的孔防止直接光子到达高效率检测器，该孔可以是与输入射束的轴对准的锥形密度管。

[0039] 上述的图像的分辨率将是对象处的射束区域的分辨率。对于被优化准直的激光康普顿源而言，对象处的射束区域可以具有10微米的数量级。然而，对于利用小激光点和小点子尺寸来生成高通量的x射线或伽马射线的激光康普顿源而言，x射线束发散度或伽马射线束发散度可以是毫弧度并且在对象处的射束区域可以具有毫米的数量级。然而，这种情况下的激光康普顿源的源尺寸可以是微米(10微米是可以容易实现的事)，并且因此存在潜在的更高空间分辨率成像，并且确实存在比通常从旋转阳极源获得的分辨率更高的分辨率。如果由小区域像素阵列检测器(其阵列尺寸对向在对象处的射束尺寸)来替换单像素检测器，则可以使用具有小点激光康普顿配制的反馈成像来实现低剂量、高动态范围的高空间分辨率的图像。例如，如果对象处的射束尺寸为1mm而激光康普顿源的源尺寸为10微米，则可以使用100×100阵列的10微米像素，以获得对象的10微米或更好分辨率的图像。可以通过由全部阵列收集的总光子或通过偏移(declare)每个像素已经被充分照射所需要的最低水平来确定阈值检测值，其用于确定何时移动至下一个成像位置。

[0040] 还应当注意的是，使用文中所述的激光康普顿源进行的反馈成像很适合于双色x射线成像方案，在该方案中，使要被成像的对象暴露于具有目标材料的k边缘吸收上方和下方的能量的x射线。然后，两个图像相减以生成期望材料的比组由单色成像获得的对比度图更高对比度的图。这是因为激光康普顿源在其能谱输出中高角度关联。通过孔选择仅激光康普顿输出的中央部分，可以获得具有远低于10%的带宽的射束。激光光束能量或电子束能量的稍微改变允许产生被调制成期望材料的k边缘吸收上方或下方的x射线束。针对在材料k边缘下方的光子的情况，达到检测的阈值水平所需要的剂量当然较低。文中描述的针对两个图像中的每个图像的反馈成像的配置将因此使对象经历的总剂量最小化。

[0041] 最后，重要的是要注意，虽然文中所呈现的示例建议将普克耳斯盒用作快速电光开关，以在空间上使相互作用激光束从与电子束相互作用起转向，以产生康普顿光子或在空间上使相互作用激光延迟，以使得相互作用激光在没有电子存在时到达相互作用区处，但是，还可以预期空间和时间转向的许多其他电子控制装置。许多其他电子控制装置包括但不限于电子触发的声光系统、电子控制的光纤延迟线、直接电射束偏转、交叉的激光束偏振旋转等。本发明的要点在于，以不中断或干扰激光康普顿源的激光器或电子束系统的稳定操作的方式来完成相互作用激光的偏转或延迟，使得交互作用激光束可以在没有电子存在时到达相互作用区处，但发生在电子束的偏转或延迟。该系统可以产生一个x射线束或伽马射线束的正常状态。该方面从根本上不同于使用常规旋转预旋装置执行的反馈成像。

[0042] 由于说明和描述的目的已呈现了对本发明的前述描述，并且本发明的前述描述不在是穷举的或者将本发明限制于所公开的精确形式。根据上述的教示，许多修改和变体
是可能的。所公开的实施方式仅意在说明本发明的原理及其实际应用，从而使得本领域技术人员能够将本发明最佳地用在各种实施方式中，并且各种修改适合于预期的特定用途。本发明的范围由所附权利要求限定。