

US 20170183120A1

(19) **United States**

(12) **Patent Application Publication**

BJÖRK et al.

(10) **Pub. No.: US 2017/0183120 A1**

(43) **Pub. Date: Jun. 29, 2017**

(54) **PACKAGING MATERIAL LAMINATE STRUCTURE**

(71) Applicant: **TETRA LAVAL HOLDINGS & FINANCE S.A.**, Pully (CH)

(72) Inventors: **Jonas BJÖRK**, Lund (SE); **Bengt HÅKANSSON**, Sjöbo (SE)

(73) Assignee: **TETRA LAVAL HOLDINGS & FINANCE S.A.**, Pully (CH)

(21) Appl. No.: **15/309,338**

(22) PCT Filed: **Apr. 29, 2015**

(86) PCT No.: **PCT/EP2015/059281**

§ 371 (c)(1),

(2) Date: **Nov. 7, 2016**

(30) **Foreign Application Priority Data**

May 7, 2014 (SE) 1450541-6

Publication Classification

(51) **Int. Cl.**

B65D 5/74 (2006.01)

B65D 5/70 (2006.01)

(52) **U.S. Cl.**

CPC **B65D 5/745** (2013.01); **B65D 5/70** (2013.01); **B65D 77/32** (2013.01)

(57)

ABSTRACT

A packaging material laminate structure comprises a first side, a second side opposite the first side and an attenuated area. An opening device is arranged with a first portion on the first side, with a second portion on the second side and with a first material bridge connecting both portions through the attenuated area. A consumer opening area is defined on the packaging material laminate and arranged such that packaging material laminate is ruptured on using the plastic opening device to open the consumer opening area. A pouring support device adjacent to the consumer opening area is having a pouring portion arranged on the first side and a support portion on the second side, wherein the pouring portion and the support portion are connected via a second material bridge through the attenuated area.

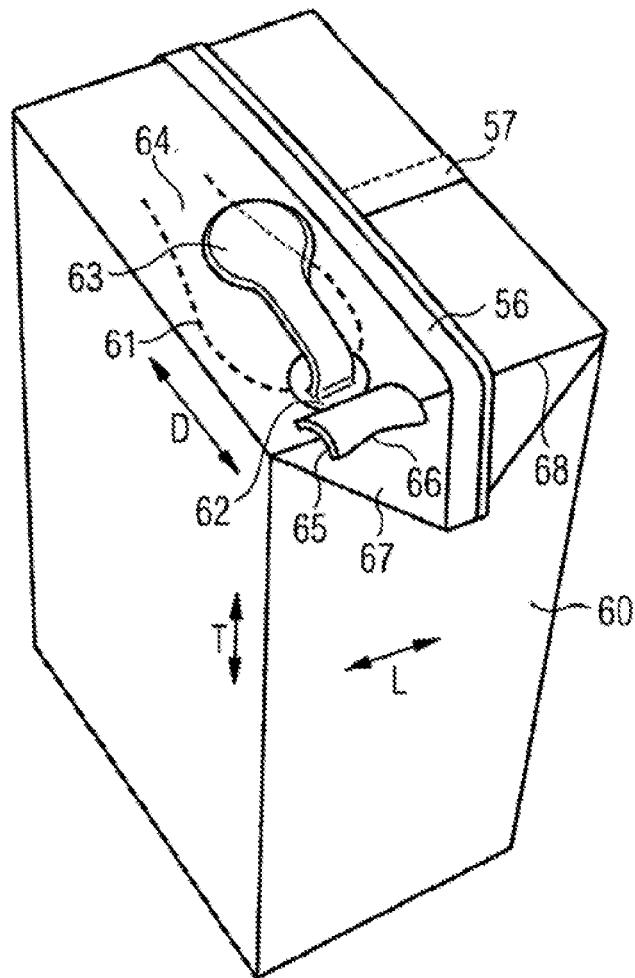


FIG 1

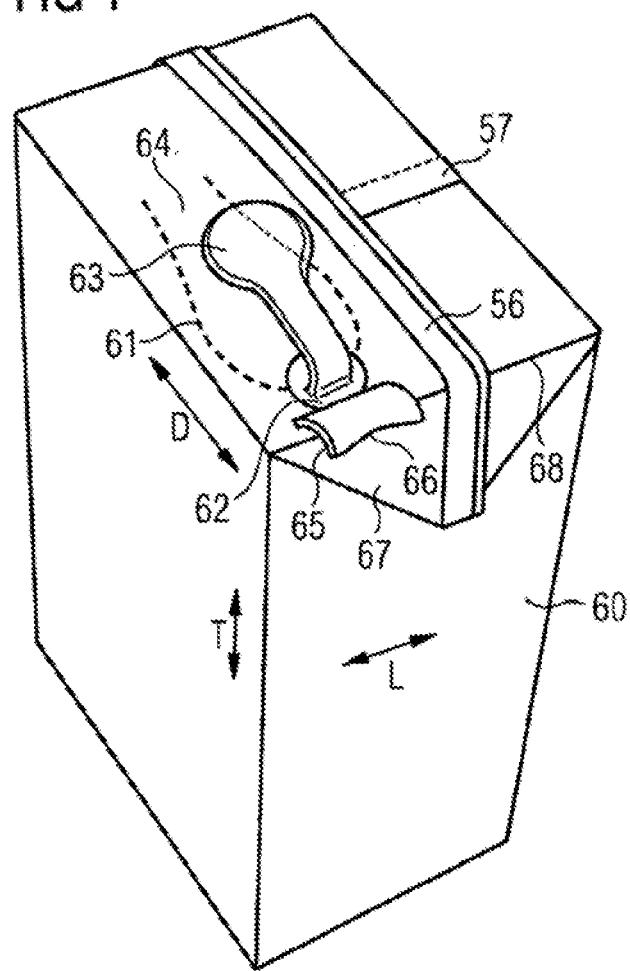


FIG 1A

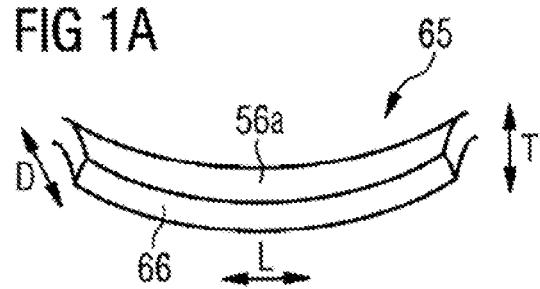


FIG 1B

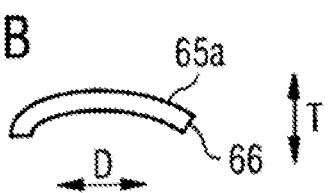


FIG 2

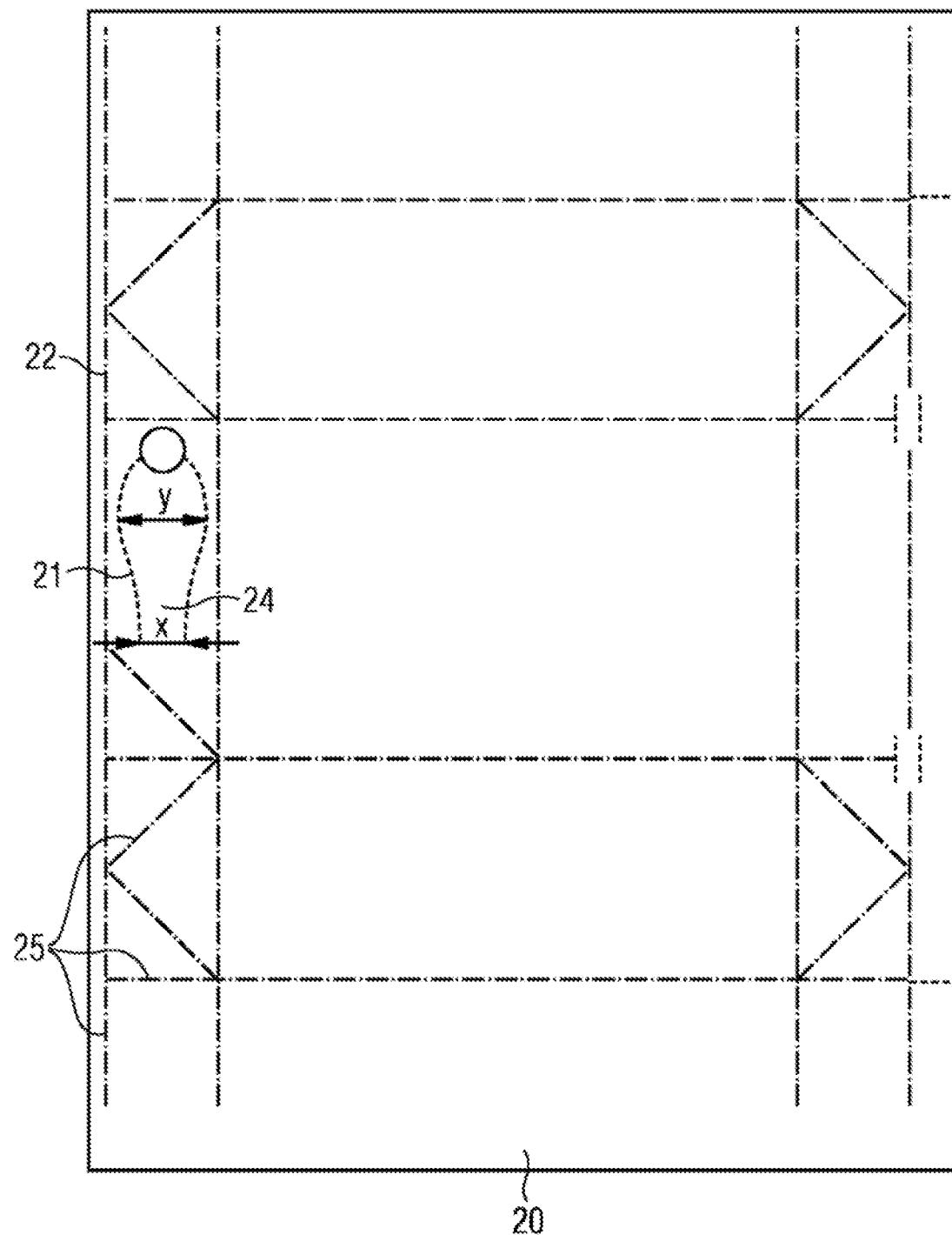


FIG 3

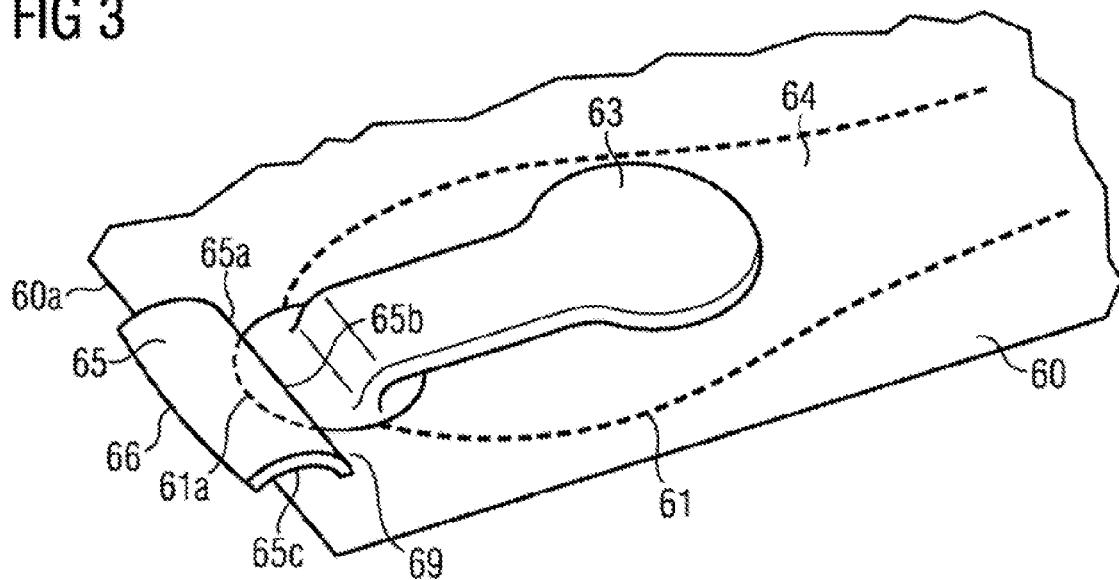


FIG 4

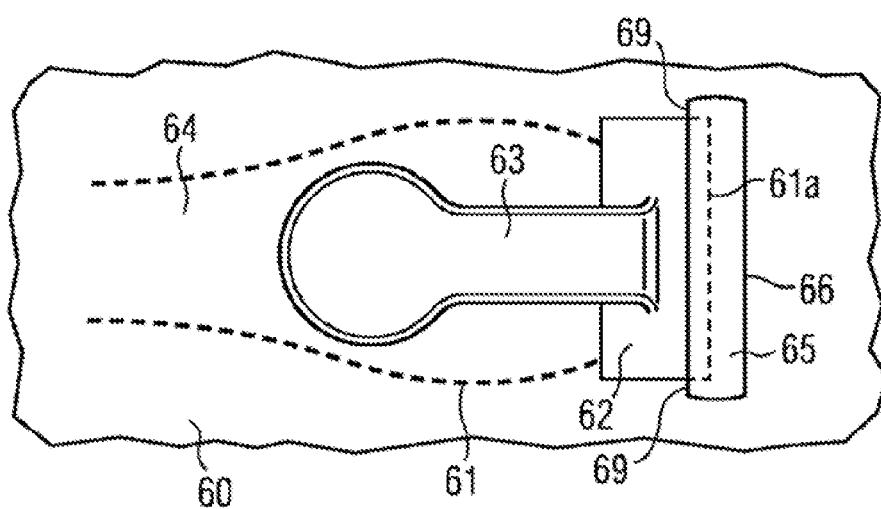
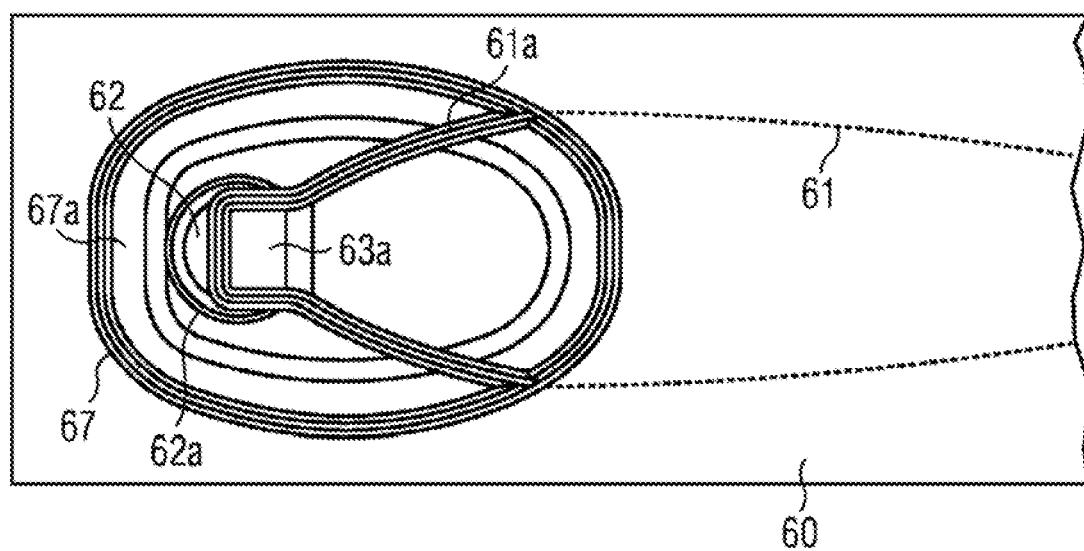



FIG 5

PACKAGING MATERIAL LAMINATE STRUCTURE

[0001] The present invention relates to a packaging material laminate structure and to a container thereof.

BACKGROUND OF THE INVENTION

[0002] Packaging containers of the single use disposable type for liquid foods are often produced from a packaging material based on paperboard or carton. Such container is for example be employed for aseptic packaging of liquid foods such as milk, fruit juices etc, marketed and sold for long term ambient storage. The packaging material in this known packaging container is typically a laminate comprising a bulk layer of paper or paperboard, outer, liquid-tight layers of thermoplastics, a gas barrier layer, most commonly an aluminium foil and finally one or more inside layers composed of one or several part layers, comprising heat-sealable adhesive polymers and/or heat-sealable polyolefins.

[0003] Commonly, the packaging container have an opening device in order to facilitate consumer opening, many different types of opening devices including pull-tabs or moulded opening devices, as for example discussed in WO03/095199 and WO/2009/000927

[0004] The packaging containers are generally produced by means of modern, high-speed packaging machines of the type that continuously form, fill and seal packages from a web or from prefabricated blanks of packaging material. Typically many thousands of packages may be prepared per hour.

[0005] Despite the efforts and achievements, there's still a need for reliable and cheap openings for such containers.

SUMMARY OF THE INVENTION

[0006] The present invention proposes a package material laminate structure with a subject matter according to independent claim 1 and a packaging container thereof according to independent claim 19.

[0007] In an embodiment a packaging material laminate structure comprises a first side, a second side opposite the first side and an attenuated area. The first side refers to the outer or decor layer side, the side being visible to the consumer. The second side refers to the inner side, which is normally in contact with the beverage or liquid. A plastic opening device is arranged with a first portion on the first side and with a second portion on the second side, wherein the first and second portion of the plastic opening device are connected via a first material bridge through the attenuated area. Such bridge as well as the first and second portion can be formed by moulding and particular by injection moulding, wherein the molten material forming the first and second portion penetrates through the attenuated area thereby forming the bridge.

[0008] A consumer opening area is defined on the packaging material laminate by one or more weakened areas or lines such that the packaging material laminate is ruptured on using the plastic opening device to open the consumer opening area. Finally, a pouring support device is provided and adjacent to the consumer opening area. The pouring support is having a pouring portion arranged on the first side and a support portion on the second side. The pouring portion and the support portion are connected via a second material bridge through the attenuated area.

[0009] The present invention provides a cheap and easy opening, while maintaining good pouring particular in package container made from said material and filled with a liquid completely or to a very high level.

[0010] In an embodiment, the pouring support is separated from the opening device on the first side. More particular the first portion of the opening device and the pouring portion of the pouring support are separated on the first side. The respective second portions of the opening device and the support portion of pouring support may form a common portion on the second side.

[0011] The packaging material laminate structure may comprise a bulk layer, a barrier layer and at least one laminate layer, wherein the attenuated area lacks at least the bulk layer. Packaging material layers suitable for the purpose of the present invention are described in detail in WO2004/089628 or WO03/095199, whose the content related to the packaging material structure is incorporated herein by reference.

[0012] In another embodiment, the packaging material laminate comprises one or more weakened areas or lines. Those lines are defining the consumer opening area. Further during opening of the consumer opening area, the package material laminate is ruptured along those weakened lines. In other words the weakened lines facilitate rupturing of the package material laminate along those lines. In a further embodiment, one or more weakened areas or lines are arranged adjacent to the attenuated area as to support rupture of the packaging material laminate to open the consumer opening area.

[0013] Another aspect of the invention is related to the inner side of the packaging material laminate structure. In one embodiment the second portion of the opening device on the second, inner side comprises a weakened line at least partly following the one or more weakened areas or lines on the first side. In other words, the material deposited on the second side of the packaging material laminate during the manufacturing process comprises also one or more weakened lines as to facilitate rupturing of the packaging material laminate in a defined way.

[0014] In addition, the second portion may comprise a weakened line that is at least partly overlapping the attenuated area. As the attenuated area is ruptured first when opening the consumer opening area, the weakened line on the second portion supports further rupturing in a predefined manner. The second portion and the support portion of the pouring support can form an integral common portion on the second side. This may increase robustness when opening the package.

[0015] In another aspect, the pouring portion comprises a lateral dimension, which is greater than a lateral dimension of one of the attenuated area and the consumer opening area. The parts of the poring portion exceeding the attenuated area may be slightly connected to the uppermost material layer of the packaging material layer, but otherwise not directly linked to the material bridge. In other words, the material bridge of the pouring support only penetrates through the attenuated area in this embodiment but not through the bulk layer or the whole packaging material laminate structure including the bulk layer.

[0016] In an embodiment, a lateral dimension of the second material bridge is smaller than a lateral dimension of one of the first material bridge and/or the pouring portion.

[0017] The pouring portion may comprise a pouring lip distanced from the first side. Said pouring lip comprises a laterally rounded shape with its outermost lateral edges of the lip having a greater distance to the packaging material than a central part of the lip.

[0018] The packaging material laminate can be used to produce containers having an opening and pouring support according to the present invention.

DESCRIPTION OF THE DRAWING

[0019] In the following, the present invention will be explained in greater details using the accompanying drawings, in which

[0020] FIG. 1 shows a perspective view of a package in accordance with an embodiment of the present invention;

[0021] FIG. 1A illustrates a front view if a pouring support according to the present invention;

[0022] FIG. 1B illustrates a side view of the pouring support;

[0023] FIG. 2 shows an embodiment of a packaging material laminate for a package container according to the present invention;

[0024] FIG. 3 shows another example of an opening in accordance with the present invention;

[0025] FIG. 4 shows a further embodiment of an opening of the present invention;

[0026] FIG. 5 illustrate a bottom view of an embodiment according the present invention.

[0027] Similar references refer to the same or similar features.

DETAILED DESCRIPTION

[0028] In the following the term “lateral” or “lateral direction L” refers to a direction perpendicular to a normal pouring direction of the package. The term “longitudinal” or “longitudinal direction D” refers to the normal pouring direction. Consequently, the term “T” refers to the remaining transversal direction. Consequently, the terms “lateral”, longitudinal or transversal dimension refer to the dimension of the feature in the respective direction.

[0029] FIG. 1 shows an example of a packaging container 60 in accordance with the present invention and made from material described later. The packaging container is particularly suitable for liquid or semi-liquid food products such as beverages, sauces, soups or the like. Typically, such a package has a volume of about 100 to 2000 ml.

[0030] The package container is of brick-type and comprises a top side, on which an opening device 63 is moulded to, transversal and longitudinal seals 56 and 57, respectively. The opening device is in form of a tab and injection moulded through attenuation 62. The term “injection moulded” means that during the manufacturing process, plastic material is injected through the attenuation as to from the tab 63 and a corresponding part, (not shown) on the inside of the package. During the injection moulding process, the plastics penetrate the attenuation 62 forming a material bridge through the attenuation 62. When opening the container by pulling the tap, the bridge and inside portion provide rigidity and stability to overcome the force necessary to rupture the perforation line 61.

[0031] Attenuation 62 is a pre-laminated hole, meaning the cardboard of container 60 is removed in this area and only one or more plastic layers and/or aluminium foils layers are provided.

[0032] Starting from the attenuation 62, two weakened lines 61 are provided and extend from attenuation 62 substantially in the same direction as tab 63 is arranged. The weakened lines 61, made of a perforation define a consumer area 64. When opening the packaging container 60, this area is ruptured by pulling the tab 63, creating an opening for pouring the liquid.

[0033] The packaging container also comprises a pouring support 65 in form of a rounded lid protruding the flap 67 attached to the side of the package container. The pouring support’s 65 lateral dimension (dimension in lateral direction L) exceeds the dimension of the attenuation or hole 62. A middle portion of support 65 is however arranged over attenuation 62 and also injection moulded. Due to the injection moulding, a portion of pouring support penetrates through the attenuation 62, forming a bridge and connects to a corresponding part on the inside of the package. That inside portion is also connected to the inside portion connected to tab 63 forming a common inside portion (not shown). The lateral dimension of pouring support 65 can be similar to the maximal lateral dimension of the consumer area 64 to facilitate proper pouring. Area 69 of the pouring support exceeding the attenuation 62 is only slightly connected with the uppermost layer of packaging material laminate 60. They are not directly extending into the material laminate forming a bridge like in the attenuation 62. Pouring support 65 has a rounded shape in longitudinal direction, placing it apart from the package container surface. The outermost edge 66 is arranged substantially parallel the package edge 68, but it is slightly rounded from the front view.

[0034] FIG. 1A illustrates a front view of the pouring support 65. Front edge 66 is shaped in form of a circle segment, similar to a “smile”. Parts of the upper surface 65a can be seen due to specific shape which resembles the form of a lip. The “smile” shape of the lip results that the central part of the lip has a smaller distance from the packaging material than the outermost edges. This enables the liquid to flow along the central part when pouring resulting in less spoilage. FIG. 1B illustrates a side view of the pouring support 65. References “L”, “D”, “T” indicate the respective directions.

[0035] FIG. 2 is a schematic view on the first side of a part of a web of packaging material 20. For illustration purposes, FIG. 2 contains packaging material layout for a single packaging container. The packaging material can either be formed of individual blanks (like illustrated in the embodiment of FIG. 2, where exactly one container layout is shown), or in form of a continuous web, where a multiple of webs area arranged on each other.

[0036] Each layout or blank is having a weakened line or area 21, which in the embodiment illustrated, is in direct contact with an attenuation or hole 22. Hole 22 in this step is already pre-laminated, meaning that some or more layers of aluminium foil and/or plastic layers like LDPE or PP are laminated on the cardboard layer, effectively closing holes 22. Those layers act as oxygen and light barrier in the final stage of the container.

[0037] The weakened line 21 at least partly defines a consumer opening area 24, which for example may be

bigger or smaller than the area defined by the weakened lines or area **21**. In the embodiment the weakened line is made of a perforation and comprises a slight s-shape with its bulge adjacent to the hole **22**. The maximal dimension y (lateral) of such bulge is higher than the dimension x in the distant area of the area framed by the two weakened lines **21**.

[0038] The web of packaging material of FIG. 2 also comprises several crease lines **25** which are intended to assist in forming and folding of the packaging container. During the manufacturing process of the package container, the web will be folded along those crease lines to provide an appealing appearance. The area, on which the hole **22** is arranged, will be placed on top of the resulting packaging container.

[0039] Each type of packaging container has its specific crease pattern to form different shapes of packaging containers.

[0040] The packaging material according to the embodiment of FIG. 2 comprises on top a decor layer of a polyolefin such as a suitable LDPE or PP attached to a paper or paperboard layer. The decor layer can be used for example to provide a cover a printed pattern, the hole **22** and the weakened lines **21** on a paper or paperboard layer. The paperboard layer, on the side opposite the decor layer, has a laminate layer selected from suitable polyolefins such as LDPE or PP. The laminate layer provides adhesion to an oxygen barrier layer, which is also arranged on side of the paper or paperboard layer opposite the decor layer. The barrier layer provides the desired barrier such as oxygen, light, water and vapour barrier depending on the specific need determined by the product to be packed. The barrier layer can for example be an aluminium foil or a vapour deposited film, such as a metalized or vapour deposition coated, such as PECVD coated film. On the side opposite the laminate layer the adhesive polymer is arranged on the barrier layer. The adhesive may for example be applied by extrusion coating, when the barrier layer is aluminium foil the adhesive could be a suitable adhesive marketed under the trade name Nucrel®. On the side opposite the barrier layer, the adhesive is provided with a heat-sealable layer such as a suitable polyolefin such as PE or PP or blends thereof. The heat-sealable layer is the layer facing the product in the finished packed packaging container. The heat-sealable material can be arranged by extrusion coating, or by a pre-made film through film lamination.

[0041] FIG. 3 is a schematic illustration of an outer part of a packaging container made of a packaging material **60**, for example as described in FIG. 1 or FIG. 2. The embodiment comprises a handle **63** for opening a consumer area **64** by pulling the handle to rupture the perforation line **61**. Handle **63** comprises a plastic tab by moulding, e.g. injection moulding. For this purpose plastic is injected through circle shaped attenuation **62** to form on the upper side the visible tab and on the lower side a support section covering the attenuated area and parts of the adjacent packaging material structure. Support section and tab is connected via a plastic material bridge. The embodiment also comprises a pouring support lid **65** which has a slightly rounded shape **65c**. Outermost end portion **66** of the pouring support is slightly rounded and protrudes the edge **60a** of the packaging material laminate and package container. The pouring support is also moulded, e.g. injection moulded onto the surface of the attenuated area **62**. More particular, the pouring support is rigidly connected to a material bridge, produced

by injection moulding, through the attenuated area **62** to a support portion on the lower surface of the packaging material (not shown). The support portion of both, the tab **63** and the pouring support **65** form a common support on the lower side of the packaging material laminate in the attenuated area and adjacent areas of packaging material laminate **60**. Thereby a strong support is achieved if a consumer rips the consumer area open.

[0042] FIG. 5 shows a view of the packaging material laminate from the lower side illustrating the support portions. The support portion **67** is a common support portion made of plastic and rigidly attached to the packaging material laminate **60** on the lower side. A first support portion **67a** is connected via a material bridge (not shown) to the pouring support on the upper side. A second support portion **63a** in the area of the attenuated area **62a** is connected to the tab **63**. Weakened lines **61a** in the plastic support portion follow the perforation or weakened lines **61** in the package material laminate. Lines **61a** shall support or facilitate a rupture of the consumer area along the pre-defined weakened lines **61**.

[0043] FIG. 4 is a schematic illustration of an outer part of a packaging container made of a packaging material **60**, for example as described in FIG. 1, and the illustration includes a handle for consumer opening, i.e. a tab section **63** which is a plastic tab made by moulding, e.g. injection moulding. The illustration additionally includes attenuation or hole **62**, two weakened lines **61** extending from attenuation **62** thereby defining a consumer opening area **64**. Compared to the embodiments illustrated by FIG. 3 the illustration in FIG. 4 illustrates another design of the attenuation or hole **62**. The length of pouring support **65** exceeds the lateral dimension of attenuation **62** and consumer opening area **64**. Pouring support is attached to the attenuated area by injection moulding. The portion arranged over the packaging material laminate is however not rigidly connected, i.e. there's no material bridge through the material laminate. The pouring support may only be connected with the uppermost laminate layer of packaging material layer in those areas **69**.

REFERENCE LIST

- [0044] **56** seal
- [0045] **57** seal
- [0046] **60** packaging material laminate, package
- [0047] **61** weakened lines, perforation
- [0048] **61a** attenuation edge
- [0049] **62** attenuation, hole
- [0050] **63** tab
- [0051] **64** consumer area
- [0052] **65** pouring support
- [0053] **65a** top side
- [0054] **66** outer edge of pouring support
- [0055] **67** support portion
- [0056] **69** protruding areas

1. A packaging material laminate structure comprising:
a first side, a second side opposite the first side and a attenuated area;
a plastic opening device arranged with a first portion on the first side and with a second portion on the second side, wherein the first and second portion of the plastic opening device are connected via a first material bridge through the attenuated area;
a consumer opening area on the packaging material laminate structure, that packaging material laminate is

ruptured in a defined manner on using the plastic opening device to open the consumer opening area; a pouring support device adjacent to the consumer opening area having a pouring portion arranged on the first side and a support portion on the second side, wherein the pouring portion and the support portion are connected via a second material bridge through the attenuated area.

2. The packaging material according to claim 1, wherein the second portion of the plastic opening device and the support portion of the pouring support form an integral portion on the second side.

3. The packaging material laminate according to claim 1, comprising a bulk layer, a barrier layer and at least one laminate layer, wherein the attenuated area lacks at least the bulk layer.

4. The packaging material laminate according to claim 1, further comprising one or more weakened areas or lines, said areas or lines defining the consumer opening area, such that the package material laminate is ruptured at least partly along these areas or lines during opening.

5. The packaging material of claim 4, wherein the one or more weakened areas or lines are arranged adjacent to the attenuated area as to support rupture of the packaging material laminate to open the consumer opening area.

6. The packaging material of claim 4, wherein the second portion on the second side comprises a weakened line at least partly following the one or more weakened areas or lines on the first side.

7. The packaging material according to claim 1, wherein the second portion comprises a weakened line that is at least partly overlapping the attenuated area.

8. The packaging material according to claim 1, wherein the pouring portion comprises a lateral dimension which is greater than a lateral dimension of one of the attenuated area and the consumer opening area.

9. The packaging material according to claim 1, wherein the pouring portion comprises a pouring lip distanced from the first side of the package material laminate.

10. The packaging material according to claim 9, wherein said pouring lip comprises a laterally rounded shape with its outermost edges of the lip having a greater distance to the packaging material laminate than a central part of the lip.

11. The packaging material according to claim 1, wherein a lateral dimension of the second material bridge is smaller than a lateral dimension of one of the first material bridge and pouring portion.

12. Container for a liquid comprising the packaging material of claim 1.

13. Container of claim 12, wherein the outermost edge of the pouring support protrudes a ridge of the container.

* * * * *