発明の名称：キシロオリギコ糖の製造方法

発明の詳細説明

(57) 抽象：Disclosed is a method for producing a xylo-oligosaccharide from a biomass containing xylan and cellulose, wherein the method is simple and a high xylo-oligosaccharide yield is achieved by suppressing xylo-oligosaccharide from being broken down to xylose. According to the method for producing xylo-oligosaccharide, a biomass containing xylan and cellulose is hydrolyzed by a cellulase composition that, at the time of hydrolysis, at least exhibits xylanase, cellobiohydrolase, and β-glucosidase activities, but does not substantially exhibit β-xylosidase activity.

(57) 要約：要約 キシランとセルロースを含むバイオマスからキシロオリギコ糖を製造する方法で、簡便でかつ、キシロオリギコ糖がキシランに存在するが、セルロースに存在するのみで、熱分解を伴わないで、キシロオリギコ糖を製造する方法が開示されている。キシロオリギコ糖の製造方法は、加水分解時に少くとも、キシラナーゼ、セルロピオハドライドおよびβ-グルコンラクターゼの活性を有し、かつβ-キシロシダーゼの活性を実質的に有さないセルラーゼ組成物で、キシランとセルロースを含むバイオマスを加水分解する。
明 細 書

発明の名称：キシロオリゴ糖の製造方法

技術分野

【0001】本発明は、キシランとセルロースを含むバイオマスからキシロオリゴ糖を製造する方法に関する。

背景技術

【0002】キシロオリゴ糖は、キシロース単位がβ—グリコシド結合により複数個結合したオリゴ糖の総称である。キシロオリゴ糖は、優れた整腸作用を示すことなどから機能性食品用の素材としても用いられている（非特許文献1）。

【0003】キシロオリゴ糖は、キシランとセルロースを含むバイオマスに含まれるキシランを加水分解することで得ることができる。加水分解の方法としては、水熱処理する方法（非特許文献2）、酸加水分解する方法（非特許文献3）、キシラナーーゼを用いて酵素処理する方法（特許文献1）が知られている。

【0004】このうち、キシラナーーゼでキシランを加水分解すると、キシロオリゴ糖を選択的に製造することができるため、キシロオリゴ糖を効率的に製造することができます。しかしながら、キシラナーーゼの基質となるキシランは、ヘミセルロースの主成分であり、植物細胞の中でヘミセルロースは、セルロースやリグニンと共に高次構造を形成している。そのため、キシラナーーゼで効率的にキシランを分解するためには、これらの高次構造を加水分解する別の工程が必要になる。

【0005】また、キシラナーーゼは、微生物が生産するセルラーゼ組成物の一酵素成分として生産されるため、キシラナーーゼを用いた酵素の製造方法では、キシラナーーゼを主成分とする酵素の製造コストが課題となる。

【0006】非特許文献4には、セルラーゼ組成物からキシラナーーゼを分離精製せずにキシランとセルロースを含むバイオマスを加水分解して、キシロオリゴ糖を製造する方法が記載されている。セルラーゼ組成物には各種分解酵素が含まれているため、キシランをキシロオリゴ糖へ加水分解する反応と、キシラン
とセルロースを含むバイオマスに含まれる高次構造の分解や、ヘミセルロースからキシランへの加水分解を同時に行うことができる。

先行技術文献
特許文献
[0007] 特許文献1：特開2006−296224号公報
非特許文献
非特許文献3：O z l e m A S, Carbohydr. Res. 344, 6 60−666 (2009)

発明の要約
発明が解決しようとする課題
[0009] 前述のように、キシラナーゼを用いた酵素処理によってキシロオリゴ糖を製造する方法では、工程の煩雑さや、キシラナーゼのコストに課題があった。また、非特許文献4に記載の方法は、工程が単純であり、酵素の精製コストも低く抑えられるが、製造されたキシロオリゴ糖が、セルラーゼ組成物に含まれる加水分解酵素によって、キシロースにまで分解されてしまい、キシロオリゴ糖の収量が低いという課題があった。

課題を解決するための手段
[0010] 本発明者らが、上記課題を解決すべく鋭意検討を行った結果、本発明では、キシランとセルロースを含むバイオマスに対して加水分解時に少なくともキシラナーゼ、セロピオハイドローゼ、β−ダルコシダーゼの活性を有し、かつβ−キシロシダーゼの活性を実質的に有さないセルラーゼ組成物で、キ
シランとセルロースを含むバイオマスの前処理物を加水分解することにより、ヘミセルロースからキシランへの加水分解反応と、キシランからキシロオリゴ糖の加水分解反応を同時に行うことが可能となると同時に、キシロオリゴ糖からキシロースへの加水分解反応を抑制することも可能となり、キシロオリゴ糖を効率的に生産できることを見出し、本発明を達成するに至った。

（1）キシランとセルロースを含むバイオマスをセルラーゼ組成物で加水分解することによるキシロオリゴ糖の製造方法であって、該セルラーゼ組成物がキシランとセルロースを含むバイオマスに対して加水分解時に少なくとも、キシラナーゼ、セルピオハイドラーゼおよびβ－ダルコシダーゼの活性を有し、かつβ－キシロシダーゼの活性を実質的に有さないセルラーゼ組成物である、キシロオリゴ糖の製造方法。

（2）前記セルラーゼ組成物が、前記キシランとセルロースを含むバイオマスに対して少なくともキシラナーゼ、セルピオハイドラーゼ、β－グルコシダーゼ活性およびβ－キシロシダーゼ活性を有するトリコテルマ属真菌由来セルラーゼ混合物を保溫処理することによって、前記バイオマスに対するβ－ダルコシダーゼおよびβ－キシロシダーゼの活性を実質的に失活させて得られた酵素活性成分を含む、（1）に記載のキシロオリゴ糖の製造方法。

（3）前記保溫処理が、pH5.5～8.0に調整した前記トリコテルマ属真菌由来セルラーゼ混合物を、35℃～60℃で保溫する処理である、（2）に記載のキシロオリゴ糖の製造方法。

（4）前記セルラーゼ組成物のβ－ダルコシダーゼ活性成分が、アスベルギルス属真菌のβ－ダルコシダーゼ活性成分を含む、（1）から（3）のいずれかに記載のキシロオリゴ糖の製造方法。

（5）前記セルラーゼ組成物のβ－キシロシダーゼの活性が、4－ニトロフェニルβ－D－キシロピラノシドを分解する酵素活性として、該セルラーゼ組成物中のタンパク質1g当たり500～5000U／gである（1）から（4）のいずれかに記載のキシロオリゴ糖の製造方法。
（6）前記セルラーゼ組成物のβ—ダルコシダーゼの活性が、4—ニトロフェニル-β-D-ダルコビラノシドを分解する活性として、該セルラーゼ組成物中のタンパク質1g当たり14,000 U/g以上である（1）から（5）のいずれかに記載のキシロオリゴ糖の製造方法。

（7）前記加水分解時のpH条件がpH6.0〜8.0である、（1）から（6）のいずれかに記載のキシロオリゴ糖の製造方法。

（8）キシランとセルロースを含むバイオマスをアルカリ処理することによって得られる前処理物を前記セルラーゼ組成物で加水分解する、（1）から（7）のいずれかに記載のキシロオリゴ糖の製造方法。

（9）前記加水分解反応で得られた加水分解物を、固液分離し、得られた液成分を限外濾過膜を通じて濾過し、非透過側からセルラーゼ組成物を回収し、透過側からキシロオリゴ糖を得る工程をさらに含む、（1）から（8）のいずれかに記載のキシロオリゴ糖の製造方法。

（10）以下の（a）〜（d）の酵素活性を有するセルラーゼ組成物。

（a）キシラナーゼ活性が、キシランを分解する酵素活性として該セルラーゼ組成物中のタンパク質1g当たり14,000 U/g以上

（b）セルピオハイドラーゼ活性が、4—ニトロフェニル-β-D-ラクトピラノシドを分解する酵素活性として該セルラーゼ組成物中のタンパク質1g当たり50 U/g以上

（c）β—ダルコシダーゼ活性が、4—ニトロフェニル-β-D—ダルコビラノシドを分解する酵素活性として該セルラーゼ組成物中のタンパク質1g当たりの14,000 U/g以上

（d）β—キシロシダーゼ活性が、4—ニトロフェニル-β—D—キシロピラノシドを分解する酵素活性として該セルラーゼ組成物中のタンパク質1g当たり50〜500 U/g

（11）前記（c）のβ—ダルコシダーゼ活性成分が、アスペルギルス属真菌のβ—ダルコシダーゼ活性成分を含む、（10）に記載のセルラーゼ組成物。
発明の効果

[001 2] 本発明によって、キシランとセルロースを含むバイオマスの前処理物から、簡便な方法で効率的にキシロオリゴ糖を生産することが可能となる。

発明を実施するための形態

[001 3] 本発明で用いられるキシランとセルロースを含むバイオマスは、少なくともキシロオリゴ糖の原料となるキシランとセルロースを含む植物由来のバイオマスである。

[0014] キシランは、植物の細胞壁に存在するヘミセルロースの構成成分であり、
β−グリコシド結合したキシロースの主鎖に様々な糖が結合したヘテロ糖である。セルロースとヘミセルロースは水素結合や化学結合を介して高次構造によって植物の細胞壁を構成している。セルロースは、グルコースがβ−グリコシド結合により直鎖上に結合した構造を有する細胞壁の主成分である。

[0015] キシランおよびセルロースを含有するバイオマスはキシランおよびセルロースを含有する植物由来の資源であれば特に限定されず、種子植物、シダ植物、コケ植物、藻類、水草などの植物の他、廃建材なども用いることができる。種子植物は、裸子植物と被子植物に分類されるが、どちらも好ましく用いることができる。被子植物はさらに単子葉植物と双子葉植物に分類されるが、単子葉植物の具体例としては、バガス、スイッチクラス、ネピアクラス、エリアンサス、コーンストーパー、コーンコブ、稲わら、麦わらなどが挙げられ、双子葉植物の具体例としては、ビートパルプ、ユーリ、ナラ、シラカバなどが好ましく用いられる。本発明においては、キシランおよびセルロースの分解性に優れるバガス、コーンコブ、コーンストーパー、稲わら、麦わらが好ましく、最も好ましくはバガスである。これらのバイオマスは単独で用いることも複数種類を組み合わせて用いることもできる。

[001 6] キシランとセルロースを含むバイオマスに含まれるキシラン含有量は、キシランとセルロースを含むバイオマス固形分重量に対して5 重量%以上が好ましく、より好ましくは10 重量%以上、さらに好ましくは20 %重量以上である。キシランとセルロースを含むバイオマスに含まれるキシラン含有量
は、通常、50重量％以下である。

[0017] 本発明で用いられる前処理方法は、特に限定されないが、具体的には、酸処理、硫酸処理、希硫酸処理、アルカリ処理、水熱処理、亜臨界処理、微粉砕処理、蒸煮処理など公知の手法を用いることができる。好ましくは、前処理におけるキシランの分解が少ないアルカリ処理または水熱処理であることが好ましく、最も好ましくはアルカリ処理である。

[0018] アルカリ処理には、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニアを用いることができる。安価で扱いやすいという観点で、水酸化ナトリウムが好ましい。アルカリ処理条件としては、キシランとセルロースを含むバイオマス固形分濃度がアルカリ水溶液と混合した状態で0.1〜50重量％、好ましくは1〜20重量％、さらに好ましくは5〜10重量％の範囲に設定することが好ましい。キシランとセルロースを含むバイオマス固形分濃度が1重量％未満であると、水の使用量が極端に多くなり、経済的に不利になる。一方、キシランとセルロースを含むバイオマス固形分濃度が20重量％を超えると、キシランとセルロースを含むバイオマスがアルカリ水溶液に浸らなくなったり、前処理の効果が十分に得られない。使用するアルカリ添加量としては、例えば水酸化ナトリウム水溶液を用いる場合、水酸化ナトリウムの添加量がキシランとセルロースを含むバイオマスの固形分に対して0.1〜100重量％、好ましくは1〜50重量％、さらに好ましくは5〜10重量％の範囲で添加することが好ましい。

[0019] キシランとセルロースを含むバイオマスの固形分濃度は、固形分重量を元に調整することができる。固形分重量は、以下の方法で算出することができる。

[0020] キシランとセルロースを含むバイオマス固形分重量は以下の方法で算出できる。キシランとセルロースを含むバイオマスをA g量とし、105℃で恒量B gになるまで加熱する。このとき、B/Aがキシランとセルロースを含むバイオマスの固形分率となり、含水状態のキシランとセルロースを含むバイオマス重量にB/Aを乗じたものを固形分重量とする。キシランとセル
ローズを含むバイオマスの前処理物の固形分重量の測定も同様の方法で行える。

[0021] 添加するアルカリ量が1重量％未満であると、セルラーゼ組成物による、
加水分解が進行しにくくなり、十分なキシロオリゴ糖収量が得られない。一方、添加量が50重量％を超えると、アルカリ量が増大することに加え、セルラーゼ組成物で加水分解反応を行う際のpH調整に使用する酸量が增大し、経済的に不利になる。アルカリ処理を行う温度は10～200℃が好ましく、加水分解における糖収率の観点から、25～120℃がさらに好ましく、特に好ましくは、75～100℃である。アルカリ処理の時間は、アルカリ量等に応じて適宜設定でき、通常、0.5時間～24時間程度である。

[0022] 前処理後のキシランとセルロースを含むバイオマスの前処理物は、そのまま本願のセルラーゼ組成物による加水分解反応に用いることができるが、加水分解反応の前に固液分離してもよい。固液分離により得られた固体分をキシランとセルロースを含むバイオマスの前処理物として用いることができる。

固液分離の手法としては、スクリューデカンタなどの遠心分離法、加圧吸引濾過などの濾過法、または精密濾過などの膜濾過法など公知の手法を用いることができる。また、キシランとセルロースを含むバイオマスの前処理物の固体分を固液分離の前後で純水により洗浄してもよい。洗浄することにより、リグニン分解物などの酵素反応阻害物質をさらに低減でき、加水分解反応の際のpH調整に必要な酸の量も低減できるため好ましい。

[0023] 本発明において、キシロオリゴ糖は、キシロースが2個以上～6個以下の共存結合を有し、キシロース同士はβ-グルコシド結合で連絡したオリゴ糖のことを指す。これらは、キシロース数に応じて、キシロピオース（2糖）、キシロトロオース（3糖）、キシロテトロオース（4糖）、キシロペンタオース（5糖）、キシロヘキサオース（6糖）と呼ばれる。

[0024] セルラーゼ組成物は、β-1,4-グルカンのグリコシド結合を加水分解する種々の加水分解酵素の混合物である。セルラーゼ組成物に含まれる加水分解酵素は例えば、セルピオハイドラーゼ、キシラナーゼ、エンドグルカ
ナーゼ、β_ ダルコシダーゼ、β_ キシロシダーゼ、アラビノフラノシダーゼ、キシランエステラーゼ、フェルラ酸エステラーゼ、α - グルクロニダーゼ、キトサナーゼ、キチナーゼ、マンナナーゼ、マンノシダーゼ、α - ガラクトシダーゼ、β - ガラクトシダーゼなどが挙げられる。

本発明で用いるセルラーゼ組成物（以下、「本発明のセルラーゼ組成物」という。）にはこのうち、キシランとセルロースを含むバイオマスに対して加水分解時において少なくともキシラーゼ、セオピロハイドラーゼおよびβーダルコシダーゼの活性を有しており、かつβーキシロシダーゼの活性を実質的に有していないければよく、これらの酵素活性の由来は、特に限定されない。精製された酵素や、市販されているセルラーゼ製品、または市販製品を混合して本発明のセルラーゼ組成物を調製してもよい。また、微生物を培養して得られた培養液をセルラーゼ組成物としてそのまま用いてもよいし、培養液から精製された酵素、他の市販の酵素製品、を混合して本発明に用いることもできる。

微生物に由来するセルラーゼ組成物を本発明のセルラーゼ組成物として用いる場合、微生物としては、真菌を好ましく用いることができる。真菌の具体例としては、トリコデルマ属（Trichoderma）、アスペルギルス属（Aspergillus）、セルロマイナス属（Cellulomonas）、クロストリジウム属（Clostridium）、ストレプトマイセス属（streptomycetes）、フミコラ属（Humicola）、アクレモニウム属（Acremonium）、イリベックス属（Ilpex）、ムコリ属（Mucoi）、タラロマイセス属（Talaromyces）などの微生物を例示することができる。これら真菌の中でもトリコデルマ属、アスペルギルス属真菌が好ましい。

トリコデルマ属真菌の具体例としては、トリコデルマ・リーサイQM9414（Trichoderma reesei QM9414）、トリコデルマ・リーサイQM9123（Trichoderma reesei QM9123）、トリコデルマ・リーサイRutCー30（Trichode
トリコデリマ・リーサイPC3-7（*Trichoderma reesei PC3-7*）、トリコデリマ・リーサイCL-847（*Trichoderma reesei CL-847*）、トリコデリマ・リーサイMCG77（*Trichoderma reesei MCG77*）、トリコデリマ・リーサイMCG80（*Trichoderma reesei MCG80*）、トリコデリマ・ビリデQM9123（*Trichoderma viride QM9123*）を例示することができる。これらトリコデリマ属真菌の中でも、トリコデリマ・リーサイが好ましい。また、上記のセルラーゼ組成物を生産する真菌に変異剤または紫外線照射などで変異処理を施すことによりセルラーゼ組成物の生産性が向上した変異株や、β-キシロシダーゼの活性が低下した変異株も好ましく用いることができる。

また、アスペルギルス属真菌の具体例としては、アスペルギルス・ニガー（*Aspergillus niger*）、アスペルギルス・フミガタス（*Aspergillus fumigatus*）、アスペルギリス・アクレアータス（*Aspergillus aculeatus*）、アスペルギリス・テレウス（*Aspergillus terreus*）を例示することができる。

本発明のセルラーゼ組成物として、上記の真菌のうち1種類の真菌由来のセルラーゼ組成物を用いてもよいし、複数の真菌由来のセルラーゼ組成物を混合して用いてよい。複数の真菌由来のセルラーゼ組成物を用いる場合、組み合わせは特に限定されないが、例えばトリコデリマ属真菌由来のセルラーゼ組成物と、アスペルギルス属真菌由来のセルラーゼ組成物を混合して用いても良い。具体的には、アスペルギルス属真菌由来のβ-ダルコシダーゼとして、Novozyme 188（ノボザイムス社）、β-Glucosidase from Aspergillus niger（Megazyme社）、スミチームBGA（新日本化学工業社）などを例示することができる。なお、β-ダルコシダーゼ活性成分は、上記したアスペルギルス属真菌
のβ—ダルコシダーゼ活性成分を含むことが好ましい。

[0030] 本発明のセルラーゼ組成物は、酵素以外に塩類や糖などの夾雑物、または酵素保存性を高める薬品、pH調製剤、活性増強剤を含んでいてもよい。また、セルラーゼ組成物を生産する真菌の菌体破砕液および培養液並びにこれらから塩類や糖などを除いた粗酵素なども用いることができる。

[0031] 本発明のセルラーゼ組成物で、キシランとセルロースを含むバイオマスを加水分解すると、キシロオリゴ糖とグルコースを主成分とする加水分解物を得ることができる。この場合の主成分とは、加水分解物にキシロオリゴ糖、グルコース、およびキシロースが含まれている場合には、キシロオリゴ糖の濃度％ (w/v) が、キシロースの濃度％ (w/v) よりも高いことを指す。一方で、キシラナーゼ、セロピオハイドライゼ、β—ダルコシダーゼおよびβ—キシロシダーゼの活性を有するセルラーゼ組成物で、キシランとセルロースを含むバイオマスを加水分解すると、キシロースとグルコースを主成分とする加水分解物が得られる。

[0032] β—キシロシダーゼの活性は、4—ニトロフエニル—β—D—キシロピラノシドを分解する酵素活性として測定する。1分間に1μmolarの4—ニトロフエノールを生成する酵素量を1Uとして定義する。酵素活性は後述の参考例5に記載の手順に準じた方法で測定する。

[0033] 本発明のセルラーゼ組成物は、キシランとセルロースを含むバイオマスの加水分解時においてβ—キシロシダーゼの活性を実質的に有さず、セルラーゼ組成物中のタンパク質1g当たりのβ—キシロシダーゼの活性は500U/ g以下であることが好ましく、さらに好ましくは400U/ g以下、最も好ましくは300U/ g以下であることが好ましい。ここで、本発明におけるセルラーゼ組成物中のタンパク質量はBradford法を用いて測定したものとする。Bradford法によるタンパク質量の測定方法は、セルラーゼ組成物の希釈溶液と、ブリリアントブルーGを含む溶液を混合後、一定時間保温し、595nmにおける吸光度を測定して求めることができる。別途牛血清アルブミンの標準液を用いて作成した検量線をもとに、セルラー
ゼ組成物の希釈溶液中のタンパク濃度を算出し、セルラーゼ組成物中のタ
ンパク質含量を求めることができる。

キシラナーゼの酵素活性は、試薬であるキシランを分解するキシラン分解
活性として測定する。1分間に1μmolの還元糖を生成する酵素量を1Uと
定義する。酵素活性は後述の参考例5に記載の手順に準じた方法で測定す
る。

具体的には、セルラーゼ組成物中のタンパク質1g当たりのキシラン分解
活性が、好ましくは14,000 U/g以上、より好ましくは16,000
U/g以上、さらに好ましくは18,000 U/g以上含まれることが好ま
しい。セルラーゼ組成物のキシラン分解活性は、通常、セルラーゼ組成物中
のタンパク質1g当たり50,000 U/g以下である。

セロピオハイドラーゼの活性は、4-ニトロフェニル-β-D-ラクトビ
ラノシドを分解する酵素活性として測定する。1分間に1μmolの4-ニ
トロフェノールを生成する酵素量を1Uと定義する。酵素活性は後述の参考
例5に記載の手順に準じた方法で測定する。

具体的には、セルラーゼ組成物中のタンパク質1g当たりのセロピオハイ
ドラーゼの活性が、好ましくは50 U/g以上、より好ましくは65 U/g
以上、さらに好ましくは80 U/g以上含まれることが好ましい。セルラーゼ
組成物のセロピオハイドラーゼ活性は、通常、セルラーゼ組成物中のタン
パク質1g当たり300 U/g以下である。

β-ダルコシダーゼの酵素活性は、4-ニトロフェニル-β-D-ダルコ
ピラノシドを分解する酵素活性として測定される。1分間に1μmolの4-
ニトロフェノールを生成する酵素量を1Uと定義する。酵素活性は後述の参
考例5に記載の手順に準じた方法で測定する。

具体的には、セルラーゼ組成物中のタンパク質1g当たりのβ-ダルコシ
ダーゼの活性が、1000 U/g以上であればよく、好ましくは10,000
U/g以上、より好ましくは14,000 U/g以上、さらに好ましくは
16,000 U/g以上、最も好ましくは18,000 U/g以上含まれる
ことが好ましい。セルラーゼ組成物のβ_ ダルコシダーゼ活性は、通常、セルラーゼ組成物中のタンパク質1g当たり500,000U/g以下である。

セルラーゼ組成物中の酵素成分は、前記酵素活性を測定する方法以外に、ゲル濾過、イオン交換、二次元電気泳動などの公知方法により分離し、分離した成分のアミノ酸配列の分析（N末端分析、C末端分析、質量分析）を行い、データベースとの比較により酵素成分を同定することができる。

本発明では、キシランとセルロースを含むバイオマスに対して加水分解時に少なくとも、キシラナーゼ、セロビオハイドラーーゼおよびβ_ ダルコシダーゼの活性を有し、かつβ_ キシロシダーゼの活性を実質的に有さないセルラーゼ組成物を用いて、キシランとセルロースを含むバイオマスの前処理物を加水分解すると、キシロオリゴ糖を含む加水分解物を得ることができる。

本発明の加水分解の反応条件は、本発明のセルラーゼ組成物が、バイオマスの前処理物を加水分解してキシロオリゴ糖を得ることができる反応条件であれば特に限定されないが、加水分解の反応温度は50℃以下が好ましく、より好ましくは、30℃〜45℃の範囲になるように、維持されることが好ましい。反応温度を30℃〜45℃に維持すると、セルラーゼ組成物に含まれる種々の加水分解酵素の活性が低下しないため、加水分解反応後にセルラーゼ組成物を再利用することができる。

加水分解反応の好ましいpH条件は特に限定されないが、pH4.5〜8.0が好ましく、より好ましくはpH6.0〜8.0、さらに好ましくはpH6.5〜7.5である。pHを6.5〜7.5の範囲とすることで、キシロオリゴ糖の生成量を高める効果があり、また、加水分解後も、セルラーゼ組成物中のキシラナーゼ、セロビオハイドラーーゼおよびβ_ ダルコシダーゼの活性を高く保つことができる。

加水分解を行う際のpHの調整は、キシランとセルロースを含むバイオマスの前処理物にセルラーゼ組成物を添加する前に、キシランとセルロースを含むバイオマスの前処理物とセルラーゼ組成物のそれぞれのpHを調整しておいてもよいし、キシランとセルロースを含むバイオマスの前処理物にセル
ラーベ組成物を添加した後、ＰＨの調整を行ってもよい。好ましくは、キシランとセルロースを含むバイオマスの前処理物にセルラーゼ組成物を添加する前に、それぞれＰＨの調整を行うことが好ましい。

ｐＨの調整には酸、アルカリ、またはｐＨ緩衝液を用いることができる。酸、アルカリまたはｐＨ緩衝液の種類については、所定のｐＨに調整できるものであれば特に限定されないが、酸としては、塩酸、硫酸、硝酸、リン酸、ギ酸、酢酸などが例示される。中でも、安価でかつ少量で所望のｐＨに調整できるという観点から、塩酸、硫酸が好ましい。アルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニア、炭酸ナトリウム、炭酸カルシウム、リン酸三ナトリウムなどが例示される。中でも、安価でかつ少量で所望のｐＨに調整できるという観点から、水酸化ナトリウム、水酸化カリウムが好ましい。また、ｐＨ緩衝液を用いる場合、使用するＰＨ緩衝液として酢酸緩衝液、クエン酸緩衝液、リン酸緩衝液、トリス－塩酸緩衝液などが例示されるが、調整するｐＨがｐＨ6.0－8.0であるという観点から、リン酸緩衝液、トリス－塩酸緩衝液が好ましい。

加水分解反応では、キシランとセルロースを含むバイオマスの前処理物と本発明のセルラーゼ組成物との接触を促進させるため、また加水分解物の糖濃度を均一にするため振拌混合を行うことが好ましい。加水分解におけるキシランとセルロースを含むバイオマスの前処理物の固形分濃度は、1－3.0重量％、好ましくは3－2.0重量％、さらに好ましくは5－1.0重量％の範囲であることが好ましい。

加水分解の反応時間は、1－14.4時間、好ましくは3－7.2時間、さらに好ましくは6－24時間、最も好ましくは、6－10時間の範囲であることが好ましい。

本発明の加水分解反応では、セルラーゼ組成物に含まれる加水分解酵素によってキシランとセルロースを含むバイオマスの前処理物に含まれるセルロースが、セロピオハイドラーゼにセロオリゴ糖に分解され、セロオリゴ糖は、β－ダルコシダーゼによってグルコースに加水分解される。また、キシラ
ンとセルロースを含むバイオマスの前処理物に含まれるキシランは、キシラーゼによってキシロリゴ糖に加水分解される。

ここで、キシランは、植物の細胞壁に存在するヘミセルロースの構成成分であり、ヘミセルロースは、セルロースと水素結合や化学結合を介した高次構造によって植物の細胞壁を構成している。本発明では、キシラーゼだけではなく、セロピオハウスラーゼと、β-ダルコシダーゼの活性を有するセラーゼ組成物を加水分解反応に用いることでキシロリゴ糖を効率的に生産できることを見出した。

加水分解物には、キシロリゴ糖のほかに、セラーゼ組成物に含まれる加水分解酵素によって生じたグルコース、キシロース、マンノース、アラビノース、ガラクトースなどの単糖や、セロヒオース、セルロース、マンノヒオース、セラクトビオースなどのオリゴ糖などが含まれているともよい。

セラーゼ組成物が、キシラーゼ、セロヒオハウスラーゼ、β-ダルコシダーゼ、およびβ-キシロシダーゼの活性を有している場合、以下のような処理をすることで、本発明のセラーゼ組成物を製造することができる。

セラーゼ組成物を水系媒体に懸濁または溶解させる。得られたセラーゼ組成物の懸濁液または水溶液のpHを5.5〜8.0に調整して35°C〜60°Cに保温暖処理する。セラーゼ組成物を懸濁する際には、基質を添加しない状態が好ましい。より好ましいpHの範囲は、pH6.0〜8.0であるが、さらに好ましくは、pH6.5〜8.0である。保温時間は、特に限定されないが、2〜4時間以内が好ましく、さらに好ましくは、12時間以内である。さらに好ましくは0.1〜8時間の範囲、特に好ましくは2〜6時間の範囲である。また、セラーゼ組成物を懸濁する際の、セラーゼ組成物の濃度は、特に限定されないが、タンパク質濃度で0.1g/L〜100g/Lであることが好ましく、より好ましくは1〜50g/L、さらに好ましくは2〜10g/Lとなるようにセラーゼ組成物の濃度を調整することが好ましい。ここででのタンパク質濃度は、Bradford法により測定した
タンパク質濃度とする。セルラーゼ組成物の懸濁液または水溶液のPH調整
には、前述のキシランとセルロースを含むバイオマスの前処理物のPH調整
に用いた酸、アルカリ、またはPH緩衝液を用いることができる。

下記実施例に具体的に記載されるように、上記処理により、β—キシロシ
ダーゼの活性が大幅に低減され、一方、キシラナーゼ、セロピオハイドラー
ゼおよびβ—ダルコシダーゼの活性の低減は比較的小さい。このため、セル
ラーゼ組成物中のβ—キシロシダーゼの活性がセルラーゼ組成物中のタンパク質1g当り500
U/g超である場合であっても、前記保温処理により、β—キシロシダーゼ
活性をセルラーゼ組成物中のタンパク質1g当り500U/g以下、好ま
しくは、400U/g以下、さらに好ましくは、300U/g以下にまで低
減させることができ、一方で、キシラナーゼ、セロピオハイドラー
ゼおよびβ—ダルコシダーゼの活性は、上記したそれぞれ好ましい範囲に維持するこ
とができる。真菌に由来するセルラーゼ組成物では、β—キシロシダーゼ活
性がセルラーゼ組成物中のタンパク質1g当り500U/g超である場合
も少なくないが、このようなセルラーゼ組成物であっても、上記した単純な
保温処理により、本発明の方法に使用可能な、β—キシロシダーゼの活性を
実質的に有さないセルラーゼ組成物にすることができる。なお、こここ、「
真菌に由来するセルラーゼ組成物」は、真菌により生産されたセルラーゼ組
成物を含んでいれば、キシラナーゼ、セロピオハイドラーゼおよびβ—ダル
コシダーゼの1種または2種以上を別途、追加的に添加したものも含まれ
る。なお、β—キシロシダーゼ活性をセルラーゼ組成物中のタンパク質1g
当たりのβ—キシロシダーゼ活性は、通常、50U/g以上であるので、β
—キシロシダーゼ活性は、50〜500U/gであることが好ましい。

加水分解反応後の加水分解物からセルラーゼ組成物を回収する方法は、特
に限定されないが、例えば、加水分解物を限外濾過膜で濾過し非透過側より
セルラーゼ組成物を回収する方法、加水分解物を固液分離して、固形分から
セルラーゼ組成物を溶出する方法が挙げられる。

[0055] この中でも、限外濾過膜によるセルラーゼ組成物の回収が好ましい。限外濾過膜による回収方法では、非透過側にセルラーゼ組成物が透過側にキシロオリゴ糖を含む糖液を得ることができることができるため好ましい。なお、非透過液に加水して、再度限外濾過膜での濾過を繰り返すことにより、セルラーゼ組成物の純度をさらに向上させることができる。

[0056] 限外濾過膜を用いてセルラーゼ組成物を回収する場合、その分画分子量の好ましい範囲は1,000〜5,000の範囲であればよく、より好ましくは分画分子量5,000〜50,000の範囲であり、さらに好ましくは分画分子量10,000〜30,000の範囲である。

[0057] 限外濾過膜の素材としては、ポリエテルスルホン（PES）、ポリスルホン（PS）、ポリアクリロニトリル（PAN）、ポリフッ化ビニルデン（PVDF）、再生セルロース、セルロース、セルロースエステル、スルホン化ポリスルホン、スルホン化ポリエテルスルホン、ポリオレフィン、ポリビニルアルコール、ポリメチルメタクリレート、ポリ4フッ化エチレンなどを使用することができるが、再生セルロース、セルロース、セルロースエステルはセルラーゼ組成物による分解を受けるため、PES、PVDFなどの合成高分子を素材とした限外濾過膜を使用することが好ましい。

[0058] 限外濾過膜の濾過方式として、デッドエンド濾過、クロスフロー濾過があるが、膜ファウリング抑制の観点から、クロスフロー濾過であることが好ましい。また使用する限外濾過膜の膜形態としては、平膜型、スパイク型、チュープラ型、中空糸型など適宜の形態のものが使用できる。具体的には、D E S A L 社のG—5タイプ、G—10タイプ、G—20タイプ、G—50タイプ、PWタイプ、H W S U Fタイプ、K O C H社のH F M—180、H F M—183、H F M—251、H F M—300、H F K—131、H F K—328、M P T—U 20、M P S—U 20 P、M P S—U 20 S、S y n d e r 社のS P E 1、S P E 3、S P E 5、S P E 10、S P E 30、S P V 5、S P V 50、S O W 30、旭化成株式会社製のマイクローザ（登録
商標）uFシリーズの分画分子量3,000から10,000に相当するもの、日東電工株式会社製のNT7410、NT7450などが挙げられる。

[0059] その他、本発明により得られたキシロオリゴ糖を含む糖液を、さらに糖濃度を高めるために濃縮を行ってもよい。濃縮処理は、蒸発濃縮、減圧濃縮、膜濃縮などを例示することができるが、エネルギー使用量が少なく、糖液に含まれる発酵阻害物質を分離することが可能なWO2010/067785号に記載される、ナノ濾過膜および/または逆浸透膜に通じて濾過する方法により、糖成分が濃縮された糖濃縮液を得ることが好ましい。

[0060] また、本発明によって得られたキシロオリゴ糖は、そのまま食品や飼料などの素材の原料として用いてもよい。あるいは、公知の方法により精製度を高めたキシロオリゴ糖を食品や飼料などの素材の原料として用いることもできる。

[0061] また、上述した方法により分離したグルコースおよびキシロースを含む糖液を発酵原料として、化学品を生産する能力を有する微生物を生育させることで、各種化学品を製造することができる。ここでいう発酵原料として微生物を生育させるとは、糖液に含まれる糖成分またはアミノ源を微生物の栄養素として利用し、微生物の増殖、生育維持を行うことを意味している。化学品の具体例としては、アルコール、有機酸、アミノ酸、核酸など発酵工業において大量生産されている物質を挙げることができる。こうした化学品は、糖液中の糖成分を炭素源として、その代謝の過程において生体内外に化学品として蓄積生産する。微生物によって生産可能な化学品の具体例として、エタノール、1,3-プロパンジオール、1,4-プロパンジオール、グリセロールなどのアルコール、酢酸、乳酸、ビールビン酸、コハク酸、リンゴ酸、イタコン酸、クエン酸などの有機酸、イノシシグアノシンなどのヌクレオシド、イノシシグア、グアニル酸などのヌクレオチド、カダベリンなどのアミン化合物を挙げることができる。さらに、本発明の糖液は、酵素、抗生物質、組換えタンパク質などの生産に適用することも可能である。こうした化学品
の製造に使用する微生物に関しては、目的の化学品を効率的に生産可能な微生物であればよく、大腸菌、酵母、真菌（糸状菌、担子菌）などの微生物を使用することができる。

実施例

以下に、実施例と比較例を挙げて本発明を具体的に説明する。

参考例 1
キシランとセルロースを含むバイオマスの前処理

キシランとセルロースを含むバイオマスとしてガスを用いて前処理を行った。ガス5 g を量りとり、105 ℃になるまで加熱した。このときの重量変化をもとにガスの固形分率を算出した。含水状態のガスに含水率を乗じたものを固形分重量とした。ガス100 g を固形分重量が水酸化ナトリウム溶液と混合した状態で5重量%、ガス固形分に対する水酸化ナトリウム添加量が10重量%になるように、水酸化ナトリウム水溶液に浸し、80 ℃にて3時間前処理した。遠心分離（3,000 G, 10分）にて固液分離し、溶液成分と固体分に分離した。固体分を純水で洗浄したものをキシランとセルロースを含むバイオマスの前処理物として以下の実験に使用した。

参考例 2
セルラーゼ組成物の調製

[前培養]
コーンスティツブリカー5%（w/v o l）、グルコース2%（w/v o l）、酒石酸アンモニウム0.37%（w/v o l）、硫酸アンモニウム0.14（w/v o l）、リン酸二水素カリウム0.2%（w/v o l）、塩化カルシウム二水和物0.03%（w/v o l）、硫酸マグネシウム七水和物0.03%（w/v o l）、塩化亜鉛0.02%（w/v o l）、塩化鐵(III)六水和物0.01%（w/v o l）、硫酸銅(III)五水和物0.004%（w/v o l）、塩化マンガン四水和物0.0008%（w/v o l）、ホウ酸0.0006%（w/v o l）、セモリブテン酸六アンモニウム四水和物0.0026%（w/v o l）となるよう蒸留水に添加して、100
mLを500mLパック付三角フラスコに張り込み、121°Cで15分間オートクレーブ滅菌した。放冷後、これとは別にそれぞれ121°Cで15分間オートクレーブ滅菌したPE-MとTw ee n80をそれぞれ0.01% (w/v o l)添加し、前培養培地とした。この前培養培地100mLにトリコデルマ・リーゼィATCC66589（ATCCより分譲）を1×1

0.5％/mLになるように植菌し、28°C、72時間、180rpmで振とう培養し、前培養とした（振とう装置：TAITEC社製B10-SHAKERBR_40LF）。
ラーゼ組成物を得た。
なお、L A G r a n g e D C S (A p p に E n v i r o n. Mic r o b i o に 62, 1036—1044, 1996)、B o e r ら（B i o t e c h n o l. Bio eng. 69, 486—494, 2000）、W i l l i a m J C S （E u r. J. B i o c h e m. 165, 333—341, 1987）には、糸状菌由来のセルラーゼ組成物中のキシラーゼ、セロビオハイドライド、β-ダルコシダーゼの最適pHはそれぞれpH 5.0 ～6.0、pH 5.0、pH 5.0であると記載されていることから、本参考例で得られたセルラーゼ組成物の酵素反応の最適pHはpH 5であると判断した。

参考例3
タンパク質濃度の測定
セルラーゼ組成物のタンパク質濃度の測定には、市販のタンパク質濃度測定試薬（Quick S t a r t B r a d f o r d プロテインツセイ、B i o _ R a d 製）を使用した。室温に戻したタンパク質濃度測定試薬250μLに希釈した本発明のセルラーゼ組成物溶液を5μL添加し、室温で5分間静置後の595nmにおける吸光度をマイクロプレートリーダー（P O W E R S C A N HT、大日本住友製薬株式会社製）で測定した。牛血清アルブミン水溶液を標準液とし、検量線に照らし合わせてセルラーゼ組成物溶液のタンパク質濃度を算出した。

参考例4
糖濃度の測定
キシロオリゴ糖、グルコース、キシロースは、日立高速液体クロマトグラフ L a C h r o m E i t e （H I T A C H I）を用いて、以下の条件で定量分析した。

キシロオリゴ糖であるキシロビオース、キシロトリオース、キシロテトラオース、キシロペンタオース、キシロヘキサオース、およびグルコース、キシロースの標品で作製した検量線をもとに、定量分析した。なお、本実施例
で記すキシロオリゴ糖とは、キシロース単位がβグリコシド結合により2～6個結合したキシロオリゴ糖を指す。

[0069] カラム：KS802、KS803（Shodex）
移動相：水
検出方法：RI
流速：0.5mL/min
温度：75℃。

[0070] 参考例5
酵素活性測定方法
酵素活性は、1）β-キシロシダーゼの活性、2）キシラン分解活性、3）セルラーゼハイドランの活性、4）β-グルコシダーゼの活性の4種について、参考例2のセルラーゼ組成物の酵素反応の最適pHであるpH5において以下の手順で測定評価した。

[0071] 1）β-キシロシダーゼの活性
50mM酢酸ナトリウム緩衝液（pH5.0）に、1mMとなるように4—ニトロフェニル—β—D—キシロピラノニド（Sigma—Aldrich社製）を溶解したものを基質溶液とした。90μLの基質溶液に酵素液10μLを添加し、30℃で静置反応させた。10分後に炭酸ナトリウム溶液10mlを添加して反応を停止させ、405nmの吸光度を測定することで4—ニトロフェニノールを定量した。上記反応系にて、1分間に1μmolの4—ニトロフェニノールを生成する酵素量を1Uと定義し、活性値（UZmL）を下記式に従って算出した。

β-キシロシダーゼの活性（UZmL） = 4—ニトロフェニノール（μmol/L）×反応液量（μL）/（（反応時間（min）×酵素液量（μL）））×希釈倍率（倍）。

[0072] 2）キシラン分解活性
50mM酢酸ナトリウム緩衝液（pH5.0）に、1重量%になるようキシラン（Xylan from Birch wood、Fluka社製）
を懸濁したものを基質溶液とした。分注した500 μLの基質溶液に酵素液Sフを添加し、50°Cで回転混和しながら反応させた。反応時間は30分間を基本とし、酵素活性の高さに応じて10〜60分間まで適宜変更した。反応後、チューブを遠心分離し、その上清成分の還元糖濃度をD N S法により測定した。上記反応系にて1分間に1μmolの還元糖を生成する酵素量を1Uと定義し、活性値(UZ mL)を下記式に従って算出した。

キシラン分解活性(U/ mL) = 還元糖濃度(g/L) × 1000 × 505 (μL)/ (150.13 × 反応時間(分) × 5(μL))。

[0073]3) セロビオハイドラーゼの活性
50 mM酢酸ナトリウム緩衝液(p H 5.0)に、1 mMとなるように4-ニトロフエニル-β-D-ラクトピラノシド(Sigma—Aldrich社製)を溶解したものを基質溶液とした。90 μLの基質溶液に酵素液10 μLを添加し、30°Cで静置反応させた。10分後に炭酸ナトリウム溶液10 mLを添加して反応を停止させ、405 nmの吸光度を測定することで4-ニトロフエノールを定量した。上記反応系にて、1分間に1μmolの4-ニトロフエノールを生成する酵素量を1Uと定義し、活性値(UZ mL)を下記式に従って算出した。

セロビオハイドラーゼの活性(UZ mL) = 4—ニトロフエノール(μmol/mL) × 反応液量(μL)/(反応時間(min) × 酵素液量(μL)) × 希釈倍率(倍)。

本測定方法において、活性値が5 U/g未満になると検出感度が低下するため5 U/g未満を検出限界としている。

[0074]4) β-ダルコンディーゼの活性(BGL活性)。
50 mM酢酸ナトリウム緩衝液(p H 5.0)に、1 mMとなるように4—ニトロフエニル-β-D-ダルコンピラノシド(Sigma—Aldrich社製)を溶解したものを基質溶液とした。90 μLの基質溶液に酵素液10 μLを添加し、30°Cで静置反応させた。10分後に炭酸ナトリウム溶液10 mLを添加して反応を停止させ、405 nmの吸光度を測定することで
4 —ニトロフェノールを定量した。上記反応系にて、1分間に1 μmolの4—ニトロフェノールを生成する酵素量を1 Uと定義し、活性値（U Z m L）を下記式に従って算出した。

\[\text{酵素活性} = \frac{1 \text{μmol} / \text{mL} \times \text{反応時間 (min)} \times \text{酵素液量 (μL)}}{1 \text{U}} \times \text{希釈倍率 (倍)} \]

本測定方法において、活性値が50 U/g未満になると検出感度が低下するため50 U/gを検出限界としている。

[0075] 比較例1

キシラナーゼを用いた加水分解反応

参考例1に従って調製したキシランとセルロースを含むバイオマスの前処理物の固形分率を参考例1に記載のバガスの固形分率と同様の方法で測定し、固形分で1 gずつ50 mLチューブに秤量した。キシランとセルロースを含むバイオマスの前処理物の固形濃度が反応開始時に10重量％となるように純水を加えて、希塩酸を用いてpH5.0に調整した。pHを調製したキシランとセルロースを含むバイオマスの前処理物に工業用キシラナーゼとしてセルロシンTP25（エイチビアイ社製）を、参考例5に記載の方法でキシラン分解活性を測定し、キシラン分解活性がキシランとセルロースを含むバイオマスの前処理物の固形分1 g当たり250 Uになるようにキシランとセルロースを含むバイオマスの前処理物添加した。続いて、ハイブリダイゼーションシステムデータ（日伸理化製SN—06BN）を用いてセルロシンTP25の推奨pH、温度条件であるpH5.0、40℃の反応条件下で8時間回転混和した。参考例4に記載の方法で加水分解物の上清に含まれる糖成分を測定した。

[0076] 実施例1

特定のpH・温度条件で保温した本発明のセルラーゼ組成物を用いた加水分解反応

参考例2で得られたセルラーゼ組成物のpHを1 N水酸化ナトリウム水溶
液により p H 5.5 〜 8.0 に調整し、水によりタンパク質濃度 4 g / L まで希釈後、35 〜 60 ℃の温度範囲で保温した。詳細な保温処理条件は表 1 に記載した。それぞれの条件で保温処理したセルラーゼ組成物について、参考例 5 に記載の方法でセロビオハイドローゼの活性、β - ダルコシダーゼの活性、キシラン分解活性、β - キシロシダーゼの活性を測定した結果と、保温処理前の活性と比較した結果をそれぞれ表 1 に示す。これらの結果より、いずれの条件の保温処理によっても、酵素活性の最適 p H における β - キシロシダーゼの活性は、バイオマスに対する加水分解時に実質的に活性を有さない値にまで低減され、セロビオハイドローゼの活性、β - グルコシダーゼの活性、キシラン分解活性は 60 % 以上残存していることから、いずれの保温処理条件によっても、β - キシロシダーゼ活性が選択的に失活することがわかった。

続いて、各条件で保温処理を行うことで β - キシロシダーゼ活性が選択的に失活したセルラーゼ組成物を本発明のセルラーゼ組成物として用い、キシランとセルロースを含むバイオマスの加水分解反応を行った。保温処理前に参考例 5 に準じて測定したキシラン分解活性をもとに、本発明のセルラーゼ組成物をキシラン分解活性がキシランとセルロースを含むバイオマスの前処理物の固形分 1 g 当たり 250 U になるように p H 7.0 に調整したキシランとセルロースを含むバイオマスの前処理物に添加して、ハイドロディサイションローテータを用いて p H 7.0、40 ℃で 8 時間回転混和した。参考例 4 に記載の方法で加水分解物の上清に含まれる糖成分を測定した結果を表 2 に示す。比較例 1 のキシラナーゼ及び比較例 2 の保温処理を施していないセルラーゼ組成物を用いた加水分解反応と比べてより多くのキシロオリゴ糖を得られることが明らかになった。
表 1

<table>
<thead>
<tr>
<th>酵素</th>
<th>保温処理条件</th>
<th>活性安定時pH</th>
<th>活性安定時温度℃</th>
<th>β-キシリノロシンダーーゼ活性（U/g）</th>
<th>キシラン分解活性（U/g）</th>
<th>セロピオハイドラーゼ活性（U/g）</th>
<th>β-グルコシダーゼ活性（U/g）</th>
</tr>
</thead>
<tbody>
<tr>
<td>キシラナーゼ（比較例1）</td>
<td>なし</td>
<td>5.0</td>
<td>30</td>
<td>40,000×10²</td>
<td>0</td>
<td>検出限界以下</td>
<td>検出限界以下</td>
</tr>
<tr>
<td></td>
<td>なし</td>
<td>5.0</td>
<td>30</td>
<td>650</td>
<td>33,200</td>
<td>128</td>
<td>26,100</td>
</tr>
<tr>
<td>結合由来セルラーゼ（参考例2）</td>
<td>pH5.5</td>
<td>60℃</td>
<td>1時間</td>
<td>244</td>
<td>20,000</td>
<td>117</td>
<td>25,800</td>
</tr>
<tr>
<td></td>
<td>pH7.5</td>
<td>40℃</td>
<td>2時間</td>
<td>147</td>
<td>31,300</td>
<td>120</td>
<td>25,400</td>
</tr>
<tr>
<td></td>
<td>pH7.5</td>
<td>40℃</td>
<td>6時間</td>
<td>135</td>
<td>27,400</td>
<td>93</td>
<td>25,200</td>
</tr>
<tr>
<td></td>
<td>pH7.6</td>
<td>44℃</td>
<td>4時間</td>
<td>98</td>
<td>20,800</td>
<td>20,800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH8.0</td>
<td>35℃</td>
<td>10分</td>
<td>103</td>
<td>26,200</td>
<td>103</td>
<td>25,000</td>
</tr>
</tbody>
</table>

[0079]
実施例2
実施例1の加水分解反応において、pH 7.5、温度40℃、保温時間2時間の条件で保温処理したセルラーゼ組成物を用いて、pH 6.0〜8.0、温度40℃の条件で加水分解反応を行った。それ以外の操作は実施例1の加水分解反応と同じである。加水分解物の上澄みに含まれる糖成分を測定した結果を表3に示す。これらの結果より、いずれのpH条件で加水分解反応を行っても、比較例1のキシラナーゼを用いた加水分解反応と比べてより多くのキシロオリゴ糖を得られることがわかった。

[表3]

<table>
<thead>
<tr>
<th>反応pH</th>
<th>反応温度 (℃)</th>
<th>キシロオリゴ糖 (g/L)</th>
<th>グルコース (g/L)</th>
<th>キシロース (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>40</td>
<td>8</td>
<td>41</td>
<td>15</td>
</tr>
<tr>
<td>6.5</td>
<td>40</td>
<td>16</td>
<td>36</td>
<td>9</td>
</tr>
<tr>
<td>7.0</td>
<td>40</td>
<td>16</td>
<td>36</td>
<td>5</td>
</tr>
<tr>
<td>7.5</td>
<td>40</td>
<td>14</td>
<td>31</td>
<td>6</td>
</tr>
<tr>
<td>8.0</td>
<td>40</td>
<td>9</td>
<td>27</td>
<td>5</td>
</tr>
</tbody>
</table>
実施例 3

参考例 2 におけるセルラーゼ組成物において、β-ダルコシダーゼ（Novozyme 188）の添加前にpH7.5、温度40℃、保温時間2時間の条件で保温暖理後を行った。保温暖理後のβ-ダルコシダーゼの活性は124 U/g であった。次に、保温暖理後のセルラーゼ組成物にβダルコシダーゼ活性がそれぞれ1,000 U/g、5,000 U/g、10,000 U/g、14,000 U/g、18,000 U/g、25,000 U/g となるようにβ-ダルコシダーゼ（Novozyme 188）を添加したものを作実施例で用いるセルラーゼ組成物とした。実施例 2 の加水分解反応において、このセルラーゼ組成物を用いてpH7.0、温度40℃の条件で加水分解反応を行った。参考例 4 に記載の方法で加水分解物の上清に含まれる糖成分を測定した結果を表4 に示す。これらの結果より、β-ダルコシダーゼ添加量が多いセルラーゼ組成物においてキシロオリゴ糖収量が向上することがわかった。

<table>
<thead>
<tr>
<th>β-グルコシダーゼ活性 (U/g)</th>
<th>キシロオリゴ糖 (g/L)</th>
<th>グルコース (g/L)</th>
<th>キシロース (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>9</td>
<td>17</td>
<td>6</td>
</tr>
<tr>
<td>5,000</td>
<td>9</td>
<td>22</td>
<td>5</td>
</tr>
<tr>
<td>10,000</td>
<td>10</td>
<td>27</td>
<td>5</td>
</tr>
<tr>
<td>14,000</td>
<td>13</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>18,000</td>
<td>14</td>
<td>33</td>
<td>6</td>
</tr>
<tr>
<td>25,000</td>
<td>16</td>
<td>36</td>
<td>5</td>
</tr>
</tbody>
</table>

実施例 3

実施例 1 の加水分解反応において、pH7.5、温度40℃、保温暖時2時間の条件で保温暖理したセルラーゼ組成物を用いて、pH7.0、温度35〜45℃の条件で加水分解反応を行った。8 時間回転混和して得られた加水分解物を0.000 g、5 分間遠心分離することにより、液成分と固形分に分離した。液成分は細孔径0.22 μm の精密濾過膜（Millex-GV、ミリポア社製）に通じて濾過することで、濾過液を得た。さらに、得ら
れた濾過液を分画分子量10,000の限外濾過膜（Vivaspin20-10K、ザルトポア社製）に通じて濾過することで、透過液と非透過液を得た。透過液に含まれる糖成分を測定した結果を表4に、非透過液中に含まれる酵素活性を参考例5に準じた方法により測定した結果を表5に示す。ここでは、酵素活性は、セルラーゼ組成物を保温処理する前の各酵素活性を100とした場合の非透過液中の酵素活性を相対的に表している。これらの結果より、キシロオリゴ糖を生成した加水分解物より、加水分解後もキシラナーゼ、セルビオハイドライゼおよびβ-ダルシダーゼの活性が高く維持されたセルラーゼ組成物を回収できることがわかった。

【表5】

<table>
<thead>
<tr>
<th>反応pH</th>
<th>反応温度 (℃)</th>
<th>キシロオリゴ糖 (g/L)</th>
<th>グルコース (g/L)</th>
<th>キシロース (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.0</td>
<td>35</td>
<td>12</td>
<td>34</td>
<td>9</td>
</tr>
<tr>
<td>7.0</td>
<td>40</td>
<td>16</td>
<td>36</td>
<td>5</td>
</tr>
<tr>
<td>7.0</td>
<td>45</td>
<td>17</td>
<td>34</td>
<td>5</td>
</tr>
</tbody>
</table>

【表6】

<table>
<thead>
<tr>
<th>反応pH</th>
<th>反応温度 (℃)</th>
<th>β-キシロシダーゼ活性 (%)</th>
<th>キシラン分解活性 (%)</th>
<th>セルビオハイドライゼ活性 (%)</th>
<th>β-グルコースダーゼ活性 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.0</td>
<td>35</td>
<td>15</td>
<td>66</td>
<td>58</td>
<td>78</td>
</tr>
<tr>
<td>7.0</td>
<td>40</td>
<td>10</td>
<td>58</td>
<td>41</td>
<td>76</td>
</tr>
<tr>
<td>7.0</td>
<td>45</td>
<td>7</td>
<td>40</td>
<td>32</td>
<td>67</td>
</tr>
</tbody>
</table>

産業上の利用可能性

本発明で得られるキシロオリゴ糖は、キシロオリゴ糖を含む食品や飼料などの素材の原料として使用することができる。
請求の範囲

[請求項1] キシランとセルロースを含むバイオマスをセルラーゼ組成物で加水分解することによるキシロオリゴ糖の製造方法であって、該セルラーゼ組成物がバイオマスに対して加水分解時に少なくとも、キシラナーゼ、セロビオハイドラーゼ及びβ一ダルコシダーゼの活性を有し、かつβ一キシロシダーゼの活性を実質的に有さないセルラーゼ組成物である、キシロオリゴ糖の製造方法。

[請求項2] 前記セルラーゼ組成物が、前記バイオマスに対して少なくともキシラナーゼ、セロビオハイドラーゼ、β一グルコシダーゼ活性およびβ一キシロシダーゼ活性を有するトリコテルマ属真菌由来セルラーゼ混合物を加水分解することによって、前記バイオマスに対するβ一ダルコシダーゼおよびβ一キシロシダーゼの活性を実質的に失去させて得られた酵素活性成分を含む、請求項1に記載のキシロオリゴ糖の製造方法。

[請求項3] 前記加水分解が、pH 5.5 〜 8.0 に調整した前記トリコテルマ属真菌由来セルラーゼ混合物を、35℃ 〜 60℃ で加水分解する処理である、請求項2に記載のキシロオリゴ糖の製造方法。

[請求項4] 前記セルラーゼ組成物のβ一ダルコシダーゼ活性成分が、アスベルギルス属真菌の生菌ダルコシダーゼ活性成分を含む、請求項1から3のいずれか1項に記載のキシロオリゴ糖の製造方法。

[請求項5] 前記セルラーゼ組成物のβ一キシロシダーゼの活性が、4一ニトリオフエニル一β一D一キシロピラノシドを分解する酵素活性として、該セルラーゼ組成物中のタンパク質1g当たり50〜500U/gである請求項1から4のいずれか1項に記載のキシロオリゴ糖の製造方法。

[請求項6] 前記セルラーゼ組成物のβ一ダルコシダーゼの活性が、4一ニトリオフエニル一β一D一ダルコピラノシドを分解する活性として、該セルラーゼ組成物中のタンパク質1g当たり14000U/g以上である
前記加水分解を時のＰＨ条件がＰＨ6.0〜8.0である、請求項1から6のいずれか1項に記載のキシロオリゴ糖の製造方法。

【請求項7】前記加水分解を時のＰＨ条件がＰＨ6.0〜8.0である、請求項1から6のいずれか1項に記載のキシロオリゴ糖の製造方法。

【請求項8】キシランとセルロースを含むバイオマスをアルカリ処理することによって得られる前処理物を前記セルラーゼ組成物で加水分解する、請求項1から7のいずれか1項に記載のキシロオリゴ糖の製造方法。

【請求項9】前記加水分解反応で得られた加水分解物を、固液分離し、得られた液成分を限外濾過膜に通じて濾過し、非透過側からセルラーゼ組成物を回収し、透過側からキシロオリゴ糖を得る工程をさらに含む、請求項1から8のいずれか1項に記載のキシロオリゴ糖の製造方法。

【請求項10】以下の（a）～（d）の酵素活性を有するセルラーゼ組成物。

（a）キシラナーゼ活性が、キシランを分解する酵素活性として該セルラーゼ組成物中のタンパク質1g当たり14000U/g以上

（b）セルピオハイドラーゼ活性が、4-2トロヘキシル-β-D-ラクトピラノシドを分解する酵素活性として該セルラーゼ組成物中のタンパク質1g当たり500U/g以上

（c）β（D）ダルコシダーゼ活性が、4-2トロヘキシル-β-D-ダルコピラノシドを分解する酵素活性として該セルラーゼ組成物中のタンパク質1g当たりの14000U/g以上

（d）β（L）キシロピラノシドを分解する酵素活性として該セルラーゼ組成物中のタンパク質1g当たり50〜5000U/g

【請求項11】前記（c）のβ（D）ダルコシダーゼ活性成分が、アスベルギルス属真菌のβ（D）ダルコシダーゼ活性成分を含む、請求項10に記載のセルラーゼ組成物。
A. CLASSIFICATION OF SUBJECT MATTER

C12P19/9/1 (2006.01), C12P19/12 (2006.01), C13K1/30 (2006.01), C12N9/42 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C12P19/14, C12P19/12, C13K13/00, C12N9/42

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CAplus / MEDL / INE / EMBASE / B IOS / INSPEC / IDS / STN / JST Plus / JMEDPlus / JST 580 (JDream II) / DWP / Thomson Innovation

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2011/115040 AI (Toray Industries Inc.), 22 September 2011 (22.09.2011), paragraphs [0017], [0067], [0077] to [0079] & US 2013/0203117 AI, paragraphs [0072], [0131], [0147] to [0149]</td>
<td>10-I1 1.4-9 2.3</td>
</tr>
<tr>
<td>A</td>
<td>US 2016/0040203 AI (THE UNITED STATES OF AMERICA AS RESENTED BY THE SECRETARY OF AGRICULTURE), 11 February 2016 (11.02.2016), abstract claims 8, 15; paragraphs [0080], [0089] (Family: none)</td>
<td>1.4-9 2.3-10.11</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier application or patent but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
& document member of the same patent family

Date of the actual completion of the international search 16 June 2017 (16.06.17)
Date of mailing of the international search report 27 June 2017 (27.06.17)

Name and mailing address of the ISA/Japan Patent Office 3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan
Authorized officer
Telephone No.
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CN 101250567 B (CHINA PETROLEUM & CHEMICAL CORP.), 15 June 2011 (15.06.2011), (Family: none)</td>
<td>1-11</td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類（国際特許分類（IPC））

Int.Cl. C12P19/14 (2006.01) i, C12P19/12 (2006.01) i, C13K13/00 (2006.01) i, C12N/42 (2006.01) j;

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int.Cl. C12P19/14, C12P19/12, C13K13/00, C12N/42

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1922-1
日本国公開実用新案公報 1971-2
日本国実用新案登録公報 1996-1
日本国登録実用新案公報 1994-2

国際調査で使用した電子データベース（データベースの名前、調査に使用した用語）

CAplus/EMBASE/BIOSIS/WPIDS (STN), JSTPlus/JMEDPlus/JST7580 (JDream II), DWPI (Thomson Innovation)

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-7</td>
<td>Wo 2011/115040 A1 (東レ株式会社) 2011.09.22, 段落 [0017], 段落 [0067], 段落 [0077] - [0079]</td>
<td>10-11, 1.4-9, 2-3</td>
</tr>
<tr>
<td></td>
<td>& US 2013/0203117 A1, 段落 [0072], 段落 [0131], 段落 [0147] - [0149]</td>
<td></td>
</tr>
</tbody>
</table>

この欄の続きにも文献が列挙されている。

「：パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「」特に関連のある文献ではなく、一般的技術水準を示すもの

「モ」国際出願 日前の出願または特許であるが、国際出願 日以後に公表されたもの

「」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

「り」口頭による開示、使用、展示等に著及する文献

「p」国際出願 日前の、かつ優先権の主張の基礎となる出願

国際調査を完了した日 16.06.2017
国際調査報告の発送日 27.06.2017

国際調査機関の名称及びあて先

日本国特許庁（ISA/JP）
郵便番号 100-8915
東京都千代田区霞が関四丁目 3 番 3 号

特許庁審査官（権限のある職員）4B 5804
市島 浩介
電話番号 03-3581-1101 内線 3448

様式 PCT/ISA/210（第 2 ページ）（2015年 1月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 2016/0040203 A1 (THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF AGRICULTURE) 2016. 02. 11, 要約, 請求項 8, 請求項 15, 段落 [0080], 段落 [0089] (ファミリーなし)</td>
<td>1, 4-9</td>
</tr>
<tr>
<td>A</td>
<td>%0 2015/005307 A1 (株式会社) 2015. 01. 15, 段落 [0077], & US 2016/0145651 A1, 段落 [0096]</td>
<td>1, 4-9</td>
</tr>
<tr>
<td>A</td>
<td>CN 101250567 B (CHINA PETROLEUM & CHEMICAL CORPORATION) 2011. 06. 15 (ファミリーなし)</td>
<td>1-11</td>
</tr>
</tbody>
</table>

様式PCT/ISA/210（第2ページの続き）（2015年1月）