wo 2009/137364 A1 I T IA0EO OO 0 0O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2009/137364 Al

(19) World Intellectual Property Organization /’@?‘?’3\
International Bureau v{ 0
al
(43) International Publication Date \'{_5___,/
12 November 2009 (12.11.2009) PCT
(51) International Patent Classification: 74)
GOG6F 15/16 (2006.01)
(21) International Application Number:
PCT/US2009/042584 (81)
(22) International Filing Date:
1 May 2009 (01.05.2009)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
61/050,549 5 May 2008 (05.05.2008) UsS
12/432,628 29 April 2009 (29.04.2009) US
(71) Applicant (for all designated States except US): SEN-
TILLA CORPORATION INC. [US/US]; 201 Marshall (84
Street, Redwood City, CA 94063 (US).
(72) Inventors; and
(75) Inventors/Applicants (for US only): POLASTRE,

Joseph [US/US]; Joseph Polastre, c¢/o Sentilla Corpora-
tion Inc., 201 Marshall Street, Redwood City, CA 94063
(US). SHARP, Courtney [US/US]; ¢/o Sentilla Corpora-
tion Inc., 201 Marshall Street, Redwood City, CA 94063
(US). SZEWCZYK, Robert [PL/US]; c¢/o Sentilla Cor-

Agents: KING, Christopher et al; Fenwick & West
LLP, 801 California Street, Mountain View, CA 94041
(US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ,
EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,
SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR),
OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,
MR, NE, SN, TD, TG).

poration Inc., 201 Marshall Street, Redwood City, CA Published:

94063 (US).

with international search report (Art. 21(3))

(54) Title: PLATFORM FOR RADIO NETWORK

100

Client
Host Server
Virtual || virtual l -
node client -
Client

115

FiIG.1

& Host

106

107
105

(57) Abstract: A pervasive computing system comprises a set of client devices and a network of small computing units, referred
to as nodes. The client devices and nodes run programs that communicate with each other to solve a given problem, but the client
devices and the nodes use different software execution environments and protocols. A host server acts as an intermediary between
the client devices and the nodes, bridging the gap between the different software execution environments and protocols of the
client devices and the nodes.

WO 2009/137364 PCT/US2009/042584

PLATFORM FOR RADIO NETWORK
Inventors: Joseph Polastre, Courtney Sharp and Robert Szewczyk

CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of Provisional Application No. 61/050,549,
filed on May 5, 2008, and US Patent Application No. 12/432,628, filed on April 29, 2009,
both of which are incorporated herein by reference.

BACKGROUND

[0002] The present invention generally relates to the field of software systems, and
more specifically, to a software platform for facilitating data interchange between units of a
pervasive computing system.
[0003] Pervasive computing, also known as ubiquitous computing, is an emerging field
involving the distribution of data monitoring and processing capabilities beyond a small
number of traditional server or client computer systems to additionally include a large
number of very small computing units, or nodes, distributed at strategic locations throughout
a target environment. The use of large numbers of such nodes has been rendered
technologically and economically feasible by recent improvements in electronics design and
manufacturing, and this approach may be employed in a number of different applications to
solve different categories of problems. For example, in one application, the nodes may be
embedded within the structure of a bridge, collecting data such as current structural rigidity
in order to continuously monitor and report on the safety and stability of the bridge by
providing data to a server-side program. As another example, the nodes may be used in
control systems to monitor and control the operations of devices, such as controlling heat
output and calculating statistics on the amount of energy expended. As a further example, the
nodes could be used to monitor and report on the temperature of devices used in
manufacturing, and to issue a warning if the temperature of any devices rises above a safe
level. The number of such applications which may be constructed using the nodes is
numerous and greatly varied.
[0004] In conventional systems employing such nodes, creating and deploying the
programs that run on the client, servers, and nodes is difficult. This is particularly so in the
case of one or more networks of nodes, each node of which has limited hardware resources

and thus typically requires its programs to be written in a very low-level language, such as C

WO 2009/137364 PCT/US2009/042584

or assembly. Since client and server systems lack such hardware constraints, their programs
are typically written in a higher-level language, such as Java. Further, the nodes, having
limited resources, typically use different protocols, ¢.g. communication protocols, than the
more powerful clients. Thus, enabling node and client programs to communicate to solve a
given problem is difficult, requiring proper translation both of programs and other data and of
protocols. Such translation requires a great deal of effort and care, requiring tedious and
error-prone programming to implement.
SUMMARY

[0005] A pervasive computing system comprises a set of client devices and a network
of small computing units, referred to as nodes. The client devices and nodes run programs
that communicate with each other to solve a given problem, but the client devices and the
nodes use different software execution environments and protocols. A host server acts as an
intermediary between the client devices and the nodes, bridging the gap between the different
software execution environments and protocols of the client devices and the nodes.
[0006] In one embodiment, the client devices execute programs written using an object-
oriented programming language. The host server then provides translation of objects and
classes into a form executable on the nodes, and further implements communications
protocols and protocol translations of both the client devices and the nodes.

BRIEF DESCRIPTION OF DRAWINGS
[0007] FIG. 1 is a block diagram of a pervasive computing environment in accordance

with one embodiment of the present invention.

[0008] FIG. 2 illustrates in greater detail the design of a node according to one
embodiment.
[0009] FIG. 3 illustrates in greater detail the design of a server, known as a “host

server”, according to one embodiment.

[0010] FIG. 4 is a flowchart illustrating the steps taken in distributing a program or data
to nodes, according to one embodiment.

[0011] The figures depict embodiments of the present invention for purposes of
illustration only. One skilled in the art will readily recognize from the following description
that alternative embodiments of the structures and methods illustrated herein may be

employed without departing from the principles of the invention described herein.

WO 2009/137364 PCT/US2009/042584

DETAILED DESCRIPTION
[0012] FIG. 1 is a block diagram illustrating the physical architecture 100 of a
pervasive computing system according to one embodiment. In order to solve a particular
problem, such as the monitoring of temperature within a given area or metering of electricity
usage, one or more client devices 110 communicate with a network 115 of small computing
units, or nodes (115A), with any necessary data translation being provided by a host server
105. The various cooperating programs run by the client devices 110, nodes 115A, and host
servers 105 constitute an application for solving a given problem.
[0013] There may be any number of nodes 115A within node network 115, from only
one or two to hundreds, thousands, or more. The nodes 115A may be arranged in any
configuration, as appropriate for the application for which they are employed. In one
embodiment, communication between individual nodes 115A and the host 105 occurs via
short-distance radio transmission, such that some nodes 115A may not be able to
communicate directly with other nodes within the node network 115. In such a case, the
transmission protocols employed within the node network 115 must support data forwarding
in order to allow communication across the entire set of nodes 115A. The nodes 115A of
node network 115 may all be running programs designed to solve the same problem, or they
may be running different applications but using a common host server 105. In one
embodiment, the various nodes 115A may be physically different and have different software
execution environments. A given node network 115 may have exactly one host server 105,
or may have multiple host servers 105. Similarly, a given host server 105 may communicate
with a single node network 115, or with many.
[0014] The client devices 110 can serve several purposes within the architecture 100.
They can be used for development of the programs that together solve the problem in
question. This includes both the programs that execute on the clients 110, and those that
execute on the nodes 115A. In one embodiment, a client 110 used for program development
includes an integrated development environment used to author and debug programs and to
deploy them across the architecture 100.
[0015] Additionally, the client devices 110 can execute the client programs, including
displaying data and accepting user input, as appropriate to the problem. For example, when
the problem is that of monitoring device temperatures, a client application could graphically

display the monitored devices and their temperatures, and accept input specifying that a

WO 2009/137364 PCT/US2009/042584

particular device should be shut off or run in a different manner. It is appreciated that a client
device 110 that executes the applications need not be the same client 110 that is used to
develop the applications. A given client device 110 might perform either or both functions.
Physically, the client devices 110 may be any one of a number of conventional computing
devices including, but not limited to, desktop computer systems, laptop computer systems,
mainframe systems, personal digital assistants (PDAs), or cellular phones. In one
embodiment, a client device 110 uses, as one of its software execution environments, a
standard Java virtual machine. (A “software execution environment” as described herein
represents the physical and/or software environment required to execute the programs in
question. For example, a Java virtual machine supporting class files and objects having a
particular data format is one instance of a software execution environment.) In another
embodiment, a client device 110 uses, as one of its software execution environments, a web
platform (such as Python, Perl, Ruby, or PHP) to present data objects to users through the
Internet.

[0016] A client 110 communicates with a host server 105, and thence indirectly with a
node network 115, using a conventional computer communications network. In one
embodiment, the communications network is the Internet or a LAN. The communications
network can also use dedicated or private communications links that are not necessarily part
of the Internet. In one embodiment, the communications network uses standard
communications technologies and/or protocols such as Ethernet, 802.11, etc. Similarly, the
networking protocols used on the communications network can include the transmission
control protocol/Internet protocol (TCP/IP), the hypertext transport protocol (HTTP), or the
like. The data exchanged over the network 130 can be represented using technologies and/or
formats including the hypertext markup language (HTML), the extensible markup language
(XML), etc. In addition, all or some of the links can be encrypted using conventional
encryption technologies such as the secure sockets layer (SSL), Secure HTTP and/or virtual
private networks (VPNs). In another embodiment, the entities can use custom and/or
dedicated data communications technologies instead of, or in addition to, the ones described
above.

[0017] The host server 105, among its other functions, acts as an intermediary between
the nodes 115A and the clients 110, which use different communication protocols, for

example. This intermediary functionality is accomplished using a “virtual node” 106, which,

WO 2009/137364 PCT/US2009/042584

as discussed below in more detail, is accomplished with code implementing a node
application programming interface (API) and providing data format translation. Similarly, by
executing code implementing client communications protocols, the host server 105 also
implements a “virtual client” 107. Thus, both nodes 115A and clients 110 may communicate
with each other using their own protocols, without knowing about protocols and data formats
other than their own. The host server 105 may have any number of virtual nodes 106 and
virtual clients 107, though for simplicity only one virtual node and one virtual client are
depicted in FIG. 1.

[0018] FIG. 2 illustrates in greater detail the logical design of a node 115A, according
to one embodiment. As previously noted, a node 115A is a small computing device having
limited physical resources. Typically, a node 115A is not connected to a power grid but is
powered by a battery, and lacks mechanical components such as hard disks, fans, or input /
output devices such as mice, keyboards, printers, monitors, etc. Further, a node 115A
typically lacks physical ports or other connectors for communication with other computing
systems or for accepting physical media such as floppy disks, flash memory cards, and the
like, instead relying only on low-power wireless communications. As a specific example, in
one embodiment a node has approximately 10 kilobyes (KB) of random-access memory
(RAM) and 48 KB of flash memory, runs at 8 MHz on a processor with a 16-bit architecture
such as an INTEL 8085 microprocessor, and is approximately 25 mm in length. A node may
provide a file system for use with persistent applications. Further, a node typically includes
sensors and/or actuators for interaction with the outside environment, and a communication
device for transferring data to and from other nodes 115A and host server 105. In one
embodiment, the communication device is a low-power radio with a range of 100 meters and
a data rate of 250 kilobytes per second (kbps). It is appreciated that nodes 115A need not
have precisely or even approximately these specifications, but rather any sort of architecture
or resources sufficiently different from that of a client 110 so as to cause the nodes 115A and
client 110 to have different software execution environments. Other examples of nodes
include the individual components of heating, ventilation, and air conditioning (HVAC) or
power distribution systems in buildings.

[0019] Described at a logical level, a node 115A comprises a physical layer 205, an
execution environment layer 210, a system services layer 215, and an application layer 220.

The physical layer 205 includes the resources noted above, including a communication

WO 2009/137364 PCT/US2009/042584

device such as a radio transmitter, sensors and actuators, and persistent and non-persistent
storage devices such as RAM and flash memory. The execution environment layer 210 in
one embodiment includes an embedded kernel for providing basic operating system
functionality such as access to memory and I/O devices. The execution environment layer
210 may further include a language runtime for executing programs. For example, in one
embodiment the client 110 and node 115A programs are written with the Java programming
language, and the node execution environment layer 210 thus includes a Java Virtual
Machine to execute node programs, although such a Java Virtual Machine is specialized in
order to accept smaller, more optimized object formats, for example. In such an embodiment,
the execution environment layer 210 is stored in a persistent storage medium, such as read-
only memory (ROM) or flash memory, and may be loaded into RAM when the node 115A
begins to operate. In another embodiment, the execution environment layer 210 may be
executed, partially or entirely, directly from the persistent storage medium, rather than first
being loaded into RAM.

[0020] The system services layer 215 includes a number of services that support the
operations of programs run on the node 115A. For example, the system services layer 215
includes implementations of networking protocols, such as IEEE standard 802.15.4, used to
send and receive data. It also includes implementations of protocols specific to the node
network 115. For example, in one embodiment, nodes of the node network 115 run an object
distribution protocol based on forwarding that ensures that all participating nodes have the
latest version of the object in question, and an object dispatcher protocol that accepts and
responds to messages based the type of an object type contained in the message.

[0021] The system services layer 215 further includes services for using any sensors
and/or actuators included as part of the node 115A, such as reading the values provided by a
temperature sensor. It further includes file system services for persistently storing data on the
node 115A itself, and a driver registry for accessing peripherals, communication protocols,
and other hardware components. In one embodiment, the services of system services layer
215 are stored in flash memory and loaded into RAM when the node begins to operate. In
another embodiment, the services may be executed, partially or entirely, directly from the
persistent storage medium, rather than first being loaded into RAM.

[0022] The application layer 220 includes programs executed by the node 115A.

Programs could include, for example, monitoring a value provided by a temperature sensor

WO 2009/137364 PCT/US2009/042584

and sending a notification if it exceeds some threshold, or specifying a policy regulating the
communication interface, or setting control values for an actuator needed to implement an
appropriate response, often based on sensor input. In one embodiment, the programs are
stored in the persistent storage medium of the node 115A, e.g., within flash memory, and are
executed directly from the persistent storage medium. In another embodiment, the programs
are not persistently stored on the node 115A, but rather are received via the communications
device and loaded into RAM during the execution of the node 115A. Other embodiments
combining these approaches, such as persistently storing the applications and partially
loading them into RAM, are equally possible. The program code that is executed includes
calls to the services of the system services layer 215.

[0023] FIG. 3 illustrates in greater detail the logical design of the host server 105,
according to one embodiment. As previously noted, the virtual node 106 of the host server
105 acts as an intermediary between a node 115A and a client 110, bridging the gap between
the different physical machines so that they appear the same from a software and
communications protocol perspective. This allows application development using a
consistent language and application programming interface (API) across all parts of the
system. For example, during deployment of a program to the various nodes 115A of the node
network 115, the host server 105 transparently translates a node application developed on a
client 110 into a form that can be efficiently executed by a node 115A. Conversely, the host
server 105 likewise transparently translates data values from a form used by a more powerful
client 110 to that used by a less powerful node 115A.

[0024] The following description of the actions of the host server 105 relates to an
example embodiment in which the client and node programs are written using the Java
programming language and executed using a Java Virtual Machine runtime. Java programs
are composed of objects, and the class files embodying them—including those with main()
methods, which therefore can act as executable programs—are themselves represented as
objects, and the example embodiment thus particularly focuses on the handling of objects. It
is appreciated, however, that the invention is not limited to program development in the Java
programming language or even to object-oriented programming languages and object models
in general, but rather is applicable to systems in which the execution environment of the

client 110 differs from that of a node 115A.

WO 2009/137364 PCT/US2009/042584

[0025] In the example embodiment, the host server 105 includes a node API 305A and
a client API 305B, a communication bridge 310, a translation module 315, and translation
databases 320A and 320B, which together provide the functionality required to properly
translate between a client 110 and a node 115A. Each instance of a virtual node 106, such as
an instance for a particular type of node such as a power distribution system component, has
its own node API 305A and translation database 320A. Similarly, each instance of a virtual
client 107, such as an instance for a particular type of client, has its own client API 305B and
translation database 320B. The node API 305A allows the host server 105 to emulate a node
115A. Because the physical resources of the nodes 115A are limited, the various nodes 115A
communicate as if they were speaking only to other nodes 115A, thus freeing them from the
extra processing requirements of determining the source or destination of a message and
performing any necessary translation between formats. The node API 305A allows the host
server 105 to emulate functions of a node, thereby in effect creating a virtual node 106 within
the host server 105. In this way, the nodes can interact with the virtual node 106 in the host
server 105 as if the host server 105 were merely another node.

[0026] In order to fully allow this virtual node 106 to simulate a physical node 115A,
the node API 305A for the virtual node instance corresponding to the type of the node 115A
includes an implementation of each node protocol run by system services layer 215 of a node
115A. For example, to distribute a program or data value from a client 110 to the various
nodes 115A of the node network 115, the client calls an appropriate function of the node API
305A of the host server 105 and passes the program or data value to that API function. The
host server 105 then executes the API function, which simulates the node object distribution
protocol, e.g., by packaging the program or data value within a message packet along with an
appropriate version number and a code indicating that the packet relates to the node object
distribution protocol, as done by the node object distribution protocol itself. This may also
require that the program or data value packaged within the message packet be properly
translated to a form usable by a node 115A, as described below in conjunction with the
translation database 320A.

[0027] Similarly, when receiving a message packet from the nodes 115A that is
formatted according to the node object distribution protocol, for example, the host server 105
examines the message packet and recognizes, via an appropriate code in the packet header,

that the message packet is intended for distribution to other nodes 115A and clients 110.

WO 2009/137364 PCT/US2009/042584

Consequently, the host server 105 calls the node API function implementing the node object
distribution protocol and thereby retransmits the message packet in order to reach nodes
115A that may have been out of communication range of the other nodes. The host server
105 also translates and transmits to clients 110 any application classes or objects contained
within the message.

[0028] The translation module 315 accounts for the different object formats and other
data formats used by the clients 110 and by the nodes 115A by translating objects as
appropriate. For example, when a client 110 wishes to have the node network 115 run a
particular program embodied in a given Java class, the translation module 315 translates the
class from the standard Java class format used by the client 110 to the optimized format
suitable for the more constrained physical resources of a node 115A. This translation
involves reconstructing the class file created on the client 110 by a standard Java compiler,
including re-linking by updating the references to standard Java classes to reflect their node-
optimized equivalents, resizing primitive and reference variables to reflect their smaller,
more memory-efficient representations within the node-optimized version of the Java Virtual
Machine used to execute code on the nodes 115A, changing memory references as needed to
reflect repositioning in memory of the resized variables, and re-applying the applicable
digital signature algorithm to the node-optimized version of the class if the original class had
been signed. Translation of abstract classes, interfaces, and the like is performed in similar
fashion.

[0029] Similarly, when an object is transferred from a client 110 to a node 115A, the
translation module 315 translates the object from a standard client representation to a node-
optimized representation. In one embodiment, this is performed by de-serializing the byte
stream representation of the object provided by the client 110, and then re-serializing the
object in a node-optimized representation before sending it over the network to the node
115A. When an object refers to other objects, this translation process is performed
recursively until all objects have been translated to node-optimized representations. The
process is similar when transferring in the other direction, from a node 115A to a client 110.
[0030] In one embodiment, the object translation module 315 can translate between
many different object formats. For example, it can receive a Java Archive (“JAR”) file
storing program class files from a client 110, extract the individual class files from the JAR

file, and translate cach from the class file format of the Java Virtual Machine of the client 110

WO 2009/137364 PCT/US2009/042584

to the node-optimized format of the nodes 115A. As another example, the host server 105
can receive an object specified in the Simple Object Access Protocol (SOAP), using the
client protocols of the virtual client 107 to accept the object using SOAP, and the object
translation module 315 can translate the SOAP object from XML to the node-optimized
object format of the nodes 115A.

[0031] The translation database 320 stores the results of the translation module 315 so
as to speed up future data transfers. For example, the first time that a client 110 wishes to
deploy a particular version of a program on the node network 115, the host server 105 stores
both the class file embodying the application and the node-optimized version provided by the
translation module 315 within the translation database 320A for the virtual node for the
appropriate node type. The translation database 320 is additionally updated to include a
mapping between the client and node versions of the program. In one embodiment, the
translation database is a conventional relational database, with optimized and non-optimized
class files stored as binary objects in a class table with a unique identifier—such as the fully
qualified class name—as the primary key, and pairs of unique identifiers relating the original
class file and node-optimized class file stored in a second table.

[0032] The communication bridge 310 serves as the intermediary between the client
110 and the node network 115. When a message packet arrives from a node 115A or a client
110, the communication bridge examines the message, employing the node API 305A as
described above to create a message for the node network 115, or to receive a message from
the node network 115, as the case may be. This includes performing class or object
translation via the translation module 315. After classes and objects have been properly
translated and messages formatted via the node API 305A to conform to the desired
destination (i.c. a client 110 and/or the node network 115), the communication bridge 310
then sends the resulting message using the network protocols and network interface that are
associated with the destination.

[0033] It should be noted that that virtual client 107 of the host server 105 can perform
any translation necessary for communication between host server 105 and the clients 110 in a
similar fashion to the above-described translation between the host server 105 and the nodes
115A performed by the virtual node 106. For example, if the clients 110 communicate using
Web Services protocols such as SOAP, the virtual client 107 implements the protocols using

the client API 305B, thus allowing the clients 110 to communicate with it as if it were

- 10 -

WO 2009/137364 PCT/US2009/042584

another client. Similarly, if a client 110 happens to use a software execution environment
different from that of the host server 105, the virtual client 107 can perform data format
translations similar to those performed by the virtual node 106 using the translation database
320B.

[0034] FIG. 4 is a flowchart illustrating the steps taken by the host server 105 in
distributing a program or data to a node 115A, according to one embodiment.

[0035] Initially, the host server 105 receives 405 a program to be distributed to all
nodes 115A, or to a subset thereof. This may occur, for example, after a user creates
programs to be executed on the clients 110 and nodes 115A and, and indicates using user
interface functionality on the client 110 that the node programs are to be deployed on the
appropriate nodes 115A. For example, after successful program compilation, a user could
choose a “Deploy to nodes” option provided within the IDE used to develop the programs.
As a result, the client 110 would transmit a copy of the node program to the host server 105
for distribution to the nodes.

[0036] The host server 105 then translates 410 the program from the format specific to
the client 110 to a format suited to execution by a node 115A. The translation process is
performed by the translation module 315, as discussed above. Following translation of the
program format, the translation database 320 may be updated 415, as discussed above, in
order to prevent the need to repeat the translation of the program in future.

[0037] Finally, the host server 105 distributes 420 the translated, node-optimized
version of the program to the appropriate nodes 115A for execution. In one embodiment, this
is performed according to the distribution protocol referenced above, in which a version
number is provided along with each program or object being sent, and the various nodes
115A broadcast advertisements of the latest version that they possess and/or request a copy of
a newer version in response to an advertisement. If the program is of a type in which a node
115A is interested, then handler code on the node 115A reads the received code and causes it
to be loaded and executed by the node 115A.

[0038] The process of distributing objects from a client 110 to a node 115A occurs in
similar manner to the distribution of programs, involving object translation from client to
node formats, possible updating of the translation database 320, and distribution to the nodes
115A using a node object distribution protocol. The provision of objects in a reverse

direction, from a node 115A to a client 110, is likewise similar, but with object translation

- 11 -

WO 2009/137364 PCT/US2009/042584

being from a node to a client format, and without the need to use an object distribution
protocol to deliver the object to the appropriate client 110.

[0039] It is appreciated that the operations of the invention are not limited to those
involved in distributing a program, as discussed above with respect to FIG. 4; rather, the
steps of FIG. 4 are merely illustrative of one example scenario in which the invention is
employed—namely, translation of an object distributed from a client 110 to nodes 115A, in
which the object is a program. Other equally possible scenarios include the transmission of
non-program objects from nodes 115A to a client 110 and the transmission of non-object
data, as well as other situations previously discussed.

[0040] In sum, the embodiments described above provide a uniform software platform
to software developers creating applications for pervasive computing systems. Thus,
programs, whether destined to be executed on a node network or on a traditional client
system, may be authored using a single programming language or object model, thus greatly
simplifying application development.

[0041] Some portions of above description describe the embodiments in terms of
algorithms and symbolic representations of operations on information. These algorithmic
descriptions and representations are commonly used by those skilled in the data processing
arts to convey the substance of their work effectively to others skilled in the art. These
operations, while described functionally, computationally, or logically, are understood to be
implemented by computer programs or equivalent electrical circuits, microcode, or the like.
Furthermore, it has also proven convenient at times to refer to these arrangements of
operations as modules, without loss of generality. The described operations and their
associated modules may be embodied in software, firmware, hardware, or any combinations
thereof.

[0042] As used herein any reference to “one embodiment” or “an embodiment” means
that a particular element, feature, structure, or characteristic described in connection with the
embodiment is included in at least one embodiment. The appearances of the phrase “in one
embodiment” in various places in the specification are not necessarily all referring to the

same embodiment.

2% ¢ 99 C¢; 99 ¢cs

0043 As used herein, the terms “comprises,” “comprising,” “includes,” “including,”
2

inclusion. For example, a process, method, article, or apparatus that comprises a list of

- 12 -

WO 2009/137364 PCT/US2009/042584

elements is not necessarily limited to only those elements but may include other elements not
expressly listed or inherent to such process, method, article, or apparatus. Further, unless
expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or. For
example, a condition A or B is satisfied by any one of the following: A is true (or present)
and B is false (or not present), A is false (or not present) and B is true (or present), and both
A and B are true (or present).

[0044] In addition, use of the “a” or “an” are employed to describe elements and
components of the embodiments herein. This is done merely for convenience and to give a
general sense of the invention. This description should be read to include one or at least one
and the singular also includes the plural unless it is obvious that it is meant otherwise.

[0045] Upon reading this disclosure, those of skill in the art will appreciate still
additional alternative structural and functional designs for a system and a process for
providing a uniform software interface in a pervasive computing environment through the
disclosed principles herein. Thus, while particular embodiments and applications have been
illustrated and described, it is to be understood that the disclosed embodiments are not
limited to the precise construction and components disclosed herein. Various modifications,
changes and variations, which will be apparent to those skilled in the art, may be made in the
arrangement, operation and details of the method and apparatus disclosed herein without

departing from the spirit and scope defined in the appended claims.

- 13-

WO 2009/137364 PCT/US2009/042584

What is claimed is:

1. A computer program product for translating communications between a client and a node
of a node network, the computer program product comprising a computer-readable storage
medium containing computer program code for:
receiving an object in a first object format, the object created using an object-oriented
programming language;
translating the received object from the first object format to a second object format,
the translating comprising;:
resizing data variables of the object, and
changing memory addresses of variables within the object; and

sending the object in the second object format to the node.

2. The computer-readable storage medium of claim 1, further comprising implementing

communication protocols of the client and communication protocols of the node.

3. The computer-readable storage medium of claim 1, further comprising receiving the
object using a communication protocol of the client and sending the object using a
communication protocol of the node, wherein the communication protocol of the client and

the communication protocol of the node are incompatible with each other.

4. The computer-readable storage medium of claim 1, further comprising examining a
translation database to identify a translated version of a given object in the first object format,
the translation database associating objects in the first object format with translated versions

of the objects in the first object format.

5. The computer-readable storage medium of claim 1, wherein the object in the first object

format is a program.

6. The computer-readable storage medium of claim 5, wherein translating the program

comprises re-linking the program.

7. The computer-readable storage medium of claim 5, wherein translating the program

comprises re-computing a digital signature of the program.

8. The computer-readable storage medium of claim 5, wherein the program was created

using the Java programming language.

- 14 -

WO 2009/137364 PCT/US2009/042584

9. A host server adapted to translate communications between a client and a node,
comprising:

a communication bridge for receiving objects in a first object format from the client,
and sending translated versions of the objects to the node, the translated
versions of the objects being in a second object format; and

a translation module coupled to the communication bridge for translating objects in
the first object format to the second object format and providing the translated
objects to the communication bridge, wherein the translation module is
configured to translate a particular object by:

resizing data variables of the object, and

changing memory addresses of variables within the object.

10. The host server of claim 9, further comprising an API module for implementing

communication protocols of the client and communication protocols of the node.

11. The host server of claim 9, wherein the communication bridge receives the objects using
a communication protocol of the client, and sends the objects using a communication
protocol of the node, and wherein the communication protocol of the client and the

communication protocol of the node are incompatible with each other.

12. The host server of claim 9, further comprising a translation database associating objects
in the first object format with translated versions of the objects in the first object format, and
wherein the translation module is further configured to translate the particular object by
examining the translation database to identify a translated version of a given object in the

first object format.

13. The host server of claim 9, wherein the objects in the first object format comprise a

program.

14. The host server of claim 13, wherein translating the program comprises re-linking the

program.

15. The host server of claim 13, wherein translating the program comprises re-computing a

digital signature of the program.

16. The host server of claim 13, wherein the program was created using the Java

programming language.

- 15 -

WO 2009/137364 PCT/US2009/042584

17. A host server for translating communications between a client and a node, comprising:
a communication bridge for receiving objects in a first object format from the client,
and sending translated versions of the objects to the node, the translated
versions of the objects being in a second object format; and
means for translating an object from the first object format to the second object
format, the means for translating coupled to the communication bridge to
receive objects in the first object format and to provide objects in the second

object format.

18. The host server of claim 17, further comprising an API module for implementing

communication protocols of the client and communication protocols of the node.

19. The host server of claim 17, wherein the communication bridge receives the objects
using a communication protocol of the client, and sends the objects using a communication
protocol of the node, and wherein the communication protocol of the client and the

communication protocol of the node are incompatible with each other.

20. The host server of claim 17, wherein the objects in the first object format comprise a

program.

21. The host server of claim 20, wherein the program was created using the Java
programming language.
22. A method for translating communications between a client and a node, comprising;:
receiving an object in a first object format, the object created using an object-oriented
programming language;
translating the received object from the first object format to a second object format,
the translating comprising;:
resizing data variables of the object, and
changing memory addresses of variables within the object; and

sending the object in the second object format to a node.

23. A pervasive computing system comprising;:
a client device adapted to execute software having a first object format and to

communicate using a first communication protocol;

- 16 -

WO 2009/137364 PCT/US2009/042584

a network of nodes, the nodes adapted to execute software having a second object
format and to communicate using a second communication protocol, wherein
the nodes are incapable of executing software in the first object format, and
wherein the first communication protocol and the second communication
protocol are incompatible; and

a host server adapted to translate objects between the first object format and the
second object format, the translation of an object comprising:

resizing data variables of the object, and

changing memory addresses of variables within the object.

24. The pervasive computing system of claim 23, wherein none of the nodes is connected to

a power grid or has physical connectors for performing input and output.

25. The pervasive computing system of claim 23, wherein an object translated between the

first object format and the second object format is a program.

26. The pervasive computing system of claim 23, wherein an object translated between the

first object format and the second object format is a data object.

27. The pervasive computing system of claim 23, wherein translating the program comprises

re-linking the program.

-17 -

L DI
041

oL

PCT/US2009/042584

WO 2009/137364

114

WBlD

)

)

IBAIBG 1SOH

204 901 SiL vk
150H
IEHIS
WSO apou
] [enLiA]| IERA

got

WO 2009/137364 PCT/US2009/042584

2/4

Applications 220

System services 215

Execution environment 210

Physical layer 205

Node 115A

FIG.2

PCT/US2009/042584

WO 2009/137364

3/4
Host server
105

- . b
P, 1o g
P m iy @
Pl WD e 0 OO
s e S Y
L= e T
b Q i O
o !
i e,
PO o2
bl L R
bl o M 0 O
P TR e 8
POt i @
B
e !

Csmmuﬂicétian bridge

310

llllllllll

FIG.3

WO 2009/137364

4/4

;

Receive
orogram
405

'

Transiate
program
410

Updaie
transiation
database
415

;

Distribute 1o node
network 420

FIG.4

PCT/US2009/042584

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 09/42584

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GOG6F 15/16 (2009.01)
USPC - 709/230

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

PC(8): GO6F 15/16 (2009.01)
USPC: 709/230

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 709/203, 205, 220, 223, 230, 236; 717/100, 108, 116, 120, 136

USPTO WEST (PGPB, USPT, EPAB, JPAB), Google Scholar

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Search Terms: object, orientation, resize, enlarge, expansion, size, expand, variable, relocate, readdress, change, modify, address,
format, incompatible, communication, protocol, program, instruction,

refink, digital, signature, power grid, absence etc.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5,822,569 A (MCPARTLAN et al.) 13 October 1998 (13.10.1998) - col. 1, In 13-40; col. 1, In | 1-6, 9-14, 17-20, and 22-
- 43-59; col. 2, In 10-24; col. 2, In 59 to col. 3, In 14; col. 3, In 53-62; col. 4, In 35to col. 5,In 7; 27
Y col. 5, In 19-40; col. 6, In 3-12; col. 7, In 14-36; col. 8, In 55 to col. 9, In 16.
7-8, 15-16, and 21
Y US 2007/0233883 A1 (DE LUTIIS et al.) 04 October 2007 (04.10.2007) - para (0043}, [0070]. 7-8, 15-16, and 21
A US 2007/0220159 A1 (CHOI et al.) 20 September 2007 (20.09.2007). 1-27
A US 2007/0067492 A1 (MURAKI et al.) 22 March 2007 (22.03.2007). 1-27
A US 7,117,271 B2 (HAVERSTOCK et al.) 03 October 2006 (03.10.2006). 1-27
A US 6,305,009 B1 (GOOR et al.) 16 October 2001 (16.10.2001). 1-27

D Further documents are listed in the continuation of Box C.

O

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E" ecarlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“O" document referring to an oral disclosure, use, exhibition or other
means :

“P" document published prior to the international filing date but later than

the priority date claimed

“T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&" document member of the same patent family

Date of the actual completion of the international search

11 June 2009 (11.06.2009).

Date of mailing of the international search report

18 JUN 2009

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.0O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (April 2007)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - wo-search-report

