DEMANDE DE BREVET D’INVENTION

Date de dépôt : 10.05.11.

Priorité :

Demandeur(s) : COMMISSARIAT A L’ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES — FR.

Inventeur(s) : BEDEL LAURENT et JOUVE MICHEL.

Titulaire(s) : COMISSARIAT A L’ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES.

Mandataire(s) : CABINET LAURENT ET CHARRAS.

DISPOSITIF POUR LE TRAITEMENT DES GAZ PAR PLASMA DE SURFACE.

Ce dispositif de traitement de gaz par plasma de surface, comprend :
- au moins un substrat diélectrique (3) présentant deux faces principales opposées, au moins une première électrode (5) et au moins une deuxième électrode (6) étant respectivement déposées sur lesdites faces principales opposées du substrat, lesdites première et deuxième électrodes étant reliées aux deux bornes d’une source d’alimentation électrique (4) ;
- au moins un support catalytique (7) indépendant du substrat diélectrique et desdites électrodes, et intégrant un catalyseur.

![Diagram](image-url)
DISPOSITIF POUR LE TRAITEMENT DES GAZ PAR PLASMA DE SURFACE

DOMAINE DE L’INVENTION

L’invention concerne un dispositif pour le traitement de gaz par plasma de surface, en présence d’un catalyseur.

Les domaines d’utilisation de la présente invention comprennent notamment la dégradation des polluants pouvant être contenus dans les gaz, le reformage, et la valorisation des gaz.

ETAT ANTERIEUR DE LA TECHNIQUE

Dans le domaine du traitement des gaz, les procédés mettant en œuvre un plasma peuvent s’avérer particulièrement avantageux dans la mesure où ils permettent d’éliminer les polluants à température ambiante pour un faible coût énergétique lorsque ceux-ci sont présents dans lesdits gaz en quantités minimales. Ils peuvent aussi abaisser la température de réaction entre deux composés gazeux et/ou abaisser l’énergie nécessaire pour réaliser une réaction entre deux composés. Il peut s’agir de plasmas volumiques ou surfaciques à pression atmosphérique.

Dans le cas des plasmas atmosphériques, la technologie de décharge à barrière diélectrique, mieux connue sous l’acronyme anglo-saxon DBD (pour « Discharge Barrier Dielectric ») est généralement mise en œuvre. Cette technologie consiste à appliquer un signal alternatif entre deux électrodes, un substrat diélectrique étant intercalé entre les deux électrodes afin d’éviter la formation d’un arc électrique (figure 1).

Dans le cas des plasmas DBD volumiques, l’espace entre les électrodes est limité à quelques millimètres eu égard au fait que la tension nécessaire pour générer le plasma augmente avec l’espace inter-électrodes (figure 1) et que l’épaisseur du substrat diélectrique est liée à sa rigidité diélectrique. L’espacement inter-électrodes dépend notamment de la nature du substrat diélectrique et de la tension appliquée. L’épaisseur du diélectrique est classiquement de 3 à 5 mm et l’espace libre pour le passage des gaz est du même ordre de grandeur ce qui engendre une perte de charge importante. Dans cette configuration, et comme décrit dans le document US 2002/0070127, un catalyseur peut être introduit dans la zone plasma par dépôt sur la face opposée à l’électrode. L’électrode elle-même peut également faire office de catalyseur dans le cas où elle est en matériau conducteur électrique.
La technologie DBD peut également être mise en œuvre afin de générer un plasma de surface. Le plasma est alors créé au voisinage de la surface d’un substrat diélectrique. Les deux électrodes sont disposées sur ce substrat diélectrique, de part et d’autre des faces principales dudit substrat diélectrique (figure 2).

Le document FR 2 918 293 propose d’utiliser ces plasmas de surface pour la dégradation de polluants en atmosphère gazeuse. Il décrit la mise en œuvre d’un photocatalyseur (TiO₂) positionné sous forme d’une couche mince au contact du substrat diélectrique dans l’espacement inter-électrodes, ce catalyseur étant destiné à sélectionner les produits de décomposition. Dans ce cas, le catalyseur ne peut donc pas être un conducteur électrique tel qu’un métal afin d’éviter une forte réduction de la zone plasma.

La présente invention concerne notamment un dispositif permettant d’associer la genèse d’un plasma de surface à une large gamme de catalyseurs, pour le traitement des gaz, en particulier la dégradation des polluants, le reformage et la valorisation des gaz.

La présente invention permet d’améliorer la conversion des gaz, mais aussi de réduire les pertes de charge, tout en assurant une consommation d’énergie la plus faible possible et une température la plus basse.

EXPOSE DE L’INVENTION

Le Demandeur a mis au point un dispositif de traitement des gaz dans lequel un plasma permet de générer, à partir des gaz présents, des radicaux, des ions, des espèces actives dès la température ambiante. Ce dispositif permet de limiter les pertes de charge et de favoriser l’interaction avec des espèces activées par le plasma de surface et un système catalytique.

Le système catalytique interagit avec les espèces, notamment les polluants, pour augmenter l’efficacité du plasma, et agit également sur la sélectivité des réactions.
Plus précisément, la présente invention concerne un dispositif de traitement de gaz par plasma de surface, comprenant :
- au moins un substrat diélectrique présentant deux faces principales opposées, au moins une première électrode et au moins une deuxième électrode étant respectivement déposées sur les deux faces principales opposées dudit substrat, lesdites première et deuxième électrodes étant reliées aux deux bornes d’une source d’alimentation électrique ;
- au moins un support catalytique indépendant du substrat diélectrique et desdites électrodes, et intégrant un catalyseur.

Par électrode, on entend une électrode ou une multitude d’électrodes reliées à la même source et présentant donc le même potentiel. La source d’alimentation électrique présente avantageusement un signal alternatif ou impulsionnel.

Par multitude d’électrodes, on entend avantageusement des électrodes placées de façon parallèles les unes par rapport aux autres.

Par indépendant, on entend une indépendance physique du support catalytique par rapport au substrat ; en d’autres termes, ledit support catalytique n’est pas au contact dudit substrat, et ce faisant, n’est pas davantage au contact des électrodes. Plus particulièrement le plasma de surface formé ne vient pas au contact du support catalytique, ainsi le plasma ne risque pas de détériorer le support catalytique. Le plasma de surface permet de favoriser le renvoi accéléré, et ce de façon sensiblement perpendiculaire à la surface du substrat, des espèces contenus dans le flux gazeux à traiter.

De manière générale, les gaz traités au moyen du dispositif selon la présente invention comprennent des COVs (Composés Organiques Volatils), des NO₅ (oxydes d’azote)… Les quantités de polluants peuvent varier de moins de 1 ppm à plusieurs milliers de ppm selon l’application et la nature des gaz traités.

Comme déjà indiqué, la configuration du dispositif selon la présente invention permet de limiter les pertes de charge et de renforcer le contact entre les espèces actives créées par un plasma de surface et le support catalytique ou catalyseur. En effet, la présence d’un catalyseur entre deux substrats diélectriques permet de réduire la consommation d’énergie nécessaire pour traiter le gaz. Les espèces créées par le plasma de surface sont dirigées vers le support catalytique étant donné que ces plasmas créent une accélération de la vitesse des gaz au voisinage des électrodes et des effets de jets perpendiculaires à la surface des substrats diélectriques. (Cf. Bénard et al.)
Il est à noter que le plasma de surface est formé au voisinage de chacune des deux faces principales du substrat diélectrique entre la première électrode et la deuxième électrode.

En outre, le dispositif selon l'invention offre une plus grande versatilité par rapport aux dispositifs de l'art antérieur, le support catalytique étant indépendant du substrat diélectrique comprenant les électrodes. Il entraîne une synergie entre le catalyseur qui est positionné entre deux substrats diélectriques et généralement dans des corps poreux (mousse ou nids d'abeille). L'invention présente donc l'avantage de pouvoir associer au plasma une large gamme de catalyseurs (métal, oxyde ou mélange) compris dans un support catalytique conducteur ou isolant électrique (mousse, nid d'abeille...). D'autre part, dans ce dispositif, l'épaisseur du support catalytique n'est pas limitée, elle doit simplement être inférieure à l'espacement entre deux substrats diélectriques le cas échéant.

De manière avantageuse, les électrodes, première ou deuxième électrodes, du dispositif selon la présente invention peuvent présenter une largeur avantageusement comprise entre 1 mm et 10 cm, et plus avantageusement encore entre 3 et 5 mm.

Dans un mode de réalisation particulier, chaque électrode peut être constituée d'une pluralité de bandes parallèles entre elles, reliées au même potentiel, disposées sur le substrat diélectrique, et dont la projection de chacune des électrodes sur un plan parallèle au plan principal du substrat forme une interdigitation. Ainsi la surface du substrat diélectrique est avantageusement optimisée et une multitude de plasmas de surface peut être générée.

De manière avantageuse, la surface des électrodes déposées sur le substrat diélectrique représente entre 10 et 90 % du total de la surface de la face principale dudit substrat diélectrique comprenant lesdites électrodes, plus avantageusement entre 30 et 50 %.

Les électrodes déposées sur une face principale du substrat diélectrique peuvent être positionnées de façon sensiblement orthogonale ou sensiblement parallèle à la direction générale du flux du gaz à traiter. De préférence, elles sont orthogonales.

L'espacement inter-électrodes, défini par la distance séparant la projection desdites électrodes sur un plan parallèle au plan principal du substrat est compris entre 2 mm et 15 mm, avantageusement entre 4 et 8 mm.

Par ailleurs, le ratio entre l'espacement inter-électrodes tel que défini ci-dessus et la largeur des électrodes est typiquement compris entre zéro et 2.
Préférentiellement, l’épaisseur de chacune des électrodes est comprise entre 1 μm et 2 mm.

De manière avantageuse, le support catalytique peut se présenter sous forme de plaque de matériau dense ; de mousse métallique ou céramique ; ou de nid d’abeille métallique ou céramique. Il est avantageusement réalisé en :
- céramique : zircone, zircone yttriée, oxyde de magnésium, cérine, oxyde de vanadium, cordiérite, WO₃, TiO₂, ZnO, et leurs mélanges ; ou en
- métal : Al, Cu, Ni, Zn, acier inoxydable, Ti, FeCrAl, et leurs mélanges.

Par ailleurs, le support catalytique présente généralement une épaisseur avantageusement comprise entre 1 mm et 10 cm, et plus avantageusement encore entre 5 mm et 5 cm.

Le support catalytique comprend un catalyseur pouvant avantageusement être choisi dans le groupe comprenant les oxydes métalliques, les nitrides, les métaux, et leurs mélanges, plus avantageusement encore des métaux suivants : Pt, Ag, Ru, Rh, Cu, Fe, Cr, Pd, Zn, Mn, Co, Ni, V, Mo, Au, Ir.

Afin de limiter les pertes de charge, le substrat diélectrique et le support catalytique sont avantageusement espacés de 5 mm à 10 cm, et plus avantageusement de 5 mm à 5 cm.

Le substrat diélectrique est avantageusement réalisé en un matériau choisi dans le groupe comprenant la silice, le verre et l’alumine.

Dans un mode de réalisation préféré, le dispositif selon la présente invention peut comprendre au moins deux substrats diélectriques espacés l’un de l’autre, leur espacement étant préférentiellement compris entre 10 mm à 15 cm, et plus avantageusement entre 1 et 5 cm. Ce dispositif comprend au moins un support catalytique avantageusement positionné entre deux faces principales comprenant les premières électrodes, ou entre deux faces principales comprenant les deuxièmes électrodes.

Dans cette configuration, les supports catalytiques sont disposés entre les diélectriques de manière à ce qu’ils recouvrent par projection au moins partiellement la zone des électrodes et du plasma.

Le support catalytique est disposé en regard de la face du substrat diélectrique sur laquelle le plasma est généré.
Dans un mode de réalisation particulier, le dispositif de traitement de gaz par plasma de surface selon la présente invention présente une forme cylindrique. Le substrat diélectrique et le support catalytique présentent donc des formes cylindriques et sont coaxiaux. Le substrat diélectrique peut donc être disposé à l'intérieur d'un support catalytique de forme cylindrique. Il en va de même s'agissant du support catalytique, ce dernier pouvant être disposé à l'intérieur d'un substrat diélectrique de forme cylindrique.

La présente invention concerne également l'utilisation du dispositif de traitement de gaz par plasma de surface tel que décrit ci-avant pour la dégradation des polluants (VOC, NOx, ...) pouvant être contenus dans les gaz mais aussi pour le reformage d'hydrocarbures, d'alcool ou la valorisation du CO₂.

La présente invention présente notamment les avantages suivants :
- la distance entre les substrats diélectriques peut être ajustée selon l'application envisagée ;
- la structure du support catalytique peut être modifiée selon l'application envisagée ;
- la nature du catalyseur peut être choisie selon l'application envisagée ;
- la distance entre le substrat diélectrique et le support catalytique peut être ajustée selon l'application envisagée, afin de limiter les pertes de charge.

L'invention et les avantages qui en découlent ressortiront mieux des figures et exemples suivants, donnés afin d'illustrer l'invention et de manière non limitative.

DESCRIPTION DES FIGURES

La figure 1 illustre la formation d'un plasma atmosphérique selon l'art antérieur entre deux électrodes déposées sur deux substrats diélectriques distincts, l'un des substrats diélectriques étant intercalé entre les deux électrodes.

La figure 2 illustre la formation d'un plasma de surface sur chaque face selon l'art antérieur entre deux électrodes déposées de part et d'autre d'un même substrat diélectrique.

La figure 3 illustre un dispositif de traitement de gaz par plasma de surface selon la présente invention, comprenant deux supports catalytiques et trois substrats diélectriques recouverts en partie d'électrodes.

La figure 4 illustre la projection des électrodes sur un même plan parallèle au plan principal du substrat.

La figure 5 illustre un dispositif de traitement de gaz par plasma de surface selon la présente invention de géométrie cylindrique, comprenant deux substrats diélectriques et deux supports catalytiques.
La figure 6 illustre la vue en coupe d'un dispositif de traitement de gaz par plasma de surface selon la présente invention montrant l'espacement inter-électrodes entre la première et la deuxième électrode déposées sur un substrat diélectrique.
La figure 7 représente le taux de conversion du toluène en fonction de l'énergie spécifique appliquée à un dispositif selon l'art antérieur (losanges) et à un dispositif selon la présente invention (carrés) dans le cadre du traitement de gaz.

DESCRIPTION DÉTAILLEE DE L'INVENTION

Comme déjà dit, la figure 1 illustre la formation d'un plasma volumétrique à pression atmosphérique (1) entre deux électrodes (5, 6) reliées aux bornes d'une source d'alimentation électrique (4) selon l'art antérieur. Les deux électrodes sont déposées sur deux substrats diélectriques (3) espacés l'un de l'autre. Le plasma atmosphérique (1) est généré entre les deux électrodes (5, 6), séparées l'une de l'autre d'une part, par l'un des substrats diélectriques, et d'autre part, par l'espace séparant lesdits substrats.

La figure 2 illustre la formation d'un plasma de surface (2) sur chaque face entre deux électrodes (5, 6) reliées aux bornes d'une source d'alimentation électrique (4), selon une autre configuration de l'art antérieur. Les deux électrodes sont déposées sur deux faces opposées d'un même substrat diélectrique (3).

La figure 3 illustre la vue en coupe d'un dispositif de traitement de gaz par plasma de surface selon la présente invention. Ce dispositif comprend trois substrats diélectriques (3) en forme de plaques, chacune des plaques définissant deux faces principales opposées.

Les deux faces opposées de chacun de ces substrats reçoivent chacun une première électrode (5) et une deuxième électrode (6), lesdites électrodes étant chacune constituée d'une série de bandes parallèles entre elles, reliées au potentiel (4).

Sont interposés entre les substrats (3) des supports catalytiques (7) se présentant également sous la forme de plaques. Le support catalytique (7) est disposé en regard des faces des substrats diélectriques au voisinage desquelles les plasmas de surface sont générés.

La figure 4 illustre la projection des électrodes (5) et (6) d'un même substrat de la figure 3 sur un plan parallèle audit substrat. Cette projection montre l'interdigitation desdites électrodes. On peut ainsi observer qu'il se définit un espacement inter-électrodes (8) (figure 6).
La figure 5 illustre un dispositif de traitement de gaz par plasma de surface selon la présente invention, présentant une forme cylindrique. On peut ainsi observer la mise en œuvre de deux substrats diélectriques cylindriques coaxiaux, entre lesquels est interposé un support catalytique, cylindrique, et coaxial avec lesdits substrats. En outre, on a représenté un support catalytique central.

La figure 6 représente une vue en coupe longitudinale d’un substrat diélectrique (3) comprenant une première électrode (5) et une deuxième électrode (6) intercalées de manière à former l’espacement inter-électrodes (8).

EXEMPLES DE REALISATION DE L’INVENTION

Les exemples 1 et 2 concernent la décomposition du toluène dans de l’air sec comprenant 55 ppm de toluène.

Exemple 1 (art antérieur) :

Le réacteur de forme rectangulaire mesure 4 cm de haut, 12 cm de large et 15 cm de long. A une extrémité se trouve l’entrée des gaz reliée à un dispositif d’injection de gaz, dans ce cas de l’air sec contenant 55 ppm de toluène (polluant que l’on souhaite éliminer), et à l’autre extrémité l’évacuation des gaz reliée à un appareil de chromatographie gazeuse pour déterminer le taux de conversion du toluène, c'est-à-dire son taux de dégradation.

Deux supports diélectriques mesurant 12 cm de large et 14 cm de long sont disposés dans le réacteur. Des cales de 2 cm de large en matériau diélectrique (quartz) sont disposées de part et d’autre le long du réacteur, afin d’assurer un espacement de 3 cm entre les deux substrats diélectriques. Des électrodes recouvrent le substrat diélectrique du réacteur sur toute sa largeur (hors cale) soit 8 cm, leur longueur dans l’axe principal du réacteur étant d’environ 7,5 cm.

Les électrodes sont en cuivre et présentent une largeur de 3 mm et une longueur de 7,5 cm.

La distance inter-électrodes (8) au sens de la figure 6 est de 3 mm. Chaque face des substrats diélectriques présente sept électrodes. Afin d’assurer la continuité électrique, les électrodes sont reliées entre elles par un circuit électrique en cuivre, dans la direction de la largeur du substrat diélectrique. Les premières électrodes (5) sont reliées à l’alimentation électrique du générateur, alors que les deuxièmes électrodes (6) sont reliées à la masse.
Le dispositif est balayé par de l'air contenant 55 ppm de toluène jusqu'à stabilisation de l'aire du pic correspondant au toluène et mesuré par chromatographie gazeuse afin d'obtenir un pic référence.

Une tension sinusoïdale de +/-15kV est ensuite appliquée sur les électrodes reliées au générateur pour une énergie spécifique consommée par le plasma de 320 J/L.

Le taux de conversion du toluène est déterminé après 30 minutes par mesure de l'aire du pic correspondant par chromatographie en phase gazeuse.

Puis, l'énergie spécifique du plasma est diminuée et au bout de 30 minutes le nouveau taux de conversion est déterminé. La même procédure est appliquée pour des énergies spécifiques plus faibles.

Les résultats obtenus sont répertoriés sur le graphe de la figure 7 (losanges) qui représente les taux de conversion du toluène en fonction de l'énergie spécifique consommée par le plasma. Le « taux de conversion » s'apparente au taux de dégradation ou de décomposition du toluène. Le toluène est très majoritairement converti en CO₂ et H₂O.

Exemple 2 (invention)

Le dispositif est identique à celui de l'exemple 1 mais il comprend en outre un support catalytique sous forme de nid d'abeille réalisé en cordiérite de 5 mm d'épaisseur.

Le support catalytique est disposé entre les deux substrats diélectriques, à 12.5 mm de chacun des substrats diélectriques. Il comprend environ 500 ppm de platine et 500 ppm de palladium dans des canaux orientés perpendiculairement aux plaques de substrat diélectrique.

Le protocole expérimental est identique à celui de l'exemple 1.

Les résultats sont également reproduits sur le graphe de la figure 7 (carrés). Pour une énergie spécifique équivalente, le dispositif selon la présente invention (carrés) présente un taux de conversion plus élevé que celui de l'art antérieur (losanges). En conséquence, à taux de conversion de toluène identique, le dispositif selon la présente invention requiert moins d’énergie ou présente un taux de conversion supérieur pour une énergie spécifique identique.
REVENDICATIONS

1. Dispositif de traitement de gaz par plasma de surface, comprenant :
 - au moins un substrat diélectrique (3) présentant deux faces principales opposées,
 au moins une première électrode (5) et au moins une deuxième électrode (6)
 étant respectivement déposées sur lesdites faces principales opposées du
 substrat, lesdites première et deuxième électrodes étant reliées aux deux bornes
 d’une source d’alimentation électrique (4) ;
 - au moins un support catalytique (7) indépendant du substrat diélectrique et
 desdites électrodes, et intégrant un catalyseur.

2. Dispositif de traitement de gaz par plasma de surface selon la revendication 1,
 caractérisé en ce que la première et la deuxième électrodes sont disposées de
 manière à ce que la distance inter-électrodes (8) est comprise entre 2 et 15 mm,
 avantageusement comprise entre 4 et 8 mm.

3. Dispositif de traitement de gaz par plasma de surface selon l’une des revendications
 1 ou 2, caractérisé en ce que les première et deuxième électrodes présentent chacune
 une largeur comprise entre 1 mm et 10 cm, avantageusement entre 3 et 5 mm.

4. Dispositif de traitement de gaz par plasma de surface selon l’une quelconque des
 revendications précédentes, caractérisé en ce que le support catalytique est choisi
 dans le groupe comprenant une plaque de matériau dense et une mousse métallique
 ou céramique.

5. Dispositif de traitement de gaz par plasma de surface selon l’une quelconque des
 revendications 1 à 3, caractérisé en ce que le support catalytique se présente sous la
 forme d’un nid d’abeille métallique ou céramique.

6. Dispositif de traitement de gaz par plasma de surface selon l’une quelconque des
 revendications précédentes, caractérisé en ce que le support catalytique présente une
 épaisseur comprise entre 1 mm et 10 cm.

7. Dispositif de traitement de gaz par plasma de surface selon l’une quelconque des
 revendications précédentes, caractérisé en ce que le support catalytique comprend
 un catalyseur choisi dans le groupe comprenant les oxydes métalliques, les nitrures,
 les métaux, et leurs mélanges.
8. Dispositif de traitement de gaz par plasma de surface selon la revendication 7, caractérisé en ce que le métal, l’oxyde métallique ou le nitrure sont à base d’un métal choisi dans le groupe comprenant Pt, Ag, Ru, Rh, Cu, Fe, Cr, Pd, Zn, Mn, Co, Ni, V, Mo, Au, Ir.

9. Dispositif de traitement de gaz par plasma de surface selon l’une quelconque des revendications précédentes, caractérisé en ce qu’il comprend au moins deux substrats diélectriques, le au moins un support catalytique étant positionné entre deux faces principales comprenant les premières électrodes, ou entre deux faces principales comprenant les deuxièmes électrodes.

10. Dispositif de traitement de gaz par plasma de surface selon la revendication 9, caractérisé en ce que l’espacement entre les au moins deux substrats diélectriques est compris entre 10 mm et 15 cm, et avantageusement entre 1 et 5 cm.

11. Dispositif de traitement de gaz par plasma de surface selon l’une quelconque des revendications précédentes, caractérisé en ce que le substrat diélectrique et le support catalytique sont espacés de 5 mm à 10 cm.
DOCUMENTS CONSIDÉRÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendication(s) concernée(s)</th>
<th>Classement attribué à l'invention par l'INPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2005 320895 A (TOSHIBA CORP) 17 novembre 2005 (2005-11-17) * figures 1,4,11,12,13,17 *</td>
<td>1-11</td>
<td>B01D53/32</td>
</tr>
<tr>
<td>X</td>
<td>EP 2 133 525 A1 (NAT UNIVERSITY CORP TOYOHASHI [JP]; TOYOTA MOTOR CO LTD [JP] NAT UNIVE) 16 décembre 2009 (2009-12-16) * alinéa [0024]; revendications 1,2; figures 1,3,4 *</td>
<td>1-8,11</td>
<td>B01D53/86</td>
</tr>
<tr>
<td>X</td>
<td>US 5 746 984 A (HOARD JOHN W [US]) 5 mai 1998 (1998-05-05) * revendication 8; figures 3,4 *</td>
<td>1-8,11</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 2003/150709 A1 (LABARGE WILLIAM J [US] ET AL) 14 août 2003 (2003-08-14) * revendications 1,3-7,16,17,19,20,23,24; figure 6 *</td>
<td>1,4,7,8</td>
<td>B01D B01J</td>
</tr>
</tbody>
</table>

DOMAINE TECHNIQUES RECHERCHÉS (IPC)

- B01D
- B01J
ANNEXE AU RAPPORT DE RECHERCHE PRÉLIMINAIRE
RELATIF A LA DEMANDE DE BREVET FRANÇAIS NO. FR 1153982 FA 750633

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus.
Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 13-12-2011.
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets, ni de l'Administration française.

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille brevet</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JP 2005320895 A</td>
<td>17-11-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008248852 A</td>
<td>16-10-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008120819 A1</td>
<td>09-10-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5746984 A</td>
<td>05-05-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9800221 A1</td>
<td>08-01-1998</td>
</tr>
<tr>
<td>US 2005118079 A1</td>
<td>02-06-2005</td>
<td>CN 1654111 A</td>
<td>17-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005118079 A1</td>
<td>02-06-2005</td>
</tr>
<tr>
<td>US 2003150709 A1</td>
<td>14-08-2003</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004081598 A1</td>
<td>29-04-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 02087731 A1</td>
<td>07-11-2002</td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82