

(19) DANMARK

(10) DK/EP 2683340 T3

(12)

Oversættelse af
europæisk patent

Patent- og
Varemærkestyrelsen

(51) Int.Cl.: **A 61 F 5/058 (2006.01)** **A 61 F 5/56 (2006.01)**

(45) Oversættelsen bekendtgjort den: **2016-07-25**

(80) Dato for Den Europæiske Patentmyndigheds
bekendtgørelse om meddelelse af patentet: **2016-04-06**

(86) Europæisk ansøgning nr.: **11815764.3**

(86) Europæisk indleveringsdag: **2011-12-30**

(87) Den europæiske ansøgnings publiceringsdag: **2014-01-15**

(86) International ansøgning nr.: **FR2011000685**

(87) Internationalt publikationsnr.: **WO2012120203**

(30) Prioritet: **2011-03-08 FR 1100686**

(84) Designerede stater: **AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR**

(73) Patenthaver: **Fellus, Patrick André, 18 Rue de Condé, 75006 Paris, Frankrig**

(72) Opfinder: **Fellus, Patrick André, 18 Rue de Condé, 75006 Paris, Frankrig**

(74) Fuldmægtig i Danmark: **Larsen & Birkeholm A/S Skandinavisk Patentbureau, Banegårdsplassen 1, 1570 København V, Danmark**

(54) Benævnelse: **Oral indretning**

(56) Fremdragne publikationer:
EP-A1- 2 189 131
DE-U1- 8 323 817
DE-U1-202009 003 914
US-A- 6 129 084
US-A1- 2008 149 110

DK/EP 2683340 T3

Oral device

The invention relates to the field of facial growth in children.

5 Facial growth is a field which has been the subject of much research and is perpetually evolving. In the course of this evolution received wisdom is progressively modified and/or overturned.

10 One well-established dogma is the idea that it is better to wait for maxillo-mandibular growth to be complete, or for all the permanent teeth to have grown, before engaging in any treatment of maxillo-mandibular morphological abnormalities because the size of the mandible is predetermined and it is not possible to influence it.

15 Clinical research work carried out by the Applicant over the last 25 years have overturned this dogma, and has shown that early orthodontic intervention is a wholly beneficial practice with a view to prevention.

20 This work does not apply to the treatment of all children having primary teeth, but to the early correction of some skeletal morphological disorders before the conventional age for orthodontic treatment.

25 Recently the Applicant has identified a set of maxillo-mandibular conditions associated with deficient acquisition of swallowing of the dentitional type (also known as adult swallowing). In practice this means that some children persist with suction-swallowing (also known as infantile swallowing or primary swallowing) for too long.

At the present time this work is at the leading edge in this field and there is no method or device appropriate for its implementation.

30 This invention will improve the situation.

For this purpose the Applicant provides an oral device designed to be worn by a person in the mouth to stress the trigeminal nerve during swallowing. Advantageously this device may comprise an upper portion having a substantially gutter shape located between a top lip and a dental arch, a lower portion having a substantially gutter shape designed to be located between the lower lip and a dental arch, and an opening between

the upper portion and the lower portion. The upper portion and the lower portion are connected together at their respective extremities in such a way that when the device is positioned in the mouth the labial musculature is substantially at rest, and at least part of the opening remains unobstructed. The opening has a maximum height of about 1.5 cm.

5

The Applicant also provides a process for learning a praxis comprising the wearing by a person of an oral device designed to stress the trigeminal nerve during swallowing. Advantageously this process may comprise the fitting of a device at least partly between the person's lips and dental arch, and maintaining the labial musculature substantially at rest while also maintaining an opening between the lips while the device is being worn.

10

This device and this process have numerous advantages which will be explained below.

15

Other features and advantages of the invention will be more apparent from a reading of the following description of examples provided for illustrative and non-restrictive purposes based on the drawings in which:

20

- Figure 1 shows a perspective view of three-quarters of a device according to the invention,
- Figure 2 shows a rear view of the device in Figure 1,
- Figure 3 shows a front view of the device in Figure 1,
- Figure 4 shows a left-hand side view of the device in Figure 1,
- Figure 5 shows a right-hand side view of the device in Figure 1,
- Figure 6 shows a perspective view of three-quarters of another embodiment of a device,
- Figure 7 shows a rear view of the device in Figure 6,
- Figure 8 shows a front view of the device in Figure 6,
- Figure 9 shows a left-hand side view of the device in Figure 6, and
- Figure 10 shows a right-hand side view of the device in Figure 6.

25

The drawings and description below essentially include elements of a particular nature. They can therefore not only be used for a better understanding of this invention, but also to contribute to its definition, as appropriate.

30

The upper skeletal portion of a child's face grows in a manner which is conditioned by its functional environment. In the case of the orbital cavity, it is the eye which plays the shaping role. In the case of the cranium, it is the brain. As far as the oral cavity is

35

concerned it is the tongue which plays the shaping role, as soon as swallowing of the dentitional type has been acquired.

5 In fact swallowing of the dentitional type implies that the arch of the tongue rests against the palatal arch in both swallowing movements and normal posture, stimulating transverse growth of the maxilla.

10 Conventionally children acquire swallowing of the dentitional type between the age of three years and five years, ages at which the milk teeth have formed and chewing habits come to be acquired.

15 In the case of children who do not acquire swallowing of the dentitional type suction-swallowing persists. But the muscular forces used in suction-swallowing give rise to disturbances in facial growth.

20 In fact in suction-swallowing the dental arches are not in contact during swallowing movements and the tongue is positioned between the maxilla and the mandible in order to make contact with the labial or jugal mucosa.

25 Because of this the arch of the tongue ceases to stimulate growth of the palatal arch, which is on the contrary obstructed by depression of the buccinators muscles deriving from the suction movements.

30 Furthermore contraction of the lower labial and chin musculature holds the mandible in a retracted position, characteristic of functional retroradibulium, which will evolve if it is not corrected into mandibular retrognathia during adolescence. Similarly the fact that the tongue habitually maintains a low position causes the mandible to advance and can therefore transform the initial functional mandibular prognathism into prognathia.

35 The absence of contact between the tongue and the palatal arch, combined with an inverse incisive function, associates hyperplasia of the middle third with mandibular malformation.

Other unfavourable developmental conditions of the mandible in children can be linked to a deficiency in the acquisition of swallowing of the dentitional type.

In addition to the accompanying physiological problems, these malformations often have major consequences from the psychological point of view because of the aesthetic problems associated with them, which often delay a child's social integration.

5 Conversely, acquisition of swallowing of the dentitional type encourages the learning of nasal respiration, and an earlier stop to thumb sucking.

All these components contribute to correct growth.

10 The Applicant's work has demonstrated that transition from suction-swallowing to swallowing of the dentitional type is governed by the establishment of new motor images. In fact habitual movements made without conscious control are carried out on the basis of a sequence of motor images whose elements are as close to each other as the images in a filmed sequence. These new motor images can be acquired by learning, and 15 enrich the body schema in the oral area.

20 In the present context this schema is based on disconnection of the lips/tongue synkinesis and elevation of the arch of the tongue. Specifically it is a question of learning to swallow without making use of cheek and lip muscles. Disconnection of lip/tongue synkinesis and raising of the arch of the tongue is mainly reflected in a transition from stressing of the facial nerve (VII) in the context of suction-swallowing to stressing of the trigeminal nerve (V) in the context of swallowing of the dentitional type.

25 It is therefore a matter of teaching the child to abandon suction-swallowing and acquire a new swallowing praxis of the dentitional type. Automation of this type of swallowing, repeated once a minute, will alter the balance of muscular forces and through the 17 muscles constituting it the tongue will thus play the role of a functional shaper.

30 The Applicant's work has discovered that without this new muscular equilibrium conventional mechanical treatments take longer and the results are not always stable.

At the present time there is no effective method or device which can teach transition from suction-swallowing to swallowing of the dentitional type.

35 In response to these problems the Applicant has designed the device illustrated in Figure 1.

As may be seen in this figure, oral device 2 comprises an upper portion 4 and a lower portion 6.

As may be seen in Figures 4 and 5, upper portion 4 and lower portion 6 are each substantially gutter shaped. Thus upper portion 4 has a cross-section with a limb 8 and a limb 10 substantially perpendicular to limb 8. Lower portion 6 has a cross-section with a limb 12 and a limb 14 substantially perpendicular to limb 12.

Limb 10 has a curved shape to receive the upper lip, and lodges between the inside surface of the upper lip and the upper dental arch. Limb 14 has a curved shape to receive the lower lip, and lodges between the inside surface of the lower lip and the lower dental arch. The outer surface of the upper lip and the outer surface of the lower lip are in contact with limb 8 and limb 12 respectively.

Limb 10 and limb 14, of curved shape, have two parts:

- a first part 16 which is substantially planar, on which the lower surface of the upper lip and the upper surface of the lower lip respectively bear,
- a second substantially arched part 18 lodged between the inner surfaces of the lips and the dental arch.

First part 16 is substantially planar. First part 16 forms an angle of approximately 90° with limb 8 (and limb 12 respectively). The extremity of first part 16 is curved, so that second part 18 forms an angle with first part 16. The arched shape of second part 18 is arranged so as to match the shape of the dental arch.

As may be seen in Figure 2, limbs 10 and 14 have a re-entrant or cut-out 20 substantially in the middle of second part 18. Re-entrant 20 is substantially rounded, so that it substantially corresponds to the frenulum of each lip, and facilitates fitting of device 2 in the mouth.

Thus device 2 is secured in the mouth and is held without muscular effort by the lips, offering comfort in use.

As will be more clearly apparent from Figures 1, 2 and 3, upper portion 4 and lower portion 6 are connected together at the respective extremities 22 and 24 of portions 18 of limbs 10 and 14 in such a way that between them they define an opening 26 of

substantially oval shape. This opening 26 is dimensioned so that it is always at least partly unobstructed when a person wears device 2. In order to achieve this it is designed so that it is thicker than the anterior part of the tongue.

5 In the embodiment described here upper portion 4 and lower portion 6 are adhesively bonded at extremities 22 and 24. As a variant these extremities comprise cooperating locking members which will allow upper portion 4 to be detached from upper portion 6 when oral device 2 is not worn, and they can be reconnected simply, for example by clipping or any other appropriate means for wearing. In another variant these extremities 10 are welded.

15 In the embodiment described here device 2 has a total width of 5 cm and opening 26 has a width of approximately 3.5 cm. Limbs 8 and 12 are approximately 1 cm tall and limbs 10 and 14 are approximately 7.5 mm long, curved part 18 of these two limbs rising approximately 4 mm. Opening 26 has a maximum height of approximately 1.5 cm.

20 In general the width of device 2 is designed to correspond substantially to the space between the commissures of a person's lips. In particular this width may be made slightly greater to facilitate holding without stressing the muscles. Opening 26 is designed to be larger than the apex of the tongue. In order to accommodate all mouths the device may be provided in several sizes, for example three sizes. As a variant, these different sizes may be obtained using cooperating locking members of different sizes, or telescopic members.

25 Upper portion 4 and lower portion 6 each have a plane of symmetry substantially perpendicular to the plane of Figures 2 and 3 at the location of re-entrant 20. This plane of symmetry reflects the symmetry of the human mouth. Furthermore device 2 may in some cases have an additional plane of symmetry, also perpendicular to the plane of Figures 2 and 3, but this time at opening 26, so that upper portion 4 and lower portion 6 are symmetrical with each other in relation to that plane.

30 As a variant the upper portion and the lower portion may each have a larger gutter width distally from the opening than proximally to the opening to permit better holding and to ease fitting. In other words the profiles of the upper and lower portions may be flared.

35 Figures 6 to 10 show an oral device wherein the height of the opening 26 is greater than the claimed one. In this variant oral device 2 is of one piece and is for example made by

moulding or by any other appropriate means. Thus limbs 10 and 14 each comprise a third part 30 and a fourth part 32.

5 As may be seen in Figures 7 and 8, third parts 30 and fourth parts 32 are substantially symmetrical with each other in relation to a plane substantially perpendicular to the plane of Figures 7 and 8 at re-entrant 20 and are extensions of second parts 18 on either side of the latter.

10 Third part 30 of limb 10 is connected to third part 30 of limb 14, and fourth part 32 of limb 10 is connected to fourth part 32 of limb 14.

15 In this variant device 2 has a total width of 8.5 cm. Opening 26 is of a generally oblong shape and has a maximum height of approximately 2 cm, that is greater than the claimed one, and a maximum width of approximately 7.5 cm. Limbs 8 and 12 have a height of approximately 1 cm and a width of approximately 3 cm. Parts 16 of limbs 10 and 14 extend over a depth of approximately 7.5 mm and curved parts 18 rise approximately 4 mm.

20 These dimensions may vary according to the selected size of device 2, that is in relation to the dimensions of a child's mouth. Thus the total width of the device may be between 3 cm and 10 cm, opening 26 may have a maximum width between 2 cm and 9 cm, and a maximum height of between 3 mm and 4.5 cm. Limbs 8 and 12 may have a height of between 5 mm and 2 cm, and a width of between 2 cm and 5 cm, that is a value close to the distance between the commissures. Part 16 of limbs 10 and 14 may extend over a depth of between 3 mm and 3 cm, and curved part 18 may rise between approximately 2 mm and 1 cm. These dimensions may be applied to the embodiment in Figures 1 to 5.

25 Advantageously the linking portion of parts 30 and 32 substantially matches the internal contour of the lips, and the connection takes place at the modioli of the commissure of the cheeks, thus opposing contraction of the muscles at this point.

30 It follows from the two embodiments described that:

- upper portion 4 and lower portion 6 have a substantially gutter shape,
- the remainder of the device is arranged in a manner posterior to a plane defined by one of the edges of these gutters, beyond the portion connecting the edges of these gutters.

By a substantially gutter shape is meant the fact that the assembly of limbs 8 and 10 and the assembly of limbs 12 and 14 hold the lips in the manner of a gutter. Thus the lips are substantially at rest and their contraction is opposed.

5 However it would be possible to lighten some of these limbs either partly or extensively while retaining this function, for example by removing material or by making the limbs in the form of a grille. Such embodiments fall within the scope of the invention.

10 The Applicant's work has demonstrated that wearing of device 2 by a person and in particular a child is only slightly inconveniencing, but conversely makes it possible to acquire swallowing of the dentitional type spontaneously.

15 In fact device 2 holds the upper and lower lips at a distance from each other, preventing a sealing joint being made between the two lips through opening 26, which prevents negative pressure from being set up within the mouth cavity by suction. As a reaction the person can only raise the posterior portion of their tongue towards the palatal arch, and thus acquire this new praxis.

20 Furthermore device 2 is held in the mouth without contraction of the orbicular musculature. Thus as these muscles are substantially at rest the facial nerve is only stimulated partly or not at all during swallowing. This makes it possible to learn a praxis in which the trigeminal nerve is the main nerve stimulated.

25 Use of device 2 is therefore particularly advantageous because this learning is accomplished without conscious work on the part of the person, using pre-existing neurological wiring which has never been stimulated. This means that no special exercise or specific action is needed, apart from the wearing of device 2.

30 The process of learning the praxis described here comprises the wearing of device 2 by a person for a time of between 5 minutes and 15 minutes. This process should be performed daily over a minimum period of one week and up to a maximum period of 3 months. The process may be stopped once the praxis has been acquired, that is to say as soon as the action has become automatic.

35 Use of device 2 may be seen as a process of learning a swallowing praxis comprising stressing of the trigeminal nerve, and in general as a process of enlarging the palatal arch.

Furthermore the application of this process does not require action by any medical personnel, nor any particular treatment, because all that is necessary is to place the device in the mouth.

5 At the present time this work is at the leading edge in this domain and there is no suitable method or device appropriate for such an application.

10 The Applicant has developed a device for learning adult swallowing. The device is an aid to learning the praxis of adult swallowing. The device stresses the trigeminal nerve. The device alters the balance between the muscles. From another point of view the invention relates to a device which conditions habitual movements not under conscious control through new motor images. The device is an anti-suction or anti-primary swallowing device. Through this effect the device is also a tool for correcting skeletal malformations.

15 Device 2 may be provided for example in three models of different sizes, known as the small size model, the middle size model and the large size model. In general device 2 may have the following dimensions:

20 - a total width, that is an external distance between extremities 22 and 24, of between 3 cm and 5.5 cm,

- between 3.2 cm and 4 cm for the small size model, for example 3.6 cm,
- between 3.8 cm and 4.6 cm for the middle size model, for example 4.2 cm, and
- between 4.5 cm and 5.5 cm for the large size model, for example 5 cm;

25 - a width of opening 26, that is to say an interior distance between extremities 22 and 24, of between 2 cm and 5 cm,

- between 2.2 cm and 3.2 cm for the small size model, for example 2.7 cm,
- between 2.8 cm and 3.8 cm for the middle size model, for example 3.3 cm, and
- between 3.3 cm and 4.3 cm for the large size model, for example 3.8 cm;

30 - a width of opening 26, that is to say substantially half way between respective extremities 22 and 24, of between 3 cm and 25 cm (greater than the claimed one),

- between 3 cm and 8 cm for the small size model, for example 7 cm,
- between 5 cm and 12 cm for the middle size model, for example 10 cm, and
- between 10 cm and 20 cm (greater than the claimed one) for the large size model, for example 15 cm;

- a height of limbs 8 and 12 of between 5 mm and 20 mm,
 - between 8 mm and 16 mm for the small size model, for example 12 mm,
 - between 9 mm and 17 mm for the middle size model, for example 13 mm, and
 - between 10 mm and 18 mm for the large size model, for example 14 mm;

5

- a width of limbs 8 and 12 equivalent to the total width of the device, or between 2 cm and 5 cm,
 - between 2 cm and 2.5 cm for the small size model, for example 2.2 cm,
 - between 3 cm and 3.5 cm for the middle size model, for example 3.2 cm, and
 - between 4 cm and 4.5 cm for the large size model, for example 4.2 cm;

10

- a depth between parts 16 of limbs 10 and 14, that is to say the width of the base of the gutters, of between 3 mm and 30 mm,
 - between 5 mm and 15 mm for the small size model, for example 11 mm,
 - between 8 mm and 14 mm for the middle size model, for example 12 mm, and
 - between 12 mm and 20 mm for the large size model, for example 13 mm; and

15

- a height of curved portions 18, away from re-entrant 20, of between 2 mm and 20 mm,
 - between 4 mm and 14 mm for the small size model, for example 9 mm,
 - between 5 mm and 15 mm for the middle size model, for example 10 mm, and
 - between 8 mm and 18 mm for the large size model, for example 13 mm.

20

The thickness of each of the parts of device 2 may comprise walls of thickness between 0.2 mm and 2 mm, for example 1.5 mm.

25

P A T E N T K R A V

1. Oral indretning, som er beregnet til at blive båret i munden af en person og til at påvirke trigeminusnerven under synkning, omfattende en overdel (4), der har form i det

5 væsentlige som en rende, og som er egnet til at blive anbragt mellem en overlæbe og en tandbue, en underdel (6), der har form i det væsentlige som en rende, og som er egnet til at blive anbragt mellem en underlæbe og en tandbue, samt en åbning (26) mellem overdelen (4) og underdelen (6), og hvor overdelen (4) og underdelen (6) er indbyrdes forbundet i deres respektive ender (22, 24), således at læbemuskulaturen i det væsentlige er i hvile, og mindst en del af åbningen (26) holdes fri, når indretningen (2) er optaget i en mund, idet åbningen (26) har en maksimal højde på ca. 1,5 cm.

10 2. Indretning ifølge krav 1, hvor overdelen (4) omfatter to grene (8, 10), som danner en plads til læbemuskulaturen.

15 3. Indretning ifølge krav 2, hvor underdelen (6) omfatter to grene (12, 14), som danner en plads til læbemuskulaturen.

20 4. Indretning ifølge krav 3, hvor hver af overdelen (4) og underdelen (6) omfatter en udskæring (20), der er egnet til at optage et læbebånd.

5. Indretning ifølge et af kravene 1 til 4, hvor åbningen (26) har en i det væsentlige aflang form.

25 6. Indretning ifølge et af kravene 1 til 5, hvor åbningen (26) har en maksimal højde på mellem 3 mm og 1,5 cm.

7. Indretning ifølge et af kravene 1 til 6, hvor åbningen (26) har en maksimal bredde på mellem 2 cm og 9 cm.

8. Indretning ifølge et af kravene 1 til 7, hvor indretningen har en bredde på mellem 3 cm og 10 cm.

5 9. Indretning ifølge et af kravene 1 til 8, hvor hver af overdelen (4) og underdelen (6) har en større tykkelse modsat åbningen (26) end nær åbningen (26).

10

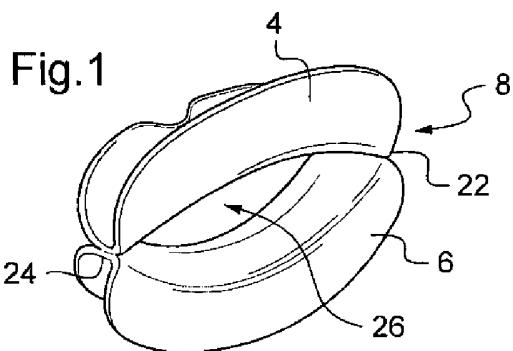


Fig.2

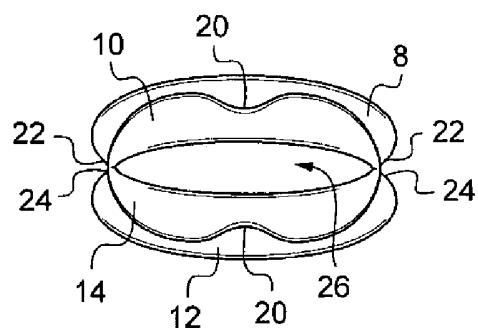


Fig.3

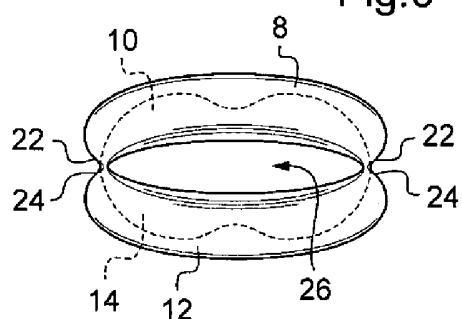
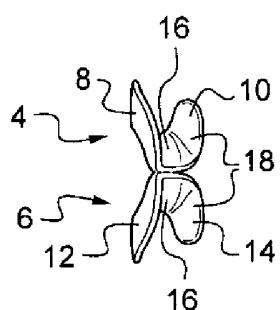
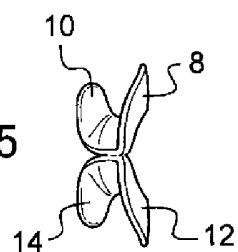
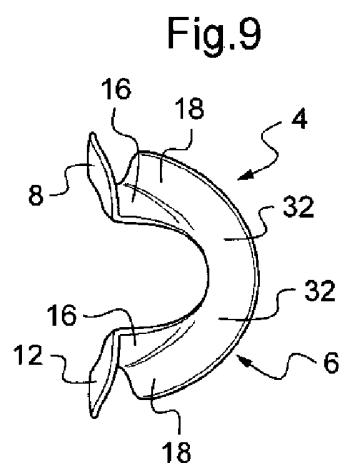


Fig.4

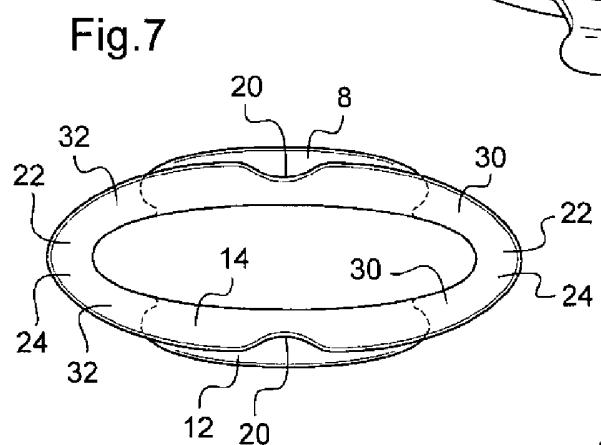
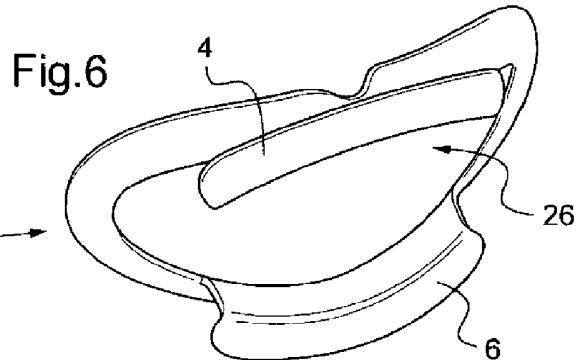



Fig.5

