METHOD OF HEAT SETTING, DYING AND Optionally SCOURING BOARDED SYNTHETIC THERMOPLASTIC TEXTILES WITH SUPERATMOSPHERIC STEAM

INVENTOR.

S. BAILEY, JR

Filed Nov. 27, 1953

7 Sheets-Sheet 6

ATTORNEY
METHOD OF HEAT SETTING, DYING AND OPTIONALLY SEPARATING BOARDED SYNTHETIC THERMOPLASTIC TEXTILES WITH SUPERATMOSPHERIC STEAM

 Filed Nov. 27, 1953, Ser. No. 394,603
7 Claims. (Cl. 223—76)

This invention relates generally to a method of treating articles of textile material, particularly goods knitted or woven of synthetic yarns capable of being "set" by a heated fluid medium. The present application is a continuation-in-part of my copending application, Serial No. 320,631, filed November 14, 1952, now abandoned, as a division of my application, Serial No. 260,613, filed December 8, 1951, now U.S. Patent No. 2,750,781, and is also a continuation-in-part of my copending application Serial No. 181,127, filed August 24, 1950, now abandoned, as a division of my application Serial No. 28,454, filed May 21, 1948, now matured as United States Letters Patent No. 2,641,120, dated June 9, 1953.

In the finishing of articles such as hosiery woven or knitted of synthetic yarns, e.g., nylon or other linear condensation polymide yarns, it is common to subject the articles to a number of treatments, in accordance with more or less conventional practice, involving the use of heated fluid mediums, and in order to provide the articles with a satisfactory feel and wrinkle-free appearance the first such treatment is commonly effected by subjecting the articles to a hot vaporous pressure medium, such as steam under pressure, to set the woven or knitted yarns preliminarily to subjecting the articles to the others of such treatments. Inasmuch as the afore-mentioned treatments are effected by the use of heated fluid mediums, considerable time and labor has been consumed in the handling of the fabricated articles during their successive treatments, much of this time and labor being wasted in transferring the articles from one treatment apparatus to another.

The present invention has as its primary object the provision of an apparatus in the nature of an autoclave in which all of the treatments requiring the use of different heated fluid mediums are applied to the articles while the latter move continuously through the apparatus, each article being uniformly subjected to the same cycle of treatments, thereby assuring not only uniformity in the final result but also achieving for the treated articles a finish of uniformly high quality with an economical use of the several treating media and the expenditure of a minimum amount of time and labor.

Still another object of the present invention is to provide an autoclave type of apparatus having separate interconnected chambers through which the articles undergoing treatment move continuously so that they are pre-set while passing through certain of the chambers and undergo additional treatments while passing through other chambers, the articles being continuously subjected throughout the duration of the pre-setting and subsequent treatments to hot liquid treatment media in a vaporous atmosphere under superatmospheric pressure while being automatically conveyed through the several chambers in accordance with a predetermined fixed operational cycle.

Still another object of the present invention is to provide an autoclave type of apparatus of the character and for the purpose above described wherein the articles undergoing treatment, in their boarded state, serve in themselves to effectively separate the interiors of the several chambers of the autoclave as they pass through said chambers in succession.

And yet another object of the present invention is to provide an autoclave type of apparatus of the character above described having suitable provision for varying the number of separate treating chambers in the autoclave with corresponding variation in the lengths of the chambers, thereby prolonging or decreasing the time required for traverse of the articles undergoing treatment through a given chamber without changing their linear speed of travel through the autoclave.

Still another and important object of the present invention is to provide a compartmented autoclave apparatus wherein the several compartments are arranged in intercommunicating series and are all charged with treating media in a vaporous atmosphere of uniform superatmospheric pressure and temperature, the treating media introduced into the several compartments being of different kind depending upon the nature of the treatment which is required to be carried out in any particular compartment as a step in the whole process of finishing the articles passed through the autoclave. To this end, the articles, such as stockings, are first brought to final shape and while so so-called are run through the several compartments of the autoclave wherein they are successively treated to media operative to initially permanently set the fabric yarn, to then scour and rinse the fabric preliminarily to dyeing thereof, and to finally dye the fabric to the desired shade. Inasmuch as all of these treatments preferably are carried out in the presence of steam under superatmospheric pressure and corresponding temperature sufficiently high so as to effect a permanent setting of the fabric to shape, it will be apparent that such setting may be effected either prior to or during the scouring, rinsing or dyeing steps of the process. Thus, in the processing of the articles by the apparatus of the present invention, the so-called "setting" of the fabric and the fabric may be effected simultaneously as it is subjected to other treatment steps, the articles being completely treated from pre-setting to and through final drying thereof while in their originally boarded condition.

An additional object of the present invention is to provide an apparatus of the character and for the purpose above described having entrance and discharge gate means which are operative automatically in conjunction with suitable entrance and exit vestiules to maintain the required superatmospheric pressure of the different treating media in the several chambers of the autoclave as the articles are transferred successively from one to the other to not only insure full and adequate treatment for the articles while contained in a given chamber but to insure also the maintenance of an adequate pressure of the steam within the several chambers while the articles are being transferred from one to the other thereof, the internal operating pressure of the entrance and exit vestiules which afford ingress to and egress from the main treatment chambers of the apparatus being alternately exhausted of and charged with steam pressure by externally controlled means to afford such ingress and egress without undue loss of pressure in said main treatment chambers.

Each of the aforesaid entrance and exit vestiule chambers, respectively affording ingress to and egress from the autoclave of the present invention, is provided with inner and outer pressure gates for selectively sealing these chambers from the intervening or treatment chambers of the autoclave. In its general aspects, the autoclave is so designed and operated that as an individual track containing a given number of the articles to be treated is moved into the entrance vestiule through its opened outer closure gate the interior of the vestiule is sealed off from the next adjoining compartmented chamber of the autoclave by closing the inner closure gate, the compartmented chamber being then charged with a vaporous
steam medium at a relatively high pressure and temperature. Upon disposition of the truck within the entrance vestibule the outer closure gate thereof is closed, thereby sealing the interior of the entrance vestibule, following which steam under pressure equal to that in the autoclave proper is introduced into the sealed interior of said vestibule by way of a valve controlled conduit. In this condition of the apparatus, the interiors of the entrance vestibule and the compartmented chambers of the autoclave are under equalized internal pressure, thus permitting the inner closure gate to be opened and the truck shifted into the compartmented chamber of the autoclave.

After the truck is thus shifted from within the entrance vestibule into the autoclave proper, and while the internal pressures of the said vestibule and the autoclave are still equalized, the inner closure gate is again closed to seal off the entrance vestibule from the compartmented autoclave, following which the internal pressure of the entrance vestibule is reduced to that of atmosphere by exhausting the high pressure steam therefrom. The outer closure gate of the entrance vestibule is then opened to permit movement of a second truck of articles thereinto, the cycle of operation as just described being repeated for each truck successively fed into the autoclave.

As each truck of articles passes into the compartmented chambers of the autoclave, it is received by a conveyor which moves it therethrough toward the exit vestibule located at the far end of the autoclave, and it is during this movement of the articles through the several treatment compartments of the autoclave that they are successively subjected to the various liquid treating media respectively introduced in the several compartments, for example, in the form of sprays under superatmospheric pressure and at a temperature above 212°F.

As the case of the entrance vestibule, the exit vestibule is also provided with inner and outer closure gates, and when the latter are both closed the exit vestibule is also charged with steam under superatmospheric pressure equal to that of the treating media sprayed into the several compartments of the autoclave proper. As each truck-load of articles undergoing treatment completes its traverse through the autoclave, the inner closure gate of the exit vestibule is opened to permit free passage of the truck into said vestibule, whereupon said inner gate is reclosed and the internal pressure of the exit vestibule is reduced to that of atmosphere by exhausting the high pressure steam by way of a suitably valved conduit. Thereupon the outer closure gate of the exit vestibule is opened to permit discharge of the finished articles from the autoclave, each truck being successively shifted to and through the exit vestibule when the articles have been completely treated in the compartmented section of the autoclave. Thus, the exit vestibule operates in a manner similar to that of the entrance vestibule to successively accept the several trucks of articles without effecting any reduction of the pressure and temperature of the treating media within the several intercommunicating compartments of the autoclave.

It will be understood, of course, that it is among the objects and aims of the present invention to provide an apparatus which will efficiently operate as above described and that still other objects and advantages will be apparent from the detailed description of the present invention as hereinafter set forth.

It will be understood also that the present invention consists not only in the combination, construction, location and relative arrangement of parts as shown in the accompanying drawings, but also in the novel continuous method of treatment made possible by the apparatus of the present invention, all as will appear more fully hereinafter and as finally pointed out in the appended claims.

In the accompanying drawings, which are illustrative of a preferred form of apparatus constructed in accordance with and embodying the principles of the present invention:
chambers 31 and 33 disposed at opposite ends thereof for communication therewith.

The front end chamber 31 serves as an entrance vestibule through which the boarded truck-supported articles to be treated by the apparatus employed in the practice of the method of the present invention gain access to the normally sealed intermediate compartment chamber 32 of the autoclave, while the rear end chamber 33 serves as an exit vestibule through which the treated articles pass upon discharge from the sealed interior of the chamber 32. This latter chamber is that in which the articles receive their required treatment, said chamber being maintained sealed to atmosphere and being adapted to be charged in successive zones thereof with different treating media consisting of suitably prepared liquids introduced into the chamber by sprays or nozzles at suitable super-atmospheric pressure and at a temperature sufficiently high to provide with the steam in the autoclave a temperature capable of permanentizing the set of the fabricated articles as shaped upon their sustaining forms.

It will be noted that these chambers 31, 32 and 33 are so correlated as to permit the articles to be treated to be successively passed in a continuous line therethrough, each article being thus uniformly subjected to the same sequence of treatments. Preferably, the intermediate treatment chamber 32 of the autoclave is in the form of a large cylindrical shell disposed horizontally for accommodating a plurality of article-supporting trucks placed end to end, while each of the entrance and exit vestibules 31 and 33 essentially comprises a cylindrical shell, disposed vertically with its inner side in suitable communication with the adjoining end wall of the chamber 32.

Each of the vestibule chambers 31 and 33 is provided with a gateway 36 in its outer side adapted to be closed by a pivotally mounted outer closure gate 37. The outer gateway 36 is generally rectangular in shape and is disposed vertically lengthwise of the associated vestibule chamber, while its closure gate 37 is similarly shaped, the latter being curved in transverse cross section to the same radius as that of the cylindrical part 31e of the associated vestibule chamber and disposed interiorly of said cylindrical part for engaging an inwardly facing gasket element 38 suitably disposed about the perimeter of the outer gateway 36. The outer closure gate 37 of each vestibule chamber is provided with a pair of relatively spaced ears 39—39 formed integrally with a central upper end portion thereof and projecting inwardly therefrom, and disposed between the ears 39—39 is an end portion 41 of a horizontally disposed member 42 also extending inwardly from the outer closure gate 37 diametrically across the cylindrical part of the associated vestibule chamber, the freely extending opposite end of member 42 being provided with a counter-weight 43. Aligned opening in the ears 39—39 and in the end portion 41 of the member 42 receive a pivot pin 44 which affords free swinging movement of the outer closure gate 37 about the horizontal axis of said pivot pin from which the gate is suspended.

Formed in the member 42 intermediate the ends thereof is a socketed boss 42a which freely receives the lower end of a vertically extending shaft 46 disposed with its axis coincident with that of the cylindrical part 31e of the vestibule chamber, the shaft 46 being journaled in a member 47 suitably supported in the top end of said cylindrical part 31e for pivotal movement about a vertical axis by means of operating mechanism to be presently described. The exit vestibule closure gates 37—37 being each thus operable to swing through arcs of approximately 360° to close or open each of the outer gateways 36—36 of the vestibule chambers 31 and 33.

The vestibule chambers 31 and 33 are respectively suitably connected to the opposite end walls of the intermediate chamber 32 of the autoclave by tunnels 48 and 49, each of the latter being rectangular in transverse cross-section and extending well through the proximate end wall of the chamber 32. Each of the tunnels 48 and 49 corresponds in transverse cross-section with that of the outer gateways 36—36 of the vestibule chambers 31 and 33, the said tunnels being disposed in longitudinal alignment with said gateways 36—36 for movement of the trucks 34 continuously through the autoclave 30.

The open inner ends of the tunnels 48 and 49 which are located interiorly of the chamber 32, are respectively adapted to be closed or opened by inner closure gates 52—52, which are respectively provided with the outer closure gates 37—37 and are mounted in a similar manner, being moved into opened or closed position by suitable operating mechanism to be presently described. The outer closure gates 37—37, when closed, serve to hermetically seal the interior of the autoclave from atmosphere when the autoclave is internally charged with treating media introduced at super-atmospheric pressure, preferably at a temperature of 225° F. or more and at a super-atmospheric pressure of 5 pounds per square inch or more above atmospheric. The inner gates 52—52 serve to seal off the entrance and exit vestibule chambers 31 and 33 from the interior of the intermediate chamber 32 of the autoclave when one or the other of the outer closure gates 37—37 is open, thereby maintaining within the chamber 32 the desired operating temperature and pressure employed in the treatment of the articles passing through the autoclave.

In this connection, suitable means, not shown, are provided for exhausting the internal super-atmospheric pressure of either vestibule chamber 31 and 33 before opening the outer closure gate 37 associated therewith, and for re-establishing the pressure in the exhausted chamber to that in the chamber 32 when such outer closure gate 37 is closed and the associated inner gate 52 is to be opened. The internal super-atmospheric pressure referred to may be exhausted to atmosphere, while the means for re-establishing the pressure in either vestibule chamber to equalize that in the treatment chamber 32 may be independent of that employed for injection of the vaporous pressure medium into chamber 32. It will be apparent, of course, that neither of the outer closure gates 37—37 will be tightly sealed except when the pressure in the associated vestibule chamber exceeds that of atmosphere, nor will either of the inner closure gates 52—52 be tightly sealed except when the pressure in the intermediate chamber 32 exceeds that in the particular vestibule chamber with which the inner closure gate is operatively associated.

As most clearly shown in FIGURES 5, 11, 12 and 13, the autoclave 30 is suitably fitted with a guide track arranged to receive trucks 34 for movement in a continuous line therethrough. This guide track comprises a pair of rails 53—53, each of the latter being simply formed of a suitable length of right-angular metal stock disposed horizontally to provide a rail of inverted-V-shape. The rails 53—53 are continuous throughout the autoclave apparatus except in the intermediate regions of traverse of the closure gates 37—37 and 52—52, the continuity of the rails being there broken, as at 54, to permit movement of the gates into their opened and closed positions.

FIGURES 25, 26, and 27 show a preferred form of one of the trucks 34 comprising a wheeled frame 56 mounting article-carrying forms 57, which, in the illustrated instance, are boxtype forms. The frame 56 is rectangular in top plan, and is preferably provided with three pairs of suitably mounted longitudinally spaced wheels 58 having grooved rims which engage the rails 53—53. The frame 56 is provided with transversely extending, longitudinally spaced front and rear members 59 and 61, longitudinally extending, transversely spaced side members 62 and 63, and longitudinally spaced, transversely extending stiffener members 64, all being secured together, as by welding, to form a rigid frame structure. Preferably, the several forms 57 are spaced apart by spacer plates 66.
A shaft 67, which extends longitudinally through the stiffener members 64 in close proximity to one side member 62 of the truck, is rigidly secured at its opposite ends to the transverse front member 59 and the transverse rear member 61. The article-carrying forms 57, which are suitably mounted for independent pivotal movement on the shaft 67, are adapted to be swung into their full line position shown in FIGURE 26, in which position they are supported by an inwardly turned flange 68 formed along the upper edge of the side member 63 of the truck, or into their inclined dotted line position also shown in FIGURE 26.

An intermediate portion of the transversely extending front member 59 disposed to one side of the central longitudinal axis of frame 56 suitably mounts a spring-pressed latch member 68 for pivotal movement about a horizontal transverse shaft axis. This latch member is provided with a pair of angularly related arms 69 and 71, the former extending forward from the pivotal axis 70 and under transversely extending front member 59, and the latter extending rearward and downward from the pivotal axis, as best shown in FIGURES 18 and 27. The forward end portion of arm 69 terminates in a hook-shaped element having a rounded front end 72 and a straight rear edge 73, the latch being normally biased for counterclockwise pivotal movement by a suitably mounted coil spring 74, as best shown in FIGURES 18 and 25. The bottom edge of an intermediate portion of the transversely extending rear member 61 of each truck is beveled, as at 76 (see FIGURE 18).

Operatively associated respectively with the outer gates 57—57 of the chambers 31 and 33 are operating mechanisms 77—77 suitably mounted on base plates 78—78 each of which is rigidly supported on the top of the auto-clave 39 as clearly appears in FIGURES 1, 2, 19 and 20. Each mechanism 77—77 includes a fluid-pressure cylinder 79 having a piston 81 operatively connected to the pivot shaft 46 of the associated gate 37 through a line 82 and a lever 83. Upon operation of the cylinder 79, through suitable pressure means operatively delivered thereto by way of suitable conduits (not shown), the shaft 46 may be actuated to alternately close and open its associated outer closure gate 37.

Similarly mounted upon the base plates 78—78 are operating mechanisms 84—84 for respectively closing and opening the inner closure gates 52—52, these latter operating mechanisms being in all material respects identical to those just described for operation of the outer closure gates. Thus, each includes a fluid pressure cylinder 86 and a reciprocable piston 87, which latter is operatively connected to its associated pivot shaft 46 by a link 88 and a lever 89. The operation of the mechanisms 77—77 and 84—84 for closing and opening the outer closure gates 37—37 and the inner closure gates 52—52 of the chambers 31 and 33 may be effected by any desired control means (not shown) located at any point convenient to the operator in charge of the apparatus, which control means may be in the form of manually or electrically operable valves for controlling the supply of the pressure fluid to the pressure cylinders 79—79 and 84—84 of the operating mechanisms and for timing the operation thereof.

In order to shift the truck 34 with its load of articles to be unloaded through the chamber 31 of the entrance vestibule, the apparatus of the present invention includes a fluid-pressure-operated pusher mechanism 91 (see FIGURES 11 and 13) essentially consisting of fluid-pressure cylinder 92 mounted upon and extending outwardly from the front end wall of chamber 31. Operatively associated with this cylinder 92 is a horizontally reciprocable piston 93 having a free end fitted with a roller 94 and with a truck-engaging pusher member 96 pivotally connected to said piston for swinging movement about a horizontal axis, said pusher member 96 being normally spring-pressed upward to engage behind the truck 34 when the latter has been shifted into its position within the chamber 31, as shown in FIGURE 11. It will be apparent that upon projection of the piston 93 under the influence of its fluid-pressure-operated cylinder 92, the free end thereof will move from the broken line position into the full line position shown in FIGURE 11, during all of which movement it will be supported, by the roller 94, upon the floor 196 of the tunnel which extends from the interior of the chamber 31 into the interior of the main chamber 32 of the autoclave.

To move the truck 34 through the chamber 32, the apparatus of the present invention is provided with a conveyor essentially consisting of an endless chain 97 trained over suitably supported idler sprockets 98 and 100 and a drive sprocket 99, the sprocket 98 being disposed adjacent the fore end of the chamber 32 and the sprocket 99 being disposed adjacent the opposite or rear end of said chamber. The upper run of the conveyor chain 97 is supported, as best shown in FIGURE 5, by a suitably mounted channel member 101 (see FIGURE 5), while the lower run of chain 97 is suitably supported by a pair of angle members 102—102. The conveyor chain 97 is provided with equally spaced pusher elements 103, and to properly tension the chain 97, the lower run thereof is trained over suitably arranged additional idler sprockets 104, 106 and 107.

To shift the truck 34 through the exit vestibule 33, the apparatus of the present invention includes a fluid-pressure-operated puller mechanism 108 essentially consisting of a fluid-pressure cylinder 109 mounted upon and extending outwardly from the rear end wall of chamber 33. Operatively associated with the cylinder 109 is a horizontally reciprocable piston 111 having its free inner end fitted with a roller 112 and with a truck-engaging puller member 113 rigidly associated therewith and adapted to engage the latch member 68 of each truck 34 when the latter has been advanced into position in chamber 32 shown in broken lines in FIGURE 12. It will be apparent that upon retraction of the piston 111 under the influence of its fluid-pressure-operated cylinder 109, the free end thereof will move from its broken line to its full line position shown in FIGURE 12, during all of which movement it will be supported, by the roller 112, upon the floor 110 of the tunnel 99 which extends from the interior of the chamber 32 into the cylindrical shell 33 of the exit vestibule 33.

The bottom of chamber 32 is divided into a plurality of separate basins by transversely extending, vertically disposed partition plates 114, the bottom edges of the latter being respectively shaped to fit the interior of chamber 32, and being suitably secured thereto, as by welding. The upper edge 116 of each plate member 114 is straight and disposed horizontally, each of said edges being centrally cut out, as at 117, to provide a series of longitudinally aligned notches. Rigidly secured to each member 114 is an angle member 118 disposed with its upper branch in horizontal position to bridge the notch 117 of the member 114. Also secured rigidly to each partition plate member 114 in vertically spaced, parallel relation to the member 118 is a second angle member 119, which is centrally notched, as at 121. As most clearly shown in FIGURE 5, the transversely extending angle members 118 support thereon the longitudinally extending rails 53—53 and the guide channel 191 for the upper run of the conveyor chain 97, while the transversely extending angle members 119 support thereon the angle members 102—102, the latter being disposed with their coplanar horizontal legs in laterally spaced relation. The upper run of the conveyor chain 97 moves over channel member 101 with the pusher elements 103 extending upward therefrom, while the lower run thereof moves over the angle members 102—102 with the pusher elements 103 extending downward therefrom, and passing laterally spaced toes of the angle members 102—102 and through the notches 121 of the members 119. The par-
tion members 114a, 114b and 114c are all generally similar to members 114, but are modified somewhat to meet the special conditions existing at the opposite ends of the conveyor chain 97.

The main chamber 32 of the autoclave is divided into a number of adjoining compartments by a plurality of partitions each comprising three substantially co-planar panel members 122, 123 and 124 adapted to be mounted in vertical extension of each of the transverse base members 114. The members 122 and 123 are similar but opposite hand, and are disposed on opposite sides of the central member 124. The lower end portions of members 122, 123 and 124 are respectively shaped to provide downwardly presented channel portions 126, 127 and 128 adapted to be seated upon the upper edge 116 of their supporting base member 114, as best shown in FIGURE 7. The outer edges of the members 122 and 123 are shaped in general conformity with the interior of the chamber 32, and are suitably fitted with gasket elements 129. Welded to each of the plate members 122 and 123 is a reinforcing and stiffening member 131 of the general shape best shown in FIGURE 5, each such member 131 being provided with a pair of oppositely extending terminal ends 131a and 131b. The upper terminal ends 131a are provided with aligned openings to freely receive a threaded bolt 132 having a pair of nuts 133—133 which operate in association with the bolt to press the plate members 122 and 123 away from each other and into firmware edge contact with the internal side walls of the chamber 32. The lower terminal ends 131b—131b of the stiffening members 131—131 are disposed respectively in inwardly spaced relation with respect to a pair of laterally spaced brackets 134—134 rigidly secured, as by bolts 136 (see FIGURE 8), to each of the base members 114. Take-up bolts 137—137 project through aligned openings in the brackets 134—134 and the lower terminal ends 131b—131b and are fitted with nuts 138—138 which operate, when tightened, to draw the plate members laterally apart and into firm peripheral edge contact with the internal wall surface of the chamber 32.

The central plate member 124 is centrally cut out, as at 143, to provide an opening through which the articles undergoing treatment may pass as they traverse the autoclave, this opening being generally of a shape conforming more or less closely to the shape of the boarded article, e.g., a stocking as shown. Preferably, the perimeter edges of the openings 143 in each of the transverse partition assemblies is fitted with a gasket 144 of rubber or other suitable material to protect the fabric of the boarded article against possible injury should it engage the edge of the opening during its passage therethrough. As most clearly appears in FIGURE 5, the openings 143 are each closed at their bottom end to provide adequate clearance for passage therethrough of the transverse partitions 34 upon which are mounted the boarded articles (e.g., stockings as shown).

In certain instances, it may be desirable to provide each of the transverse partition assemblies (conjointly formed of the members 122, 123 and 124) with a cowl arrangement as illustrated in FIGURES 9 and 10 and which consists generally of a sheet metal plate member
In order to move the truck 34 along the external return rails 166—166, two endless chain conveyors 5 are provided, one essentially consisting of an endless chain 168, trains over sprockets 169 and 171. The other endless chain 172 trains over sprockets 173 and 174. The chain 168 is provided with a number of suitably spaced pusher elements 176, while the chain 172 is provided with only one such element 177.

Upon completion of its movement along the rails 166—166, the truck 34 is received by a pair of rails 178—178 fixed by a closed lateral transfer truck 179. The latter is similar in construction to lateral transfer truck 154, being arranged to move over a pair of fixed rails 181—181, which are suitably supported on a frame structure 182. A fluid-pressure-operated mechanism 183, similar in construction to the fluid-pressure-operated mechanism 186, is provided to shift the transfer truck 179 along the rails 181—181, while a fluid-pressure-operated mechanism 184, similar to the fluid-pressure-operated mechanism 162, is provided to push the truck 34 from the rails 178—178 on to the rails 53—53 and into the entrance vestibule 31 of the autoclave.

In then it will be seen that the article-supporting truck 34 is moved from the broken line position thereof within the entrance vestibule 31 (as shown in FIGURE 11) to the next preceding full line position thereof in chamber 32 by extension of piston 93 from the broken line position into the full line position thereof. In the full line position of truck 34 just referred to, the front end thereof abuts the rear end of the next preceding truck 34, these trucks being thereby coupled together by engagement of the hooked arm 69 of latch 68 of the trailing truck with the rear member 61 of the leading truck as most plainly shown in FIGURE 18. In this connection, it will be noted that while the said trailing truck is not positively engaged by any of the pusher elements 103 of the endless conveyor chain 97, as is apparent from a study of FIGURES 11 and 15, the truck immediately ahead of it is in position to be engaged by one of said pusher elements of the conveyor chain. As the latter truck is thus engaged by the conveyor and is moved forwardly through the chamber 32, it pulls the coupled trailing truck with it until the arm 71 of the aforesaid latch 68 engages a fixed trip bar 186 (see FIGURES 15 and 16) as shown in the broken line position of said latch 68 is freed to swing downward out of engagement with the rear member 61 of the leading truck, the truckings being thus uncoupled, as plainly shown in FIGURES 16 and 17, from which it will also be seen that the uncoupled trailing truck is not positively engaged by a pusher element 103 of the conveyer chain until it is separated somewhat from the leading one of the uncoupled trucks.

When an article-supporting truck 34 reaches a position slightly in advance of the last full line position thereof shown in FIGURE 12, the conveyor chain pusher element 103, which has moved it to such position, moves downward out of engagement therewith, whereas said truck is engaged by the next following truck and is pushed by the latter into its broken line position shown in FIGURE 12, the engaged trucks being meanwhile recoupled by the latch member 68. As the leading truck assumes its last mentioned dotted line position, the latch member 68 is again tripped by a suitably positioned fixed trip bar 187, whereupon the trucks are again uncoupled, as shown in FIGURE 12.

In the broken line position of the truck-pulling piston 111 shown in FIGURE 12, the extension 113 thereof engages the arm 71 of the latch member 68, as most plainly shown in FIGURE 14, whereupon, when the piston 111 is retracted to its full line position thereof, the article supporting truck 34 is pulled into the exit vestibule 33 wherein it assumes the dotted line position as shown. In this position, the arm 69 of latch member 68 is engaged by the freely extending hooked end 152 of the piston 151, as plainly shown in FIGURE 14A, which latter, when retracted, operates to pull the article-supporting truck out of the exit vestibule 33 onto the rails 153—153 of the lateral transfer truck 54. This latter truck is moved to and from along the rails 156—156 by extension and retraction of the piston 161, may thus be disposed in position so that the rails 153—153 carried thereby are in alignment with the external rails 166—166 (see FIGURE 2) whereupon, by projection of the piston 164, the article-supporting truck 34 is shifted from the rails 153—153 onto the rails 166—166.

At this point the article-supporting truck 34 is engaged by a pusher element 176 on the endless chain of the conveyor 168 (see FIGURE 24) and moved at a comparatively slow rate along the external rails 166—166 to allow sufficient time for the operations of drying the treated stockings and of stripping the dried stockings from the forms 57 and replacing them with other stockings to be treated. Preferably, the conveyor 168 traverses a suitably heated drying chamber 168 to complete the drying of the stockings as soon as possible after their introduction to the autoclave.

When the truck 34 has traveled about half the length of the rails 166—166, the pusher element 176 of the chain conveyor 168 moves downward out of engagement therewith following which the single pusher element 177 on the endless chain of the conveyor 162 engages such truck and moves it at a comparatively fast rate over the remainder of the rails 166—166 and on the rails 178—178 of the transfer truck 179, which latter is then moved along the transverse rails 181—181 by projection of the piston 183 of the fluid-pressure-operated mechanism 183. When retracted, such piston 183 positions the transfer truck 179 so that the rails 178—178 carried thereby are in alignment with the rails 166—166, and when extended, such piston positions the transfer truck 179 so that the rails 178—178 thereof are in alignment with the rails 53—53 extending through the autoclave. In this latter position of the transfer truck 179, the piston of the fluid-pressure-operated mechanism 184 is projected to push the truck 34 off the rails 178—178 and along the rails 53—53 to the broken line position shown in FIGURE 11.

Of course, while the truck 34 is passing into the entrance vestibule 31, the outer gate 37 of the latter must be open, and while this outer gate 37 is open, the inner gate 52 of said vestibule will be closed. When the article-supporting truck 34 has assumed the broken line position in the vestibule 31, as shown in FIGURE 11, the outer gate 37 is closed behind it. Truck 34 enters the vestibule 31, the piston 93 is in its retracted position, while its pivoted spring-pressed arm 96 is in the broken line position shown in FIGURE 11. Continued movement of the truck 34 into the entrance vestibule brings it into contact with the sloping back of the arm 96, which is depressed by the truck while the latter passes over it, following which the pivoted arm 96 springs upward to engage the back end of the truck, as shown in FIGURE 11.

While the truck 34 is passing from the main chamber 32 of the autoclave into the exit vestibule 33, the inner gate 52 of the latter is open, and the outer gate 37 thereof is closed. When the truck 34 has assumed the broken line position thereof in the exit vestibule 33 shown in FIGURE 12, the inner gate 52 is closed behind the truck and the outer gate 37 is opened before it. As will be apparent, numerous breaks occur at the additional breaks occur between the latter and the rails 166—166 on the one hand and the rails 153—153 and 175—175 on the other. In order to provide for smooth passage of the truck 34 over these breaks, the truck 34 is fitted with a set of six wheels 58 instead of only four wheels with the wheel spacing such that at least four of the wheels will bear solidly on the rails at all times.
Each of the treatment materials is preferably circulated through a separate conduit system, the piping of which is shown in FIGURES 1 and 2 to provide laterally spaced spray nozzle manifolds. The dye liquid is passed through a heater that heats it to the desired temperature and thence through a pump for discharge from the spray nozzles at superatmospheric pressure. The other treatment liquids, such as those employed for scouring, rinsing, etc., are similarly delivered to and discharged from the sprays or nozzles at the desired elevated temperature and superatmospheric pressure, the interior of the compartmented autoclave chamber 32 being thus constantly charged throughout as aforesaid with hot treatment media in a vaporous super-atmosphere under atmospheric pressure and at a temperature capable of setting the synthetic yarn fabric into its boarded shape. Of course, the sprays or nozzles are arranged so that the liquid discharged therefrom reaches every part of the article being treated. The excess of the treating liquids discharged upon the articles collect in the bottom of the several compartments from whence they are suitably drawn off. In the case of the dye liquid, the excess of the latter is preferably returned to the supply tank therefor wherein it may be periodically checked for quality, concentration and quantity and supplemented as desired with additional dye. When it is desired for any reason to cool the apparatus quickly, the interior of the autoclave may be sprayed with cold water by any suitable means, such as, for example, cold water spray conduits 147—147.

It will be apparent that the number and size of the several compartments in the main chamber 32 of the autoclave are variable. For example, the panel 122, 123 and 124 of any partition assembly may be removed entirely to make one less compartment, or an additional set of such panels may be added for association with any one of the fixed plate members 114 to make up still another compartment. Or, such partition assemblies may be relatively disposed otherwise than as shown to change the size of the compartments in the autoclave. Of course, when the size and/or number of compartments is changed it will be necessary to make corresponding changes in the arrangement of the spraying coils. At times it may be convenient to use more than one compartment for a single treatment rather than one large compartment.

In erecting the panels 122, 123 and 124 to complete a partition, it will be apparent that the gasket elements 129 may be forced tight against the internal wall of chamber 52 by properly manipulating the threaded members 132 and 137. The panel 134 is made removable so that it can be replaced by another such panel which will then accommodate a differently shaped form, and it will be noted that as the stockings or other articles pass therethrough they operate completely the separation of the compartments from one another.

Instead of a article-supporting truck 34 functions to pull its next succeeding truck into position to be engaged by the pusher element 163 of the endless chain conveyor 97, at the same time that it functions to push the next preceding truck into position to be engaged by the arm 113 rigidly fixed to the pull piston 111 operating within the exit vestibule 33, it will be apparent that the apparatus requires the use of a plurality of trucks 34 moving in tandem relation along a continuous line of travel through the autoclave proper. However, it will be understood, that not all the trucks need be loaded with articles to be treated, the unloaded trucks serving merely to advance the preceding and following truck in properly timed sequence.

In operation of the apparatus as hereinbefore described, it is understood that prior to entry of any of the boarded articles to be treated into the main chamber 32 of the autoclave, the several treating media to which the articles are to be subjected will be sprayed in finely subdivided state at the required elevated temperature and superatmospheric pressure in the separate compartments of the main treatment chamber, whereby the whole interior of the latter with the hot media in a vaporous (steam) atmosphere capable of setting the articles permanently into the shape determined by their supporting forms. Of course, when the treating media is so introduced into the autoclave chamber 32, the inner closure gates 52—52 will be in their closest positions and will be pressed tightly against their respective gateways by the superatmospheric pressure of the vaporous medium in said chamber 32 to maintain it hermetically sealed off from atmosphere.

In this initially internally charged condition of the autoclave, the outer closure gate 37 of the entrance vestibule 31 will be open to permit the entry into said vestibule of a suitably loaded article-supporting truck 34, this truck being propelled into the entrance vestibule by the piston of the fluid-pressure-operated mechanism 184. Once said truck 34 is disposed entirely within the entrance vestibule 31, the outer closure gate 37 thereof is closed (by means hereinbefore described) and gate 52 at said said vestibule is then charged with steam at superatmospheric pressure substantially equal to the pressure of the steam contained in the main chamber 32 of the autoclave. Upon so equalizing the pressures within the chambers 31 and 32, the inner closure gate 52 may then be opened, following which the given truck 34 is propelled by the fluid-pressure-operated piston 93 into the chamber 32 where it is engaged by the chain conveyor 97 for continued movement through the several compartments of the main treatment chamber 32 of the autoclave.

Upon such movement of the truck 34 from the entrance vestibule 31 into the autoclave chamber 32, the inner closure gate 52 is reclosed, the internal pressure of said vestibule is exhausted (to atmosphere or otherwise), and the outer closure gate 37 is then reopened to permit entry of a second truck into the entrance vestibule, which, by the same procedure as above described, is subsequently moved into the autoclave chamber 32 without any reduction in the internal operating pressure of the latter.

It will be understood, of course, that the inner closure gate 52 is opened only when the outer closure gate 37 is closed and the chamber therebetween is charged with steam at a pressure sufficient to equalize that of the main chamber 32 of the autoclave; and that the outer closure gate 37 is opened only when the inner closure gate is closed and after the pressure in the chamber therebetween is reduced to that of atmosphere. These same conditions operate both for the entrance vestibule 31 and the exit vestibule 33.

As each truck in the continuous line series thereof is moved into the autoclave chamber 32, it latches on to the next preceding truck and remains so latched until it is pulled into position to be itself engaged by the chain conveyor 97. When a given truck in the line of the conveyor-propelled trucks approaches the exit end of the autoclave chamber 32, the inner closure gate 52 is reclosed, the internal pressure of the exit vestibule 33 is exhausted (to atmosphere or otherwise), and the outer closure gate 37 at the exit end of the exit vestibule is then reopened to permit withdrawal of the truck 34 by means of the puller piston 151 of the fluid-pressure-operated mechanism 148, which latter operates to position the article-supporting truck 34 upon the lateral transfer carriage 154.

This latter carriage shifts back and forth along the
lateral rails 156—156 to successively shift the several article-supporting trucks 34 from a position in line with the autoclave tracks 53—53 into a laterally displaced position in line with the external conveyor tracks 166—166, onto which latter tracks each of the article-supporting tracks 34 is successively propelled by the piston 164 of the fluid-pressure-operated mechanism 162.

The several trucks 34 are then propelled successively along the external tracks 166—166 through the drying, stripping and boarding zone first at a reduced speed and thence at an increased speed to the station whereon the article-supporting trucks are transferred to the lateral transfer carriage 179 which is shifted back and forth, by the piston of the fluid-pressure-operated mechanism 182, along the laterally extending tracks 181—181, the several article-supporting trucks 34 being thereby successively disposed in position for transfer, by the piston of the fluid-pressure-operated mechanism 184, into the entrance vestibule 31 of the apparatus.

It will be understood, of course, that the trucks 34 move continuously, that the timing of the apparatus as a whole must be such that the position of each truck 34 at a selected instant during the operation of the apparatus is occupied by the following truck 34 within a selected period of time, and that the operation of closure gates 37 and 52 and the ejection of, and the building up of, the pressure in the entrance and exit chambers 33—33 must be properly timed in relation to the movement of trucks 34.

Of decided advantage in the practice of the present invention is the fact that the apparatus hereinbefore described facilitates "setting" of articles knitted of synthetic yarn, such as nylon, while in their boarded condition and during the course of treatment in the apparatus. Ordinarily, this setting commences during the period that the boarded articles remain in entrance vestibule leading into the main treatment chamber of the autoclave; the entrance vestibule constituting in itself a form of autoclave the interior of which is filled with steam or other vaporous medium under superatmospheric pressure and at a temperature elevated sufficiently to insure setting of the fabric stitches into permanentized relation and shape.

Inasmuch as the pressure and temperature of the several treating media sprayed into the main compartment chamber of the autoclave are of substantially the same pressure and temperature as that of the steam which pervades the entire autoclave and which is introduced into the entrance vestibule (and into the exit vestibule), it will be apparent that the setting may be completed at any desired stage during the course of travel of the boarded articles through the autoclave apparatus. Thus, setting, if desired, may be effected during the period that the articles are temporarily confined within the entrance vestibule preliminarily to transfer thereof into the main treatment chambers 32 of the apparatus, or such setting may be effected only partially in the entrance vestibule and then completed in one or another of the compartments in said main treatment chamber as the articles successively pass therethrough.

In certain instances, the setting may be completely effected during the scouring treatment, while in other instances, it may be desirable to delay complete setting until a later stage of treatment of the articles in the chamber 32, as, for example, during the course of rinsing or dyeing the same. In any event, setting of the article fabric is accomplished during the course of travel of the articles through the uniformly pressurized interior of the autoclave apparatus and while the articles are in boarded condition ready to be successively subjected to various treating media. Thus, the articles, once boarded, remain boarded throughout the entire course of treatment to which they are subjected and are stripped from their supporting forms only when they have been completely finished and are dried ready for pairing, labeling and packaging.

While it may be unnecessary to establish a precise point at which setting of the article within the autoclave apparatus is completely effected, so long as such setting is actually effected prior to discharge of the articles from the exit vestibule of the apparatus, the point at which complete setting takes place may be advanced or retarded, as desired, by suitably changing the speed of travel of the boarded articles through the autoclave, or by changing the pressure and temperature of the fluent media in the several chambers of the apparatus while maintaining the speed of travel of the articles therethrough at a predetermined fixed rate. Preferably, the apparatus of the present invention is used with the fluent media at pressures of from 5 to 50 pounds per square inch above atmosphere and at temperatures of from 225° F. to 330° F. Of course, the period required for setting of the fabric decreases with increase in pressure and temperature of the fluent media employed, and vice versa, while stated as the overall period of confinement of the boarded articles within the several communicating chambers of the autoclave apparatus may be varied, as may be required in accordance with changes in the pressure and temperature of the fluent media, by changing the speed of travel of the articles through the autoclave apparatus.

As has been already indicated the speed of travel of the articles through the several chambers of the autoclave may be varied as desired to accord with the effectiveness and speed of treatment of the different treating media to which the boarded articles are successively subjected, which treating media are primarily the sprayed scouring, rinsing and dyeing liquids. It will be understood, however, that the speed of travel of the articles once the same has been predetermined for a given run of articles to be treated, will be maintained at a uniform rate throughout the several chambers of the autoclave.

It has been found that for satisfactory operation of the autoclave apparatus of the present invention, the scour compartment may have an effective length of 40 inches, the first rinse compartment an effective length of 20 inches, the second rinse compartment an effective length of 20 inches and the dye compartment an effective length of 40 inches. The lengths of the entrance and exit vestibules may each be such as to conveniently receive between the outer and inner closure doors thereof at least one of the trucks 34, which latter are each designed to support thereon a suitable number of the articles to be treated.

In the case of hosiery, each truck preferably carries one dozen stockings, although it may be designed to carry a greater number of articles. It has also been found that a satisfactory rate of travel of the articles to be treated through the several treatment compartments, namely, scour, #1 rinse, #2 rinse, and dye, may be about 20 inches per minute for a relatively slow operating cycle and about 26.7 inches per minute for a relatively fast operating cycle. Thus, where the scour and dye compartments are each 40 inches while the rinse compartments are each 20 inches in effective length, at the relatively slow speed of operation just mentioned the articles would be subjected for about 2 minutes to each of the scouring and dyeing media and for about one minute to each rinse. At the relatively fast speed of operation, the articles would be subjected for about 90 seconds to each of the scouring and dyeing treatments and for about 45 seconds to each of the two rinse treatments. It will be understood, of course, that the above mentioned figures are by way of example, and that they may vary within reasonable limits depending upon operating exigencies and requirements.

While there are available for successful use in practicing the method of the present invention various scouring and dyeing liquids of different formuals, and although the present invention is in no way intended to be limited to the use of any particular scour or dye, the following...
formule are set forth as examples of those which may be satisfactorily employed:

Typical Scour Concentrate

(a) Aminoxy phenyl polyethylene glycol... cc. 50 (E.g. "Triton X-100" manufactured by E. I. du Pont de Nemours Company, Wilmington, Del.)
(b) Solvent for fatty materials, such as oil of the following formula or its equivalent... cc. 10
(c) Perchlorethylene... 10
(d) Cetyl alcohol... 7.5 to 10
(e) Tetra hydro naphthalene... 65 to 70
(f) Water... 1.5

(An equivalent for this solvent is "Hydron-X," manufactured by E. I. du Pont de Nemours Company, Wilmington, Del.)

(e) Sodium bisulfate... gram...
(f) Water... 20

(f) Sodium bisulfate... gram...
(g) Water... 100

(f) Water, added to above in amount sufficient to produce 1 liter of concentrate.

The concentrate as above prepared is combined with water in the proportion of 1 cc. of the concentrate to 50 cc. of water to produce a typical scouring medium having an adjusted pH of from 9.5 to 10.0 which is suitable for use in the apparatus of the present invention.

Typical Dye Formula

In a typical dye made up primarily of the dyes of the acetate group conventionally used to dye nylon hosiery, the following compounds in the amounts stated are added per liter of water:

(a) Anice yellow G... 0.0089
(b) Anice red Viola... 0.0077
(c) Eastman blue RSC... 0.0081
(d) Dibasic sodium phosphate... 0.1
(e) Monobasic sodium phosphate... 0.12
(f) Phosphoric acid (85% concentration)... 0.0098

The above dye formula is for a tan color and is adjusted by its phosphoric acid content to a pH of about 7.0.

Rinse

Ordinarily the rinse consists of water heated to the same temperature as that of the scour and dye and introduced into the rinsing compartments at a pressure equal to that of the scour and dye. If desired, however, the rinse water may be supplemented optionally by the addition thereto of a manifold wetting agent or agents.

The scouring and the dye liquids are respectively delivered into the scour and dye compartments at a rate of approximately 30 gallons per minute, while the rinse is delivered into each of the rinse compartments at a rate of approximately 15 gallons per minute. Of course, these discharge rates of the treatment liquids may be varied within reasonable limits, although those just stated appear from experience to be most satisfactory when the apparatus is operated to move the articles through the successive treatment chambers of the autoclave at a rate of travel of from 20 to 30 inches per minute. Obviously the discharge rate of the liquids may be changed accordingly as the articles to be treated are moved more or less rapidly through the autoclave in order to insure the most effective application of the several treatment liquids.

As has already been indicated, each of the several treatment liquids, namely, scour, rinse and dye, is first suitably preheated to a temperature substantially equal to that of the steam previously introduced into the entrance and exit vestibules of the autoclave, and is then introduced into its proper compartment at a temperature substantially equal to that of the steam in the autoclave. Thus, where the steam in the autoclave is at a temperature of say 250°F, at a pressure of 15 pounds per square inch above atmosphere, the several treatment liquids will be respectively introduced into the autoclave at temperatures of substantially 250°F, under which condition the interior of the autoclave will be filled with finely divided treatment media in a vaporous atmosphere under a temperature and on the pressure equal to, that is, in balance with, that of the steam contained in the chamber and entrance and exit vestibules of the autoclave, which temperature and pressure, of course, is the predetermined operating temperature and pressure for a given cycle of operation of the apparatus.

It will be understood that in the operation of the apparatus for practicing the method of the present invention, the steam is initially introduced into the entrance and exit vestibules at the desired superatmospheric pressure for operation of the apparatus, the introduction of such steam being continued until all of the several intermediate treatment compartments of the autoclave are uniformly filled with steam at the operating pressure. It will be apparent that the inner closure gates 52–52 of the entrance and exit vestibules will not be sealed and so prevent passage of steam into the intermediate chambers until the latter are themselves under an internal pressure exceeding that of the entrance and exit vestibules. After the full interior of the autoclave, including the entrance and exit vestibules and the communicating compartments therebetween, is uniformly filled with steam at the desired operating pressure, the several preheated liquids are respectively introduced into the vaporous atmosphere of the intermediate treatment compartments, following which the apparatus is ready for operation in the manner hereinbefore described.

In such operation of the apparatus, each of the article-loaded trucks 34 is initially positioned within the entrance vestibule chamber of the autoclave wherein it is permitted to remain subject to the heat and pressure of the steam contained in said chamber for a period of time sufficient to "set" the boards into articles more or less permanent shape and form. For a relatively fast cycle of operation of the apparatus, as, for example, where the rate of travel of the articles through the autoclave compartments is about 25.7 inches per minute, the loaded trucks would remain stationary in the entrance vestibule for a period of about 86 seconds. For a slower cycle of operation, as where the rate of travel through the autoclave is about 20 inches per minute, the loaded trucks would each remain stationary in the entrance vestibule for a period of about 115 seconds before it commenced moving through the successive intermediate treatment chambers of the apparatus.

When the articles are thus subjected to steam treatment in the entrance vestibule for a period of, say, 115 seconds, set of the articles may be completely effected in the entrance vestibule. However, should the period of subject of the bored articles to steam in the vestibule chamber be insufficient to effect complete set as might be the case where the cycle of operation is accelerated in time, the set may be completed during a later stage of treatment of the articles, as, for example, during the course of scouring, rinsing or dyeing the same. As has been previously pointed out, the precise point within the autoclave apparatus at which final setting of the articles takes place is not of primary importance and such point may be advanced or retarded as hereinbefore described.

It will be noted that the autoclave is provided with suitable devices (not shown) primarily for regulating and controlling the temperature of the treating media with which the main chamber 32 is charged, and incidently, the pressure thereof. In addition, it is provided with suitable devices (not shown) primarily for regulating and controlling the pressure of the steam introduced into the entrance vestibule 31 and the exit vestibule 33 so that such steam may be introduced at a pressure sufficient to equalize that of the media in the main chamber 32. As a safety precaution suitable pressure relief valves (not shown) may be provided.
While the method of the present invention is intended for use particularly in the treatment of goods knitted or woven of synthetic yarns which preferably require "setting", it is to be understood that the method is not limited to special use but instead is equally well adapted for the treatment of textile materials of all kinds and character, regardless of the nature of the yarn employed in their fabrication. For example, for the dyeing and drying of hosey knitted of natural silk or other yarns which require no setting, the method would be employed exactly as herein before described, the chamber 31 serving merely as the receiving chamber for each truck 34 passed into and through the autoclave, the hosey being successively secured, rinsed and dyed in the chamber 32. Accordingly, it will be understood that it is not intended to limit the method to solely the treatment of goods fabricated of yarns which require setting; nor is it intended to so limit the present invention as to constitute the setting treatment an indispensable step in the operation or operations capable of being performed by the method of the present invention.

It will be understood, of course, that the present invention is susceptible of various changes and modifications which may be made from time to time without departing from the spirit of or general principles thereof, and it is intended to claim the same broadly, as well as specifically, as indicated in the appended claims.

What is claimed is new and useful is:

1. In the method of setting and dyeing textile articles made of synthetic thermoplastic yarns capable of being heat-set to predetermined shape and dyed at temperatures within the range of 212° F. to 330° F., the steps which comprise mounting said articles on boards conformingly to said predetermined shape, introducing said boarded articles into a treatment zone closed to room atmosphere and containing steam under superatmospheric pressure at a temperature between 212° F. and 350° F., maintaining the boarded articles in said treatment zone at least until said articles are heat-set to said predetermined shape, dying said boarded articles while in said treatment zone with a hot liquid dyeing medium capable of dyeing the synthetic thermoplastic yarns until said boarded articles are dyed to the desired color and maintaining substantially constant said steam conditions throughout said treatment zone during setting and dyeing of the boarded articles therein so that said boarded articles are continuously subjected to substantially uniform temperature while in said zone.

2. In the method of setting and dyeing textile articles made of synthetic thermoplastic yarns capable of being heat-set to predetermined shape and dyed at temperatures within the range of 212° F. to 330° F., the steps which comprise mounting said articles on boards conforming to said predetermined shape, introducing said boarded articles into a treatment zone closed to room atmosphere and containing steam under superatmospheric pressure at a temperature between 212° F. and 330° F., maintaining the articles in said treatment zone at least until said articles are heat-set to said predetermined shape, scouring the boarded articles while in said treatment zone by contacting the same with a liquid scouring medium stable at temperatures within the range of 212° F. and 330° F. and capable of cleansing the yarns being treated, and dyeing said boarded articles while in said treatment zone by contacting them with a liquid dyeing medium capable of dyeing the yarns until said boarded articles are dyed to the desired color and maintaining substantially constant said steam conditions throughout said treatment zone during setting and dyeing of the boarded articles therein so that said boarded articles are continuously subjected to substantially uniform temperature while in said zone.

3. In the method of setting and dyeing textile articles made of synthetic thermoplastic yarns capable of being heat-set to predetermined shape and dyed at temperatures within the range of 212° F. to 330° F., the steps which comprise mounting said articles on boards conforming to said predetermined shape, introducing the boarded articles into a treatment zone closed to room atmosphere and containing steam under superatmospheric pressure at a temperature between 212° F. and 330° F., maintaining said boarded articles in said treatment zone at least until said articles are heat-set to said predetermined shape, scouring the boarded articles while in said treatment zone by contacting them with a liquid scouring medium stable at temperatures within the range of 212° F. and 330° F. and capable of cleansing the yarns being treated, and dyeing said boarded articles while in said treatment zone by contacting them with a liquid dyeing medium capable of dyeing the yarns until the boarded articles are dyed to the desired color and maintaining substantially constant said steam conditions throughout said treatment zone during setting, scouring and dyeing of the boarded articles therein so that said boarded articles are continuously subjected to substantially uniform temperature while in said treatment zone.

4. In the method of setting and dyeing textile articles made of synthetic thermoplastic yarns capable of being heat-set to a predetermined shape and dyed at temperatures within the range of 212° F. to 330° F. by passing said articles through a treatment chamber normally closed to room atmosphere and having entrance and discharge vestibules, the steps which comprise mounting said articles on boards conformingly to said predetermined shape, maintaining steam in said treatment chamber at a temperature between 212° F. and 330° F. under superatmospheric pressure, admitting the boarded articles to said entrance vestibule, equalizing the internal pressure of the entrance vestibule with that of said treatment chamber, conducting the boarded articles from said entrance vestibule into said treatment chamber, maintaining the boarded articles in said treatment chamber at least until said boarded articles are heat-set to said predetermined shape, dyeing the boarded articles while in said chamber by contacting them with a liquid dyeing medium capable of dyeing the yarns until said boarded articles are dyed to the desired color, maintaining substantially constant said steam conditions throughout the treatment chamber during setting and dyeing of the boarded articles therein so that said boarded articles are continuously subjected to substantially uniform temperature while in said chamber, equalizing the internal pressure of the discharge vestibule with that of the treatment chamber, admitting the boarded articles from the treatment chamber to said discharge vestibule, exhausting the pressure from the discharge vestibule while maintaining substantially constant the temperature and superatmospheric pressure in the treatment chamber, and removing the boarded articles from said discharge vestibule.

5. In the method of setting and dyeing textile articles made of synthetic thermoplastic yarns capable of being heat-set to a predetermined shape and dyed at temperatures within the range of 212° F. to 330° F. by passing the articles through a treatment chamber normally closed to room atmosphere and having entrance and discharge vestibules, the steps which comprise mounting said articles on boards conforming to said predetermined shape, maintaining steam in said treatment chamber at a temperature between 212° F. and 330° F. under superatmospheric pressure, admitting the boarded articles to said entrance vestibule, equalizing the internal pressure of the entrance vestibule with that of said treatment chamber, conducting the boarded articles from said entrance vestibule into said treatment chamber, maintaining the boarded articles in said treatment chamber at least until said boarded articles are heat-set to said predetermined shape, dyeing the boarded articles while in said chamber by contacting them with a liquid dyeing medium capable of dyeing the yarns until said boarded articles are dyed to the desired color, maintaining substantially constant said steam conditions throughout the treatment chamber during setting and dyeing of the boarded articles therein so that said boarded articles are continuously subjected to substantially uniform temperature while in said chamber, equalizing the internal pressure of the discharge vestibule with that of the treatment chamber, admitting the boarded articles from the treatment chamber to said discharge vestibule, exhausting the pressure from the discharge vestibule while maintaining substantially constant the temperature and superatmospheric pressure in the treatment chamber, and removing the boarded articles from said discharge vestibule.
tacting the same until clean with a liquid scouring medium stable at temperatures within the range of 212° F. and 330° F. and capable of cleansing the yarns thereof, dyeing the boarded articles while in said treatment chamber by contacting the same with a liquid dyeing medium capable of dyeing the yarns thereof until the boarded articles are dyed to the desired color, maintaining substantially constant steam conditions throughout the treatment chamber during setting, dyeing and scouring of the boarded articles therein so that said boarded articles are continuously subjected to substantially uniform temperature while in said chamber, equalizing the internal pressure of the discharge vestibule with that of the treatment chamber, admitting the boarded articles from the treatment chamber to said discharge vestibule, exhausting the pressure from the discharge vestibule while maintaining substantially constant the temperature and superatmospheric pressure in the treatment chamber and removing the boarded articles from said discharge vestibule.

References Cited in the file of this patent

UNITED STATES PATENTS

2,102,794 Gibbs Dec. 21, 1937
2,244,472 Gryegger June 3, 1941
2,333,160 Dunn Nov. 2, 1943
2,351,063 Oswald June 13, 1944
2,447,993 Vieira Aug. 24, 1948

FOREIGN PATENTS

598,808 Great Britain Feb. 26, 1948
378,566 Italy Feb. 15, 1940

OTHER REFERENCES

Rayon and Synthetic Textiles, May 1949, pp. 65 to 68.