Office de la Proprieté Canadian

Intellectuelle Intellectual Property
du Canada Office

Un organisme An agency of
d'Industrie Canada Industry Canada

CA 2705404 A1 1996/12/05

(21) 2 705 404

12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
13) A1

(22) Date de depot/Filing Date: 1996/05/30
(41) Mise a la disp. pub./Open to Public Insp.: 1996/12/05

(62) Demande originale/Original Application: 2 586 401
(30) Priorité/Priority: 1995/05/30 (US08/454,736)

51) Cl.Int./Int.Cl. GO6F 7171/36 (2006.01),

GO5B 19/02(2006.01), GO5D 3/00(2006.01)

(71) Demandeur/Applicant:

ROY-G-BIV CORPORATION, US

(72) Inventeurs/Inventors:

BROWN, DAVID W., US;
CLARK, JAY S., US

(74) Agent: FINLAYSON & SINGLEHURST

(54) Titre : SYSTEMES DE COMMANDE DE MOUVEMENT
(54) Title: MOTION CONTROL SYSTEMS

?lUnknown

ICOM xxx MOQTION
IXMC X API COMPONENT

/"

ICOM XXX DRIVER
IXMC AP ADMIN.
BN

?IUnknown

?IUnknown

1ICOM mO_fLANGUAGE h

ILNG 0xo] DRIVER

IXMC_30&XSP gk

-

“n
L1 ¥
L] -4‘-.-‘
Ll B
vy ..
L]
¥ T

-l —~ . 36‘[CDriverObject
gurvi

WP PWY PP v e e gy g P e —
v
—

. SPI | [CCangDVEXDIsp, | -{CLangtoreExiDisp]
|PATABASE | & 5V ExiDisp _oreExtDis;_:o_‘J

i

- - L J
Armma b swoe asondtamwFatuis ave -c: vranwvas»

| EComniandMg T CRegisfryMgLu
’-’ i |[CStreamMgr DriverlnfoMgr-]
Command §:)
EResponse ‘ .
CDriverlnfo
ICCmdDatabasej; | ;]
[eSPinlol N CSmpleStoam] |
f > CSimpleStream|

| JICsPiinfo| & \,[CSimpleSiream]

CSimpleStream

ClUnknown

ICOM xorp—{ STREAM

IXMC xxxUDSPI ¢

(57) Abrégée/Abstract:

REGISTRY

A system for motion control in which an application is developed that is iIndependent from the actual motion control hardware used
to Implement the system. The system comprises a software system that employs an application programming interface comprising

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

CA 2705404 A1 1996/12/05

en 2 105 404
13) A1

(57) Abrege(suite)/Abstract(continued):
component functions and a service provider interface comprising driver functions. A system programmer writes an application that

calls the component functions. Code associated with the component functions relates these functions to the driver functions. A
hardware designer writes driver code that implements the driver functions on a given motion control hardware product. The driver
functions are separated into core and extended driver functions. All software drivers implement the core driver functions, while the
software drivers need not contain code for implementing the extended driver functions. If the software driver does not contain code
to Implement an extended driver function, the functionality of the extended driver function is obtained through a combination of core
driver functions. The system programmer may also select one or more streams that allow the control commands to be

communicated to, and response data to be communicated from, motion control hardware.

10

15

CA 02705404 2010-06-01

ABSTRACT

A system for motion control in which an application is developed that is independent from
the actual mation control hardware used to implement the system. The system comprises a
software system that employs an application programming interface comprising component
functions and a service brovider interface comprising driver functions. A system programmer
writes an application that calls the component functions. Code associated with the component
functions relates these functions to the driver functions. A hardware designer writes driver code
that implemeﬁts the driver functions on a given motion control hardware product. The driver
functions are separated into core and extendeddrifvier functions. All software drivers implement
the core drivef functions, while the software drivers need not contain code for implementing the
extended driver functions. If the software driver does not contain code to implement an extended
driver function, the functionality of the extended driver function is obtained through a combination
of core driver functions. The system programmer may also select one or more streams that allow
the c\on‘trol commands to be communicated to, and response data to be communicated from,
motion control hardware.

L7

10

29

30

WO 96/38769 CA 02705404 2010-06-01 PCTIRIS96/08149

- 1 —
MOTION CONTROL SYSTEMS

This application is a divisional application of Canadian Patent File

No. 2,586,401 filed May 30, 1996, (which is a divisional of Canadian Patent

File No. 2,222,235).
TECHNICAL FIELD
The present invention relates to motion control systems and, more particularly, 10

interface software that facilitates the creation of hardware independent motion control software.

BACKGROUND OF THE INVENTION

The purpose of a motion control device is {0 move an object in a desired manner. The
basic components of 38 motion control device are a controller and a mechanical system. The
mechanical system translates signals generated by the controller into mevement of an object.

While the mechanical system commonly comprises a drive and an electrical motor, a
number of other systems, such as hydraulic or vibrational systems. can be used to cause
movement of an object based on a control signal. Additionally, it 1s possible for a motion control
device to comprise a plurality of drives and motors to allow multi-axis control of the movement of
the object.

The present invention s of particular imporance n the context of a mechanical system
including at least one drive and electrical motor having a rotating shaft connected in some way {o
the object t0 be moved, and that application will be described in detail herein. But the principles
of the present invention are generally applicable to any mechanical system that generates
movement based on a control sighal. The scope of the present invention should thus be
determined based on the claims appended hereto and not the following detailed description.

In a mechanical system comprising a controlier, a drive, and an electrical motor, the
moior is physically connected 1o the object {0 be moved such that rotation of the motor shaft s
transiated into movement of the object. The drive 1s an electronic power amplifier adapted to
provide power 1o @ motor to rotate the moter shaft in a controilled manner. Based on control
commands, the controller controls the drive in a predictable manner such that the object is moved
in the desired manner.

These basic components are normally placed into a larger system to accomplish a
specific task. For exampie, one controller may operate in conjunction with several dnves and
motors in 3 multi-axis system for moving a tool along a predetermined path relative to a
workpiece.

Additionally, the basic components described above are often used tn conjunction with a
host computer or programmable logic controller (PLC). The host computer or PLC allows the use
of a high-level programming language to generate control commands that are passed {o the
controlfler. Software running on the host computer is thus designed {o simplify the task of
programming the controller.

Companies that manufacture motion contro! devices are, traditionatly, hardware onented

companies that manufaclure software dedicaled 10 the hardware thal they manufacture These

L

10

20

25

30

CA 02705404 2010-06-01

WO 96/38769 PCT/US96/08149

- -

software products may be referred to as low tevel programs. Low level programs usually work
directly with the motion control command language specific to a gtven motion control device.
While such low level programs offer the programmer substantially complete control over the
hardware, these programs are highly hardware dependent.

In contrast to fow-level programs, high-level software programs, referred to sométimes as
factory automation applications, allow a factory system designer to develop application programs
that combine large numbers of input/output (I/0) devices, including motion control devices, into a
complex system used to automate a factory floor environment. These factory automation
applications allow any number of {/O devices to be used in a given system, as long as these
devices are supported by the high-level program. Custom applications, developed by other
software developers, cannot be developed to take advantage of the simple motion control
functionality offered by the factory automation program.

Additionally, these programs do not allow the programmer a great degree of control over

the each motion control device in the system. Each f)rogram developed with a factory

~automation application must run within the context of that application.

PRIOR ART
| In the following discussions, a number of documents are cited that are publicly available
as of the filing date of the present invention. With many of these documents, the Applicant is not
aware of exact publishing dates. The citation of these dobuments should thus not be considered
an admission that they are prior art; the Applicant will take the steps necessary to establish
whether these documents are prior art if necessary.

As mentioned above, a humber of software programs currently exist for programming
individual motion control devices or for aiding in the development of systems contaming a
number of motion control devices.

The following is a list of documents disclosing presently commercially avaitable high-level
sofiware programs: (a) Software Products For Industnial Automation, iconics 1993; (b) The
complete, computer-based automation tool (IGSS), Seven Technologies A/S; (€) OpenBatch
Product Brief, PID, Inc.; (d) FIX Product Brochure, Intellution (18394); (e) Paragon TNT Product
Brochure, Intec Controls Corp.; () WEB 3.0 Product Brochure, Trihedral Engineering Ltd. (1994);
and (g) AIMAX-WIN Product Brochure, TA Engineering Co., Inc. The following documents
disclose simulation software: (a8) ExperTune PID Tuning Software, Gerry Engineering Software:
and (b) XANALOG Model NL-SIM Product Brochure, XANALOG.

The following list identifies documents related to low-level programs: (a) Compumotor
Digiplan 1893-94 catalog, pages 10-11; (b) Aerotech Motion Control Product Guide, pages 233-
34: (c) PMAC Product Catalog, page 43, (d) PC/DSP-Serntes Motion Controller C Programming

Guide, pages 1-3; (e) Oregon Micro Systems Product Guide, page 17; (f) Precision Microcontrol
Product Guide.

CA 02705404 2010-06-01

23-

The Applicants are also aware of a software model referred to as WOSA that has been defined
by Microsoft for sue in the Windows programming environment. The WOSA model is discussed in
the book inside Windows 95, on pages 348-351. WOSA is also discussed in the paper entitled WOSA
Backgrounder: Delivering Enterprise Services to the Windows-based Desktop. The WOSA model
isolates application programmers from the complexities of programming to different service providers
by providing an API layer that is independent of an underlying hardware or service and an SPI layer
that is hardware independent but service dependent. The WOSA model has no relation to motion
control devices.

The Applicants are also aware of the common programming practice in which drivers are
provided for hardware such as printers or the like; an application program such as a word processor
allows a user to select a driver associated with a given printer to allow the application program to print
on that given printer.

While this approach does isolate the application programmer from the complexities of
programming to each hardware configuration in existence, this approach does not provide the
apphication programmer with the ability to control the hardware in base incremental steps. In the
printer example, an application programmer will not be able to control each stepper motor in the
printer using the provided printer driver; instead, the printer driver will control a number of stepper
motors in the printer in a predetermined sequence as necessary to implement a group of high level
commands.

The software driver model currently used for printers and the like is thus not applicable to the
development of a sequence of control commands for motion control devices.

SUMMARY OF THE INVENTION

From the foregoing, it should be clear that one primary aspect of the invention seeks to
provide improved methods and devices for moving objects.

Another more specific aspect of the present invention seeks to obtain methods and apparatus
for designing and deploying motion control devices in which these methods and apparatus exhibit a

Ml T A d—

favorable mix of the following characteristics:

(a) allow the creation of high-level motion control programs that are hardware
independent, but offer programmability of base motion operations;

(b) hide the complexities of programming for multiple hardware configurations from the
| high-level programmer,
(c) can easily be extended to support additional hardware configurations; and
(d) transparently supports industry standard high-level programming environments.
The present invention is, in one form, a method of moving an object comprising the steps of

developing a high-level motion control application program comprising a sequence of

't

10

20

25

30

35

CA 02705404 2010-06-01

WO 96/38769 PCT/US96/08149

-4 -
component functions that describe a desired object path, correlating these component functions
with driver functions, selecting a software driver tor the specific hardware configuration being
controlied, generating control commands from the driver functions and the software driver
associated with the hardware configuration being controtied, and controlling a motion contro!l
device based on the control data to move the object along the desired object path.

In another form, the present invention 1s a method of generating a sequence of control
commands for controiling a motion control devices to move an object along a desired path. An
application program comprising a series of component functions defines a sequence of motion
steps that must be performed by the motion control device to move the object along the desired
path. The component functions contain code that relates the component functions to driver
functions. The driver functions are associated with, or contain, software drivers containing driver
code for implementing the motion steps on a given motion control device. The control
commands are generated based on the application program and the driver code associated with a
given motion control device. ~

The use of component functions that are separate from driver functions isolates the
programmer from the complexities of programming to a specific motion control device. This
arrangement also allows a given application program to be used without modification for any
motion control device having a software driver associated therewith.

The driver functions are grouped into core driver functions and extended driver functions.
All software drivers must support the core driver functions; the software drivers may also support
one or more of the extended driver functions, although this is not required.

Where the software drivers do not support the extended dniver functions, the functionality
associated with the extended driver functions can normally be simulated using some combination
of core driver functions. In this caSe, the method of the present invention comprises the steps of
determining which of the extended driver functions are not supported by the software driver and,
where possible, substituting a combination of core drniver functions. In some cases, the
functionality of an extended driver function cannot be emulated using core driwz;r functions, and
this functionality is simpiy unavailable to the programmer.

The use of core dniver functions to emulate extended driver functions provides
functionality where néne would otherwise exist, but the preferred approach is to provide a
software driver that supports each of the extended driver functions. When an extended driver
function is supported and not emulated, the task being performed will normally be accomplished

more quickly and accurately.

Additionally, to simplify the use of emulated extended driver functions, the method of the
present invention further comprises the steps of determining which, if any, exiénded driver
functions are not supported by the software driver for a given hardware configuration. developing
a function pointer table of both unsupported extended driver functions and supported extended

driver functions. and consulting the table each time an extended driver function is catled 1o

CA 02705404 2010-06-01

-5-

determine whether that extended driver function must be emulated. In this manner, the
process of calling the sequence of core driver functions employed to emulate the
unsupported extended driver functions is optimized.

As the control commands are generated as described above, they may be used to
control a motion control device in real time or they may be stored in a file for later use.
Preferably, the method of the present invention comprises the step of providing a number
of streams containing stream code. Each stream is associated with a destination of
control commands, and the stream code of a given stream dictates how the control
commands are to be transferred to the destination associated with that given stream. The
user is thus provided the opportunity to select one or more streams that dictate the
- destination of the control commands.

To help isolate the programmer from hardware specific complexities, the method
of the present invention may comprise the additional administrative steps such as selecting
a driver associated with a particular motion control device and/or translating units required
to define the motion control system into the particular system of units empioyed by a
given motion control device.

The invention in one aspect to which this application is directed pertains to a
method of debugging software used to communicate with a motion control system. The

method comprises the steps of:

providing a set of hardware motion control attributes used for motion control,
where
at least one hardware motion control attribute 1s a primitive hardware motion

control attribute used for motion control that cannot be emulated using at least one other

hardware motion control attribute, and

at least one hardware motion control attribute is a non-primitive hardware

motion control attribute that does not meet the definition of a primitive hardware motion

control attribute;
providing a set of common motion control attributes;

providing a motion control device capable of storing at least one primitive hardware

motion control attribute;

CA 02705404 2010-06-01

5 A-

generating debug information containing diagnostic information associated with at
least one hardware motion control attribute;
providing a set of software drivers, where at least one software driver is capable
of sending the debug information to a debug target;
selecting at least one selected software driver, capable of sending the debug
information to a debug target, from the set of software drivers;
providing a software application;
causing the software application to call at least one motion component function to
exchange at least one common motion control attribute with the at least one selected
software driver;
using at least one called motion component function to cause at least one motion
component to exchange at least one common motion control attribute with the at least one
selected software driver by calling at least one driver function; and
using at least one called driver function to cause the selected software driver
10
convert at least one common motion control attribute to at least one
hardware motion control attribute, '
exchange at least one hardware motion control attribute with the motion

control device, and

send debug information to the debug target.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a system interaction map of a motion control system constructed in
accordance with, and embodying, the principles of the present invention;

FIG. 2 i1s a module interaction map of a motion control component of the system

shown in FIG. 1;
FIG. 3 is an object interaction map of the component shown in FIG. 2;

FIGS. 4 through 8 are scenario maps of the component shown in FIG. 2;

CA 02705404 2010-06-01

-5B-

FIG. 9 is an interface map of the component shown in FIG. 2;

FIG. 10 is a data map showing one exemplary method of accessing the data
necessary to emulate extended driver functions using core driver functions;

FIG. 11 is a module interaction map of the driver portion of the system shown in
FIG. 1;

FIG. 12 is an object interaction map of the driver portion shown in FIG. 11;

FIGS. 13 through 20 are scenario maps related to the driver shown in FIG. 11;

FIG. 21 is an interface map for the driver shown in FIG. 11;

FIG. 22 is a module interaction map of the streams used by the system shown In
FIG. 1;

FIG. 23 is an object interaction map of the streams shown in FIG. 22;

FIGS. 24 through 32 are scenario maps of the streams shown in FIG. 22;

FIG. 33 is an interface map of the objects comprising the stream shown in FIG. 22;

FIG. 34 is a module interaction map of the driver stub portion of the system shown
in FIG. 1;

FIG. 35 is an object interaction map of the driver stub shown in FIG. 34;

FIGS. 36 through 38 are scenario maps of the driver stub shown in FIG. 34;

CA 02705404 2010-06-01

WO 96/38769 PCT/US96/08149

-6 -
FIG. 39 is an interface map of the driver stub portion shown in FIG. 34;
FIG. 40 is a module interaction map of the driver administrator portion of the system
shown in FIG. 1;
FIG. 41 is an object interaction map of the driver administrator shown in FIG. 40;
5 FIGS. 42 through 49 are scenario maps relating to the driver administrator shown in
FIG. 40,
FIG. 50 is an interface map of the objects that comprise the driver administrator shown in
FIG. 40;
FIG. 51 is a module interaction map of the dnver administrator CPL applet portion of the |
10 system shown in FIG. 1: ‘
FIG. 52 is an object interaction map of the driver administrator CPL applet shown in
FI1G. 51;
FIGS. 53 through 57 are scenario maps reiated to the driver administrator CPL applet
shown in FIG. 51; *
15 FIG. 58 depicts a Module Interaction-Map showing all binary modules that interact with

the driver and how they interact with one another;

FIG. 59 depicts an Object Interaction-Map which corresponds to the module interaction
map of FIG. 58 expanded to display the internal C++ objects making up the language driver 44,

and how these objects interact with one another,

20 | FIGS. 60-65 depict a number of Scenario Maps that display the interactions taking place

between the C++ objects involved during certain processes;

FIG. 66 depicts an interface map that describes the interfaces exposed by the language

driver component 44, all data structures used, and the definitions of each C++ class used; and

FIG. 67 depicts a table illustrating how a typical database employed by the language

25 driver 44 may be constructed.

CA 02705404 2010-06-01

WO 96/38769 ° PCT/US96/08149

-7 -
DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawing, depicted therein at 10 in FIG. 1 1s a motion control system

constructed in accordance with, and embodying, the principles of the present invention. This

N

system 10 comprises a personal computer portion 12 having a hardware bus 14, a plurality of

motion control hardware controllers 16a, 16b, and 16¢, and mechanical systems 18a, 18b, and

18¢ that interact with one or more objects (not shown) to be moved.
The personal computer portion 12 of the system 10 can be any system capable of being
programmed as described herein, but, in the preferred embodiment, is a system capabie of

10 running the Microsoft Windows environment. Such a system will normally comprise a serial port
in addition to the hardware bus 14 shown in FiG. 1.

The hardware bus 14 provides the physical connections necessary for the computer 12 to
communicate with the hardware controllers 16. The hardware controllers 16 control the
mechanical system 18 to move in a predictable manner. The mechanical system 18 comprises 3

15 motor or the like the output shaft of which is coupled to the object to be moved. The combination
of tﬁe hardware controllers 16a. 16b, and 16¢ and the mechanical systems 18a, 18b, and 18c
forms motion control devices 20a, 20b, and 20c, respectively.

The hardware bus 14, hardware controllers 16, and mechanical systems 18 are all well-
known in the art and are discussed herein only to the extent necessary to provide a complete

20 | understanding of the present invention.

Thé personal computer portion 12 contains a software system 22 that allows an
application user 24 to create software applications 26 that control the motion control devices 20

More particularly, based on data input by the user 24 and the contents of the application
program 26, the software system 22 generates control commands that are transmitted Dy one or

25 more streams such as those indicated at 28a, 28b, 28c, and 28d. The streams 28 transmit control!
commands incorporating the hardware specific command language necessary to control a given
motion control device to perform in a desired manner. As will be discussed in more detail below,
the streams 28 impiement the communication protocol that allows the control commands to reach
the appropriate motion control device 28 via an appropriate channel (i.e., PC bus, senal por).

30 Using the system 22, the application program 26 is developed such that it contains no
code thal is specific to any one of the exemplary hardware controliers 16. In the normal case, the
application program 26, and thus the user 24 that created the program 26, is completely isolated
from the motion contro! devices 20. The user 24 thus need know nothing about the hardware
specific command language or communication protocol associated with each of these devices 20

35 it may even be possible that the command language of one or more of the hardware controllers

16 was not defined at the time the application program 26 was created.

The software system 22 comprises a combination of elements that allow the apphcation

program 26 to be completely isolated from the hardware controllers 16. In the foltowing

¢ n

10

20

25

30

CA 02705404 2010-06-01

WO 96/38769 - PCT/US96/08149

-B-
discussion, the framework of the software system 22 will be described in terms of a method of

moving an object and/or a method of generating control commands. After this general

discussion, each component of the system 22 will be described in detail in a specific operating
environment.

l. Method of Generating Control Commands for Controlling a Motion Control Device to Move an
Qbject

Initially, it should be noted that, in most situations, the method described in this section
will normally but not necessarily involve the tabors of at least two and perhaps three separate
software programmers: a software system designer; a hardware designer familiar with the
intricacies of the maotion control device; and 2 motion control system designer. The application
user 24 discussed above will normally be the motion control system designer, and the roles of the
software system designer and hardware designer will .become apparent from the following
discussion.

The software system designer develops the software system 22. The software system
designer initially defines a set of motion control operations that are used to perform motion
control. The motion control operations are not specific.ally related to any particular motion control
device hardware configuration, but are instead abstract operations that all motion control device
hardware configurations must perform in order to function. ‘

Motion control operations may either be pnmitive operations or non-primitive operations.
Primitive operations are operations that are necessary for motion control and cannot be simutated
using a combination of other motion control operations. Examples of primitive operations include
GET POSITION and MOVE RELATIVE, which are necessary for motion control and cannot be
emulated using other motion control operations. Non-pnmitive operations are motion control

operations that do not meet the definition of a primitive operations. Examples of non-primitive

-
-
1
i.

L]

operaticns include CONTOUR MOVE, which may be emuizied using a combination of primitive
motion control operations.

Given the set of motion control operations as defined above, the software system
designer next defines a service provider interface (SP1) comprising a number of dnver functions.
Driver functions may be either core driver functions or extended driver functions. Core driver
functions are associated with primitive operations, while extended driver functions are associated
with non-primitive operations. As with motion control operations, driver functions are not related
to a specific hardware configuration; basically, the driver functions define parameters necessary
to implement motion control operations in a genenc sense, but do not attach specific values or

the like to these parameters. The SPI for the exemplary software system 22 s attached herelo as

Appendix A.

10

20

30

CA 02705404 2010-06-01

WO 96/38769 . PCT/US96/08149

-9 -

The software system designer next defines an application programming interface (AP))
comprising a set of component functions. For these component functions, the software system
designer writes component code that associates at least some of the component functions with at
least some of the driver functions. The relationship between component functions and driver
functions need not be one to one: for example, certain component functions are provided for
administrative purposes and do not have a corresponding driver function. However, most
corﬁponent functions will have an associated driver function. The API for the exemplary software
system 22 i1s attached hereto as Appendix B.

The overall software model implemented by the software program 22 thus contains an
API comprising component functions and an SP! comprising driver functions, with the AP! being
related to the SP! by component code associated with the component functions.

in order for the system 22 to generate the control commands, at least two more
components are needed: the application program 26 and at least one software driver such as the
drivers indicated at 30a, 30b, and 30c in FIG. 1. ‘

The software drivers 30 are normally developed by a hardware designer and are each
associated with a singie motion control device. The hardware designer writes driver code that
dictates how to generate contro! commands for controlting the motion contro! device associated
therewith to perform the motion control operations associated with at least some of the driver
functions.

In the exemplary software system 22, the software drivers 30a, 30b, and 30c are
associated with the motion control devices 20a, 20b, and 20c, respectively. As a software driver
exists for each of the motion controt devices 20a, 20b, and 20c, these devices 20a, 20b, and 20c¢
form a group of supported motion control devices.

A careful review of the framework of the software system 22 as described above will
illustrate that, of all the components of this system 22, only the software drivers 30 are hardware
dependent. |

The moiion conirol sysiem designer, normally also the user 24 develops the application
program 26. The application program 26 comprises a sequence of component functions arranged
to define the motion control operations necessary to control a motion control device to move an
object in a desired r;1ariner. The application program 26 is any application that uses the system
22 by programming the motion control component 35. Applications may program the system 22
either through OLE Automation or by using any of the custom OLE interfaces making up the AP}

As meniioned above, the component code associates many of the component functions
with the driver functions, and the driver functions define the parameters necessary to carry out
the motion control operations. Thus, with appropriately ordered component functions, the
application program 26 contains the logic necessary to move the object in the desired manner.

Once the application program 26 has been written and the software drivers 30 have been

provided, the user 24 s'elects at least one motion control device from the group of supporied

1

10

15

20

30

CA 02705404 2010-06-01

WO 96/38769 PCT/US96/08149

- 10 -
motion control devices 20a, 20b, and 20c. Using a driver administrator module 32, the user 24
then selects the software driver associated with the selected motion control device. This driver
administrator module 32 is used to install, uninstall, register, and setup each stream.

As currently implemented, the driver administrator 32 allows only one software driver to
be selected. In future versions of the software system 22, the driver administrator witl altow the
user 10 select one or more software drivers.

The software system 22 thus generates control commands based on the component
functions contained in the application program 26, the component code associated with the
component tunctions, and the driver code associated with the selected sofiware driver 28.

As the control commands are being generated as described above, they may be directly
transmitted to a2 motion control device to control this device in real time or stored in an output file
for later use. The sofiware system 22 employs the streams 28 to handle the transmission of the
control commands 10 a desired destination thereof.

In the exemplary system 22, the destinations*of the control commands may be one or
more of an output file 34 and/or the controllers 16. Other possible destinations include a debug
monitor or window or other custom output mechanism defined for a specific situation. The
software system designer, or in some cases the hardware system designer, will write transmit
stream code for each stream 28 that determines how the control commands are to be transferred
to a given one of the contro! command destinations 16 and 34. Using the driver administrator 32,
the user 24 selects one or more of the control command destinations 16 and 34, and, later when
run, the system 22 transfers the contro! commands to the selected control command destination
16 and/or 34 based on the transmit stream code in the stream 28 associated with the selected
control command destination 16 and/or 34.

Many control command destinations such as 16 and 34 are capable of transmitting data
back to the system 22. Data transmitied from a control command destination back to the system
22 will be referred to as response data. The software system designer thus further writes data

response stieam code for each of the streams 28a, 28b, ard 28¢ that determines how response
data is transmitted from the controllers 16 to the system 22. The system 22 thus processes the

response data sent by the controllers 16 based on the data response stream code contained in

the streams 28. .

Referring again to FIG. 1, this Figure shows that the system 22 further comprises a
motion contro! component 35 and a driver stub module 36. The motion control component
module 35 1S the portion of the software system 22 that relates the component functions to the
driver functions. The motion control component module 33 thus contains the component code
that makes the association between the component functions confained tn the application

program 26 and the drniver functions.

10

20

30

CA 02705404 2010-06-01

WO 96/38769 PCT/US96/08149

-11 -~

The driver stub module 36 is not required to implement the basic software model
implemented by the system 22, but provides the system 22 with significantly greater fiexibility to
accommodate diverse motion control hardware configurations with minimal effort.

More particularly, when the driver stub module 36 is employed, the hardware designer
need not develop dnver code to implement all of the driver functions; to the contrary, the
hardware designer must write driver code for implementing the core driver functions but need not
write driver code to implement the extended driver functions. The software system designer
provides the motion control driver stub 36 with stub code that identifies the combinations of core
driver functions that are employed to emulate the functionality of extended driver functions.

The motion control component 24 will determine for the selected software driver 30 which
extended functions, if any, the selected driver 30 supports. For extended functions that are not
supported, referred to herein as non-supported extended driver functions, the motion control
component 35 refers to the driver stub module 36 to determine the appropriate combination of
core driver funétions to emulate the functionality of tt;e non-supported extended driver functions.
The system 22 thus generates the control commands necessary to implement the non-supported
extended driver functions using the appropniate combination of core dnver functions.

The process of determining when extended driver functions need to be emulated can be
optimized by providing the motion control component 35 with a function pointer table that
contains a pointer to each of extended functions. When building the function pointer table, the
motion control component 35 checks the selected driver module 30 to see if it supports each
éxtended function. If the selected driver module 30 supports the extended function, the motion
contro! component module 35 stores a pointer to the function, implemented by the selected driver
moduie 30, in the tabie tocation corresponding {0 the extended function. In the event that the
seiected driver module 30 does not support the extended function, the motion control component
module 35 stores a pointer to the extended function implementation located in the dri.ver stub
module 36. The driver stub modute 36 implementation of the extended function contains calls to
a plurality of core functions implementea by the seiecied ariver moauie 30.

Therefore, the driver stub module 36 allows the motion control system designer to use,
with minimal time and effort by the hardware designer, a working software driver 28 that contains
driver code to implement only the core functions. The software driver 28 developed to implement
the core driver functions can then be improved by developing driver code to implement exiended
driver functions as desired.

The use of driver code specifically designed to implement extended driver functions is, in
general, preferable to relying on the driver stub moduie 36 to emulate the exiended driver
functions; driver code specifically written to implement an extended driver function will almost

always obtain a more optimized implementation of the dnver function than the emulation of that

driver function with a combination of core driver functions.

CA 02705404 2010-06-01

WO 96/38769 PCT/US96/08149

- 12 -
Referring again for a moment to FIG. 1, this Figure illustrates that the system 22
additionally comprises a driver administrator CPL applet 38 and a DDE server 40. The driver
administration CPL applet 38 generates the user interface through which the user 24

communicates with the driver administrator module 32. The DDE server 40 provides the software

WA

interface through which the application program 26 communicates with the motion control

component module 35.

I, MOTION CONTROL COMPONENT

10 The motion control component 35 will now be described n further detail with reference o
FIGS. 2-10. The motion control component 35 s used by every application programming the
system 22 to perform motion controt operations. The major set of the API is implemented by this
component. When operating, the motion control component 335 interacts with the driver
administrator 32, to get the current driver, and the driver 30 and driver stub 36, to carry out

15 motion control operations. Applications, using system 22, only interact with the motion control
component 35.

This section describes the design of the motion control component 35 in three main parts
First, all binary modules that affect the component 35 are described along with their interactions
with the component 35. Next, the module interaction-map is drawn in more detail' to show the

20 interactions between all C++ objects used to implement the motion control component 35. Next,
the object interaCtioh-map is tested by displaying the specific interactions that take place during
certain, key process that the component 35 is requested to perform.

The module interaction-map shown in FIG. 2 displays all binary modules and their
interactions with the motion control component 35. As can be seen from the module interaction-

25 map, applications only communicate with the motion control component 35. From this point, the
component 35 coordinates all interactions between the driver aaministrator 32, driver 30, and
ariver stub 36 components.

Breaking the module interaction-map and adding the interactions taking place between all
C++ objects used to implement the motion control component 35, produces the object interaction-

30 map shown in FIG. 3.

Each object in the diagram is described as follows. The CCmpniDisp object is the
dispatch object used to dispatch exposed interface methods. During the dispatch process, all raw

data is converted into the appropriate C++ form. For example, coliections of data passed
between OLE components is usually packaged in a raw block of memory. The CCmpntDisp

35 object takes care of packing outgoing data and unpacking incoming data. Data packing involves
converting the data between a raw and native C++ tormat.

The CDriverAdmin object is used to communicate directly with the driver administrator

component. All OLE related details are encapsulated within this class.

t

10

20

t)
L

30

CA 02705404 2010-06-01

W(\ “Q[38769 PCT/US96/08149

- 13 -

The CDriverMgr object is used to control all unit mapping taking ptace before calling the
appropriate Driver function. The CUnitMapper object is used to do the actual mapping between
units.

The CUnitMapper object ts used to map units between the Part Coordinate System (PCS)
and the Machine Coordinate System (MCS). Both directions of unit mapping are done by this
object.

The CDriver object is used to build the SP! table containing both core and extended

Driver functions. Depending on the level of driver suppont, the exiended functions in the SPI

table may point to functions impiemented in either the drniver stub 36 or the driver 30.

The following discussion of FIGS 4-8 describes all main scenarios, or operations, that
occur on the motion control component 35. Each scenario-map displays all objects involved, and
the interactions that take place between them in the sequence that they occur. '

As shown in FIG. 4, before an application can use the motion control component 35, it
must create an instance of the object, using the CoCreatelnstance OLE function, and then
initialize the instance calling the exposed [nitialize custom interface method implemented by the

component 35. FIG. 4 displays the sequence of events that take place when the Initialize method

IS calied.

During initialization, the following steps occur. First the application must create an
instance of the motion control component 35 by céll‘mg the standard OLE function
CoCreatelnstance. Once loaded, the application must call the component 35's exposed Initialize
method. When first loaded, the component 35 loads any registration data previously stored.
Next, the component 35 directs the CCmpntDisp to initialize the system. The CCmpntDisp
directs the CDriverAdmin to get the current driver(s) to use. The CDniverAdmin, first, ioads the
driver administrator 32 using the standard OLE CoCreateinstance function. Nexi, it initializes the
driver administrator. Then, it queries the dniver administrator for the drniver(s) to use and their SP]
support information. Finaily, the driver administrator returns the driver(s) and the support
information to the component 35, and releases ail interfaces used from the driver administrator
component 32.

Once receiving the active driver(s) 30 and their support information, the motion control
component 35 passes the driver(s) 30 to the CDriverMgr and directs it to initialize the system.
During its initialization, the CDrniverMgr initializes the CUnitMapper. Also whiie initializing, the
CDriverMar initializes a CDriver for each driver used. After initializing each CDriver, the support
information is used to build each SPI tabte inside each CDriver object. When building the SP!
table. all core and supported extended SPI interfaces are gueried from the dniver. Also, when
building the SP! tabte, the CDriver queries all interfaces, not supported by the drniver 30, from the
driver stub 36.

Referring now to FIG. 5, once the motion control component 35 is initialized, the

application 26 may perform operations on it. There are two types of operations that may take

10

15

20

25

30

CA 02705404 2010-06-01

WO 96/38769 ‘ PCT/US96/08149

~-14-
nlace on the component 35: Operations that use core Driver functions, and operations that use

extended Driver functions. Even though the difference belween the two is completely invisibie {0

the application using the component 35, the internal interactions are different between the two.
The following discussion outline these differences.

The following interactions take place when the component 35 performs an operation that
uses core Driver functions only. First the application must request the operation and pass all

pertinent parameters to the component 35. Next, the component 35 directs the CCmpniDisp to

carry out the operation. The CCmpntDisp then directs the CDniverMgr to perform the operation

and passes all pertinent parameters to 1. Before carrying out the operation, the CDriverMgr uses
the CUnitMapper to convert all units to the Machine Coordinate System (MCS). Next, the
CDriverMgr directs the CDriver object to carry out the operation and passes the newly mapped
parameters to it. The CDriver object uses its internal SPi table to communicate directly with the
core Driver function implemented by the drniver component.

FIG. 6 shows the sequence of events that occurs when the component 35 1s directed to
carry out an operation that happens to use extended SP1 not supported by the driver 30. The
following steps occur when the operation is requested.

First the application must request the operation and pass all pertinent parameters to the
component 35. Next, the component 35 directs the CCmpntDisp to carry out the operation. The
CCmpntDisp then directs the CDriverMgr to perform the operation and passes all pertinent
parameters to it. Before carrying out the operation, the CDriverMgr uses the CUnitMapper to

convert all units to the Machine Coordinate System (MCS). Next, the CDriverMgr directs the

CDriver object to camry out the operation and passes the newly mapped parameters to il. The

CDriver object uses its internal SP1 table to communicate directly with the core Driver function
implemented by the driver component.

As briefly discussed above, when using the system 22, there are several types of units
and two different coordinate systems used. The process of unit mapping invelves converting
measurements between the Pait and Machine coordinate cystems. FIG. 7 tllustrates this process,

and the following steps occur when the operation is requested.

First the application must request the operation and pass all parameters {o the
component 35. Note,all parameters are in the PCS. Next, the component 35 directs the
CCmpntDisp to carry oul the operation. The CCmpntDisp directs the CDriverMgr to carry out the
operation and passes the PCS parameters to it. The CDnverMgr takes all measurements and
uses the CUnitMapper to convert them to the MCS. The newly mapped parameters are then
passed to the Cdriver, The CDriver directs either the driver or the driver stub component to carry
out the operation.

When the application is finished using the motion control component 35 it directs the
component 35 to free all of its resources by calling its exposed Release method. This-process 1S

depicted in FIG. 8. During the clean-up process, the {oltowing steps occur.

I

10

20

25

30

CA 02705404 2010-06-01

WO 98769 PCT/US96/08149

-15-

First the application must direct the component 35 to release all of its resources by caliing
its Release method. When invoked, the component 35 passes the call on to the CCmpntDisp
object. The CCmpntDisp object directs the CDriverMgr to release any resources it is using. The
CDriverMgr directs each CDriver object to release any of its resources, then deletes the CDriver
objects. First, the CDriver object releases any interfaces it is using from the driver component.
Then, the CDriver object releases any interfaces it i1s using from the dnver stub component.

FI1G. 9 is an interface map related to the motion control component 35. FIG. 10 1s a data
map showing how data relating to the whether extended driver tunctions need to be emulated is
stored. Attached hereto as Appendix C is a document that describes the a|ctual OLE Interfaces

exposed, the definitions of the data structures used when passing data around, and the definitions

of each class used internally by the motion control component 35.
. SOFTWARE DRIVERS

The driver 30 is used by both the driver administrator 32 and the component 35. Its main
purpose is to implement functionality that generates motion control commands for the specific
hardware supporied. For example, the AT6400 dnver, used to control the Compumotor AT6400
motion control hardware, generates AT6400 command codes. During the initialization phase of
the system 22, the driver administrator 32 communicates with each dniver 30, allowing the user to
add, remove, or change the configuration of the driver. When an application, using the system
22, is run, the component 35 communicates with the driver 30 directing it to carry out the
appropriate motion control operations. |

This section describes the complete design of a genenc drver 30. All drivers are
designed from the base design described in this manual. This section is divided into three parts.
First. a module interaction-map that describes all binary modules that interact with the driver 30 1s
discussed. Next, the module interaction-map is drawn as an object interaction-map, where all the
internals of the driver are exposed. In this map, all C++ ob'ects, making up the driver, and their
interactions are shown. Next, several scenario-maps are drawn. Each scenario-map displays the
interactions taking piace between the C++ objects involved during a centain process. Finally, this
section describes the interfaces exposed by the driver component, all data structures used, and
the definitions of each C++ class used.

Referring now to FIG. 11, the module interaction-map displays all binary modules and
their interactions with the driver 30. There are two modules that interact directly with the driver:
the motion control component 35, and the driver administrator 32. The dniver administrator 32
queries and changes the driver settings and the component 35 directs the driver to carry out

motion control operations, such as moving to a certain location in the system. Shown at 42 1n

FIG. 11 is the standard Windows registration database, referred to herein as the registry.

1

10

20

25

30

CA 02705404 2010-06-01
WO 96/38769 PCT/US96/08149

-16 -
Breaking the module interaction-map down mnto more detail by including the interactions
taking place between all C++ objects used to implement the driver, produces the object
interaction-map. The object interaction-map for the driver 30 is shown in FIG. 12.

Each object in the diagram is descnbed as follows.

CDriverDisp is the dispatch object used to dispatch exposed intertace methods. During
the dispatch process, all raw data is converted into the appropriate C++ form. For example,
collections of data passed between OLE components is usually packaged in a raw block of
memory. The CDriverDisp object takes care of packing outgoing data and unpacking incoming
data. Data packing involves converting the data between a raw and native C++ format.

The CStreamMagr object is responstble for managing the set of streams registered with
the driver. Streams, may be added, removed, and enabled. Only enabled streams are sent data.
The CLSID and enabled status of each siream registered, s stored in the registration database.
When communicating to streams, the CStreamMgr is used to send the command string to all
enabled streams. ‘

The CCommandMgr object is used to build commands sent to the stream, and extracting
responses received from the stream. The CCommandMgr is the controiling object that manages
the CResponse, CCommandList, and CStream objects.

The CCommandList object stores the complete list of commands making up the motion
control command language. Such commands may be stored as text resources or in a text file.

The CCommand object builds command stnngs that are then sent to the CStream. Each

command built is a complete motion control command string.

The CResponselist object builds CResponse objects that are initialized with the parsing
format for the expected response.

The CResponse object converts raw response strings, returned by the CStream, and
converts them into C++ data types. For example, 3 response string containing position data may

be converted into a set of double values.

The CStream object is used to communicate directly with the underlying stream

component,

Figures 14-20 contain scenario maps that describe all main scenarios, or operations, that
occur on the driver 30. Each scenario-map displays all objects involved, and the interactions that
take place between them in the sequence that they occur.

There are two types of operations that occur on the driver 30. First, the driver
administrator 32 may initiate operations, such as adding streams or configuring the driver. Next,
the motion control component 35 may initiate operations on the drniver when an application IS
actually running. The following discussion describes each perspective, starting with the
operations directed by the Driver Administrator, ali operations made on the driver by the driver

administrator are discussed in the order that they may occur when using the driver.

2y

10

20

30

CA 02705404 2010-06-01

WO 96/38769 - PCT/US96/08149

-17 -

Before a driver may be used, it must be registered in the OLE system. In order to
register a driver the driver administrator first verifies that the module being registered is actually
an driver 30, then it calls the DLLRegisterServer exported function to register the driver. £ach
module of the systemn 22 exports a function called ULLGetModuleType. This function i1s used to
verify that the module is an driver 30 component. FIG. 13 displays the interactions that take
place when registering a dnver.

During the registration process shown in FIG. 13, the following steps occur. First, the
driver administrator must load the DLL, containing the stream component, verify that the module
is an driver 30. To do so, the driver administrator calls the DLLGetModuleType function,
exported by the driver. If the function returns a value that contains the value XMC_DRIVER_MT
in the high byte, then the driver administrator proceeds and registers the driver by calling its
exporied function, DLLRegisterServer. When called, the implementation of the
DLLRegisterServer writes all OLE 2.0 registration information to the Windows registration
database. ~

Referring now to Figure 14, after the driver is registered, the driver administrator can load
the component 35 using the OLE CoCreateinstance function. Dunng the initialization process,
the driver loads all registration data and initializes both the CDnverDisp and CStreamMgr C++
objects.

During initialization, the following steps occur.

Before loading the driver component, the dnver administrator must query the driver
module for its CLSID. Calling the driver's exported function, DLLGetCLSID, returns the CLSID.
Once it has the CLSID, the driver administrator may create an instance of the driver by calling the
standard OLE function CoCreatelnstance. When first loaded, the driver loads any registration
data previously stored. Next, the driver directs the CDnverDisp object to initialize the system.
When notified. the CDriverDisp object initializes itself and then directs the CStreamMgr to
initialize itself. During its initialization, the CStreamMgr loads all stream settings from the
registration database. For example, the CLSID and enabled state of all streams previously
registered with the dnver, are loaded.

After initializing the driver, the driver administrator may perform operations on it. For
example. the driver administrator may request the driver to add or remove a stream. FIG. 15
displays the sequence of events occurring when the driver s requested to add a new stream.
When adding a stream, the following steps occur.

First the driver administrator directs the stream to add a new stream and passes CLSID
of the stream, to be added, to the dnver. The driver then passes the CLSID to the CDriverDisp
object and directs it to add the stream. The CDriverDisp object passes the information on to the
CStreamMgr and directs it to add the stream. In the final step, the CStreamMgr assumes that the

module 1s a valid stream component 28 and adds the CLSID to the drivers set of information in

the registration database.

‘J[

10

20

25

30

CA 02705404 2010-06-01

WO 96/38769 PCT/US96/08149

- 1 8 -

Another operation requested of the dniver, after initialization, is that of querying it for its
current settings. Before displaying information about the dniver, like the name of the hardware it
supports, the driver administrator must query the dniver for the information. For example, FIG. 16
displays the process of querying the driver for an enumeration of the streams registered with if.
When querying the driver for information, the foliowing steps occur.

First the driver administrator, calls the interface method used to query the driver's stream
enumeration. Next, the driver directs the CDriverDisp to create the stream enumeration. The
CDriverDisp object then directs the CStreamMgr to prepare the stream enumeration. The
CStreamMgr checks the registration database and makes sure its internal state is in sync with the
data stored in th_e registry. Next, it sets a tock that will cause all stream management operations,
such as adding or removing streams, to fail. The CStreamMgr prepares the list of streams and
loads them into memo‘ry using the CStream object. The CStream object loads the stream
component using the OLE CoCreatelnstance API.

After the driver administrator i1s done using the driver, it must release the drver by calling
its exposed Release method. Calling this method, directs the dnver to release all resources used.
FIG. 17 displays the process of releasing the driver component. During the clean-up process, the
following steps occur.

First the driver administrator must direct the driver component to clean itself up by calling
its Release method. When invoked, the driver component passes the call on to the CDriverDisp
object. The CDriverDisp object then directs the CStreamMgr to save all data. The CStreamMgr
saves all data, including the state of each stream, in the regtstration database. Finally, the driver
saves all internal data in the reqgistration database.

After a dniver is successfully installed into the system 22 and configured using the driver
administrator, it is ready for use by the motion control component 35. The component 35 uses
the driver 30 when performing motion control operations requested trom the application using the
component 35. The following discussion describes the component 35 directed operations that
can take piace on ithe dnver.

Before using the driver, it must be initialized by the component 35. This operation is
different from the driver initialization taking place on the driver when used by the driver
administrator because the system must be prepared for sending and recetving commands. In
order to prepare for the data communication, the stream must be initialized and then opened.
FIG. 18 describes the initialization process. The following steps occur during the initialization
process.

First the component 35 must direct the driver 1o initialize itself. This is usually a two step
process. in the first step, the component 35 creates and instance of the driver using the standard
OLE CoCreateinstance function. Next, the Initialize method, exposed by the drniver, 1s called to

prepare the driver for data transmissions. When the Initialize method is called, the driver first

loads any internal data stored in the registration database 42. Next, the driver directs the

10

20

30

CA 02705404 2010-06-01

WO 96/38769 - | PCT/US96/08149

-19-
CDriverDisp to initialize the internal system. The CDnverDisp then directs the CStreamMgr to

initialize the streams. Nexd, the CStreamMgr ioads all data from the registration database,

including the set of ali CLSID's and enabled status’ for all streams registered with the driver.

Then the CStreamMgr loads each enabled stream by creating a new CStream object for each
enabled stream. When creating each CStream object, the CLSID for the underlying stream is
passed to the CStream object. When each CStream object is created and attached 10 a stream
component it loads the component 35 by calling the standard OLE CoCreatelnstance function.
Once the CStreamMgr is done, the CDriverDisp directs the CCommandMgr to initialize itself.
During its initialization process, the CCommandMgr initializes and loads the CCommandList.
Also, when the CCommandMagr is mnitializing, it loads the CResponsel.ist corresponding to the
CCommandList.

Once the system is ihitialized, the motion control component 35 can direct the driver to
carry out certain command operations. Command operations are standard motion cohtrol
operations such as moving to a specific location in the systém, or querying the system for the
current position. FIG. 19 describes the process of commanding the driver to carry out a certain
operation. When commanding the dnver to perform a certain operation the following steps occur.

First, the component 35 directs the driver to perform the operation, such as moving to a
position or querying the system for the current position. Next, the driver directs the CDriverDisp
object to perform the operation. The CDriverDisp object then directs the CCommandMgr to build
the appropriate command. Any parameters related to the command are passed to the
CCommandMgr. For exampie, when directing the driver to move to a certain position, the
position information is passed to the CCommandMgr. Next, the CCommandMgr requests the
CResponselist to create a CResponse object. The CResponselist looks up the response format
and uses it 1o create a new CResponse object that 1s returned to the CCommandMgr. Then, the
CCommandMagr directs the CCommandList to create the command. Any parameters related 10
the command are passed to the CCommandList. The CCommandList creates a new CCommand
object, looks up the raw command string, and passes it and the command parameters 1o the
CCommand object who then builds the command string.

The CCommandMar, then passes the CCommand object, returned by the
CCommandLlist, and the previocusly created CResponse object to the CStreamMgr object. The
CStreamMagr object is directed 1o process the objects. The CStreamMgr passes the CCommand
and CResponse objects to all enabled CStream objects. The CStream object queries the
CCommand object for the full command string in raw text form. The raw text command is passed
to the stream component. Nexi, the CStream object waits for the response, then reads the raw
text response into a buffer. The raw text response is then passed to the CResponse object. Next

the CRETONNE object is returned to the CStreamMgr, who returns it to the CCommandMagr, who

returns it to the CDniverDisp object. Eventually the CResponse returns to the CDriverDisp objec!.

10

15

CA 02705404 2010-06-01

WO 96/38769 - PCT/US96/08149

20 -
who then directs the CResponse to convert the response into a generic C++ type. The generic
type ié returnéd to the motion control component 35.

Once the component 35 is finished using the dnver, the driver must be released by
calling its Release method. Releasing the driver frees all resources used by the driver. FIG. 20
describes the process of releasing the driver. The following steps occur when cleaning up and
freeing all resources used by the driver.

First, the component 35 must call the driver's Release method. When called, the driver
directs the CDriverDisp object to release any resources used. The CDriverDisp then directs the
CStreamMgr to free any resources used. The CStreamMgr then frees all active CStream objects.
Each CStream object releases all stream component interfaces used. Next the CDriverDisp
directs the CCommandMgr to free all of its resources. During its clean-up, the CCommandMgr
frees the CCommandList object. To complete its clean-up, the CCommandMgr frees the
CResponsel.ist object. |

Attached hereto as Appendix D s 3 document that describes the actual OLE Interfaces
exposed, the definitions of the data structures used when passing data around, and the definitions

of each class used intemally by the dnver.

10

20

30

35

CA 02705404 2010-06-01

WO 96/38769 | PCT/US96/08149

-21 -
V. STREAMS

This section describes the stream component 28 used as the data transport layer between
the driver 30 component and the destination output location such as the motion control device 20
and/or the output file 34. For exampie, when using motion control hardware that 1s connected to
the PC Bus, the driver 30 Component will communicate with the PC Bus stream component 28.

The design of a stream component 28 will be discussed in three parts. First, a Module
Interaction-Map describes the modules that are involved, with respect to the stream, and how
they interact with one another. Next, the Object Interaction-Map breaks the Module Interaction-
Map down into a more detailed view that not only displays the interactions occurring between
modules, but also the interactions taking place between the C++ objects within the stream
cbmponent 28. Then, the Object Interaction-Map is "tested” by running it through several
Scenario-Maps. Each Scenario-Map displays the object interactions taking place during a certain
operation. ‘ '

The Module lnteraction-Map shown in FIG. 22 displays all modules that interact with the
stream component 28. interactions begin from two different perspectives. First, the driver
administrator 32 interacts with the stream component 28 when installing, removing, and
configuring the stream. Next, when used, each driver 30 interacts with the stream while sending
and retrieving data to and from the destination. For example, when a driver writes data to a text
file stream. the stream takes care of writing the data out to the file. Or, if the driver reads data
from a PC Bus stream, the stream does the actual read from the hardware and passes the data
back to the dnver.

Drivers only communicate with streams that have been specifically connected to the
driver. Once connected, the stream is used to communicate with the destination object, ltke the
PC Bus, serial /O connection, text file, or debug monitor.

The stream component 28 shown in FIG. 22 is the object that operates as the data

transport layer for each driver. Each stream has a different target that defines th

of the

D
g

typ
stream. The following are the current stream targets.
PC Bus/WIinNT - This Windows NT stream uses a Windows NT .SYS device

driver to communicate directly with the motion control hardware connected to the PC

Bus.
PC Bus/Wing5 - This Windows 85 stream uses a Windows 95 VxD to
communicate directly with the motion control hardware connected to the PC Bus.
PC Bus/Win 3.1 - This Windows 3.1 stream communicates directly with the
motion control hardware connected to the PC Bus.

Serial - This stream uses the COMM AP to communicate with the motion control

hardware connected to the senal port.

Texi Fie - This stream is write-only and sends all data to a text file.

10

20

30

L)

CA 02705404 2010-06-01

WO 96/38769 PCT/US96/08149

S0
Debug Monitor - This stream is write only and sends all data to the debug

monitor.

Custom - This is a custom stream that sends data to an unknown location.

Similar to the Module Interaction-Map, the Object Interaction-Map displays interactions
between modules. In addition, this map, shows all interactions taking place between each C++
object within the stream component 28. FIG. 23 is the Object Interaction-Map for the stream
component 28 '

Each object in the diagram is described as foliows. The CStreamDisp object is the
dispatch object used to dispatch exposed interface methods. Dunng the dispatch process, all raw
data is converted into the appropriate C++ form. For example, collections of data passed
between OLE components is usually packaged in a raw block of memory. The CStreamDisp
object takes care of packing outgoing data and unpacking incoming data. Data packing involves
converting the data between a raw and native C++ fo~rmat.

The CRegistryMgr object takes care of managing all data stored in the registration
database. Since many streams of the same type may exist at the same time, each stream is
assigned a handle. The handie assigned, is used by the stream to look up the location it uses to
load and store data in the registration database, much as an library index ts used to locate 3
library book.

All input and output is funnelled through the ClIOMgr manager. Management of input and
output operations consists of buffering data and controlling primitives used to transport data to
and from the target location.

The CIOHAL object is the input/output hardware abstraction layer. With in this object lay
all hardware dependent code such as calls to inp and outp. Each different type of stream
contains a different implementation of this object.

Scenario-Maps are specialized Object Interaction-Maps that display how each module

- and the objects inside the siream component interact with one another during the operation

described by the map. The Scenario-Maps in FIGS. 24-32 are broken into two different
categories; those that are initiated by the driver administrator 32, and those that are initiated by
the dnver 30. ‘

Operations directed by the driver admintistrator are usually related to initializing,
uninitializing, and configuring the stream. The following sections describe all operations, directed
by the driver administrator, that take place on the stream.

Before a stream component can be used by anyone, it must be registered in the Windows
registration database. Registration is a standard OLE 2.0 operation required in order {0 use any
OLE 2.0 component, such as the stream component. FIG. 24 describes this process. During the

registration process, the following steps occur.

!J‘

10

20

30

CA 02705404 2010-06-01

WO 96/38769 - PCT/US96/08149

- 2 3 -
First, the driver administrator must load the DLL, containing the stream component, verify

that the module is an stream component 28. To do so, the driver administrator cails the

DLLGetModuleType function, exported by the stream. if the high byte in the return value

- contains the value XMC_STREAM_MT, then the driver administrator proceeds and registers the

stream by calling its exported function, DLLRegisterServer. When called, the implementation of

the DLLRegisterServer writes all OLE 2.0 registration information to the Windows registration
database.

After the strearﬁ component is successfully registered, it is ready for initialization. During
initialization, the stream component not only initializes itself, but aiso initializes any device drivers
used by registering the driver with the operating system. For example, the Windows NT stream
component registers the Windows NT .SYS dniver with Windows NT and starts the service. FIG.
25 describes this process. During initialization, the following steps occur.

First the driver administrator must direct the stream to initialize itself. When making this
call, the name and location of the driver used, and thé handle of the stream are passed into the
method as argdments. Once directed to initialize itself, the stream component calls the
CStreamDisp and directs it to initialize the system. The CStreamDisp object then directs the
CRegistryMgr to load all pertinent data for the stream using the handle passed{o it. The
CRegistryMgr loads all data from the registration database. After all information is loaded from
the registry, the CStreamDisp directs the CIOMGgr to register the appropnate dnver with the
opefating system. The CIOMgr directs the CIOHAL to register the drniver, if appropriate. |f
running in Windows NT, the CIOHAL registers the .SYS driver with the Windows NT operating
system and starts the driver. f running in Windows 95, the VxD integnty is verified with a quick,
dynamic, {oad and unioad.

After initializing the stream component, it may be queried for its current settings or
directed to set new settings. Since both operations are very similar, only changing settings will be
described. Stream settings include data such as: port addresses, IRQ levels, file names, etc.
Any data needed to communicate with the output_!i.ﬁ.put target are included in the stream settings.
FIG. 26 describes the process of changing the streams settings. During the setup process, the
following steps occur.

First the driver administrator directs the stream to use the data passed 1o change its
internal data. Once directed. the stream component passes the interface method invocation o
the CStreamDisp object. The CStreamDisp object then directs the CRegistryMgr to store the new
settings. The CRegistryMgr stores the new values in the registration database.

When the driver administrator is done using a stream component, it must clean up the
resources used. FIG. 27 describes this process. During the clean-up process, the foliowing steps

occur. First the driver administrator must direct the stream component to clean itself up by

caling its Release method. When invoked, the stream component passes the call on to the

t™h

1O

20

30

35

CA 02705404 2010-06-01

WO 96/38769 PCT/US96/08149

04 -
CStreamDisp object. The CStreamDisp object then directs the CRegistryMgr to save all data. All
persistent data is saved to the registration database by the CRegistryMgr.

Driver directed operations occur when each driver 30 uses the stream component 28
connected to it. Remember, each stream component is used as the data transport layer. Each
driver uses the stream to transfer the motion control command data, it generates, {o the output
targel. Streams are also used to transfer data back to the driver when read operations occur.
Only certain streams are readable. '

Before the driver can perform operations on the stream, the stream must be initialized.
initialization occurs in two steps. First the OLE stream component must be loaded, and then
once it is, the stream must be explicitly initialized. FIG. 28 descrnibes the second portion of the
initialization process. The following steps occur during the initialization process.

First the dniver must invoke the initialize methods exported by one of the stream
interfaces. When calling Initialize, the driver passes 10 the stream, the stream handle. Next. the
stream passes the directive on 1o the CStreambDisp of)ject for dispatching. The CStreamDisp
object first directs the CRegistryMgr to load all settings stored in the location defined by the
stream handle. The CRegistryMgr reads in the data stored in the registry at the handle. After the
data is loaded, the CStreamDisp, directs the CIOMgr to initialize itself. As part of its initialization,
the CIOMGgr initializes the CIOHAL object that it is using.

Once a stream has been initialized, it must be opened. Opening a stream places the
stream in a state where it can pass data between the dnver and the target. FIG. 28 describes the
process of opening a stream. When opening a stream, the following steps occur.

First the dniver directs the stream to open itself, by calling the Open exposed interface
method. Once directed, the stream passes the call on to the CStreamDisp object. Next, the
CStreamDisp object directs the CIOMgr to open the stream. At this time, the CIOMgr prepares
any buffers that will later be used when transferring data through the stream. After the buffers are
ready, the CIOMgr directs the CIOHAL object to interact with the target and open it. CIOHAL
girecily communicaies wiih the target or with a device driver and opens the stream. When
operating with hardware streams, the device driver, or Serial 1O airectly communicates with the
hardware and prepares it for operation.

After opening a stream, it is ready to perform data transpornt operations. There are two
main data transport operations available: Reading data, and writing data. FIG. 30 describes the
process of writing data to the stream. When writing to the stream, the following steps occur. First
{the driver directs the stream to write data to the target and passes the data to the stream. Next,
the stream passes the data to the CStreamDisp object. The CStreamDisp object passes the
block of data to the CIOMgr and directs it to write it to the target. The CIOMgr object either
passes the complete block of data to the CIOHAL object, or stores the block in an internal buffer

and then passes pieces of the buffer to the CIOHAL object until the complete buffer is sent. The

CIOHAL object takes the data passed to it and either sends it directly to the target, passes it to 3

CA 02705404 2010-06-01

WO 96/38769 - PCT/US96/08149

25
device driver, or calls COMM API to send the data to the Sernial |O porl. The device driver or
COMM API sends the data directly to the haraware controlled.

Certain streams, like the PC Bus and Senal 1O streams, return data after write operations
occur on them. The data returmed may be specific to a previous request for data, or status
describing the success or failure of the previous write operation. FIG. 31 describes the process of

reading data from the stream. It should be noted that not all streams are readable. Currently, the

10

20

235

only readable streams are the PC Bus and Senal streams. During the operation of reading data
from the target, the following steps occur.

First the driver directs the stream to read data from the target. The stream passes the
call on to the CStreamDisp objecl. The CStreamDisp object directs the CIOMgr to perform the
read. Depending on how the stream is implemented, the CIOMgr may either make one cail or
multiple calls to the CIOHAL object. If multiple calls are made, all data read i1s stored in CiOMgr
internal buffers. The CIOHAL object either directly communicates to the hardware, uses the
COMM API, or a device driver to read the data. If a device driver or the COMM AP are used.
they directly communicate with the hardware t{o read the data.

Once the driver is done using the stream, it must direct the stream to clean-up all
resources used. To do so, the driver calls the standard Release method. FIG. 32 displays the
sequence of events taking place after the Release method is called. The following steps occur
when cleaning up and freeing all resources used Dy the stream. |

' First the driver must call the stream's Release method. Next, the stream directs the
CStreamDisp object to release all resources used. The CStreamDisp object then directs the
CiOMgr to free any resources used in buffers, etc. Next, the CIOMgr directs the CIOHAL to free
any resources used. During its clean-up and depending on the type of stream. the CIOHAL will
delete text files used, close the debug monitor, shut-down the hardware, or direct any device
drivers to shut-down the hardware. |f device drivers or the COMM AP| are used, they direct the
hardware to shut-down.

FIG. 33 depicts an interface map for the stream 28. Attached hereto in Appendix E is a

document that describes the actual OLE Interfaces exposed, the definitions of the data structures

used when passing data around, and the definitions of each class used internally by the stream.

&

)y

10

15

20

25

30

35

CA 02705404 2010-06-01

WO 96/38769 PCT/US96/08149

-6 -
V. DRIVER STUB MODULE

The driver stub module 36 is used to fill in the extended Driver functions that the driver
30 1s unable tb support or implement. By simulating the extended SPI, applications are able to
use a larger set of motion control functionality than would be available if the application directly
programmed the motion control hardware. in order to implement the extended SPI, the driver
stub uses software algorithms that call core SP! interface methods impiemented by the driver 30.
During the initialization of the driver stub, the driver 30 to use is registered with the driver stub.

This section describes alt aspects of the driver stub 36 in three basic parts. The first part
of this section describes all binary modules affecting the driver stub. Next, a more detatled view,
that includes all C++ objects used inside the driver stub, is described. Then several processes
that take place on the driver stub are described.

The moduie interaction-map displays all binary modules and their interactions with the
driver stub 36. As can be seen from FIG. 34, the driver stub is used by the component 35. More
or less, the driver stub acts as a helper to the component 35 by filling in all extended Driver
functionality posstble.

By taking the module interaction-map in FIG. 34 and displaying all interactions taking
place with all C++ objects implementing the driver stub, we produce what is called the object
interaction-map. FIG. 35 is the objec{ interaction-map for the driver stub 36 combonenl.

Each object in the diagram is described as follows.

The CDriverStubDisp object is the dispatch object used to dispatch exposed
interface methods. Durning the dispatch process, all raw data is converted into the
appropriate C++ form. For example, collections of data passed between OLE
components is usually packaged in a raw block of memory. The CDriverStubDisp object
takes care of packing outgoing data and unpacking incoming data. Data packing involves
converting the data between a raw and native C++ format.

The CSPIiMgr object is responsibie for managing all SPI issues such as managing
the CSimpleDriver by directing it to connect to the appropriate SPI core intertaces

exposed by the dnver.

Ther CSimpleDriver object is used o directly communicate with the driver
implementing the SP| core interfaces. The CSimpleDriver only communicates with the

core SPI| interfaces implemented by the driver.

The following discussion describes all main scenarios, or operations, that occur on thé
driver stub 36. Each scenario’-rriap displays all objects involved, and the interactions that take
place between them in the sequence that they occur. All operations on the driver stub onginate
from the motion control component 35. In addition {0 the motion control component 35, the XMC

Setup Component interacts with the driver stub when installing the systerm 22. it should be noted

N

1 ()

20

30

.
s

CA 02705404 2010-06-01

WO 96/38769 PCT/US96/08149

- 2 7 -
that all scenarnos below assume that the driver stub 36 has already been registered in the OLE
system. Registering this component is the responsibility of the setup application and setup
component.

This discussion describes all operations made on the driver stub by the motion controt
component 35. Each section is discussed in the order that they may occur when using the driver.

As shown in FIG. 36, before using the driver stub 36, the motion control component 35
must initiahize it by creating an instance of the dnver stub, and then initializing the instance
created. Calling the standard OLE function CoCreatelnstance cohpietes the first step. After an
instance is created, the component 35 must call the driver stub exposed Initialize interface
method. Dunng initialization, the following steps occur.

The component creates an instance of the driver stub by calling the standard OLE
funt:tion CoCreatelnstance. Once loaded, the CLSID of the driver to use is passed to the driver
stub when calling its Initialize exposed interface method. When first ioaded, the driver loads any
registration data previously stored. Next, the compor*aem 35 passes the CLSID, of the driver to
use, to the CDriverStubDisp object and directs it to initialize the system. The CDriverStubDisp
object then directs the CSPIMgr to initialize itself and passes the driver CLSID to it. The

CSPIMgr passes the CLSID to the CSimpleDriver and directs it to only query the core SP]

interfaces exposed by the dniver. The CSimpleDniver loads an instance of the driver then queries
alt core interfaces exposed by the driver.

Once the driver stub is initialized, it 1s ready to perform operations such as performing
extended Driver functions. FiIG. 37 describes the steps that occur when the component 35 directs
the driver stub to perform an extended SPI operation. The following steps occur when the
operation is requested.

| First the component 35 must request the operation and pass all pertinent parameters to
the driver stub. Next, the driver stub directs the CDriverStubDisp to handie the operation. The
CDriverStubDisp then directs the CSPIMgr to perform the SPI extended function and pésses the
appropriate XMC_EXT_SPl identifier as a parameier. The CSPIMgr caiis the appropriate function
corresponding to the XMC_EXT_SPl identifier. The function simulates the extended Driver
function and calls the CSimpleDriver for core operations. When directed, the CSimpleDnver
performs SP| core fanctions by directly calling the exposed interfaces implemented by the driver.

When the motion control component 35 ts finished using the driver stub 36, it must

release it by calling the exposed Release method. Calling the Release method causes the driver

stub to free all the resources it uses. FIG. 38 displays this sequence of events. During the clean-

up process, the following steps occur.
First the component 35 must direct the driver stub to release all of its resources by calling
its Release method. When invoked, the dnver component passes the call on to the

CDnverStubDisp object. The CDriverStubDisp object then directs the CSPIMgr to release any

CA 02705404 2010-06-01

WO 96/38769 PCT/US96/08149

-28-
resources that it was using. The CSPIMgr releases all resources including the CSimpleDriver
object used. When freed, the CSimpleDriver releases any interfaces used from the driver.
FIG. 39 is an interface map of the driver stub moduie 36. Attached hereto as Appendix F
ts a document that describes the actual OLE Interfaces exposed, the definitions of the data
structures used when passing data around, and the definitions of each class used internally by the

driver.

WL

10

20

25

30

v
lJ1

CA 02705404 2010-06-01

WO 96/38769 - | PCT/US96/08149

-29-
V1. DRIVER ADMINISTRATOR MODULE

The driver administrator 32 is used from two different perspectives. When the dnver
administrator Control Panel Applet 38 is used to configure the system, the applet directs the
driver administrator 32 to carry out the operations. The applet 38 simply provides the user-
interface, and the component 35 does the real work of managing drivers and streams used with
the system 22. Using the driver administrator component with the control panel applet is the first
perspective on using the component 35. '

In the second perspective, the mation control component 35 uses the driver administrator
component to query for the current set of enabled the driver 30. It should be noted that, currently,
only single driver operation is allowed. Clearly, the system 22 may support muitiple drivers that
are virtualized. For example, if two, four axis, drnivers are installed, applications using the system
could act as though they were using an eight axis system. '

This section describes the driver administrato} 32 1n three main parts. First, all modules
interacting with the driver administrator component are described along with their interactions.
Next, the module interaction-map is expanded to display all interactions taking place between the
C++ objects used {o implement the driver administrator 32 Component. This description is called
the object interaction-map. Then, the object interaction-map is tested by running it through
several scenarios, or scenario-maps. Each scenario-map displays the events and the order in
Which they occur in a certain process taking place on the driver administrator component.

The module interaction-map shown in FIG. 40 displays all binary modules and their
interactions with the driver administrator 32 Component. Both the driver administrator CPL 38
and the motion control component 35 are the main modules that interact with the driver
administrator 32 Component.

The driver administrator CPL moduie 38 provides the user-interface that aliows the user
to add, configure, and remove drivers and streams in the system 22. The dniver administrator 32
handies all driver and stream management. Even though the contro! pane! applet provides the
user-interface, this module 32 does the actual management work.

in addition. the driver administrator is used by the component 35 to access the current
driver(s) to use when-carrying out motion control operations. For example, if the AT6400 driver is
selected as the current driver when the component 35 queries the driver administrator, the driver
administrator returns the CLSID of the AT6400 dniver.

Taking the driver administrator 32, displayed in the module interaction-map, and
displaying all interactions occurring between the C++ objects used to implement the administrator
34, produces the object interaction-map therefor. The object interaction-map for the driver

administrator 32 i1s shown in FIG. 41

Each object in the diagram 15 described as 10liows.

10

20

- 30

35

CA 02705404 2010-06-01

WO 96/38769 PCT/US96/08149

-

- 30 -~

The CDriverAdminDisp object is the dispatch object used to dispatch exposed interface
methods. During the dispatch process, all raw data i1s converted into the appropriate C++ form.
For example, collections of data passed between OLE components is usually packaged in a raw
block of memory. The CDriverAdminDisp object takes care of packing outgoing data and
unpacking incoming data. Data packing involves converting the data between a raw and native
C++ tformat.

The CDriverinfoMap object is used to build the information used by the daver
administrator CPL 38 when displaying information about each driver or stream.

The CModuleMgr object is responsible for managing all stream and driver modules in the
system. A list of all drivers registered are stored persistently in the registration database by the

CModuleMgr. Each time a driver or stream is accessed the CModuleMgr is used to get the

module.

The CSimpleDriver object is used to directly communicate with the driver component. All
OLE specific details are encapsulated within this obje‘ct.

The CSimpleStream object is used to directly communicate with the stream component
All OLE specific details are encapsulated within this object.

FIGS. 42-49 describe all main scenarios, or operations, that occur on the dnver
administrator 32. Each scenario-map displays all objects involved, and the interactions that take
place between them in the sequence that they occur.

Referring now to FIG. 42, before using the dnver administrator component, it must be
initialized. FIG. 42 describes the process of initializing the driver admintstrator component fforh
either the driver administrator control panel applet or the motion controt component. During
initiatization, the following steps occur.

First. either the control panel applet or the motion control component must create an
instance of the driver administrator component by calling the standard OLE function

CoCreatelnstance. Next, the exposed Initialize interface method must be called. When the

PN thhmel : 4 drens
initialize method is calied, the dm

Q m:ﬂr‘.ﬂ
s ot il tilw tEV

strator component directs the COriverAdminDisp 1o
initialize the system. Next, the CDriverAdminDisp directs the CModuleMgr 10 initialize itself and
any modules that it is managing. The CModuleMgr, first, toads all information from the
registration database. Then for each driver registered, the CModuleMgr creates an instance of
the driver by calling the standard OLE function CoCreateinstance. Next, the CModuleMgr calls

each drivers Initialize method, passing to the method the CLSID of the driver component to

attach. The CSimpleDriver attaches to the driver component by calling the standard OLE

function CoCreateinstance.
The driver administrator 32 can register both drivers and streams. Registering drivers is
very direct, since the driver administrator manages the drivers registered in the system.

Registering streams, on the other hand. is more complex, since each stream must be registered

'

10

15

20

30

CA 02705404 2010-06-01

WO 96/38769 - PCT/US96/08149

~-371 -~
with a driver and the driver manages the streams registered with i, not the driver administrator.
The following discussion describes the process of registering both dnvers and streams.

Registering a driver entails verifying that the module is actually a driver, verifying that the
driver can be loaded, and storing the dnver information in a persistent location. FIG. 43
describes this process. When registering a driver, the following steps occur.

First, the driver administrator CPL passes the name of the driver and directs the driver
administraior component to register it. Next, the drniver administrator component passes the
driver name to the CDniverAdminDisp and directs it to register the moduie. The
CDriverAdminDisp directs the CModuleMgr to register the new driver. The CModuleMgr creates
a new CSimpleDriver and requests it to register the driver. First the CSimpleDriver verifies that
the driver is valid by calling its DLLGetModuie Type exported function. If the function returns
XMC_DRIVER _MT the CSimpleDriver then calls the driver's exported function
DLLRegisterServer to register the module in the OLE system. Next the CLSID is queried from
the module by calling its e<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>