
(12) STANDARD PATENT (11) Application No. AU 2004222762 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Architecture for an extensible real-time collaboration system

(51) International Patent Classification(s)
G06F 9/54 (2006.01) G06F 15/00 (2006.01)
G06F 9/38 (2006.01) HO4L 29/06 (2006.01)
G06F 9/46 (2006.01)

(21) Application No: 2004222762 (22) Date of Filing: 2004.10.19

(30) Priority Data

(31) Number (32) Date (33) Country
60599807 2004.08.06 US
10918855 2004.08.14 us
60513790 2003.10.23 us
10918333 2004.08.13 us

(43) Publication Date: 2005.05.12
(43) Publication Journal Date: 2005.05.12
(44) Accepted Journal Date: 2010.03.04

(71) Applicant(s)
Microsoft Corporation

(72) Inventor(s)
Ganesan, Krishnamurthy;Chitturi, Ajay P.;Osborne, Robert J.;Potra, Adrian;Barkley,
Warren Vincent;Bobde, Nikhil P.;Ostergren, Brian H.;Han, Mu

(74) Agent / Attorney
Davies Collison Cave, 1 Nicholson Street, Melbourne, VIC, 3000

(56) Related Art
US 5539886
US 5724508
US 20030014488

ABSTRACT OF THE DISCLOSURE

An architecture for an extensible real-time collaboration system is provided.

The architecture presents a unified application program interface for writing

application programs that use communications protocols. The architecture has

activity objects, endpoint objects, and multiple media stacks. These objects may

use various communications protocols, such as Session Initiation Protocol or Real

Time Transport Protocol to send and receive messages. The activity objects,

endpoint objects, and multiple media stacks may each have one or more APIs that

an application developer can use to access or provide collaboration-related

functionality. These objects map the API to the underlying implementation

provided by other objects. Using the activity objects enables a developer to

provide less application logic than would otherwise be necessary to provide

complex collaboration services.

1/5

0o

00
m.

00

ccU

oc
CUC

0

cn

Ca.u

oC

CEn

00

AUSTRALIA

PATENTS ACT 1990

COMPLETE SPECIFICATION

NAME OF APPLICANT(S)::

Microsoft Corporation

ADDRESS FOR SERVICE:

DAVIES COLLISON CAVE
Patent Attorneys
1 Nicholson Street, Melbourne, 3000, Australia

INVENTION TITLE:

Architecture for an extensible real-time collaboration system

The following statement is a full description of this invention, including the best method of performing it
known to me/us:

5102

CROSS-REFERENCE TO RELATED APPLICATION(S)

[0001] This application claims the benefit of U.S. Provisional Application No.

60/513,790, filed on October 23, 2003, U.S. Provisional Application No.

60/599,807, filed on August 6, 2004, U.S. Parent Application 10/918,333, filed on

August 13, 2004 and U.S. Parent Application 10/918,855 filed on August 14, 2004,
which are incorporated herein in their entirety by reference.

TECHNICAL FIELD

[0002] The described technology relates generally to data communications and,
more particularly, to an architecture for an extensible real-time collaboration

system.

BACKGROUND

[0003] Various communications applications and protocols enable communications

between software programs or users. As examples, real-time communications

applications such as MICROSOFT WINDOWS MESSENGER and Voice over

Internet Protocol ("VoIP") enable communications between users sending each

other text, video, or voice data. These applications may use various protocols,
such as Session Initiation Protocol ("SIP"), Real-Time Transport Protocol ("RTP"),

and Real-Time Control Protocol ("RTCP"), to establish sessions and send

communications-related information. SIP is an application-layer control protocol

that devices can use to discover one another and to establish, modify, and

terminate sessions between devices. RTP is a protocol for delivering audio and

video over the Internet, and is frequently used in streaming media systems and

videoconferencing systems in conjunction with other protocols such as RTCP and

[41826-8024-USO1/SL042030.281.DOC] 8/14/04
-la-

H.323. RTCP is a protocol that enables a client application to monitor and control

data sent or received using RTP, and is used with RTP. SIP and RTP/RTCP are

Internet proposed standards. Their specifications, "RFC 3261" and "RFC 3550,"

and respectively, are available on the Internet at www.ietf.org at /rfc/rfc3261.txt

and www.faqs.org at /rfcs/rfc3550.html, respectively, and are incorporated herein

in their entirety by reference.

[0004] Applications may additionally use other protocols. Applications may use

enhanced versions of the protocols indicated above or altogether different

protocols that are designed to carry specialized data. As an example, when a new

or improved protocol for carrying videoconferencing information becomes

available, an application developer creating or modifying an application may desire

to use the new or improved protocol, e.g., to improve performance or offer

additional features. To use the new or improved protocol, the application

developer may need to modify portions of the application that interact with

communications protocols because an improvement to a protocol or a new

protocol may have a different interface than a protocol already being used. As an

example, while a protocol may have a NewSession interface to create a new

session, an improved version may have a StartSession method that creates and

starts a session and accepts additional parameters. Because StartSession

accepts additional parameters, its interface is different from NewSession, and so

an application using NewSession may need to be modified to use StartSession.

When a protocol has a different interface, application developers may need to

learn the different interface and modify their applications to use this interface to

use the protocol.

[0005] Application developers may need to become familiar with details of each of

the many communications protocols they use in applications they develop. As an

example, when an application developer uses SIP and RTP/RTCP, the application

developer may need to be familiar with all three protocols to provide program logic

relating to the protocols. An application developer not familiar with all three

protocols may need additional training and time to become familiar with these

protocols. Furthermore, when the application is to be modified to work with

[41826-8024-USO1 O0/SLO42030.281.DoC] -2- 8/14/04

C\NRPorh1,DCC\TNB\24X1'24 - DOC-i1.l /G2

-3

additional or improved protocols, the application developer may need to revise or

add programming logic so that the application can function with these protocols.

This could lead to additional development expense and difficulty.

[0006] Furthermore, various protocols present a variety of complexities. For

5 example, to provide a videoconferencing facility in an application, the application's

developor would have to become familiar with a number of protocols and provide

logic to coordinate these protocols to add videoconferencing capabilities. Adding

other collaboration capabilities to an application, such as text messaging, voice

messaging, etc., presents other similar complexities.

10 [0007] Thus, an architecture for an extensible real-time collaboration system

that facilitates addition of collaboration features in an application without significant

investment in developer training would have significant utility.

SUMMARY

15

[0008] An architecture for an extensible real-time collaboration system is

described. The architecture presents a unified application program interface

("API") for writing application programs that use communications protocols. The

architecture has activity objects, endpoint objects, and multiple media stacks.

20 These objects may use various communications protocols, such as Session

Initiation Protocol or Real-Time Transport Protocol to send and receive messages

containing information. The activity objects, endpoint objects, and multiple media

stacks may each have one or more APIs that an application developer can use to

access or provide collaboration-related functionality. These objects map the API to

25 the underlying implementation provided by other objects. Using the activity objects

enables a developer to provide less application logic than would otherwise be

necessary to provide complex collaboration services.

[0008a] Some embodiments relate to a method performed by a computing

30 system for providing real-time collaboration services in an application, comprising:

instantiating an activity object, the activity object providing the functionality

AC\NRPon N)ODX24xI24 JDOC-1 2/2(1W

-4

of an endpoint object and a media stack object both underlying the activity object,

and having an application program interface for providing a collaboration service,

and

invoking methods of the application program interface,

5 wherein the invoked methods provide management services of the endpoint

object which provides an abstraction of a user at a computing device and is

identified by a combination of an electronic address of the user and an endpoint

identifier, the management services including providing presence information

relating to whether the user is present at the computing device; and

10 wherein the invoked methods further provide content communications

services of the media stack object between applications that are communicating

information of the collaboration service.

[0008b] Some embodiments relate to an extensible real-time collaboration

15 system, comprising:

multiple media stack objects;

an endpoint object for providing or receiving signalling information, the

endpoint object providing an abstraction of a user at a computing device and being

identified by a combination of an electronic address of the user and an endpoint

20 identifier; and

multiple activity objects, wherein the activity objects provide the functionality

of the multiple media stack objects and endpoint object all underlying the multiple

activity objects, provide an application program interface to applications and utilize

the multiple media stack objects and endpoint object to provide collaboration

25 services, wherein the collaboration services include providing presence

information relating to whether the user is present at the computing device, further

wherein the application uses the application program interface and does not need

to provide logic to coordinate the media stack objects and endpoint object.

30 [0008c] Some embodiments relate to computer-readable storage storing

computer-executable instructions for performing the methods described herein or

AC WMRPorbblCC-IX12481724 I DOC.-112/211

-4A

for implementing the systems described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

5 [0009] Figure 1 is a block diagram illustrating components of an architecture

for an extensible real-time collaboration system.

[0010] Figure 2 is a block diagram illustrating components of an endpoint

object of the extensible real-time collaboration system.

[0011] Figure 3 is a block diagram illustrating activity objects of the

10 extensible real-time collaboration system.

[0012] Figure 4 is a flow diagram illustrating a createserverendpoint

routine.

[0013] Figure 5 is an architecture diagram illustrating the architecture for an

extensible real-time collaboration system.

15

DETAILED DESCRIPTION

[0014] In some embodiments, an architecture for an extensible real-time

collaboration system is provided. The architecture provides a high-level application

20 program interface ("API") for writing application programs that use

communications protocols to provide collaboration services. An application

developer can add collaboration services to an application by using the API

without needing to learn complexities associated with several underlying protocols

that implement the collaboration services.

25 [0015] The architecture comprises activities objects, endpoint objects, and

multiple media stacks. These objects may use various communications protocols,

such as SIP or RTP/RTCP, to send and receive messages. The activities objects,

endpoint objects, and multiple media stacks may each have one or more APIs that

an application developer can use to access or provide functionality provided by the

30 objects. The application developer can choose to provide application logic that

utilizes the APIs provided by endpoint objects and media stacks, or can choose to

AC \NRPonbl\DcC'rxI24x1724 i 1OC.- 1211

-4B

provide application logic that utilizes the API provided by an activity object. By

utilizing the APIs provided by the endpoint objects and media stacks, the

application developer may be able to exercise a high degree of flexibility, but may

have to provide significantly more application logic than if only an activity object's

5 API is used. An application developer may choose to use the activity object's API

for several reasons. The API of the activity objects provides a higher-level

interface than the APIs of the endpoint object and media stacks. Furthermore, the

activity objects coordinate the endpoint object and the media stack, and so

application logic may not need to be provided to perform the coordination.

[0016] Activity objects provide services to applications and other objects. Activity

objects are objects that enable an application to participate in a variety of specific

activities, and may include, as examples, instant messaging, teleconferencing,

videoconferencing, application sharing, and other activities. Activity objects may

be considered to be "wrapper" objects that provide the functionality of underlying

objects, including endpoint objects and media stacks. In particular, activity objects

coordinate endpoint objects and media stacks to provide a seamless and

integrated session to other objects using the activity objects, such as applications.

[0017] An example of the benefit of using an activity object is provided by the

following example. An application developer may desire to provide

videoconferencing capabilities in an application. To do so, the application

developer would first have to become familiar with a signaling protocol, such as

SIP, and a media protocol, such as RTP/RTCP. Next, the application developer

may have to provide application logic to create a session, determine whether a

contact with whom videoconferencing is desired is presently online, send an

invitation to join a videoconference, negotiate various parameters relating to the

videoconference, capture audio and video from sound and video capturing

hardware, and finally exchange audio/video data using RTP/RTCP. In contrast, by

using a videoconferencing activity object of the architecture, many of these steps

are eliminated because the videoconference activity object is especially designed

to consolidate this application program logic into a few higher-level interfaces. The

architecture has similar activity objects for a variety of other collaboration activities.

Furthermore, the architecture provides support for additional activity objects to be

added in the future.

[0018] An endpoint object provides management services, such as signaling. An

endpoint object comprises profile, publishing/subscribing, signaling, and protocol

stack components. The profile component may provide an abstraction of a user

through an API. The publishing/subscribing component provides interfaces to

track presence and availability information relating to users. The signaling

[41826-8024-US0100/SLO42030.281.DoC] -5- 8/14/04

component may be used to provide or receive infrequent, transactional messages

relating to establishing or controlling sessions. The signaling component may also

be used for negotiating, e.g., media parameters such as bandwidth limit. The

protocol stack component is used by the profile, publishing/subscribing, and

signaling components to send or receive data, and supports various protocols,

including SIP.

[0019] As previously described, the activity object provides a facility for application

developers to add collaboration services to applications easily. As an example, an

application developer desiring to add videoconferencing in an application may

provide logic to create (or "instantiate") a videoconferencing activity object. The

videoconferencing activity object may then instantiate an endpoint object for

signaling (such as a SIP endpoint object) and a messaging media stack for

carrying audio/video data. During subsequent videoconferencing activities (e.g.,

when sending or receiving an audio/video stream), the activity object may

coordinate the objects it created or instantiated. In an embodiment, the application

may create the objects and, optionally, provide an indication of the objects to the

activity object. In such a case, the activity object may not need to create these

objects.

[0020] Media stack objects provide content communications services, such as

handling audio/video data streams. As an example, a media stack object may use

RTP/RTCP to send or receive audiovisual information relating to a

videoconference.

[0021] Turning now to the figures, Figure 1 is a block diagram illustrating

components of an architecture for an extensible real-time collaboration system in

an embodiment. The architecture for an extensible real-time collaboration system

comprises a collaboration service object 102, multiple endpoint objects 104,

activity objects 106, and multiple media stacks 108. One or more applications 110

may utilize the architecture by accessing various methods, properties, and events

relating to the architecture. An application developer writing an application may

utilize the architecture by using a unified API instead of having to learn and

[41826-8024-US0100/SLO42030.281 .Doc] -6- 8/14/04

implement a different API for each media stack, protocol, or other component that

the application or architecture may use.

[0022] The collaboration service object 102 provides a facility for applications to

share multiple endpoint objects and may provide a consistent API across a

number of endpoint objects. As an example, if endpoint object 1 provides an

interface relating to receiving (or sending) information, and endpoint object 2

similarly provides an interface relating to receiving (or sending) information, but the

two interfaces use different names yet perform similar functions, the collaboration

service object may provide a common name for both interfaces. When an

application developer uses this common name in an application, the application

developer may not need to revise the application when a new or modified object

that provides an interface with a different name is used with the collaboration

service object.

[0023] Endpoint objects 104 provide a facility for signaling other objects. Signaling

may be used between two endpoint objects having a session, e.g., so that an

endpoint object can invite or request the other endpoint object to conduct an

activity or exchange information relating to the session. As examples, an endpoint

object may invite the other endpoint object of the session to an instant messaging

conversation and subsequently may send text messages relating to the

conversation. Endpoint objects are further described below in greater detail in

relation to Figure 2.

[0024] Activity objects are components that enable an application to participate in

a variety of collaboration-related activities. These components provide an API that

an application developer can use to coordinate endpoint objects and media stacks.

Activity objects 106 are further described below in greater detail in relation to

Figure 3.

[0025] A media stack object 108 provides content communications services, such

as handling data streams, and provides an API for other objects to send or receive

the data. The architecture is capable of supporting virtually an infinite number of

media stacks by virtue of the fact that the architecture does not need to distinguish

between the data or media types. As a result, new media stacks may be added or

[41826-8024-US0100/SLO42030.281.DOC] -7- 8/14/04

media stacks may be modified as requirements change. An example of a media

stack is RTP/RTCP. This media stack may be used to send audiovisual

information.

[0026] Figure 2 is a block diagram illustrating components of an endpoint object of

the extensible real-time collaboration system in an embodiment. Endpoint objects

provide management services, such as a facility for signaling other objects.

Signaling may be used between two endpoint objects having a session, e.g., so

that an endpoint object can invite or request the other endpoint object to conduct

an activity or exchange information relating to the session. As examples, an

endpoint object may invite the other endpoint object of the session to an instant

messaging conversation and subsequently may send text messages associated

with the conversation.

[0027] The architecture may support several varieties of endpoint objects, and

each variety of endpoint object may be instantiated multiple times. As an

example, there may be an endpoint object relating to a user's personal Internet

service provider account (e.g., MSN.COM) and another endpoint object relating to

the user's corporate Internet account (e.g., MICROSOFT.COM). The user may be

logged in to service providers using the personal account on multiple devices (e.g.,

a handheld computing device and a desktop computing device) and may also be

logged in using the corporate account on some of the devices (e.g., the desktop

computing device). Thus, there may be two instances relating to the URI

associated with the personal account. Individual instances of endpoint objects

may then be uniquely identified by a combination of a uniform resource locator

("URI") and an endpoint identifier ("EID"). As an example, an endpoint object may

be identified by the URI user@MSN.COM and by the EID "1234." As previously

described, the EID may be used to particularly distinguish an instance of an

endpoint object from another instance of an endpoint object that is associated with

the same URI.

[0028] An endpoint object may provide a "data" interface and a "signaling"

interface. The data interface may include methods, events, and properties relating

to data that is published or subscribed to by the endpoint object. By publishing or

[41826-8024-US01O0O/SLO42030.281.DOc] -8- 8/14/04

subscribing to data, an application may provide data or be notified of changes to

data. The signaling interface may provide methods, events, and properties

relating to controlling signaling of the endpoint object. As examples, signaling

characteristics may include creating or joining sessions, entering or leaving

conversations, accepting or declining invitations, and other signals.

[0029] The illustrated endpoint object 200 comprises a profile component 201,

publishing and subscribing component 202, signaling component 204, and

protocol stack component 206.

[0030] The profile component may provide an abstraction of a user through an

API. It maintains service-related information for the user, such as an electronic

address (e.g., URI), credentials used for the service provider, the service

provider's status, capability, and policies. Users may have multiple profiles in

relation to different service providers. The user could also have more than one

profile per service provider. The profile component may be used when creating

sessions with other users, e.g., to provide the user's URI. The profile component

may provide methods to log on or off a user in relation to a service provider.

[0031] The publishing/subscribing component provides interfaces to track

presence and availability information relating to users. Presence information

relates to whether a user is present at a particular computing device. Availability

information relates to whether the present user is available to receive a message

or willing to do so. As an example, a user of a cellular telephone may be present

when the cellular telephone is turned on, but may be unavailable for a messaging

session when the user is participating in a phone call. Similarly, a user who has

set a "busy" indication in MICROSOFT WINDOWS MESSENGER may be present

but unavailable for messaging.

[0032] As further examples, the presence object may provide information relating

to a user who is present and available to participate in a MICROSOFT WINDOWS

MESSENGER conversation using a computing device and is also available to

participate in a teleconference using a cellular telephone. When the user is no

longer logged into MICROSOFT WINDOWS MESSENGER, the presence object

may update this information so that an application using the presence object is

[41826-8024-US0100/SLO42030.281.DOC] -9- 8/14/04

able to determine that the user is no longer present or available to participate in

the MICROSOFT WINDOWS MESSENGER conversation. Thus, presence

information indicates whether users or other objects are present. Various service

providers or protocols may use different mechanisms to produce or provide

presence information. So that an application developer does not need to be aware

of the multiple ways of producing or providing presence information, an application

developer may use the endpoint object to produce or use presence information.

[0033] The publishing/subscribing component provides a subscribe interface to

create a subscription to another object's publication, a publish interface to provide

subscriptions to other objects, and a notify interface to receive notifications relating

to services whose publications have been subscribed to. These interfaces enable

an application to use the component to provide, receive, or track presence

information. As an example, when a user participates in a MICROSOFT

WINDOWS MESSENGER conversation using a personal computer and

participates in a teleconference using a cellular telephone, the

publishing/subscribing component may detect and report the user's presence at

both locations. A URI and EID may together uniquely identify instances of

endpoint objects. Because a user may be present at multiple locations

simultaneously, the user's URI may be indicated as present at these multiple

locations. The addition of an EID in relation to a given URI provides a mechanism

to uniquely identify a particular instance of presence.

[0034] Notifications may be provided relating to various information. As examples,

notifications may be provided relating to whether a user is online, busy, available,

out for lunch, etc. Notifications may also be provided relating to geographic

location of a user (e.g., as provided by a global positioning system or "GPS")

contact information, calendar information, out of office messages, audio/video

capabilities, etc.

[0035] The signaling component may also be used to provide or receive

infrequent, transactional messages relating to establishing or controlling sessions.

This component may also be used for negotiating, e.g., media parameters such as

frames per second.

[41826-8024-USO 100/SLO42030.281.DOc] -10- 8/14/04

[0036] The protocol stack object is responsible for sending and receiving

information using a protocol. As an example, SIP may be used to send or receive

signaling information. In various embodiments, other protocols can equally be

used. In an embodiment, an endpoint object may be compatible with multiple

protocols. In such a case, the endpoint object may be able to use, e.g., multiple

protocols, as necessary, to send or receive information. Alternatively, the

architecture may support multiple endpoint object-protocol combinations as

separate endpoint objects. In such a case, one endpoint object may be used for

SIP and another for some other protocol.

[0037] Figure 3 is a block diagram illustrating activity objects of the extensible real

time collaboration system in an embodiment. Activity objects provide services to

applications and other objects. Activity objects are objects that enable an

application to participate in a variety of specific activities, and may include, as

examples, instant messaging, teleconferencing, videoconferencing, application

sharing, and other activities. Activity objects may be considered to be "wrapper"

objects that provide the functionality of underlying objects, including endpoint

objects and media stacks. In particular, activity objects coordinate endpoint

objects and media stacks to provide a seamless and integrated session to objects

using the activity objects, such as applications.

[0038] Each activity object provides functionality that enables an application using
the object to participate in a variety of activities. As an example, an activity object

may encapsulate signaling and media information. In doing so, the activity object

may serve as a bridge between signaling and media, so that an application using

the activity object is provided an integrated view. For example, an application

developer would merely request a videoconference rather than having to set up

separate SIP and RTP/RTCP connections and sessions. The illustrated examples

of activities are described below.

[0039] A collaboration session activity object 304 enables an application to provide

collaboration services to the application's users. As an example, the collaboration

session activity object may enable two users using two different computers to

collaborate by authoring a shared document.

(41826-8024-US0100/SLO42030.281 .DOC] -11- 8/14/04

[0040] An application sharing activity object 310 enables an application using the

application sharing activity object to provide functionality relating to the sharing of

applications between users using different computing devices. As an example,

two users may share a "whiteboard" application, e.g., using which a user can

provide visual information that the other user can view and manipulate.

[0041] A messaging activity object 306 provides an ability for applications to

provide messaging capabilities to the application's users. As an example, an

application developer may want to enable messaging within an application the

developer is creating. As a specific example, when two users are collaborating on

a document by simultaneously editing a document, the users may want to be able

to send text messages to one another or participate in a videoconference during

the collaboration. In such a case, an application developer may use a

collaboration session activity object as well as messaging or videoconferencing

activity objects to enable users to collaborate and exchange messages with one

another during the collaboration.

[0042] A videoconferencing activity object 308 provides videoconferencing facilities

to an application. Videoconferencing may involve sending and receiving

audiovisual information.

[0043] Additional activity objects are also contemplated, and are represented as

activity objects 312.

[0044] An application developer may use objects of the architecture described

above (and those not listed or described) by utilizing APIs provided by the objects.

These objects may provide an easy-to-use API so that an application developer

may not need to reference APIs provided by underlying components that provide

the services associated with the activity objects. As an example, a messaging

service provider may provide an API that a developer could use. To do so, the

developer may need to spend time to learn the API, which can be quite

complicated. Instead, the developer may wish to use a simpler API provided by an

object of the architecture. Furthermore, the object may encapsulate steps that

may be required to use multiple different objects. As an example, an application

developer wishing to exchange messages between two computers may need to

[41826-8024-USO1 00/SLO42030.281.DOC] -12- 8/14/04

utilize an API provided by the SIP as well as an API exposed by another low-level

object that provides messaging services. In contrast, the application developer

would only need to use the messaging activity object, and thereby be able to add

messaging functionality to an application much more easily. Furthermore, the

framework may operate to coordinate multiple objects, thereby requiring less

programming logic from the application developer.

[0045] In an embodiment, a collaboration session contains and uses activity

objects.

[0046] Figure 4 is a flow diagram illustrating a createserver endpoint routine in

an embodiment. The routine is called by an application to create an endpoint

object that connects to a server. When an endpoint is created that connects to a

server, information it publishes may be available to subscribing objects even after

the created endpoint is no longer operating. Thus, an endpoint connected to a

server may provide "per-URI" information meaning that the information remains

available after the object's lifetime.

[0047] The routine begins at block 402. At block 404, the routine creates a new

endpoint object, and indicates that the endpoint is related to an application. The

indicated application may be provided as a parameter to a create function that

operates to create the endpoint. When creating an endpoint, a "friendly" name

may be provided so that the endpoint may be referenced by the friendly name.

Alternatively, the newly created endpoint may be referenced by a unique identifier

associated with the endpoint. This unique identifier may be generated by the

system when the object is created.

[0048] At block 406, upon creating the endpoint, the application may register the

newly created endpoint object to the server to allow the server to route messages

to this endpoint. Upon receiving the register request from the endpoint object, the

server may issue a challenge to the endpoint. The challenge may contain a

"realm" used by the server. A realm may indicate a domain name associated with

the server. As an example, the server may issue a challenge with the realm

"MICROSOFT.com."

[41826-8024-US0100/SLO42030.281.DOC] -13- 8/14/04

[00491 At block 408, the routine responds to the challenge by providing credentials

(e.g., user id and password) associated with the application. These credentials

may be supplied by a user or automatically. The server may validate the

credentials that the routine supplies. The credentials may be associated with the

realm. For example, if the application provides credentials that are not associated

with the server's realm ("MICROSOFT.com"), the server may not authenticate the

application.

[0050] If the registration is successful, the endpoint may be ready to receive

messages from other objects. Otherwise, the endpoint may be unable to receive

messages.

[0051] The routine returns to its caller at block 412.

[0052] In an embodiment, the server may enable an endpoint that is not

successfully registered to send messages but not receive messages.

Alternatively, in a weaker security model, the server may enable any endpoint to

send or receive messages.

[0053] In an embodiment, the server may challenge an endpoint when the

endpoint attempts to send a message but not when it receives messages.

[0054] An alternate routine (not shown) may create a peer-to-peer endpoint. A

peer-to-peer endpoint is one that is not associated with a server. When an

endpoint is not associated with a server, information the endpoint publishes may

not be available once the endpoint stops operating.

[0055] Figure 5 is an architecture diagram illustrating the architecture for an

extensible real-time collaboration system in an embodiment. The architecture

comprises an activity object 502, endpoint 504, and multiple media stack objects

506. These objects have been discussed in extensive detail. The architecture

diagram indicates a relationship between the activity object, endpoint object, and

media stack objects in an embodiment. Specifically, the architecture diagram

indicates that functionality provided by an activity object includes functionality

provided by the endpoint and media stack objects.

[0056] In an embodiment, multiple activity objects may be used with corresponding

media stack objects.

[41826-8024-US0100/SLO42030.281.DoC] -14- 8/14/04

[0057] Applications may call methods of objects of the architecture, or may directly

call methods of underlying objects that implement functionality. By calling

methods of the architecture's objects, application developers may need to provide

less logic, and may not need to revise the application logic when the underlying

components change.

[00581 The following presents some APIs provided by the architecture.

[0059] An application can create an endpoint object by creating a new

"CollaborationEndpoint." The application can provide the following parameters: a

URI relating to the endpoint object, a server associated with the endpoint object,

and an indication of network credentials.

[0060] A NetworkCredential method provides the indication of network credentials.

This method accepts as parameters an indication of a user account, password,

and domain with which the account is associated.

[0061] An Enter method registers the endpoint, and provides an indication of a

success or failure. The method does not require parameters.

[0062] A Publish method publishes presence information. As examples, an

application can indicate that a user is online, offline, busy, on the phone, etc. The

architecture is flexible enough to provide virtually an unlimited number of presence

indications. For example, an application may choose to publish a user's GPS

location.

[0063] Conversely, a Subscribe method subscribes to an endpoint object's

publication.

[0064] An Invite method invites a user to a collaboration session. The method

receives an indication of a URI that should be invited.

[0065] An Accept method accepts an invitation. Conversely, a Decline method

declines the invitation.

[0066] A messaging activity object can be created from an

InstantMessagingActivity class. This activity object supports various methods

including, e.g., a method to send a. message, SendMessage.

[00671 The SendMessage method sends a message. It receives a message string

as a parameter.

[41826-8024-US0100/SLO42030.281.DoC] -15- 8/14/04

[0068] The methods may be provided by various objects of the architecture. The

architecture may additionally provide methods, properties, and events relating to

retrieving a user's properties, adding a user to a list of contacts, adding or

removing participants from a conversation, and so on.

[0069] The computing device on which the architecture is implemented may

include a central processing unit, memory, input devices (e.g., keyboard and

pointing devices), output devices (e.g., display devices), and storage devices (e.g.,

disk drives). The memory and storage devices are computer-readable media that

may contain instructions that implement the system. In addition, the data

structures and message structures may be stored or transmitted via a data

transmission medium, such as a signal on a communications link. Various

communications links may be used, such as the Internet, a local area network, a

wide area network, or a point-to-point dial-up connection.

[0070] The architecture may be implemented in a variety of operating

environments, including computing devices running a MICROSOFT WINDOWS

operating system. This operating environment is only one example of a suitable

operating environment and is not intended to suggest any limitation as to the

scope of use or functionality of the system. Other well-known computing systems,

environments, and configurations that may be suitable for use include personal

computers, server computers, hand-held or laptop devices including "smart"

cellular telephones, multiprocessor systems, microprocessor-based systems,

programmable consumer electronics, network PCs, minicomputers, mainframe

computers, distributed computing environments that include any of the above

systems or devices, and the like.

[0071] The architecture may be described in the general context of computer

executable instructions, such as program modules, executed by one or more

computers or other devices. Generally, program modules include routines,

programs, objects, components, data structures, etc., that perform particular tasks

or implement particular abstract data types. Typically, the functionality of the

program modules may be combined or distributed as desired in various

embodiments.

[41826-8024-USO1 OO/SLO42030.281.DOC] -16- 8/14/04

From the foregoing, it will be appreciated that specific embodiments of the

invention have been described herein for purposes of illustration, but that various

modifications may be made without deviating from the spirit and scope of the

invention. Accordingly, the invention is not limited except as by the appended

claims.

Throughout this specification and the claims which follow, unless the

context requires otherwise, the word "comprise", and variations such as

"comprises" or "comprising", will be understood to imply the inclusion of a stated

integer or step or group of integers or steps but not the exclusion of any other

integer or step or group of integers or steps.

The reference to any prior art in this specification is not, and should not be

taken as, an acknowledgement or any form of suggestion that that prior art forms

part of the common general knowledge in Australia.

[0072]

[41826-8024-US0100/SLO42030.281.DOC] -17- 8/14/04

C \NPorblOC("TXi124x172J I I OC-I/02/2010

- 18

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method performed by a computing system for providing real-time

collaboration services in an application, comprising:

5 instantiating an activity object, the activity object providing the functionality

of an endpoint object and a media stack object both underlying the activity object,

and having an application program interface for providing a collaboration service:

and

invoking methods of the application program interface,

10 wherein the invoked methods provide management services of the endpoint

object which provides an abstraction of a user at a computing device and is

identified by a combination of an electronic address of the user and an endpoint

identifier, the management services including providing presence information

relating to whether the user is present at the computing device; and

15 wherein the invoked methods further provide content communications

services of the media stack object between applications that are communicating

information of the collaboration service.

2. The method of claim 1, wherein the endpoint object uses a Session

20 Initiation Protocol.

3. The method of claim 2, wherein the media stack object uses Real-Time

Transport Protocol.

25 4. The method of claim 2, wherein the media stack object uses Real-Time

Control Protocol.

5. The method of any one of claims 1 to 4, wherein providing the content

communications services includes providing media.

30

C NRPorhIDCCT3NUI4 2JI DOC-If-n2/201

-19

6. An extensible real-time collaboration system, comprising:

multiple media stack objects;

an endpoint object for providing or receiving signalling information, the

endpoint object providing an abstraction of a user at a computing device and being

5 identified by a combination of an electronic address of the user and an endpoint

identifier; and

multiple activity objects, wherein the activity objects provide the functionality

of the multiple media stack objects and endpoint object all underlying the multiple

activity objects, provide an application program interface to applications and utilize

10 the multiple media stack objects and endpoint object to provide collaboration

services, wherein the collaboration services include providing presence

information relating to whether the user is present at the computing device, further

wherein the application uses the application program interface and does not need

to provide logic to coordinate the media stack objects and endpoint object.

15

7. The extensible real-time collaboration system of claim 6, wherein the

application program interface provides a consistent interface name even when two

underlying objects actually providing associated functionality use different interface

names.

20

8. The extensible real-time collaboration system of claim 6 or 7, wherein one

of the collaboration services is messaging.

9. The extensible real-time collaboration system of any one of claims 6 to 8,

25 wherein one of the collaboration services is videoconferencing.

10. The extensible real-time collaboration system of any one of claims 6 to 9,

wherein one of the collaboration services is application sharing.

30 11. The extensible real-time collaboration system of any one of claims 6 to 10,

adding media stack objects.

C NRPonbnDC0TXIIQ24 721 | DOC-160(2/2010

- 20

12. The extensible real-time collaboration system of any one of claims 6 to 11,

wherein the endpoint object comprises a profile component providing the

abstraction of the user at the computing device, a publishing and subscribing

component providing interfaces to provide the presence information, a signaling

5 component adapted to provide infrequent, transactional messages relating to

establishing or controlling a real-time collaboration session, and a protocol stack

component responsible for sending and receiving information using a protocol.

13. The extensible real-time collaboration system of claim 12, wherein the

10 protocol stack component uses a Session Initiation Protocol.

14. The extensible real-time collaboration system of claim 12, wherein the

protocol stack component uses a signaling protocol.

15 15. The extensible real-time collaboration system of any one of claims 6 to 14,

wherein one of the multiple media stack objects uses Real-Time Transport

Protocol.

16. The extensible real-time collaboration system of claim 15, wherein the

20 activity objects coordinate the multiple media stack objects and the endpoint object

under direction of an application.

17. A method substantially as hereinbefore described with reference to the

accompanying drawings.

25

18. A system substantially as hereinbefore described with reference to the

accompanying drawings.

19. Computer-readable storage storing computer-executable instructions for

30 performing the method of any one of claims 1 to 5 and 17 or for implementing the

system of any one of claims 6 to 16 and 18.

C\NRPonbhi) 'INI \ 83128 I D(K'-16i 2/2010

- 21

20. A system comprising means for performing the method of any one of claims

1 to 5 or comprising the computer-readable storage of claim 19.

20
04

22
27

62

 1
9

O
ct

 2
00

4

20
04

22
27

62

 1
9

O
ct

 2
00

4

20
04

22
27

62

 1
9

O
ct

 2
00

4

20
04

22
27

62

 1
9

O
ct

 2
00

4

20
04

22
27

62

 1
9

O
ct

 2
00

4

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

