发明名称
含有伊维菌素的乳膏－凝胶

摘要
本发明涉及一种基于阿弗菌素家族化合物的、乳膏－凝胶形式的药物组合物，它包含在生理上可接受的介质中、利用非表面活性剂的聚合乳化剂分散于水相中的油相，所述的油相包含熔点在30℃以下的油，并且不含有熔点在30℃以上的固体脂肪。本发明还涉及制备该组合物的方法，以及它在制备用于治疗皮肤病尤其是玫瑰痤疮的药物制剂中的用途。
1. 基于阿弗菌素家族化合物的乳膏-凝胶形式的药物组合物，它包含在生理上可接受的介质中、利用非表面活性剂的聚合乳化剂分散于水相中的油相，所述的油相包含熔点在 30°C 以下的油，并且不含有熔点在 30°C 以上的固体脂肪。

2. 根据权利要求 1 的药物组合物，其特征在于阿弗菌素家族化合物选自伊维菌素、因维菌素、阿弗菌素、阿巴克丁、多拉克丁、依立诺克丁和司拉克丁。

3. 根据权利要求 1 和 2 之一项的药物组合物，其特征在于阿弗菌素家族化合物是伊维菌素。

4. 根据权利要求 3 的组合物，其特征在于它包含：
 a) 油相，其由熔点在 30°C 以下的油组成，并且不含有熔点在 30°C 以上的固体脂肪；
 b) 非表面活性剂的聚合乳化剂；
 c) 伊维菌素；
 d) 活性剂的溶剂和/或促渗剂；
 e) 和水。

5. 根据权利要求 3 和 4 之一项的组合物，其特征在于伊维菌素的量为组合物总重量的 0.01-10%，优选为 0.01-5%。

6. 根据权利要求 1-5 之一项的组合物，其特征在于非表面活性剂的聚合乳化剂选自 Pemulen TR 1、Pemulen TR 2、Carbopol 1342、Carbopol 1382 或它们的混合物。

7. 根据权利要求 4 的组合物，其特征在于溶剂和/或促渗剂选自丙二醇、乙醇、异丙醇、丁醇、苯甲醇、N-甲基-2-吡咯烷酮或 DMSO、聚山梨酯 80、苯氧乙醇和它们的混合物。

8. 根据权利要求 1-7 之一项的组合物，其特征在于它含有的水的量为组合物总重量的 30-95%。

9. 根据权利要求 1-8 之一项的组合物，其特征在于它包含：
 5-20% 的油相；
 0.25-1% 的非表面活性剂的聚合乳化剂；
 0-2% 的卡波姆；
0 - 5% 的辅助乳化剂；
0.01 - 5% 的伊维菌素；
0.1 - 20% 的溶剂和/或促渗剂；
60 - 80% 的纯净水。
10. 根据权利要求 1 - 9 之一项的组合物，其特征在于它包含：
 8 - 15% 的油相；
 0.25 - 1% 的非表面活性剂的聚合乳化剂；
 0 - 2% 的卡波姆；
 1 - 5% 的辅助乳化剂；
 0.01 - 5% 的伊维菌素；
 4 - 20% 的溶剂和/或促渗剂；
 60 - 80% 的纯净水。
11. 根据权利要求 1 - 10 之一项的组合物，其特征在于它包含：
 伊维菌素 1.00%
 矿物油 10.00%
 生育酚 0.20%
 对羟基苯甲酸丙酯 0.10%
 依地酸二钠 0.10%
 丙三醇 5.00%
 尿囊素 0.20%
 丙烯酸酯/丙烯酸 C10-30烷基酯
 交聚物 0.30%
 卡波姆 0.15%
 聚山梨酯 80 4.00%
 丙二醇 4.00%
 苯氧乙醇 1.00%
 氢氧化钠 适量至 pH 6.30
 纯净水 适量至 100。
12. 根据权利要求 1 - 10 之一项的组合物，其特征在于它包含：
 伊维菌素 1.00%
 矿物油 10.00%
 生育酚 0.20%
<table>
<thead>
<tr>
<th>成分</th>
<th>含量</th>
</tr>
</thead>
<tbody>
<tr>
<td>依地酸二钠</td>
<td>0.10%</td>
</tr>
<tr>
<td>丙三醇</td>
<td>5.00%</td>
</tr>
<tr>
<td>丙烯酸酯/丙烯酸 C_{10-30}烷基酯</td>
<td></td>
</tr>
<tr>
<td>交聚物</td>
<td>0.30%</td>
</tr>
<tr>
<td>卡波姆</td>
<td>0.15%</td>
</tr>
<tr>
<td>聚山梨酯 80</td>
<td>4.00%</td>
</tr>
<tr>
<td>丙二醇</td>
<td>4.00%</td>
</tr>
<tr>
<td>苯氧乙醇</td>
<td>1.00%</td>
</tr>
<tr>
<td>三乙醇胺</td>
<td>适量至 pH 6.00</td>
</tr>
<tr>
<td>纯净水</td>
<td>适量至 100%</td>
</tr>
</tbody>
</table>

13. 根据权利要求 1 - 10 之一项的组合物，其特征在于它包含：

<table>
<thead>
<tr>
<th>成分</th>
<th>含量</th>
</tr>
</thead>
<tbody>
<tr>
<td>伊维菌素</td>
<td>0.50%</td>
</tr>
<tr>
<td>葱酸/辛酸甘油三酯</td>
<td>10.00%</td>
</tr>
<tr>
<td>生育酚</td>
<td>0.20%</td>
</tr>
<tr>
<td>依地酸二钠</td>
<td>0.10%</td>
</tr>
<tr>
<td>山梨醇</td>
<td>5.00%</td>
</tr>
<tr>
<td>醋酸锌</td>
<td>0.50%</td>
</tr>
<tr>
<td>丙烯酸酯/丙烯酸 C_{10-30}烷基酯</td>
<td></td>
</tr>
<tr>
<td>交聚物</td>
<td>0.30%</td>
</tr>
<tr>
<td>卡波姆</td>
<td>0.15%</td>
</tr>
<tr>
<td>N-甲基吡咯烷酮</td>
<td>5.00%</td>
</tr>
<tr>
<td>苯氧乙醇</td>
<td>1.00%</td>
</tr>
<tr>
<td>氢氧化钠</td>
<td>适量至 pH 6.00</td>
</tr>
<tr>
<td>纯净水</td>
<td>适量至 100%</td>
</tr>
</tbody>
</table>

14. 根据权利要求 1 - 10 之一项的组合物，其特征在于它包含：

<table>
<thead>
<tr>
<th>成分</th>
<th>含量</th>
</tr>
</thead>
<tbody>
<tr>
<td>伊维菌素</td>
<td>1.00</td>
</tr>
<tr>
<td>矿物油</td>
<td>10.00</td>
</tr>
<tr>
<td>月桂山梨醇</td>
<td>1.00</td>
</tr>
<tr>
<td>生育酚</td>
<td>0.20</td>
</tr>
<tr>
<td>对羟基苯甲酸丙酯</td>
<td>0.10</td>
</tr>
<tr>
<td>依地酸二钠</td>
<td>0.10</td>
</tr>
<tr>
<td>丙三醇</td>
<td>5.00</td>
</tr>
</tbody>
</table>
尿囊素 0.20
丙烯酸酯/丙烯酸 C₁₀₀₃₀ 烷基酯
交聚物（Pemulen TR1） 0.30
卡波姆 0.15
聚山梨酯 80 3.00
泊洛沙姆 124 1.00
丙二醇 4.00
苯氧乙醇 1.00
适量至 pH 6.3
氢氧化钠 6.00
纯净水 适量至 100。

15. 根据权利要求 1－10 之一项的组合物，其特征在于它包含：
伊维菌素 1.00
矿物油 10.00
月桂山梨坦 1.00
生育酚 0.20
对羟基苯甲酸丙酯 0.10
依地酸二钠 0.10
丙三醇 5.00
尿囊素 0.20
丙烯酸酯/丙烯酸 C₁₀₀₃₀ 烷基酯
交聚物（Pemulen TR1） 0.30
卡波姆 0.15
聚山梨酯 80 4.00
丙二醇 4.00
苯甲醇 3.00
适量至 pH 6.3
氢氧化钠 6.00
纯净水 适量至 100。

16. 根据权利要求 1－10 之一项的组合物，其特征在于它包含：
伊维菌素 0.03
矿物油 10.00
<table>
<thead>
<tr>
<th>成分</th>
<th>用量</th>
</tr>
</thead>
<tbody>
<tr>
<td>月桂山梨醇</td>
<td>1.00</td>
</tr>
<tr>
<td>生育酚</td>
<td>0.20</td>
</tr>
<tr>
<td>对羟基苯甲酸丙酯</td>
<td>0.10</td>
</tr>
<tr>
<td>依地酸二钠</td>
<td>0.10</td>
</tr>
<tr>
<td>丙三醇</td>
<td>5.00</td>
</tr>
<tr>
<td>尿囊素</td>
<td>0.20</td>
</tr>
<tr>
<td>丙烯酸酯/丙烯酸 C_{10-30}烷基酯</td>
<td></td>
</tr>
<tr>
<td>交聚物（Pemulen TR1）</td>
<td>0.30</td>
</tr>
<tr>
<td>卡波姆</td>
<td>0.15</td>
</tr>
<tr>
<td>聚山梨酯 80</td>
<td>4.00</td>
</tr>
<tr>
<td>丙二醇</td>
<td>4.00</td>
</tr>
<tr>
<td>苯甲醇</td>
<td>3.00</td>
</tr>
<tr>
<td>聚(甲基丙烯酸甲酯)</td>
<td>2.00</td>
</tr>
</tbody>
</table>

适量至 pH 6.3

适量至 100。

17. 根据权利要求 1 - 10 之一项的组合物，其特征在于它包含：

<table>
<thead>
<tr>
<th>成分</th>
<th>用量</th>
</tr>
</thead>
<tbody>
<tr>
<td>伊维菌素</td>
<td>0.03</td>
</tr>
<tr>
<td>矿物油</td>
<td>5.00</td>
</tr>
<tr>
<td>甜扁桃仁油</td>
<td>5.00</td>
</tr>
<tr>
<td>月桂山梨醇</td>
<td>1.00</td>
</tr>
<tr>
<td>生育酚</td>
<td>0.20</td>
</tr>
<tr>
<td>对羟基苯甲酸丙酯</td>
<td>0.10</td>
</tr>
<tr>
<td>依地酸二钠</td>
<td>0.10</td>
</tr>
<tr>
<td>丙三醇</td>
<td>5.00</td>
</tr>
<tr>
<td>尿囊素</td>
<td>0.20</td>
</tr>
<tr>
<td>丙烯酸酯/丙烯酸 C_{10-30}烷基酯</td>
<td></td>
</tr>
<tr>
<td>交聚物（Pemulen TR1）</td>
<td>0.30</td>
</tr>
<tr>
<td>卡波姆</td>
<td>0.15</td>
</tr>
<tr>
<td>聚山梨酯 80</td>
<td>4.00</td>
</tr>
<tr>
<td>丙二醇</td>
<td>4.00</td>
</tr>
<tr>
<td>苯甲醇</td>
<td>3.00</td>
</tr>
</tbody>
</table>
适量至 pH 6.3

氢氧化钠 6.00
纯净水 适量至 100。

18. 在室温下制备权利要求 1-17 之一项的组合物的方法，它包含以下步骤：
 a) 混合脂肪相组分，直至所述的相是均匀的；
 b) 将水相组分溶解于水中，直至完全均匀；
 c) 将聚合乳化剂和任选的卡波姆分散于水相中，直至得到均匀的凝胶；
 d) 在中等机械搅拌下，将脂肪相并入步骤 c) 中获得的均匀的凝胶中以形成乳剂；
 e) 混合活性相的组分，将伊维菌素溶解于该混合物中，然后在中等机械搅拌下，将该相并入至乳剂中；
 f) 在中等机械搅拌下加入中和剂，以得到限定的 pH。

19. 根据权利要求 1-17 之一项的组合物在制备用于治疗皮肤病的药物制剂中的用途，所述的皮肤病例如玫瑰痤疮、寻常痤疮、脂溢性皮炎、口周皮炎、痤疮样疹、暂时性棘层松解皮炎和粟粒性坏死性痤疮。

20. 根据权利要求 19 的用途，其特征在于该药物制剂用于治疗玫瑰痤疮。
含有伊维菌素的乳膏-凝胶

本发明涉及一种基于阿弗菌素家族化合物的、乳膏-凝胶形式的药物组合物，其包含在生理上可接受的介质中、利用非表面活性剂的聚合乳化剂分散于水相中的油相，所述的油相包含熔点在30℃以下的油，并且不含有熔点在30℃以上的固体脂肪。

本发明还涉及制备该组合物的方法，以及它在制备用于治疗皮肤病尤其是玫瑰痤疮的药物制剂中的用途。

更特别地，伊维菌素是一种驱虫药。这已经记载于对由旋盘尾丝虫（Onchocerca volvulus）引起的河盲症、胃肠类原线虫病（蠕形线虫病）（产品Stromectol®）以及人疥疮的人类治疗中（Meinking TL等人，N Engl J Med 1995Jul 6; 333（1）: 26-30，用伊维菌素治疗疥疮（The treatment of scabies with ivermectin）中，还有对诊断或者怀疑患有班氏吴策丝虫（Wuchereria bancrofti）引起的淋巴丝虫病个体的微丝蚴血症的治疗中。

美国专利6,133,310公开了由伊维菌素和水的混合物组成的洗剂形式的伊维菌素的局部应用，并且还提及了就其部分而言由伊维菌素和赋形剂（例如丙二醇或十二烷基硫酸钠的混合物组成的乳膏剂的可能性，但是没有记载工业上可接受（即具有良好的美容性质以及足够长的储存期（最低2年））的药物组合物。

皮肤病通常伴随着皮肤敏感性增加，特别是在玫瑰痤疮中，玫瑰
痤疮是一种主要影响面部中央部位的炎症皮肤病，其特征尤其是面部红化、热潮红以及面部红斑。这种类型的病症特别需要使用易于涂敷并且使患者具有健康愉快感觉的药物制剂。

因此需要一种包含至少一种阿弗菌素家族化合物、特别是伊维菌素的局部用药物组合物，其应完全适合所述病症并且特别适合于敏感性皮肤，并且它是工业上可接受的，即它的制剂是物理上稳定的（没有相分离）和化学上稳定的（不改变活性剂的稳定性），并且它能够促进伊维菌素对皮肤的渗透。

目前，本申请人已经提出了一种完全能够符合上述这些期望的乳膏-凝胶形式的、基于阿维菌素的组合物，该组合物包含利用非表面活性剂的聚合乳化剂分散于水相中的油相，所述的油相包含熔点在30°C以下的油，并且不含有熔点在30°C以上的固体脂肪。

这种乳膏-凝胶制剂是一种具有非油腻特征的补水型乳剂，它具有非常好的耐受性，并且包含了作为乳化剂的非表面活性剂聚合物。该制剂还结合了凝胶的优点（易于涂敷、活性成分迅速释放、使用后清爽）和乳膏的优点（皮肤舒适、没有对敏感性皮肤而言完全不能接受的干燥感或紧缩感），特别适合用于玫瑰痤疮的治疗。

现有技术中记载的常规乳剂是两种不混溶液体的不稳定的实质上均匀的体系，其中一种以细微的小滴（微团）形式分散于另一种液体中。该分散体通过表面活性剂乳化剂的作用而得以稳定，其中表面活性剂乳化剂改变了结构和界面力的比例，由此通过降低界面的张力而提高了分散体的稳定性。

表面活性剂乳化剂是两性化合物，其具有对油有亲和力的疏水部分和对水有亲和力的亲水部分，这样便在两相之间产生了一种连接。所以离子或非离子乳化剂能够通过在界面的吸附和形成液态结晶薄层而稳定油/水乳剂。

非离子表面活性剂的乳化能力与分子的极性密切相关。这种极性是通过HLB（亲水/亲脂平衡）来定义的。常规乳剂通过表面活性剂的混合物来进行一般性稳定，所述表面活性剂的HLB可以完全不同，但是其在混合物中的比例相应于待乳化脂肪相所需的HLB。这种类型的表面活性剂乳化剂通常使用的浓度是在3%至7%之间。

非离子表面活性剂聚合乳化剂例如丙烯酸酯/丙烯酸C_{10-30}烷基酯
交聚物使制备被称为聚合乳剂的实质上均匀的体系（油相分散于水相中）成为可能。通过立体稳定化得到该聚合乳剂：用亲水聚合物包围分散内相（油相）小球体，所述亲水聚合物借助接枝疏水链而锚定于分散内相小球体中。

没有出现结晶相，并且这种类型的乳化剂不会像表面活性剂乳化剂一样影响表面张力。这些非表面活性剂聚合乳化剂是亲水化合物，其特征不是通过 HLB 值来表示，并且其不会形成微团。从这个方面而言，聚合乳剂也被称为“无乳化剂体系”。这些乳化剂从浓度为 0.1% 开始有效。

此外，油相中熔点在 30℃以下的液态油组分的应用使得到轻的且具有数用后不油腻特征的流质乳膏-凝胶成为可能，并且有助于该乳膏-凝胶的制备，该乳膏-凝胶也可在室温下制备。

由于它的组成，因此这种乳膏-凝胶保证了组合物既是稳定又是无毒的。由于它的凝胶结构和其“迅速-断开”（quick-break）效应，它比传统乳剂更容易涂敷，并且留下愉快的清爽感觉。

“迅速-断开”效应的特征是乳剂立刻“断开”并释放水相和油相，这是由于丙烯酸均聚物和共聚物对电解质的敏感性。当包含该类型聚合乳化剂的乳剂应用至皮肤上时，聚合物将立即与皮肤上存在的盐接触。这种“迅速-断开”效应促进了含有活性剂的相的更快释放。

因此令人惊讶地，申请人已经发现本发明的乳膏-凝胶组合物与传统乳剂相比，能够使有效成分更好地释放及更好的皮肤渗透。

因而本发明的一个主题是一种基于阿弗菌素家族化合物的、乳膏-凝胶形式的药物组合物，其包含在生理上可接受的介质中、利用非表面活性剂的聚合乳化剂分散于水相中的油相，所述的油相包含熔点在 30℃以下的油，并且不含有熔点在 30℃以上的固体脂肪。

所述阿弗菌素家族化合物选自伊维菌素、因维菌素、阿弗菌素、阿巴克丁、多拉克丁、依立诺克丁和司拉克丁，优选伊维菌素。

本发明的另一个主题是一种基于伊维菌素的、乳膏-凝胶形式的药物组合物，它包含在生理上可接受的介质中、利用非表面活性剂的聚合乳化剂分散于水相中的油相，所述的油相包含熔点在 30℃以下的油，并且不含有熔点在 30℃以上的固体脂肪。

本发明还可使用选自阿弗菌素家族的任何活性剂，特别是阿弗菌
素、阿巴克丁、多拉克丁、依立诺克丁、司拉克丁和它们的混合物。

术语“生理上可接受的介质”指的是一种与皮肤、粘膜、嘴唇、指甲、头皮和/或头发相容的介质。

“熔点在 30°C 以下的油”指的是室温下处于液态的油。

术语“固体脂肪”尤其是指熔点在 30°C 以上的蜡、脂肪酸和脂肪醇，它们在室温下是固态的。

本发明的术语“不含有固体脂肪”指的是组合物包含低于 1% 的固体脂肪，优选低于 0.1%，更优选低于 0.05% 的固体脂肪。

本发明的组合物被描述为一种稳定的乳剂，随着时间流逝它具有良好的物理和化学稳定性，甚至在高于室温的温度下（例如 44-45°C）也是如此，如下述实例所示的一样。

有利地，本发明的组合物是一种乳膏-凝胶，它包含：

a）油相，其包含熔点在 30°C 以下的油，并且不含有熔点在 30°C 以上的固体脂肪；

b）非表面活性剂的聚合乳化剂；

c）至少一种阿弗菌素家族化合物；

d）活性剂的溶剂和/或促渗剂（propenetrating agent）；和

e）水。

本发明的组合物优选是一种乳膏-凝胶，它包含：

a）油相，其包含熔点在 30°C 以下的油，并且不含有熔点在 30°C 以上的固体脂肪；

b）非表面活性剂的聚合乳化剂；

c）伊维菌素；

d）活性剂的溶剂和/或促渗剂；和

e）水。

因此油相包含液体油，其中可以提及的例如植物油、矿物油、动物油或合成油、硅油、Guerbet 醇以及它们的混合物；优选使用液态石蜡类型的无极性矿物油（高表面张力）。

作为矿物油的实例，可提及的是 Esso 公司销售的 Primol 352、Marcol 82 和 Marcol 152。

作为植物油，可提及的是甜扁桃仁油、棕榈油和豆油、芝麻油、向日葵油，和酯，诸如异壬酸十六烷酯（cetaryl isononanoate），例如
以 Cetiol SN 名称销售的 Cognis France 公司的产品，或二酸二异丙酯，
例如以 Ceraphyl 230 名称销售的 ISF 公司的产品，棕榈酸异丙酯，例
如以 Crodamol IPP 名称销售的 Croda 公司的产品，或癸酸/辛酸甘油
三酯例如由 Huls/Lambert Rivière 公司销售的 Miglyol 812。

作为硅油，可以提及的是二甲基硅油，例如以 Dow Corning 200 流体
的名称销售的产品，或环甲硅油，例如以 Dow Corning 244 流体的名称
销售的 Dow Corning 的产品，或以 Mirasil CM5 的名称销售的 SACI-
CFPA 公司的产品。

组合物中油相的含量通常占组合物总重量的 4 - 60％，优选 5 - 20％，
更精确地为 8 - 12％。

本发明的术语“非表面活性剂的聚合乳化剂”指的是包含至少一
种共聚物的乳化剂系统，该共聚物由作为主要部分的单烯不饱和 C₃₋₆
羧酸或其酸酐单体以及一种作为次要部分的含有脂肪链的丙烯酸酯单
体组成。

文件中描述的制备方法获得。

更特别地是使用丙烯酸酯/丙烯酸 C₁₀₋₃₀ 烷基酯共聚物，例如以
Pemulen TR 1 和 Pemulen TR 2 的名称销售的产品，或者以 Carbopol
1342 和 Carbopol 1382 名称销售的 Goodrich 公司的产品，或它们的混
合物。

本发明的组合物优选包含选自 Pemulen TR1 和 Pemulen TR2 的非
表面活性剂的聚合乳化剂。

本发明组合物中非表面活性剂的聚合乳化剂的含量通常占组合物
总重量的 0.25％至 2％之间，优选 0.25 - 1％，更优选 0.3 - 0.6％。

本发明组合物包含占组合物总重量的 0.001 - 10％的伊维菌素。优
选地，组合物包含占组合物总重量的 0.01 - 5％的伊维菌素，更优选地
包含占组合物总重量的 0.01 - 1％的伊维菌素。

作为活性剂伊维菌素的溶剂和/或促渗剂的实例，可优选提及的是
丙二醇、醇例如乙醇、异丙醇、丁醇、苯甲醇、N-甲基-2-吡咯烷酮或
DMSO、聚山梨醇酯 80、苯氧乙醇、和它们的混合物。
<table>
<thead>
<tr>
<th>溶剂</th>
<th>伊维菌素在有关溶剂中的最大溶解度百分比（wt/wt）</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-甲基-2-吡咯烷酮</td>
<td>58.13</td>
</tr>
<tr>
<td>丙二醇/油酸（4份/2份）</td>
<td>27.31</td>
</tr>
<tr>
<td>丙二醇/聚山梨醇酯80/苯氧乙醇（4份/1份/1份）</td>
<td>28.63</td>
</tr>
</tbody>
</table>

本发明的组合物包含0.1% - 20%、优选1% - 10%的针对活性剂伊维菌素的溶剂和/或促胀剂。

本发明的组合物还包含占组合物总重量30 - 95%、优选60 - 80%的水。本发明中使用的水将优选纯净水。

本发明的组合物还可包含0 - 2%的卡波姆。其中可提及的卡波姆的非限制性实例有Carbopol 981、Carbopol ETD 2020、Carbopol 980或Carbopol Ultrez 10 NF，由BF Goodrich公司销售。

为了降低由聚合乳化剂形成的乳剂油状小球体的大小，本发明的组合物还可包含辅助乳化剂。可提及的非离子表面活性剂例如Eumulgin B2（cetareath 20）、Tween 80（聚山梨醇酯80）、山梨坦酯（包括司盘20）、脂肪醇酯（包括Eumulgin B2）或泊洛沙姆124。

优选地，基于阿弗菌素家族化合物的本发明的乳膏-凝胶包含：
5 - 20%的油相；
0.25 - 1%的非表面活性剂的聚合乳化剂；
0 - 2%的卡波姆；
0 - 5%的辅助乳化剂；
0.01 - 5%的至少一种阿弗菌素类；
0.1 - 20%的溶剂和/或促胀剂；
60 - 80%的水。

优选地，本发明基于因维菌素的乳膏-凝胶包含：
5 - 20%的油相；
0.25 - 1%的非表面活性剂的聚合乳化剂；
0 - 2%的卡波姆；
0 - 5%的辅助乳化剂；
0.01 - 5%的伊维菌素；
0.1 - 20%的溶剂和/或促渗剂；
60 - 80%的水。

更优选地，本发明基于因维菌素的乳膏-凝胶包含：
8 - 15%的油相；
0.25 - 1%的非表面活性剂的聚合乳化剂；
0 - 2%的卡波姆；
1 - 5%的辅助乳化剂；
0.01 - 5%的伊维菌素；
4 - 20%的溶剂和/或促渗剂；
60 - 80%的水。

本发明的组合物也可以包含常用于化妆品或药物领域中的添加剂，例如
- 润湿剂，例如丙三醇或山梨醇；
- 凝胶剂；
- 镇静剂，例如尿囊素和滑石粉；
- 防腐剂，例如对羟基苯甲酸酯；
- 水份调节剂；
- pH 调节剂例如枸橼酸和氢氧化钠；
- 药素压调节剂；
- UV-A 和 UV-B 遮蔽剂；
- 和抗氧化剂，例如 α-生育酚、丁基羟基茴香醚（BHA）或丁基羟基甲苯（BHT）、维生素 E、没食子酸丙酯或柯佛酸。

当然，本领域技术人员将以与本发明实质相关的有利性质添加或基本没有被添加所改变的方式，适当地选择添加剂或任选加入到这些组合物中的化合物以及工序。

这些添加剂可以以占组合物总重量 0.001 - 20%的量存在于组合物中。

本发明的乳膏-凝胶优选具有对应下列的粘度：使用 Haake VT500型流变仪测量，其流动阈值为 15 - 60 帕斯卡 (Pa)，尤其是 20 - 50 Pa。

可以根据所使用的添加剂的性质，通过 “热的” (60-70℃) 或 “冷的” (室温) 实施方案制备本发明的组合物。
根据一个特别的实施方案，制备本发明乳膏-凝胶的方法是在室温下（指的是“冷的”）进行的，它依次包含下列步骤：

a）混合脂肪相组分，直至所述的相是均匀的；
b）将水相组分溶解于水中，直至完全均匀；
c）将非表面活性剂的聚合乳化剂和任选的卡波姆分散于步骤 b）中获得的水相中，直至得到均匀的凝胶；
d）在中等机械搅拌下，将脂肪相并入至步骤 c）中获得的均匀的凝胶中以形成乳剂；
e）混合活性相的组分，将伊维菌素溶解于该混合物中，然后在中等机械搅拌下，将该相并入至步骤 d）中获得的乳剂中；
f）在中等机械搅拌下，在步骤 e）结束时或在一个先前步骤期间加入中和剂，以得到限定的 pH。

此 pH 优选在 6.0 至 6.5 之间。可以根据其化学性质，在上述制备方法中的一个步骤期间，验证混合物的固有 pH 值，并使用中和剂溶液任选地进行校正，以及加入任选的添加剂。

在本发明的制备方法中使用的术语“中等机械搅拌”尤其是指使用 Rayneri 搅拌器所测量，在 500 至 1200 rpm 之间，优选 600 至 1000 rpm 之间的机械搅拌。

本发明的另一个主题是本发明的组合物在制备用于治疗皮肤病的药物制剂中的用途。

术语“皮肤病”尤其是指玫瑰痤疮、寻常痤疮、脂溢性皮炎（seborrhoeic dermatitis）、口周皮炎、痤疮样疹、暂时性棘层松解皮炎和颗粒性坏死性痤疮。

本发明的组合物特别适合于玫瑰痤疮的治疗。

含有伊维菌素的本发明乳膏-凝胶类型的各种制剂将通过举例说明但非限制性的方式给出。除非另有说明，其中给出的量都是以重量％表示。

实施例

实施例 1:

<table>
<thead>
<tr>
<th>成分</th>
<th>量（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>伊维菌素</td>
<td>1.00</td>
</tr>
<tr>
<td>矿物油</td>
<td>10.00</td>
</tr>
<tr>
<td>生育酚</td>
<td>0.20</td>
</tr>
</tbody>
</table>
对羟基苯甲酸丙酯 0.10
依地酸二钠 0.10
丙三醇 5.00
尿囊素 0.20
丙烯酸酯/丙烯酸 C_{10-30} 烷基酯 交聚物（Pemulen TR1） 0.30
卡波姆 0.15
聚山梨酯 80 4.00
丙二醇 4.00
苯氧乙醇 1.00
适量以调节 pH
氢氧化钠 6.30
纯净水 适量至 100

根据在室温下（“冷的”）进行的制备方法制备该乳膏-凝胶，包含以下步骤：

a）混合矿物油、生育酚和对羟基苯甲酸丙酯直至完全均匀；
b）将丙三醇、尿囊素和依地酸二钠溶解于水中直至完全均匀；
c）将丙烯酸酯/丙烯酸 C_{10-30} 烷基酯交聚物和卡波姆分散于之前在步骤 b）中得到的水相中，直至得到均匀的凝胶；
d）在中等机械搅拌下（Rayneri: 1000 rpm），将步骤 a）中得到的脂肪相加入至步骤 c）中得到的均匀的凝胶中；
e）混合聚山梨酯 80、丙二醇和苯氧乙醇，将伊维菌素溶解于该混合物中，然后在中等机械搅拌下（Rayneri: 大约 600 rpm），将该相并入至步骤 d）中得到的乳剂中；

在中等机械搅拌下（Rayneri: 大约 600 rpm）加入中和剂，以使 pH 为 6.30。

实施例 2：
伊维菌素 1.00
矿物油 10.00
生育酚 0.20
依地酸二钠 0.10
丙三醇 5.00
丙烯酸酯/丙烯酸 C_{10-30}烷基酯
交聚物（Pemulen TR1） 0.30
卡波姆 0.15
聚山梨酯 80 4.00
丙二醇 4.00
苯氧乙醇 1.00
适量以调节 pH

三乙醇胺 6.00
纯净水 适量至 100

实施例 3:
伊维菌素 0.50
癸酸/辛酸甘油三酯 10.00
生育酚 0.20
依地酸二钠 0.10
山梨醇 5.00
醋酸锌 0.50
丙烯酸酯/丙烯酸 C_{10-30}烷基酯
交聚物（Pemulen TR1） 0.30
卡波姆 0.15
N-甲基吡咯烷酮 5.00
苯氧乙醇 1.00
适量以调节 pH

氢氧化钠 6.00
纯净水 适量至 100

实施例 4:
伊维菌素 1.00
矿物油 10.00
月桂山梨坦 1.00
生育酚 0.20
对羟基苯甲酸丙酯 0.10
依地酸二钠 0.10
丙三醇 5.00
尿囊素 | 0.20
丙烯酸酯/丙烯酸 C_{10-30} 烷基酯
交聚物（Pemulen TR1） | 0.30
卡波姆 | 0.15
聚山梨酯 80 | 3.00
泊洛沙姆 124 | 1.00
丙二醇 | 4.00
苯氧乙醇 | 1.00
适量至 pH 6.3
氢氧化钠 | 6.00
纯净水 | 适量至 100
实施例 5:
伊维菌素 | 1.00
矿物油 | 10.00
月桂山梨坦 | 1.00
生育酚 | 0.20
对羟基苯甲酸丙酯 | 0.10
依地酸二钠 | 0.10
丙三醇 | 5.00
尿囊素 | 0.20
丙烯酸酯/丙烯酸 C_{10-30} 烷基酯
交聚物（Pemulen TR1） | 0.30
卡波姆 | 0.15
聚山梨酯 80 | 4.00
丙二醇 | 4.00
苯甲醇 | 3.00
适量至 pH 6.3
氢氧化钠 | 6.00
纯净水 | 适量至 100
实施例 6:
伊维菌素 | 0.03
矿物油 | 10.00
<table>
<thead>
<tr>
<th>成分</th>
<th>含量（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>月桂山梨醇</td>
<td>1.00</td>
</tr>
<tr>
<td>生育酚</td>
<td>0.20</td>
</tr>
<tr>
<td>对羟基苯甲酸丙酯</td>
<td>0.10</td>
</tr>
<tr>
<td>依地酸二钠</td>
<td>0.10</td>
</tr>
<tr>
<td>丙三醇</td>
<td>5.00</td>
</tr>
<tr>
<td>尿囊素</td>
<td>0.20</td>
</tr>
<tr>
<td>丙烯酸酯/丙烯酸 C_{10-30} 烷基酯</td>
<td></td>
</tr>
<tr>
<td>交聚物（Pemulen TR1）</td>
<td>0.30</td>
</tr>
<tr>
<td>卡波姆</td>
<td>0.15</td>
</tr>
<tr>
<td>聚山梨酯 80</td>
<td>4.00</td>
</tr>
<tr>
<td>丙二醇</td>
<td>4.00</td>
</tr>
<tr>
<td>苯甲醇</td>
<td>3.00</td>
</tr>
<tr>
<td>聚(甲基丙烯酸甲酯)</td>
<td>2.00</td>
</tr>
</tbody>
</table>

适量至 pH 6.3

<table>
<thead>
<tr>
<th>成分</th>
<th>含量（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>氢氧化钠</td>
<td>6.00</td>
</tr>
<tr>
<td>纯净水</td>
<td>适量至 100</td>
</tr>
</tbody>
</table>

实施例 7:
<table>
<thead>
<tr>
<th>成分</th>
<th>含量（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>伊维菌素</td>
<td>0.03</td>
</tr>
<tr>
<td>矿物油</td>
<td>5.00</td>
</tr>
<tr>
<td>甜扁桃仁油</td>
<td>5.00</td>
</tr>
<tr>
<td>月桂山梨醇</td>
<td>1.00</td>
</tr>
<tr>
<td>生育酚</td>
<td>0.20</td>
</tr>
<tr>
<td>对羟基苯甲酸丙酯</td>
<td>0.10</td>
</tr>
<tr>
<td>依地酸二钠</td>
<td>0.10</td>
</tr>
<tr>
<td>丙三醇</td>
<td>5.00</td>
</tr>
<tr>
<td>尿囊素</td>
<td>0.20</td>
</tr>
<tr>
<td>丙烯酸酯/丙烯酸 C_{10-30} 烷基酯</td>
<td></td>
</tr>
<tr>
<td>交聚物（Pemulen TR1）</td>
<td>0.30</td>
</tr>
<tr>
<td>卡波姆</td>
<td>0.15</td>
</tr>
<tr>
<td>聚山梨酯 80</td>
<td>4.00</td>
</tr>
<tr>
<td>丙二醇</td>
<td>4.00</td>
</tr>
<tr>
<td>苯甲醇</td>
<td>3.00</td>
</tr>
</tbody>
</table>
适量至 pH 6.3

氢氧化钠 6.00
纯净水 适量至 100

实施例 8:
依立诺克丁 1.00
矿物油 10.00
生育酚 0.20
对羟基苯甲酸丙酯 0.10
依地酸二钠 0.10
丙三醇 5.00
尿囊素 0.20

丙烯酸酯/丙烯酸 C_{10-30} 烷基酯
交聚物（Pemulen TR1） 0.30
卡波姆 0.15
聚山梨酯 80 4.00
丙二醇 4.00
苯氧乙醇 1.00

适量以调节 pH

氢氧化钠 6.30
纯净水 适量至 100

这些组合物可每天用于清洁的干皮肤上。患有玫瑰痤疮的患者注意到第一次应用后可缓解症状，并且通过 10 天的治疗后观察到玫瑰痤疮斑点的改善。

实施例 9: 制剂的化学和物理稳定性

a) pH 和化学稳定性

室温（25°C）和 45°C 下，在第 4、8、10 和 12 周测量制剂的 pH 变化。
<table>
<thead>
<tr>
<th>实施例</th>
<th>条件</th>
<th>第 4 周 pH</th>
<th>第 8 周 pH</th>
<th>第 10 周 pH</th>
<th>第 12 周 pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25℃/60% RH</td>
<td>6.3</td>
<td>6.4</td>
<td>6.3</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>45℃/75% RH</td>
<td>6.3</td>
<td>6.2</td>
<td>6.2</td>
<td>6.2</td>
</tr>
<tr>
<td>2</td>
<td>25℃/60% RH</td>
<td>6.0</td>
<td>6.1</td>
<td>6.0</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>45℃/75% RH</td>
<td>6.0</td>
<td>6.1</td>
<td>6.0</td>
<td>6.1</td>
</tr>
</tbody>
</table>

60% RH = 60% 相对湿度
75% RH = 75% 相对湿度

因此这些结果表明在室温或在 45℃下，所述制剂的 pH 随着时间流逝是稳定的。

室温和 45℃下，在 4、8 和 12 周后通过 HPLC 测定活性剂的化学稳定性。

<table>
<thead>
<tr>
<th>实施例</th>
<th>条件</th>
<th>初始检测</th>
<th>第 4 周检测</th>
<th>第 8 周检测</th>
<th>第 12 周检测</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25℃/60% RH</td>
<td>100.3</td>
<td>98.7</td>
<td>100.0</td>
<td>102.5</td>
</tr>
<tr>
<td></td>
<td>45℃/75% RH</td>
<td>100.3</td>
<td>100.5</td>
<td>102.3</td>
<td>106.1</td>
</tr>
<tr>
<td>2</td>
<td>25℃/60% RH</td>
<td>95.7</td>
<td>97.1</td>
<td>98.4</td>
<td>96.8</td>
</tr>
<tr>
<td></td>
<td>45℃/75% RH</td>
<td>95.7</td>
<td>98.1</td>
<td>96.9</td>
<td>96.3</td>
</tr>
</tbody>
</table>

这些结果表明组合物中的活性剂是稳定的，并且无论产品的储存温度如何，其不会随着时间流逝而降解。

b) 物理稳定性

在室温、4℃和 45-55℃下，在 4、8、10、12 和 16 周之后通过显微镜和肉眼观察测量制剂的物理稳定性。

室温下，肉眼观察可保证产品的物理完整性，而显微镜观察可证实溶解的活性剂没有重结晶并且乳剂小球体的尺寸没有发生显著变化。

在 4℃下，显微镜观察证实了溶解的活性剂没有出现重结晶。
在 45-55℃下，肉眼观察证实了最终产品的完整性。

测试了实施例 1 和 2 中所述的制剂。无论在室温、4℃或是在 45-
55℃下，没有观察到产品随着时间流逝出现了重结晶或者相分离（相移）的现象。

因此实施例中所述的制剂是化学和物理上稳定的。

实施例 10: 制剂粘度的测量

装有 SVDIN 测量传感器的 Haake VT500 型流变仪。

在 25℃和切变率为 4 s⁻¹ (γ) 时，通过测量剪切应变来确定流变图。

术语“流动阈值” (τ₀, 用帕斯卡表示）指的是克服范德华型内聚力和引发流动所需的力（最小的剪切应变）。流动阈值相当于切变率为 4 s⁻¹ (γ) 时测量的数值。

在 T0 和 4、8、12 周后取得这些测量值。

<table>
<thead>
<tr>
<th>实施例</th>
<th>流动阈值 (τ₀ 用帕斯卡表示)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T0</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>26</td>
</tr>
</tbody>
</table>

*: 使用 Haake VT 550 流变仪诱发特征粘度值的少量增加。

获得的这些结果表明流动阈值没有显著变化，因此本发明组合物的粘度随着时间流逝是稳定的。

实施例 11: 释放-渗透

为了比较以前 1% 并入以非结合方式施用于人类皮肤样品的传统乳剂 (A) 或乳膏-凝胶 (实施例 1) 类型组合物中的伊维菌素的释放-渗透，进行了一项研究。用于比较的氚放射标记的组合物是传统乳剂配方 A 和本发明的实施例 1 中的组合物。

配方 A (传统乳剂) 如下所述:
<table>
<thead>
<tr>
<th>成分</th>
<th>占组合物总重量的重量%</th>
</tr>
</thead>
<tbody>
<tr>
<td>伊维菌素</td>
<td>1.00</td>
</tr>
<tr>
<td>丙三醇</td>
<td>4.0</td>
</tr>
<tr>
<td>Steareth-2</td>
<td>1.0</td>
</tr>
<tr>
<td>Steareth-21</td>
<td>2.0</td>
</tr>
<tr>
<td>硅酸铝镁/二氧化钛/二氧化硅</td>
<td>1.0</td>
</tr>
<tr>
<td>对羟基苯甲酸甲酯</td>
<td>0.2</td>
</tr>
<tr>
<td>对羟基苯甲酸丙酯</td>
<td>0.1</td>
</tr>
<tr>
<td>EDTA 二钠</td>
<td>0.05</td>
</tr>
<tr>
<td>枸橼酸一水合物</td>
<td>0.05</td>
</tr>
<tr>
<td>棕榈酸异丙酯</td>
<td>4.0</td>
</tr>
<tr>
<td>甘油基/PEG 100 硬脂酸酯</td>
<td>2.0</td>
</tr>
<tr>
<td>自乳化蜡</td>
<td>1.0</td>
</tr>
<tr>
<td>棕榈硬脂酸（Palmitostearic acid）</td>
<td>2.00</td>
</tr>
<tr>
<td>二甲基硅油 200-350 cs</td>
<td>0.5</td>
</tr>
<tr>
<td>丙二醇</td>
<td>4.0</td>
</tr>
<tr>
<td>甘油三乙酸酯</td>
<td>1.00</td>
</tr>
<tr>
<td>苯氧乙醇</td>
<td>0.5</td>
</tr>
<tr>
<td>10%氢氧化钠</td>
<td>适量</td>
</tr>
<tr>
<td>水</td>
<td>适量至 100</td>
</tr>
</tbody>
</table>

对置于恒流自动扩散池（Scott/Dick, University of Newcastle-upon-Tyne, UK）上的人类皮肤样品施用组合物 16 小时。
然后在皮肤各层以及与皮肤样品接触的受体液体中测量放射性。

<table>
<thead>
<tr>
<th>组合物</th>
<th>回收的%总放射性</th>
</tr>
</thead>
<tbody>
<tr>
<td>配方 A</td>
<td>2.10</td>
</tr>
<tr>
<td>实施例 1</td>
<td>3.28</td>
</tr>
</tbody>
</table>

得到的这些结果清楚地表明了实施例 1 中所述的乳膏-凝胶形式的组合物实质且显著地增加了伊维菌素对皮肤各层的渗透。