
INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C07D 498/22, A61K 31/55, C07H 7/06 // (C07D 498/22, 307:00, 273:00, 209:00, 209:00, 209:00)		A1	(11) International Publication Number: WO 99/33836
			(43) International Publication Date: 8 July 1999 (08.07.99)
(21) International Application Number: PCT/US98/27644			(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 30 December 1998 (30.12.98)			
(30) Priority Data: 60/070,263 31 December 1997 (31.12.97) US			(Published) <i>With international search report.</i> <i>Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>
(71) Applicants: CEPHALON, INC. [US/US]; 145 Brandywine Parkway, West Chester, PA 19380-4245 (US). KYOWA HAKKO KOGYO CO., LTD. [JP/JP]; Ohtemachi Building, 1-6-1 Ohtemachi, Chiyoda-ku, Tokyo 100 (JP).			
(72) Inventors: HUDKINS, Robert, L.; 430 South Saddlebrook Circle, Chester Springs, PA 19425 (US). GINGRICH, Diane, E.; 143 Rosetree Lane, Exton, PA 19341 (US).			
(74) Agent: CREASON, Gary, L.; Fish & Richardson P.C., 225 Franklin Street, Boston, MA 02110-2804 (US).			

(54) Title: 3'-EPIMERIC K-252A DERIVATIVES

(57) Abstract

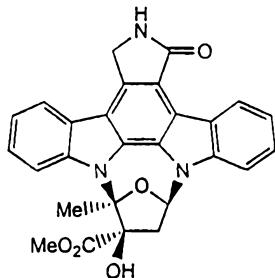
Compounds defined by general structure (II) are disclosed. These compounds display pharmacological activities, including inhibition of tyrosine kinase activity and enhancement of the function and/or survival of trophic factor responsive cells, e.g., cholinergic neurons.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon			PT	Portugal		
CN	China	KR	Republic of Korea	RO	Romania		
CU	Cuba	KZ	Kazakhstan	RU	Russian Federation		
CZ	Czech Republic	LC	Saint Lucia	SD	Sudan		
DE	Germany	LI	Liechtenstein	SE	Sweden		
DK	Denmark	LK	Sri Lanka	SG	Singapore		
EE	Estonia	LR	Liberia				

3'-EPIMERIC K-252a DERIVATIVES

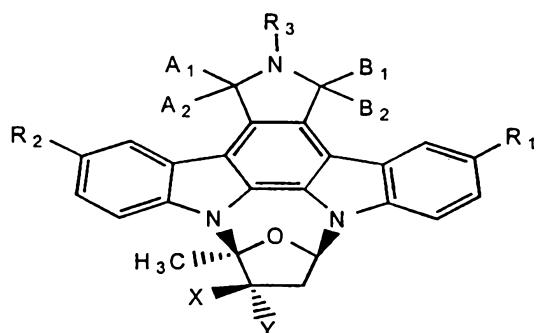

This application claims benefit of provisional
5 application Ser. No. 60/070,263, filed December 31, 1997.

Field of the Invention

The field of the invention is pharmaceutical
chemistry.

Background of the Invention

10 K-252a is an indolocarbazole whose stereochemistry
is shown below (Formula I):


K-252a inhibits protein kinase C (PKC), which plays
a role in regulating cell functions. K-252a has various
15 activities, e.g., inhibiting smooth muscle contraction (Jap.
J. Pharmacol. 43 (suppl.): 284, 1987), inhibiting serotonin
secretion (*Biochem. Biophys. Res. Commun.* 144: 35, 1987),
inhibiting elongation of neuraxone (*J. Neurosci.* 8:715,
1988), inhibiting histamine release (*Allergy* 43:100, 1988),
20 inhibiting smooth muscle MLCK (*J. Biol. Chem.* 263:6215,
1988), anti-inflammatory action (*Acta Physiol. Hung.* 80:423,
1992), and promotion of cell survival (*J. Neurochem.*
64:1502, 1995). K-252a also inhibits IL-2 production

(*Exper. Cell Res.* 193:175-182, 1991). The total synthesis of the natural (+) isomer of K252a and its enantiomeric (-) isomer (all three chiral carbons of the sugar moiety inverted), has been achieved (Wood et al., *J. Am. Chem. Soc.* 117:10413, 1995; and WO 97/07081).

Summary of the Invention

We have discovered that certain 3'-epimeric derivatives of K-252a are biologically active. These compounds have the following general formula (Formula II):

10

wherein:

R¹ and R² independently are:

hydrogen; lower alkyl; halogen; acyl; nitro;
sulfonic acid;

15

-CH=NR⁴, wherein R⁴ is guanidino, heterocyclic, or
-NR⁵R⁶, wherein R⁵ or R⁶ is hydrogen or lower
alkyl, and the other is hydrogen, lower alkyl,
acyl, aryl, heterocyclic, carbamoyl or lower
alkylaminocarbonyl;

unsubstituted aryl, substituted heteroaryl, unsubstituted heteroaryl, substituted aralkyl, or unsubstituted aralkyl;

- $(CH_2)_dCHR^{21}CO_2R^{16A}$, wherein d is 0-5, and R^{21} is hydrogen, $CONR^{10}R^{11}$, or CO_2R^{16A} , wherein R^{16A} is the same as R^{16} ;

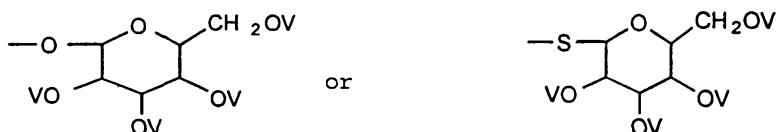
5 - $(CH_2)_dCHR^{21}CONR^{10}R^{11}$;

- $CH=CH(CH_2)_mR^{22}$, wherein m is 0-4, and R^{22} is hydrogen, lower alkyl, CO_2R^9 , substituted aryl, unsubstituted aryl, substituted heteroaryl, unsubstituted heteroaryl, OR^{12} , or $NR^{10}R^{11}$;

10 - $CH=C(CO_2R^{16A})_2$;

- $C\equiv C(CH_2)_mR^{22}$;

- $SO_2NR^{23}R^{24}$, wherein R^{23} and R^{24} independently are hydrogen, lower alkyl, or groups that form a heterocycle with the adjacent nitrogen atoms;

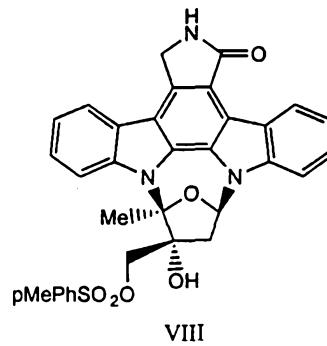
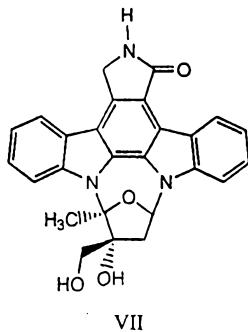
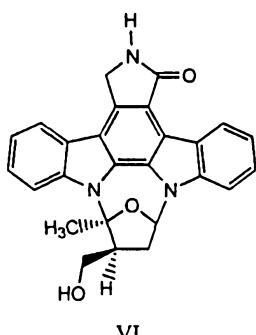

- OCO_2R^{13A} , wherein R^{13A} is the same as R^{13} ; or

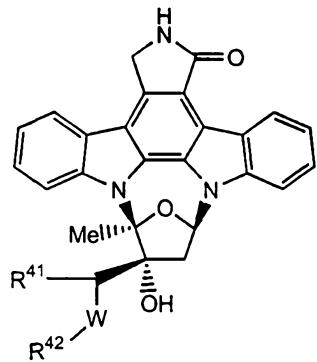
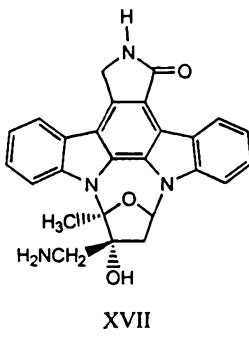
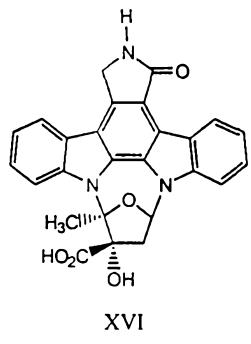
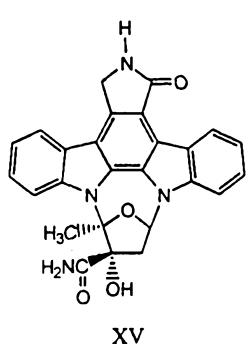
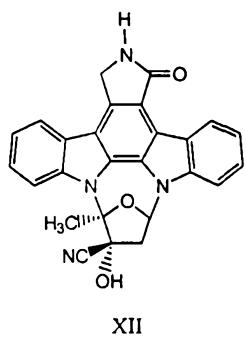
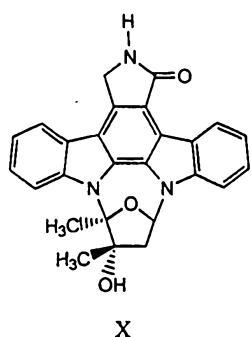
15 - $OC(=O)NR^{10}R^{11}$;

R^3 is hydrogen; lower alkyl; carbamoyl; amino; tetrahydropyranyl; hydroxyl; $C(=O)H$; aralkyl; lower alkanoyl; or $CH_2CH_2R^{25}$, wherein R^{25} is halogen, amino, di-lower alkylamino, hydroxyl, or hydroxysubstituted lower alkylamino;

20 X is hydrogen; formyl; carboxyl; lower alkoxy carbonyl; lower alkylhydrazinocarbonyl; -CN; lower alkyl; - $C(=O)NR^{26}R^{27}$, wherein R^{26} and R^{27} independently are hydrogen, unsubstituted lower alkyl, or unsubstituted aryl; or R^{26} and R^{27} are combined with a nitrogen atom to form a heterocyclic group;

-CH(R³⁴)W, wherein R³⁴ is hydrogen or lower alkyl,
 and W is -N=CHN(alkyl)₂; guanidino; N₃; NR²⁸R²⁹,
 wherein R²⁸ or R²⁹ is hydrogen or lower alkyl,
 and the other is hydrogen, allyl, alkanoyl,
 5 aryloxycarbonyl, unsubstituted alkyl, or the
 residue of an α -amino acid in which the hydroxy
 group of the carboxyl group is excluded; -CO₂R⁹;
 -C(=O)NR¹⁰R¹¹; -S(=O)₂R³⁰, wherein R³⁰ is
 substituted or unsubstituted lower alkyl, aryl,
 10 or heteroaryl; or -OR³¹, wherein R³¹ is hydrogen,
 substituted or unsubstituted alkyl, or
 substituted or unsubstituted alkanoyl;
 -CH=N-R³², wherein R³² is hydroxyl, lower alkoxy,
 amino, guanidino, ureido, imidazolylamino,
 15 carbamoylamino, or NR^{26A}R^{27A} (wherein R^{26A} is the
 same as R²⁶ and R^{27A} is the same as R²⁷); or
 -CH₂Q wherein Q is a sugar residue represented by

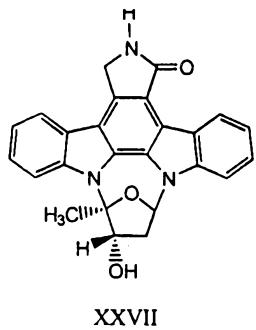
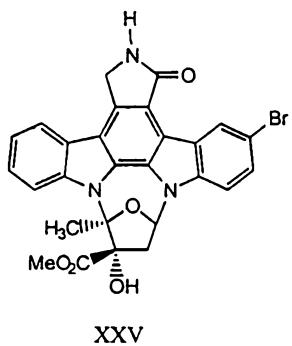










wherein V represents hydrogen, methyl, ethyl,
 benzyl, acetyl, or trifluoroacetyl;
 20 Y is hydrogen; -OH; -OC(=O)R³³, wherein R³³ is alkyl, aryl,
 or amino; -OCH₂O-alkyl; -O-alkyl; aralkyloxy; or X
 and Y are combined as -X-Y- to form, -CH₂OCO₂- or -
 CH₂N(R^{16B})CO₂- (wherein R^{16B} is the same as R¹⁶);

A¹ and A² are hydrogen, or both are combined to represent O; or B¹ and B² are hydrogen, or both are combined to represent O; or a pharmaceutically acceptable salt thereof; with the proviso that at least one of A¹, A² or B¹, B² represents O; and with the further proviso that both X and Y are not simultaneously hydrogen.

5 Preferably, X is -C(=O)NR²⁶R²⁷, carboxyl, lower alkoxy carbonyl, formyl, lower alkyl, -CH₂OR³¹, -CH₂NR²⁸R²⁹, or -CH₂S(O)_rR³⁰. Preferably, R¹ and R² are H.

10 Preferably, R³ is hydrogen or a protecting group. Particularly preferred are Compounds VI, VII, VIII, X, XII, XIV, XV, XVI, XVII, XVIII, XIX, XXV, and XXVII, shown below:

$W = \text{CH}_2, \text{O}, \text{S}, \text{NH}, \text{or } R^{42}W = \text{H}$

$R^{41} = \text{H or lower alkyl}$

$R^{42} = \text{lower alkyl}$

In some embodiments of the invention, 3'-epimeric K252a derivatives are formulated into pharmaceutical compositions.

5 The invention also provides a method for inhibiting the activity of a tyrosine kinase, for example, protein kinase C (PKC). The method includes contacting the tyrosine kinase with a compound of claim 1. The tyrosine kinase can be *in vivo* or *in vitro*.

10 The invention also provides a method for inhibiting the phosphorylation of a tyrosine kinase by a second kinase. The method includes contacting the second kinase with a compound of claim 1. The tyrosine kinase can be *in vivo* or *in vitro*.

15 The invention also provides a method for enhancing the function of a cholinergic neuron. The method includes contacting the cholinergic neuron with a compound of claim 1. The cholinergic neuron can be *in vivo* or *in vitro*.

The invention also provides a method for enhancing

the survival of a cholinergic neuron. The method includes contacting the cholinergic neuron with a compound of claim 1. The cholinergic neuron can be *in vivo* or *in vitro*.

Unless otherwise defined, all technical and 5 scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, the present application, including definitions will control. All publications, patent applications, patents, and other 10 references mentioned herein are incorporated by reference.

Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are described below. The materials, methods, and 15 examples are illustrative only and not intended to be limiting. Other features and advantages of the invention will be apparent from the detailed description, and from the claims.

Brief Description of the Drawings

Fig. 1 is a schematic drawing of the synthesis of 3'-epimeric indolocarbazoles **VI** and **VII** from the known indolocarbazole **IIIa**.

5 Fig. 2 is a drawing showing the synthesis of the 3'-epimeric indolocarbazole **X** from the 3'-epimeric indolocarbazole **VII**, prepared as shown in Fig. 1.

Fig. 3 is a drawing showing the synthesis of 3'-epimeric indolocarbazoles **XIIa**, **XIV**, **XV**, **XVI**, **XVII**, and 10 **XVIII** from the intermediate ketone **XIa**.

Fig. 4 is a drawing showing the synthesis of 3'-epimeric indolocarbazoles **XIX** from the intermediate epoxide **IXa**.

Fig. 5 is a drawing showing an alternate synthesis 15 of the 3'-epimeric indolocarbazoles **XIX** from the intermediate ketone **XI**.

Fig. 6 is a drawing showing the synthesis of the epimeric 3'-hydroxyindolocarbazole **XXVII** from the intermediate ketone **XI**, and alternatively by epimerization 20 of the known 3'-hydroxyindolocarbazole **XXVI**.

Fig. 7 is a drawing showing the synthesis of a ring-brominated 3'-epimeric indolocarbazole **XXV** from the corresponding 3'-epimeric indolocarbazole **XIV**.

Fig. 8 is a graph summarizing data from experiments 25 to determine the effect of Compound **XIV** on survival of neurons in cultures enriched for motoneurons. Cell

viability (as percent of control) is plotted against concentration of Compound **XIV** in the cell culture medium.

Epimeric K-252a derivatives of the invention display pharmacological activities, including inhibition of tyrosine kinase activity, e.g., inhibition of PKC or trk tyrosine kinase, which inhibition may be useful in treatment of diseases, including cancer. Compounds of the invention are useful for enhancing the function and/or survival of trophic factor responsive cells, e.g., cholinergic neurons. Effects on neurons can be demonstrated in assays including the following: (1) cultured spinal cord choline acetyl-transferase ("ChAT") assay; and (2) cultured basal forebrain neuron ("BFN") ChAT activity assay.

ChAT is an enzyme in the biosynthetic pathway leading to acetylcholine. ChAT activity associated with a cholinergic neuron indicates that the neuron is functional. Neuron survival can be assayed by measuring uptake and enzymatic conversion of a dye, e.g., calcein AM, by neurons.

Various neurological disorders are characterized by neuronal cells that are injured, functionally comprised, undergoing axonal degeneration, dying, or at risk of dying. These disorders include: Alzheimer's disease, motor neuron disorders such as amyotrophic lateral sclerosis, Parkinson's disease; cerebrovascular disorders such as stroke or ischaemia, Huntington's disease, AIDS dementia, epilepsy, multiple sclerosis, peripheral neuropathies, disorders induced by excitatory amino acids, and disorders associated

with concussive or penetrating injuries of the brain or spinal cord.

Because they enhance trophic factor-induced activities of trophic factor responsive cells, compounds of 5 the invention can be used as therapeutic agents to enhance the function and/or survival of cells of neuronal lineage in a mammal, e.g., a human. In particular, they are useful in treatment of disorders associated with decreased ChAT activity or injury to spinal cord motoneurons.

10 **Chemical Syntheses**

Compounds of the invention can be prepared as described below (Figs. 1-7). The compounds can be prepared by starting with a suitably protected K-252a derivative. K-252a can be protected on the lactam amide nitrogen, e.g., 15 as an acetate or as a silyl derivative.

Thionocarbonate **IVa** (Fig. 1) can be prepared from diol **IIIa** using a procedure such as that described in U.S. Pat. No. 4,923,986. Treatment of **IVa** with trimethylphosphite gives the exocyclic alkene **V**. Alkene **V** 20 can be converted to (S)-methanol derivative **VI** using hydroboration conditions, or converted to (R)-diol **VII** using osmonium tetroxide in tetrahydrofuran (THF). In Compound **VII**, the configuration at the sugar 3'-position is opposite to that reported as (S)-diol **III** in U.S. Pat. No. 4,923,986.

25 The (R)-epoxide **IXa** (Fig. 2) can be prepared by converting (R)-diol **VII** to the tosyl intermediate **VIII**,

followed by treatment with a base such as sodium hydride or sodium hydroxide. Treatment of (R)-epoxide **IXa** with hydride reducing agents such as lithium triethyl borohydride gives the tertiary (S)-alcohol **X** after deprotection of the t-
5 butyldimethyl silyl (TBDMS) group. Chiral alcohol derivatives such as compounds **VI**, **VII** or **X** can be further converted to ether derivatives by reaction with a base and a halide or tosyl partner using conventional techniques. The alcohol derivatives also can be converted to ester
10 derivatives by treatment with acid chlorides or anhydrides, or carbamates by reaction with an appropriate isocyanate by known procedures. Halide or sulfonate derivative of, for example, compounds **VI** or **VII**, can be displaced with various O, S, N, or C nucleophiles to yield a suitable derivative.

15 The preparation of 3'-(R)-K-252a **XIV** (Fig. 3) begins with ketone **XI**. Compound **XIV** differs from the natural K-252a isomer only at the 3' sugar position. Treatment of ketone **XIa** with cyanide salts (NaCN, KCN, tetrabutylammonium cyanide, or TMSCN) gives a mixture of cyanohydrins **XII** and
20 **XIII**. The mixture of cyanohydrin isomers can be separated by chromatography or directly converted to ester **XIV** or amide **XV** using HCl in methanol. 3'-epi-K-252a **XIV** can be hydrolysed to the hydroxy acid **XVI** using a procedure such as that used for natural K-252a. See, e.g., *J.*
25 *Antibiot.* 39:1072, 1986. Acid **XVI** can be converted to a variety of ester or amide derivatives using similar procedures to those described for K-252a. See, e.g., U.S.

Pat. Nos. 4,923,986; 5,461,146; and 5,654,427. Amide **XV** can be reduced to the corresponding methylamine derivative **XVII** using the procedure described for conversion of natural K-252a, and **XVII** can be used to prepare a number of methyl-5 amide and -urea derivatives. See, e.g., U.S. Pat. Nos. 4,923,986; 5,461,146; and 5,654,427. 3'-epi-K-252a can be reduced to the aldehyde **XVIII** and condensed with various amines, hydrazines, or hydroxyl amines to form the corresponding analogs. The aldehyde **XVIII** may be treated 10 with various metal alkyl, arylalkyl, aryl, or heteroarylalkyl reagents, e.g., Li, Mg, Zn or Cu reagents, to form the corresponding alcohol addition products. Aldehyde **XVIII** may be converted to functionalized olefins and their reduced products by treatment with phosphonium 15 ylides (Quart Rev. 17:406, 1963; Angew Int. 16:423, 1977), phosphonates (Horner-Wadsworth-Emmons reagents: Chem. Ber. 91:61, 1958; J. Am. Chem. Soc. 83:1733, 1961; Org. React. 25:73, 1977), silanes (J. Org. Chem. 33:780, 1968; Synthesis 384, 1984) tellurium reagents (Tetrahedron Lett. 28:801, 20 1987) or boron reagents (Tetrahedron Lett. 24:635, 1983), followed by reduction of the alkene, e.g. by catalytic hydrogenation. The alkene derived from aldehyde **XVIII** can be converted to an epoxide and treated, for example, with a nucleophile, as described for epoxide **IX**.

25 Epoxide **IX** (Fig. 4) can be treated with a variety of nucleophiles to form tertiary alcohols of structure **XIX**. The nucleophile can be substituted. An alternative method

(Fig. 5) to prepare epoxides and tertiary 3'-*epi*-OH configurations of the alcohols is to convert ketone **XI** to an olefin of structure **XX** using a conventional olefination reaction, e.g., as described for aldehyde **XVIII**.

5 The epoxide of structure **XXI** can be prepared asymmetrically using known methods. See, e.g., *J. Org. Chem.* 32:1363, *Synthesis* 89, 1986; 1967; *J. Org. Chem.* 60:3692, 1995; *J. Am. Chem. Soc.* 112:2801, 1990; *J. Am. Chem. Soc.* 116:6937, 1994; *J. Org. Chem.* 58:7615, 1993).

10 Nucleophilic epoxide opening in a manner similar to that used with epoxide **IX** gives the substituted tertiary alcohol with the OH group in the 3'-*epi* configuration.

15 The known (R)-alcohol **XXVI** (Fig. 6) can be converted to (S)-alcohol **XXVII** using conventional methods for inversion of a secondary alcohol. See, e.g., *Tetrahedron Lett.* 34:6145, 1996; *Synthesis Letters*, 1995, 336). Alternatively, **XXVII** can be prepared by treatment of epoxide **XXIV** with a hydride reagent such as lithium triethyl borohydride. Ketone **XI** (Fig. 6) can be converted to

20 triflate **XXII** followed by treatment with tributyltin hydride to give alkene **XXIII**.

25 Known methods used to prepare K252a derivatives with substitutents at positions R₁ and R₂ can be employed to obtain the corresponding R₁ and R₂ substitutents on 3'-*epi*-K-252a. See, e.g., U.S. Pat. Nos. 4,923,986; 5,461,146; and 5,654,427. For example, treatment of **XIV** (Figure 7) with one equivalent of N-bromosuccinimide (NBS) yields the

derivative **XXV** in which R_1 is Br. Two equivalents of NBS would give the derivative in which both R_1 and R_2 are Br.

Oxidation of (S)-methanol **VI** to an aldehyde or a carboxylic acid derivative can be achieved using appropriate 5 oxidizing reagents (as described in *Oxidations in Organic Chemistry*, American Chemical Society Monograph 186, ACS Washington DC 1990). The aldehyde or carboxylic acid derivatives can be further transformed using described procedures to prepare derivatives **XVI** and **XVIII** (Fig. 3).

10 **Pharmaceutical Compositions**

A compound of the invention can be administered to a mammal, e.g., a human patient, as the sole active ingredient or in combination with other therapeutic agents. Compounds of the invention can be formulated into pharmaceutical 15 compositions by admixture with pharmaceutically acceptable excipients and carriers. Such compositions can be formulated for any route of administration, e.g., parenteral, oral, nasal, or topical. The composition can be administered in unit dosage form, following preparation by 20 conventional methods. See, e.g., *Remington's Pharmaceutical Sciences* (Mack Pub. Co., Easton, PA). The amount and concentration of the active ingredient can vary. The concentration will depend upon factors such as the total dosage of the active ingredient, the chemical 25 characteristics (e.g., hydrophobicity) of the compounds employed, the route of administration, the patient's age,

the patient's weight, and the condition being treated.

Compounds of the invention can be provided in an physiological buffer solution containing, e.g., 0.1 to 10% w/v compound for parenteral administration. Typical dose 5 ranges are from about 1 μ g/kg to about 1 g/kg of body weight per day; a preferred dose range is from about 0.01 mg/kg to 100 mg/kg of body weight per day, and preferably about 0.1 to 20 mg/kg once to four times per day.

The invention includes pharmaceutically acceptable 10 salts of 3'-epimeric K252a derivatives. Pharmaceutically acceptable salts include pharmaceutically acceptable acid addition salts, metal salts, ammonium salts, organic amine addition salts, and amino acid addition salts. Acid addition salts include inorganic acid addition salts such as 15 hydrochloride, sulfate and phosphate, and organic acid addition salts such as acetate, maleate, fumarate, tartrate, citrate and lactate. Examples of metal salts are alkali metal salts such as lithium salt, sodium salt and potassium salt, alkaline earth metal salts such as magnesium salt and 20 calcium salt, aluminum salt, and zinc salt. Examples of ammonium salts are ammonium salt and tetramethylammonium salt. Examples of organic amine addition salts are salts with morpholine and piperidine. Examples of amino acid addition salts are salts with glycine, phenylalanine, 25 glutamic acid and lysine.

As used herein, "lower alkyl" means an alkyl group with 1 to 6 carbons. As used herein, "aryl" (alone or in

terms such as arylcarbonyl and arylaminocarbonyl) means a group having 6 to 12 carbon atoms, in a single ring, or two fused rings. Examples of aryl groups are phenyl, biphenyl and naphthyl. A heteroaryl group contains at least one 5 hetero atom. Preferably, the hetero atom is O, S, or N. Examples of heteroaryl groups are pyridyl, pyrimidyl, pyrrolyl, furyl, thienyl, imidazolyl, triazolyl, tetrazolyl, quinolyl, isoquinolyl, benzoimidazolyl, thiazolyl and benzothiazolyl. A substituted alkyl group has 1 to 3 10 independently-selected substituents. Preferred substituents for alkyl groups are hydroxy, lower alkoxy, substituted or unsubstituted arylalkoxy-lower alkoxy, substituted or unsubstituted heteroarylalkoxy-lower alkoxy, halogen, carboxyl, lower alkoxycarbonyl, nitro, amino, mono- or di- 15 lower alkylamino, dioxolane, dioxane, dithiolane, and dithione. A substituted aryl, heteroaryl or arylalkyl group has 1 to 3 independently-selected substituents. Preferred substituents are lower alkyl, hydroxy, lower alkoxy, carboxy, lower alkoxycarbonyl, nitro, amino, mono- or di- 20 lower alkylamino, and halogen.

As used herein, "cholinergic neuron" means a neuron that uses acetylcholine as a neurotransmitter. Examples of cholinergic neurons are basal forebrain neurons, striatal neurons, and spinal cord neurons. As used herein, "sensory 25 neuron" means a neuron responsive to an environmental stimulus such as temperature or movement. Sensory neurons are found in structures including skin, muscle and joints.

A dorsal root ganglion neuron is an example of a sensory neuron. As used herein, "trophic factor-responsive cell" means a cell to which a trophic factor binds. Trophic factor-responsive cells include cholinergic neurons, sensory neurons, monocytes and neoplastic cells.

The invention is further illustrated by the following examples. The examples are not to be construed as limiting the scope or content of the invention in any way.

Experimental Examples

10 **Inhibition of Tyrosine Kinase Activity**

Epimeric K252a derivatives were tested for inhibition of kinase activity of baculovirus-expressed human trkA cytoplasmic domain using an ELISA-based assay as described by Angeles et al. (*Anal. Biochem.* 236:49-55, 1996). A 96-well microtiter plate was coated with substrate solution (recombinant human phospholipase C- γ /glutathione S-transferase fusion protein; Rotin et al., *EMBO J.*, 11:559-567, 1992). Inhibition was measured in 100 μ l assay mixtures containing 50 mM Hepes, pH 7.4, 40 μ M ATP, 10 mM MnCl₂, 0.1% BSA, 2% DMSO, and various concentrations of inhibitor. The reaction was initiated by addition of trkA kinase and allowed to proceed for 15 minutes at 37°C. An antibody to phosphotyrosine (UBI) was then added, followed by a secondary enzyme-conjugated antibody, alkaline phosphatase-labelled goat anti-mouse IgG (Bio-Rad).

The activity of the bound enzyme was measured using an amplified detection system (Gibco-BRL). Inhibition data were analyzed using the sigmoidal dose-response (variable slope) equation in GraphPad Prism. The concentration that 5 gave 50% inhibition of kinase activity was referred to as IC₅₀. Results are summarized in Table 1.

Table 1
Inhibition of trkA Kinase Activity
by 3'-Epimeric K-252a Derivatives

10	Compound	trk IC ₅₀ (nM)
15	VI	2
	VII	2
	X	2
	XIV	1.4
	XV	21
	XXIX (Control)	7

Inhibition of NGF-stimulated trk Phosphorylation

The inhibition of NGF-stimulated phosphorylation of 20 trk by selected epimeric K-252a derivatives was measured using a procedure modified from that described in U.S. Pat. No. 5,516,771. NIH3T3 cells transfected with trkA were grown in 100 mm dishes. Subconfluent cells were serum-starved by replacing media with serum-free 0.05% BSA-DMEM 25 containing compound (1-100 nM) or DMSO (added to controls) for one hour at 37°C. NGF (Harlan/Bioproducts for Science) was then added to the cells at a concentration of 10 ng/ml

for 5 minutes. Cells were lysed in buffer containing detergent and protease inhibitors. Clarified cell lysates were normalized to protein using BCA method and immunoprecipitated with anti-trk antibody.

5 Polyclonal anti-trk antibody was prepared against a peptide corresponding to the 14 amino acids at the carboxy terminus of trk (Martin-Zanca et al., *Mol. Cell. Biol.* 9:24-33, 1989). The immune complexes were collected on Protein A Sepharose beads (Sigma), separated by SDS polyacrylamide gel 10 electrophoresis (SDS-PAGE), and transferred to a polyvinylidene difluoride (PVDF) membrane. The membrane was immunoblotted with anti-phosphotyrosine antibody (UBI), followed by incubation with horseradish peroxidase coupled goat anti-mouse IgG (Bio-Rad). Phosphorylated proteins were 15 visualized using ECL (Amersham).

The area of the trk protein band was measured and compared to NGF-stimulated control. The inhibition scoring system used, based on percent decrease in trk protein band, was as follows: 0 = no decrease; 1 = 1-25%; 2 = 26-49%; 3 = 20 50-75%; 4 = 76-100%.

The trk inhibition data (Table 2) revealed that the 3'-epi-OH isomers were more potent for inhibiting trk in a whole cell preparation than the corresponding natural isomers. 3'-epi-K-252a (**XIV**) displayed an IC_{50} of < 10 nM, 25 whereas K-252a displayed an IC_{50} of approximately 50 nM. Compound **X** showed a complete inhibition of trkA at < 50 nM, and an IC_{50} of < 10 nM in cells. The natural isomer **XXIX**

did not show complete inhibition at 100 nM. Diol **VII** displayed greater potency than the natural isomer **III** for trkA inhibition in NIH3T3 cells.

Table 2

5 **Effects of 3'-Epimeric K-252 Derivatives on
NGF-stimulated trkA Phosphorylation in NIH3T3 Cells**

		Inhibition Score			
		1 nM	10 nM	50 nM	100 nM
10	K-252a (Control)	1	2	3	3
	XIV	2	4	4	4
	VII	1	2	4	4
	III (Control)	1	2	3	4
	X	2	3	4	4
	XXIX (Control)	2	3	3	3

Inhibition of VEGF Receptor Kinase Activity

3'-Epimeric K-252a derivatives were tested for inhibition of the kinase activity of baculovirus-expressed 20 VEGF receptor kinase domain, using the procedure described above. The kinase reaction mixture, consisting of 50 mM Hepes, pH 7.4, 40 μ M ATP, 10 mM MnCl₂, 0.1% BSA, 2% DMSO, and various concentrations of inhibitor, was transferred to PLC- γ /GST-coated plates. VEGFR kinase was added and the 25 reaction was allowed to proceed for 15 min. at 37°C. Phosphorylated product was detected by anti-phosphotyrosine

antibody (UBI). A secondary enzyme-conjugated antibody was used to capture the antibody-phosphorylated PLC- γ /GST complex. The activity of the bound enzyme was measured by an amplified detection system (Gibco-BRL). Inhibition data 5 were analyzed using the sigmoidal dose-response (variable slope) equation in GraphPad Prism. Results are summarized in Table 3.

Table 3
Inhibition of VEGF Receptor Kinase Activity
 by 3'-Epimeric K-252a Derivatives

Compound	VEGFR kinase IC_{50} (nM)
VI	7
VII	8
X	17
XIV	19
XXIX (Control)	146

Inhibition of Protein Kinase C Activity

Protein kinase C activity was measured using the 20 Millipore Multiscreen TCA in-plate assay (Pitt et al., *J. Biomol. Screening*, 1:47-51, 1996). Assays were performed in 96-well Multiscreen-DP plates (Millipore). Each 40-ml assay mixture contained 20 mM Hepes, pH 7.4, 10 mM MgCl₂, 2.5 mM EGTA, 2.5 mM CaCl₂, 80 mg/ml phosphatidyl serine, 3.2 mg/ml 25 diolein, 200 mg/ml histone H-1 (Fluka), 5 mM [γ -³²P]ATP, 1.5 ng protein kinase C (UBI; mixed isozymes of a, b, g), 0.1%

BSA, 2% DMSO, and 3'-epimeric K-252a derivative. The reaction was allowed to proceed for 10 min at 37°C. The reaction was quenched with ice cold 50% trichloroacetic acid (TCA). The plates were equilibrated for 30 min at 4°C, then 5 washed with ice cold 25% TCA. Scintillation cocktail was added to the plates, and the radioactivity was determined using Wallac MicroBeta 1450 PLUS scintillation counter. The IC₅₀ values were calculated by fitting the data to the sigmoidal dose-response (variable slope) equation in 10 GraphPad Prism. The results are summarized in Table 4.

Table 4
Inhibitory Effects of 3'-Epimeric K-252a Derivatives
on Protein Kinase C Activity

Compound	PKC IC ₅₀ (nM)
VI	95
VII	79
X	>1000
XIV	114
XXIX (Control)	310

Enhancement of Spinal Cord ChAT Activity

ChAT was employed a biochemical marker for functional cholinergic neurons. ChAT activity has been used to study the effects of neurotrophins (e.g., NGF or NT-3) on 25 the survival and/or function of cholinergic neurons. The ChAT assay also has been used as an indication of the

regulation of ChAT levels within cholinergic neurons.

3'-Epimeric K-252a derivatives increased ChAT activity in the dissociated rat embryonic spinal cord culture assay (Table 5). Compound **XVII** increased ChAT 5 activity 195% over control cultures (not treated with the epimeric K-252a derivative) after allowing a 2-3 hour plating period for cells to attach to control tissue culture wells. In these assays, a compound was directly added to a dissociated spinal cord culture. Compounds which increased 10 ChAT activity at least 120% of the control activity were considered active. Increased ChAT activity was observed after a single application of a selected epimeric K-252a derivative. Results are summarized in Table 5.

15 **Table 5**
Enhancement of Spinal Cord ChAT Activity
by 3'-Epimeric K-252a Derivatives

Compound	Spinal Cord ChAT % control	
	Activity at 50nM	Maximal Activity
VI	<120	125
VII	<120	122
X	<120	127
XIV	147	195
XV	-	129

20 25 Fetal rat spinal cord cells were dissociated, and experiments were performed, essentially as described by Smith et al., *J. Cell Biology* 101:1608-1621, 1985), and Glicksman et al., *J. Neurochem.* 61:210-221, 1993).

Dissociated cells were prepared from spinal cords dissected from rats (embryonic day 14-15) by conventional trypsin dissociation techniques. Cells were plated at 6×10^5 cells/cm² on poly-L-ornithine coated plastic tissue culture wells in serum-free N2 medium supplemented with 0.05% bovine serum albumin (BSA) (Bottenstein et al., *Proc. Natl. Acad. Sci. USA* 76:514-517, 1979). Cultures were incubated at 37°C in a humidified atmosphere of 5% CO₂/95% air for 48 hours. ChAT activity was measured after 2 days *in vitro* using a modification of the Fonnum procedure (Fonnum, *J. Neurochem.* 24:407-409, 1975) according to McManaman et al. (*Developmental Biology* 125:311-320, 1988) and Glicksman et al. (*supra*).

Survival Assay Using Rat Spinal Cord Motoneurons

15 Selected 3'-epimeric K-252a derivatives were assayed for survival-enhancing activity in rat spinal cord motoneurons. Compound **XVI** significantly enhanced survival of spinal cord motoneurons (Fig. 8).

20 Spinal cords were dissected from Sprague-Dawley rat fetuses (Charles River Laboratories, Wilmington, MA) of embryonic age (E) 14.5-15. Cells from only the ventral portion of the spinal cord were dissociated, and further enriched for motoneurons by centrifugation on a 6.5% step metrizamide gradient, and were analyzed for purity by 25 staining with low affinity neurotrophin receptor antibody (IgG-192, Boehringer-Mannheim). Cells were seeded onto 96-

well plates previously coated with poly-L-ornithine and laminin (5 ug/ml each) at a density of 6 x 10⁴ cells/cm² in chemically defined serum-free N2 medium (Bottenstein and Sato, 1979). To distinguish attachment from survival 5 effects, 3,9-bis[(ethylthio)methyl]-K-252a (Kaneko et.al., *J. Med. Chem.* 40:1863-1869, 1997) was added to cultures after an initial attachment period of 1-3 hours.

Neuronal survival was assessed after 4 days by calcein AM (Molecular Probes, Eugene, OR) in a fluorimetric 10 viability assay (Bozyczko-Coyne et.al., *J. Neurosci. Meth.* 50:205-216, 1993). Culture medium was serially diluted in Dulbeccos phosphate buffered saline (DPBS). A final concentration of 6 uM calcein AM stock was added to each well. The plates were incubated for 30 min at 37°C, 15 followed by serial dilution washes in DPBS. The fluorescent signal was read using a plate-reading fluorimeter (Cytofluor 2350) (excitation = 485 nm; emission = 538 nm). For each plate, mean background derived from wells receiving calcein AM, but containing no cells, was subtracted from all values. 20 Linearity of the fluorescence signal was verified for the concentration and incubation time for the range of cell densities. Microscopic counts of neurons correlated directly with relative fluorescence values.

Preparation of Compound V

25 Compound IVb (U.S. Pat. No. 4,923,986) was dissolved in trimethylphosphite (2 mL) and heated to reflux

for 3 hours. The reaction mixture was cooled to room temperature and flushed through a flash silica gel column using chloroform-methanol (20:1) to remove trimethylphosphite. The product was purified by flash chromatography (silica gel; ethyl acetate:hexane; 1:1) to give compound **V** as a pale yellow solid (15 mg, 95 % yield).
5 MS (ESI⁺): m/e 406 (M+H)⁺, ¹H NMR (CDCl₃, 300 MHz): δ 2.62 (s, 3H), 2.85 (d, 1H), 3.37-3.45 (m, 1H), 4.95 (s, 1H), 5.00 (s, 2H), 5.09 (s, 1H), 6.29 (s, 1H), 6.90 (d, 1H), 7.33-7.53 (m, 5H), 7.91 (d, 1H), 9.41 (d, 1H).
10

Preparation of Compound VI

To a stirred solution of compound **V** (161 mg, 0.397 mmols) in THF (8mL) at 0°C under nitrogen was added BH₃ THF (1.59 mL of a 1M solution, 1.59 mmol). The reaction mixture 15 was stirred for 30 min at 0°C and then warmed to room temperature overnight. The mixture was recooled to 0°C and 10% NaOH (0.1 mL) was added, with vigorous evolution of gas. Hydrogen peroxide (80 mL) was then added dropwise. After stirring at 0°C for 30 min, the reaction was diluted with 20 ethyl acetate (15 mL) and washed with water (3 x 10 mL). The organic layer was dried over sodium sulfate, filtered and concentrated *in vacuo* to a light green solid. The product was purified by chromatography (silica gel: hexane:ethyl acetate; 1:1) to give compound **VI** as a white 25 solid (0.12g, 71% yield). MS (ESI⁺): m/e 424 (M+H)⁺; ¹H NMR (CDCl₃, 300 MHz): δ 2.54 (s, 3H), 2.51 (m, 1H), 2.99-3.01

(m, 2H), 3.47 (m, 1H), 3.8 (m, 1H), 5.049 (s, 2H), 6.21 (broad 2, 1H), 6.98 (m, 1H), 7.13 - 7.49 (m, 6H), 7.94-8.02 (m, 2H), 9.34 (d, 1H).

Preparation of Compound VII

5 To a stirred solution of compound **Va** (TBDMS-V) (350 mg, 0.673 mmols) in THF (10 mL) at room temperature under nitrogen was added pyridine (0.435 mL, 5.39 mmol) followed by osmium tetroxide (6.73 mL, 0.673 mmol, 0.1 M in CCl_4). The reaction mixture was stirred at room temperature 36 h.

10 During this time, the mixture changed color from yellow to orange-brown. Aqueous sodium bisulfite (30 mL) was added to the reaction mixture and the reaction was stirred for 30 min. The reaction mixture was extracted with EtOAc (2 x 20 mL), dried over sodium sulfate, filtered and concentrated in vacuo to give a light brown film. The mixture was purified by flash chromatography on silica gel using ethyl acetate to yield compound **VIIa** (TBDMS-VII) as a yellow solid (280 mg, 76% yield). MS (ESI $^+$): m/e 544 ($\text{M}+\text{H}$) $^+$, ^1H NMR (CDCl_3 , 300 MHz): δ 0.56 (d, 6H), 1.079 (s, 9H), 2.04 (dd, 1H), 2.12 (broad s, 1H), 2.40 (s, 3H), 2.86 (dd, 1H), 3.52 (broad s, 3H), 4.99 (s, 2H), 6.98 (dd, 1H), 7.32 (t, 1H), 7.39-7.46 (m, 4H), 7.97 (dd, 2H), 9.35 (d, 1H).

15

20

25

To a flask containing methanol (2 mL) at 0°C under nitrogen was added acetyl chloride (4 drops). Compound **VIIa** (40 mg, 0.072 mmols) in methanol (1 mL) was added dropwise to the solution of methanolic HCl. The reaction mixture was

stirred at 0°C for 1 hour then was warmed to room temperature overnight. The solvent was removed *in vacuo* to give compound **VII** as a tan solid (21 mg, 66% yield). MS (ESI⁺): m/e 440 (M+H)⁺; ¹H NMR (CDCl₃, 300 MHz): δ 2.052 (dd, 1H), 2.43 (s, 3H), 2.90 (dd, 1H), 3.57 (s, 1H), 3.61 (s, 2H), 5.04 (s, 2H), 6.28 (s, 1H), 7.02 (dd, 1H), 7.33-7.54 (m, 6H), 7.95 (d, 1H), 8.02 (d, 1H), 9.32 (d, 1H).

Preparation of Compound X

To a stirred solution of intermediate **VIIa** (Fig. 2; 0.23g, 0.415 mmols) in THF (10 mL) at 0°C under nitrogen was added triethylamine (57.9 ml, 0.415 mmols), DMAP (25.4 mg, 0.208 mmol) and p-toluenesulfonyl chloride (79.1 mg, 0.415 mmol). The reaction mixture was stirred at 0°C for 1 hour. It was then slowly warmed to room temperature overnight. The reaction mixture was warmed for 1 hour, while monitoring by thin layer chromatography (hexane:ethyl acetate, 2:1). The reaction mixture was diluted with ethyl acetate (30 mL) and washed with water (3 x 15 mL). The organic phase was dried over sodium sulfate, filtered, and concentrated *in vacuo* to yield the tosyl intermediate **VIIIA** as a yellow film. The reaction mixture was further purified by flash chromatography on silica gel using hexane:ethyl acetate (2:1) to yield a light yellow film (0.16 g, 55% yield). MS (APCI): m/e 708 (M+H)⁺; ¹H NMR (CDCl₃, 300 MHz): δ 0.57 (d, 6 H), 1.08 (s, 9H), 2.01 (dd, 1H), 2.33 (s, 3H), 2.42 (s, 3H), 3.88 (dd, 1H), 3.86 (dd, 2H), 4.98 (s, 2H), 6.97 (dd,

1H), 7.14 (d, 2H), 7.24-7.49 (m, 7H), 7.75 (d, 1H), 7.91 (d, 1H), 9.35 (d, 1H).

To a stirred solution of intermediate **VIIIA** (0.14 g, 0.198 mmols) in THF (5 mL) at 0°C under nitrogen was added 5 sodium hydride (15.8 mg, 0.395 mmol). Vigorous evolution of gas was observed, and the reaction mixture became cloudy. Additional sodium hydride (2 eq) was added and the contents of the flask were stirred for an additional 2 hours, then warmed gently for 4h. The reaction mixture was then cooled 10 to 0°C and quenched with water. The reaction mixture was diluted with ethyl acetate and washed with water and brine. The organic phase was dried over sodium sulfate, filtered and concentrated in vacuo to give Compound **IXa** as a yellow film (100.2 mg, 95% yield). MS (APCI): m/e 536 (M+H)⁺; ¹H 15 NMR (CDCl₃, 300 MHz): δ 0.56 (d, 6H), 1.08 s, 9H), 2.32- 2.38 (m, 4H), 2.57 (d, 2 H), 3.01 (dd, 1H), 4.99 (s, 2H), 7.01 (d, 1H), 7.33-7.56 (m, 5H), 7.73 (d, 1H), 7.94 (d, 1H), 9.46 (d, 1H).

To a stirred solution of Compound **IXa** (100 mg, 0.187 mmol) in THF (5 mL) at 0°C under nitrogen was added 20 lithium triethyl-borohydride (0.37 mL of 1M solution in THF, 0.374 mmol) dropwise, with evolution gas. Additional lithium triethylborohydride (2 eq) was added at 0°C and the reaction was stirred at 0°C for 30 minutes and then was 25 warmed to room temperature. The reaction mixture was cooled to 0°C and quenched with water, diluted with ethyl acetate and washed with water and brine. The organic phase was

dried over magnesium sulfate filtered and concentrated *in vacuo*. The reaction mixture was purified by flash chromatography on silica gel using hexane:ethyl acetate (1:1) to yield **Xa** (R= TBDMS) as a pale yellow film. To a 5 stirred solution of Compound **Xa** in methanol at 0°C under nitrogen was added a solution made from acetyl chloride (5 drops) in methanol. The reaction mixture was stirred at 0°C for 30 minutes, then was warmed to room temperature overnight. The solvent was removed *in vacuo* leaving a 10 yellow solid which was purified by silica gel chromatography (hexane:ethyl acetate;1:1) to give Compound **X** (30 mg, 42%).
MS (ESI⁺): m/e 424 (M+H)⁺, ¹H NMR (CDCl₃, 300 MHz): δ 1.39 (s, 3H), 2.29 (dd, 1H), 2.37 (s, 3H), 2.91 (dd, 1H), 5.05 (s, 2H), 6.19 (s, 1H), 6.97 (t, 1H), 7.32-7.50 (m, 5H), 7.78 (d, 1H), 7.95 (d, 1H), 9.33 (d, 1H).

Preparation of Compounds XIV and XV

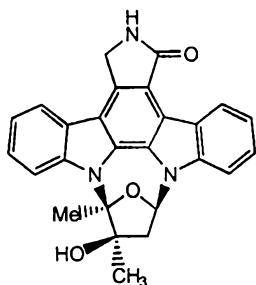
To a stirred solution of ketone **XI** (US 4,923,986) (Fig. 5; 451 mg, 1.11 mmols) in a CH₂Cl₂ -dioxane mixture (6 mL; 5:1) under nitrogen was added tetrabutylammonium cyanide 20 (740 mg, 2.77 mmols) and acetic acid (95 mL, 1.66 mmols) at room temperature. The dark reaction mixture was stirred for 24 hours, and then concentrated *in vacuo*. The dark oil was dissolved in ethyl acetate (20 mL) and dioxane (2 mL) and washed with water (3 x 10 mL) and brine (1 x 10 mL). The 25 organic phase was dried over magnesium sulfate, filtered, and concentrated *in vacuo* to a brown solid. The HPLC

analysis showed the presence of two cyanohydrin intermediates, **XIIa** and **XIIb**.

To a flask containing methanol (4 mL) was added HCl(g) for 10 minutes. A solution of the crude cyanohydrin mixture 5 from step 1 (450 mg, 1.04 mmols) in methanol:dioxane (2:1, 3 mL) was added to the HCl in methanol sloution at 0°C. The reaction mixture was sealed and stirred at 0°C for 2 hours, then was placed in a refrigerator for 48 h. The flask was warmed to room temperature and 6 N HCl was added carefully. 10 The mixture was stirred for 30 minutes and then concentrated to dryness. The residue was dissolved in 50% methanol:water and a precipitate formed while stirring overnight at room temperature. The reaction mixture was concentrated to dryness. The residue was purified by flash chromatgraphy on 15 silica gel using hexane:ethyl acetate (1:1) to yield compound **XIV** as an off-white solid. MS (ESI⁺): m/e 468 (M+H)⁺; ¹H NMR (CDCl₃, 300 MHz) δ 2.416 (s, 3H), 2.77 (dd, 1H), 2.91 (s, 3H), 2.952 (dd, 1H), 4.99 (s, 2H), 7.13 (dd, 1H), 7.33 (t, 1H), 7.44 (dd, 2H), 7.64 (t, 2H), 7.98 (d, 1H), 9.16 (d, 1H). The 20 column was eluted with ethyl acetate to obtain the amide **XV** as a light orange product (13 mg). MS (ESI): m/e 453 (M+H)⁺; ¹H NMR (DMSO-d₆, 300 MHz) δ 2.33 (s, 3H), 2.87 (m, 2H), 4.94 (s, 2H), 6.58 (s, 1H), 7.19-7.64 (m, 6H), 7.81 (m, 3H), 7.96 (d, 1H), 8.59 (s, 1H), 9.17 (d, 1H).

Preparation of Compound XXIII

To a stirred solution of ketone **XIa** (Fig. 6; R=TBDMS) (95.4 mg, 0.183 mmol) in THF (5 mL) at -78°C under nitrogen was added lithium diethylamide (0.12 mL, 1.5M solution in cyclohexane). The reaction mixture stirred at -78°C for 30 min. A solution of N-phenyltrifluoromethanesulfonimide (71.9 mg, 0.201 mmol) in THF (1.5 mL) was added dropwise to the reaction mixture and the mixture was stirred at -78°C for 30 min. The reaction mixture was allowed to warmed to 0°C, stirred for 1 hour, then warmed to room temperature overnight. The reaction was quenched with ammonium chloride (sat. aq. 2 mL), diluted with ethyl acetate and washed with water. The mixture was purified by flash chromatography on silica gel using hexane:ethyl acetate (2:1) to give compound **XXIIIa** (R=TBDMS) as an off-white solid (66 mg, 61% yield). MS (ESI⁺): m/e 654 (M+H)⁺, ¹H NMR (CDCl₃, 300 MHz): δ 0.58 (s, 6H), 1.12 (s, 9H), 2.66 (s, 3H), 5.02 (dd, 2H), 6.14 (s, 1H), 7.31-7.62 (m, 6H), 7.83 (d, 1H), 7.98 (d, 1H), 9.44 (d, 1H).


To a stirred solution of the product from step 1 (compound **XXIIIa**) (75 mg, 0.115 mmol) in THF (10 mL) was added lithium chloride (14.6 mg, 0.345 mmol) and tetrakis-(triphenylphosphine)palladium (0) (2.6 mg, 0.0023 mmol). Tributyltin hydride (37 mL, 0.139 mmol) was added dropwise and the contents were heated to 60°C. The reaction mixture was heated for 4 h, during which time the color of the reaction changed from yellow to red-black. The reaction was

concentrated *in vacuo* and purified by flash chromatography on silica gel using hexane:ethylacetate (2:1). Two products were isolated: TBDMS-protected **XXIIIA** product contaminated with tributyltin (60 mg) and deprotected product **XXIII** (10 mg, 22%). MS (ESI): m/e 392 (M+H)⁺, ¹H NMR (CDCl₃, 300 MHz): δ 2.65 (s, 3H), 4.978 (s, 2H), 6.19 (d, 1H), 6.28 (d, 1H), 6.41 (s, 1H), 7.26-7.62 (m, 5H), 7.65-7.69 (m, 1H), 7.87 (dd, 2H), 9.39 (d, 1H).

Compound **XXIII** displayed the following IC₅₀ values in the assays described above: inhibition of trkA kinase, 4 nM; inhibition of VEGF receptor kinase, 25 nM, and inhibition of Protein Kinase C, >1000 nM.

Preparation of Compound XXV

To a stirred solution of compound **XIV** (30.4 mg, 0.065 mmols) in THF (5 mL) at room temperature under nitrogen was added N-bromosuccinimide (11.6 mg, 0.065 mmols) in one portion. The reaction mixture was light orange in color initially and gradually turned light purple. The reaction mixture stirred at room temperature overnight. The solvent was removed *in vacuo* and the solid purified by flash chromatography on silica gel using hexane-ethyl acetate (2:1). This yielded Compound **XXV** as an off-white solid (31.2 mg, 88% yield). MS (ESI): m/e 547 (M+H)⁺, ¹H NMR (CDCl₃, 300 MHz): δ 2.42 (s, 3H), 2.77-2.83 (m, 1H), 2.86 (3H, s), 31.66 (dd, 1H), 4.105 (s, 1H), 5.07 (s, 2H), 6.39 (s, 1H), 7.01 (dd, 1H), 7.95 (d, 1H), 7.58 (d, 1H), 7.34-7.57 (m, 4H), 9.50 (s, 1H).

Preparation of Compound XXIX

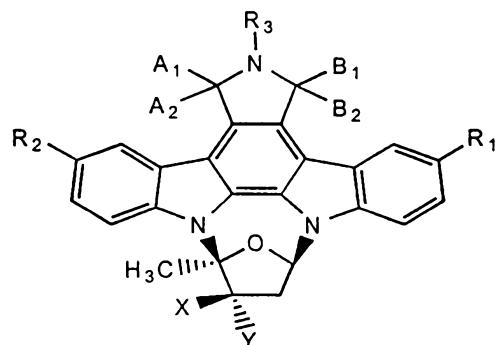
XXIX

Method A

To a stirred solution of epoxide **XXVIII** (US 5 4,923,986, compound I-27) (90.1 mg, 0.152 mmol) in THF (4 mL) at 0°C under nitrogen was added lithium triethylborohydride (0.455 mL of a 1M in THF soln., 0.455 mmols) dropwise. The reaction mixture was stirred at 0°C for 1 hour then allowed warmed to room temperature overnight. The mixture was cooled to 0°C and quenched by the slow addition of methanol. Stirring was continued at 0°C for 15 min, after which time the reaction mixture was warmed to room temperature. The solvent was removed in vacuo. This yielded a yellow oil. The oil was purified by 10 flash chromatography on silica using ethyl acetate:hexane (1:1). This yielded Compound **XXIX** as a white solid (75 mg, 83 % yield). MS (ESI): m/e 424 (M+H)⁺; ¹H NMR (CDCl₃, 300 MHz): δ 1.69 (s, 3H), 1.99 (s, 3H), 2.86 (dd, 1H), 3.03 (dd, 1H), 4.37 (m, 3H), 4.93 (s, 2H), 6.43 (t, 1H), 6.95 (d, 15

1H), 7.03 (t, 1H), 7.18 (t, 1H), 7.44 (t, 1H), 7.79 (d, 1H),
7.99 (d, 1H), 8.69 (d, 1H).

Method B


To a stirred solution of ketone **XI** (Figure 3, R=H)
5 (212 mg, 0.41 mmols) in THF (6mL) at 0°C under nitrogen was
added methylmagnesium iodide (0.27 mL, 0.82 mmol) dropwise.
The reaction mixture stirred at 0°C for 1 hour then was
warmed to room temperature overnight. The mixture was then
heated to reflux for 24 h then cooled to room temperature.
10 The reaction was quenched with ammonium chloride (sat. aq.),
diluted with ethyl acetate (20 mL) and washed with water (3
x 10 mL). The organic phase was dried over sodium sulfate,
filtered, and concentrated *in vacuo* to a yellow residue.
The product was purified by flash chromatography on silica
15 gel using hexane:ethyl acetate (1:1) to give compound **XXIX**
as a tan solid (0.11g, 50% yield). The ¹H NMR and mass
spectrometry data were consistent with the product obtained
from Method A.

Other embodiments are within the following claims.

Claims

We claim:

1. A compound of the formula:

II

wherein:

R¹ and R² independently are:

hydrogen; lower alkyl; halogen; acyl; nitro;
sulfonic acid;
-CH=NR⁴, wherein R⁴ is guanidino, heterocyclic, or
-NR⁵R⁶, wherein R⁵ or R⁶ is hydrogen or lower
alkyl, and the other is hydrogen, lower alkyl,
acyl, aryl, heterocyclic, carbamoyl or lower
alkylaminocarbonyl;
-NR⁵R⁶;
-CH(SR⁷)₂, wherein R⁷ is lower alkyl or alkylene;
-(CH₂)_jR⁸, wherein j is 1-6, and R⁸ is
halogen; substituted aryl; unsubstituted aryl;
substituted heteroaryl; unsubstituted

heteroaryl; N₃;

-CO₂R⁹, wherein R⁹ is hydrogen, substituted lower alkyl, unsubstituted lower alkyl, substituted aryl, unsubstituted aryl, substituted heteroaryl, or unsubstituted heteroaryl;

-C(=O)NR¹⁰R¹¹, wherein R¹⁰ and R¹¹ independently are hydrogen, substituted lower alkyl, unsubstituted lower alkyl, substituted aryl, unsubstituted aryl, substituted heteroaryl, unsubstituted heteroaryl, substituted aralkyl, unsubstituted aralkyl, lower alkylaminocarbonyl, or lower alkoxy carbonyl, or R¹⁰ and R¹¹ are combined with a nitrogen atom to form a heterocyclic group;

-OR¹², wherein R¹² is hydrogen, substituted lower alkyl, unsubstituted lower alkyl, substituted aryl, unsubstituted aryl; or

-C(=O)R¹³, wherein R¹³ is hydrogen, NR¹⁰R¹¹, substituted lower alkyl, unsubstituted lower alkyl, substituted aryl, unsubstituted aryl, substituted heteroaryl, unsubstituted heteroaryl, substituted aralkyl, or unsubstituted aralkyl;

-NR¹⁰R¹¹;

-C(=O)R¹⁴, wherein R¹⁴ is hydrogen, lower alkyl, substituted aryl, unsubstituted aryl, substituted heteroaryl, or unsubstituted heteroaryl;

-S(=O)_rR¹⁵, wherein r is 0 to 2, and R¹⁵ is hydrogen, substituted lower alkyl, unsubstituted lower alkyl, substituted aryl, unsubstituted aryl, substituted heteroaryl, unsubstituted heteroaryl, substituted aralkyl, unsubstituted aralkyl, thiazolinyl, (CH₂)_aCO₂R¹⁶, wherein a is 1 or 2, and R¹⁶ is hydrogen or lower alkyl, or -CH₂)_aC(=O)NR¹⁰R¹¹;

-OR¹⁷, wherein R¹⁷ is hydrogen, lower alkyl, or -C(=O)R¹⁸, wherein R¹⁸ is substituted lower alkyl, unsubstituted lower alkyl, substituted aryl, or unsubstituted aryl;

-C(=O)(CH₂)_jR¹⁹, wherein R¹⁹ is hydrogen, halogen, NR¹⁰R¹¹, N₃, SR¹⁵, or OR²⁰, wherein R²⁰ is hydrogen, substituted lower alkyl, unsubstituted lower alkyl, or C(=O)R¹⁴;

-CH(OH)(CH₂)_jR¹⁹;

-(CH₂)_dCHR²¹CO₂R^{16A}, wherein d is 0-5, and R²¹ is hydrogen, CONR¹⁰R¹¹, or CO₂R^{16A}, wherein R^{16A} is the same as R¹⁶;

-(CH₂)_dCHR²¹CONR¹⁰R¹¹;

-CH=CH(CH₂)_mR²², wherein m is 0-4, and R²² is

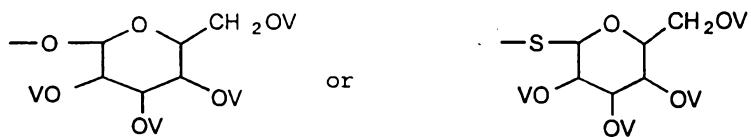
hydrogen, lower alkyl, CO_2R^9 , substituted aryl, unsubstituted aryl, substituted heteroaryl, unsubstituted heteroaryl, OR^{12} , or $\text{NR}^{10}\text{R}^{11}$;

$-\text{CH}=\text{C}(\text{CO}_2\text{R}^{16\text{A}})_2$;

$-\text{C}\equiv\text{C}(\text{CH}_2)_m\text{R}^{22}$;

$-\text{SO}_2\text{NR}^{23}\text{R}^{24}$, wherein R^{23} and R^{24} independently are hydrogen, lower alkyl, or groups that form a heterocycle with the adjacent nitrogen atoms;

$-\text{OCO}_2\text{R}^{13\text{A}}$, wherein $\text{R}^{13\text{A}}$ is the same as R^{13} ; or


$-\text{OC}(\text{=O})\text{NR}^{10}\text{R}^{11}$;

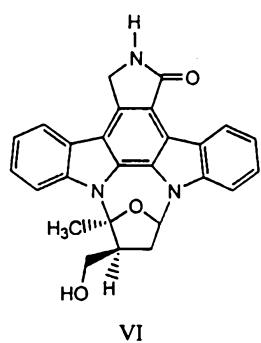
R^3 is hydrogen; lower alkyl; carbamoyl; amino; tetrahydropyranyl; hydroxyl; $\text{C}(\text{=O})\text{H}$; aralkyl; lower alkanoyl; or $\text{CH}_2\text{CH}_2\text{R}^{25}$, wherein R^{25} is halogen, amino, di-lower alkylamino, hydroxyl, or hydroxysubstituted lower alkylamino;

X is hydrogen; formyl; carboxyl; lower alkoxy carbonyl; lower alkylhydrazinocarbonyl; $-\text{CN}$; lower alkyl; $-\text{C}(\text{=O})\text{NR}^{26}\text{R}^{27}$, wherein R^{26} and R^{27} independently are hydrogen, unsubstituted lower alkyl, or unsubstituted aryl; or R^{26} and R^{27} are combined with a nitrogen atom to form a heterocyclic group;

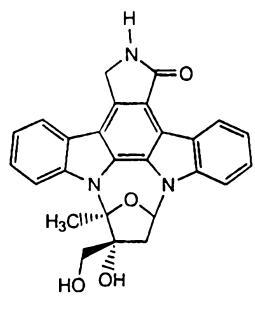
$-\text{CH}(\text{R}^{34})\text{W}$, wherein R^{34} is hydrogen or lower alkyl, and W is $-\text{N}=\text{CHN}(\text{alkyl})_2$; guanidino; N_3 ; $\text{NR}^{28}\text{R}^{29}$, wherein R^{28} or R^{29} is hydrogen or lower alkyl, and the other is hydrogen, allyl, alkanoyl, aryloxycarbonyl, unsubstituted alkyl, or the

residue of an α -amino acid in which the hydroxy group of the carboxyl group is excluded; $-\text{CO}_2\text{R}^9$; $-\text{C}(=\text{O})\text{NR}^{10}\text{R}^{11}$; $-\text{S}(=\text{O})_x\text{R}^{30}$, wherein R^{30} is substituted or unsubstituted lower alkyl, aryl, or heteroaryl; or $-\text{OR}^{31}$, wherein R^{31} is hydrogen, substituted or unsubstituted alkyl, or substituted or unsubstituted alkanoyl; $-\text{CH}=\text{N}-\text{R}^{32}$, wherein R^{32} is hydroxyl, lower alkoxy, amino, guanidino, ureido, imidazolylamino, carbamoylamino, or $\text{NR}^{26A}\text{R}^{27A}$ (wherein R^{26A} is the same as R^{26} and R^{27A} is the same as R^{27}); or $-\text{CH}_2\text{Q}$ wherein Q is a sugar residue represented by

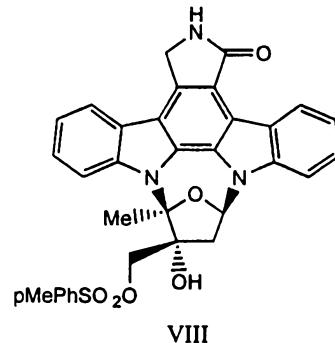
wherein V represents hydrogen, methyl, ethyl, benzyl, acetyl, or trifluoroacetyl;

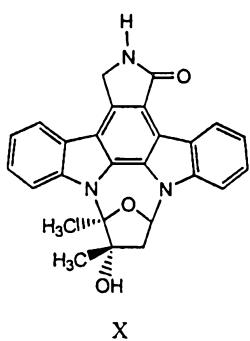

Y is hydrogen; $-\text{OH}$; $-\text{OC}(=\text{O})\text{R}^{33}$, wherein R^{33} is alkyl, aryl, or amino; $-\text{OCH}_2\text{O}$ -alkyl; $-\text{O}$ -alkyl; aralkyloxy; or X and Y are combined as $-\text{X}-\text{Y}-$ to form, $-\text{CH}_2\text{OCO}_2-$ or $-\text{CH}_2\text{N}(\text{R}^{16B})\text{CO}_2-$ (wherein R^{16B} is the same as R^{16}); A^1 and A^2 are hydrogen, or both are combined to represent O ; or B^1 and B^2 are hydrogen, or both are combined to represent O ; or a pharmaceutically acceptable salt thereof; with the proviso that at least one of A^1, A^2 or B^1, B^2 represents O ; and with the further proviso that both X and Y are not simultaneously hydrogen.

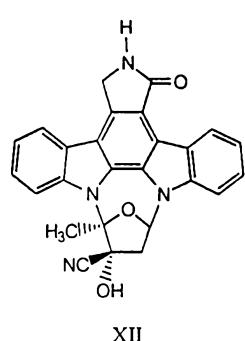
2. The compound of claim 1, wherein X is
-C(=O)NR²⁶R²⁷, carboxyl, lower alkoxy carbonyl, formyl, lower
alkyl, -CH₂OR³¹, -CH₂NR²⁸R²⁹, or -CH₂S(O)_rR³⁰.

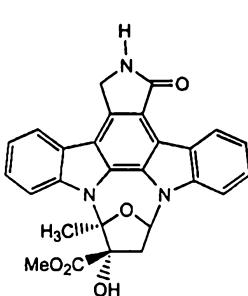

3. The compound of claim 1, wherein R¹ and R² are H.

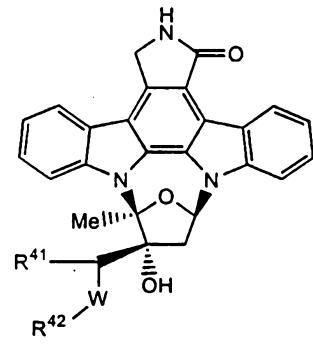
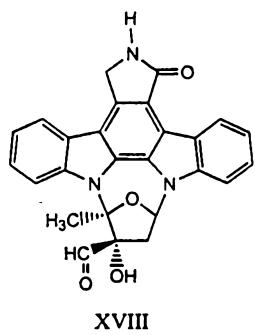
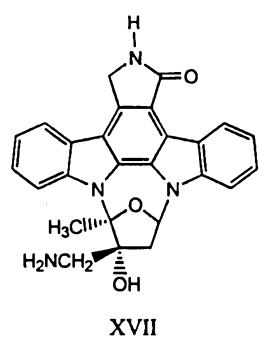
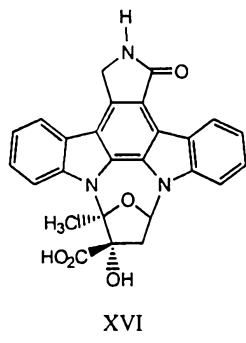
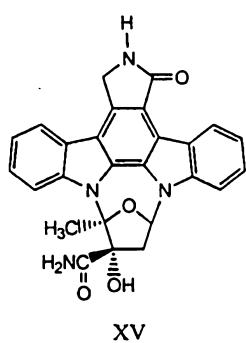
4. The compound of claim 1, wherein R³ is hydrogen
or a protecting group.

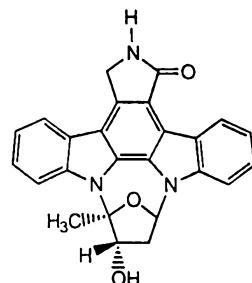
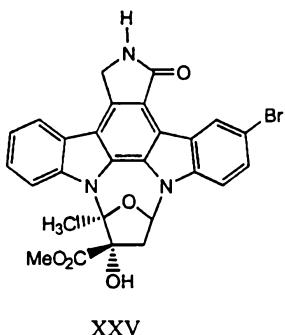

5. The compound of claim 1, wherein the compound is selected from the group consisting of (Compounds VI, VII, VIII, X, XII, XIV, XV, XVI, XVII, XVIII, XIX, XXV, and XXVII) :


VI


VII


VIII






X



XII

XIV

$W = \text{CH}_2, \text{O}, \text{S}, \text{NH}, \text{or } R^{42}W = \text{H}$
 $R^{41} = \text{H or lower alkyl}$
 $R^{42} = \text{lower alkyl}$

6. A pharmaceutical composition comprising a compound according to claim 1.

7. A method for inhibiting the activity of a tyrosine kinase, comprising contacting the tyrosine kinase with a compound of claim 1.

8. The method of claim 7, wherein the tyrosine kinase is protein kinase C.

9. The method of claim 7, wherein the tyrosine kinase is *trkA*.

10. A method for inhibiting the phosphorylation of a tyrosine kinase by a second kinase, comprising contacting the second kinase with a compound of claim 1.

11. A method for enhancing the function of a cholinergic neuron, comprising contacting the cholinergic neuron with a compound of claim 1.

12. A method for enhancing the survival of a cholinergic neuron, comprising contacting the cholinergic neuron with a compound of claim 1.