(54) 发明名称
燃料流路的吹扫方法、执行该方法的吹扫装置，具备该装置的燃气涡轮机设备

(57) 摘要
仅向喷嘴供给液体燃料的液体燃料供给状态(Mo)时，执行向喷嘴的液体燃料流路供给水的水供给工序(S1)；仅向喷嘴供给气态燃料的气态燃料供给状态(Mg)时，执行向喷嘴的液体燃料流路供给水的水分除后水吹扫工序(S3)；从液体燃料供给状态(Mo)至气态燃料供给状态(Mg)的转换状态即燃料转换状态(Me)时，执行向喷嘴的液体燃料流路供给水的水分除中水吹扫工序(S2)。变换中水吹扫工序(S2)中供给的水的第二流量(w2)少于向供给工序(S1)中供给的水的第一流量(w1)。变换后水吹扫工序(S3)中，供给暂时多于第二流量(w2)的第三流量(w3)的水。
1. 一种燃料流路的吹扫方法，所述方法为下述燃烧器中的燃料流路的吹扫方法，所述燃烧器具有喷嘴，所述喷嘴选择性喷射液体燃料和气体燃料，所述喷嘴上形成有：液体燃料流路，所述液体燃料流路流通所述液体燃料并在喷嘴端部开口；和气体燃料流路，所述气体燃料流路流通所述气体燃料并在所述喷嘴端部开口。

所述燃料流路的吹扫方法执行以下工序：水供给工序，所述水供给工序在液体燃料供给状态即仅将所述液体燃料和所述气体燃料中的所述液体燃料供给至所述喷嘴时，将水供给至所述液体燃料流路；

冷却水中水吹扫工序，所述冷却中水吹扫工序从所述液体燃料供给状态开始，在燃料切换状态即供给至所述喷嘴的所述液体燃料流路的所述液体燃料减少，而开始向所述喷嘴的所述气体燃料流路供给所述气体燃料，且向所述气体燃料流路供给的所述气体燃料交变的状态下，向所述液体燃料流路供给水；

冷却后水吹扫工序，所述冷却后水吹扫工序在不再向所述液体燃料流路供给所述液体燃料，所述燃料切换状态结束，并开始仅向所述喷嘴供给所述液体燃料和所述气体燃料中的所述气体燃料后，向所述液体燃料流路供给水；

所述冷却中水吹扫工序中，向所述液体燃料流路供给第二流量的水，所述第二流量的水比所述水供给工序中向所述液体燃料流路供给的水的流量即第一流量的水要少；所述切换后水吹扫工序中，向所述液体燃料流路供给第三流量的水，所述第三流量的水至少暂时比所述第二流量的水要多。

2. 根据权利要求1所述的燃料流路的吹扫方法，
 其中，所述第三流量少于所述第一流量。

3. 根据权利要求1或2所述的燃料流路的吹扫方法，
 其中，所述切换后水吹扫工序包括：

 水置换工序，所述水置换工序从所述冷却中水吹扫工序开始，连续将所述第二流量的水供给至所述液体燃料流路；

 清洗工序，所述清洗工序在所述水置换工序后，将所述第三流量的水供给至所述液体燃料流路；

4. 根据权利要求3所述的燃料流路的吹扫方法，
 其中，所述切换后水吹扫工序包括间隙吹扫工序，所述间隙吹扫工序在所述清洗工序后，将水间歇性供给至所述液体燃料流路；

 所述间隙吹扫工序中，将所述第三流量的水供给至所述液体燃料流路。

5. 根据权利要求1～4中任一项所述的燃料流路的吹扫方法，
 其中，所述水供给工序中，为了在成为所述燃料切换状态时使供给至所述液体燃料流路的水的流量变为所述第二流量，在作为所述燃料切换状态前，逐渐减少供给至所述液体燃料流路的水流量。

6. 根据权利要求1～5中任一项所述的燃料流路的吹扫方法，
 其中，在所述切换后水吹扫工序结束后，执行将空气供给至所述液体燃料流路的空气吹扫工序，

 所述空气吹扫工序包括：

 低气压吹扫工序，所述低气压吹扫工序将第一压力的空气供给至所述液体燃料流路；
权利要求书

高压吹扫工序，所述高压吹扫工序在所述低压吹扫工序后，将高于所述第一压力的第二压力的空气供给至所述液体燃料流路。

7. 根据权利要求1～6中任一项所述的燃料流路的吹扫方法，
其中，所述燃烧器除了作为所述喷嘴的第一喷嘴，还具有第二喷嘴，所述第二喷嘴上形成有：液体燃料流路，所述液体燃料流路流通所述液体燃料并在喷嘴尖端部开口；和气体燃料流路，所述气体燃料流路流通所述气体燃料并在所述喷嘴尖端部开口，

从液体燃料供给状即仅将所述液体燃料和所述气体燃料中的所述液体燃料供给至所述第二喷嘴的状态开始，在所述液体燃料不再供给至所述第二喷嘴且仅将所述气体燃料供给至所述第二喷嘴时，并且针对所述第一喷嘴执行所述切换后水吹扫工序期间，执行空气吹扫工序，所述空气吹扫工序将空气供给至所述第二喷嘴的所述液体燃料流路。

8. 根据权利要求3或4所述的燃料流路的吹扫方法，
其中，所述燃烧器除了作为所述喷嘴的第一喷嘴，还具有第二喷嘴，所述第二喷嘴上形成有：液体燃料流路，所述液体燃料流路流通所述液体燃料并在喷嘴尖端部开口；和气体燃料流路，所述气体燃料流路流通所述气体燃料并在所述喷嘴尖端部开口，

从液体燃料供给状即仅将所述液体燃料和所述气体燃料中的所述液体燃料供给至所述第二喷嘴的状态开始，在所述液体燃料不再供给至所述第二喷嘴且仅将所述气体燃料供给至所述第二喷嘴时，并且针对所述第一喷嘴执行所述切换后水吹扫工序期间，执行空气吹扫工序，所述空气吹扫工序将空气供给至所述第二喷嘴的所述液体燃料流路，

并结合针对所述第一喷嘴的所述清洗工序的开始时间，开始针对所述第二喷嘴的所述吹扫空气吹扫工序。

9. 根据权利要求7或8所述的燃料流路的吹扫方法，
其中，针对所述第二喷嘴的所述吹扫空气吹扫工序包括：
高压吹扫工序，所述高压吹扫工序将第三压力的空气供给至所述第二喷嘴的所述液体燃料流路；

高压吹扫工序，所述高压吹扫工序在针对所述第二喷嘴的所述低压吹扫工序后，将高于所述第三压力的第四压力的空气供给至所述第二喷嘴的所述液体燃料流路。

10. 根据权利要求7～9中任一项所述的燃料流路的吹扫方法，
其中，所述第二喷嘴从所述第二喷嘴中喷射的燃料扩散燃烧，

在针对所述第二喷嘴的所述空气吹扫工序即第一空气吹扫工序后，执行第二空气吹工序，所述第二空气吹扫工序将低于所述第一空气吹扫工序中供给至所述第二喷嘴的所述液体燃料流路的空气压力的空气供给至所述第二喷嘴的所述液体燃料流路。

11. 一种燃料流路的吹扫装置，所述吹扫装置为下述燃烧器中的燃料流路的吹扫装置，所述燃烧器具有喷嘴，所述喷嘴选择性喷射液体燃料和气体燃料，所述喷嘴上形成有：液体燃料流路，所述液体燃料流路流通所述液体燃料并在喷嘴尖端部开口；和气体燃料流路，所述气体燃料流路流通所述气体燃料并在所述喷嘴尖端部开口，

所述燃料流路的吹扫装置具有：水管线，所述水管线向所述液体燃料流路输送水；
水调节阀，所述水调节阀调节流通所述水管线的水的流量；
控制装置，所述控制装置控制所述水调节阀的开度，
所述控制装置具有：燃料供给状态识别部，所述燃料供给状态识别部识别面向所述喷
所述燃料供给状态识别部识别所述液体燃料供给状态，所述液体燃料供给状态仅将所述液体燃料和所述气体燃料中的所述液体燃料供给至所述喷嘴；气体燃料供给状态，所述气体燃料供给状态仅将所述液体燃料和所述气体燃料中的所述气体燃料供给至所述喷嘴；燃料切换状态，所述燃料切换状态为从所述液体燃料供给状态变为所述气体燃料供给状态的转变状态，

所述水吹扫控制部在所述燃料供给状态识别部识别为所述液体燃料供给状态时，向所述水调节阀指示第一流量的水供给至所述液体燃料流路的切换前开度；在所述燃料供给状态识别部识别为所述燃料切换状态时，向所述水调节阀指示将第二流量的水供给至所述液体燃料流路的切换中开度；在所述燃料供给状态识别部识别为变为所述气体燃料供给状态时，向所述水调节阀指示将水供给至所述液体燃料流路的切换后开度。

所述水吹扫控制部使所述切换中开度小于所述切换前开度，以使所述第二流量少于所述第一流量，并规定所述切换后开度，以在所述气体燃料供给状态下，使至少暂时性多于所述第二流量的第三流量的水供给至所述液体燃料流路。

12. 根据权利要求11所述的燃料流路的吹扫装置，
其中，所述水吹扫控制部规定所述第三流量少于所述第一流量的所述切换后开度。
13. 根据权利要求11或12所述的燃料流路的吹扫装置，
其中，所述水吹扫控制部在所述燃料供给状态识别部识别为变为所述气体燃料供给状态时，作为所述切换前开度，向所述水调节阀指示与所述切换中开度相同开度的水调节开度，以便所述燃料切换状态开始连续将所述第二流量的水供给至所述液体燃料流路，

向所述水调节阀指示所述水调节开度后，作为所述切换后开度，向所述水调节阀指示清洗开度，以使所述第三流量的水供给至所述液体燃料流路。

14. 根据权利要求13所述的燃料流路的吹扫装置，
其中，所述水吹扫控制部向所述水调节阀指示所述清洗开度后，向所述水调节阀指示间歇吹扫开度作为所述切换后开度，所述间歇吹扫开度间歇性地向所述液体燃料流路供给所述第三流量的水。

15. 根据权利要求11～14中任一项所述的燃料流路的吹扫装置，
其中，所述燃料供给状态识别部提前识别从所述液体燃料供给状态切换至所述燃料切换状态的时间，

所述水吹扫控制部为了在变为所述燃料切换状态时供给至所述液体燃料流路的水的流量变为所述第二流量，在所述燃料供给状态识别部提前识别所述时间后，向所述水调节阀指示所述切换前开度，所述所述切换前开度使供给至所述液体燃料流路的水的流量逐渐减少。

16. 根据权利要求11～15中任一项所述的燃料流路的吹扫装置，
具有空气管线，所述空气管线向所述液体燃料流路输送空气；
和空气调节阀，所述空气调节阀调节通过所述空气管线的空气的压力，
所述控制装置具有空气吹扫控制部，所述空气吹扫控制部控制所述空气调节阀的开度，
所述水吹扫控制部对所述水调节阀指示所述切断后开度后，指示阀关闭。
所述空气吹扫控制部在所述气体燃料供给状态下，所述水调节阅为关闭状态时，向所述
空气调节阀指示将所述空气供给至所述液体燃料流路的空气吹扫开度。
17. 根据权利要求16所述的燃料流路的吹扫装置，
其中，所述空气吹扫控制部向所述空气调节阀指示低压吹扫开度作为所述空气吹扫开度，所述低压吹扫开度为第一压力的空气供给至所述液体燃料流路，
指示所述低压吹扫开度后，向所述空气调节阀指示高压吹扫开度作为所述空气吹扫开度，所述高压吹扫开度将高于所述第一压力的第二压力的空气供给至所述液体燃料流路。
18. 根据权利要求16或17所述的燃料流路的吹扫装置，
其中，所述燃烧器除了作为所述喷嘴的第一喷嘴，还具有第二喷嘴，所述第二喷嘴上形成有：液体燃料流路，所述液体燃料流路通过所述气体燃料并在喷嘴尖端部开口；所述气体燃料流路，所述气体燃料流路通过所述气体燃料并在所述喷嘴尖端部开口。
所述燃料流路的吹扫装置具有：第一空气管路，所述第一空气管路为将空气输送至所述第一喷嘴的所述液体燃料流路的所述空气管路；第二空气管路，所述第二空气管路将空气输送至所述第二喷嘴的所述液体燃料流路；
第二空气调节阀，所述第二空气调节阀调节流通过所述第二空气管路的空气的压力，
所述燃料供给状态识别部识别气体燃料供给状态，所述气体燃料供给状态仅将所述液体燃料和所述气体燃料中的所述气体燃料供给至所述第二喷嘴，
所述空气吹扫控制部在所述第一喷嘴和所述第二喷嘴均为所述气体燃料供给状态、所述水吹扫控制部正在指示所述切断后开度时，向所述第二空气调节阀指示将空气供给至所述第二喷嘴的所述液体燃料流路的空气吹扫开度。
19. 根据权利要求18所述的燃料流路的吹扫装置，
其中，所述第二喷嘴使从所述第二喷嘴中喷射的燃料扩散燃烧，
所述空气吹扫控制部向所述第二空气调节阀指示低压吹扫开度作为所述第二空气调节阀的所述空气吹扫开度，所述低压吹扫开度将第三压力的空气供给至所述第二喷嘴的所述液体燃料流路，
向所述第二空气调节阀指示所述低压吹扫开度后，向所述第二空气调节阀指示高压吹扫开度作为所述第二空气调节阀的所述空气吹扫开度，所述高压吹扫开度将高于所述第三压力的第四压力的空气供给至所述第二喷嘴的液体燃料流路，
向所述第二空气调节阀指示作为所述空气吹扫开度的第一空气吹扫开度后，向所述空气吹扫开度，所述第二空气吹扫开度将低于所述第一空气吹扫开度中供给至所述第二喷嘴的所述液体燃料流路的空气压力的空气供给至所述第二喷嘴的所述液体燃料流路。
20. 一种燃气涡轮机设备，具有：根据权利要求11～19中任一项所述的燃料流路的吹扫
装置：
所述燃烧器；
和涡轮机，所述涡轮机利用所述燃烧器生成的燃烧气体进行驱动。
燃料流路的吹扫方法，执行该方法的吹扫装置，具备该装置的
燃气涡轮机设备

技术领域
【0001】本发明涉及一种具有选择性喷射液体燃料和气体燃料的喷嘴的燃烧器中燃料流路的吹扫方法，执行该方法的吹扫装置，具备该装置的燃气涡轮机设备。本发明依据2014年6月3日向日本提出申请的日本专利申请2014-114737号，主张优先权，并将其内容引用在此作为参考。

背景技术
【0002】燃气涡轮机具有：压缩机，其压缩空气；燃烧器，其在由压缩机压缩的空气中使燃料燃烧并生成燃烧气体；以及涡轮机，其利用来自燃烧器的燃烧气体进行驱动。
【0003】作为燃烧器，某些燃烧器具有双方式的喷嘴，该喷嘴选择性喷射轻油等燃料和天然气等气体燃料。具有这种双方式喷嘴的燃烧器中，将使用燃料从油燃料切换为气体燃料后，如果在喷嘴的油燃料流路中残留油燃料，则该油燃料在高温环境下可能会焦化。如果油燃料在油燃料流路内焦化，则油燃料流路变窄，在该油燃料流路中难以流通目标流量的油燃料。
【0004】因此，根据以下专利文献1中记载的技术，完成从油燃料向气体燃料的切换后，间歇性地多次向油燃料流路供给水，之后，向该油燃料流路供给空气，去除油燃料流路中残留的油燃料，从而抑制油燃料流路内的油燃料焦化。
【0005】现有技术文献
【0006】专利文献
【0007】专利文献1：日本专利特开2013-231415号公报

发明内容
【0008】发明要解决的问题
【0009】上述专利文献1记载的技术中，完成从油燃料向气体燃料的切换后，向油燃料流路供给水。因此，上述专利文献1记载的技术中存在以下问题：从油燃料切换为气体燃料的过程中，在油燃料流路中流通的油燃料流量减少，流通油燃料流路的油燃料流速下降时，油燃料可能会焦化。
【0010】因此，本发明的目的在于提供一种可以抑制液体燃料焦化的技术。
【0011】技术方案
【0012】作为用于解决上述问题的发明所涉及的一方式的燃料流路的吹扫方法，
【0013】其为下述燃烧器中的燃料流路的吹扫方法，所述燃烧器具有喷嘴，其选择性喷射液体燃料和气体燃料，所述喷嘴上形成有：液体燃料流路，其流通所述液体燃料并在喷嘴尖端部开口；以及气体燃料流路，其流通所述气体燃料并在所述喷嘴尖端部开口，所述燃料流路的吹扫方法执行以下工序：水供给工序，其在液体燃料供给状态即仅将所述液体燃料和所述气体燃料中的所述液体燃料供给至所述喷嘴时，将水供给至所述液体燃料流路；切
中水吹扫工序，其从所述液体燃料供给状态开始，在燃料切换状态下供给至所述喷嘴的所述液体燃料的流量减少，而开始向所述喷嘴的所述气体燃料流程供给所述气体燃料，并且向所述气体燃料流程供给的所述气体燃料变多的状态下，向所述液体燃料流程供给水；切换后水吹扫工序，其在不再向所述液体燃料流程供给所述液体燃料，所述燃料切换状态结束，并开始仅向所述喷嘴供给所述液体燃料和所述气体燃料中的所述气体燃料后，向所述液体燃料流程供给水，所述切换中水吹扫工序中，向所述液体燃料流程供给第二流量的水，所述第二流量的水比所述水供给工序中向所述液体燃料流程供给的水的流量即第一流量的流量少；所述切换后水吹扫工序中，向所述液体燃料流程供给第三流量的水，该第三流量的水至少暂时比所述第二流量的水多。

根据该吹扫方法，即使处于燃料切换状态中，也向喷嘴的液体燃料流程供给水，因此，在燃料切换状态中可抑制液体燃料流程内的液体燃料的焦化。此外，燃料切换状态中，液体燃料和气体燃料的燃烧容易变得不稳定。对此，根据该吹扫方法，通过将较少流量的第二流量的水供给至喷嘴的液体燃烧流程，在确保燃料切换状态下的燃烧稳定性的同时，抑制燃料切换状态下的焦化。此外，根据该吹扫方法，在切换后水吹扫工序中，将至少暂时性多于第二流量的第三流量的水供给至液体燃烧流程，因此，可提高切换后水吹扫工序的清洗效果。

此处，所述燃料流程的吹扫方法中，所述第三流量也可少于所述第一流量。

此外，以上任一所述燃料流程的吹扫方法中，所述切换后水吹扫工序也包括，水置换工序，其从所述切换中水吹扫工序开始，连续将所述第二流量的水供给至所述液体燃料流程；清洗工序，其在所述水置换工序后，将所述第三流量的水供给至所述液体燃料流程。

根据该吹扫方法，在切换后水吹扫工序的最初执行水置换工序，该水置换工序将较少流量的第二流量的水供给至液体燃料流程，因此，可以避免液体燃料流程中堆积的液体燃料大量喷出至燃烧筒等燃烧器的筒内，并确保燃烧稳定性。此外，在水置换工序后执行清洗工序，该清洗工序将多于第二流量的第三流量的水供给至液体燃料流程，因此，可促进液体燃料流程中残留的液体燃料的去除。

此外，以上任一所述燃料流程的吹扫方法中，所述切换后水吹扫工序也可包括间歇吹扫工序，该间歇吹扫工序将水间歇性供给至所述液体燃料流程。

执行所述清洗工序的所述燃料流程的吹扫方法中，所述切换后水吹扫工序也可包括间歇吹扫工序，该间歇吹扫工序在所述清洗工序后，将水间歇性供给至所述液体燃料流程。

执行所述间歇吹扫工序的任一所述燃料流程的吹扫方法中，所述间歇吹扫工序中，也可将所述第三流量的水供给至所述液体燃料流程。

根据执行间歇吹扫工序的吹扫方法，例如，可去除液体燃料流程的角落等中残留的液体。

以上任一所述燃料流程的吹扫方法中，所述水供给工序中，为了在变为所述燃料切换状态时使供给至所述液体燃料流程的水的流量变为所述第二流量，也可在变为所述燃料切换状态前，逐渐减少供给至所述液体燃料流程的水流量。

以上任一所述燃料流程的吹扫方法中，所述切换后水吹扫工序结束后，也可执行
空气吹扫工序，该空气吹扫工序将空气供给至所述液体燃料流路。
【0024】根据该吹扫方法，在切换后水吹扫工序后执行空气吹扫工序，因此，可避免液体燃料流路中残留的水以水滴的形式高温滴落在燃烧筒等燃烧器的筒内。

【0025】执行所述空气吹扫工序的所述燃料流路的吹扫方法中，所述空气吹扫工序也可包括：低压吹扫工序，其将第一压力的空气供给至所述液体燃料流路；高压吹扫工序，其在所述低压吹扫工序后，将高于所述第一压力的第二压力的空气供给至所述液体燃料流路。

【0026】根据该吹扫方法，在空气吹扫工序最初执行低压吹扫工序，该低压吹扫工序将低压的第一压力的空气供给至液体燃料流路，因此，可以避免液体燃料流路中堆积的水大量喷出至燃烧筒等燃烧器的筒内，并可确保燃烧稳定性。此外，在低压吹扫工序后执行高压吹扫工序，该高压吹扫工序将高于第一压力的第二压力的空气供给至液体燃料流路，因此，在低压吹扫工序后，可有效地将液体燃料流路中残留的水喷射至燃烧器的筒内。

【0027】以上任一所述燃料流路的吹扫方法中，所述燃烧器除了作为所述喷嘴的第一喷嘴，还具有第二喷嘴，所述第二喷嘴上形成有：液体燃料流路，其流通所述液体燃料并在所述喷嘴尖端部开口；以及气体燃料流路，其流通所述气体燃料并在所述喷嘴尖端部开口，从液体燃料供给状态即仅将所述液体燃料和所述气体燃料的所述液体燃料供给至所述第二喷嘴的状态开始，在所述液体燃料供给至所述第二喷嘴的状态中，仅将所述液体燃料供给至所述第二喷嘴，使所述液体燃料在所述液体燃料流路的所述喷嘴中的喷射，并抑制该液体燃料的喷射。

【0028】根据该吹扫方法，在针对第一喷嘴的切换后水吹扫工序结束前即切换后水吹扫工序期间，执行针对第二喷嘴的空气吹扫工序，因此，可抑制第二喷嘴的液体燃料流路内的液体燃料的焦炭化。

【0029】执行针对所述第二喷嘴的所述空气吹扫工序的所述燃料流路的吹扫方法中，针对所述第一喷嘴的所述切换后水吹扫工序开始后，经过规定时间后，也可执行针对所述第二喷嘴的所述空气吹扫工序。

【0030】执行所述清洗工序的任一所述燃料流路的吹扫方法中，所述燃烧器除了作为所述喷嘴的第一喷嘴，还具有第二喷嘴，所述第二喷嘴上形成有：液体燃料流路，其流通所述液体燃料并在所述喷嘴尖端部开口；以及气体燃料流路，其流通所述气体燃料并在所述喷嘴尖端部开口，从液体燃料供给状态即仅将所述液体燃料和所述气体燃料的所述液体燃料供给至所述第二喷嘴的状态开始，在所述液体燃料供给至所述第二喷嘴的状态中，仅将所述液体燃料供给至所述第二喷嘴，并且针对所述第一喷嘴执行所述切换后水吹扫工序期间，也可执行空气吹扫工序，该空气吹扫工序将空气供给至所述第二喷嘴的所述液体燃料流路，并结合针对所述第一喷嘴的所述清洗工序的开始时间，开始针对所述第二喷嘴的所述空气吹扫工序。

【0031】针对第一喷嘴的水置换工序，从第一喷嘴喷射至燃烧筒等燃烧器的筒内的液体燃料的流量较多。该水置换工序中，如果从第二喷嘴也喷射液体燃料，则喷射至燃烧器的筒内的液体燃料的流量变得非常多，在燃烧量增加的基础上，燃烧稳定性受到破坏。因此，根据该吹扫方法，结合针对第一喷嘴的水置换工序的结束时间，换而言之，结合针对第一喷嘴的清洗工序的开始时间，开始针对该第二喷嘴的空气吹扫工序。

【0032】此外，执行针对第二喷嘴的空气吹扫工序的以上任一所述燃料流路的吹扫方法
中，针对所述第二喷嘴的所述空气吹扫工序也可包括：低压吹扫工序，其将第三压力的空气供给至所述第二喷嘴的所述液体燃料流路；高压吹扫工序，其在针对所述第二喷嘴的所述低压吹扫工序后，将高于所述第三压力的第四压力的空气供给至所述第二喷嘴的所述液体燃料流路。

[0033] 根据该吹扫方法，在针对第二喷嘴的空气吹扫工序中，该低压吹扫工序将低压的第三压力的空气供给至液体燃料流路，因此，可以避免液体燃料流路中堆积的液体燃料扩散至燃烧筒等燃烧器的筒内，并可确保燃烧稳定性。此外，在低压吹扫工序后执行高压吹扫工序，该高压吹扫工序将高于第三压力的第四压力的空气供给至液体燃料流路，因此，在低压吹扫工序后，可有效地去除液体燃料流路中残留的液体燃料。

[0034] 此外，执行针对第二喷嘴的空气吹扫工序上的任一所述燃料流路的吹扫方法中，所述第二喷嘴使从所述第二喷嘴中喷射的燃料扩散燃烧，在针对所述第二喷嘴的所述空气吹扫工序即第一空气吹扫工序后，也可执行第二空气吹扫工序，该第二空气吹扫工序将低于所述第一空气吹扫工序中供给至所述第二喷嘴的所述液体燃料流路的空气压力的空气供给至所述第二喷嘴的所述液体燃料流路。

[0035] 根据该吹扫方法，可以防止第二喷嘴的液体燃料流路内的火焰倒流。

[0036] 作为用于解决上述问题的发明所涉及的一方式的燃料流路的吹扫装置，

[0037] 其为下述燃烧器中的燃料流路的吹扫装置，所述燃烧器具有喷嘴，其选择性喷射液体燃料和气体燃料，所述喷嘴上形成有液体燃料流路，其流通所述液体燃料并在喷嘴尖端部开口；以及气体燃料流路，其流通所述气体燃料并在所述喷嘴尖端部开口，所述燃料流路的吹扫装置具有：水水管，其向所述液体燃料流路输送水；水调节阀，其调节所述所述水管的水量；控制装置，其控制所述水调节阀的开度，所述控制装置具有：燃料供给状态识别部，其识别面向所述喷嘴的燃料供给状态；水吹扫控制部，其根据通过所述燃料供给状态识别部识别的燃料供给状态，控制所述水调节阀的开度，所述燃料供给状态识别部识别：液体燃料供给状态，其仅将所述液体燃料和所述气体燃料中的所述液体燃料供给至所述喷嘴；气体燃料供给状态，其仅将所述液体燃料和所述气体燃料中的所述气体燃料供给至所述喷嘴；燃料切换状态，其为从所述液体燃料供给状态变为所述气体燃料供给状态的转变状态，所述水吹扫控制部在所述燃料供给状态识别部识别为所述液体燃料供给状态时，向所述水调节阀指示将第一流量的水供给至所述液体燃料流路的切换前开度；在所述燃料供给状态识别部识别为所述燃料切换状态时，向所述水调节阀指示将第一流量的水供给至所述液体燃料流路的切换中开度，在所述燃料供给状态识别部识别为所述燃料供给状态时，向所述水调节阀指示将水供给至所述液体燃料流路的切换后开度，所述水吹扫控制部根据所述液体燃料流路的切换中开度，以使所述第二流量少于所述第一流量，并规定所述切换后开度，以在所述气体燃料供给状态下，使至少暂时性多于所述第二流量的第三流量的水供给至所述液体燃料流路。

[0038] 根据该吹扫装置，即使处于燃料切换状态下，也向喷嘴的液体燃料流路供给水，因此，在燃料切换状态下可抑制液体燃料流路内的液体燃料的焦化。此外，燃料切换状态下，液体燃料和气体燃料的燃烧容易变得不稳定。对此，根据该吹扫装置，通过将较少流量的第二流量的水供给至喷嘴的液体燃料流路，在确保燃料切换状态下的燃烧稳定性的同时，抑制燃料切换状态下的焦化。此外，根据该吹扫装置，在气体燃料供给状态下，将至少暂时性
多于第二流量的第三流量的水供给至液体燃烧流路，因此，可提高气体燃料供给状态下的液体燃料流路的清洗效果。

【0039】 此处，所述燃料流路的吹扫装置中，所述水吹扫控制部也可规定所述第三流量少于所述第一流量的所述切换后开度。

【0040】 此外，以上任一所述燃料流路的吹扫装置中，所述水吹扫控制部也可以在所述燃料供给状态打孔部识别为变更为所述气体燃料供给状态时，作为所述切换后开度，向所述水调节阀指示所述切换后开度的所述水量增加开度，以从所述燃料切换状态开始连续将所述第二流量的水供给至所述液体燃料流路，向所述水调节阀指示所述水量增加开度后，作为所述切换后开度，向所述水调节阀指示清洗开度，以使所述第三流量的水供给至所述液体燃料流路。

【0041】 此外，以上任一所述燃料流路的吹扫装置中，所述水吹扫控制部也可向所述水调节阀指示间歇吹扫开度作为所述切换后开度，该间歇吹扫开度间歇性向所述液体燃料流路供给水。

【0042】 规定所述清洗开度的所述燃料流路的吹扫装置中，所述水吹扫控制部也可以向所述水调节阀指示所述清洗开度后，向所述水调节阀指示间歇吹扫开度作为所述切换后开度，该间歇吹扫开度间歇性向所述液体燃料流路供给水。

【0043】 规定所述清洗开度的以上任一所述燃料流路的吹扫装置中，所述水吹扫控制部也可向所述水调节阀指示所述间歇吹扫开度，该间歇吹扫开度向所述液体燃料流路供给的水的流量为所述第三流量。

【0044】 以上任一所述燃料流路的吹扫装置中，所述燃料供给状态打孔部提前识别所述液体燃料供给状态切换至所述燃料切换状态的时间，所述水吹扫控制部为了变更为所述燃料切换状态时使供给至所述液体燃料流路的水的流量变为所述第二流量，在所述燃料供给状态打孔部提前识别所述时间后，也可向所述水调节阀指示所述切换前开度，该所述切换前开度使供给至所述液体燃料流路的水的流量逐渐减少。

【0045】 以上任一所述燃料流路的吹扫装置中，具有：空气管线，其向所述液体燃料流路输送空气；以及空气调节阀，其调节输送所述空气管线的空气的压力，所述控制装置具有空气吹扫控制部，其控制所述空气调节阀的开度，所述水吹扫控制部对所述水调节阀指示所述切换后开度后，指示阀关闭，所述空气吹扫控制部在所述气体燃料供给状态下，所述水调节阀为关闭状态时，也可向所述空气调节阀指示将所述空气供给至所述液体燃料流路的空气吹扫开度。

【0046】 具有所述空气吹扫控制部的所述燃料流路的吹扫装置中，所述空气吹扫控制部向所述空气调节阀指示低压吹扫开度作为所述空气吹扫开度，所述低压吹扫开度将第一压力的空气供给至所述液体燃料流路，指示所述低压吹扫开度后，也可向所述空气调节阀指示高压吹扫开度作为所述空气吹扫开度，所述高压吹扫开度将高于所述第一压力的第二压力的空气供给至所述液体燃料流路。

【0047】 具有所述空气吹扫控制部的以上任一所述燃料流路的吹扫装置中，所述燃烧器除了作为所述喷嘴的第一喷嘴，还具有第二喷嘴，所述第二喷嘴上形成有：液体燃料流路，其流通所述液体燃料并在喷嘴尖端部开口；以及气体燃料流路，其流通所述气体燃料并在所述喷嘴尖端部开口，所述燃料流路的吹扫装置具有：第一空气管线，其为将空气输送至所述
第一喷嘴的所述液体燃料流路的所述空气供给;第二空气管线,其将空气输送至所述第二喷嘴的所述液体燃料流路;第二空气调节阀,其调节流通所述第二空气管线的空气的压力,所述燃料供给状态识别器识别气体燃料供给状态,该气体燃料供给状态仅将所述液体燃料和所述气体燃料中的所述气体燃料供给至所述第二喷嘴,所述空气吹扫控制部在所述第一喷嘴和所述第二喷嘴均为所述气体燃料供给状态、所述气体吹扫控制部正在指示所述切换后开度时,也可向所述第二空气调节阀指示将空气供给至所述第二喷嘴的所述液体燃料流路的空气吹扫开度。

[0045] 具有所述第二喷嘴的所述燃烧器的所述燃料流路的所述空气供给装置中,所述空气吹扫控制部对所述气体燃料供给切换后开度时,经过规定时间后,也可向所述第二空气调节阀指示所述第二空气调节阀的所述空气吹扫开度。

[0046] 具有所述第二喷嘴的所述燃烧器的所述燃料流路的所述空气吹扫装置中,所述空气吹扫控制部向所述第二空气调节阀指示低气压吹气开度作为所述第二空气调节阀的所述空气吹扫开度,所述低气压吹扫开度将第三压力的空气供给至所述第二喷嘴的所述液体燃料流路。向所述第二空气调节阀指示所述低气压吹气开度后,也可向所述第二空气调节阀指示高压吹气开度作为所述第二空气调节阀的所述空气吹扫开度,所述高压吹气开度将高于所述第二压力的第四压力的空气供给至所述第二喷嘴的所述液体燃料流路。

[0050] 具有所述第二喷嘴的所述燃烧器的所述燃料流路的所述空气供给装置中,所述第二喷嘴使从所述第二喷嘴中喷射的燃料扩散燃烧,所述空气吹扫控制部也可向所述第二空气调节阀指示作为所述空气吹扫开度的第一空气吹扫开度后,指示第二空气吹扫开度,该第二空气吹扫开度将高于所述第一空气吹扫开度中供给至所述第二喷嘴的所述液体燃料流路的空气压力的空气供给至所述第二喷嘴的所述液体燃料流路。

[0051] 作为用于解决上述问题的发明所涉及的一方式的燃气涡轮机设备,

[0052] 具有:以上任一所述燃料流路的所述空气供给装置;所述燃烧器;以及涡轮机,其利用所述燃烧器生成的燃烧气体进行驱动。

[0053] 有益效果

[0054] 根据本发明申请所涉及的方式,可在确保从液体燃料切换为气体燃料的切换过程中燃料稳定燃烧的同时,抑制液体燃料的焦化。

附图说明

[0055] 图1是本发明所涉及的一实施方式中的燃气涡轮机的主要部分缺口整体侧面图。

[0056] 图2是本发明所涉及的一实施方式中的燃料喷射器的剖面图。

[0057] 图3为表示本发明所涉及的一实施方式中的空气供给装置的结构的说明图。

[0058] 图4是表示本发明所涉及的一实施方式中的各装置的动作空间的时序图。

具体实施方式

[0059] 以下,参照附图详细说明本发明所涉及的燃气涡轮机设备的一实施方式。

[0060] 本实施方式的燃气涡轮机设备如图1所示,具有燃气涡轮机10,该燃气涡轮机10连接有图示的发电机。

[0061] 燃气涡轮机10具备:压缩机20,其压缩外部气体生成压缩空气;多个燃烧器40,其
使燃料在压缩空气中燃烧生成燃烧气体；以及，涡轮机30，其利用燃烧气体驱动。

【0062】压缩机20具有：压缩机转子21，其以旋转轴线Ar为中心旋转；以及，压缩机壳体25，其以可旋转方式覆盖压缩机转子21。涡轮机30具有：涡轮机转子31，其以旋转轴线Ar为中心旋转；以及，涡轮机壳体25，其以可旋转方式覆盖涡轮机转子31。在涡轮机壳体35的内侧与涡轮机转子31的外侧之间形成燃烧气体流路39，该燃烧气体流路39流通来自燃烧器40的燃烧气体。压缩机转子21和涡轮机转子31位于同一旋转轴线Ar上，并互相连结构成燃气涡轮机转子11。该燃气涡轮机转子11连结有所述发动机的发动机转子。压缩机壳体25和涡轮机壳体35互相连结构成燃气涡轮机壳体15。

【0063】多个燃烧器40以旋转轴线Ar为中心在周向 Oc 上等间隔排列，并固定在涡轮机壳体上。燃烧器40具有燃料燃烧的筒41，以及向该筒41内喷射燃料的燃料喷嘴器41。筒41两端开口，一个端口如插入燃料喷嘴器41的一部分，另一个端口连接涡轮机30的燃烧气体流路39。

【0064】燃料喷嘴器41如图2所示，具有：辅助燃烧器42，其配置在燃烧器轴线Ac上；多个主燃烧器52，其沿以燃烧器轴线Ac为中心的周向等间隔配置；以及喷嘴基台62，其固定在涡轮机壳体上。另外，下述为便于进行说明，将燃烧器轴线Ac延伸的方向作为燃烧器轴线方向，将该燃烧器轴线方向的一侧作为端面侧，另一侧作为端面侧。

【0065】辅助燃烧器42具有：辅助喷嘴(第二喷嘴)43，其在燃烧器轴线方向较长；筒状的辅助空气用筒48，其包围辅助喷嘴43的端面侧周。辅助空气用筒48的端面侧形成辅助锥筒，其随着朝向端面侧逐渐扩径。辅助喷嘴43的端面侧在贯通喷嘴基台62的状态下固定至喷嘴基台62。辅助喷嘴43上形成有：气体燃料流路44，其流通天然气等气体燃料Fgp并在喷嘴端部开口45；液体燃料流路46，其流通轻油等液体燃料Fop并在喷嘴端部开口47。辅助喷嘴43的端面侧连结有：气体燃料接收管65，其与气体燃料流路44连通；液体燃料接收管66，其与液体燃料流路46连通。气体燃料接收管65连接后述的辅助气体燃料分支管线278，液体燃料接收管66连接后述的辅助液体燃料分支管线258。

【0066】主燃烧器52具有：主喷嘴53，其在燃烧器轴线方向较长；筒状的主空气用筒58，其包围主喷嘴53的周。主喷嘴53的端面固定至喷嘴基台62。主喷嘴53上形成有：气体燃料流路54，其流通气体燃料Fgp并在喷嘴端部开口55；液体燃料流路56，其流通液体燃料Fom并在喷嘴端部开口57。喷嘴基台62上形成有：气体燃料流路63，其与主喷嘴53的气体燃料流路54连通；液体燃料流路64，其与主喷嘴53的液体燃料流路56连通。该喷嘴基台62上连接有：气体燃料接收管67，其与在喷嘴基台62上形成的一气体燃料流路63连通；液体燃料接收管68，其与在喷嘴基台62上形成的液体燃料流路64连通。气体燃料接收管67连接后述的主气体燃料分支管线279，液体燃料接收管68连接后述的主液体燃料分支管线259。

【0067】辅助空气用筒48的端周侧形成辅助空气流路49，该辅助空气流路49流通来自压缩机20的压缩空气。辅助喷嘴43喷射的液体燃料Fop或气体燃料Fgp在通过该辅助空气流路49的压缩空气中燃烧(扩散燃烧)，形成扩散火焰。

【0068】主空气用筒58的端周侧形成主空气流路59，该主空气流路59流通来自压缩机20的压缩空气。对流通该主空气流路59的压缩空气喷射来自配置在该主空气流路59内的主喷嘴53的液体燃料Fom或气体燃料Fgp。因此，主空气流路59内，在比主喷嘴53的端面侧更靠近下游侧的位置流通混合了压缩空气、液体燃料Fom或气体燃料Fgp的预混合气体。该预混合气
体从主空气流通路59流出后燃烧(预混合燃烧),形成预混合火焰。所述扩散火焰起到使该预混合火焰稳定的作用。

[0069] 燃气涡轮机设备除了以上说明的燃气涡轮机10外,如图3所示,还具有;液体燃料供给装置250,其将液体燃料F0供给至多个燃烧器40,气体燃料供给装置270,其将气体燃料Fg供给至多个燃烧器40;水吹扫装置210,其将水W供给至燃烧器40的主喷嘴(第一喷嘴)53的液体燃料流路56;空气吹扫装置230,其将空气A供给至燃烧器40的主喷嘴(第一喷嘴)53和辅助喷嘴(第二喷嘴)43的液体燃料流路56,46;以及对这些进行控制的控制装置100。

[0070] 液体燃料供给装置250具有连接至液体燃料供给源251的液体燃料主管线252,辅助液体燃料管线253,主液体燃料管线254,辅助液体燃料分配器256,主液体燃料分配器257,多个辅助液体燃料分支管线258,以及多个主液体燃料分支管线259。辅助液体燃料管线253和主液体燃料管线254均为从液体燃料主管线252分支的管线。辅助液体燃料分配器256连接至辅助液体燃料管线253。多个辅助液体燃料分支管线258设在多个燃烧器40的各辅助喷嘴43上,并分别连接至辅助液体燃料分配器256。主液体燃料分配器257连接至主液体燃料管线254。多个主液体燃料分支管线259设在多个燃烧器40的各主喷嘴53上,并分别连接至主液体燃料分配器257。

[0071] 液体燃料主管线252设有液体燃料主阀262,该液体燃料主阀262调节流通此处的液体燃料F0的流量。辅助液体燃料管线253设有辅助液体燃料阀263,该辅助液体燃料阀263调节流通此处的液体燃料F0的流量。多个辅助液体燃料分支管线258分别设有辅助液体燃料分支阀268,该辅助液体燃料分支阀268调节流通此处的液体燃料F0的流量。主液体燃料管线254设有主液体燃料阀264,该主液体燃料阀264调节流通此处的液体燃料F0的流量。多个主液体燃料分支管线259分别设有主液体燃料分支阀269,该主液体燃料分支阀269调节流通此处的液体燃料F0的流量。

[0072] 气体燃料供给装置270具有连接至气体燃料供给源271的气体燃料主管线272,辅助气体燃料管线273,主气体燃料管线274,辅助气体燃料分配器276,主气体燃料分配器277,多个辅助气体燃料分支管线278,以及多个主气体燃料分支管线279。辅助气体燃料管线273和主气体燃料管线274均为从气体燃料主管线272分支的管线。辅助气体燃料分配器276连接至辅助气体燃料管线273,多个辅助气体燃料分支管线278设在多个燃烧器40的各辅助喷嘴43上,并分别连接至辅助气体燃料分配器276。主气体燃料分配器277连接至主气体燃料管线274。多个主气体燃料分支管线279设在多个燃烧器40的各主喷嘴53上,并分别连接至主气体燃料分配器277。

[0073] 气体燃料主管线272设有气体燃料主阀282,该气体燃料主阀282调节流通此处的液体燃料Fg的流量。辅助气体燃料管线273设有辅助气体燃料阀283,该辅助气体燃料阀283调节流通此处的气体燃料Fgp的流量。多个辅助气体燃料分支管线278分别设有辅助气体燃料分支阀288,该辅助气体燃料分支阀288调节流通此处的液体燃料Fgp的流量。主气体燃料管线274设有主气体燃料阀284,该主气体燃料阀284调节流通此处的气体燃料Fgm的流量。多个主气体燃料分支管线279分别设有主气体燃料分支阀289,该主气体燃料分支阀289调节流通此处的液体燃料Fgm的流量。

[0074] 水吹扫装置210具有水供给源211,水主管线212,水分配器216,以及多个水分支管线218。水供给源211具有将水升压后送入水主管线212的泵。水主管线212连接至该水供给
源211。水分配器216连接至水主干线212。多个水分支管线218分别设在多个主液体燃料分配管线259上，一端连接至主液体燃料分配管线295，另一端连接至水分配器216。水主干线212设有水调节阀213，该水调节阀213调节流通此处的水W的流量。

【0075】空气吹扫装置230具有空气供给源231、空气主管线232、辅助空气管线233、以及主空气管线234。空气供给源231具有将空气压缩后送入空气主管线232的吹扫用压缩机。空气主管线232连接至该空气供给源231。辅助空气管线233和主空气管线234均为从空气主管线232分支的管线。辅助空气管线233连接至辅助液体燃料管线253。水空气管线234连接至水主干线212。空气主管线232设有空气主阀237，该空气主阀237调节流通此处的空气A的流量。辅助空气管线233设有辅助空气调节阀238，该辅助空气调节阀238调节流通此处的空气Am的流量。

【0076】控制装置100具有：气体燃料控制部101，其控制供给至燃烧器40的气体燃料Fg；液体燃料控制部102，其控制供给至燃烧器40的液体燃料Fo；燃料供给状态识别部105，其识别至燃烧器40的燃料供给状态；水吹扫控制部106，其根据燃料供给状态控制水调节阀213的开度；空气吹扫控制部107，其根据燃料供给状态控制辅助空气调节阀238和主空气调节阀239的开度。另外，该控制装置100由计算机构成。

【0077】本实施方式的吹扫装置的构成如下：水吹扫装置210；空气吹扫装置230；控制装置100的燃料供给状态识别部105；水吹扫控制部106；以及空气吹扫控制部107。

【0078】接下来，在对控制装置100的动作进行说明的同时，对与该控制装置100的动作相应的各装置等的动作进行说明。

【0079】控制装置100的气体燃料控制部101和液体燃料控制部102在燃气涡轮机10运转过程中控制供给至燃气涡轮机10的燃烧器40的燃料的流量等。

【0080】具体而言，气体燃料控制部101首先根据通过输出计111检测的发电机输出和上位装置发出的负载指令等求算气体燃料Fg的总流量。气体燃料控制部101根据气体燃料Fg的总流量或涡轮机30的入口温度等，求算从气体燃料主管线272分支的辅助气体燃料管线273、主气体燃料管线274中流通的气体燃料Fg的流量比。此外，液体燃料控制部102根据通过输出计111检测的发电机输出和上位装置发出的负载指令等求算液体燃料Fo的总流量。液体燃料控制部102根据液体燃料Fo的总流量或涡轮机30的入口温度等，求算在从液体燃料主管线252分支的辅助液体燃料管线253、主液体燃料管线254中流通的液体燃料Fo的流量比。

【0081】气体燃料控制部101对气体燃料主阀282、辅助气体燃料阀283、主气体燃料阀284发送开度指令。气体燃料控制部101从上位装置接收到表示气体燃料燃烧的燃料切换指令后，将与气体燃料Fg的总流量相应的开度指令发送至气体燃料主阀282。而且，气体燃料控制部101将与气体燃料Fg的总流量和根据所述流量比规定的各气体燃料管线273、274的流量相应的开度指令发送至各气体燃料阀283、284。结果，在辅助气体燃料管线273和主气体燃料管线274中分别流通规定流量的气体燃料Fg。流通辅助气体燃料管线273的气体燃料Fg经过辅助气体燃料分配器276，辅助气体燃料分支管线278，流入各燃烧器40的辅助喷嘴43的气体燃料流路44并从辅助喷嘴43喷射至筒61内。流通主气体燃料管线274的气体燃料Fg经过主气体燃料分配器277，主气体燃料分支管线279，流入各燃烧器40的主喷嘴53的气
体燃料流路54并从主喷嘴53喷射至简61内。

[0082] 另一方面，液体燃料控制部102从上位装置接收到表示气体燃料燃烧的燃料切换指令后，对液体燃料主阀262、辅助液体燃料阀263、主液体燃料阀264发送表示开度“0”的开度指令，也就是发送阀关闭指令。结果，从各燃烧器40的辅助喷嘴43和主喷嘴53不再喷射液体燃料Fo。

[0083] 液体燃料控制部102从上位装置接收到表示液体燃料燃烧的燃料切换指令后，与液体燃料Fo的总流量相应的开度指令发送至液体燃料主阀262。而液体燃料控制部102将与液体燃料Fo的总流量和根据所述流量比规定各液体燃料管线253、254的流量相应的开度指令发送至各液体燃料阀263、264。结果，在辅助液体燃料管线253和主液体燃料管线254中分别流通规定流量的液体燃料Fo。流通辅助液体燃料管线253的液体燃料Fop经过辅助液体燃料分配器256、辅助液体燃料分支管线258，流入各燃烧器40的辅助喷嘴43的液体燃料流路46并从辅助喷嘴43喷射至筒61内。流通主液体燃料管线254的液体燃料Fom经过主液体燃料分配器257、主液体燃料分支管线259，流入各燃烧器40的主喷嘴53的液体燃料流路56并从主喷嘴53喷射至筒61内。

[0084] 另一方面，气体燃料控制部101从上位装置接收到表示液体燃料燃烧的燃料切换指令后，对气体燃料主阀282、辅助气体燃料阀283、主气体燃料阀284发送表示开度“0”的开度指令，也就是发送阀关闭指令。结果，从各燃烧器40的辅助喷嘴43和主喷嘴53不再喷射液体燃料Fg。

[0085] 燃料供给状态识别部105识别：液体燃料供给状态Mo，其仅将气体燃料Fg和液体燃料Fo中的液体燃料Fo供给至主喷嘴53；液体燃料供给状态Mg，其仅将气体燃料Fg供给至主喷嘴53；燃料切换状态Mc，其为从液体燃料供给状态Mo变为气体燃料供给状态Mg的转换状态。而且，燃料供给状态识别部105识别：液体燃料供给状态Po，其仅将气体燃料Fg和液体燃料Fo中的液体燃料Fo供给至辅助喷嘴43；液体燃料供给状态Pg，其仅将气体燃料Fg供给至辅助喷嘴43；燃料切换状态Pc，其为从液体燃料供给状态Po变为气体燃料供给状态Pg的转换状态。燃料供给状态识别部105根据从气体燃料控制部101和液体燃料控制部102输出的指令等，识别这些状态。

[0086] 水吹扫控制部106在燃料供给状态识别部105识别到燃料供给状态为液体燃料供给状态Mo时，向水调节阀213指示将第一流量W1的水W供给至主喷嘴53的液体燃料流路56的切换前开度。结果，来自水供给源211的水W经过水主管线212、水分配器216和水分支管线218流入主液体燃料分支管线259。流入主液体燃料分支管线259的水W和流通此处的液体燃料Fom一起，流入各燃烧器40的主喷嘴53的液体燃料流路56并从主喷嘴53喷射至简61内。

[0087] 液体燃料供给状态Mo时，从主喷嘴53的液体燃料流路56喷射至简61内的水W使同样从主喷嘴53的液体燃料流路56喷射至筒61内的液体燃料Fom扩散。此外，该水W使通过主喷嘴53喷射的液体燃料Fom的燃烧形成的预混合火焰的温度下降，并有助于降低筒61的金属温度以及热量NOx的浓度。而且，该水W会变为蒸汽进入涡轮机30的燃烧气体流路39，因此，有助于提高该热涡轮机的效率。

[0088] 接下来，根据图4所示的时序图，对从液体燃料燃烧至气体燃料燃烧的燃料切换过程的各阀的动作进行说明。

[0089] 液体燃料燃烧时，主液体燃料阀264和辅助液体燃料阀263分别以与液体燃料控制
部102的指示相应的开度打开。因此，从各燃烧器40的主喷嘴53和辅助喷嘴43喷射液体燃料Fo。另一方面，主气体燃料阀284和辅助气体燃料阀283分别关闭。因此，从各燃烧器40的主喷嘴53和辅助喷嘴43喷射液体燃料Fg。也就是说，主喷嘴53和辅助喷嘴43均变为液体燃料供给状态Mo、Po。

[0090] 此时，水吹扫装置210的水调节阀213如前所述，变为将第一流量W1供给至主喷嘴53的液体燃料流程56的切换前开度（S1：水供给工序）。因此，主喷嘴53为液体燃料供给状态Mo时，来自水供给源211的水W经过水主管线212、水分配器216流入主液体燃料分支管线259。流入主液体燃料分支管线259的水流入各主喷嘴53的液体燃料流程56并从主喷嘴53喷射至筒61内。本实施方式中，第一流量W1为相对于供给至该主喷嘴53的液体燃料流程56的液体燃料Fom的流量呈一定比例的流量。因此，如果负载指令变化、供给至主喷嘴53的液体燃料流程56的液体燃料Fom的流量变化，第一流量W1也随着该变化而变化。另外，水供给工序（S1）中，该第一流量W1也可为一定的流量。

[0091] 如果从外部向控制装置100输入燃料切换指令（t1），则根据液体燃料控制部102的指示开始关闭辅助液体燃料阀263，另一方面，根据气体燃料控制部101的指示开始打开辅助气体燃料阀283。因此，从辅助喷嘴43喷射的液体燃料Fop开始减少，另一方面，从辅助喷嘴43开始喷射气体燃料Fgp。也就是说，各燃烧器40的辅助喷嘴43从液体燃料供给状态Po变为燃料切换状态Pc。

[0092] 之后（t3），辅助液体燃料阀263完全关闭，辅助气体燃料阀283变为与液体燃料控制部101的指示相应的开度后，从辅助喷嘴43不再喷射液体燃料Fop，另一方面，从辅助喷嘴43以规定的流量喷射气体燃料Fgp。也就是说，各燃烧器40的辅助喷嘴43从燃料切换状态Pc变为气体燃料供给状态Pg。

[0093] 各燃烧器40的辅助喷嘴43变为气体燃料供给状态P（t3）后，根据液体燃料控制部102的指示开始关闭主液体燃料阀264，另一方面，根据气体燃料控制部101的指示开始打开主气体燃料阀284。因此，从主喷嘴53喷射的液体燃料Fom开始减少，另一方面，从主喷嘴53开始喷射气体燃料Fgm。也就是说，各燃烧器40的主喷嘴53从液体燃料供给状态Mo变为燃料切换状态Mc。

[0094] 之后（t4），主液体燃料阀264完全关闭，主气体燃料阀284变为与气体燃料控制部101的指示相应的开度后，从主喷嘴53不再喷射液体燃料Fom，另一方面，从主喷嘴53以规定的流量喷射气体燃料Fgm。也就是说，各燃烧器40的主喷嘴53从燃料切换状态Mc变为气体燃料供给状态Mg。

[0095] 控制装置100的燃料供给状态识别部105提前识别主喷嘴53切换为燃料切换状态Mc的时间（t3），在主喷嘴53变为燃料切换状态Mc时（t3），对水调节阀213指示切换前开度，以使第二流量W2的水流至主喷嘴53的液体燃料流程56。也就是说，从比主喷嘴53变为燃料切换状态Mc（t3）前（t2）开始，切换前开度从在主喷嘴53的液体燃料流程56中流通第一流量W1的水W的开度逐渐变为流通第二流量W2的水W的开度。燃料供给状态识别部105从外部接收到燃料切换指令后（t1），预先保持主喷嘴53切换为燃料切换状态Mc为止的时间，据此，提前识别主喷嘴53切换为燃料切换状态Mc的时间（t3）。

[0096] 水吹扫控制部106在燃料供给状态识别部105识别到主喷嘴53为燃料切换状态Mc时（t3），向水调节阀213指示在水喷嘴53的液体燃料流程56中流通所述第二流量W2的水
切换中开度（S2：切换中水吹扫工序）。该第二流量w2在主喷嘴53为燃料切换状态Mc期间为一定值。所述第一流程w1如前所述,根据液体燃料Fom的流量相对变动,但任何情况下都多于第二流量w2。换言之,第二流量w2少于第一流量w1。

【0097】水吹扫控制部106在燃料供给状态识别部105识别到主喷嘴53为气体燃料供给状态Mg时(t4),向水调节阀213指示切换后开度(S3：切换后水吹扫工序)。在识别到主喷嘴53为气体燃料供给状态Mg后(t4)的规定时间,向水调节阀213指示水置换开度作为切换后开度,该水置换开度与在主喷嘴53的液体燃料流路56中流通第二流量w2的水W的开度即切换中开度相同(S4：水置换工序)。而且,经过规定时间后(t5),在规定时间向水调节阀213指示清洗开度作为切换后开度,该清洗开度为在主喷嘴53的液体燃料流路56中流通第三流量w3的水W的开度(S5：清扫工序)。该第三流量w3在该规定时间内一定。所述第一流程w1如前所述,根据液体燃料Fom的流量相对变动,但任何情况下都多于第三流量w3。此外,第三流量w3多于第二流量w2,因此,第三流量w3少于第一流量w1,多于第二流量w2。

【0098】在规定时间对水调节阀213指示在主喷嘴53的液体燃料流路56中流通第三流量w3的水W的清洗开度后(t8),指示开度“0”作为切换后开度,之后(t10),在规定时间指示在主喷嘴53的液体燃料流路56中流通第三流量w3的水W的开度作为切换后开度。之后,对水调节阀213指示间歇吹扫开度作为切换后开度,该间歇吹扫开度反复执行开度“0”和在主喷嘴53的液体燃料流路56中流通第三流量w3的水W的开度。因此,主喷嘴53的液体燃料流路56中间歇供给第三流量w3的水W(S6：间歇吹扫工序)。

【0099】综上所述,切换后水吹扫工序(S3)结束。该切换后水吹扫工序(S3)结束后,这一信息被从水吹扫控制部106通知至空气吹扫控制部107。空气吹扫控制部107接收到该通知后(t13),对主空气调节阀239指示在主喷嘴53的液体燃料流路56中流通空气A的空气吹扫开度(S7：空气吹扫工序)。结果,来自空气供给源231的空气A从主空气管线234流入水主管线212。流入水主管线212的空气A经过水分配器216、主液体燃料分支管线259,流入各主喷嘴53的液体燃料流路56并从主喷嘴53喷射至筒61内。

【0100】对主空气调节阀239首先指示低压吹扫开度作为空气吹扫开度,该低压吹扫开度将第一压力a1的空气A供给至主喷嘴53的液体燃料流路56(S8：低压吹扫工序)。然后,经过规定时间后(t14),在规定时间对主空气调节阀239指示高压吹扫开度作为空气吹扫开度,该高压吹扫开度将高于第一压力a1的第二压力a2的空气A供给至主喷嘴53的液体燃料流路56(S9：高压吹扫工序)。

【0101】至此，对主喷嘴53的液体燃料流路56的吹扫处理结束。

【0102】空气吹扫控制部107在辅助喷嘴43和主喷嘴53变为气体燃料供给状态Pg、Mg后(t4),经过规定时间后,对辅助空气调节阀238指示在辅助喷嘴43的液体燃料流路56中流通空气A的吹扫开度(t5)。换句话说，空气吹扫控制部107在对主喷嘴53的切换后水吹扫工序(S3)后(t4),经过规定时间后,对辅助空气调节阀238指示第一空气吹扫开度(t5)。结果,来自空气供给源231的空气A从辅助空气管线233流入辅助液体燃料管线253,流入辅助液体燃料管线253的空气A经过辅助液体燃料分配器256,辅助液体燃料分支管线258,流入各辅助喷嘴43的液体燃料流路56并从辅助喷嘴43喷射至筒61内(S11：第一空气吹扫工序)。

【0103】对辅助空气调节阀238首先指示低压吹扫开度作为第一空气吹扫开度,该低压吹
扫开度将第三压力a3的空气A供给至辅助喷嘴43的液体燃料流路46(S12;低压吹扫工序)。然后，经过规定时间(t5)，在规定时间对辅助空气调节阀238指示高压吹扫开度作为第一空气吹扫开度。该高压吹扫开度为高于第三压力a3的第四压力a4的空气A供给至辅助喷嘴43的液体燃料流路46(S13;高压吹扫工序)。

【0104】第三压力a3的空气A供给至辅助喷嘴43的液体燃料流路46的时间(t5)与针对主喷嘴53的清洗工序(S5)的时间一致。此外，针对辅助喷嘴43的高压吹扫工序(S13)比针对主喷嘴53的清洗工序(S5)的结束时间(t8)更早结束(t7)。至此，第一空气吹扫工序(S11)结束。

【0105】到达针对主喷嘴53的清洗工序(S5)的结束时间(t8)之后，且针对主喷嘴53的间歇吹扫工序(S6)最初的水供给开始时间(t10)之前的时间(t9)时，空气吹扫控制部107对辅助空气调节阀238指示第二空气吹扫开度(S14;第二空气吹扫工序)。到达针对主喷嘴53的间歇吹扫工序(S6)的结束时间(t11)之后，且针对主喷嘴53的间歇吹扫工序(S7)的开始时间(t13)之前的时间(t12)时，空气吹扫控制部107对辅助空气调节阀238指示开度“0”并使第二空气吹扫工序(S14)结束。第二空气吹扫开度在第五空气吹扫工序(S14)中一定，比第一空气吹扫开度的任一时间点的开度要小。因此，第一空气吹扫工序(S14)中，供给至辅助喷嘴43的液体燃料流路46的空气压力要比第一空气吹扫工序(S11)中的第三压力a3和第四压力a4低。

【0106】到达针对主喷嘴53的空气吹扫工序(S7)的结束时间(t15)之后的时间(t16)时，空气吹扫控制部107再次对辅助空气调节阀238指示第二空气吹扫开度(S15;第二空气吹扫工序)。之后，辅助喷嘴43为气体燃料供给状态Pg期间，辅助空气调节阀238维持第二空气吹扫开度。

【0107】像本实施方式一样具有选择性喷射轻油等液体燃料F0和天然气等气体燃料Fg的喷嘴43,53的燃烧器40中，使用燃料从液体燃料F0切换为气体燃料Fg后，在喷嘴43、53的液体燃料流路46,56中残存液体燃料F0，则该液体燃料F0在高温环境下可能会焦化。

【0108】因此，本实施方式中，主喷嘴53从液体燃料供给状态Mo变为气体燃料供给状态Mg后，执行切换后水吹扫工序(S3)，并用水清洗主喷嘴53的液体燃料流路56内部。切换后水吹扫工序(S3)的清洗工序(S3)中，为气体燃料供给状态Mg时，即使从主喷嘴53喷射水W，也会在不破坏气体燃料Fg的燃烧稳定性的范围内将最大流量或接近最大流量的第二流量w3的水供给至主喷嘴53的液体燃料流路56，提高主喷嘴53的液体燃料流路56的清洗性。

【0109】然而，如果在刚变为气体燃料供给状态Mg后(t4)向主喷嘴53的液体燃料流路56内供给较多流量的水，则液体燃料分支管线259和主喷嘴53的液体燃料流路56内积的液体燃料Fom会从主喷嘴53大量喷射。因此，在管61内燃烧的燃料量急剧增加，在燃烧量急剧增加的基础上，燃烧稳定性受到破坏。从而，本实施方式中，从刚变为气体燃料供给状态Mg后(t4)至供给完可等量置换主液体燃料分支管线259和主喷嘴53的液体燃料流路56内堆积的液体燃料Fom的水为止的时间t5，将少于第三流量w3的第二流量w2的水W供给至主喷嘴53的液体燃料流路56内(S4;水置换工序)。

【0110】液体燃料分支管线259和主喷嘴53的液体燃料流路56内堆积的液体燃料Fom基本置换为水W后，如前所述，将多于第二流量的第三流量的水供给至主喷嘴53的液体燃料流路56，促进去除此处残留的少许液体燃料Fom。
[0111] 根据主喷嘴53的液体燃料流路56的形状，对主喷嘴53执行清洗工序(S5)后，也可能无法去除主喷嘴53的液体燃料流路56内的液体燃料Fom。例如，主喷嘴53的液体燃料流路56存在锐角部分时、或存在某种间隙或等时，对主喷嘴53执行清洗工序(S5)后，也大多无法去除主喷嘴53的液体燃料流路56内的液体燃料Fom。因此，本实施方式中，在清洗工序(S5)后执行在液体燃料流路56中间歇流通第三流量w3的水W的间歇吹扫工序(S6)。如此，通过在液体燃料流路56中间歇流通水W，在液体燃料流路56中不流通水期间，从液体燃料流路56的锐角部分和间隙等流出液体燃料Fom，然后，通过供给至液体燃料流路56的水，去除该液体燃料Fom。

[0112] 间歇吹扫工序(S6)中，间歇流通水W的次数例如为5次左右。另外，间歇流通水W的次数为5次时，如果无法去除主喷嘴53的液体燃料流路56内的液体燃料Fom，例如，也可将该次数设为10次。此外，如果间歇流通水W的次数少于5次时即可充分去除主喷嘴53的液体燃料流路56内的液体燃料Fom，则也可设为少于5次。而，执行清洗工序(S5)时，如果能够充分去除主喷嘴53的液体燃料流路56内的液体燃料Fom，也可省略间歇吹扫工序(S6)。

[0113] 如果主喷嘴53的液体燃料流路56内残留有水W，例如，该水W以水滴的形式高温滴落于筒61中，则筒61有可能损坏。因此，本实施方式中，在切换后水吹扫工序(S3)后，向主喷嘴53的液体燃料流路56供给空气A，并从主喷嘴53的液体燃料流路56向筒61内一起喷射水W和空气(A7:空气吹扫工序)。

[0114] 如果从空气吹扫工序(S7)开始时向液体燃料流路56供给高压力的空气A，则液体燃料分支管线259和主喷嘴53的液体燃料流路56内堆积的水W会从主喷嘴53大量喷射。因此，在筒61内喷射的水W的量急剧增加，气体燃料Fg的燃烧稳定性受到破坏，从而，本实施方式中，在至供给完可等量置换主液体燃料分支管线259和主喷嘴53的液体燃料流路56内堆积的水W的空气A为止的指定时间，将低压的第一压力a1的空气A供给至主喷嘴53的液体燃料流路56内(S8:低压吹扫工序)。然后，为了使主喷嘴53的液体燃料流路56内残留的少许水W喷射至筒61内，将高压的第二压力a2的空气A供给至主喷嘴53的液体燃料流路56内(S9:高压吹扫工序)。

[0115] 综上所述，本实施方式中，变为气体燃料供给状态Mg后(t4)，在执行水置换工序(S4)后执行清洗工序(S5)。因此，在确保气体燃料Fg的燃烧稳定性的同时，可提高主喷嘴53的液体燃料流路56的洗冲性。而且，本实施方式中，在清洗工序(S5)后执行间歇吹扫工序(S7)。因此，可进一步提高主喷嘴53的液体燃料流路56的洗冲性。

[0116] 但是，从液体燃料Fom至气体燃料Fgm的燃料切换状态Mc中，在主喷嘴53的液体燃料流路56中流通的液体燃料Fom的流量逐渐减少，因此，在液体燃料流路56中流通的液体燃料Fom的流速逐渐降低。尤其是燃料切换状态Mc接近气体燃料供给状态Mg时，在液体燃料流路56中流通的液体燃料Fom的流速显著降低。因此，即使在燃料切换状态Mc时，液体燃料Fom也可能在液体燃料流路56中焦化。

[0117] 本实施方式中，为了抑制燃料切换状态Mc时的液体燃料Fom的焦化，在该燃料切换状态Mc时也向主喷嘴53的液体燃料流路56供给水W(S2:切换中水吹扫工序)。燃料切换状态Mc时，液体燃料Fg和气体燃料Fg的燃烧容易变得不稳定。因此，该切换中水吹扫工序(S2)时，将液体燃料供给状态Mo时的第一流量w1和清洗工序(S5)中于第三流量w3的第二流量w2的水W供给至主喷嘴53的液体燃料流路56。
[0118] 从而本实施方式中，在确保燃料切换状态Me时的液体燃料Fo和气体燃料Fg的燃烧稳定性的同时，可抑制燃料切换状态Me时的焦化。

[0119] 此外，本实施方式中，在燃料切换状态Me时也向主喷嘴53的液体燃料流路56供给水W，因此，在变体气化燃料供给状态Mg时(t4)，主液体燃料分支管线259和主喷嘴53的液体燃料流路56内的液体燃料Fom在某种程度上置换为水W。因此，本实施方式中，可使变为后气体燃料供给状态Mg后的水置换工序(S4)在短时间内结束。

[0120] 另外，本实施方式中，在切换中水吹扫工序(S2)中供给的水W的流量和置换工序(S4)中供给的水的流量均为第二流量W2，但这些流量无需均为相同的流量。但是，通过将切换中水吹扫工序(S2)中供给的水W的流量和置换工序(S4)中供给的水的流量设为相同的流量，可筒化水调节阀213的控制。

[0121] 针对主喷嘴53的水置换工序(S4)中，从主喷嘴53喷射至筒61内的液体燃料Fom的流量较多。该水置换工序(S4)中，如果从辅助喷嘴43也喷射液体燃料Fop，则喷射至筒61内的液体燃料Fo的流量变得非常多，在燃烧量增加的基础上，燃烧稳定性受到破坏。因此，本实施方式中，辅助喷嘴43从液体燃料供给状态Po变为气体燃料供给状态Fg，并且，结合针对主喷嘴53的水置换工序(S4)的结束时间，开始针对该辅助喷嘴43的第一空气吹扫工序(S11)。

[0122] 如果从该第一空气吹扫工序(S11)开始时向辅助喷嘴43的液体燃料流路46供给高压力的空气A，则辅助液体燃料分支管线258和辅助喷嘴43的液体燃料流路46内堆积的液体燃料Fop从辅助喷嘴43大量喷射。从而，本实施方式中，在至供给完可等量置换辅助液体燃料分支管线258和辅助喷嘴43的液体燃料流路46内有液体燃料Fop的空气A为止的规定时间，将低压的第三压力a3的空气A供给至辅助喷嘴43的液体燃料流路46内(S12：低压吹扫工序)。然后，为了使辅助喷嘴43的液体燃料流路46内残留的些许液体燃料Fop喷射至筒61内，将高压的第四压力a4的空气A供给至辅助喷嘴43的液体燃料流路46内(S13：高压吹扫工序)。

[0123] 本实施方式中，该第一空气吹扫工序(S11)结束后，执行所述的第二空气吹扫工序(S14、15)。辅助喷嘴43使喷出的气体燃料Fg扩散燃烧。因此，在辅助喷嘴43的尖端附近形成扩散火焰。如此，在辅助喷嘴43的尖端附近形成扩散火焰的状态下，火焰可能会倒流至液体燃料流路46。因此，本实施方式中，为了防止火焰倒流，在第二空气吹扫工序(S14、15)中将低压的空气A供给至液体燃料流路46。但是，本实施方式中，执行针对主喷嘴53的空气吹扫工序(S7)时，不执行针对辅助喷嘴43的第二空气吹扫工序(S14、15)。这是因为，本实施方式的空气供给源231不具备同时执行针对主喷嘴53的空气吹扫工序(S7)和针对辅助喷嘴43的第二空气吹扫工序(S14、15)的能力。换言之，如本实施方式所述，通过用辅助喷嘴43和主喷嘴53错开空气供给源231的使用时间，可有效地利用最小限度的能力的空气供给源231。另一方面，空气供给源231的能力留有富余时，在执行针对主喷嘴53的空气吹扫工序(S7)时，也可执行针对辅助喷嘴43的第二空气吹扫工序(S14、15)。而且，也可以连续执行S14的第二空气吹扫工序和S15的第二空气吹扫工序。

[0124] 综上所述，本实施方式中，在针对主喷嘴53的切换后水吹扫工序(S3)结束前，即针对主喷嘴53的切换后水吹扫工序(S3)期间，执行针对辅助喷嘴43的第一空气吹扫工序(S11)。因此，本实施方式中，可抑制辅助喷嘴43的液体燃料流路46内的液体燃料Fop的焦
化。
[0125] 工业上的可利用性
[0126] 根据本发明所涉及的一方式，可在确保从液体燃料切换为气体燃料的切换过程中燃料稳定燃烧的同时，抑制液体燃料的焦化。
[0127] 符号说明
[0128] 10:燃气涡轮机
[0129] 11:燃气涡轮机转子
[0130] 15:燃气涡轮机壳体
[0131] 20:压缩机
[0132] 21:压缩机转子
[0133] 25:压缩机壳体
[0134] 30:涡轮机
[0135] 31:涡轮机转子
[0136] 35:涡轮机壳体
[0137] 40:燃烧器
[0138] 41:燃料喷射器
[0139] 42:辅助燃烧器
[0140] 43:辅助喷嘴（第二喷嘴）
[0141] 44:气体燃料流路
[0142] 46:液体燃料流路
[0143] 52:主燃烧器
[0144] 53:主喷嘴（第一喷嘴或单纯为喷嘴）
[0145] 54:气体燃料流路
[0146] 56:液体燃料流路
[0147] 61:筒
[0148] 100:控制装置
[0149] 101:气体燃料控制部
[0150] 102:液体燃料控制部
[0151] 105:燃料供给状态识别部
[0152] 106:水吹扫控制部
[0153] 107:空气吹扫控制部
[0154] 210:水吹扫装置
[0155] 211:水供给源
[0156] 212:水主管线
[0157] 213:水调节阀
[0158] 230:空气吹扫装置
[0159] 231:空气供给源
[0160] 232:空气主管线
[0161] 237:空气主阀
233: 辅助空气管线
234: 主空气管线
238: 辅助空气调节阀
239: 主空气调节阀
250: 液体燃料供给装置
251: 液体燃料供给源
252: 液体燃料主管线
253: 辅助液体燃料管线
254: 主液体燃料管线
262: 液体燃料主阀
263: 辅助液体燃料阀
264: 主液体燃料阀
270: 气体燃料供给装置
271: 气体燃料供给源
272: 气体燃料主管线
273: 辅助气体燃料管线
274: 主气体燃料管线
283: 辅助气体燃料阀
284: 主气体燃料阀
图2
图3