829 A2

(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(43) International Publication Date
10 May 2001 (10.05.2001)

(10) International Publication Number

WO 01/33829 A2

(51
@

(22)

29
(26)

(30

(71

International Patent Classification’: HO04N

International Application Number: PCT/US00/30201

International Filing Date:
1 November 2000 (01.11.2000)

Filing Language: English
Publication Language: English
Priority Data:

60/163,008 1 November 1999 (01.11.1999) US

Applicant: MANGOSOFT CORPORATION [US/US];
Suite 190, 1500 West Park Drive, Westborough, MA 01581
(US).

(72)

74

(31

Inventors: PHILLIPS, Robert, S.; 5 Sherman St., Brook-
field, MA 01560 (US). DAVIS, Scott, H.; 136 Riverbend
Drive, Groton, MA 01450 (US). DIETTERICH, Daniel,
J.; 4 Cedar Terrace, Acton, MA 01720 (US). NYMAN,
Scott, E.; 15 Rockwell Drive, Shrewsbury, MA 01545
(US). PORTER, David; 2 Uplands Road, Littleton, MA
01460 (US).

Agent: GOLDMAN, Gregg, L.; Proskauer Rose, LLP,
1585 Broadway, New York, NY 10036 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

[Continued on next page]

(54) Title: INTERNET-BASED SHARED FILE SERVICE WITH NATIVE PC CLIENT ACCESS AND SEMANTICS AND DIS-
TRIBUTED ACCESS CONTROL

Coont Volume Management
Software
File System
) A 4
26
r\«:J h 4 *
Local Disk Store
Volume Index Ys
Volume
. Uses wL Volume
« Groups
¢ ACls
« Flle System Objects ase
//
Cached Flles and Folders
Native Flle System

Mind Sarver Scftware (57) Abstract: A
multi-user file storage
service and system
enable each user of a

pre-subscribed user group
to operate an arbitrary
client node at an arbitrary
geographic location, to
communicate with a remote
file server node via a wide
area network and to access
the files of the file group via
the respective client node
in communication with
the remote file server node
via the wide area network.
More than one user of the
pre-subscribed user group
is permitted to access the
file group at the remote file
server node simultaneously.
Tllustratively, the integrity
of the files at the remote file
server node are maintained
by controlling each access
to each file at the remote

¥, file server node so that each access to files at the remote file server is performed, if at all, on a respective portion of each file as most
€7, recently updated at the remote file server node. Thus, all native operating system application programming interfaces operate as if
w= all multi-user applications accessing the files function as if the remote server and client nodes were on the same local area network.
& Illustratively, an interface is provided for adapting file access one of the client nodes. The interface designates at the client node
each accessible file of the group as stored on a virtual storage device. he interface enables access to the designated files in a fashion
which is indistinguishable, by users of, and applications executing at, the client node, with access to one or more files stored

e
=

[Continued on next page]

WO 01/33829

A2 |00 0O 0

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
— Without international search report and to be republished
upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

on a physical storage device that is locally present at the client node. Illustratively, an encrypted key is transferred from the remote
file server node to one of the client nodes via a secure channel. The key is encrypted using an encryption function not known locally
at the remote file server node. The transferred key is decrypted at the client node. The key is used at the client node to decrypt
information of the files download from the remote file server node or to encrypt information of the files prior to uploading for storage
at the remote file server node. Access control to a particular one of the files of the group can be delegated to an access control node.

10

15

20

25

WO 01/33829 PCT/US00/30201

INTERNET-BASED SHARED FILE SERVICE WITH NATIVE
PC CLIENT ACCESS AND SEMANTICS AND
DISTRIBUTED ACCESS CONTROL

Related Applications

This application is a continuation-in-part of U.S. Pateﬁt Application Serial No.
08/754,481, entitled "Shared Memory Computer Networks", filed November 22, 1996 for
John B. Carter, Scott H. Davis, William Abraham, Steven J. Frank, Thomas G. Hansen,
Daniel J. Dietterich, and David Porter.

This application is based on Provisional Application Ser. No. 60/163,008, entitled
"Internet-Based Shared File Service with Native PC Client Access and Semantics”, filed
November 1, 1999 for Robert S. Phillips, Scott H. Davis, Daniel J. Dietterich, Scott E.
Nyman and David Porter. The contents of this provisional application are fully incorporated
herein by reference.

This application is related to the following patent applications, which are all
commonly assigned to the same assignee hereof:

U.S. Patent Application Serial Number , entitled "Internet Based Shared File
Service with Native PC Client Access and Semantics,” filed on even date herewith for Robert
S. Phillips, Scott H. Davis, Daniel J. Dietterich, Scott E. Nyman and David Porter; and

U.S. Patent Application Serial Number | entitled "Internet Based Shared File
Service with Native PC Client Access and Semantics and Distributed Version Control," filed
on even date herewith for Robert S. Phillips, Scott H. Davis, Daniel J. Dietterich, Scott E.
Nyman and David Porter.

The above-listed documents are fully incorporated herein by reference.

10

15

20

WO 01/33829 PCT/US00/30201

Field of the Invention
The present invention pertains to a multi-user shared file access service provided over

a wide area network, such as the Internet.

Background of the Invention

A burgeoning need has developed for improved remote computing access. This has
arisen in part owing to the continual decrease in the cost of computer technology, in
particular, computer terminals. As a result, there is a wide proliferation of computer
terminals of various types, including desktops, laptops, game consoles and "Internet
receivers." In addition, wide area network access, most notably, Internet access, is commonly
available at a variety of geographic locations. For instance, many homes and hotels contain
computer terminals and provide Internet access.

The volume of available computer equipment and widespread accessibility of the
Internet has increased the desire by users to access data remotely. For instance, many workers
are now encouraged to "telecommute, " i.e., to work at home rather than at the enterprise
campus. More often than not, the telecommuting user must use a computer terminal in the
home to remotely access computing resources (such as data, programs and applications,
processing capacity, storage capacity, etc.) outside of the home, e.g., at the enterprise campus.
In addition, initiatives are underway to deploy so-called "network computer architectures”
comprised of a limited number of high capacity processors which are widely remotely
accessible to a multitude of computer terminals possessing more limited computing resources.
Furthermore, workers in various arbitrary and remote geographic locations are encouraged to
collaborate on projects remotely by exchanging computer data, programs and applications

with each other via a wide area network.

10

15

20

WO 01/33829 PCT/US00/30201

It is desirable to provide the same capabilities to users who remotely access computer
resources as are available to users connected to a local area network. Specifically, a local area
network provides some measures of security against eavesdropping and other unauthorized
access as only those with access to the local area network can monitor the data transferred on
the local area network. Local area networks enable sharing at two levels. First, groups of
users may simultaneously access files in a common storage space. More importantly, users
can contemporaneously or simultaneously access the same file. Applications which permit
contemporaneous and simultaneous file access amongst multiple users provide "locks," i.e.,
controls for maintaining the integrity of data. For instance, multiple users are only allowed to
access files or portions of files according to compatible access modes. Thus, write access to a
file, or a specific portion of a file, is typically exclusive to one user. However, more than one
user often may be permitted to simultaneously read a file, or a portion of a file, at the same
time. In addition, privilege access rights are typically specifiable for directories and files.
Specifically, read, write and delete privileges can be restricted to individual users and groups.
For example, one user might be provided read, write and delete rights to an entire directory.
An entire user group might have only read and write privileges for all files in a directory, but
certain users of that group might have only read privileges for a certain file within that
directory. A third user group might have only read privileges for all files in a directory.

Certain products and services are currently available for assisting users to obtain
remote access to files. A number of single user Internet services are available for storing
information including those marketed under the names "Driveway™," "Idrive™,"
"FreeDiskSpace™," "FreeBack™," "SwapDrive™," and "Visto™." These services provide a
remote storage device, which the user can access while executing a web browser program on

the user's computer terminal, to store data for later retrieval. Most of these services operate

10

15

20

WO 01/33829 PCT/US00/30201

according to a so-called "publish/subscribe" schema. According to a publish/subscribe
schema, the user must take deliberate actions while executing the web browser program to
transfer files from the user's computer terminal to the remote storage device for storage or to
retrieve files from the remote storage device to the user's computer terminal. For instance,
while executing the browser program, the user uses the pointing to device to select a
selectable displayed feature on the displéy device (i.e., a "button" or "icon") for uploading
files. The user then selects a locally stored file for uploading (by locating the file and
selecting it). A copy of the file is then transferred via the Internet to the remote storage
device where it is stored. A similar sequence of steps can be used to retrieve files from the
remote storage device.

These systems have two primary uses. First, a user with a limited amount of storage

- space can utilize these systems to obtain excess storage space or storage off the user's

terminal. Second, multiple users can obtain access to a set of files specifically designated for
group access. Note this is not quite the same as "file sharing" whereby multiple users can
contemporaneously or simultaneously access the same files. Rather, all these systems provide
is a storage space which can be accessed by multiple users, albeit one at a time. As such,
these systems have the following disadvantages:

(@) File sharing, i.e., contemporaneous/simultaneous access to a file, is not supported.

(b) Multiple users are not able to access the same common storage space at the same time,
even if they desire to simultaneously access different files in that space.

(c) The publish/subscribe schema requires deliberate user intervention to transfer files
between the user's local terminal and the remote storage space. This has several
consequences. First, the user must engage in a different set of actions to transfer a file

between the remote storage device and the user's local computer terminal than the user

10

15

20

WO 01/33829 PCT/US00/30201

normally uses when accessing a file locally resident on the user's computer terminal. As a
result, the user must acquire additional skills to access files on the remote storage space.

(d More importantly, the user must engage in actions to transfer the file from the remote

storage device to the user's computer terminal before the file can be accessed at all.

Therefore, applications executing on the user's local computer terminal cannot automatically
access the files while they are located at fhe remote storage device. In contrast, when these
files are stored locally on the user's computer terminal, an application or program may simply
access such files without user intervention in the normal course of execution. Stated another
way, certain applications executing at the user's local terminal can freely automatically access
files maintained at the local terminal without the need for human intervention. For example,
in the course of executing an application, the application may access locally stored data and

configuration files, unbeknownst to the user. On the sther hand, if one of these data or

- configuration files is located at the remote storage device at the time the application is

executed, the application is incapable of automatically accessing such a remote file. Rather,
the user must know which remote files will be needed for access and must take deliberate
preliminary actions to download such files to the local terminal prior to the access by the
locally executing application.

(e) Limited security is provided to prevent unauthorized eavesdropping on files. Some
services only provide security in the form of an account password login. This is typically
adequate in a private network, e.g., a local area network or a private wide area network link.
However, in the Internet, data is transferred via an arbitrary path and over an indiscernible
sequence of private networks under control of other (typically unknown) persons. Some
services provide security through secured socket layer transfers (SSL). Amongst other things,

SSL provides a manner whereby the server at the service encrypts information immediately

10

15

20

WO 01/33829 PCT/US00/30201

before it is transmitted via the Internet to the client node (and vice versa). This tends to
thwart unauthorized access by eavesdroppers to the files while in transit over the Internet.

The problem with this technique is that the data of the files is often nevertheless stored at the

server of the file storage service in unencrypted form. Thus, the files may be subject to

unauthorized access by persons obtaining access to the server of the file storage service.

® File version control and integrity is not maintained automatically. Some single user
systems enable multiple users to access a file albeit, one at a time. That is, user A may access
and modify a specific remotely stored file. Subsequently, a second user B may access and
modify the same remotely stored file. When user A accesses the modified file again, the file
includes the most recent modifications by user B and not the modifications by user A. This
requires more effort on the part of users who share access to the files to coordinate their
accesses to the files to avoid errors and loss of data.

Note that integrity can also be compromised where muitiple users have access to the
files simultaneously. Specifically, a mechanism should be provided to prevent each user from
accessing the same portion of a file according to an incompatible file sharing access mode.
This is described in greater detail below.

Additional single user services are marketed under the names "Storagepoint™" and
"X-Drive™." Storagepoint™ provides a Windows™ Explorer™ Name Space extension
object. As aresult, certain aspects pertaining to user file access are similar for both files
which are stored remotely and files which are stored locally. For instance, a user executing
the "Windows™" operating system can use the "Explorer™" program to display the list of
files stored on the remote storage device in the same fashion as the user would display a list
of files stored locally on the user's computer terminal. In addition, the user can transfer files

between the remote storage device and the user's computer terminal using similar actions as

10

15

20

WO 01/33829 PCT/US00/30201

can be utilized to move files between various local devices of the user's computer terminal,
Le., by "dragging" and "dropping" the icons associated with such files. However, applications
and programs executing at the user's computer terminal cannot seamlessly and automatically
access files which reside at the remote storage device in the same fashion as such applications
or programs would access files stored locally at the user's computer terminal. The reason is
that the automatic mechanism for enabling an executing application to locate and
automatically download such a file is not provided by such services. Rather, remotely stored
files must first be transferred to the user's computer terminal so that the applications and
programs can access them during normal execution.

"X-Drive™" provides a more extensive file service for a single user. Like

Storagepoint™, X-Drive™ enables the user to transfer files between the remote storage

~ device and the user's computer terminal using the same actions for transferring the files

between locally physically present devices of the user's computer terminal {i.e., icon dragging
and dropping). However, X-Drive™ also allows applications and programs executing at the -
user's terminal to seamlessly access files which reside at the remote storage device as such
applications or programs would access files stored locally at the user's computer terminal.
Specifically, during the course' of normal execution of such programs or applications, such
files are seamlessly, and automatically transferred from the remote stored device to the user's
computer terminal by other software provided by X-Drive™, when such applications or
programs attempt to access the remotely stored files. In short, while using X-drive™, the
user, applications and programs treat remotely stored files the same way as locally stored
files.

Nevertheless, neither Storagepoint™ nor X-Drive™ enable contemporaneous or

simultaneous access to files or a group of files by multiple users. Nor do these services

10

15

20

WO 01/33829 PCT/US00/30201

maintain the integrity of such files. Storagepoint™ offers server encryption but X-Drive™
does not. Storagepoint™ uses a secured socket layer to transfer encrypted information
between the user's computer terminal and the remote file storage device. Once at the remote
file storage device, the information is "re-encrypted" prior to storage to prevent against
unauthorized access by Storagepoint™ employees. However, the data exists in non-encrypted
form at the site of the remote file storage device immediately prior to the pre-étorage
re-encryption step and immediately before pre-transfer secured socket layer encryption. In
short, because the methodology to decrypt the data is available at the remote storage device,
the user cannot be assured that security is never compromised.

In addition to the single-user services described above, a number of multi-user
services are available, including those marketed under the names "Punch Networks™," and

"FreeDrive™." Unrlike the single-user systeins, these multi-user systems allow multiple users

-~ to access the same shared storage space simtultaneously. Each of these services uses the

- publish/subscribe schema for transferring files. Thus, the user must engage in additional

steps not performed for files already present at the user's computer terminal in order to access
the files that reside at the remote storage device. In addition, programs and applications
cannot access such files seamlessly and automatically while such files are resident on the
remote storage device. Also, simultanecus access to the same file or portion of a file by
multiple users is not supported. Furthermore, while Punch Networks™ encrypts the data, the
encryption is performed at the site of the remote file storage device. Again, security can still
be compromised by unauthorized access at the site of the remote file storage device.

Punch Networks™ provides a version control system whereby every version of a file
(i.e., every updated modification specifically "published," i.e., deliberately uploaded by each

user) is maintained. This enables each user in a group to access any specific version of a file

10

15

20

WO 01/33829 PCT/US00/30201

and to be assured that any given uploaded version has remained intact between accesses by
that specific user. However, this system cannot be assured to provide a single version of a

file which is most up-to-date for each of multiple users who modify the file in an interleaved

fashion. For instance, suppose that both user A and user B obtains the same copy of a given

version of a file. Users A and B both modify their respective copies differently and desire to
upload their modified copies for storage; The result will be that two versions of the file will
be stored, one for user A and one for user B, each being a different version. A third user C,
will now be required to pick amongst these two versions.

Other Internet services, including "Eroom™," "ChangePoint™," "X-Collaborate™,"
"eGroups™," "eCircles™," "vJungle™," "Hot Office™," and "HotBiz™," provide personal
remote storage space. Some of these services provide for file sharing under the
publish/subscribe schema. In addition, some of the services provide rudimentary document
control. Each of these systems has the same problems already noted above.

In short, none of the wide area network services available provide for remote file
access which maintains the integrity of files by ensuring that each access to a file at the
remote file server is to the most up-to-date copy of the file. Nor do these services enable
contemporaneous and simultaneous access by multiple users to the same files. Furthermore,
these services do not provide adequate encryption according to which the manner of
encrypting the files is not known at the remote storage dévice.

It is an object of the invention to overcome the disadvantages of the prior art.

Summary of the Invention

This and other objects are achieved according to the invention which provides a

multi-user file storage service and system. Each user of a user group of one or more users is

10

15

20

WO 01/33829 PCT/US00/30201

enabled to operate an arbitrary client node at an arbitrary geographic location to communicate
with a remote file server node via a wide area network. Each user of the user group is

enabled to access the files of the file group via the respective client node in communication

with the remote file server node via the wide area network. More than one user of user group

is permitted to access the file group at the remote file server node simultaneously.

According to one embodiment, the integrity of the files at the remote file server node
are maintained by controlling each access to each of the files at the remote file server node so
that each access to one of the files at the remote file server is performed, if at all, on a
respective portion of each of the one files as most recently updated at the remote file server
node. This enables all native operating system application programming interfaces to operate
so that all multi-user applications accessing the files function as if the remote server, which
stores the files, and client nodes, at which such multi-user applications execute, were on the
same local area network.

According to another embodiment, an interface is provided for adapting file access at
a first one of the client nodes. The interface designates at the first client node each of the one
or more accessible files of the file group as stored on a virtual storage device. The interface
also enables access to the designated files in a fashion which is indistinguishable, by users of,
and applications executing at, the first client node, with access to one or more files stored on a
physical storage device that is locally present at the first client node.

According to yet another embodimert, an encrypted key is transferred from the remote
file server node to a first one of the client nodes via a secure channel. The key is encrypted
using an encryption function not known locally at the remote file server node. The transferred

key is decrypted at the first client node. The key is used at the first client node to decrypt

-10-

15

20

WO 01/33829 PCT/US00/30201

information of the files downloaded from the remote file server node or to encrypt
information of the files prior to uploading for storage at the remote file server node.

According to a further embodiment, a manger node which chooses which users may
Jjoin the group, transmits a message to an Internet email gddress of a user inviting the user to
join the user group. Using the information in the message, a client node operated by the user
issues a message to join the user group. The message is usable only once to join the user
group.

Ilustratively, when a communication is first established between a particular client
node and the remote server node, a connection between the particular client node and the
remote file server node is authenticated. Specifically, the particular client node verifies the
identity of the remote server node, and the remote server.node verifies the identity of the user
of the particular client node.

In addition, the particular client node iliustratively encrypts data of a file using an
encryption methodology known to the client node but not known to the remote file server
node. The client node then uploads the encrypted data to the remote file server node. Thus,
the remote file server node stores the encrypted file data.

Likewise, the remote file server node illustratively retrieves from storage the
encrypted data of a particular file and transmits the encrypted data to a specific client node.
Using a decryption methodology known to the specific client node but not known at the
remote file server node, the client node decrypts the data.

Ilustratively, when the remote file server node receives a request from a specific
client node to access a particular file, the remote file server node determines whether or not
the particular access requested by the specific client node is permitted by privilege access

rights associated with the particular file. The remote file server node only permits the access

-11-

10

15

20

WO 01/33829 PCT/US00/30201

to the particular file by the specific client node if permitted by the privilege access-rights
associated with the particular file.

According to a further embodiment of the invention, access control to a particular one
of the files of the group of files is delegated to an access control node.

According to yet a further embodiment of the invention, version control of a particular

one of the files is delegated to a version control node.

Brief Description of the Drawing

FIG 1 shows an illustrative network in which an embodiment of the present invention
is intended to be used.

FIG 2 shows an illustrative computer terminai or remote file server of the network of
FIG1.

FIG 3 shows an illustrative architecture according to an embodiment of the present
invention.

FIG 4 shows an illustrative screen displayed cn a client node according to an
embodiment of the present invention.

FIGs 5, 6A and 6B show a flowchart describing a process for joining a new client user
to a group of users permitted to access a virtual storage device according to alternate
embodiments of the present invention.

FIG 7 shows a flowchart describing an authentication process according to an
embodiment of the present invention.

FIGs 8 and 9 show flowcharts describing, respectively, a download process and an

upload process according to an embodiment of the present invention.

-12-

10

15

20

WO 01/33829 PCT/US00/30201

FIG 10 shows a flowchart describing a file access process according to an
embodiment of the present invention.

FIGs 11-12 show tables illustrating a reconciliation process according to an
embodiment of the present invention.

FIG 13 shows an illustrative environment of use of another embodiment of the present
invention.

FIG 14 shows a flowchart illustrating distributed access control according to an
embodiment of the present invention.

FIG 15 shows a flowchart illustrating distributed version control according to an

embodiment of the present invention.

Detailed Description of the Invention
WIDE AREA NETWORK. ARCHITECTURE

FIG 1 shows a wide area network 100 such as the Internet. This network is composed
of local networks 11-16, access networks a-d and backbone networks A-C forming backbone
1. Devices r1-r18 denote switches or routers, devices h1-h10 denote computer terminals, and
devices asl-as4 denote access éewers. Computer terminals typically originate and terminate
communications and messages, whereas switches, routers and access servers typically merely
route messages and communications to another device in transferring such messages or
communications to their intended destinations. Access servers also control access of
messages and communications from the networks 11-16 to the rest of the wide area network
100.

Generally stated, the Internet 100 is an interconnection of a plurality of private

networks maintained by network access providers (NAPs) and Internet service providers

-13-

10

15

20

WO 01/33829 PCT/US00/30201

(ISP), who operate the access networks a-d. The interconnection of the access networks may
be carried by various high capacity (i.e., T1, T3, T4, OC-3, OC-48, etc.) privately leased lines
of the telephone network, e.g., backbone networks A-C. Communication is achieved in the
Internet using a hierarchy of protocols, including the Internet protocol (IP), the transmission
control protocol (TCP), the file transfer protocol (ftp), the hypertext transfer protocol (http)
and the hypertext transfer protocol over secured sockets layer (https). Amongst other things,
the Internet 100 can carry (in packets) messages for requesting information, and such
requested information, from a source device to an appropriate destination device. As the
construction and operation of the Internet is conventional, its details are not described further.
NODE ARCHITECTURE

FIG 2 depicts a typical node in the form of a computer terminal 10. The computer
terminal 10 typically includes a processor 11 or CPU, memory 12, one or more I/Q devices
13-1, 13-2,..., 13-N (e.g., modems, cable modems, network interface cards, etc.), disk 15
(fixed magnetic, removable magnetic, optical, etc.), graphics accelerator and display monitor
16 and keyboard and mouse 17. Each of these devices is connected via one or more busses
14. An illustrative example of the computer terminal 10 is a "PC" compatible computer
capable of executing the Windows NT™ operating system distributed by Microsoft Corp.™,
a company located in Redmond, Washington. A similar architecture can be used for routers
and access servers by substituting disks 15, memories 12, I/O devices 13-1 to 13-N and
processors 11 of appropriate sizes, number and/or capacity. In addition, the keyboard and
mouse 17 and/or the graphics accelerator and monitor 16 can be omitted. The memory 12 can
include both a large main memory, e.g., implemented with SDRAM circuits and a smaller

cache memory, e.g., implemented with SRAM circuits.

-14-

10

15

20

WO 01/33829 PCT/US00/30201

Herein, the invention is illustrated using PC computers, such as desktops, laptops and
file servers, as nodes. However, the invention is also applicable for other types of nodes such
as game consoles and Internet receivers. Such devices have different mechanisms for
enabling user input. Illustratively, the nodes will be presumed to include "pointer devices"
implemented using an input device, such as a mouse, track pad, joy stick, track ball, stylus,
etc. and suitable software which responds to the manual input device. The invention is
illustrated using a pointer device designed to work with the Windows NT™ operating system.
Such a pointer device accepts user input regarding direction and selection and supports the
well known user operations of "selecting," "dragging," "clicking on," "double-clicking on,"
etc. graphical representations of files, devices, etc. to aciivate access or otherwise use them.
In addition, the invention is illustrated herein for the Internet as the wide area network, but of
course is applicable to other wide area networks.

Herein, the following nomenclature is used. "Client node" describes a device such as

- a computer terminal h1-h8; adapted according to the invention for purposes of enabling

access to files stored locally in the memory 12 or disk 15 of the client node or remotely as
described herein. "Remote file server node" describes an apparatus, such as a file server
computer h9-h10, including a storage device, such as one or more disk drives 15, memory
circuits 12, etc., adapted according to the invention to enable multiple simultaneous client
node access to groups of files.
OVERVIEW OF GENERAL ARCHITECTURE AND PRINCIPLES

As a general principle according to an embodiment of this invention, one or more
remote file server nodes, e.g., nodes h9-h10, which can be implemented using Proliaﬁt
6400™ servers distributed by Compaq™ a company located in Houston, Texas, have a large

disk étorage capacity, e.g., implemented using EMC Symetrix SANs™, distributed by EMC

-15-

10

15

20

WO 01/33829 PCT/US00/30201

Corp.™, a company located in Hopkinson, Massachusetts. This disk storage capacity is
allocated for storing a group of one or more files as if on a single virtual storage device or
virtual drive. A group of users is enabled to access the group of files on such a virtual storage
device by accessing data in local caches and interaction between the remote file servers nodes
h9-h10 and geographically remotel client nodes h1-h8 operated by the users. The remote file
server nodes effectively provide a consistent and persistent "home" at which a master copy of
each file of the group is persistently maintained. The remote file server nodes h9-h10 enable
access to the files in a shared fashion-multiple client nodes operated by users can
simultaneously access the files of the group stored on the virtual storage device. Given that
the copies of the files on the remote file server nodes serve as a master or true source copy,
the accesses to the copies of the files at the remote file server nodes illustratively are
performed in a fashion described below which maintains the integrity of these master copies
of the files at the remote file server nodes.

In addition, an interface is provided on each client node which "hides" the geographic

- remoteness of the origin of the files from both the users of the client nodes and applications

executing on the client nodes. The files "appear," i.e., entirely behave, and can be accessed
using pre-existing programs and applications, as if locally present on the client nodes. Any
file or directory information transfer and integrity maintenance is performed transparently to
the user and applications which otherwise function, most notably, access the files, as if they
were locally present.

Furthermore, security is provided in several forms. First, consider that the client
nodes and remote file server nodes are geographically remote and may be operated by
different organizations. A manner is provide for each of the client nodes and the remote file

server nodes to authenticate each other prior to communicating sensitive information.

-16-

10

15

WO 01/33829 PCT/US00/30201

Second, a secure channel is provided to enable transfer of file data over the Internet, which

otherwise is inherently insecure.

The users illustratively can access the files while operating client nodes on a local area

network, such as the client node h4 on the local area network 12. Illustratively, the same user

can access the files using portable client nodes, such as laptops. For example, client node h8
illustratively represents a mobile client node that can connect to a remote file server node h9
or h10 via any available communication channel to the Internet 100, e.g., a land-iine
telephone dial up channel or wireless channel.

[llustratively, the remote file server nodes can implement several virtual storage
devices. For example, a group F1 of one or more virtual storage devices can be provided for
a single group of users G1. A group F2 of one or more additional virtual storage devices can
be provided for an entirely contained subset of users of that group G2 G1. Yet another group
F3 of one or more additional virtual storage device can be provided entirely for a distinct
group of users G3, where G3nG1={}. Itis also possible for one specific user gl to be part of
two different groups, say G1 and G4, where G1 ? G4, where the users of G1 can access the
file group F1 and where the users of G4 can access the file group F4 of another virtual storage
device provided by the remote file server nodes. Illustratively, user gl can freelj'
transparently and simultaneously access the files of groups G1 and G4 in an arbitrary fashion.

One remote file server node may contain all of the files of a given group G1 and
provide all of the file access functions described below for that group. In an alternative
embodiment, the storage of the files of a group are divided amongst multiple remote file
server nodes which may be in close geographic proximity to one another or which may be
geographically remote from one another. According to another embodiment, the client nodes

can access one or more files via each of multiple remote file server nodes. Illustratively, the

-17-

WO 01/33829 PCT/US00/30201

specific remote file server node believed to perform a file access most efficiently is chosen for
a file access operation by a given client node. For example, according to a load balancing
schema, multiple remote file server nodes are provided as a bank. The remote file server
node which is least "busy" servicing other file accesses is allocated to the next incoming
client node file access. According to another schema, the remote file server node which is
“closest" in terms of having the highest end-to-end throughput to the client node is chosen,
etc.

CLIENT NODE - REMOTE NODE SOFTWARE ARCHITECTURE

FIG 3 shows a typical architecture for implementing the invention. The functional
blocks "Volume Management" 20 and "File System" 30 can be implemented by suitable
software executing on the processor 11 of a client node. The "Local Disk Store" 40 is a
software subsystem executed by the processor 11 of the client node which manages storage of
information on the local disk of the client node. The division of the client node software in
this fashion is merely illustrative.

Each "volume" 42, 44 figuratively represent a different virtual storage device which is
accessible to the client node. Two different virtual storage devices are shown for sake of
illustration although the exact number will vary. In fact, the precise number accessible on a
given client node will depend on the particular user who is using the client node at that
moment. These storage devices are "virtual" in that they are presented to the user and
applications by the operating system as if they were actual physical devices. Hewever, in
fact, as described below, they are constituted by an elaborate scheme of local "cache" storage
of selected file data and directory information on an actual physical storage device (e.g., disk
15) of the client node and secured connection communication by the client node (e.g., using

the VO device 13-1) with the remote file server node to obtain missing file data and directory

-18-

10

15

20

WO 01/33829 PCT/US00/30201

information and to ensure the integrity of the master copy of such information at the remote
file server node. A volume index 45 assists in identifying file data and directory information
stored on the virtual storage devices 42, 44.

In the configuration shown in FIG 3, the remote file servers are actually shown as
organized into a "public server" 50 aﬁd "file servers” 61, 62, ... although this organization is
merely illustrative. The public server 50 is provided as a point of first contact for the client
nodes, whereas the file servers 61, 62, ... actually perform the file access and integrity
maintenance functions. More specifically, the public server 50 is initially contacted by the
client nodes when a user desires to join a particular virtual storage device. In addition, the
public server 50 can redirect each client node to the correct or most efficient file server 61,
62, ... for providing the file access and integrity maintenance features described below. The
public server 50 is shown as including a component labeled "volume management web pages"
54 and a component labeled rendezvous server" 56. Both the public server 50 and the file
servers 61, 62, ... are implemented by suitable software executing on the processor 11 of each
remote file server node. Given that the specific division of functions of a remote file server
node is arbitrary, below, the term remote file server node will be used for sake of generality,
without reference to specific cbmponents to which each function has been allocated in a given
configuration.

The client software may be deployed at one, all or some of the computer terminals on
a local area network, such as the host computer terminals h4, h5 and h6 on subnetwork 12 of
FIG 1. Also, the client software can be deployed on moveable computer terminals (such as
laptops) and or computer terminals at multiple different geographic locations, e.g., host
computer terminal h8. For generic users, the client software/client node is capable of

performing the following functions:

-19-

10

15

20

WO 01/33829

(@

(b)

©

d

PCT/US00/30201

Locating remote file server nodes on the wide area network: As noted above,
the client nodes access one or more virtual storage devices 42, 44 identified as
distinct units without regard as to where such virtual storage devices are
located or as to precisely on which group of one or more remote file servers
implement such virtual storage devices. As one skilled in the art may
appreciate, a file server can provide file access for (actually store, retrieve or
modify the data of) an entire single virtual storage device, multiple virtual
storage devices, parts of such virtual storage devices or combinations thereof,
Furthermore, it is sometimes desirable to maintain mirror copies of data for
sake of robustness (i.e., to have a backup remote file server node in the event
one file server is disabled), ease of maintenance, or traffic control. In any
event, the client software transparently accesses locally stored information,
such as URLs, for determining how to send commands, data or other
information to the appropriate remote file server node providing the
functionality of a virtual storage device to be accessed;

Initiating first time subscription of each user to a given virtual storage device,
including generating encryption keys for subsequent file accesses, as described
in greater detail below, and requests to remove a the user from the group of
users who may access a given virtual storage device;

Requesting information about other users of any virtual storage device
provided by a service according to the invention;

Transparently encrypting information prior to uploading to the remote file
server for storage and decrypting information downloaded from the remote file

server prior to use, as described in greater detail below;

-20-

15

20

WO 01/33829

(©)

®

(@

PCT/US00/30201

Intelligently transparently caching accessed file data at the client node which
have been opened by the client user;

Maintaining the integrity of file data access at this client node: This includes,
if possible, performing version checks on file data prior to accessing it and
obtaining the most up-to-date copy of accessed file data prior to access. Such
version checks may be performed at the file level or on individual portions of a
given file. This is described in detail in U.S. Patent No. 5,918,229 and U.S.
Patent Application Serial No. 08/754,481, both assigned to MangoSoft Corp.
and are fully incorporated herein by reference. In addition, the client node
software recognizes and resolves conflicts in file data this client node modified
while disconnected from the remote file server vis-a-vis file data modified at
the remote file server node (by another client node) while this client node was
disconnected froim the remote file server node. The client sofiware a{so
maintains separate storage for file data and directory information, which
cannot be reconciled with the remote file server node and other integrity
warning messages. This is described in greater detail below; and
Downloading the fiie data from any arbitrary point in a file for convenience or
efficiency. For example, the client user may only require a small data portion
of the entire file. In addition, an interrupted download may be restarted at the
point where communication between client node and the server node

terminated.

In addition, at least one client node is provided with client manager software, which

enables this node to function as the client manager node. The purpose of the client manager

node is to provide the customer who uses the service to manage and administer each of the

21-

10

15

20

WO 01/33829 PCT/US00/30201

virtual storage devices of that customer. Thus, the customer designates one or more of the

client nodes as client manager nodes with the ability to provide system wide client side

management of the file service. The client manager node is provided with the ability to create
and delete entire virtual storage devices on the remote file server nodes. In addition, the
client manager node is provided with full access privileges for all of the files and directories
on each virtual storage device created by the client manager node and therefore may read,
write, modify or delete any file or directory on any of the virtual storage devices it creates.
Furthermore, the client manager node is able to designate new user accounts and to provide
sufficient information to enable a client user to join one or more of the virtual storage devices
managed by the client manager node.

The public server and file server software iliustratively is deployed at the remote file
server nodes, e.g., computer terminals h9 and h10. The public server and file server software
performs the following functions: -

(a) Creating and deleting virtual storage devices, including allocating space
amongst the actual physical storage devices of the remote file servers for
meeting the space requirements needed and/or purchased by the
client/customer;

(b) Accepting requests from client manager nodes to create client user accounts,
including generating one-time passwords for enabling client users to join
pre-subscribed user groups of the virtual storage device and requests from
client manager nodes to delete client user accounts;

(c) Arbitrating accesses to file data amongst all client nodes, including enforcing

access privileges and file sharing modes;

20

WO 01/33829 PCT/US00/30201

(d) Maintaining integrity of accessed file data including performing version
checks, and providing up-to-date copies of accessed file data to client nodes
which desire to access them,;

(e) Providing a "rendezvous service", i.e., providing to inquiring client nodes

5 sufficient address or contact information (e.g., IP address and TCP port
number) for communicatihg with the appropriate remote file server node
which stores the group of files corresponding to a given virtual storage device.

INTERACE/ENVIRONMENT DESCRIPTION
Prior to addressing the techniques by which security and authentication are enforced,

10 and file integrity is maintained, a description is provided below of the effect achieved by the
file service according to the present invention. As noted above, FIG 3 shows three client
node software elements, namely, the volume management, file ;ystem and disk subsystem.
These software elements are designed to integiate with a conventioral operating
system/native file system 48 which may be sold with the client node. The manner by which

15 the client node software is integrated with the operating system/native file system 48 may be
specific to each operating system/native file system 48 and is normally dictated by
specification and application programming interfaces of the operating system/native file
system creator. For example, Microsoft™ specifies an API for integrating software affecting
the manner by which files are identified and retrieved by other applications and programs

20 executed with the Windows NT™ operating system. Thus, the specific details of the
integration of the client node software are omitted below. Rather, the discussion belov&
describes in general the operations carried out by the client node software to achieve certain
ends according to the invention. Those skilled in the art will appreciate how to modify the

client node software for each operating system/native file system with which the client node

-23-

10

15

20

WO 01/33829 PCT/US00/30201

software is to work given the description below of what is to be achieved and other available
information pertaining to the API's of the operating system/native file system.

FIG 4 shows an illustrative image which is depicted on the display monitor of a client

node while using the invention, e.g., with the Microsoft™ Windows NT™ operating system.

As shown, the displayed image is the familiar image of a window 1000, including "buttons"
1002 for resizing and closing the window 1000, menu bar 1010 with selectable drop-down
menu buttons 1012, "standard button bar" 1020 with selectable "navigation buttons" 1022,
"address bar" 1025, "folders" sub-window 1030 and sub-window 1040. As shown, the
address bar 1025 includes a graphical icon representing a network connected storage device
labeled "F". The "folders" sub-window 1030 displays a hierarchical list of identifiers 1032,

1034 for storage devices and folders thereof. This list includes a corresponding entry 1034

- for the network connected storage device "F" and provides further identification information

for this device "Lets Work on '@v-drive™. Sub-window 1040 displays another hierarchical.
list of graphical icons representing files 1042 and folders (directories) 1044 contained on the
connected storage device represented by the graphical icon 1034.

As is well known, the hierarchical list of items 1032, 1034, and sub-list shown in
sub-window 1040 is intended to show individual files and a hierarchical organization for such
files into directories and storage devices. As is well-known, the storage devices shown
graphically in the window 1000 can represent entire actual locally present physical storage
devices, storage devices which are connected remotely, and virtual storage devices, typically
implemented as partitions of the storage capacity of the actual local and remote physical
storage devices. The Windows NT™ operating system does not distinguish between such

storage devices from the perspective of the graphical display to the user.

224-

10

15

20

WO 01/33829 PCT/US00/30201

Hlustratively, the identifiers "F" and "Lets Work on '@v-drive' refer to a virtual
storage device provided by the system and service according to the invention. To that end,
the client software provides the appropriate information according to the operating system
API for providing the appearance of an actual physical storage device. In response, the
operating system lists identifiers in the graphical display portion of the user interface (i.e., the
images displayed on the display monitorr of the client node) to the client user as any other
storage device, with the appropriate properties. Furthermore, the operating system enables
the user to access these identifiers for the virtual storage device in the same identical fashion
as the identifiers for any other storage device. The user can thus "click", "double click,"
"drag" and "drop" on such identifiers. These actions are well-known selection, activation,
movement or re-organization operations achieved with the pointer device and therefcre are
not described further herein. It should be noted that the client user may alsc use the DOS™
command line interpreter to access.

Most significantly, the client node software also provides certain functionality for
identifying and obtaining files and file data as the object of an action selected by one of the
above pointer device actions. For example, if a client user "double-clicks" on an identifier for
the virtual storage device "F" or a directory/folder hierarchically listed under virtual storage
device "F", this indicates a user command to "open" and view the contents of the virtual
storage device or directory/folder, respectively. This requires identification of the appropriate
hierarchical sub-directory information for retrieval and listed display by the operating system.
[lustratively, the client node software provides such information to the operating system
which performs the rest of the tasks. Likewise, if the user "double clicks" on the identifier of
a file itself, this serves as a user command to execute an application represented by the file (if

the file contains an executable application), or to execute an available application on the file

-25-

10

20

WO 01/33829 PCT/US00/30201

as an object (if the file contains data). Again, the client node software identifies the
appropriate file information for the operating system and provides such file data to the
operating system which causes the appropriate execution.

Thus, the client node software provides sufficient integration of the functionality
described below for identifying and obtaining the appropriate file and providing such
information to the existing operating sysfem to enable correct execution. In addition to
performing such a task for user initiated execution and selection as described above (e.g.,
using the graphical display portion of the user interface), the client node software performs
such tasks at all times for automatic application initiated file execution or retrieval. That is,
suppose an application is currently executing. In the course of execution, the application
causes an access to another file (e.g., attempts to execute an application contained in another
file or attempts to read, write, modify, etc. the data contained ir another data file). Tn so
doing, the application generaies the appropriate request to the operating system to perform the
appropriate file access operations. If the file is contained in the virtua! storage device, the-
client node software intervenes and assists the operating system in identifying the appropriate
file and in providing the data of the file to the operating system te complete the access to the
file (i.e., read, write, modify, delete, etc.) The client node software does this transparently
and automatically without requiring intervention by the user. This has a net effect from the
perspective of the client user and the applications executing on the client node. Specifically,
the virtual storage device, and its contents (i.e., all of the files, directories/folders, etc. stored
in the virtual storage device), appears, to the client node user and the application executing at
the client node, to be locally present. That is, the client node user and applications executing
at the client node access the virtual storage device and its contents in the same manner as an

actual locally physically present storage device at which such contents are permanently and

-26-

10

15

20

WO 01/33829 PCT/US00/30201

persistently stored/"homed". In essence, neither the client user nor the application executing
at the client node is aware of the actual location or home of the files as the integration is
perfectly transparent and seamless.

Thus, the actual providing of data to applications, useful display of the status or
arrangement of files and directories/folder, etc. is performed by the operating system. The
client node software merely serves to loéate and obtain valid copies of remotely stored or
homed directory/folder information and file data. As described in greater detail below, the
performance of these tasks by the client node software often requires several steps. The client
node software may determine if a copy of the directory/folder information or file data is
cached locally (e.g., in a cache memory, main memory, or disk actually physically present at
the client node). The client node software may verify that the locally cached copy of the
directory/folder information or file data is still .valid. The client node software may download
a valid copy of the directory/folder information or file data. Periodically, the client node
software may upload the directory/folder information or file data to permanently store
modifications.

In addition, many operating systems and executable applications support various
"granularities" of file sharing. In a most basic form of file sharing, only one client node, out
of a group of multiple client modes having sufficient access privilege rights, can actually
access a file at one time. The operating system or native file application programming
interface simply does not permit extensive file sharing. According to another method of file
sharing, multiple client nodes are permitted to read information from a file simultaneously,
but only one client node is permitted to write to such a file. According to another paradigm,
each client node has the ability to simultaneously write to a file or part of a file. To achieve

this, each client node may actually perform its respective write indirectly, e.g., through a

27-

10

15

20

WO 01/33829 PCT/US00/30201

single intermediary node which actually performs each access on behalf of each client node.
For example, a directory file is a file containing data for locating and accessing all of the files
and subdirectories of a given directory. Each time a new file or subdirectory is added to the
given directory, or an existing file or subdirectory is deleted from the given directory, the
respective directory file must be modified to reflect the change. Multiple client nodes must
be able to perform such modifications simultaneously. To enable this to happen, the directory
file is not actually directly accessed by each client node. Instead, the accesses to the directory
mode are performed by a single node, e.g., one of the remote file server nodes on behalf of
each client node. Thus, as each client node attempts to modify the directory, the remote file
server node functions as an intermediary node which performs each required access (most
notably a modification or write operation) on behalf of each client node. When a client node
creates a new file or subdirectory in a directory, in fact, the client node does not actually
directly access the directory file: Instead, the directory file access is performed by the remote
file server node as an intermediary.

The client node software assists in achieving such file accesses in a coherent fashion.
Most notably, the client node software can transmit to the remote file server commands for
"locking" files or portions of ﬁAles to prevent access to such files or file portions according to
incompatible modes. The net effect is to prevent another client node which desires to access
the file from doing so. Likewise, the client node software can transmit query commands to
the remote file server regarding the lock status of files and can receive and forward the
response to such commands to the operating system to prevent an access by this client node
which is incompatible with an access currently being performed by another client node.
Again, the generation of file locking commands, and determination of when a certain file

access can be performed in view of the lock status on files, is achieved according to the

8-

10

15

20

WO 01/33829 PCT/US00/30201

operating system or other applications executing at the client node. The client node software
merely serves as a proxy for forwarding such commands and statuses between the client node
and the appropriate remote file server node. All such functionality performed by the client

node software is automatic and transparent to the client node user and applications executing

at the client node.

ADDING CLIENT USERS

FIG 5 shows a process for creating a virtual storage device and adding users. Assume
that the user of the client manager node has already allocated the virtual storage device in
question. Under control of the user of the client manager node in step S100, the client
manager node issues a message containing a command to invite a new user, the email address
of the new user, a user name for the new user and an identifier of the virtuai storage device
("drive id") of the virtual storage device on which the new user is to be invited. Illusiratively,
this is achieved by the client manager node transmitting the message via the Internet to a
remote file server node which manages the specific virtual drive. In steps S102, the remote
file server node determines if the virtual storage device indicated by "drive id" exists but the
user name is already contained on a list of users. Illustratively, the remote file server node
maintains a list of all user names who ever joined the virtual storage dev1;ce, including active
user names of users of the group permitted to access the virtual storage device, and
deactivated user names. If the user name is not new, or the virtual storage device does not
exist, then the remote file server node rejects the request in step S104, by transmitting back to
the client manager node via the Internet, a rejection message. Illustratively, the client
manager node displays a failure message to the user. Advantageously, this prevents multiple

uses of the same user names for a given virtual storage device.

-29.

10

15

20

WO 01/33829 PCT/US00/30201

If the user name is not already contained on the list associated with the specified
virtual storage device, the remote file server node creates a record for the new user in step
S106. The remote file server node communicates the successful completion of this step to the
client manager node. Next, in step S108, the client manager node creates a one time
password ("OTP"). Preferably, the OTP is a bidirectional encryption/decryption key. In
addition, the client manager node communicates to the new client user an invitation to join
the group of user permitted to access the virtual storage device, which invitation includes the
user name ("user id"), the identifier of the virtual storage device ("drive id"), and optionally
the OTP. Illustratively, the client manager node can email the invitation to the new client
user node via the Internet, by addressing the email message to an Internet address of the client
user. Preferably, the email message is transferred in a secure fashion, e.g., in encrypted form,

to prevent unauthorized discovery of the OTP. To add additional security, the OTP may not

- be included in the email invitation. For example, the new client user may have to

communicate with an intermediate Internet address to receive the OTP upon validation of the
new client user. Once the new client user obtains the OTP, the client manager node encrypts
a data key (the purpose of which is described in greater detail below) with this OTP, to
produce OTP(data key). The client manager node then transmits OTP(data key) to the remote
file server node where it is stored in the record associated with the new client user, in step
S110.

FIGs 6A and 6B each show a flowchart illustrating alternative processes by which a
new client user joins a pre-subscribed user group permitted to access a virtual storage device.
In regard to FIG 6A, assume that the new client user receives the above-described invitation,
e.g., as an encrypted email message, at a particular client node. In step S120, the client user

activates the join process by clicking on the email message. Illustratively, the email message

-30-

10

15

20

WO 01/33829 PCT/US00/30201

includes the URL of the remote file server node at which the client node user can join the
pre-subscribed user group for the virtual storage device. Alternatively, the message includes
the URL of another site from which the client node subscription request can be redirected to
connect with the correct remote file server node specific to the virtual storage device of

interest to the client node user. The activation of the join process results in the transmission

-of a message from the client node to the appropriate remote file server node, e.g.,

communicating the user name and identifier for the virtual storage device to the remote file
server node. Illustratively, this is achieved using the so-called https protocol. For example,
the remote file server node to be contacted may be registered with a trusted third party. Such
authentication services are provided by companies such as Verisign™, a company located in
Mountain View, California. In step S122, the remote file server node accesses the list of
records to determine if it has an entry corresponding to this new client user. If not, in step
S124, the remote file server node deems the message invalid and ceases processing. 1f
desired, the remote file server node can be adapted to transmit a message to the client node
indicating that the join request was invalid.

Assume that the client node receives a message indicating that the remote file server
node can proceed with the subscription process. If the client node does not already have the
appropriate client node software, this message may be in the form of, or include, a download
of the appropriate software. This download can include one or more URL addresses of one or
more remote file server nodes with which the client node should connect in the future to
perform actual file access operations. In any event, the client node executes the client node
software. Next, in step S126, the client node creates a drive container to store information
needed for authenticating information when connecting and for caching including files,

folders, user objects, access permission objects, etc. The client node also generates a public

-31-

10

15

20

WO 01/33829 PCT/US00/30201

key/private key pair Puc, Prc. The client node then transmits the public key Puc to the remote
file server node. Illustratively, this pair of keys is randomly generated according to any
well-known algorithm for so doing. The client node permanently stores the private key Prc
for subsequent use as described below.

Next, in step S128, the remote file server node stores the public key of the client node
in the record associated with the client nbde. In addition, in step S130, the remote file server
node encrypts the already encrypted message OTP(data key) using the public key Puc to
produce the twice encrypted message Puc(OTP(data key)). The remote file server node then
transmits this twice encrypted message Puc(OTP(data key)) to the client node. Illustratively,
the remote file server node also transfers it's own public key Pus to the client node. The client
node stores the remote file serve node's public key Pus for further use as described below.

In step S132, the client node receives the twice encrypted message Puc(OTP(data .

key)). Using the client node's private key Prc and the one time use key OTP, the client node

- decrypts this twice encrypted message to obtain the data key. Then in step S134, the client

node encrypts the clear text data key using its public key Puc to produce the encrypted data
key Puc(data key). The client node then transmits this encrypted data key Puc(data key) to
the remote file server node. In step S136, the remote file server node receives the encrypted
data key Puc(data key) and stores this information, along with the public key Puc of the new
client user. This completes the join process.

In the alternative process of FIG 6B, the user, upon receipt of an email invitation,
activates the join process in step S150 by clicking on the email message. The email message
includes the user id, the drive id, and optionally a hash of the OTP. In step S152, a trusted
third party, such as Verisign™, validates the "certificate" or authenticity of the remote file

server identified by the drive id. If the hash of the OTP was included in the email invitation,

-32-

10

15

20

WO 01/33829 PCT/US00/30201

the process proceeds to step S 154 and the remote file server validates the user id, drive id,
and the hash of the OTP. If there is a match, i.e., the remote server validates the above, then
the process proceeds to step S164 which will be described below.

Referring back to step S152, if the hash of the OTP was not included in the email
invitation, then the remote file server validates only the user id and drive id. As stated above,
the new client user obtains the OTP sepérate from the invitation email. If there is a match,
then in step S160 the remote file server prompts the client user to supply the OTP which is
validated in step S162. If there is no match in either step S156 or step S162, then the invite is
invalidate in step 158. Otherwise, the process proceeds to step S164.

In step S164, the client node creates a drive container and generates a public
key/private key pair Puc, Prc. The client node then transmits the public key Puc to the remote

file server node in step S166. As with the process of FIG 6A, the client node permanently

* stores the private key Prc for subsequent use as described below. Next, in step $168, a

different, authenticated client user of the same pre-subscribed user group downloads the new
client user's public ~ key Puc and encrypts the data key Puc (data key). In step S170, the
authenticated client user updates the new client user record at the server with the encrypted
data key Puc (data key). At this point, the new client user may now decrypt the remote file
server drive data corresponding to the data key, in step S172.

As will be seen below, the data key is a two-way encryption/decryption key which is
used to encrypt data prior to uploading it from a client node to the remote file server node or
for decrypting data downloaded from the remote file server node. At no time does the remote
file server node have a clear-text version of the data key. Rather, the remote file server node

only has encrypted versions of the data key, namely, either OTP(data key) or Puc(data key).

-33-

10

15

20

WO 01/33829 PCT/US00/30201

In fact, the remote file server node has one encrypted version of the data key for each client
node, as encrypted with the public key of that client node.

In contrast to the OTP and the data key, the public/private key pair Puc, Prc are
one-way keys. That is, the public key Puc can be used to encrypt a message. However, such

a message can only be decrypted with the corresponding private key Prc. Thus, while the

remote file server node maintains the public key Puc and the data key encrypted by the

tespective public key Puc(data key), this information is not sufficient for the remote file

server node to decrypt the data key.

The process described in this section is only used once to join a client node to a virtual
storage device. Subsequently, all accesses by that client node to the virtual storage device
which it has joined are achieved using the authentication and secure file transfer processes
described below. Moreover, each OTP can be used only once.

It should be noted that the above processes illustrated in FIGs 5-6 can be repeated for
each client node user. Likewise, these p‘rocesses can be repeated for a given client node user
for each 'of multiple different virtual storage devices to be joined for the client node.

Illustratively, the client node creates an identity profile which is a locally stored data
file with sufficient information for enabling the client node to access the virtual storage
device. In the very least, the identity profile includes the private key Prc which is necessary
for a given user to authenticate a connection (as described below), and to retrieve (its copies
of) the data key(s). Illustratively, the copy of the identity profile is encrypted on the client
node with a key derived from a user supplied password. This prevents an unauthorized user
of the client node from posing as the actual user who joined the pre-subscribed user group of
the virtual storage device. The (encrypted) identity profile may be copied onto a removable

storage medium (e.g., a floppy diskette) and/or placed on multiple client nodes. The client

-34-

10

15

20

WO 01/33829 PCT/US00/30201

node user can then access the virtual storage device from each client node provided with a
copy of the identity profile. In addition, a copy of the separately stored identity profile, e.g.,
on a removable medium, enables the user to restore the identity profile on any given client
node, should the client node software become damaged or corrupted. This is very important
as the private key Prc is known only to the client node and the manner by which the data is
stored at the remote file server node is unknown to the remote file server node. Absent
backup copies of the client node identity profile, it will be impossible for that user to access
the remote file server node under the given client user account should the client node software

be damaged or corrupted.

AUTHENTICATION AND SECURE TRANSFER OF FILE DATA

FIG 7 shows a flowchart describing a process for authenticating a connection between
a client node and a remote file sever node. This process is performed each time the client
node and remote file server node establish a connection, assuming that the client node has
already joined the pre-subscribed user group of the virtual storage device that it wishes to
access by the respective connéction.

In step $200, the client node issues a connection request message via the Internet to
the remote file server node. Illustratively, the client node issues the message to a
pre-established URL address assigned to the appropriate remote file server node
implementing the virtual storage device to be accessed by the client node. Illustratively, the
message includes the user name of the client node user, the identifier of the virtual storage
device to be accessed and a random string S. In step S202, the remote file server node

receives the message and first determines if the user name and virtual storage device identifier

-35.

10

15

20

WO 01/33829 PCT/US00/30201

are a valid combination by consulting a list of valid, pre-subscribed user names stored at, or
otherwise accessible by, the remote file server node for the respective virtual storage device
identified by the virtual storage device identifier. If the remote file server node fails to
confirm that the user name is contained in a list of active user names for the virtual storage
device, the remote file server node denies the connection in step S204. In denying the
connection, the remote file server node rhay issue an appropriate rejection message to the
client node.

Assume that the remote file server node confirms that the user name is listed as active

-on the list associated with the virtual storage device indicated by the identifier in the message.

In step S206, the remote file server node encrypts the random string S with its private key Prs
to produce the encrypted random string Prs(S). In step S208, the remote file server node
transmits this encrypted random string Prs(S) and a second random string K to the client
node.

In step S210, the client node decrypts the encrypted random string Prs(S) with the
public key Pus of the remote file server node in order to obtain the clear text message of the
original string S. In step S212, the client node determines if this decryption of the received
encrypted message using the servers public key, Pus(Prs(S)), yields S. If not, then .the client
node determines that it has failed to authenticate the identity of the remote file server and
breaks the connection in step S214. On the other hand, if this decryption of the received
encrypted message using the servers public key, Pus(Prs(S)), yields S, then the client node
determines that it has successfully authenticated the identity of the remote file server node.
Thus, the client node presumes that only the remote file server node has the capability (most
notably, the counterpart private key Prs) for encrypting S in a fashion that it can be perfectly

decrypted using the server's public key Pus to recover S.

-36-

10

15

20

WO 01/33829 PCT/US00/30201

Assume that the client node has successfully authenticated the identity of the remote
file server node. Next in step S216, the client node encrypts the second random string K with
the client node's private key Prc to produce the encrypted second random data string Prc(K).
The client node then transmits the encrypted second random data string Prc(K) to the remote
file server node. In step S218, the remote file server node attempts to decrypt this received
encrypted second random data string Prc(K) with the public key Puc stored for this client
node (for accesses to this virtual storage device). In step S220, the remote file server

determines whether or not the attempted decryption with the public data key of the client

node, Puc(Prc(K)) yields the second random data string K. If not, then in step $222, the

remote file server determines that it has failed to authenticate the identity of the client node

and denies or breaks the connection. On the other hand, if the attempted decryption with the

public data key of the client node, Puc(Prc(K)) yields the second random data string K, then

the remote file server node determines that it has successfully authenticated the identity of the
client node. That is, the remote file server node determines that only the client node has the
capability (most notably, the appropriate private key Prc) for encrypting the random string K
in a fashion such it is decrypted with the public key Puc, to yield the second random string K.
In such a case, the remote file server node grants the connection in step S224.

Thus, in summary, the client node authenticates the identity of the remote file server
node and the remote file server node authenticates the identity of the client node. The
connection is deemed authenticated only if the client node authenticates the identity of the
remote file server node and the remote file server node authenticates the identity of the client
node. After the connection is authenticated, the client node can access file data at the remote
file server node in a fashion which maintains the integrity of the file data (as described

below).

-37-

10

15

20

WO 01/33829 PCT/US00/30201

Next, a process is described by which file data (and possibly other éensitive
information, such as directory information, etc.) is securely uploaded and downloaded via the
authenticated connection between the client node and the remote file server node. As noted
above, the Internet actual consists of several private networks maintained and operated by
unknown parties. Neither the client node nor the remote file server node make§ any
assumptions regarding the security of data in transit over the Interet and instead the presence
of unauthorized eavesdropping parties is presumed to be ever-present. Moreover, the client
node also does not presume that the remote file server node is secured and takes measures to
ensure that no unauthorized access to the file data can occur at the site of the remote file
server node(s).

FIG 8 illustrates a process carried out for secured uploading of file data from the client
node to the remote file server node. Assume that the client node has file data to upload to the
remote file server node. In step S300, the client node creates a file header including the
information indicating the file size, segment size and number of segments. It may be possible
to actually provide less information. For example, if the segment size is constant over the file
transfer, but not known ahead of time, then the file size and segment size need only be
specified (the number of segments being the quotient of the file size/segment size).
Alternatively, only the number of segments and the segment size need be specified. In
addition, when writing only a portion of a file, i.e., less than all of the segments, it is desirable
to specify an offset from the beginning of the file at which the uploaded file data portion is to
Be written. The offset can, for example, be specified by the number of segments or empty
slots specifying the amount of data to skip forward from the beginning of the data file before
writing the uploaded data. In addition, the file header illustratively includes an object

identifier (OID) for the particular data key used for encrypting the file data to be uploaded.

-38-

10

15

20

WO 01/33829 PCT/US00/30201

By adding a data key to the OID, it is possible to use multiple data keys to encrypt the data on
a given virtual storage device. The OID can be used to identify which data key must be used
to encrypt or decrypt the file data.

In step S302, the client node transfers the next to-be-uploaded segment of file data to

a buffer. Illustratively, the buffer is a portion of main memory storage space of sufficient

capacity for holding the segment data temporarily. Next, in step S304, the client node
compresses the file data segment in the buffer. This reduces the amount of information (i.e.,
number of bits) representing the file data segment. Illustratively, a lossless entropy coding
compression technique is used, such as Huffman encoding. In step S306, the client node
encrypts the compressed data in the buffer using the data key. Illustratively, the particular
encryption technique used allows for decryption with the same data key. Any one of a
number of well-known encryption techniques can be used, such as RSA™'s 128-bit key
RC5™ encryption technique. In step S308, the client node appends the header created in step
S300 to the encrypted data and transmits the data via the (I/0 device of the client node and
the) Internet to the remote file server node. Illustratively, the transmission control protocol
and the Internet protocol (TCP/IP) are used to transmit and to acknowledge uncorrupted
receipt of data. In step S310, the remote file server node receives the transmitted encrypted
and compreésed file data including the header. Using the offset information in the header, the
remote file server locates the correct storage space, within the respective (master) copy of the
file at the remote file server node, at which writing is to begin. The remote file server node
then writes (causes the storage device to write) the encrypted, compressed file data segment
beginning at the respective offset.

At step S312, the client node determines if the transfer of the portion of the file has

completed. If not, the client node returns to step S302 and transfers the next to-be-uploaded

-39-

10

15

20

WO 01/33829 PCT/US00/30201

segment to the buffer. Note that in step S308, the client node may omit or suitably modify the
file header in whole or in part for subsequently transmitted encrypted and compressed file

data segments. When the client node determines that the last encrypted and compressed file

data segment has been transferred in step S312, the upload process stops.

It should be noted that the above-description presumes that the client node had the
necessary file sharing rights and privileges access rights to perform the above noted upload
operation. It is also presumed that the client node had the most recent or updated version of
the data uploaded. A discussion as to how this is achieved is described below. (However, it
should be noted that the enforcement of privilege access rights and file sharing modes
illustratively is primarily a function of the operating system. The role of the system according
to this embodiment of the invention is primarily to convey the results of such enforcement
and certain other file integrity maintenance operations described below. As such, the
discussion pertaining to file sharing mode adherence and privilege access rights is
abbreviated.)

FIG 9 illustrates a download process for securely transferring file data from the remote
file server node to the client node. The process in FIG 9 presumes that an authenticated
connection has been established and the client node transmits a request to the remote file
server node to download part of the file.

Note that the request can be a new request, i.e., a request not previously initiated, or a request
to resume a partially completed process. The former would occur if the communication
channel between the remote file server and the client node is interrupted or closed before
completion of the download request. Thus, in step $320, the remote file server node initially
determines if the download request is new or if the download request is to resume/complete

transfer of file data which request has been partially satisfied. If this is a new request, in step

-40-

10

15

20

WO 01/33829 PCT/US00/30201

S322, the remote file server node sets an internal counter "Next Segment" to indicate the first
to-be-downloaded segment, e.g., equal to zero. On the other hand, if the request received at
the remote file server node is to resume a partially completed request, then, in step S324, the
remote file server node sets the internal counter "Next Segment" to indicate the next
to-be-downloaded segment following the last successfully downloaded segment, e.g., equal to
the bytes alfeady successfully downloaded divided by the segment size.

In any event, after either step S322 or S324, in step S326, the remote file server node
transmits to the client node the file header stored for the file from which the client node has
requested file data. The client node receives the file header and obtains the OID of the data
key from the file header. In step S328, the client node uses the OID to retrieve the
appropriate data key using the OID, including, if necessary, requesting that the remote file
server download the appropriate data key. In such a case, the client node transmits a request
for the appropriate data key to the remote file server node. The remote file server node uses
the OID to identify the appropriate encrypted data key and transmits this encrypted data key to
the client node. Illustratively, the encrypted data key is retrieved from a list of encrypted data
keys stored in the client user record associated with the client user currently operating the
client node. The manner by which multiple data keys are stored at the remote file server node
is described in greater detail below. In step S330, the client node obtains the appropriate
encrypted data key and decrypts the data key using the private key specific to the client node.

Next, in step S332, the client node extracts the buffer size and header slot/offset
information. Initially, such information is specified by the file header. Next, in step S334,
the client node transmits a request to the remote file server node to download a portion of file
data, of a certain amount of information (e.g., a number of bytes equal to the capacity of a

buffer set aside in the main memory of the client node for receiving downloaded data),

41-

10

15

20

WO 01/33829 PCT/US00/30201

beginning at a specified offset from the beginning of the data file. The remote file server
node responds to this request by retrieving the requested portion of file data from the
appropriate storage device and transmitting the portion of file data to the client node, e.g., via
TCP/IP. In step S336, the client node decrypts the data in the buffer using the data key
obtained in step S330. Then in step S338, the client node decompresses the decrypted data
and transfers the decompressed, decrypted data to an appropriate storage location of an
internal storage memory (the memory12 and/or the disk memory 15). For example,
considering that the file data is downloaded in segments, the client node illustratively pieces
together in proper sequence the downloaded, decompressed and decrypted data segments to
reproduce a replica copy of the requested file data. In step S340, the client node determines
whether or not the all of the requested file data has been successfully downloaded. If not,
then in step S342, the client node increments it's counter of the Next segment to be
downloaded and causes steps S332-S340 to be repeated.

As noted above, it is sometimes desirable to generate new data keys. For example, if
a certain client user is removed from the group of client users to have access to the virtual
storage device, it is desirable to change the manner of encrypting and decrypting new file data
from that point forward. The reason is that the removed client user has all of the old data
keys and could theoretically use them to decrypt file data intercepted while in transit. In the
alternative, it simply might be desirable to use different data keys periodically to thwart
security breaches of the entire group of files stored on the virtual storage device through
discovery of a single data key. In any event, a client node capable of allocating a new data
key for use by the client users of the group does so as follows. First, the client node generates
the new data key. This data key may be used to encrypt file data transferred to the remote file

server node. The client node then encrypts the new data key using is public key Puc to

-42-

10

15

20

WO 01/33829 PCT/US00/30201

produce an encrypted new data key Puc(new data key). The client node then transmits (e.g.,
via the Internet) the encrypted new data key Puc(new data key) to the remote file server with a
command for instructing the remote file server node to store the new data key and to assign an
OID to the new data key. The remote file server responds by storing the encrypted new data
key Puc(data key) in the list of keys associated with the client user operating this client node, v
e.g., in the client user record for the client user.

Preferably, each client user in the pre-subscribed user group maintains a complete list
of all public keys Puc', Puc",..., etc. of every other client user of the pre-subscribed user
group. The complete list is accurate since every time a new client user is added, the new
client user's public key is transmitted to each client user in the pre-subscribed user group.

Alternatively, the client node sequentially requests (e.g., by transmitting request
commands via the Internet to the remote file server node) the public key Puc', Puc",..., etc. of
each client user of the group for which the client node desires to provide the new data key.
The remote file server node responds by retrieving and transmitting to the client node via the
Internet the public key of each client user Puc', Puc",..., etc. which this client user node has
requested. The client node then encrypts the new data key using each of these received public
keys Puc', Puc",..., etc. to produce encrypted new data keys Puc'(new data key), Puc"(new
data key),..., etc.

The client node then transmits to the remote file server node via the Internet each of
these encrypted new data keys Puc'(new data key), Puc"(new data key),..., etc. for storage in
the respective user records associated with the corresponding client user. That is, the
encrypted new data key Puc'(new data key) is stored in the client user record associated with
the client user having the public key Puc', the encrypted new data key Puc"(new data key) is

stored in the client user record associated with the client user having the public key Puc", etc.

-43-

10

15

20

WO 01/33829 PCT/US00/30201

Note that the remote file server node never has a clear-text, i.e., non-encrypted form,
of any data key. Rather, all the remote file server has in its possession is multiple encrypted
versions of each data key, where each data key is encrypted using the public key of a
respective client node. However, only the possessor of the respective private key, namely, the
respective client node, can decrypt such encrypted data keys. In short, only a given client
node knows the reépective methodology (in this case, the private key) for decrypting its
respective copies of each data key. More importantly, although the remote file server never
has a clear-text copy of a data key, it maintains each public which can be used to encrypt such
data keys for each client node.

FILE ACCESS AND INTEGRITY MAINTENANCE

The remote file server node and client nodes maintain the integrity of the group of
files on the virtual storage device by ensuring that all accesses to the (master) copies of the
files maintained on the virtual storage device occur on the most up to date version of these
(master) file copies. This can be tricky considering that:

(a) multiple users can access the group of files simultaneously;

(b) depending on the explicit and implicit file sharing modes specified by the
native file application programming interfaces for certain files, certain files
may be accessed by multiple client nodes simultaneously;

(c) for sake of communication efficiency, a local copy of accessed file data is
typically transferred to, and maintained at, the client node so that file accesses
tend to occur on the local copy; and

(d) this embodiment of the invention supports "disconnected mode" file access,

according to which a client node may continue to access the local copy of the

-44-

10

15

20

WO 01/33829 PCT/US00/30201

file data even though the client node may be unable to communicate with the
remote file server node.

However, such file integrity maintenance provides a very predictable outcome for file and

directory modifications-either the modification is achieved as expected or not permitted at all.

This enables all native operating system application programming interfaces to operate so that
all multi-user applications accessing the files function as if the remote file server node and the

client nodes, at which such multi-user applications execute, were on the same local area

network. In short, although the remote file server node is separated from one or more of the

client nodes by a wide area network, and although communication is not always possible
between the remote file server node and any given client (and in fact is not guaranteed or even
needed between any two of the client nodes), the same expected behavior is achieved as can
be anticipated on a local area network which supports multi-user and shared file access.

To achieve these ends, a file version control is added to each file and each directory
stored on the virtual storage device (i.e., both with the master copy at the remote file server
node and the local copy at each client node). The file version control is used to ensure that,
whenever possible, the client node only performs an access on the most up-to-date version of

the file data. The file version control is also used to identify conflicting modifications to files

and to reconcile them. As can be appreciated, it is highly time consuming and inefficient for

the system according to the invention to transfer updated file data and directory information
for every opened file from the remote file server nodes to each respective client whenever a
change occurs. Instead, the following update policy is performed instead. Whenever a client
node attempts to open, create or delete a file, a check is first performed as described below to
ensure that the client node has the most up-to-date information. Whenever a client node

accesses directory information, a check is performed to ensure that the directory information

-45-

10

15

20

WO 01/33829 PCT/US00/30201

is up-to-date as of the time of the access. As will be described in greater detail below, in
addition to a version check performed according to the invention, file sharing mode and
privilege access right checks can also be performed at the same times.

If another client node attempts to access a file currently opened by a given client node,
the remote file server node can determine that the file is currently in use by the given client
node. The remote file server node can then determine if the given client node is still in
communication with the remote file server node or if it is out of communication, i.e., closed
its communication channel without closing the file. If the given client node is still in
communication with the remote file server node, the remote file server node maintains the
ownership or control of the file data by the given client node including enforcing any file
sharing mode locking. In this latter case, the remote file server node would only permit
access to the data in accordance with the file sharing mode explicitly or implicitly specified
by the native application programming interfaces of that particular file. If, however, the given
client node is out of communication with the remote file server node, the remote file server
node can close the file on behalf of the given client node thereby relinquishing control of the
file by that given client node and allowing access by the other client node. As described in
greater detail below, this latter set of circumstances, coupled with the given client node's
ability to continue to modify its copy of the file while out of communication with the remote
file server node, requires each client node to perform a reconciliation operation upon
restoration of communication with the remote file server node.

In the case that a client node writes to, or modifies, its local copy of file data or
directory information, the client node uploads its modifications to the remote file server node.
Hlustratively, in the case of file data, the uploading of modified file data is deferred until the

client node closes the file. So long as a client node remains connected to the remote file

-46-

10

15

20

WO 01/33829 PCT/US00/30201

server node, no version checking is needed for uploading and storing file data modifications
as no other client node will be granted write access to the same file in a fashion which
violates a file sharing mode of the file. However, if the communication channel between the
client node and the remote file server node closes, the remote file server node will have
closed the file vis-a-vis the client node. It is possible under such circumstances for the remote
file server node to have granted write access permission to another client node (as described
above) and to have received and stored modifications from that other client. Thus, upon
restoration of the communication channel, the client node and remote file server node first
perform a reconciliation process, including checking the version of the client node's locally
stored copy of the modified file against the version of the (master) copy of the file stored at
the remote file server node, as described in greater detail below.

FIG 10 illustrates a process executed by the client nodes and the remote file server
nodes. Assume that the client node and remote file server node have already authenticated
the connection. In step S400, the client node determines if communications have been
restored. This can occur by reason of establishment of a new connection or by reason of
restoration of communication with the remote file server node after detection of a loss of
communication with the remofe file server node, even with an existing connection. If so, the
client node and the remote file server node engage in a reconciliation operation in step S402.
This is described in greater detail below.

Next, in step S404, the client node determines whether or not there is a need to access
a file or directory of the file group stored on the virtual storage device. Here, the term
"access" includes the operations of "read," "modify/write," "create," and "delete." If no such

access is detected at the client node, the client node returns to step S400.

-47-

10

15

20

WO 01/33829 PCT/US00/30201

Assume now that a file or directory access must be performed at the client node. In
step S406, the client node determines if the requested operation is one which requires a
version check. Illustratively, any access to directory information, or the operations of
opening, creating or deleting a file require a version check. However, operations of
examining or changing the contents of an already opened file do not require a version check.
Also, the operations of closing a file and uploading the modifications to the file data made by
the client node illustratively do not require a version check. If no version check is required,
the client node proceeds to step S414 and attempts to perform the requested access operation.
Many of the attempted requested access operations are simply performed according to the
normal operation of the operating system and/or application executing at the client node
through which the access request was generated. However, in the case of a close operation
performed on a file modified by the client node, the upload process described above is also
carried out for purposes of uploading the modifications io the file data.

If a version check is required, then, in step S408, the client node transmits via the
Internet to the remote file server node a request to check the version of the local copy of the

file data or directory information currently maintained at the client node (e.g., in the main

memory 12 or disk memory 15). The request includes the version number of the respective

local copy of the file data or directory information, if a local copy of such information is
possessed by the client node. Of course, if the client node lacks any copy of the directory
information or file data to be accessed, the client node can instead issue a request for the file
data or directory information. The loop of steps S409-S410 is continuously performed until a
time-out timer expires in step S409 or the condition of step S410 is satisfied. In step S410,
the client node determines whether or not the client node has received any response from the

remote file server node. If the client node fails to receive a response form the remote file

-48-

10

15

20

WO 01/33829 PCT/US00/30201

server node within the time limit of the time-out timer, the client node presumes that it is out
of communication with the remote file server node. If so, then in step S412, the client node

obtains its local copy of the file data or directory information, if any. In step S414, the client

node attempts to perform the access operation on the file data or directory information, e.g.,

using the operating system or application which requested the access. In this case, the client
node attempts to perform the requested access on its local copy of the file data or directory
information if the client node has any. Note that if the client node does not have the requisite
file data or directory information, the attempted request fails in accordance with the normal
operation of the operating system, or application. In addition, if the operation is a close file
operation or any operation which modifies directory information, the client node illustratively
defers uploading the modifications. As described below, the uploading of such modifications
occurs during the reconciliation process S402, if at all.

If, in step S410, the client node received a response from the remote file server node,
the client node determines, in step S416, whether or not the access is permitted. As will be
described below, there are two circumstances in which the requested access is not permitted,
namely, the client node lacks sufficient access right privileges to perform the access and/or
the requested access conflicts with a file sharing mode of the file explicitly or implicitly
specified by the native application programming interface of the file. If the requested access
has been denied or aborted, the client node illustratively provides an appropriate abort/failure
message to the user indiéating why the access was denied, e.g., displays the message on the
display monitor 16, and then returns to the loop S400-S404. On the other hand, if the
requested access has been granted, then, in step S414, the client node performs the requested

access, i.e., opening a file, creating a file, deleting a file, changing a directory attribute, etc.

-49-

10

15

20

WO 01/33829 PCT/US00/30201

Steps S420-S430 are performed by the remote file server node in response to
recelving a version/access request message or a simple message to retrieve file data or

directory information. In step S420, the remote file server node checks to determine if the

client node has sufficient privilege access rights to perform the requested operation. For

example, if the client node only has read access privilege rights on all files in a directory and

the client node desires to open a file for writing to it, the client node lacks sufficient privilege

access rights to perform the requested access. Illustratively the details for this check are

performed using operating system software supplied with the remote file server node. If the

client node user does not have the requisite access privilege rights, the remote file server node
aborts the operation and transmits to the client node via the Internet a message indicating that
the client node user lacks the requisite access privilege rights to perform the requested access
in step S424. This message is detected by the client node in steps S410 and S416.

Assume that the client node user does have the requisite access privilege rights to
perform the requested access. In step S422, the remote file server node next checks to
determine if the requested access adheres to implicit and explicit native file sharing modes

specified by the native file application programming interface governing the file data or

directory to be accessed. As noted, above, such a determination is made using the operating

system supplied with the remote file server node. If the requested access does not adhere to
the file sharing modes of the file, the remote file server node aborts the operations and
transmits via the Internet to the client node a message indicating that the requested access
could not be performed at this time as it conflicted with a file sharing mode of the file or
directory in step S424. This message is detected by the client node in steps S410 and S416.
Assume that the requested access does adhere to such file sharing modes. In step

5426, the remote file server node checks the version number (if any) in the message supplied

-50-

10

15

20

WO 01/33829 PCT/US00/30201

by the client node against the version number of the (master) copy of the file or directory
information stored at the remote file server node. If the version numbers match, then the
client node has the most up-to-date version of the file data and/or directory information. In
such a case, the file server node simply transmits via the Internet to the client node a message
indicating that the client node has the most up-to-date copy of the file data and/or directory
information and therefore approves the access in step S430. This approval is detected by the
client node in steps S410 and S416.

If the client node did not have any copy of the file data or directory information or if
the version number provided by the client node does not match the current version number for

the copy of the file data or directory information stored at the remote file server node, the

remote file server node performs step S428. In step S428, the remote file server node

downloads to the client node the requested file data or directory information, as described in
connection with FIG 8. Amongst other things, this downloaded file data and/or directory
information is detected by the client node in steps S410 and S416.

As can be appreciated, a client node can obtain the latest version of file data or

directory information and store it as a local copy in order to perform accesses. This provides

_ two benefits. First, the local copy acts as a "cached copy" in that it is much easier to access

the local copy than to perform the accesses via the Internet. Second, in the event that the
client node is incapable of communicating with the remote file server node, the client node
can continue to perform accesses on its local copy.

According to one embodiment, a client node can specify a desire to "hoard" one or

more files and/or directories. For example, a client node user can specify a desire to hoard

specific files and/or directories. This results in the client node transmitting a message to the

remote file server node indicating this hoarding request. In response, the remote file server

-51-

10

15

20

WO 01/33829 PCT/US00/30201

node monitors each of the files or directories indicated as hoarded by each client node.
Periodically, the remote file server node performs a pass over all of the files and directories
indicated as hoarded. If the remote file server node detects that such hoarded file data or
directories contain recent changes, the remote file server node downloads appropriate
modified file data or directory information to each respective client node hoarding the
respective files and/or directories. The client node then updates its locally cached copy of the
hoarded files and directories. As a result, the client node can ensure that between accesses to
such hoarded files or directories, the remote file server node is continuously updating such
files and directories.

The net result is that the client node is likely to always have the latest or most updated
version of the hoarded files and directories. Thus, when the client node desires to access such
hoarded files or directories, the client node likely can avoid any delays in accessing such
hoarded files or directories incurred while the latest or most updated version of the files or
directory information is downloaded. Moreover, as described below, should the client node
access an outdated version of a file while out of communication with the remote file server
node, there is aipossibility that, upon re-establishment of the communication channel with the
remote file server node, the client node user will have to manually reconcile a conflict. By
hoarding key files and directories, the client node reduces the risk that an outdated version of
the file or directory will be accessed by the client node while out of communication with the
remote file server node.

RECONCILIATION

If the client node is incapable of communicating with the remote file server node, the

communication channel is said to be closed. If a given client node closes its communication

channel, or, alternatively, the remote file server node closes the communication channel with

-52-

10

15

20

WO 01/33829 PCT/US00/30201

the given client node, prior to closing a file or directory last accessed by the given client node,
the remote file server node can relinquish control of that file or directory by the given client
node. This enables another client node to access the file or directory. Nevertheless, the given
client node is enabled to access its local "cache" copy of the file or directory while out of
communication with the remote file server node. As can be appreciated, it is possible that the
two client nodes may perform incompatible modifications to the file data or directory
information. According to the invention, an elaborate reconciliation mechanism is provided
to reconcile such incompatible changes.

In the reconciliation mechanism according to the invention, modifications made to the
(master) copy of file data or directory information are given preference to modifications made
by a client node while out of communication with the remote file server node. Nevertheless,

there are certain circumstances where modifications made by the client node while out of

. communication with the remote file server node will be stored at the remote file server node.

As noted in FIG 10, when a client node restores communication with the remote file
server node, the client node performs a reconciliation operation. During this operation, the
client node first identifies each local copy of file data and directory information maintained
locally in a storage device (e.g., disk memory 15) physically present at the client node. The
client node then checks the version of each such locally maintained copy of file data and
directory information by transmitting a message to the remote file server node.

In response, the remote file server node checks the version of the respective file data
or directory information to see if the same version number is recorded in the (master) copy of
the respective file data or directory information maintained by the remote file server node in
the virtual storage device. If so, then no modifications were made to the (master) copy of the

respective file data or directory information maintained at the remote file server node while

-53-

10

15

20

WO 01/33829 PCT/US00/30201

the client node was out of communication with the remote file server node. If a modification
was made, then the version numbers will not match. The specific actions taken by the client
node and remote file server node depend on which modifications were made to the (master)
copy of the file data or directory information maintained at the remote file server node and the
local copy at the client node. These actions are summarized in FIGs 11 and 12. In FIGs 11
and 12, the client node often is required to perform some reconciliation action. Illustratively,
the remote file server node transmits appropriate sufficient messages regarding the outcome
of the validity check described above for enabling the client node to perform the correct
respective reconciliation action.

FIG 11 contains a chart summarizing the reconciliation actions taken by the remote
file server node and the client node in regard to reconciling changes that affect file data or
files. For convenience, each cell of the chart is labeled with a row number R1, R2, R3, R4
and RS and a column number C1, C2, C3, C4 and C5. The rows R1-R5 contain cells
indicating the actions taken when the client node: makes no changes to the file data (R1);
modifies the file data (R2); renames or moves the file (R3); deletes the file (R4); or deletes
the directory containing the file (R5). The columns contain cells indicating actions taken
when: no changes were made to the copy of the file data at the remote file server node (C1);
the copy of only the file data at the remote file server node was modified (C2); the copy of the
file at the remote file server node was renamed or moved (C3); the copy of the file at the
remote file server node was deleted (C4); or the directory containing the file at the remote file
server node was deleted (C5).

In addition, there may be several actions taken at the client node (R1-R5) for each file,
such as a client node changes the file data, moves it to another directory and deletes the

original directory. Even though several actions are being taken, the general rule applies

-54-

10

15

20

WO 01/33829 PCT/US00/30201

which is that the files at the remote file server node are taken as correct. At the client node,
the file is only presumed correct if it does not conflict with the remote file server copy. If
there is a conflict that cannot be rectified, it is moved to the conflict bin of the client node.

Consider the scenarios where, while the client node was out of communication with
the remote file server node, no changes were made to the (master) copy of the file at the
remote file server node (column C1). In the simplest case, the client node also makes no
changes to the file (R1, C1). In such a case, no action is taken by either the remote file server
node or the client node. If the client node made a change to the contents of the file data, i.e.,
modified or wrote to the file (R2, C1), the modifications (or the entire modified file) are
uploaded from the client node to the remote file server node using the upload process
described above. The remote file server node saves this modified file data. On the other
hand, if the client node renames the file or moves it to another directory (R3, C1), the remote
file server node performs the same renaming or movement action on the (master) copy of the
file maintained at the remote file server node. Likewise, if the client node deletes the file (R4,
C1) or the entire directory containing the file (R5, C1), the remote file server node deletes the
(master) copy of the file maintained at the remote file server node.

Consider now the situation where, while the client node was out of communication
with the remote file server node, the copy of the file data at the remote file server node was
changed, i.e., modified or written to (C2), e.g., by another client node. If the client node did
not change its local copy of the file while out of communication with the remote file server
node (R1, C2), then the client node simply invalidates the local copy of the file. Likewise, if
the client node changed its local copy of the file data (R2, C2), the local copy of the file data
is invalidated. In addition, the client node's local copy of the file data is moved to a local

directory physically stored at the client node (e.g., on the client node's disk memory 15) called

-55-

10

15

20

WO 01/33829 PCT/US00/30201

the "conflict bin." The conflict bin is a directory (of the disk memory 15) at the client node in
which the client node places information or file data indicative of unresolvable conflicts.

This enables the client node user to examine such information or file data at its leisure and
resolve conflicts in it. In any of the cases where the client node renamed/moved its local copy
of the file (R3, C2), deleted its local copy of the file (R4, C2) or deleted the entire directory
containing the file (RS, C2), the modified (master) copy of the file at the server is downloaded
to the client node and placed in the conflict bin.

Consider now the situation where, while the client node was out of communication
with the remote file server node, the (master) copy of the file at the remote file server node is
renamed or moved (C3), e.g., by another client node. If the client node did not change its
local copy of the file data (R1, C3), then the client node performs the corresponding renaming
or movement actions on its local copy of the file containing the unchanged file data. On the
other hand, if the client node changgd the file data, i.e., modified the file data or write to the
file data (R2, C3), then the client's local copy of the file data is moved to the conflict bin. In
addition, the modifications to the file data (or entire file) are uploaded to the remote file
server node. The remote file server node stores the modified file data (or entire modified file)
under the new name or moved location of the file. If the client node changed the name of the
file or moved it (R3, C3) differently than was done to the (master) copy of the file at the
remote file server node, then the client node places a warning message in the conflict bin
indicating that the client node's renaming or movement was not performed for the file. If the
client node deleted the file (R4, C3), the deletion operation is not performed at the remote file
server node. Rather, the client node places a warning in the conflict bin indicating that the

delete operation was not performed. If the client node deleted the directory containing the file

-56-

10

15

20

WO 01/33829 PCT/US00/30201

(RS, C3), the file data (or entire file) is downloaded to the client node and placed in the
conflict bin.

Consider now the scenarios where, while the client node is out of communication with
the remote file server node, the (master) copy of the file at the remote file server node was
deleted (C4), e.g., by another client node. Consider also the scenarios where, while the client
node is out of communication with the remote file server node, the entire directory containing
the (master) copy of the file at the remote file server node was deleted (C5), e.g., by another
client node. Both of these scenario classes have the same impact on the file itself,
Specifically, both are acts which delete the (master) copy of the file at the remote file server
node. (The impact on reconciling the directories is different as will be described below.)
These two scenarios are therefore described together.

If the client node did not change, i.e., modify or write to, its local copy of the file data
(R1, C4 or R1, C5), the client node simply deletes or invalidates its local copy of the file data.
If the client node had changed, i.e., modified or written to, its local copy of the file data (R2,
C4 or R2, C5), the client node moves its local copy of the file data (or entire file) to the
conflict bin. Likewise, if the client node had renamed or moved the file (R3, C4 or R3, C9),
then the client node moves its local copy of the file data (or entire file) to the conflict bin. In
addition, in any of scenarios R2, C4; R2, C5; R3, C4; or R3, CS, the client node uploads the
file to the remote file server node which stores the uploaded copy under the new name or
moved directory location. In any of the scenarios where the client node deleted the file (R4,
C4 or R4, C5) or deleted the entire directory containing the file (RS, C4 or RS, C5), no action
need be taken as there is nothing to reconcile.

FIG 12 contains a chart summarizing the reconciliation actions taken by the remote

file server node and the client node in regard to reconciling changes that affect directories.

-57-

10

15

20

WO 01/33829 PCT/US00/30201

For convenience, each cell of the chart is labeled with a row number R1', R2', R3", R4' and
R5'"and a column number C1', C2', C3', C4' and C5'. The rows R1'-R5' contain cells
indicating the actions taken when the client node: makes no changes to the directory (R1');
changes, i.e., modifies, a directory attribute (e.g., the privileges of one or more users or
groups of users) (R2'); adds a file or child/subdirectory to a directory (R3'); renames or moves
a directory (R4'); or deletes a directory (R5'). The columns contain cells indicating actions
taken when: no changes were made to the directory at the remote file server node (C1); the
copy of the directory attributes at the remote file server node changed (C2); a file or
child/subdirectory was added to the copy of the directory at the remote file server node (C3);
the copy of the directory at the remote file server node was renamed or moved (C4); or the
copy of the directory at the remote file server node was deleted (C5).

Consider the scenario where, while the client node was out of communication with the
remote file server node, the (master) copy of the directory was not changed/modified at the
remote file server node (C1'). In the simplest case, the client node also has not
changed/modified the directory (R1', C1') in which case no action is needed. If the client
node: changed/modified one or more attributes of the directory (R2', C1'); or added one or
more new files and/or child/subdirectories to the directory (R3', C1"); then the respective
attribute modifications, e.g., changed attributes; or new file and/or child/subdirectory entries;
are uploaded to the remote file server node. In response, the remote file server node makes
the corresponding attribute modifications or adds the corresponding new file and/or
child/subdirectory entries, to the respective attribute in the (master) copy of the directory
stored at the remote file server node. If the client node deleted the directory (R5', C1'), then

the remote file server node deletes its (master) copy of the directory.

-58-

10

15

20

WO 01/33829 PCT/US00/30201

Consider now the scenario where, while the client node was out of communication

with the remote file server node, an attribute of the (master) copy of the directory at the

remote file server node was changed/modified (C2'), e.g., by another client node. In the

simplest case, the client node did not change/modify its local copy of the directory
information (R1', C2') in which case modifications to the (master) copy of the directory
information at the remote file server is downloaded to the client node and the client node
stores/makes the same modifications to its local copy of the directory information. If the
client node also changed/modified its local copy of the directory (R2', C2') then, the client
node places a warning in its conflict bin advising that the directory at the remote file server
node was modified while the remote file server node was out of communication with the
client node in a fashion which was incompatible with a change/ modification made by the
client node under the same period of time. Suppose that the client node adds one or more
files or child/subdirectories to the directory (R3', C2'). Such additions may be either
compatible or incompatible with the attribute changes/modification made to the (master) copy
of the directory information. An example of incompatibility is where the attributes of the
(master) copy of the directory information are changed to make the directory read only for at
least the user of the client node. This would prohibit any modifications to the directory or its
contents by the client node, including prohibiting the addition of new files or child/
subdirectories. If the client node additions are compatible, they are uploaded from the client
node to the remote file server node and stored in the directory. Furthermore, if compatible
with the privilege access rights of the client node user as now dictated by the modified
attributes, the attribute modifications are downloaded to the client node and stored locally.
Otherwise, each incompatible newly added file and child/directory entry is moved to the

conflict bin. Lastly, if the client node renames or moves the directory (R4', C2'") or deletes the

-59.

10

15

20

WO 01/33829 PCT/US00/30201

directory (RS', C2'), the corresponding renaming/movement or deletion operation is also
performed at the remote file server node.

Consider now the situation where, while the client node was out of communication
with the remote file server node, one or more files and/or child/subdirectories are added to the
(master) copy of the directory at the remote file server (C3"), e.g., by another client node. If
the client node made no changes/modifications to the directory (R1', C3"), then the added file
and child/subdirectory entries are downloaded from the remote file server node to the client
node. If the client node changed/modified one or more attributes of the directory (R2', C3"),
the added file and child/subdirectory entries are nevertheless downloaded from the remote file
server node to the client node where they are stored locally. If the client node also added files
or child/subdirectories (R3', C3"), a determination is first made to see if any are incompatible
with the added files or child subdirectories at the remote file server node. An example of an
incompatible entry is where both the client node and the remote file server node both
attempted to add a file or child/subdirectory having the same name. If the additions made by
the client node are compatible with the additions made at the remote file server node then the
file and child/subdirectory entries made by the client node are uploaded to the remote file
server node where they are stored and the file and child/subdirectory entries made by the
remote file server node are downloaded to the client node where they are stored locally. On
the other hand, the client node moves each of the client node's file or child/subdirectory
entries, which are incompatible with the file or child/subdirectory entries made at the remote
file server node, to the conflict bin. If the client node renamed or moved the directory (R4',
C3') then the remote file server node correspondingly renames or moves the directory. In
addition, the new file and child/subdirectory entries are downloaded from the remote file

server node to the client node. If the client node deleted the directory (R5', C3'), the new files

-60-

10

15

20

WO 01/33829 PCT/US00/30201

and directories are downloaded from the remote file server to the client node and the client
node places them in the conflict bin. The remote file server node then deletes the (master)
copy of the directory at the remote file server node.

Consider now the scenarios where, while the client node was out of communication
with the remote file server node, the (master) copy of the directory at the remote file server
node is renamed or moved (C4'), e.g., by another client node. If the client node made no
changes/modifications to its local copy of the directory (R1', C4') then the client node
correspondingly renames or moves its local copy of the directory in conformity with the
remote file server node. If the client node change one or more attributes of the directory (R2',
C4') then the client node nevertheless correspondingly renames or moves its local copy of the
directory in conformity with the remote file server node. However, the client node also
uploads the attribute changes to the remote file server node which stores them. In a similar
fashion, if the client node added one or more new files or child/subdirectories (R3', C4') then
the client node nevertheless correspondingly renames or moves its local copy of the directory
in conformity with the remote file server node. However, the client node also uploads the
new file and child/subdirectory entries to the remote file server node which stores them. If
the client node renamed or moved the directory (R4', C4'), a determination is first made to see
if the client node performed an identical renaming and/or moving operation. If so, no action
is taken. Otherwise, the client node places a warning in the conflict bin indicating that the
move or rename operation at the client node could not be effected at the remote file server
node. If the client node deleted the directory (R5', C4') then the client node places a warning
in the conflict bin indicating that the delete operation could not be performed at the remote
file server node. In addition, the client node downloads from the remote file sever node a

copy of the directory and stores it locally.

-61-

10

15

20

WO 01/33829 PCT/US00/30201

Consider now the scenarios where, while the client node is out of communication with
the remote file server node, the (master) copy of the directory at the remote file server node is
deleted (C5'), e.g., by another client node. If the client node made no changes to the directory
(R1', C5') or only changed one or more attributes of the directory (R2', C5') then the client
node simply deletes the direct@ry. If the client node added one or more new files or
child/subdirectories to the directory (R3', C5') then the client node moves the new files and
child/subdirectory entries to the conflict bin. The client node also deletes the locally stored
copy of the directory. If the client node moved or renamed the directory (R4', C5') then the
client node stores a warning in the conflict bin indicating that the directory had been

previously deleted at the remote file server node. In addition, the directory is uploaded from

the client node to the remote file server node. Lastly, if the client node also deletes the

directory (RS', C5') then no action is performed.
DISTRIBUTED ACCESS CONTROL

As noted above, prior to enabling client nodes to access directories or file data (most

notably, transmitting to client nodes copies of directory entries and file data for reading or

writing, or storing modified directory entries and file data received from client nodes), the
remote file server nodes perform two access checks on file data and directory entries.
Specifically, the remote file server nodes check to make sure that the client node requesting
the access operation has sufficient access privilege rights to perform the requested file data or
directory access. In addition, the remote file server node also checks to make sure that the
requested access adheres to explicit and implicit file sharing modes specified by the native
file application programming interfaces for the respective files. These kinds of checks can be
very time consuming. Moreover, the checks can be difficult to perform if multiple remote file

servers are available for providing the accesses to a given file or directory on behalf of

-62-

10

15

20

WO 01/33829 PCT/US00/30201

different nodes. According to this embodiment, the duties associated with access control, that

is, both privilege rights access control and file sharing mode access control are distributed to

-one or more nodes, called access control nodes, other than the remote file server nodes which

provide the data.
FIG 13 shows an illustrative environment in which this embodiment of the invention

can be used, namely, a wide area network 200, such as the Internet. As before, h20-h32

denote computer terminals and 120-r23 denote routers or switches. More specifically,

computer terminals h20-h25 denote client nodes on a local area network, which, with router
120, form subnetwork 120. Computer terminal h26 denotes a mobile client node forming
subnetwork 121. Computer terminals h27 is an access control node, which, with router 121,
form subnetwork 122. Computer terminals h28-h30 are remote file server nodes, which , with
switch 122, form subnetwork 123. Computer terminals h31-h33 are remote file server nodes,
which, with switch r23, form subnetwork 124. Illustratively, subnetworks 122-124 contain
remote file server nodes operated by the same virtual file service provider (although the
subnetworks, themselves, can be owned by an independent access provider or ISP).
Illustratively, all of the client nodes h20-h26 are operated by client users who are part of the
same group who have access to a particular virtual storage device. In addition, illustratively,
this virtual storage device is accessible through any of the remote file server nodes h28-h33.
Furthermore, assume that access control to at least one particular file is delegated to access
control node h27. For purposes of this discussion, the steps associated with version control
are omitted but nevertheless are performed either before or after the below described access

control steps.

-63-

10

15

20

WO 01/33829 PCT/US00/30201

FIG 14 illustrates a process carried out according to this embodiment of the invention.
FIG 14 is similar to the process of FIG 10. As such, only the differences between these two
embodiments will be discussed in detail below.

Assume initially, that the client node h26 desires to access a particular file or directory
for which access control has been delegated to the access control node h27. As such, the
node performs steps S400, S402, S404 and S406. Assume that the client node determines
that a version check is necessary in step S406. Assume also initially, that the delegation of
the access control is not known initially at the client node h26. In step S502, the client node
h26 first determines whether or not the client node knows of an access control node delegated
to the file or directory to be accessed. If not, the client node h26 transmits to remote file
server node h28 via the Internet a request to access the particular file as in step S408 and
waits to receive a response in steps S409-S410. Assume that a response is received. Next, in
step S508, the client node determines if the response was received from a node, other than the
remote file server node h28, which identifies itself as the access control node (namely, the
access control node h27). Advantageously, the client node h26 authenticates a connection
with this other node before communicating with it. If so, the client node stores (e.g. in
memory 12 or disk 15) an indication of the access control node h27 for the file or directory to
be accessed in step S510. The client node h26 then performs the remaining steps S416, $412,
S414, S418, etc.

Assume now that the client node h26 desires to access the same file or directory and
requires a version check. On the next access to the file or directory, the client node h26 will
determine that it knows the access control node for the respective file or directory in step
S502. Thus, in step S504, the client node h26 transmits its request directly to the access

control node h27 via the Internet. Illustratively, prior to actually transmitting the request, the

-64-

10

15

20

WO 01/33829 PCT/US00/30201

client node h26 opens an authenticated connection with the access control node h27. Next,
steps S505-S506 cause the client node h26 to wait until a time out timer expires or the
condition of step S506 is satisfied. In step S506, the client node h26 determines whether or
not a response was received. If not, it is possible that the access control node h27 is disabled
or access control has been re-assigned to a different node. In such a case, the client node h26
sends its access request to the remote file server node h28 in step S408 as above. Ifa
response is received, the client node h26 performs the remaining steps S416, S412, S414,
S418, etc.

Consider now the processing at the remote file server node h28 in response to
receiving a request from the client node h26 in step S408. At step S512, the remote file
server node h28 initially determines whether or not access control has been delegated to
another node for the file or directory for which access is requested. If not, the remote file
server node h28 performs the steps S420, S422, S424, S426, S428 and S430 as necessary to
check the privilege access rights and file sharing mode of the requested access as well as the
version of the copy of the file or directory in the possession of the client node h26. In this
case, however, the remote file server node h28 determines that access control has been
delegated to another node, naﬁely node h27. Thus, in step S514, the remote file server node
h28 forwards via the Internet the request of the client node h26 to the access control node h27
to which access control for the particular file has been delegated.

If the remote file server node h28 detects that the access control node h27 has

approved the access (message "A"), then the remote file server node h28 performs a version

check on the file or directory to be accessed in step S426, S428 and S430 as described above.

To perform the version check in step S426, the remote file server node h28 might need the

actual request information, which may have been transmitted directly from the client node

-65-

10

15

20

WO 01/33829 PCT/US00/30201

h26 to the access control node h27. The approval message transmitted by the access control
node h27 to the remote file server node h28 illustratively provides sufficient information for
performing the remaining steps.

On the other hand, it is possible that the access control node does not approve the
requested access (message "B"). In such a case, the remote file server node h28 aborts the
access in step S424.

Now consider the steps performed at the access control node h27. The request from
the remote file server node h28 or client node h26 is received at the access control node h27.
In steps S$522 and S524, the access control node h27 determines if the requesting client node
h26 has sufficient privilege access rights to perform the request and whether or not the
requested access adheres to implicit and explicit file sharing modes specified by the native
file application programming interface associated with the file. If either of these checks fail,
the access control node h27 transmits via the Internet a message to both the remote file server
node h28 and the client node h26 informing them that the requested access could not be
performed and the particular check which failed in step S528 (message "B"). On the other
hand, if the requested access passes both checks in steps S522 and S524, the access control
node h27 transmits via the Internet a message to both the client node h26 and the remote file
server node h28 approving the access in step S530 (message "A").

DISTRIBUTED VERSION CONTROL

As with access control, the steps associated with version control can be delegated to a
node other than the remote file server nodes. The node to which version control is delegated
is referred to as a version control node. Again, the reasons for doing so are for sake of

reducing the burden on the remote file server nodes. As noted above, version control is

-66-

10

15

20

WO 01/33829 PCT/US00/30201

important for purposes of maintaining integrity of the files by ensuring that each access to a
file at the remote file server nodes is performed on the latest version of the file data.

The version control node can be the same node as the access control node or a
different node. Also, different version control nodes can be delegated for different files,
different virtual storage devices, etc. However, in some applications is may be advantageous
to have the same node perform both version control and access control for the same files.

Consider the case where version control is performed at a version control node which
does not also perform access control. For example, assume that node h26 is a client node,
node h28 is the respective remote file server node and node h31 is the version control node.
FIG 15 shows a process which is a modification of the process shown in FIG 10. As such,
only the differences between the process of FIG 10 and the process of FIG 15 are described in
detail.

Assume that the client node h26 desires to access a file or a directery under conditions
requiring a version check. As such, the node performs steps S400, S402, S404 and S406.
Assume also initially, that the delegation of the version control is not known initially at the
client node h26. In step S602, the client node h26 first determines whether or not the client
node knows of a version control node delegated to the file or directory to be accessed. If not,
the client node h26 transmits to remote file server node h28 via the Internet a request to
access the particular file in step S408 and waits to receive a response in steps S409-S410.
Assume that a response is received. Next, in step S608, the client node determines if the
response was received from a node, other than the remote file server node h28, which
identifies itself as the version control node (namely, the version control node h31).
Advantageously, the client node h26 authenticates a connection with this other node prior to

communicating with it. If so, the client node h26 stores (e.g. in memory 12 or disk 15) an

-67-

10

15

20

WO 01/33829 PCT/US00/30201

indication of the version control node h31 for the file or directory to be accessed in step S610.
The client node h26 then performs the remaining steps S416, S412, S414, S418, etc.

Assume now that the client node h26 desires to access the same file or directory and

requires a version check. On the next access to the file or directory, the client node h26 will

determine that it knows the version control node for the respective file or directory in step
S602. Thus, in step S604, the client node h26 transmits its request directly to the version
control node h31 via the Internet. Illustratively, prior to actually transmitting the request, the
client node h26 opens an authenticated connection with the version control node h31. Next,
steps S605-S606 cause the client node h26 to wait until a time out timer expires or the
condition of step S606 is satisfied. In step S606, the client node h26 determines whether or
not a response was received. If not, it is possible that the version control node h27 is disabled
or that version control has been re-assigned to a different node. In such a case, the client node
h26 sends its access request to the remote file server node h28 in step S408 as above. Ifa
response is received, the client node h26 performs the remaining steps S416, S412, S414,
S418, etc.

Consider that it is possible for the client node h26 to access a file or a directory
whether or not a version check is required. Such an access may result in the
permanent/persistent modification of the (master) copy of the file or directory maintained at
the remote file server node (i.e., via an upload process). If this happens, it is desirable for the
client node to inform the version control node h31 that the version of the file or directory has
changed. Thus, after executing step S414, the client node h26 determines if a version update
is required for an accessed file of directory in step S640. If not (e.g., the access was only to a
local cache copy, the access did not result in storage of modifications to the copy of the file or

directory at the remote file server node or no separate version control node has been assigned

-68-

10

15

20

WO 01/33829 PCT/US00/30201

to the updated file or directory), then the client node h26 skips to step S400. On the other
hand, if the client node h26 did upload for storage at the remote file server node modifications
to a file or directory, for which a version control node has been delegated, the client node h26
performs step S642. In step S642, the client nod h26 transmits a version update message to
the version control node h31.

Consider now the processing at the remote file server node h28 in response to
receiving a request from the client node h26 in step S408. At step S612, the remote file
server node h28 initially determines whether or not version control has been delegated to
another node for the file or directory for which access is requested. If not, the remote file
server node h28 performs the steps S420, S422 and S424 as necessary to check the privilege

access rights and file sharing mode of the file or directory in the possession of the client node

h26. In this case, however, the remote file server node h28 determines that version control

has been delegated to another node, namely node h27. Thus, in step S614, the remote file
server node h28 forwards via the Internet the request of the client node h26 to the version
control node h31 to which version control for the particular file has been delegated.

If the remote file server node h28 detects that the version control node h27 has
finished checking the version of the file or directory (messages "C" or "D"), then the remote
file server node h28 performs the privilege access rights and file sharing mode checks in steps
S420, S422 and S424 as described above.

After executing step S422, if the file or directory to be accessed is deemed to have
passed the privilege access rights check and the file sharing mode check, the remote file
server node h28 performs step S638. In step S638, the remote file server node h28
determines whether or not a version check has already been performed. If not, the remote file

server node h28 performs step S426 as described above to determine if the client node h26

-69-

10

15

20

WO 01/33829 PCT/US00/30201

has the most up-to-date version of the file or directory to be accessed. If so, the remote file

server node informs the client node h26 that the client has the most up-to-date version of the
file or directory to be accessed (step S428) and, if not, the remote file server node h28
downloads the appropriate file data or directory information to the client node h26. In this
case, however, the version check was performed by the version control node h31. Depending
on whether the client node h26 has the niost up-to-date version of the file or directory to be
accessed (message "C") or requires downloading of the most up-to-date version of the file or
directory to be accessed (message "D"), the remote file server node performs steps $430 or
S428, respectively.

Now consider the steps performed at the version control node h31. The request from
the remote file server node h28 or client node h26 is received at the version control node h31.
In step'S622 the version control node determines whether or not. the request is simply a
request to update the version number of a file or directory recently moditied at the remote file
server node h28. If so, the version control node h31 updates the version number associated
with this file or directory in step S624. Alternatively, if the message is a request to check the
version of a copy of a file or directory to be accessed at the client node h26, the version
control node h31 performs step S626. In step $626, the version control node h31 determines
if the requesting client node h26 has the most up-to-date version of the file or directory to be
accessed. As noted above, this is achieved by determining if the version number supplied by
the client node h26 matches the version number stored at the version control node as
corresponding to the file or directory to be accessed. If the versions match (client node h26
has the most up-to-date copy), the version control node h31 transmits via the Internet a
message "C" to both the client node h26 and the remote file server node h28 indicating that

the client node has the most up-to-date version of the file or directory to be accessed. If the

-70-

10

15

WO 01/33829 PCT/US00/30201

versions do not match (client node h26 has an outdated copy), the version control node h31
transmits via the Internet a message "D" indicating that the client node h26 has an outdated or
stale copy of the file or directory (or, possibly, no copy of the file or directory) to be accessed.
In the case that both version and access control are implemented, the steps of both
processes can be integrated. For instance, in FIG 15, steps S512 and S514 can be inserted
before step S612, such that step S612 is performed only if the "No" branch of step S512 is
taken. Likewise, a combined access control-version control node can implement all of steps
S522, S524, S528, S530, S622, S5624, S628 and S636. Such a node need only transmit the
messages "B", "C" and "D", where messages "C" and "D" trigger the remote file server node
to perform step S638. Also, a client node can be modified to contact an access control node,
if one exists, and if the access is permitted, to contact a version contfol node, if one exists.
Finally, the above discussion is intended to be merely illustrative of the invention.
Those skilled in the art may devise numerous alternative embodiments without departing

from the spirit and scope of the following claims.

71-

10

15

20

WO 01/33829 PCT/US00/30201

Claims
The claimed invention is:
1. A method for providing multi-user file storage comprising the steps of:

(a) enabling each user of a pre-subscribed user group of one or more users to
connect an arbitrary client node at an arbitrary geographic location to a remote file server
node via a wide area network,

(b) enabling each user of the pre-subscribed user group to access the files of the
file group via the respective client node connected to the remote file server node via the wide
area network, including permitting more than one user of the pre-subscribed user group to
access the file group at the remote file server node simultaneously,

(©) maintaining the integrity of the files at the remote file server node by
controlling each access to each of the files at the remote file server node so that each access to
each the files at the remote file server is performed, if at all, on a respective portion of the
respective file as most recently updated at the remote file server node, thereby enabling ail
native operating system application programming interfaces to operate so that all multi-user
applications accessing the files function as if the remote server, which stores the files, and
client nodes, at which such multi-user applications execute, were on the same local area
network, and

(d) delegating access control to a particular file of the group of files to an access

control node.

2. The method of claim 1 further comprising the steps of:
(e) requesting at a particular client node access to one of the files of the group of

files, and

-72-

10

15

20

WO 01/33829 PCT/US00/30201

® if the one file is the particular file, accessing the particular file at the particular

client node only if permitted by the access control node.

3. The method of claim 2 further comprising the steps of:

(2) issuing the request from the particular client node to the remote file server
node, and

(h) inresponse to determining that the one file is the particular file, forwarding the

request to the access control node.

4. The method of claim 3 further comprising the step of:
) in response to receiving at the particular client node a response from the access
control node, issuing further messages pertaining to the access of the particular file directly

from the particular client node to the access control node.

5. The method of claim 1 further comprising the step of:

(e) delegating version control of the particular file to a version control node.

6. The method of claim 5 further comprising the steps of:

® requesting, at a particular client node, for confirmation that at least a part of a
particular copy of the particular file is the most updated version of the respective part of the
particular copy of the file, and

(g) accessing the part of the particular copy of the particular file only if permitted

by the version control node.

-73-

10

15

20

WO 01/33829 PCT/US00/30201

7. The method of claim 6 wherein the particular client node stores the part of the particular

copy in a storage device which is physically located locally to the particular client node.

8. The method of claim 6 further comprising the steps of:

(h) issuing a request for confirming that at least a part of the particular file is the
most updated version, from the particulér client node to the remote file server node, and

@) in response to determining that the one file is the particular file, forwarding the

message to the version control node.

9. The method of claim 8 further comprising the step of:
)] in response to receiving a response from the version control node at the
particular client node, issuing further messages pertaining to version of the particular file

directly from the particular client node to the version control node.

10. The method of claim 9 wherein in response to modifying the particular file, the particular
client node issues to the version control node a version update message for the file indicating

a recent update has occurred on the particular file.

11. The method of claim 5 wherein the version control node is also the access contro! node

for the particular file.

12. The method of claim 1 further comprising the step of:
(e) while a particular client node is in communication with the remote file server

node, selectively downloading from the remote file server node to the particular client node

-74-

10

15

20

WO 01/33829 PCT/US00/30201

via the wide area network a copy of at least a most recently updated portion of a particular file
to be accessed by the particular client node and which the particular client node lacks,
wherein at all times, each client node in communication with the remote file server node
adheres to explicit and implicit file sharing modes specified by the native file application

programming interfaces.

13. The method of claim 12 further comprising the steps of:

® if the particular client node modifies the particular file while the particular
client node is in communication with the remote file server node via the wide area network,
uploading from the particular client node information for updating the copy of the particular

file stored at the remote file server node for effecting the modifications to the particular file.

14. The method of claim 13 further comprising the step of effecting the modifications by

storing an incremental change to the copy of the particular file on the remote file server node.

15. The method of claim 13 further comprising the step of effecting the modifications by
over-writing at the remote file server node the current copy of the particular file with a copy

of the particular file as updated by the modifications.

16. The method of claim 13 further comprising the step of:
(g) ifahoarding client node in communication with the remote file server node
has indicated that it desires to hoard the particular file, then automatically downloading from

the remote file server node to the hoarding client node the information for updating the copy

-75-

10

15

20

WO 01/33829 PCT/US00/30201

of the particular file in response to the particular client node uploading the information for

updating the copy of the particular file stored at the remote file server.

17. The method of claim 12 further comprising the steps of:

® if the particular client node closes its communication channel with the remote
file server node before closing the partichlar file then relinquishing the particular file at the
remote file server node and enabling other client nodes in communication with the remote file

server via the wide area network to access the particular file.

18. The method of claim 12 further comprising the steps of:

® closing the communication channel between the particular client node and the
remote file server node; and

(g) enabling the particular client node to access the downloaded copy of the

particular file while out of communication with the remote file server node.

19. The method of claim 18 further comprising the step of:

(h) if the particular client node modifies the downloaded copy of the particular file
while out of communication with the remote file server node, then selectively enabling or
preventing the updating of the copy of the particular file on the remote file server node
according to modification information transparently and automatically uploaded from the
particular client node when the particular client node re-establishes communication with the
remote file server node via the wide area network, depending on the current modification

status of the copy of the particular file at the remote file server node.

-76-

10

15

20

WO 01/33829 PCT/US00/30201

20. The method of claim 19 further comprising the steps of:
®» selectively placing in a conflict bin associated only with, and maintained at,

the particular client node information that depends on either:

@ modifications to the downloaded copy of the particular file, made by
the client node while out of communication with the remote file server node; or

(II) modifications to the copy of the particular file at the remote file server
node, made while the client node was out of communication with the remote file server node,

depending on the type of the modifications to the downloaded copy and the

type of the modifications to the copy at the remote file server node.

21. The method of claim 12 further comprising the step of:

® in response to determining that another client node has modified the particular
file at the remote file server node, after the particular client node has downloaded the copy of
the particular file, selectively invalidating the downloaded copy of the particular file at the
particular client node, depending on the modification status of the copy of the particular file at

the remote file server node.

22. The method of claim 21 further comprising the step of:

(g) downloading from the remote file server node to the particular client node the
valid copy of the file as modified by the other client node and enabling access by the
particular client node to the valid downloaded copy of the particular file in lieu of the invalid

downloaded copy of the particular file.

23. The method of claim 21 further comprising the steps of:

-77-

10

15

20

WO 01/33829 PCT/US00/30201

(g) prior to step (&), closing the communication channel between the particular
client node and the remote file server node, and
(h) prior to step (e), re-establishing communication between the particular client

node and the remote file server node.

24. The method of claim 1 further compfising the step of:
(e) transparently to, and without specific action of, one of the users of a first client
node in communication with the remote file server node via the wide area network,
downloading from the remote file server node via the wide area network to the first client
node modifications to a copy of a particular file maintained at the remote file server node,

wherein the modifications were made by another client node.

25. The method of claim 1 further comprising the step of:

() providing an interface for adapting file access at a particular client node by
designating at the particular client node each one or more of the accessible files of the file
group as stored on a virtual storage device, and enabling access to the designated files in a
fashion which is indistinguishable, by users of, and applications executing at, the first client
node, with access to one or more files stored on a physical storage device that is locally

present at the first client node.
26. The method of claim 25 further comprising the steps of:

§3) storing on a storage device which is physically present locally to the particular

client node a copy of each one or more of the designated accessible files,

-78-

10

15

20

WO 01/33829 PCT/US00/30201

(g) ifauser of, or an application executing at, the first client node, attempts to
access a designated accessible file then:

@ accessing the valid copy of the designated accessible file stored in the
loéally physically present storage device, if a valid copy of the designated accessible file, for
which access is attempted, is stored at the locally physically present storage device, and

(II) downloading from the remote file server node to the particular client
node via the wide area network, a copy of the designated accessible file and performing the
access on the downloaded copy, if no valid copy of the designated accessible file, for which

access is attempted, is stored at the locally physically present storage device.

27. The method of claim 12 further comprising the step of:
® preventing another client node from contemporaneously accessing a copy of

the particular file according to a file sharing access mode which is incompatible to the file

- sharing access modes currently available to the particular client node for accessing the

particular file.

28. The method of claim 1 further comprising the step of:
(¢) depending on the granularity of file sharing to which applications, executing
on a group of two or more client nodes, adhere, permitting applications of each client node of

the group to simultaneously access the same one of the files.

29. The method of claim 28 wherein certain files are not accessed directly by each client

node, the method further comprising the step of:

-79-

10

15

20

WO 01/33829 PCT/US00/30201

® enabling each client to contemporaneously indirectly access such certain files
through an intermediary node which performs each such access directly on behalf of the client

nodes.

30. The method of claim 1 further comprising the steps of:

(e) transmitting a message to an internet email address of a user inviting the user
to join the pre-subscribed user group, and

® using the information in the message, issuing a request to join the

pre-subscribed user group from a client node operated by the user.

31. The method of claim 30 wherein in the step of using the information in the message, the

message being usable only once to join the pre-subscribed user group.

32. The method of claim 1 further comprising the step of:
(e) authenticating a connection between a particular client node and the remote
file server node so that the particular client node verifies the identity of the remote server

node, and the remote server node verifies the identity of the user of the particular client node.

33. The method of claim 32 further comprising the step of:
® encrypting data of a file at the particular client node using an encryption
methodology known to the client node but not known to the remote file server node,
(g) uploading the encrypted data to the remote file server node, and

(h) storing the encrypted file data at the remote file server node.

-80-

10

15

20

WO 01/33829 PCT/US00/30201

34. The method of claim 33 further comprising the steps of:

@ encrypting the file at the particular client node using a data key known only to
the client node,

() encrypting the data key using a public key,

(k) transmitting the encrypted data key to the remote file server node, and

() storing the encrypted data key at the remote file server node, wherein the

remote file server node lacks the private key necessary to decrypt the data key.

35. The method of claim 34 further comprising the steps of:

(m) encrypting the data key at the particular client node using a second public key
associated with another user of the pre-subscribed user group,

(n) transmitting the second encrypted data key to the remote file server node, and

(0) storing the second encrypted data key at the remote file server node, wherein
both the particular client node and the remote file server node lack the private key necessary

to decrypt the data key.

36. The method of claim 33 further comprising the steps of:

) at the remote file server node, retrieving from storage the encrypted data of a
particular file,

)] transmitting the encrypted data to a specific client node,

(k) using a decryption methodology known to the specific client node but not

known at the remote file server node, decrypting the data.

37. The method of claim 32 further comprising the steps of:

-81-

10

15

20

WO 01/33829 PCT/US00/30201

® receiving at the remote file server node, a request from a specific client node to
access a particular file,
(g) determining at the remote file server node whether or not the particular access

requested by the specific client node is permitted by privilege access rights associated with

the particular file, and

(h) only permitting the access to the particular file by the specific client node if

permitted by the privilege access rights associated with the particular file.

38. The method of claim 1 further comprising the steps of:

(e) receiving at the remote file server node, a request from a specific client node to
access a particular file,

® determining at the remote file server node whether or not the particular access
requested by the specific client node is permitted by privilege access rights associated with
the particular file, and

(2) only permitting the access to the particular file by the specific client node if

permitted by the privilege access rights associated with the particular file.

39. The method of claim 1 further comprising the steps of:

(e) transferring an encrypted key from the remote file server node to a particular
client nodes via a secure channel, the key being encrypted using an encryption function not
known locally at the remote file server node,

® decrypting the transferred key at the particular client node, and

-82-

WO 01/33829 PCT/US00/30201

(g) using the key at the particular client node to decrypt information of a file
downloaded from the remote file server node or to encrypt information of a file prior to

uploading for storage at the remote file server node.

40. The method of claim 39 further comprising the step of:
(h) compressing the information of the file prior to uploading the file or

decompressing the information of the file subsequent to downloading the file.

31. The method of claim 1 further comprising the step of:
(e) compressing the information of the file prior to uploading the file or

decompressing the information of the file subsequent to downloading the file.

42. The method of claim 1 further comprising the steps of:

(e) enabling each user of another pre-subscribed user group of one or more users
to access another group of files via a respective client node in communication with the remote
server node via the wide area network, wherein each pre-subscribed user group includes a
different subset of users but aléo have at least one particular user in common,

wherein the particular user is able to contemporaneously access files in each group.
43. The method of claim 1 further comprising the step of:

(e) enabling the users to access one or more of the files at one or more additional

file server nodes.

-83-

10

15

20

WO 01/33829 PCT/US00/30201

44. The method of claim 43 wherein a particular client node is capable of commuhicating
with the additional file server nodes remotely via a wide area network, the method further
comprising the step of:

® the particular client node accessing a copy of a particular file on one of the
remote file server node or a particular additional file server node which is most efficient for

the particular client node.

45. The method of claim 43 wherein a particular client node is capable of communicating
with at least a particular additional file server node via a local area network, the method
further comprising the step of:

® the particular client node accessing a copy of a particular file at the particular

additional file server node via the local area network.

46. A method for providing multi-user file storage comprising the steps of:

(@) enabling each user of a pre-subscribed user group of one or more users
operating an arbitrary client node at an arbitrary geographic location to communicate with a
remote file server node via a wide area network,

(b) enabling each user of the pre-subscribed user group to access the files of the
file group via the respective client node in communication with the remote file server node
via the wide area network, including permitting more than one user of the pre-subscribed user
group to access the file group at the remote file server node simultaneously,

(c) providing an interface for adapting file access at a particular client node by
designating at the particular client node each accessible file of the file group as stored on a

virtual storage device, and enabling access to the designated files in a fashion which is

-84-

10

15

20

WO 01/33829 PCT/US00/30201

indistinguishable, by users of, and applications executing at, the particular client node, with
access to one or more files stored on a physical storage device that is locally present at the
particular client node, and

(d) delegating access control to a particular file of the group of files to an access

control node.

47. The method of claim 46 further comprising the steps of:

(e) requesting at a particular client node access to one of the files of the group of
files, and

® if the one file is the particular file, accessing the particular file at the particular

client node only if permitted by the access control node.

48. The method of claim 47 further comprising the steps of:

(g) issuing the request from the particular client node to the remote file server
node, and

(h) in response to determining that the one file is the particular file, forwarding the

request to the access control node.

49. The method of claim 48 further comprising the step of:
) in response to receiving at the particular client node a response from the access
control node, issuing further messages pertaining to the access of the particular file directly

from the particular client node to the access control node.

50. The method of claim 46 further comprising the step of:

-85-

10

15

20

WO 01/33829 PCT/US00/30201

(e) delegating version control of the particular file to a version control node.

51. The method of claim 50 further comprising the steps of:

® requesting, at a particular client node, for confirmation that at least a part of a
particular copy of the particular file is the most updated version of the respective part of the
particular copy of the file, and

(2) accessing the part of the particular copy of the particular file only if permitted

by the version control node.

52. The method of claim 51 wherein the particular client node stores the part of the particular

copy in a storage device which is physically located locally to the particular client node.

53. The method of claim 51 further comprising the steps of:

(h) issuing a request for confirming that at least a part of the particular file is the
most updated version, from the particular client node to the remote file server node, and

1) in response to determining that the one file is the particular file, forwarding the

message to the version control node.

54. The method of claim 53 further comprising the step of:
)] in response to receiving a response from the version control node at the
particular client node, issuing further messages pertaining to version of the particular file

directly from the particular client node to the version control node.

-86-

10

15

20

WO 01/33829 PCT/US00/30201

55. The method of claim 54 wherein in response to modifying the particular file, the
particular client node issues to the version control node a version update message for the file

indicating a recent update has occurred on the particular file.

56. The method of claim 50 wherein the version control node is also the access control node .

for the particular file.

57. The method of claim 46 further comprising the steps of:

(e) storing on a storage device which is physically present locally to the particular
client node a copy of one or more of the designated files,

® if a user of, or an application executing at, the particular client node, attempts
to access a designated accessible file then:

@ accessing the valid copy of the designated file stored in the locally
physically present storage device, if a valid copy of the designated file, for which access is
attempted, is stored at the locally physically present storage device, and

(II) downloading from the remote file sérver node to the particular client
node via the wide area network, a copy of the designated file and performing the access on the
downloaded copy, if no valid copy of the designated file, for which access is attempted, is

stored at the locally physically present storage device.
58. The method of claim 57 further comprising the step of:

(g) preventing another client node from contemporaneously accessing a copy of

the particular file according to a file sharing access mode which is incompatible to the file

-87-

10

15

20

WO 01/33829 PCT/US00/30201

sharing access modes currently available to the particular client node for accessing the

particular file.

59. The method of claim 58 further comprising the step of:

(h) depending on the granularity of file sharing to which applications, executing
on a group of two or more client nodes, adhere, permitting applications of each client node of

the group to simultaneously access the same file.

60. The method of claim 59 wherein certain files are not accessed directly by each client
node, the method further comprising the step of:

) enabling each client to contemporaneously indirectly access such certain files
through an intermediary node which performs each such access directly on behalf of the client

nodes.

61. The method of claim 58 further comprising the steps of:

(h) transmitting a message to an internet email address of a user inviting the user
to join the pre-subscribed user group, and

@) using the information in the message, issuing a request to join the

pre-subscribed user group from a client node operated by the user.

62. The method of claim 61 wherein in the step of using the information in the message, the

message being usable only once to join the pre-subscribed user group.

63. The method of claim 46 further comprising the step of:

-88-

10

15

20

WO 01/33829 PCT/US00/30201

(e) authenticating a connection between a particular client node and the remote
file server node so that the particular client node verifies the identity of the remote server

node, and the remote server node verifies the identity of the user of the particular client node.

64. The method of claim 63 further comprising the step of:
® encrypting data of a file at the particular client node using an encryption
methodology known to the client node but not known to the remote file server node,
(g) uploading the encrypted data to the remote file server node, and

(h) storing the encrypted file data at the remote file server node.

65. The method of claim 64 further comprising the steps of:

)] encrypting the file at the particuiar client node using a data key known only to
the client node,

)] encrypting the data key using a public key,

(k) transmitting the encrypted data key to the remote file server node, and

()] storing the encrypted data key at the remote file server node, wherein the

remote file server node lacks the private key necessary to decrypt the data key.

66. The method of claim 65 further comprising the steps of:
(m) encrypting the data key at the particular client node using a second public key
associated with another user of the pre-subscribed user group,

(n) transmitting the second encrypted data key to the remote file server node, and

-89-

10

15

20

WO 01/33829 PCT/US00/30201

(0) storing the second encrypted data key at the remote file server node, wherein
both the particular client node and the remote file server node lack the private key necessary

to decrypt the data key.

67. The method of claim 63 further comprising the steps of:

® at the remote file server node, retrieving from storage the encrypted data of a
particular file,

(g) transmitting the encrypted data to a specific client node, and

(h) using a decryption methodology known to the specific client node but not

known at the remote file server node, decrypting the data.

68.- The method of claim 63 further comprising the steps of:

§3) receiving at the remote file server node, a request from a specific client node to
access a particular file,

(g) determining at the remote file server node whether or not the particular access
requested by the specific client node is permitted by privilege access rights associated with
the particular file, and

(h) only permitting the access to the particular file by the specific client node if

permitted by the privilege access rights associated with the particular file.
69. The method of claim 46 further comprising the steps of:

() receiving at the remote file server node, a request from a specific client node to

access a particular file,

-90-

10

15

20

WO 01/33829 PCT/US00/30201

® determining at the remote file server node whether or not the particular access
requested by the specific client node is permitted by privilege access rights associated with
the particular file, and

(g) only permitting the access to the particular file by the specific client node if

permitted by the privilege access rights associated with the particular file.

70. The method of claim 46 further comprising the steps of:

(e) transferring an encrypted key from the remote file server node to a particular
client nodes via a secure channel, the key being encrypted using an encryption function not
known locally at the remote file server node,

63) decrypting the transferred key at the particular client node, and

(g) using the key at the particular client node to decrypt information of a file
downloaded from the remote file server node or to encrypt information of a file prior to

uploading for storage at the remote file server node.

71. The method of claim 70 further comprising the step of:
(h) compressing the information of the file prior to uploading the file or

decompressing the information of the file subsequent to downloading the file.

72. The method of claim 46 further comprising the step of:
(¢) compressing the information of the file prior to uploading the file or

decompressing the information of the file subsequent to downloading the file.

73. The method of claim 46 further comprising the steps of:

-91-

10

15

20

WO 01/33829 PCT/US00/30201

(e) enabling each user of another pre-subscribed user group of one or more users
to access another group of files via a respective client node in communication with the remote
server node via the wide area network, wherein each pre-subscribed user group includes a
different subset of users but also have at least one particular user in common,

wherein the particular user is able to contemporaneously access files in each group.

74. The method of claim 46 further comprising the step of:
(e) enabling the users to access one or more of the files at one or more additional

file server nodes.

75. The method of claim 74 wherein a particular client node is capable of communicating
with the additional file server nodes remotely via a wide area network, the method further
comprising the step of:

® the particular client node accessing a copy of a particular file on one of the
remote file server node or a particular additional file server node which is most efficient for

the particular client node.

76. The method of claim 74 wherein a particular client node is capable of communicating
with at least a particular additional file server node via a local area network, the method
further comprising the step of:

® the particular client node accessing a copy of a particular file at the particular

additional file server node via the local area network.

77. A method for providing multi-user file storage comprising the steps of:

-92-

10

15

20

WO 01/33829 PCT/US00/30201

(a) enabling each user of a pre-subscribed user group of one or more users
operating an arbitrary client node at an arbitrary geographic location to communicate with a
remote file server node via a wide area network,

(b) enabling each user of the pre-subscribed user group to access the files of the
file group via the respective client node in communication with the remote file server node
via the wide area network, including perfnitting more than one user of the pre-subscribed user
group to access the file group at the remote file server node simultaneously,

(c) transferring an encrypted key from the remote file server node to a particular
client node via a secure channel, the key being encrypted using an encryption function not
known locally at the remote file server node,

(d) decrypting the transferred key at the particular client node,

(e) using the key at the particular client node to decrypt information of a file
downloaded from the remote file server node or to encrypt information of a file prior to
uploading for storage at the remote file server node, and

(6] delegating access control to a particular file of the group of files to an access

control node.

78. The method of claim 77 further comprising the steps of:

(g) requesting at a particular client node access to one of the files of the group of
files, and

(h) if the one file is the particular file, accessing the particular file at the particular

client node only if permitted by the access control node.

79. The method of claim 78 further comprising the steps of:

-93-

10

15

20

WO 01/33829 PCT/US00/30201

1) issuing the request from the particular client node to the remote file server
node, and
§)) in response to determining that the one file is the particular file, forwarding the

request to the access control node.

80. The method of claim 79 further comi)rising the step of:
(k) inresponse to receiving at the particular client node a response from the access
control node, issuing further messages pertaining to the access of the particular file directly

from the particular client node to the access control node.

81. The method of claim 77 further comprising the step of:

(g) delegating version control of the particular file to a version control node.

82. The method of claim 81 further comprising the steps of:

(h) requesting, at a particular client node, for confirmation that at least a part of a
particular copy of the particular file is the most updated version of the respective part of the
particular copy of the file, and

(1) accessing the part of the particular copy of the particular file only if permitted

by the version control node.

83. The method of claim 82 wherein the particular client node stores the part of the particular

copy in a storage device which is physically located locally to the particular client node.

84. The method of claim 82 further comprising the steps of:

-94-

10

15

20

WO 01/33829 PCT/US00/30201

)] issuing a request for confirming that at least a part of the particular file is the
most updated version, from the particular client node to the remote file server node, and
(k) inresponse to determining that the one file is the particular file, forwarding the

message to the version control node.

85. The method of claim 84 further comprising the step of:
)] in response to receiving a response from the version control node at the
particular client node, issuing further messages pertaining to version of the particular file

directly from the particular client node to the version control node.

86. The method of claim 85 wherein in response to modifying the particular file, the
particular client node issues to the version control node a version update message for the file

indicating a recent update has occurred on the particular file.

87. The method of claim 81 wherein the version control node is also the access control node

for the particular file.
88. The method of claim 77 further coinprising the step of:
(g) compressing the information of the file prior to uploading the file or

decompressing the information of the file subsequent to downloading the file.

89. A system for providing multi-user file storage comprising the steps of:

-95-

10

15

20

WO 01/33829 PCT/US00/30201

a remote file server node for enabling each user of a pre-subscribed user group of one

or more users to connect an arbitrary client node at an arbitrary geographic location to

communicate with said remote file server node via a wide area network,

a storage device at the remote file server node for enabling each user of the
pre-subscribed user group to access the files of the file group via the respective client node in
communication with the remote file server node via the wide area network, including
permitting more than one user of the pre-subscribed user group to access the file group at the
remote file server node simultaneously, and

wherein the remote file server node is also for maintaining the integrity of the
files at the remote file server node by controlling each access to each of the files at the remote
file server node so that each access to each the files at the remote file server is performed, if at
all, on a respective portion of the respective file as most recently updated at the remote file
server node, thereby enabling all native operating system application programming interfaces
to operate so that all multi-user applications accessing the files function as if the remote
server, which stores the files, and client nodes, at which such multi-user applications execute,
were on the same local area network, and

wherein the remote file server node is also for delegating access control to a

particular file of the group of files to an access control node.

90. The system of claim 89 wherein a particular client node requests access to one of the files
of the group of files, and
wherein if the one file is the particular file, accessing the particular file at the

particular client node only if permitted by the access control node.

-96-

10

15

20

WO 01/33829 PCT/US00/30201

91. The system of claim 90 wherein the particular client node issues the request to the remote

file server node, and

wherein the remote file server node forwards the request to the access control node in

response to determining that the one file is the particular file .

92. The system of claim 91 wherein the particular client node, in response to receiving a
response from the access control node, issues further messages pertaining to the access of the

particular file directly from the particular client node to the access control node.

93. The system of claim 89 wherein the remote file server node delegates version control of

the particular file to a version control node.

94. The system of claim 93 wherein a particular client node requests confirmation that at
least a part of a particular copy of the particular file is the most updated version of the
respective part of the particular copy of the file, and

wherein the particular client node accesses the part of the particular copy of the

particular file only if permitted by the version control node.

95. The system of claim 94 wherein the particular client node stores the part of the particular

copy in a storage device which is physically located locally to the particular client node.

96. The system of claim 94 wherein the particular client node issues a request to the remote

file server node to confirm that at least a part of the particular file is the most updated version,

and

-97-

10

15

20

WO 01/33829 PCT/US00/30201

wherein the remote file server node, in response to determining that the one file is the

particular file, forwards the message to the version control node.

97. The system of claim 96 wherein the particular client node, in response to receiving a
response from the version control node, issues further messages pertaining to version of the

particular file directly from the particular client node to the version control node.

98. The system of claim 97 wherein in response to modifying the particular file, the
particular client node issues to the version control node a version update message for the file

indicating a recent update has occurred on the particular file.

99. The system of claim 93 wherein the version control node is also the access control node

for the particular file.

100. The system of claim 89 wherein the remote file server node is also configured for
selectively downloading from the remote file server node to the particular client node via the
wide area network a copy of at least a most recently updated portion of a particular file to be
accessed by the particular client node and which the particular client node lacks, while a
particular client node is in communication with the remote file server node, wherein at all
times, each client node in communication with the remote file server node adheres to explicit
and implicit file sharing modes specified by the native file application programming

interfaces.

-98-

10

15

20

WO 01/33829 PCT/US00/30201

101. The system of claim 100 wherein the remote file server node is also configured for

‘uploading from the particular client node information for updating the copy of the particular

file stored at the remote file server node for effecting the modifications to the particular file, if

the particular client node modifies the particular file while the particular client node is in

communication with the remote file server node via the wide area network.

102. The system of claim 101 wherein the remote file server node is also configured for

-effecting the modifications by storing an incremental change to the copy of the particular file

on the remote file server node.

103. The system of claim 101 wherein the remote file server node is also configured for
effecting the modifications by over-writing at the remote file server node the current copy of

the particular file with a copy of the particular file as updated by the modifications.

104. The system of claim 101 wherein the remote file server is also configured for
automatically downloading from the remote file server node to a hoarding client node the
information for updating the copy of the particular file in response to the particular client
node uploading the information for updating the copy of the particular file stored at the
remote file server, if the hoarding client node in communication with the remote file server

node has indicated that it desires to hoard the particular file.

105. The system of claim 100 wherein the remote file server node is also configured for
relinquishing the particular file at the remote file server node and enabling other client nodes

in communication with the remote file server via the wide area network to access the

-99.

10

15

20

WO 01/33829 PCT/US00/30201

particular file, if the particular client node closes its communication channel with the remote

file server node before closing the particular file.

106. The system of claim 100 further comprising:

a particular client node for closing the communication channel between the
particular client node and the remote file server node,

wherein the remote file server node is also for enabling the particular client
node to access the downloaded copy of the particular file while out of communication with

the remote file server node.

107. The system of claim 106 wherein the remote file server node is also configured for
selectively enabling or preventing the updating of the copy of the particular file on the remote
file server node according to modification information transparently and automatically
uploaded from the particular client node when the particular client node re-establishes
communication with the remote file server node via the wide area network, if the particular
client node modifies the downloaded copy of the particular file while out of communication
with the remote file server node, depending on the current modification status of the copy of

the particular file at the remote file server node.

108. The system of claim 107 wherein the particular client node is also configured for

selectively placing in a conflict bin associated only with, and maintained at, the particular

cclient node information that depends on either:

O modifications to the downloaded copy of the particular file, made by

the client node while out of communication with the remote file server node; or

-100-

10

15

20

WO 01/33829 PCT/US00/30201

(II) modifications to the copy of the particular file at the remote file server
node, made while the client node was out of communication with the remote file server node,
depending on the type of the modifications to the downloaded copy and the

type of the modifications to the copy at the remote file server node.

109. The system of claim 100 wherein the remote file server node is also configured for
selectively invalidating the downloaded copy of the particular file at the particular client
node, depending on the modification status of the copy of the particular file at the remote file
server node, in response to determining that another client node has modified the particular
file at the remote file server node, after the particular client node has downloaded the copy of

the particular file.

110. The system of claim 109 wherein the remote file server node is also configured for
downloading to the particular client node the valid copy of the file as modified by the other
client node and enabling access by the particular client node to the valid downloaded copy of

the particular file in lieu of the invalid downloaded copy of the particular file.

111. The system of claim 109 further comprising :

a particular client node for closing the communication channel between the
particular client node and the remote file server node, and re-establishing communication
between the particular client node and the remote file server node prior to determining

whether or not to invalidate the downloaded copy of the file.

-101-

10

15

20

WO 01/33829 PCT/US00/30201

112. The system of claim 89 wherein the remote file server node is also configured for
transparently to, and without specific action of, one of the users of a first client node in
communication with the remote file server node via the wide area network, downloading
from the remote file server node via the wide area network to the first client node
modifications to a copy of a particular file maintained at the remote file server node, wherein

the modifications were made by another client node.

113. The system of claim 89 further comprising:

an interface for adapting file access at a particular client node by designating at
the particular client node each one or more of the accessible files of the file group as stored on
a virtual storage device, and enabling access to the designated files in a fashion which is
indistinguishable, by users of, and applications executing at, the first client node, with access
to one or more files stored on a physical storage device that is locally present at the first client

node.

114. The system of claim 113 further comprisihg:

a local storage device, which is physically present locally to the first client
node, for storing a copy of each one or more of the designated accessible files,

wherein, if a user of, or an application executing at, the particular client node,
attempts to access a designated accessible file then:

O the local storage device accesses the valid copy of the designated
accessible file stored in the local storage device, if a valid copy of the designated accessible

file, for which access is attempted, is stored at the local storage device, and

-102-

10

15

20

WO 01/33829 PCT/US00/30201

(I) the particular client node downloads from the remote file server node
to the particular client node via the wide area network, a copy of the designated accessible file
and performing the access on the downloaded copy, if no valid copy of the designated

accessible file, for which access is attempted, is stored at the local storage device.

115. The system of claim 100 further cdmprising:

another client node for refraining from contemporaneously accessing a copy of
the particular file according to a file sharing access mode which is incompatible to the file
sharing access modes currently available to the particular client node for accessing the

particular file.

116. The system of claim 89 further comprising:
a plurality of applications executing on a group of two or more client nodes
which are permitted to simultaneously access the same file, depending on the granularity of

file sharing to which the applications adhere.

117. The system of claim 116 wherein certain files are not accessed directly by each client
node, and wherein each client is enabled to contemporaneously indirectly access such certain
files through an intermediary node which performs each such access directly on behalf of the

client nodes.

118. The system of claim 89 further comprising:
a manager node for transmitting a message to an Internet email address of a

user inviting the user to join the pre-subscribed user group, and

-103-

10

15

20

WO 01/33829 PCT/US00/30201

a client node operated by the user for issuing a request to join the

pre-subscribed user group using the information in the message.

119. The method of claim 118 wherein the message being usable only once to join the

pre-subscribed user group.

120. The system of claim 89 further comprising:

a particular client node, wherein both the particular client node and remote
server node are configured for authenticating a connection between a particular client node
and the remote file server node so that the particular client node verifies the identity of the
remote server node, and the remote server node verifies the identity of the user of the

particular client node.

121. The system of claim 120 wherein the client node is further configured for encrypting
data of a file at the particular client node using an encryption methodology known to the
client node but not known to the remote file server node, and for uploading the encrypted data
to the remote file server node, and wherein the storage device is further configured for storing

the encrypted file data at the remote file server node.

122. The system of claim 121 wherein the particular client node is further configured for
encrypting the file at the particular client node using a data key known only to the client node,
for encrypting the data key using a public key, and for transmitting the encrypted data key to

the remote file server node, and wherein the storage device is further configured for storing

-104-

10

15

20

WO 01/33829 PCT/US00/30201

the encrypted data key at the remote file server node, wherein the remote file server node

lacks the private key necessary to decrypt the data key.

123. The system of claim 122 wherein the particular client node is further configured for
encrypting the data key at the particular client node using a second public key associated with
another user of the pre-subscribed user group, and for transmitting the second encrypted data

key to the remote file server node, and wherein the storage device is further configured for

storing the second encrypted data key at the remote file server node, wherein both the

particular client node and the remote file server node lack the private key necessary to decrypt

the data key.

124. The system of claim 120 wherein the storage device is further configured for retrieving
the encrypted data of a particular file, wherein the remote file server node is further
configured for transmitting the encrypted data to a specific client node, and wherein the
specific client node uses a decryption methodology known to the specific client node but not

known at the remote file server node, for decrypting the data.

125. The system of claim 120 wherein the remote file server node is further configured for
receiving a request from a specific client node to access a particular file, for determining
whether or not the particular access requested by the specific client node is permitted by
privilege access rights associated with the particular file, and for only permitting the access to
the particular file by the specific client node if permitted by the privilege access rights

associated with the particular file.

-105-

10

15

20

WO 01/33829 PCT/US00/30201

126. The system of claim 89 wherein the remote file server node is further configured for

receiving a request from a specific client node to access a particular file, for determining

whether or not the particular access requested by the specific client node is permitted by
privilege access rights associated with the particular file, and for only permitting the access to
the particular file by the specific client node if permitted by the privilege access rights

associated with the particular file.

127. The system of claim 89 further comprising:

a particular client node,

wherein the remote file server node is further configured for transferring an
encrypted key a particular client nodes via a secure channel, the key being encrypted using an
encryption function not known locally at the remote file server ncde,

wherein the particular client node is configured for decrypting the transferred
key at the particular client node, and for using the key at the particular client node to decrypt
information of a file downloaded from the remote file server node or to encrypt information

of a file prior to uploading for storage at the remote file server node.

128. The system of claim 127 wherein the particular client node is further configured for

compressing the information of the file prior to uploading the file or for decompressing the

information of the file subsequent to downloading the file.

129. The system of claim 89 further comprising:

-106-

10

15

20

WO 01/33829 PCT/US00/30201

a particular client node for compressing the information of the file prior to
uploading the file or for decompressing the information of the file subsequent to downloading

the file.

130. The system of claim 89 wherein the remote file server node is also configured for
enabling each user of another pre-subscribed user group of one or more users to access
another group of files via a respective client node in communication with the remote server
node via the wide area network, wherein each pre-subscribed user group includes a different
subset of users but also have at least one particular user in common,

wherein the particular user is able to contemporaneously access files in each group.

131. The system of claim 89 further comprising:
one or more additional file server nodes at which the users are enabled to

access one or more of the files.

132. The system of claim 131 further comprising:

a particular client node capable of communicating with the additional file
server nodes remotely via a wide area network, and configured for accessing a copy of a
particular file on one of the remote file server node or a particular additional file server node

which is most efficient for the particular client node.

133. The system of claim 131 further comprising:

-107-

10

15

20

WO 01/33829 PCT/US00/30201

a particular client node capable of communicating with at least a particular
additional file server node via a local area network, and configured for accessing a copy of a

particular file at the particular additional file server node via the local area network.

134. A system for providing multi-user file storage comprising:

a specific client node at an arbitrary geographic location, usable by a user of a
pre-subscribed user group for communicating with a remote file server node via a wide area
network, the remote file server enabling each user of the pre-subscribed user group to access
the files of the file group via the respective client node in communication with the remote file
server node via the wide area network, including permitting more than one user of the
pre-subscribed user group to access the file group at the remote file server node
simultaneously, and

an interface for adapting file access at the specific client node by designating at
the specific client node each accessible file of the file group as stored on a virtual storage
device, and enabling access to the designated files in a fashion which is indistinguishable, by
users of, and applications executing at, the specific client node, with access to one or more
files stored on a physical storage device that is locally present at the specific client node, and

wherein the remote file server node is also for delegating access control to a

particular file of the group of files to an access control node.

135. The system of claim 134 wherein a particular client node requests access to one of the -
files of the group of files, and
wherein if the one file is the particular file, accessing the particular file at the

particular client node only if permitted by the access control node.

-108-

10

15

20

WO 01/33829 PCT/US00/30201

136. The system of claim 135 wherein the particular client node issues the request to the
remote file server node, and
wherein the remote file server node forwards the request to the access control node in

response to determining that the one file is the particular file .

137. The system of claim 136 wherein the particular client node, in response to receiving a
response from the access control node, issues further messages pertaining to the access of the

particular file directly from the particular client node to the access control node.

138. The system of claim 134 wherein the remote file server node delegates version control

of the particular file to a version control node.

139. The system of claim 138 wherein a particular client node requests confirmation that at
least a part of a particular copy of the particular file is the most updated version of the
respective part of the particular copy of the file, and

wherein the particular client node accesses the part of the particular copy of the

particular file only if permitted by the version control node.
140. The system of claim 139 wherein the particular client node stores the part of the

particular copy in a storage device which is physically located locally to the particular client

node.

-109-

10

15

20

WO 01/33829 PCT/US00/30201

141. The system of claim 139 wherein the particular client node issues a request to the
remote file server node to confirm that at least a part of the particular file is the most updated
version, and

wherein the remote file server node, in response to determining that the one file is the

particular file, forwards the message to the version control node.

142. The system of claim 141 wherein the particular client node, in response to receiving a
response from the version control node, issues further messages pertaining to version of the

particular file directly from the particular client node to the version control node.

143. The system of claim 142 wherein in response to modifying the particular file, the
particular client node issues to the version control node a version update message for the file

indicating a recent update has occurred on the particular file.

144. The system of claim 138 wherein the version control node is also the access control

node for the particular file.

145. The system of claim 134 further comprising:

a local storage device, which is physically present ldcally to the specific client
node, for storing a copy of each one or more of the designated accessible files,

wherein, if a user of, or an application executing at, the specific client node,

attempts to access a designated accessible file then:

-110-

10

15

20

WO 01/33829 PCT/US00/30201

48] the local storage device accesses the valid copy of the designated
accessible file stored in the local storage device, if a valid copy of the designated accessible
file, for which access is attempted, is stored at the local storage device, and

(II) the specific client node downloads from the remote file server node to
the specific client node via the wide area network, a copy of the designated accessible file and
performing the access on the downloaded copy, if no valid copy of the designated accessible

file, for which access is attempted, is stored at the local storage device.

146. The system of claim 134 further comprising:

another client node for refraining from contemporaneously accessing a copy of
the particular file according to a file sharing access mode which is incompatible to the file
sharing access modes currently available to a particular client node for accessing the

particular file.

147. The system of claim 134 further comprising:
a plurality of applications executing on a group of two or more client nodes
which are permitted to simultaneously access the same file, depending on the granularity of

file sharing to which the applications adhere.

148. The system of claim 147 wherein certain files are not accessed directly by each client
node, and wherein each client is enabled to contemporaneously indirectly access such certain
files through an intermediary node which performs each such access directly on behalf of the

client nodes.

-111-

10

15

20

WO 01/33829 PCT/US00/30201

149. The system of claim 134 further comprising:

a manager node for transmitting a message to an Internet email address of a
user inviting the user to join the pre-subscribed user group, and

a client node operated by the user for issuing a request to join the

pre-subscribed user group using the information in the message.

150. The method of claim 149 wherein the message being usable only once to join the

pre-subscribed user group.

151. The system of claim 145 further comprising:

a particular client node, wherein both the particular client node and remote
server node are configured for authenticating a connection between a particular client node
and the remote file server node so that the particular client node verifies the identity of the
remote server node, and the remote server node verifies the identity of the user of the

particular client node.

152. The system of claim 151 wherein the client node is further configured for encrypting

data of a file at the particular client node using an encryption methodology known to the

client node but not known to the remote file server node, and for uploading the encrypted data

to the remote file server node, and wherein the storage device is further configured for storing

the encrypted file data at the remote file server node.

153. The system of claim 152 wherein the particular client node is further configured for

encrypting the file at the particular client node using a data key known only to the client node,

-112-

10

15

20

WO 01/33829 PCT/US00/30201

for encrypting the data key using a public key, and for transmitting the encrypted data key to
the remote file server node, and wherein the storage device is further configured for storing
the encrypted data key at the remote file server node, wherein the remote file server node

lacks the private key necessary to decrypt the data key.

154. The system of claim 153 wherein the particular client node is further configured for
encrypting the data key at the particular client node using a second public key associated with
another user of the pre-subscribed user group, and for transmitting the second encrypted data
key to the remote file server node, and wherein the storage device is further configured for
storing the second encrypted data key at the remote file server node, wherein both the
particular client node and the remote file server node lack the private key necessary to decrypt

the data key.

155. The system of claim 151 wherein the storage device is further configured for retrieving
the encrypted data of aAparticular file, wherein the remote file server node is further
configured for transmitting the encrypted data to a specific client node, and wherein the
specific client node uses-a decfyption methodology known to the specific client node but not

known at the remote file server node, for decrypting the data.

156. The system of claim 151 wherein the remote file server node is further configured for
receiving a request from a specific client node to access a particular file, for determining
whether or not the particular access requested by the specific client node is permitted by

privilege access rights associated with the particular file, and for only permitting the access to

-113-

10

15

20

WO 01/33829 PCT/US00/30201

the particular file by the specific client node if permitted by the privilege access rights

associated with the particular file.

157. The system of claim 134 wherein the remote file server node is further configured for
receiving a request from a specific client node to access a particular file, for determining
whether or not the particular access requested by the specific client node is permitted by
privilege access rights associated with the particular file, and for only permitting the access to
the particular file by the specific client node if permitted by the privilege access rights

associated with the particular file.

158. The system of claim 134 further comprising:

a particular client node,

wherein the remote file server node is further configured for transferring an
encrypted key a particular client nodes via a secure channel, the key being encrypted using an
encryption function not known locally at the remote file server node,

wherein the particular client node is configured for decrypting the transferred
key at the particular client node, and for using the key at the particular client node to decrypt
information of a file downloaded from the remote file server node or to encrypt information

of a file prior to uploading for storage at the remote file server node.

159. The system of claim 158 wherein the particular client node is further configured for

compressing the information of the file prior to uploading the file or for decompressing the

information of the file subsequent to downloading the file.

-114-

10

15

20

WO 01/33829 PCT/US00/30201

160. The system of claim 134 further comprising:
a particular client node for compressing the information of the file prior to
uploading the file or for decompressing the information of the file subsequent to downloading

the file.

161. The system of claim 134 wherein the remote file server node is also configured for
enabling each user of another pre-subscribed user group of one or more users to access
another group of files via a respective client node in communication with the remote server
node via the wide area network, wherein each pre-subscribed user group includes a different
subset of users but also have at least one particular user in common,

wherein the particular user is able to contemporaneously access files in each group.

162. The system of claim 134 further comprising:
one or more additional file server nodes at which the users are enabled to

access one or more of the files.

163. The system of claim 162 further comprising:

a particular client node capable of communicating with the additional file
server nodes remotely via a wide area network, and configured for accessing a copy of a
particular file on one of the remote file server node or a particular additional file server node

which is most efficient for the particular client node.

164. The system of claim 162 further comprising:

-115-

10

15

20

WO 01/33829 PCT/US00/30201

a particular client node capable of communicating with at least a particular
additional file server node via a local area network, and configured for accessing a copy of a

particular file at the particular additional file server node via the local area network.

165. A system for providing multi-user file storage comprising:

a remote file server node for enabling each user of a pre-subscribed user group
of one or more users operating an arbitrary client node at an arbitrary geographic location to
communicate with a remote file server node via a wide area network,

a storage device at the remote file server node for enabling each user of the
pre-subscribed user group to access the files of the file group via the respective client node in
communication with the remote file server node via the wide area network, including
permitting more than one user of the pre-subscribed user group to access the file group at the
remote file server node simultaneously, and

a particular client node,

wherein the remote file server node is also configured for transferring an
encrypted key from the remote file server node to a particular client node via a secure
channel, the key being decryptable using a decryption function not known locally at the
remote file server node,

wherein the particular client node is also configured for decrypting the
transferred key at the particular client node, and for using the key at the particular client node
to decrypt information of a file downloaded from the remote file server node or to encrypt
information of a file prior to uploading for storage at the remote file server node, and

wherein the remote file server node is also for delegating access control to a

particular file of the group of files to an access control node.

-116-

10

15

20

WO 01/33829 PCT/US00/30201

166. The system of claim 165 wherein a particular client node requests access to one of the
files of the group of files, and
wherein if the one file is the particular file, accessing the particular file at the

particular client node only if permitted by the access control node.

167. The system of claim 166 wherein the particular client node issues the request to the
remote file server node, and
wherein the remote file server node forwards the request to the access control node in

response to determining that the one file is the particular file .

168. The system of claim 167 wherein the particular client node, in response to receiving a
response from the access control node, issues further messages pertaining to the access of the

particular file directly from the particular client node to the access control node.

169. The system of claim 165 wherein the remote file server node delegates version control

of the particular file to a version control node.

170. The system of claim 169 wherein a particular client node requests confirmation that at
least a part of a particular copy of the particular file is the most updated version of the
respective part of the particular copy of the file, and

wherein the particular client node accesses the part of the particular copy of the

particular file only if permitted by the version control node.

-117-

10

15

20

WO 01/33829 PCT/US00/30201

171. The system of claim 170 wherein the particular client node stores the part of the
particular copy in a storage device which is physically located locally to the particular client

node.

172. The system of claim 170 wherein the particular client node issues a request to the
remote file server node to confirm that at least a part of the particular file is the most updated
version, and

wherein the remote file server node, in response to determining that the one file is the

particular file, forwards the message to the version control node.

173. The system of claim 172 wherein the particular client node, in response to receiving a
response from the version control node, issues further messages pertaining to version of the

particular file directly from the particular client node to the version control node.

174. The system of claim 173 wherein in response to modifying the particular file, the
particular client node issues to the version control node a version update message for the file

indicating a recent update has occurred on the particular file.

175. The system of claim 169 wherein the version control node is also the access control

node for the particular file.

176. The system of claim 165 wherein the particular client node is also configured for
compressing the information of the file prior to uploading the file or decompressing the

information of the file subsequent to downloading the file.

-118-

WO 01/33829 PCT/US00/30201

G2

1/14

PCT/US00/30201

WO 01/33829

£od

onIeS
e0lg
%81q redo
A
Jones id
ane N@
eAIeS
LIS
81Q (200
>
I8AIeS o
as
JeAIBS SNOAZepuUe
S puey "Log
¢S
Bed gem Juswebsuely ewnjon
S dlqnd

aremos JBAIBS PUIN

Yh~

WeisAs ojld eAREN

Siepjo4 pue sejl4 peyoed

7N

nh

Sh™

. BWIN|OA

-

1™

$100{Q0 WOIBAS Bjid
SOV .
sdnoup »
898N

BWIN|OA

XOpu| ewn|oA

0I01S ¥%s|q 1e%0

jowepy|

00!

)

O

walsAs oji4 .

-

JueweBeueyy swnjoA

[~
(

2/14

PCT/US00/30201

WO 01/33829

fhetttretiitrteaes

)

'uondiiosep yse | penpayds -

m | 31 Bunyioman dndeIg BB

MBIA 03 Wey euRd jouo] BB |]
ue PspEs siong B
(W &3

(i) 2er-4), uo yopmsioT %M .

Mtthittassart ettirttorettepsssetrens

1 _ UP..-—V.. 7) _
56/92/0L “ogwel gy UV T udemgns [). >._m pee mmn_% m :
.M....\mN\o_.. Togwel el O\ xRy mu e \I\H."UH &8
psoopy B¥gl 1ne) ~~ spnojonE, HHO N N (1) dddo) 3¢ GBI
efew) 419 @0l Lo~ [EEp=iINn) o . 8N ~— syndwo] Ay (-2
19p|o4 8j4 HH Ol = uig U0 .. dopisaq kg
s

{4) &) U0 341045137 - Ot
A * 1 MR AT R T70

-]

3/14

PCT/US00/30201

WO 01/33829

m siog U

SHI3

[feut 343 Ul 41O Pue ‘QIeALQ ‘s
golIg

:Suipiaoid sasn 0O/)~ ULINSA 3 $1055 pue K3y eep aAup

ayy 3dA1dus 03 g ._.m wm%
A2

MU 9 UONBUAYI LIBLUD SpUDS,
2 S8 e S Wb PRUTASRSS

"P10231 2SN Mau oY}

FAovpo-PUE PI0JD1 I9ST MOU © 5338310 10AI0S

rl

—
0\S

UONEAU] pI[eAu]

ON {MAN ST IS ‘SISIXY 9AU(

10\S

1087

Qo\S

SureuIds) ‘(I 2AL(J ‘ssaIppe [Tewtyg
sayr0adg I931AU]

$$3J0.14 dIAU]

4/14

PCT/US00/30201

WO 01/33829

muooum 19s() payepdn oioooO?

—~

(Ao mrQ) 14
!p10231 Iasn a1epdn pue
Koy areAud yim Aoy epep ydKioug

|

4

(Ao ®re@)d10)°nd

:A9Y o1iqnd s, 195N Mou oy Suisn
K9y eyep pardAious 410 oy 3dhiouy

2

(Ko me@)d 10)°nd)°1d
:KoY eyep oYy 1dA109p pue p10931 335N peojUMO

s~

*

Ao &3&
YIm p10931 19sn mau epdn)
—~
P AL 1

AU

Iaales 03 A3y olqn{ JwsuRL],
Iied o) 212ALd/Ol[qN] 31BIDUIN).
"ISUIBIUOD SALIP 2JBAI)e

IPIS 19AIAG

SPIS DD

Vo9

{a19Auq
pue [19501 PiEA -

uorejIAU] PIEAU]

NS
HUS

1edgo peo
oUNS d1O ‘dl sAuq ‘aq 1esn
Sururejuods TN [1BW SNAUL YOI

§$320.44 uiof

5/14

WO 01/33829 PCT/US00/30201

2Phase Join Process ; . . .
User clicks URL in invite
mail containing UserID,
DrivelD, and optionally S
Hash of OTP ,SO
v SIS2
< Verisign validates server’s certificate }
Sis4 Generated OTP Out of band OTP Option
Server validates Server validates
UserlD, DrivelD, UserID, DrivelD
Hash of OTP
S/6o
sy Vo~
Invalid Invite Server prompts for OTP
which user supplies.
: '
Server validates
oTP
v 15!4 T
Client
e Creates drive
container
s Generates Client transmits Pu, to server.
Public/Private Key _SI¢6
pair
o Transmits Public
Key to server l
é Other authenticated client
/6“(downloads Pu,, encrypts
data key
Pu, (DataKey)

5163

Fie B l

Other authenticated client updates new
client record at the server with

5 i) encrypted data key Pu, (DataKey)
/J / s\70
Glient now able to decrypt drive data> _

6/14

PCT/US00/30201

WO 01/33829

paurIn mouoocsoo v

+77TS

uondsuuo) Ausq
D pieAU]

S)
03 3dA109p ()84 P1g

¢ ON

2274 AN

(O1)°1d)°ng £33 oyqnd
sua1[o oYy Buisn ()14 s1dA190p 19A108

)28~ ,

aW \@ \ |\\w D14

K9] aeAld sU Yam) sidAaoug jusi)

uonoeuuo)) yesag
19A19G pIjeAU]

Us)
011d£109p (§)81d P13

/AN

HOTS

uoyosuuo)) Aua(g

© (PHEA A139sn)
pue q] 2auQ

A

Q1S
OGS ~

((8)514)5ng A2y otqnd
s1oa13s Y3 Suisn (S)S14 s1dKsoop jusi)

\,\ >

(3 Suys wopues
Mau pue (§)S1d JUSI[O SPUSS J9AIDS

(S)1d
1Koy ayealld s ynm § sidAiouy Joasag

2078~

(8) Suyg wopuey ‘qreAnA‘@MesN
OIS am 1sanbay] 399uU0)) SONSS]T UBKD

uonedINUAYINY

7/14

PCT/US00/30201

WO 01/33829

]

(paLIgJsuel]
\ 3N amug

nes

9ZIS JJnq)9SJJO JUSLIND YHm
Iapeay uf J0[s 1xau sajepdn IoAlsg

OIS

A

I5A19S 0} JoJJnqg

I9ysuel]

- q0eS il

A

Joynq idAroug

\

O

4

Iaynq ssaiduo)

o HES

ﬁ

Iagynq 03 JuswFag IxoN I9suel]

58 %S

S ~

10 A9 uondArouy «
$)9s}J0 10§ sj0[s K1duwo sjuowrdosy 2jea1) «
SJUSWBS # = 9ZIS JUOWIBIG/AZIS 1] »

:IOpPBOHO[IIo1BaI)

$$330.44 peordn a1

8/14

PCT/US00/30201

WO 01/33829

2
}mJ

— WG IXAN JUSWAIOU] < ¢paLidsuei]
o[td amuyg
Igyng s3um pue ssaxdwoss(g I~ mmm.m
Iopnq 3d£1os J
1nq 3 a oS ~ KoY sreanrg Sursn 4oy eep 1dA1de(g
A es
19S]JO WO} §934Q 9ZIS LN ~,
JJO woxy q 9215 JJnq peojumo(g .7mm.\m p
H WNAOW.(9 BJBP 9ASLNAI O} J9pBaY Woy (IO A3 s

L, (uawSag 1XaN 0[S 1opeay .(Hm ¢q

woy 3ZIS [Jnq pue Jas}jo 300

10pesH o[1] peo[umoq T/
Teg~
*9Z1g wawiSag /pedy] Apear[y saikg

SaA

0 = Jusurdag JXaN +0=pesy 01 Judw3ag IXaN

¢papeo[umo(Affented oyt S|
Oles —~

Pes ~

—
s~ $S320.1J peojumo(g dji

9/14

WO 01/33829

PCT/US00/30201

l
_T—) Keconekiat o nj /

F‘l& |
[_No ~rdwectory
owgess
L HShoy
%
Sy G
L No ~TredSHo6 .
,Y equred ‘..
‘ 7
Ot ok [Yes _st08 f
Communiation: | {Send vexsieny ' —GL \
Set bocad Access efuest [~~~ ‘ ('
auotaoge | muss (! ;
) oy, s) (
S v ! [
Oyt l
! l
sto 4N | l !
re-s(”"'w.bm__- o _\l/’~_ _‘J/“ ____"
YES
‘(E5 et U6
PrAmitted
?
No s Fl6lo

10/14

WO 01/33829

FlI G

PCT/US00/30201

617_ Cz2 C2, Cfy Cs,
File File changed File renamed or moved | File deleted File's directory
unchanged deleted
File No action Invalidate local file | Rename or move locally | Delete locally Delete locally
R4~ unchanged cached file cached file cached file
?j,.- File changed | Upload Move client file to Move dlient file to the Move client file | Move client file to
client file theConflict Bin& | Conflict Bin & uploadit | to the Conflict the Conflict Bin &
invalidate local file Bin & upload it | wpload it
u«- File renamed | Rename or Move server fileto | Put waming in Conflict | Move fileto the | Move client file to
or moved move filcat | theConflict Bin Bin (unless identical Conflict Bin & the Conflict Bin &
server rename/move) upload file upload it
'2\}_ File deleted | Delete file at | Mowe serverfileto | Ignore delete; put No action No action
server the Conflict Bin warning in Conflict Bin
File’s Delete file at | Move server file to Move server file tothe | No action No action
LS diectory | server the Conflict Bin Conflict Bin &
deleted download it
C1’y 2! €3, cql Cs!
FlG ! 1 Y !
: Directory Directory attribute Added child file or Directory Directory deleted
unchanged changed directory renamed or
moved
Ri l__\ Directory No action Dowuload changed Download new dir entry | Rename ormove | Delete locally.
] unchanged attribute locally cached cached directory
directory
) Dtre:tory cli;;l;)a:d PCI;t n;:nmg in Download new dir entry | Rename ormove | Delete locally -
attribute g Bin and locally cached cached directory
Rl’\’ changed attribute keep server attribute directory; upload
’ or later timestamp change
Added child | Upload new | If compatible, upload | If compatible, upload & | Rename or move | Move new file/dir
1 ﬂ]c or dir entry dir entry & download | download dir entry local directory; to Conflict Bin;
'23 | directory attr change. Else changes. Else move uploadnew dir | delete local
move new local entry | new local entry to entry directory
to Conflict Bin. Conflict Bin.
j Directory Rename or Reasme or move Rename or move Put warning in Put warning in
Q\{,,\’ renamedor | move server directory; directory at server; Conflict Bin Coaflict Bin &
movod directory at | download attr change | download new dir entry | (unlessidentical | upload directory
sorver . rename/move)
y | Directory Delete Delote directory at Move new file/dir to Put waming in No Action
R deleed] dimectoym | server Conflict Bin; delete dir | Couflict Bin &
i acrver o server download
direotory

11/14

WO 01/33829 PCT/US00/30201

12/14

WO 01/33829 PCT/US00/30201

o[&

\i\h- sw.';«.rmde

13/14

WO 01/33829 PCT/US00/30201

Verform hozss
ey, wplood

14/14

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

