
012918

- 1 -

Эта заявка притязает на приоритет предварительной патентной заявки США № 60/728,089, подан-
ной 18 октября 2005 г., предварительной патентной заявки США № 60/772,024, поданной 9 февраля 2006
г., предварительной патентной заявки США № 60/744,574, поданной 10 апреля 2006 г., предварительной
патентной заявки США № 60/791,179, поданной 10 апреля 2006 г., предварительной патентной заявки
США № 60/746,712, поданной 8 мая 2006 г., предварительной патентной заявки США № 60/798,925, по-
данной 8 мая 2006 г., и предварительной патентной заявки США № 60/835,061, поданной 1 августа 2006
г. Предварительные патентные заявки США №№ 60/728,089, 60/772,024, 60/744,574, 60/791,179,
60/746,712, 60/798,925 и 60/835,061 включены сюда посредством ссылки в полном объеме для любых
целей.

Определение авторских прав
Часть раскрытия этого патентного документа содержит материал, подлежащий защите авторских

прав. Владелец авторских прав не возражает против факсимильного воспроизведения кем-либо патент-
ного документа или раскрытия патента, представленного в виде файла или записи в Патентное Ведомст-
во, но в остальном сохраняет за собой все авторские права.

Уровень техники
В современных вычислительных системах часто бывает желательно ограничивать доступ к ресур-

сам электронного контента, услуг и/или обработки, и/или разрешать осуществлять определенные дейст-
вия только определенным сущностям. Для обеспечения такого управления были разработаны или пред-
ложены различные методы. Эти методы часто называют методами управления цифровыми правами
(DRM), поскольку, в целом, их целью является регулирование прав различных сущностей в отношении
цифрового или иного электронного контента, услуг или ресурсов. Проблема, с которой сталкиваются
многие методы, отвечающие уровню техники, заключается в том, что они чрезмерно сложны, обремене-
ны большим количеством ограничений, сравнительно «негибки», неспособны обеспечивать определен-
ные естественные типы соотношений и процессов, и/или неспособны взаимодействовать с другими сис-
темами DRM.

Здесь описаны системы и способы, относящиеся к усовершенствованным методам DRM, которые
можно использовать для решения некоторых или всех этих проблем. Очевидно, что варианты осуществ-
ления описанного здесь изобретения можно реализовать по-разному, в том числе посредством процессов,
аппаратов, систем, устройства, способов, компьютерно-считываемых носителей и/или их комбинации.

Существующие системы для управления доступом к контенту иногда включают в себя компоненты,
которые обращаются к лицензии в связи с авторизацией доступа к электронному контенту. Однако такие
компоненты обычно осуществляют негибкие вычисления цепей или графов информации управления
правами, связей или узлов, связанных с лицензией. Они часто неспособны адаптироваться к различным
схемам авторизации и/или работать с определенными системами DRM для авторизации доступа к кон-
тенту. Варианты осуществления настоящего изобретения преодолевают такие недостатки за счет сохра-
нения, использования и/или выполнения дополнительных процедур или программ управления в связи с
лицензией, что позволяет обеспечивать динамические особенности авторизации, обеспечивать авториза-
цию распределенных ресурсов и/или другие функции доступа к потоку.

Кроме того, многие существующие системы предназначены только для случаев, когда поддержи-
ваются простые данные, связанные с авторизацией/состоянием. Эти системы неспособны разрешать си-
туации, когда для авторизации доступа может потребоваться зависимость от множественных уровней
данных, например определение условий на основании ранее выведенных данных, связанных с другими
узлами. Варианты осуществления настоящего изобретения преодолевают эти недостатки за счет реали-
зации базы данных состояний совместно с программами управления DRM для обеспечения особенностей
хранения состояний, которые являются защищенными, обеспечивают устойчивые информационные со-
стояния от вызова к вызову, или иначе обеспечивают функции чтения и записи состояний, что позволяет
улучшать выполнение программ управления и/или осуществлять более эффективную авторизацию дос-
тупа.

Дополнительно, существующие системы могут реализовать лицензии или структуры DRM, вклю-
чающие в себя компоненты, которые предусматривают использование открытых ключей для защиты
компонентов лицензии. Однако недостатки этих систем включают в себя возможность того, что хакеры
могут подделать цифровые подписи, необходимые для доступа или реализации лицензии, или иначе вос-
пользоваться соответствующими соотношениями, существующими в структуре лицензии DRM. Один
или несколько вариантов осуществления настоящего изобретения преодолевают такие недостатки путем
реализации цифровой и/или блокирующей подписи объектов «лицензия», включающей в себя использо-
вание конкретных защищенных ключей. Преимущества этих вариантов осуществления включают в себя
предотвращение неавторизованного доступа посредством открытых ключей, а также соответствующих
особенностей, выведенных из соотношений между элементами лицензии.

Другие существующие системы могут включать в себя компоненты, которые могут определять бли-
зость между первой сущностью и второй сущностью, например, между двумя сущностями управления
правами. Такие системы могут применять правила, указывающий, что фрагмент защищенного контента
нельзя копировать за пределы определенной среды, например, путем реализации громоздких процедур

012918

- 2 -

проверки близости. Однако недостатком этих систем является то, что они не способны также предостав-
лять защиту защищенному контенту без ненужного принудительного осуществления проверки близости.
Варианты осуществления настоящего изобретения преодолевают этот и другие недостатки за счет обес-
печения лаконичного протокола обнаружения близости, защищенного особенностями, связанными с пе-
редачей случайных чисел и/или секретных порождающих чисел. Соответствующие преимущества одно-
го или нескольких вариантов осуществления включают в себя криптографическую нереализуемость для
нарушителя определение правильного ответа, даже в случае перехвата запроса.

В итоге, существует необходимость в системах, которые могут адекватно авторизовать доступ к
электронному контенту, не прибегая к чрезмерно сложным, обремененным большим количеством огра-
ничений и/или сравнительно негибким методам, в системах, которые способны обеспечивать определен-
ные естественные типы соотношений и процессов, и/или в системах, которые способны взаимодейство-
вать с другими системами DRM.

Раскрытие изобретения
Системы, способы и изделия производства, отвечающие изобретению, относятся к авторизации

доступа к электронному контенту и связанной с этим обработке данных.
В одном иллюстративном варианте осуществления, предусмотрен способ авторизации доступа к

фрагменту электронного контента, хранящемуся в памяти. Способ, согласно этому иллюстративному
варианту осуществления, может включать в себя прием запрос на доступ к электронному контенту, из-
влечение лицензии, связанной с электронным контентом, и выполнение первой программы управления с
использованием механизма управления цифровыми правами для определения, можно ли удовлетворить
запрос. Другие иллюстративные варианты осуществления могут включать в себя вычисление одного или
нескольких объектов «связь», хранящихся в памяти, и выполнение второй программы управления для
определения, действительна(ы) ли связь(и) и/или выполняются ли одно или несколько условий.

Следует понимать, что вышеизложенное общее описание и нижеследующее подробное описание
носят исключительно иллюстративный и пояснительный характер и не призваны ограничивать изобрете-
ние. Кроме того, могут быть обеспечены признаки и/или вариации помимо изложенных здесь. Например,
настоящее изобретение может относиться к различным комбинациям и подкомбинациям раскрытых при-
знаков и/или комбинациям и подкомбинациям некоторых других признаков, раскрытых ниже в подроб-
ном описании.

Краткое описание чертежей
Изобретение легче понять, обратившись к нижеследующему подробному описанию, приведенному

совместно с прилагаемыми чертежами, в которых:
фиг. 1 - иллюстративная система управления использованием электронного контента;
фиг. 2 - более подробный пример системы, которую можно использовать для практического приме-

нения вариантов осуществления изобретения;
фиг. 3 - демонстрирует действие иллюстративного механизма управления цифровыми правами

(DRM) в сети, которая использует DRM;
фиг. 4 - совокупность узлов и связей, используемая для моделирования соотношений в системе

DRM;
фиг. 5 - логическая блок-схема, демонстрирующая, как вариант осуществления механизма DRM

может определять, авторизовано ли запрошенное действие;
фиг. 6 - пример лицензии DRM согласно одному варианту осуществления изобретения;
фиг. 7А и 7В - пример использования агентов в одном варианте осуществления;
фиг. 8 - пример лицензии DRM;
фиг. 9 - более подробный пример того, как механизм DRM может определять, авторизовано ли за-

прошенное действие;
фиг. 10 - более подробный пример того, как механизм DRM выполняет программу управления в од-

ном варианте осуществления;
фиг. 11 - иллюстративный вариант осуществления механизма DRM, выполняющегося на устройст-

ве;
фиг. 12 - логическая блок-схема, демонстрирующая этапы, предусмотренные при выполнении про-

граммы управления в одном варианте осуществления;
фиг. 13 - элементы, составляющие клиентское приложение, потребляющее контент, в одном вари-

анте осуществления;
фиг. 14 - элементы, составляющие приложение упаковки контента в одном варианте осуществле-

ния;
фиг. 15 - механизм вывода ключа согласно одному варианту осуществления;
фиг. 16 - пример системы DRM;
фиг. 17 - пример системы DRM, которая обеспечивает временный вход;
фиг. 18 - высокоуровневая архитектура иллюстративной системы для управления документацией

предприятия;
фиг. 19 - пример того, как систему, например, показанную на фиг. 18, можно использовать для

012918

- 3 -

управления доступом к документу или другим его использованием;
фиг. 20 - дополнительный пример того, как систему, например, показанную на фиг. 18, можно ис-

пользовать для управления доступом к документу или другим его использованием;
фиг. 21 - дополнительные особенности примера, показанного на фиг. 20;
фиг. 22 - другая иллюстративная система для управления электронным контентом на предприятии;
фиг. 23 - применение описанных здесь систем и способов для управления записями системы здра-

воохранения;
фиг. 24 - демонстрирует, как представленные здесь системы и способы можно использовать в кон-

тексте службы электронной подписки;
фиг. 25 - демонстрирует, как описанные здесь системы и способы можно использовать в контексте

домена домашней сети;
фиг. 26 - взаимодействия, которые имеют место между приложением хоста и механизмом клиента

DRM в одном иллюстративном варианте осуществления;
фиг. 27 - взаимодействия, которые имеют место между приложением хоста и механизмом упаковки

в одном иллюстративном варианте осуществления;
фиг. 28А - более подробная иллюстрация лицензии согласно одному варианту осуществления;
фиг. 28В - соотношение между связями и узлами в одном иллюстративном варианте осуществле-

ния;
фиг. 29 - операционная среда иллюстративной реализации виртуальной машины;
фиг. 30 - структура данных расширенного блока состояний согласно одному варианту осуществле-

ния;
фиг. 31А - образ памяти для сегмента данных в одном варианте осуществления;
фиг. 31В - пример образа памяти для сегмента кода в одном варианте осуществления;
фиг. 31С - пример образа памяти для элемента экспорта в одном варианте осуществления;
фиг. 31D - общий пример элемента таблицы экспорта в одном варианте осуществления;
фиг. 31Е - пример элемента таблицы экспорта для иллюстративной точки входа;
фиг. 32 - пример протокола передачи лицензии;
фиг. 33 - другой пример протокола передачи лицензии согласно одному варианту осуществления;
фиг. 34 - механизм защиты целостности объектов «лицензия» в одном варианте осуществления;
фиг. 35 - механизм защиты целостности объектов «лицензия» в другом варианте осуществления;
фиг. 36 - протокол проверки близости согласно одному варианту осуществления;
фиг. 37 - демонстрирует использование протокола проверки близости согласно одному варианту

осуществления;
фиг. 38 - взаимодействие между клиентом и сервером лицензий в одном варианте осуществления;
фиг. 39 - более подробная иллюстрация взаимодействия между клиентом и сервером лицензий в

одном варианте осуществления;
фиг. 40 - пример сущности с множественными ролями;
фиг. 41 - протокол загрузки согласно одному варианту осуществления;
фиг. 42 - соотношение между с14n-ex и иллюстративной XML-каноникализацией в одном варианте

осуществления.
Осуществление изобретения

Ниже представлено подробное описание изобретения. Хотя описано несколько вариантов осущест-
вления, следует понимать, что изобретение не ограничивается каким-либо вариантом осуществления, но,
напротив, охватывает многочисленные альтернативы, модификации и эквиваленты. Кроме того, хотя в
нижеследующем описании приведены многочисленные конкретные детали для обеспечения исчерпы-
вающего понимания изобретения, некоторые варианты осуществления можно применять на практике без
некоторых или всех этих деталей. Кроме того, для ясности, определенные технические сведения, извест-
ные в уровне техники, не описаны подробно во избежание ненужного затемнения изобретения.

В совместно поданной патентной заявке США № 10/863,551, № 2005/0027871 А1 (далее - "заявке
'551"), которая, таким образом, включена сюда посредством ссылки, описаны варианты осуществления
архитектуры управление цифровыми правами (DRM) и нового механизма DRM, которые преодолевают
некоторые недостатки, характерные для многих предыдущих реализаций DRM. В данной заявке описаны
усовершенствования, расширения и модификации, а также альтернативные варианты осуществления
архитектуры и механизма DRM, описанных в заявке '551, а также новые компоненты, архитектуры и ва-
рианты осуществления. Таким образом, очевидно, что описанный здесь материал можно использовать в
контексте архитектуры и/или механизма DRM, например, описанных в заявке '551, а также в других кон-
текстах.

1. Иллюстративная система DRM.
На фиг. 1 показана иллюстративная система 100 для управления электронным контентом. Согласно

фиг. 1, сущность 102, обладающая правами на электронный контент 103, упаковывает контент для рас-
пространения и потребления конечными пользователями 108а-е (совместно именуемыми "конечными
пользователями 108", где позиция 108 в равной степени относится к конечному пользователю и к вычис-

012918

- 4 -

лительной системе конечного пользователя, а к чему именно, будет ясно из контекста). Например, сущ-
ность 102 может являться владельцем, создателем или поставщиком контента, например, музыкантом,
киностудией, издательством, компанией по разработке программного обеспечения, автором, поставщи-
ком услуг мобильной связи, службой загрузки или подписки на контент в интернете, поставщиком ка-
бельного или спутникового телевещания, служащим корпорации и т.п., или сущностью, действующей от
его имени, и контент 103 может содержать любой электронный контент, например цифровой видео-, ау-
дио- или текстовый контент, фильм, песню, видеоигру, фрагмент программного обеспечения, сообщение
электронной почты, текстовое сообщение, документ текстового редактора, отчет или любой другой раз-
влекательный, деловой или другой контент.

В примере, показанном на фиг. 1, сущность 102 использует механизм упаковки 109, связывающий
лицензию 106 с упакованным контентом 104. Лицензия 106 основана на политиках 105 или других жела-
ниях сущности 102, и указывает разрешенные и/или запрещенные режимы использования контента и/или
одно или несколько условий, которым должны удовлетворять режимы использования контента, или ко-
торые должны выполняться как условие или следствие использования. Контент также может быть защи-
щен одним или несколькими криптографическими механизмами, например, методами шифрования или
цифровой подписи, для чего доверенный орган 110 можно использовать для получения соответствующих
криптографических ключей, сертификатов и/или т.п.

Согласно фиг. 1, упакованный контент 104 и лицензии 106 можно предоставлять конечным пользо-
вателям 108 любыми пригодными средствами, например, по сети 112 наподобие интернета, локальной
сети 103, беспроводной сети, виртуальной частной сети 107, глобальной сети, и/или т.п., посредством
кабельной, спутниковой, широковещательной или сотовой связи 114, и/или через записываемые носите-
ли 116, например, компакт-диск (CD), цифровой универсальный диск (DVD), карту флэш-памяти (на-
пример, карту Security Digital (SD)), и/или т.п. Упакованный контент 104 можно доставлять пользовате-
лю совместно с лицензией 106 в одном пакете или передаче 113, или в отдельных пакетах или передачах,
принимаемых от одного или разных источников.

Система конечного пользователя (например, персональный компьютер 108е, мобильный телефон
108а, телевизор и/или телевизионная приставка 108с, портативный аудио- и/или видеопроигрыватель,
устройство чтения электронных книг и/или т.п.) содержит прикладное программное обеспечение 116,
оборудование и/или специализированное логическое устройство, которое способно извлекать и пред-
ставлять контент. Система пользователя также включает в себя программное обеспечение и/или обору-
дование, именуемое здесь механизмом 118 управления цифровыми правами, для оценивания лицензии
106, связанной с упакованным контентом 104, и применения ее условий (и/или разрешения приложению
116 применять эти условия), например, путем избирательного предоставления пользователю доступа к
контенту только, если это разрешает лицензия 106. Механизм 118 управления цифровыми правами мо-
жет быть структурно или функционально объединен с приложением 116 или может содержать отдель-
ный фрагмент программного обеспечения и/или оборудования. Альтернативно или дополнительно, сис-
тема пользователя, например система 108с, может осуществлять связь с удаленной системой, например
системой 108b, (например, сервером, другим устройством в сети устройств пользователя, например, пер-
сональным компьютером или телевизионной приставкой, и/или т.п.), которое использует механизм
управления цифровыми правами для определения 120, предоставлять ли пользователю доступ к контен-
ту, ранее полученному или запрошенному пользователем.

Механизм управления цифровыми правами, и/или другое программное обеспечение, находящееся в
системе пользователя или осуществляющее дистанционную связь с ней, также может записывать инфор-
мацию, относящуюся к доступу пользователя к защищенному контенту или другому его использованию.
В некоторых вариантах осуществления, эта информация, полностью или частично, может передаваться
удаленной стороне (например, в расчетный центр 122, создателю, владельцу или поставщику контента
102, менеджеру пользователя, сущности, действующей от его имени, и/или т.п.), например, для исполь-
зования при начислении выручки (например, гонорара, платы за развлечение и т.д.), определении пред-
почтений пользователя, применении системных политик (например, мониторинге использования конфи-
денциальной информации), и/или т.п. Очевидно, что, хотя фиг. 1 показана иллюстративная архитектура
DRM и совокупность иллюстративных соотношений, описанные здесь системы и способы можно приме-
нять на практике в любом подходящем контексте, и, таким образом, очевидно, что фиг. 1 приведена в
целях иллюстрации и объяснения, но не в целях ограничения.

На фиг. 2 показан более подробный пример системы 200, которую можно использовать для практи-
ческого применения вариантов осуществления изобретения. Например, система 200 может содержать
вариант осуществления устройства 108 конечного пользователя, устройства 109 поставщика контента
и/или т.п. Например, система 200 может содержать вычислительное устройство общего назначения, на-
пример, персональный компьютер 108е или сетевой сервер 105, или специализированное вычислитель-
ное устройство, например, сотовый телефон 108а, карманный персональный компьютер, портативный
аудио- или видеопроигрыватель, телевизионную приставку, киоск, игровую систему и т.п. Система 200
обычно включает в себя процессор 202, память 204, пользовательский интерфейс 206, порт 207, куда
вставляется сменная память 208, сетевой интерфейс 210 и одну или несколько шин 212 для соединения

012918

- 5 -

вышеупомянутых элементов. Работой системы 200 обычно управляет процессор 202, действующий под
управлением программ, хранящихся в памяти 204. Память 204 обычно включает в себя высокоскорост-
ную оперативную память (ОЗУ) и энергонезависимую память, например, магнитный диск и/или флэш-
ЭСППЗУ. Некоторые участки памяти 204 могут быть заблокированы, что не позволяет другим компо-
нентам системы 200 производить на них операции чтения и записи. Порт 207 может содержать дисковод
или разъем памяти для приема компьютерно-считываемых носителей 208, например, дискет, CD-ROM,
DVD, карт памяти, SD-карт, других магнитных или оптических носителей и/или т.п. Сетевой интерфейс
210 обычно способен обеспечивать соединение между системой 200 и другими вычислительными уст-
ройствами (и/или сетями вычислительных устройств) через сеть 220, например, интернет или интрасеть
(например, LAN, WAN, VPN и т.д.), и может применять одну или несколько технологий связи для физи-
ческого создания такого соединения (например, беспроводного, Ethernet, и/или т.п.). В некоторых вари-
антах осуществления, система 200 также может включать в себя блок обработки 203, защищенный от
злонамеренного использования пользователем системы 200 или другими сущностями. Такой защищен-
ный блок обработки может способствовать повышению безопасности важных операций, например,
управления ключами, проверки подписи, и других аспектов процесса управления цифровыми правами.

Согласно фиг. 2, память 204 вычислительного устройства 200 может включать в себя различные
программы или модули, управляющие работой вычислительного устройства 200. Например, память 204
обычно включает в себя операционную систему 220 для управления выполнением приложений, работой
периферийных устройств, и т.п.; приложение хоста 230 для представления защищенного электронного
контента; и механизм DRM 232 для реализации некоторых или всех описанных здесь функций управле-
ния правами. Как описано здесь в другом месте, механизм DRM 232 может содержать, взаимодейство-
вать с, и/или управлять различными другими модулями, например, виртуальной машиной 222 для вы-
полнения программ управления и базой данных состояний 224 для хранения информации состояния, ис-
пользуемой виртуальной машиной 222, и/или одним или несколькими криптографическими модулями
226 для осуществления криптографических операций, например, шифрования и/или дешифрования кон-
тента, вычисления хэш-функций и кодов аутентификации сообщения, оценивания цифровых подписей
и/или т.п. Память 204 также обычно включает в себя защищенный контент 228 и соответствующие ли-
цензии 229, а также криптографические ключи, сертификаты и т.п. (не показаны).

Специалисту в данной области техники очевидно, что описанные здесь системы и способы можно
применять на практике с использованием вычислительных устройств, аналогичных или идентичных изо-
браженным на фиг. 2, или с использованием практически любого другого подходящего вычислительного
устройства, в том числе вычислительного устройства, которое не обрабатывает некоторые из компонен-
тов, показанных на фиг. 2, и/или вычислительного устройства, которое обрабатывает другие компонен-
ты, которые не показаны. Таким образом, очевидно, что фиг. 2 приведена в целях иллюстрации, но не
ограничения.

Здесь описаны механизм управления цифровыми правами и соответствующие системы и способы,
которые можно использовать для обеспечения некоторых или всех функций управления правами в сис-
темах, например, показанных на фиг. 1 и 2, или в системах других типов. Кроме того, ниже описаны раз-
личные другие системы и способы, которые можно использовать в контексте систем, например, показан-
ных на фиг. 1 и 2, а также в других контекстах, в том числе, контекстах, не связанных с управлением
цифровыми правами.

2. Архитектура механизма DRM.
В одном варианте осуществления, сравнительно простой, открытый и гибкий механизм управления

цифровыми правами (DRM) используется для реализации базовых функций DRM. В предпочтительном
варианте осуществления, этот механизм DRM должен сравнительно легко интегрироваться в среду веб-
услуг, которая, например, описана в заявке '551, и в практически любую среду хоста или архитектуру
программного обеспечения. В предпочтительном варианте осуществления, механизм DRM не зависит от
конкретных медиа-форматов и криптографических протоколов, что дает разработчикам свободу выбора
стандартных или собственных технологий в соответствии с конкретной ситуацией. Предпочтительные
варианты осуществления механизма DRM используют простую модель администрирования, но ее можно
использовать для выражения сложных соотношений и бизнес-моделей.

Некоторые иллюстративные варианты осуществления механизма DRM, которые описаны ниже, от-
носятся к иллюстративной реализации, именуемой "Octopus"; однако очевидно, что настоящее изобрете-
ние не ограничивается конкретными деталями иллюстративного Octopus, которые приведены в целях
иллюстрации, но не ограничения.

2.1. Обзор.
На фиг. 3 показано, как иллюстративный механизм DRM 303а может функционировать в системе

302, которая использует DRM.
Согласно фиг. 3, в одном варианте осуществления механизм DRM 303а встроен или интегрирован в

приложение хоста 304а (например, приложение представления контента, например, аудио- и/или видео-
проигрывателя, приложение представления текста, например, программу электронной почты, текстовый
редактор, программу чтения электронных книг или программу чтения документов и/или т.п.) или осуще-

012918

- 6 -

ствляет связь с ним. В одном варианте осуществления, механизм DRM 303а осуществляет функции DRM
и опирается на приложение хоста 304а на предмет таких услуг, как шифрование, дешифрование, управ-
ление файлами и/или других функций, которые хост может обеспечивать более эффективно. Например, в
предпочтительном варианте осуществления, механизм DRM 303а способен манипулировать объектами
DRM 305, которые содержат лицензию 306 на защищенный контент 308. В некоторых вариантах осуще-
ствления, механизм DRM 303а также может передавать ключи приложению хоста 304а. Согласно фиг. 3,
механизм DRM 303а и/или приложение хоста 304а может использовать веб-услуги 305а и/или услуги
хоста 306а для обработки и/или информацию, необходимую для решения соответствующих задач. В за-
явке '551 приведены примеры таких услуг, а также показано, каким образом механизм DRM 303а и при-
ложение хоста 304а могут взаимодействовать с ними.

В примере, показанном на фиг. 3, механизм DRM 303а, приложение хоста 304а, услуги хоста 306а,
и интерфейс веб-услуг 305а загружаются в устройство 300а, например персональный компьютер (ПК)
конечного пользователя. Устройство 300а поддерживает связь с сервером 300b, от которого поступают
контент 308 и лицензия 306, а также с портативным устройством 300d, на которое устройство 300а мо-
жет пересылать контент 308 и/или лицензию 306. Каждое из этих других устройств может включать в
себя механизм DRM 303, аналогичный или идентичный механизму DRM 300а, который может быть ин-
тегрирован в конкретное приложение хоста и среду хоста устройства. Например, сервер 300b может
включать в себя приложение хоста 304b, которое осуществляет массовую упаковку контента и/или ли-
цензий и использует механизм DRM 300а для оценивания объектов управления, связанных с упаковы-
ваемым контентом, для согласования с любыми ограничениями на повторное распространение. Анало-
гично, устройство 300с может включать в себя приложение хоста 304с, способное представлять и упако-
вывать контент, тогда как устройство 300а может включать в себя приложение хоста, способное просто
представлять контент. В порядке еще одного примера возможного разнообразия сред хоста, устройство
300d может не включать в себя интерфейс веб-услуг, но, вместо этого, может опираться на связь с уст-
ройством 300а и интерфейс веб-услуг 305а постольку, поскольку приложение хоста 304d и/или механизм
DRM 303d требуют использования каких-либо веб-услуг. На фиг. 3 показан только один пример систе-
мы, в которой можно использовать механизм DRM; очевидно, что описанные здесь варианты осуществ-
ления механизмов DRM можно реализовать и объединять с приложениями и системами самыми разно-
образными способами, не ограничиваясь иллюстративными примерами, показанными на фиг. 3.

2.2. Объекты.
В предпочтительных вариантах осуществления, объекты защиты и администрирования контента

используются для представления сущностей в системе, для защиты контента, для связывания правил
пользования с контентом и для определения, можно ли предоставить запрошенный доступ.

Как описано более подробно ниже, в одном варианте осуществления, используются следующие
объекты:

2.2.1. Объекты «узел».
Объекты «узел» используются для представления сущностей в системе. На практике, узел обычно

представляет пользователя, устройство или группу. С объектами «узел» также обычно связаны атрибуты,
которые представляют определенные свойства сущности, связанной с узлом.

Например, на фиг. 4 показаны два пользователя (Ксан 400 и Нокс 402), два устройства (ПК 404 и
портативное устройство 406), и несколько сущностей, которые представляют группы (например, членов
семьи Кери 408, абонентов публичной библиотеки 410, подписчиков на конкретные музыкальные услуги

012918

- 7 -

412, устройств 414, одобренных RIAA (Американской ассоциацией звукозаписывающих компаний), и
устройств 416, изготовленных конкретной компанией), с каждой из которых связан объект «узел».

В одном варианте осуществления объекты «узел» включают в себя атрибуты, указывающие, что
представляет узел. Один пример атрибута это тип узла. Помимо представления пользователей, групп или
устройств, атрибут «тип узла» можно использовать для представления других сущностей. В некоторых
вариантах осуществления, объект «узел» также может включать в себя информацию криптографического
ключа, например, при использовании варианта осуществления методов вывода и распространения ключа,
описанных здесь в другом месте.

В некоторых вариантах осуществления, объекты «узел» также включают в себя пару асимметрич-
ных ключей конфиденциальности, которая используется для «нацеливания» конфиденциальной инфор-
мации на подсистемы, имеющие доступ к конфиденциальным частям объекта «узел». Это может быть
сущность, которую представляет узел (например, Музыкальные услуги 412) или некоторая сущность,
отвечающая за управление узлом (например, конечный пользователь (например, Нокс 402) может отве-
чать за управление своим портативным устройством 406).

2.2.2. Объекты «связь».
В предпочтительном варианте осуществления, объекты «связь» представляют собой подписывае-

мые объекты, используемые для показа соотношения между двумя узлами. Например, согласно фиг. 4,
связь 418 от узла ПК 404 к узлу Нокс 402 показывает право собственности. Связь от узла Нокс 402 к узлу
«семья Кери» 408 показывает принадлежность, как и связь от узла «семья Кери» 408 к узлу «подписчики
на музыкальные услуги» 412. В одном варианте осуществления, объекты «связь» выражают соотношение
между двумя узлами, и, таким образом, соотношения, показанные на фиг. 4, можно представить с ис-
пользованием десяти связей.

Согласно фиг. 4, граф 420 можно использовать для выражения соотношения между узлами, где
объекты «связь» являются ориентированными ребрами между узлами. Например, на фиг. 4, соотношение
между узлом «семья Кери» 408 и узлом «музыкальные услуги» 412 указывает, что существует ориенти-
рованное ребро 422 в графе, вершинами которого являются узел «семья Кери» 408 и узел «музыкальные
услуги» 412. Нокс 402 и Ксан 400 являются членами семьи Кери 408. Поскольку Нокс 402 связан с семь-
ей Кери 408, и семья Кери 4 08 связана с Музыкальными услугами 412, должен быть путь между Ноксом
402 и Музыкальными услугами 412. Механизм DRM рассматривает узел как доступный из другого узла,
когда существует путь от этого узла к другому узлу. Это позволяет записать управляющий элемент, ко-
торый позволяет разрешать доступ к защищенному контенту на основании того условия, что узел досту-
пен из устройства, на котором выполняется приложение, которое запрашивает доступ к защищенному
контенту.

Как описано более подробно ниже, объекты «связь» также могут, в необязательном порядке, со-
держать некоторые криптографические данные, которые позволяют выводить ключи контента. Объекты
«связь» также могут содержать программы управления, которые задают условия, при которых связь
можно считать действительной. Такие программы управления могут выполняться или интерпретировать-
ся (эти термины используются здесь взаимозаменяемо) виртуальной машиной механизма DRM для оце-
нивания действительности связи (например, для определения, можно ли использовать связь для дости-
жения данного узла в графе авторизации).

В одном варианте осуществления, связи являются подписываемыми. Можно использовать любой
подходящий механизм цифровой подписи, и в одном варианте осуществления механизм DRM не задает,
как подписываются объекты «связь», и не оценивает никакие соответствующие сертификаты, вместо
этого, он опирается на систему хоста для проверки любых таких подписей и/или сертификатов. Это по-
зволяет архитектору или администратору системы задавать срок действия объекта «связь», отменять его
и т.д. (например, с использованием истечения срока действия, отмены и/или т.п. ключей или сертифика-
тов), тем самым обеспечивая дополнительный уровень управления политикой и безопасности на верши-
не управления политикой и безопасности, обеспечиваемых оцениванием программ управления и объек-
тов DRM механизмом DRM в контексте конкретных фрагментов защищенного контента и/или связей
(например, истечение срока действия связи можно, альтернативно или дополнительно, реализовать пу-
тем включения соответствующей программы управления в сам объект «связь», которая, при выполнении,
будет применять дату окончания срока действия или другой период действия). В одном варианте осуще-
ствления, механизм DRM является общим и работает с любой подходящей схемой шифрования, цифро-
вой подписи, отмены и/или другой схемой безопасности, которая используется приложением и/или сре-
дой хоста. Таким образом, например, если механизму DRM нужно определить, имеет ли конкретная
связь надлежащую подпись, он может просто вызвать приложение хоста (и/или криптографическую
службу хоста или системы) для проверки подписи в соответствии с конкретной схемой подписи, вы-
бранной проектировщиком системы, детали которой могут быть неизвестны механизму DRM. В других
вариантах осуществления, механизм DRM сам осуществляет фактическое оценивание подписи, с опорой
на хост, просто для указания использования надлежащего алгоритма подписи.

2.2.3. Защита и администрирование контента.
Согласно фиг. 3, в типичном случае, поставщик контента 300b использует приложение 304b, кото-

012918

- 8 -

рое включает в себя механизм упаковки для шифрования или иной криптографической защиты фрагмен-
та электронного контента 308, и создает лицензию 306, которая регламентирует доступ к этому контенту
или другое его использование. В одном варианте осуществления, лицензия 308 содержит набор объектов
305, которые указывают, как можно использовать контент 308, а также включает в себя ключ(и) шифро-
вания контента и/или информацию, необходимую для его(их) получения. В одном варианте осуществле-
ния, контент 308 и лицензия 306 логически разделены, но связаны друг с другом внутренними ссылками
(например, с использованием ID объекта 310). Во многих случаях, удобно сохранять и/или доставлять
контент и лицензию совместно; однако в предпочтительных вариантах осуществления это не требуется.
В одном варианте осуществления, лицензию можно применять к более чем одному элементу контента, и
более чем одну лицензию можно применять к любому отдельно взятому элементу контента.

Согласно фиг. 3, когда приложение хоста 304а, выполняющееся на клиентском устройстве 300а, хо-
чет осуществить действие на конкретном фрагменте контента 308, оно просит механизм DRM 303а про-
верить, разрешено ли действие, которое оно намеревается совершить (например, "воспроизведение"). В
одном варианте осуществления, механизм DRM 303а, из информации, содержащейся в объектах 305,
содержащих лицензию контента 306, загружает и выполняет программу управления, связанную с кон-
тентом 308, и разрешение на осуществление действия дается или не дается на основании результата, воз-
вращенного программой управления. Для дачи разрешения обычно требуется выполнение некоторых
условий, например, условия доступности узла из узла, представляющего запрашивающую(ее) сущ-
ность/устройство 300а.

На фиг. 5 показана логическая блок-схема, демонстрирующая, как механизм DRM, согласно вари-
анту осуществления, может определять, авторизовано ли запрошенное действие (например, просмотр
фрагмента контента). Согласно фиг. 5, принимается (500) запрос на оценивание лицензии на данное дей-
ствие. Например, этот запрос может поступать от приложения хоста, после того, как хост принимает от
пользователя запрос на осуществление указанного действия. Согласно фиг. 5, механизм DRM оценивает
указанную лицензию (502) и определяет, авторизовано ли запрошенное действие (504). Например, ли-
цензия может содержать программу управления, которую выполняет механизм DRM, выход которой
используется для принятия решения на авторизацию. Если лицензия авторизует запрошенное действие
(т.е. на выходе "да" блока 504), то механизм DRM указывает приложению хоста, что запрос удовлетво-
рен (506). В противном случае, механизм DRM указывает приложению хоста, что запрос отклонен (508).
В некоторых вариантах осуществления, механизм DRM может также возвращать приложению хоста раз-
личные метаданные, которые, например, связывают условия с предоставлением авторизации (например,
обязательства и/или обратные вызовы) или обеспечивают дополнительную информацию, касающуюся
причины отказа в авторизации. Например, механизм DRM может указать, что запрошенное действие
разрешено только, если приложение хоста регистрирует определенную информацию, относящуюся к
осуществлению запрошенного действия, или при условии, что приложение хоста осуществляет обратные
вызовы механизма DRM с заранее заданными интервалами времени, например, для повторного оценива-
ния лицензии. Дополнительная информация о таких обязательствах, обратных вызовах, и другие мета-
данные, возвращаемые механизмом DRM, описаны ниже. Если запрошенное действие авторизовано,
ключ контента извлекается (например, из объекта ContentKey лицензии) и используется для отпуска кон-
тента для запрашиваемого использования.

2.2.4. Объекты DRM лицензии.
Согласно фиг. 6, в предпочтительном варианте осуществления лицензия 600 представляет собой со-

вокупность объектов. В примере, показанном на фиг. 6, лицензия 600 содержит объект ContentKey 602,
объект «протектор» 604, объект «контороллер» 606, и объект управления 608. Согласно фиг. 6, объект
ContentKey 602 включает в себя зашифрованные данные ключа 610 (например, зашифрованную версию
ключа, необходимого для дешифрования зашифрованного элемента контента 612) и информацию, отно-
сящуюся к криптосистеме, используемой для шифрования данных ключа. Объект «протектор» 604 свя-
зывает объект ContentKey 602 с одним или несколькими объектами «контент» 614. Согласно фиг. 6, объ-
ект управления 608 включает в себя и защищает программу управления 616, которая указывает, как рег-
ламентируется объект «контент» 614. В предпочтительном варианте осуществления, программа управле-
ния 616 является фрагментом исполнимого байт-кода, который выполняется на виртуальной машине,
используемой механизмом DRM. Программа управления определяет, можно ли осуществлять опреде-
ленные действия на контенте, проверяя выполнение условий, указанных в программе управления, на-
пример, доступны ли определенные узлы с использованием действительных объектов «связь», сохране-
ны ли определенные объекты состояния, имеет ли среда хоста определенные характеристики, и/или т.п.
Согласно фиг. 6, объект «контроллер» 606 используется для связывания одного или нескольких объектов
ContentKey 602 с объектом управления 608.

Лицензия 600 также может содержать дополнительные объекты, например, метаданные, обеспечи-
вающие описание, считываемое машиной или человеком, условий доступа к контенту, требуемых лицен-
зией. Альтернативно или дополнительно, такие метаданные могут быть включены в качестве расшире-
ния ресурсов одного из других объектов (например, объекта управления 608). Согласно варианту осуще-
ствления, показанному на фиг. 6, объект управления 608 и объект «контроллер» 606 являются подписы-

012918

- 9 -

ваемыми, что позволяет системе удостовериться в том, что информация управления поступила из дове-
ренного источника, прежде чем использовать ее для принятия решений относительно доступа к контен-
ту. В одном варианте осуществления, действительность объекта управления 608 также можно проверять
путем проверки защищенного хэша, включенного в объект «контроллер» 606. Объект «контроллер» 606
также может содержать значение хэша для каждого из ключей или других данных ключа, содержащихся
в объекте(ах) ContentKey 602, на который(е) он ссылается, благодаря чему нарушителю довольно трудно
подделать его представление путем установления связи между данными ключа и объектом ContentKey.

Согласно фиг. 6, в одном варианте осуществления контент 612 зашифрован и включен в объект
«контент» 614. Используемый ключ дешифрования 610 включен в объект ContentKey 602 (или представ-
лен им), и связь между ними представлена объектом «протектор» 604. Согласно фиг. 6, уникальные ID
используются для облегчения установлению связи объектом «контент» 614 и объектом ContentKey 602.
Правила, которые регламентируют использование ключа 610 для дешифрования контента 612, включены
в объект управления 608, и связь между объектом управления 608 и объектом ContentKey 602 представ-
лена объектом «контроллер» 606, опять же, с использованием уникальных ID.

Очевидно, что, хотя на фиг. 6 показаны объекты, содержащие лицензию в одном предпочтительном
варианте осуществления, описанные здесь системы и способы DRM не ограничиваются использованием
этой структуры лицензии. Например, без ограничения, можно использовать лицензии, в которых функ-
ции различных объектов, показанных на фиг. 6, объединены в меньшее количество объектов, или рас-
пределены по дополнительным объектам, или разбиты между объектами иным образом. Альтернативно
или дополнительно, варианты осуществления описанных здесь систем и способов можно применять на
практике с лицензиями, которым недостает некоторых функций, обеспечиваемых структурой лицензии,
показанной на фиг. 6, и/или, в которых предусмотрены дополнительные функции. Таким образом, оче-
видно, что можно использовать любой подходящий механизм для связывания лицензий с контентом в
соответствии с описанными здесь принципами, хотя в предпочтительных вариантах осуществления ис-
пользуется преимущественная структура, показанная на фиг. 6.

2.3. База данных состояний.
В одном варианте осуществления, механизм DRM включает в себя защищенное постоянное храни-

лище объектов, или имеет доступ к нему, которое можно использовать для обеспечения механизма за-
щищенного хранилища состояний. Такое приспособление полезно для обеспечения программ управле-
ния, способных считывать и записывать информацию состояния, которая сохраняется от вызова к вызо-
ву. Такую базу данных состояний можно использовать для сохранения объектов состояния, например
счетчиков воспроизведения, даты первого использования, совокупного времени представления и/или
т.п., а также состояния принадлежности и/или любых других пригодных данных. В некоторых вариантах
осуществления, механизм DRM, выполняющийся на первой системе, может не иметь доступа к локаль-
ной базе данных состояний, и может иметь возможность обращаться к удаленной базе данных состояний,
например, с использованием веб-услуг и/или услуг хоста. В ряде случаев, механизму DRM, выполняю-
щемуся на первой системе, может понадобиться доступ к информации состояния, хранящейся в базе
данных на удаленной системе. Например, первая система может не включать в себя базу данных состоя-
ний, или может не иметь информации, в которой она нуждается, в своей собственной базе данных со-
стояний. В некоторых вариантах осуществления, когда механизм DRM сталкивается с подобной ситуа-
цией, он может обращаться к удаленной базе данных состояний через интерфейс услуг, и/или с исполь-
зованием программ-агентов, что описано более подробно ниже.

2.4. О программах управления.
Описанные здесь системы и способы используют программы управления в различных контекстах.

Например, программы управления, содержащиеся в объектах управления, можно использовать для вы-
ражения правил и условий, регламентирующих использование защищенного контента. Кроме того, про-
граммы управления в объектах «связь» можно использовать для выражения правил и условий, исполь-
зуемых для определения, пригодна ли связь для данной цели (например, анализа доступности узла). Та-
кие программы управления иногда называются здесь ограничениями по связи. Еще один контекст, в ко-
тором можно использовать программы управления, это объекты «агент» или «делегат», где код управле-
ния используется для осуществления действия от имени другой сущности (в случае агентских программ
управления) или от имени другого объекта управления (в случае делегатских программ управления).

В одном варианте осуществления, программы управления выполняются или интерпретируются
виртуальной машиной, базирующейся на механизме DRM, а не выполняющейся непосредственно физи-
ческим процессором. Однако очевидно, что можно легко построить физический процессор или иное ло-
гическое устройство для выполнения программ управления. В одном варианте осуществления, програм-
мы управления имеют формат байт-кода, что дает дополнительную возможность взаимодействия между
платформами.

В предпочтительном варианте осуществления, программы управления написаны на языке ассемб-
лера и преобразованы в байт-код программой ассемблера. В других вариантах осуществления можно
использовать шаблоны и/или языки выражения прав высокого уровня для обеспечения начального вы-
ражения прав, правил и/или условий, и можно использовать компилятор для преобразования выражения

012918

- 10 -

высокого уровня в байт-код для выполнения механизмом DRM согласно описанному здесь варианту
осуществления. Например, выражения прав, записанные в собственном формате DRM, можно, с помо-
щью соответствующего компилятора, преобразовать или транслировать в функционально эквивалентное
выражение на уровне байт-кода для выполнения на механизме DRM согласно описанному здесь вариан-
ту осуществления, что позволяет использовать защищенный фрагмент контента, в соответствии с усло-
виями, указанными поставщиком контента, на системах, которые понимают собственный формат DRM, а
также системах, которые включают в себя механизм DRM, например, описанный здесь. Также очевидно,
что описанные здесь системы и способы на основе механизма управления цифровыми правами не огра-
ничиваются использованием выражений прав в формате байт-кода, интерпретируемых виртуальной ма-
шиной. Напротив, в некоторых вариантах осуществления, права можно выражать любым подходящим
способом (например, с использованием языка выражения прав высокого уровня (REL), шаблона, и т.д.),
и граф авторизации и/или другие описанные здесь методы, осуществляемые с использованием приклад-
ной программы, предназначенной для распознавания и оценивания таких выражений прав.

2.4.1. Условия.
Как указано выше, программы управления обычно выражают одно или несколько условий, которые

должны выполняться для удовлетворения запроса на использование фрагмента контента, для того, чтобы
связь была признана действительной, и/или т.п. Можно использовать любые подходящие условия, в за-
висимости от требований поставщика контента или архитектора системы, и/или функций, обеспечивае-
мых системой.

В предпочтительных вариантах осуществления, виртуальная машина, используемая механизмом
DRM, поддерживает программы любой сложности, которые способны проверять выполнение условий,
например некоторые или все из следующих:

Условия на основе времени: сравнение значения времени клиента со значением или значениями,
указанным(и) в программе управления.

Нацеливание конкретного узла: проверка, доступен ли определенный узел из другого узла. Эта кон-
цепция обеспечивает поддержку таких моделей, как домены, подписки, отношения принадлежности и
т.п.

Проверка, совпадают ли атрибуты определенного узла с указанными значениями: проверка любых
атрибутов узла, например, удовлетворяют ли возможности представления устройства, связанного с уз-
лом, требованиям верности.

Проверка, обновлены ли метаданные, связанные с безопасностью, на клиенте: проверка, например,
имеет ли клиент приемлемую версию клиентского программного обеспечения, и точное измерение вре-
мени. В некотором варианте осуществления, такая проверка может опираться, например, на утверждения
в одном или нескольких сертификатах от службы сертификации данных.

Условия на основе состояния: проверка информации в базе данных состояний. Например, база дан-
ных состояний может содержать информацию, сгенерированную в результате предыдущего выполнения
программ управления, и/или жетоны, свидетельствующие о владении подписками, принадлежности
и/или т.п., что позволяет оценивать условия, определяемые счетчиками (например, количество актов
воспроизведения, количество актов экспорта, пределы истекшего времени и т.д.) и другую информацию,
относящуюся к зарегистрированным событиям и условиям.

Характеристики среды. Например, проверка, имеет ли оборудование и/или программное обеспече-
ние в среде хоста определенные характеристики, например, способность распознавать и применять обя-
зательства; проверка наличия или отсутствия определенных программных или аппаратных компонентов,
например, защищенного выходного канала; проверка информации близости, например, близости запра-
шивающего устройства к другому устройству или приложению; проверка характеристик удаленных сис-
тем и/или хранящихся в них данных, с использованием сетевых услуг и/или агентов; и/или т.п.

С использованием этих или любых других подходящих условий, объект управления может выра-
жать правила, которые регламентируют представление, перенос, экспорт и/или т.п. контента. Очевидно,
что вышеприведенный список условий носит иллюстративный характер, и что можно задать и использо-
вать любые подходящие условия, например, путем реализации системного вызова для использования при
проверке выполнения нужного условия. Например, без ограничения, если желательно потребовать, что-
бы устройство находилось в конкретной подсети, можно задать системный вызов (например,
GetIPConfig), который способен возвращать информацию IPConfig устройства хоста (или информацию
IPConfig удаленного устройства, если системный вызов запущен на удаленном устройстве с использова-
нием агента), который может использовать программа управления для проверки, находится ли устройст-
во в предписанной подсети.

2.4.2. Агенты.
Предпочтительные варианты осуществления описанных здесь систем и способов на основе меха-

низма DRM обеспечивают поддержку независимых объектов, несущих программы управления. Такие
"агенты" могут распространяться на механизм DRM, выполняющийся на удаленной системе, для выпол-
нения указанных функций, например, записи в защищенное хранилище состояний удаленного механизма
DRM. Например, агент может передаваться вследствие контакта с удаленной службой или выполнения

012918

- 11 -

удаленной программы управления. Агент также можно использовать для осуществления операции пере-
мещения контента, для инициализации счетчика, для отмены регистрации узла и/или т.п. В порядке еще
одного примера, агент можно использовать для осуществления анализа доступности из удаленного узла
к другому узлу. Такой агент, например, может быть полезен при применении политики, запрещающей
второму пользователю регистрировать устройство, зарегистрированное первым пользователем. Если
второй пользователь запросил регистрацию, агент может быть направлен на устройство вторым пользо-
вателем или службой регистрации, действующей от его имени, для определения, было ли устройство
ранее зарегистрировано для первого пользователя, в каковом случае запрос второго пользователя на ре-
гистрацию будет отклонен.

На фиг. 7А и 7В показано использование агентов в одном варианте осуществления. Согласно фиг.
7А, предположим, что две сущности - система А 700 и система В 702 - желают связаться друг с другом
через компьютерную сеть 703, и что используется система DRM, способная описывать и применять пра-
вила для определенных операций, например, доступа к защищенному контенту или создания объектов
DRM, которые можно использовать для представления отношений принадлежности, состояния регистра-
ции и/или т.п. в ряде случаев, правило(а) оцениваются на системе А 700, но для этого требуется инфор-
мация, которая зависит от состояния системы В 702. Система DRM 704, которая применяет правило (а)
на системе А 700, должна доверять этой информации.

Например, система DRM 704 на системе А 700 может оценивать/применять правило осуществления
дистанционного представления контента из системы А 700 в системе В 702, и правило может указывать,
что такая операция разрешена только, если система В 702 входит в состав определенной группы уст-
ройств, причем принадлежность к этой группе подтверждается наличием объекта «состояние» 711 в за-
щищенной базе данных состояний 716, доступной на системе В 702.

Способ, используемый в предпочтительном варианте осуществления для работы в таких ситуациях,
использует агенты. Например, если системе А 700 нужна информация из системы В 702, система А 700
подготавливает агент 705, который, в одном варианте осуществления, является программой управления
(например, последовательностью команд, которые могут выполняться механизмом DRM), которая пере-
дается из системы А 700 в систему В 702. В одном варианте осуществления, система А 700 передает
агентский код 705 в систему В 702 по аутентифицированному каналу связи 720, благодаря чему система
А 700 может быть уверена, что агент 705 будет выполняться именно в системе В 702. В некоторых вари-
антах осуществления, помимо агентского кода 705, система А 700 также может передавать системе В 702
один или несколько параметров, которые агентский код 705 может использовать для осуществления сво-
ей работы.

Согласно фиг. 7В, система В 702 принимает агент 705 и любые параметры, связанные с агентом, и
запускает агентский код 705. Когда агент 705 выполняется на системе В 702, он обращается к базе дан-
ных состояний 716 системы В, извлекает информацию состояния 711 и/или осуществляет одно или не-
сколько вычислений над ней, и передает результаты 713 обратно в систему А 700, предпочтительно по
аутентифицированному каналу связи 710, благодаря этому, система А 700 имеет информацию, которая
ей нужна для продолжения своего оценивания.

2.4.3. Ограничения по связи.
В одном варианте осуществления, набор процедур, которые представляют правила, регламенти-

рующие осуществление определенной операции (например "воспроизведение") на элементе контента,
называется "управляющий элемент действия". Набор процедур, которые представляют ограничения по
действительности на объекте «связь» называется "ограничение по связи". Наподобие управляющих эле-
ментов действия, в предпочтительных вариантах осуществления ограничения по связи могут выражать
любую подходящую комбинацию условий. Также аналогично управляющим элементам действия, огра-
ничения по связи можно оценивать локально и/или дистанционно с использованием интерфейса услуг
или агента.

2.4.4. Обязательства и обратные вызовы.
В одном варианте осуществления, определенные действия, когда они разрешены, требуют дополни-

тельного участия приложения хоста. Обязательства представляют операции, которые должно осуществ-
лять приложение хоста после использования ключа контента, которые они запрашивают. Обратные вы-
зовы представляют вызовы одной или нескольких процедур программы управления, которые должно
осуществлять приложение хоста после использования ключа контента, которые они запрашивают. При-
меры обязательств включают в себя, без ограничения, требование, чтобы определенные выходы и/или
управляющие элементы были отключены в ходе представления контента (например, для предотвращения
записи контента в незащищенный выход или для предотвращения перемотки вперед определенных важ-
ных сегментов контента); требование, чтобы информация, относящаяся к использованию контента запи-
сывалась (например, информация измерения или аудита) и/или передавалась в удаленное место (напри-
мер, в расчетный центр, поставщику услуг и т.п.); требование, чтобы программа-агент выполнялась ло-
кально или дистанционно; и/или т.п. Примеры обратных вызовов включают в себя, без ограничения тре-
бование, чтобы хост осуществлял обратный вызов программы управления в определенное абсолютное
время, по истечении определенного времени (например, времени пользования контентом), по наступле-

012918

- 12 -

нии определенного события (например, по завершении периода пробного представления контента), когда
использование контента остановлено, и/или т.п. Например, обратный вызов по истечении определенного
времени можно использовать для увеличения или уменьшения бюджетов, счетчиков воспроизведения и
т.п. (например, дебетования бюджета пользователей только, если они используют фрагмент контента в
течение, по меньшей мере, определенного времени), что защищает пользователя от списания с его лице-
вого счета в случае, если он непреднамеренного нажмет кнопку воспроизведения, но сразу же нажмет
кнопку остановки.

В одном варианте осуществления, существуют разные типы обязательств и обратных вызовов, и ес-
ли приложение сталкивается с каким-либо критическим обязательством или обратным вызовом, кото-
рое(ый) он не поддерживает или не понимает (например, потому, что тип обязательства был задан после
реализации приложения), приложение должно отказаться от продолжения действия, для которого было
возвращено это(т) обязательство или параметр обратного вызова.

2.4.5. Пример.
На фиг. 8-12 показан пример того, как иллюстративный вариант осуществления механизма DRM

может управлять использованием фрагмента контента. Согласно фиг. 8, предположим, что механизм
DRM принял запрос на воспроизведение группы 800 элементов контента 802, 804. Например, элементы
контента 802, 804 могут содержать разные подчасти мультимедиа-представления, различные треки аль-
бома, различные фрагменты контента, полученные от службы подписки, вложенные файлы электронной
почты и т.п. Запрос может приниматься механизмом DRM от приложения хоста, которое, в свою оче-
редь, приняло запрос от пользователя вычислительного устройства, после чего приложение хоста было
выполнено. Запрос от приложения хоста обычно идентифицирует запрошенное действие, фрагмент или
фрагменты контента, после которых должно быть выполнено действие, и лицензию(и), которая(ые)
управляют контентом. Механизм DRM выполняет процесс, показанный на фиг. 5, для определения, нуж-
но ли удовлетворить запрос.

На фиг. 8 и 9 обеспечен более подробный неограничительный пример процесса, показанного на
фиг. 5. Согласно фиг. 9, после приема запроса на доступ к элементам контента 802 и 804 (блок 900), ме-
ханизм DRM проверяет лицензию(и), указанные в запросе, или иначе связанную(ые) с ним, чтобы опре-
делить, существует ли действительная лицензия. Например, механизм DRM может сначала идентифици-
ровать объекты «протектор» 806 и 808, которые содержат уникальные идентификаторы элементов кон-
тента 802 и 804 (т.е. NS:007 и NS:008, соответственно) (блок 902 на фиг. 9). Затем, механизм DRM обна-
руживает объекты ContentKey 810 и 812, указанные в объектах «протектор» 806 и 808 (блок 904 на фиг.
9), что, в свою очередь, позволяет механизму DRM идентифицировать контроллер 814, который ссылает-
ся на оба объекта ContentKey 810 и 812 (блок 906 на фиг. 9). В предпочтительном варианте осуществле-
ния, контроллер 814 подписан, и механизм DRM проверяет его подпись (или запрашивает услуги хоста
для ее проверки). Механизм DRM использует контроллер 814 для идентификации объекта управления
816, который регламентирует использование объекты ContentKey 810 и 812 (и, таким образом, элементы
контента 802 и 804) (блок 908 на фиг. 9). В предпочтительном варианте осуществления, механизм DRM
проверяет целостность объекта управления 816 (например, путем вычисления дайджеста объекта управ-
ления 816 и сравнения его с дайджестом, содержащимся в контроллере 814). Если проверка целостности
успешна, механизм DRM выполняет код управления, содержащийся в объекте управления 816 (блок
910), и возвращает результат (блок 912) приложению хоста, которое использует его для удовлетворения
или отклонения запроса пользователя на доступ к контенту. Результат кода управления также может, в
необязательном порядке, указывать одно или несколько обязательств или обратных вызовов, которые
понадобиться выполнить приложению хоста.

На фиг. 10 показан более подробный пример того, как механизм DRM может осуществлять дейст-
вия, указанные в блоках 910 и 912 на фиг. 9 (т.е. выполнять программу управления и возвращать резуль-
тат). Согласно фиг. 10, идентифицировав соответствующий объект управления, механизм DRM загружа-
ет байт-код, содержащийся в объекте управления, в виртуальную машину, которая, предпочтительно,
базируется на механизме DRM (блок 1000). Механизм DRM и/или виртуальная машина также обычно
инициализирует среду выполнения виртуальной машины (блок 1002). Например, виртуальная машина
может выделять память, необходимую для выполнения программы управления, инициализировать реги-
стры и другие переменные среды, и/или получать информацию о среде хоста, в которой действует вирту-
альная машина (например, делая вызов System.Host.GetObject, описанный ниже). Очевидно, что в неко-
торых вариантах осуществления блоки 1000 и 1002 можно эффективно комбинировать или перемежать
и/или обращать их порядок. Согласно фиг. 10, виртуальная машина затем выполняет байт-код програм-
мы управления (блок 1004). Как описано здесь в другом месте, для этого можно делать вызовы кода дру-
гой виртуальной машины, извлекать информацию состояния из защищенного хранилища и/или т.п. По
окончании выполнения программы управления, она обеспечивает выход (например, в предпочтительном
варианте осуществления, ExtendedStatusBlock), который может использовать, например, вызывающее
приложение для определения, был ли удовлетворен запрос, и, если это так, связаны ли с ним какие-либо
обязательства или обратные вызовы; был ли отклонен запрос, и, если это так, по какой причине; или
произошли ли какие-либо ошибки в ходе выполнения (блок 1006).

012918

- 13 -

Как указано выше, код управления, содержащийся в объекте управления 816, указывает условия
или другие требования, которые должны быть выполнены для осуществления запрошенного использова-
ния элементов контента 802 и 804. Описанные здесь системы и способы позволяют задавать наборы ус-
ловий любой сложности; однако, в целях этого примера, предположим, что программа управления при-
звана требовать, чтобы, для воспроизведения элементов контента 802 и 804, (а) данный узел пользовате-
ля был доступен из устройства, на котором был сделан запрос на воспроизведение контента, и (b) теку-
щая дата была позже указанной даты.

На фиг. 11 показано, как иллюстративный вариант осуществления механизма DRM 1100, выпол-
няющийся на устройстве 1102, может выполнять вышеописанную иллюстративную программу управле-
ния, и на фиг. 12 показана логическая блок-схема этапов, предусмотренных при выполнении процесса.
Согласно фиг. 11, механизм DRM 1100 создает контекст выполнения виртуальной машины (например,
путем вызова System.Host.SpawnVm) 1104 и загружает программу управления. Виртуальная машина
1104 начинает выполнение программы управления в точке входа, указанной механизмом DRM 1100 (на-
пример, в положении процедуры Control.Actions.Play.perform). В этом примере, программа управления
нуждается в определении, доступен ли данный узел из узла индивидуальных особенностей устройства
1102, на котором выполняется механизм DRM 1100. Чтобы произвести такое определение, программа
управления вызывает 1105 услугу менеджера связей 1106, предоставляемую механизмом DRM 1100,
указывая узел, с которым требуется установить связь (блок 1200 на фиг. 12). Менеджер связей 1106 отве-
чает за оценивание объектов «связь» для определения, доступен ли один узел из другого. Чтобы делать
это эффективно, менеджер связей 1106 может предварительно вычислять, существует ли путь от узла
индивидуальных особенностей 1110 устройства 1102 к различным узлам 1114, указанным в любых объ-
ектах «связь», которыми обладает это устройство 1102. Таким образом, менеджер связей 1106 может,
просто проверяя поля "к" и "от" связей, к которым он обращается, определять, какие узлы потенциально
доступны из узла индивидуальных особенностей 1110 устройства 1102. Когда менеджер связей 1106
принимает вызов 1105 от виртуальной машины 1104, он определяет, доступен ли указанный узел 1112,
сначала определяя, существует ли путь от узла индивидуальных особенностей 1110 к указанному узлу
1112 (например, проверяя ID узла в списке узлов, которые ранее были определены как теоретически дос-
тупные) (блок 1202 на фиг. 12). Если путь существует, менеджер связей 1106 оценивает любые програм-
мы управления, содержащиеся в связях, чтобы определить, действительны ли связи (блоки 1204-1210 на
фиг. 12). Чтобы оценить программы управления в объектах «связь» (блок 1206 на фиг. 12), менеджер
связей 1106 может использовать свою собственную виртуальную машину 1108, на которой он выполняет
программы управления, включенные в объекты «связь». Менеджер связей 1106 возвращает результаты
своего определения (т.е. доступен ли данный узел) программе управления, выполняющейся на виртуаль-
ной машине 1104, где она используется для общего оценивания, будет ли удовлетворен запрос на вос-
произведение фрагмента контента. После определения, что указанный узел 1112 доступен из узла инди-
видуальных особенностей 1110 устройства 1102, программа управления, выполняющаяся на виртуальной
машине 1104, определяет, выполняется ли указанное ограничение по дате (блок 1212 на фиг. 12). Если
ограничение по дате выполнено (т.е. на выходе "да" из блока 1212), то программа управления возвращает
результат, указывающий, что указанные условия выполнены (блок 1214 на фиг. 12); в противном случае,
программа управления возвращает результат, указывающий, что указанные условия не выполнены (блок
1216 на фиг. 12).

Пример программы управления, например вышеописанной, показан ниже.

012918

- 14 -

012918

- 15 -

012918

- 16 -

012918

- 17 -

Дополнительный пример программы управления включен в приложение Е.
3. Потребление контента и приложения упаковки.
Ниже приведено более подробное описание иллюстративных вариантов осуществления приложе-

ния, которое потребляет DRM-защищенный контент (например, медиа-проигрывателя, текстового редак-
тора, почтового клиента и т.д., например приложения 303а, 303с и 303d на фиг. 3), и приложения упаков-
ки, например, приложения 303b, которое упаковывает контент, адресованный потребляющим приложе-
ниям.

3.1. Архитектура приложения, потребляющего контент.
Приложение, потребляющее контент, обычно нацелено на доступ к защищенному контенту или

может составлять часть приложения общего назначения, которое также осуществляет другие функции,
например, упаковки контента. В различных вариантах осуществления, приложение, потребляющее кон-
тент, может осуществлять некоторые или все из следующих функций:

обеспечивать интерфейс, посредством которого пользователь может запрашивать доступ к защи-
щенным объектам «контент» и принимать информацию о контенте или информацию ошибки;

управлять взаимодействием с файловой системой;
распознавать формат защищенных объектов «контент»;
запрашивать механизм DRM для оценивания лицензии на фрагменты контента, для определения,

можно ли дать разрешение на доступ к контенту;
проверять цифровые подписи и выполнять другие криптографические функции общего назначения,

в осуществлении которых нуждается механизм DRM;
запрашивать механизм DRM для обеспечения ключей, необходимых для дешифрования защищен-

ного контента; и/или
дешифровать защищенный контент и взаимодействовать со службами медиа-представления для

представления контента.
В одном варианте осуществления, механизм клиента DRM оценивает лицензии, связанные с кон-

тентом, подтверждает или отклоняет разрешение использовать контент и передает ключи дешифрования
приложению, потребляющему контент. Механизм клиента DRM также может выдавать одно или не-
сколько обязательств и/или обратных вызовов приложению, потребляющему контент, требующих от
приложения осуществлять определенные действия вследствие получения доступа к контенту.

На фиг. 13 показаны элементы, составляющие клиентское приложение 1300, потребляющее кон-
тент, в одном варианте осуществления. Согласно фиг. 13 приложение хоста 1302 является логическим
центральным пунктом клиента. Он отвечает за перенос шаблона взаимодействия между другими моду-
лями, а также взаимодействие с пользователем через пользовательский интерфейс 1304. Приложение
хоста 1302 предоставляет набор услуг механизму DRM 1306 через интерфейс 1308 услуг хоста. Интер-
фейс 1308 услуг хоста позволяет механизму DRM 1306 получать доступ к данным, администрируемым
приложением хоста 1302, а также определенным библиотечным функциям, реализованным приложением
хоста 1302. В одном варианте осуществления, интерфейс 1308 услуг хоста является единственным внеш-
ним интерфейсом для механизма DRM 1306.

В одном варианте осуществления, механизм DRM 1306 не взаимодействует напрямую с мультиме-
дийным контентом, администрируемым приложением хоста 1302. Приложение хоста 1302 логически
взаимодействует с услугами контента 1310 для осуществления доступа к мультимедийному контенту, и
передает механизму DRM 1306 только фрагменты данных, которые должен обрабатывать механизм.
Другие взаимодействия с контентом осуществляются механизмом медиа-представления 1312. Например,
в одном варианте осуществления услуги контента 1310 отвечают за получение контента от медиа-
серверов и за сохранение и администрирование контента в постоянном хранилище клиента, тогда как
механизм медиа-представления 1312 является подсистемой, отвечающей за доступ к мультимедийному
контенту и его представление (например, на видео- и/или аудио-выходе). В одном варианте осуществле-
ния, механизм медиа-представления 1312 принимает некоторую информацию от механизма DRM 1306
(например, ключи дешифрования контента), но, в одном варианте осуществления, механизм DRM 1306
взаимодействует с механизмом медиа-представления 1312 не напрямую, но через приложение хоста
1302.

Некоторая информация, необходимая механизму DRM 1306, может быть доступна совместно с
мультимедийным контентом, и ее можно получать и иметь возможность манипулировать ею посредст-
вом услуг контента 1310, однако может возникнуть необходимость получать часть этой информации по-
средством других услуг, например, услуги персонализации или услуги принадлежности (не показаны).

Согласно варианту осуществления, показанному на фиг. 13, криптографические операции (напри-
мер, шифрование, проверка подписи, и т.д.) осуществляются блоком криптографических услуг 1314. В
одном варианте осуществления, механизм DRM 1306 не взаимодействует напрямую с блоком крипто-
графических услуг 1314, но взаимодействует косвенно, через хост 1302 (с использованием интерфейса
1308 услуг хоста), который передает его запросы. Криптографическими услугами 1314 также может
пользоваться, например, механизм медиа-представления 1312 для осуществления дешифрования контен-
та.

012918

- 18 -

Очевидно, что фиг. 13 носит иллюстративный характер, и что в других вариантах осуществления
различные компоненты, показанные на фиг. 13, могут быть иначе организованы, объединены, разделены,
исключены, и/или могут быть добавлены новые компоненты. Например, без ограничения, логическое
разделение функций между механизмом DRM и приложением хоста на фиг. 13 просто иллюстрирует
один возможный вариант осуществления, и возможны различные практические реализации.

Например, механизм DRM может быть полностью или частично объединен с приложением хоста.
Таким образом, очевидно, что можно использовать любое пригодное разделение функций между прило-
жением хоста и механизмом DRM.

3.2. Архитектура упаковщика.
Ниже приведен пример функций, которые может осуществлять механизм упаковки для приложения

хоста, которое упаковывает электронный контент. На практике, приложение упаковки может конкретно
предназначаться для упаковки, или составлять часть приложения общего назначения, действующего на
пользовательской системе, которое также осуществляет доступ к защищенному контенту (упакованному
локально или в другом месте, например, в сети).

В различных вариантах осуществления, упаковывающее приложение хоста может осуществлять не-
которые или все из следующих функций:

обеспечивать пользовательский интерфейс, посредством которого можно задавать информацию
контента и лицензии;

шифровать контент;
создавать объекты DRM, составляющие лицензию; и/или
создавать объект «контент», который содержит или ссылается на контент и содержит или ссылается

на лицензию.
На фиг. 14 показаны элементы, которые составляют приложение упаковки 1400 в одном варианте

осуществления. Механизм упаковки DRM 1416 отвечает за упаковку лицензий, например, описанных
здесь (например, лицензий, содержащих объекты DRM, например, объекты управления, контроллеры,
протекторы и т.п.). В некоторых вариантах осуществления, механизм упаковки DRM 1416 может также
связывать метаданные с лицензией для объяснения, в понятной человеку форме, что делает лицензия.

В одном варианте осуществления, приложение хоста 1402 обеспечивает пользовательский интер-
фейс 1404 и отвечает за получение информации, например, ссылок на контент и действие(я), которое(ые)
пользователь (обычно владелец или поставщик контента) хочет осуществить (например, к кому привя-
зать контент, какие условия пользования контентом включить в лицензию, и т.д.). Пользовательский ин-
терфейс 1404 также может отображать информацию о процессе упаковки, например, текст выпущенной
лицензии, и, в случае сбоя, причину сбоя. В некоторых вариантах осуществления, некоторая информа-
ция, необходимая приложению хоста 1402, может потребовать использование других услуг, например,
услуг аутентификации или авторизации и/или принадлежности через точку доступа к службе (SAP). Та-
ким образом, в некоторых вариантах осуществления, приложение упаковки 1400 и/или приложение хоста
1402 может нуждаться в реализации некоторых или всех из следующих служб:

Услуги медиа-формата 1406. В одном варианте осуществления, этот элемент отвечает за управле-
ние операциями медиа-формата, например, перекодирование и упаковку. Он также отвечает за шифрова-
ние контента, которое достигается посредством модуля 1408 услуг шифрования контента.

Криптографические услуги общего назначения 1410. В одном варианте осуществления, этот эле-
мент отвечает за выдачу/проверку подписей, а также шифрование/дешифрование некоторых данных.
Запросы на такие операции может выдавать точка доступа к службе 1414 или механизм упаковки DRM
1416 через интерфейс услуг хоста 1412.

Услуги шифрования контента 1408. В одном варианте осуществления, этот модуль логически отде-
лен от криптографических услуг общего назначения 1410, поскольку он не знает о приложении. Он за-
пускается модулем услуг медиа-формата в момент упаковки контента, с набором ключей, ранее выдан-
ных механизмом упаковки DRM 1416.

4. Вывод ключа.
Ниже описана система вывода ключа, которая естественным образом согласуется с описанными

здесь предпочтительными вариантами осуществления механизма DRM и архитектурой системы, и/или
которую можно использовать в других контекстах. Некоторые примеры в нижеследующем разделе взяты
из иллюстративной реализации предпочтительного варианта осуществления этой системы вывода ключа,
известной под названием "Scuba".

Дополнительные варианты осуществления описаны в заявке '551.
Согласно фиг. 15, в некоторых вариантах осуществления объекты «связь» 1530а, 1530b использу-

ются для распространения ключей, помимо своей основной цели - установления соотношений между
узлами 1500а, 1500b, 1500c. Как описано выше, объект управления может содержать программу управ-
ления, которую можно использовать для принятия решения, следует ли удовлетворить запрос на осуще-
ствление действия. Для этого, программа управления может проверять, доступен ли конкретный узел
через цепь связей. Описанные здесь методы вывода ключа пользуются наличием этой цепи связей для
облегчения распространения ключа, что позволяет сделать ключ доступным механизму DRM, который

012918

- 19 -

выполняет программу управления.
В одном иллюстративном варианте осуществления, каждый объект «узел» 1500а, 1500b, 1500c в

данной конфигурации, которая использует необязательную систему распространения ключей, имеет на-
бор ключей, которые используются для шифрования ключей контента и ключей других узлов. Объекты
«связь» 1530а, 1530b, созданные для использования в той же конфигурации, содержат некоторые крипто-
графические данные в качестве полезной нагрузки, что позволяет выводить информацию ключей, когда
цепи связей обрабатываются механизмом DRM.

Благодаря узлам и связям, несущим ключи подобным образом, причем цепь связей 1530а, 1530b
идет от узла А 1500а к узлу С 1500С, сущность (например, механизм DRM клиентского приложение хос-
та), которая имеет доступ к секретным ключам совместного пользования узла А 1515а, 1525а, также име-
ет доступ к секретным ключам совместного пользования узла С 1515с, 1525с. Возможность доступа к
секретным ключам совместного пользования узла С дает сущности доступ к любому ключу контента,
зашифрованному этими ключами.

4.1. Узлы, сущности и ключи.
4.1.1. Сущности.
В одном варианте осуществления системы DRM, узлы представляют собой объекты данных, не

принимающие активного участия в системе. Активные участники, в этом контексте, называются сущно-
стями. Примерами сущностей являются медиа-проигрыватели, устройства, служба подписки, упаковщи-
ки контента и т.п. С сущностями обычно связаны узлы. Сущность, которая потребляет контент, исполь-
зует механизм DRM и управляет, по меньшей мере, одним объектом «узел», который составляет ее ин-
дивидуальность. В одном варианте осуществления, предполагается, что сущность имеет доступ ко всем
данным объектов «узел», которым она управляет, в том числе ко всей личной информации этих объек-
тов.

4.1.2. Узлы.
Объекты «узел», которые участвуют в иллюстративном варианте осуществления системы вывода

ключа, содержат ключи как часть своих данных. В одном варианте осуществления, узлы может содер-
жать два общих типа ключей: ключи совместного пользования и ключ конфиденциальности. В нижесле-
дующих разделах перечислены разные типы ключей, которые можно использовать в различных вариан-
тах осуществления. Однако очевидно, что конкретная конфигурация может использовать только под-
множество этих ключей. Например, система может быть настроена на работу только с парами ключей,
без использования секретных симметричных ключей. В другом случае, система может быть сконфигури-
рована без предоставления узлам ключей конфиденциальности, если необходимо использовать только
ключи совместного пользования.

4.1.2.1. Ключи совместного пользования.
Ключи совместного пользования представляют собой пару открытого/секретного ключей и/или

симметричных ключей, которые совместно используются узлом N и всеми узлами Рх, для которых суще-
ствует связь от Рх к N, которая содержит расширения вывода ключа.

Открытый ключ совместного пользования: Kpub-share[N] Это открытая часть пары открыто-
го/секретного ключей для шифра открытого ключа. Этот ключ обычно приходит с сертификатом, что
позволяет проверять мандат сущностям, которые хотят криптографически связать с ним конфиденциаль-
ную информацию.

Секретный ключ совместного пользования: Kpriv-share[N] Это секретная часть пары открыто-
го/секретного ключей. Сущность, управляющая узлом, призвана гарантировать, что этот секретный ключ
держится в секрете. По этой причине, этот секретный ключ обычно хранится и переносится отдельно от
остальной информации узла. Далее этот секретный ключ можно сделать совместно используемым с дру-
гими узлами посредством расширений вывода ключа в связях.

Симметричный ключ совместного пользования: Ks-share[N] Это ключ, который используется с
симметричным шифром. Как и секретный ключ, этот ключ является конфиденциальным, и сущность,
управляющая узлом, отвечает за сохранение его в секрете. Далее этот секретный ключ можно сделать
совместно используемым с другими узлами посредством расширений вывода ключа в связях.

4.1.2.2. Ключи конфиденциальности.
Ключи конфиденциальности это пары ключей и/или симметричные ключи, известные только сущ-

ности, управляющей узлом, которой они принадлежат. Разница между этими ключами и вышеописанны-
ми ключами совместного пользования в том, что они не делаются совместно используемыми с другими
узлами посредством расширений вывода ключа в связях.

Открытый ключ конфиденциальности. Kpub-conf[N] Это открытая часть пары открыто-
го/секретного ключей для шифра открытого ключа. Этот ключ обычно приходит с сертификатом, что
позволяет проверять мандат сущностям, которые хотят криптографически связать с ним конфиденциаль-
ную информацию.

Секретный ключ конфиденциальности. Kpriv-conf[N] Это секретная часть пары открыто-
го/секретного ключей. Сущность, управляющая узлом, призвана гарантировать, что этот секретный ключ
держится в секрете. По этой причине, этот секретный ключ обычно хранится и переносится отдельно от

012918

- 20 -

остальной информации узла.
Симметричный ключ конфиденциальности: Ks-conf[N] Это ключ, который используется с симмет-

ричным шифром. Как и секретный ключ конфиденциальности, этот ключ хранится в секрете.
4.2. Криптографические элементы.
Предпочтительные варианты осуществления описанных здесь систем вывода и распространения

ключа можно реализовать с использованием разнообразных криптографических алгоритмов, и они не
ограничиваются каким-либо конкретным выбором криптографического алгоритма. Тем не менее, для
данной(го) конфигурации или профиля, все участвующие сущности, в общем случае, должны согласовы-
ваться с набором поддерживаемых алгоритмов (термин «профиль», в целом, относится к спецификации
набора фактических технологий, используемых в конкретной реализации (например, RSA для вывода
ключа; XML для кодирования объектов; МР4 для формата файла и т.д.) и/или другому представлению
семантического контекста, которое существует, когда объекты заданы в практической конфигурации).

В одном варианте осуществления, конфигурации включают в себя поддержку по меньшей мере од-
ного шифра открытого ключа (например, RSA) и одного шифра симметричного ключа (например, AES).

При описании криптографических функций будет использоваться следующая система обозначений:
Ep(Kpub[N], M) означает "сообщение М, зашифрованное открытым ключом Kpub узла N с исполь-

зованием шифра открытого ключа";
Dp(Kpriv[N], М) означает "сообщение М, дешифрованное секретным ключом Kpriv узла N с ис-

пользованием шифра открытого ключа";
Es(Ks[N], М) означает "сообщение М, зашифрованное симметричным ключом Ks узла N с исполь-

зованием шифра симметричного ключа";
Ds(Ks[N], М) означает "сообщение М, дешифрованное симметричным ключом Ks узла N с исполь-

зованием шифра симметричного ключа".
4.3. Нацеливание ключей контента.
В предпочтительном варианте осуществления используется два типа криптографического нацели-

вания. Нацеливание ключа контента на ключи совместного пользования конечного узла означает делание
этого ключа доступным для всех сущностей, которые совместно используют секретные ключи совмест-
ного пользования этого конечного узла. Нацеливание ключа контента на ключи конфиденциальности уза
означает делание этого ключа доступным только для сущности, которая управляет этим узлом. Нацели-
вание ключа контента осуществляется путем шифрования ключа контента СК, переносимого в объекте
ContentKey, с использованием одного или обоих из следующих методов.

Открытое связывание: создание объекта ContentKey, который содержит Ep(Kpub[N], CK).
Симметричное связывание: создание объекта ContentKey, который содержит Es(Ks[N], CK).
В предпочтительном варианте осуществления по возможности используется симметричное связы-

вание, поскольку для него требуется менее вычислительно-интенсивный алгоритм, и поэтому оно менее
обременительно для принимающей сущности. Однако сущность (обычно, упаковщик контента), которая
создает объект ContentKey, не всегда имеет доступ к Ks[N]. Если упаковщик не имеет Ks[N], он может
использовать открытое связывание, поскольку Kpub[N] не является конфиденциальной информацией, и
потому его можно сделать доступным для сущностей, которым нужно произвести открытое связывание.
Kpub[N] обычно делается доступным для сущностей, которым нужно нацеливать ключи контента совме-
стно с сертификатом, который сущность может проверять для принятия решения, действительно ли
Kpub[N] является ключом узла, которому можно доверить манипулировать ключом контента в соответ-
ствии с некоторой согласованной политикой (например, что узел соответствует сущности, выполняющей
механизм DRM и приложение хоста, которые согласуются с функциональными, операционными полити-
ками и политиками безопасности системы).

4.4. Вывод ключей с использованием связей.
Чтобы сущность могла иметь доступ к ключам совместного пользования всех узлов, доступных из

своего узла индивидуальности, в одном варианте осуществления, объекты «связь» содержат необяза-
тельную полезную нагрузку расширения ключа. Эта полезная нагрузка расширения ключа позволяет
сущностям, которые имеют доступ к открытому/секретному ключам начального узла связи, также иметь
доступ к личным/секретным ключам совместного пользования конечного узла связи. Таким образом,
сущность может дешифровать любой ключ контента, нацеленный на узел, который доступен из ее узла
индивидуальности (если нацеливание произведено с использованием ключей совместного пользования
конечного узла).

В одном варианте осуществления, когда механизм DRM обрабатывает объекты «связь», он обраба-
тывает полезную нагрузку расширения ключа каждой связи для обновления внутренней цепи ключей, к
которой он имеет доступ. В одном варианте осуществления, полезная нагрузка расширения ключа связи
L от узла F к узлу Т содержит либо:

открытую информацию вывода: Ер(Kpub-share[F], {Ks-share[T],Kpriv-share[T]}), либо
симметричную информацию вывода: Es(Ks-share[F], {Ks-share[T],Kpriv-share[T]}),
где {Ks-share[T], Kpriv-share[T]} - структура данных, содержащая Ks-share[T] и Kpriv-share[T].
Открытая информация вывода используется для переноса секретных ключей совместного пользо-

012918

- 21 -

вания узла Т, Ks-share[T] и Kpriv-share[T] на любую сущность, которая имеет доступ к личному ключу
совместного пользования узла F, Kpriv-share[F].

Симметричная информация вывода используется для переноса секретных ключей совместного
пользования узла Т, Ks-share[T] и Kpriv-share[T], на любую сущность, которая имеет доступ к симмет-
ричному ключу совместного пользования узла F, Ks-share [F].

Как и при нацеливании ключей контента на узлы, предпочтительная полезная нагрузка, подлежа-
щая включению в связь, является симметричной информацией вывода. Это возможно, когда создатель
связей имеет доступ к Ks-share[F]. Если нет, создатель связей делает шаг назад, включая в себя открытую
информацию вывода в качестве полезной нагрузки для связи.

Предполагая, что механизм DRM, обрабатывающий связь, уже имеет Ks-share[F] и Kpriv-share[F] в
своей внутренней цепи ключей после обработки связи, L[F→Т], он также будет иметь Ks-share[T] и
Kpriv-share[T].

Поскольку, в одном варианте осуществления, связи можно обрабатывать в любом порядке, меха-
низм DRM может не иметь возможности производить вычисления для вывода ключа во время обработки
данной связи L. Это может быть следствием того факта, что, в это время, цепь ключей механизма DRM
может еще не содержать ключи начального узла этой связи. В этом случае, связь запоминается и обраба-
тывается снова, когда новая информация становится доступной механизму DRM, например, после обра-
ботки новой связи Р. Если конечный узел связи Р совпадает с начальным узлом связи L, и начальный
узел связи Р является доступным узлом, то начальный узел связи L также будет доступным, и на этапе
вывода ключа личные ключи совместного пользования начального узла связи L добавляются в цепь клю-
чей.

5. Примеры реализации.
Ниже приведено несколько примеров, иллюстрирующих, как различные варианты осуществления

описанных здесь систем и способов можно применять на практике. Описанные здесь системы и способы
могут обеспечивать широкий круг функций управления правами и других функций, откуда следует, что
приведенные здесь конкретные примеры не претендуют на то, чтобы быть исчерпывающими, но просто
иллюстрируют объем изобретения.

5.1. Пример. Пользователи, ПК и устройства.
Предположим, что Вы хотите реализовать систему DRM, которая связывает право на воспроизведе-

ние контента с конкретным пользователем, и Вы хотите облегчить для пользователя воспроизведение
контента на всех устройствах воспроизведения, которыми он обладает. Предположим, что Вы решили
снабдить пользователей программным обеспечением, которое позволяет им добавлять необходимые уст-
ройства воспроизведения (например, мобильные проигрыватели). Однако предположим также, что Вы
хотите задать некоторую политику, ограничивающую количество устройств общего назначения, на кото-
рые пользователь сможет переносить контент, чтобы пользователь не имел возможности действовать как
распространитель.

На основании этих системных требований, может иметь смысл, например, связывать создаваемые
Вами лицензии с пользователями и устанавливать соотношения между пользователями и устройствами,
которые они используют. Таким образом, в этом примере, Вы сначала можете решить, какого рода узлы
Вам нужны для установления необходимых Вам видов соотношений. Например, Вы можете задать сле-
дующие типы узлов:

Пользователь (например, лицо, владеющее правами на использование контента);
ПК (например, прикладная программа, выполняющийся на персональном компьютере, которая мо-

жет воспроизводить контент и указывать дополнительные устройства воспроизведения);
Устройство (например, портативное устройство для представления контента).
Каждый объект «узел» может включать в себя атрибут type (тип), который указывает, представляет

ли объект пользователя, ПК или устройство.
Пусть, например, Вы решили ограничить максимальное количество объектов «узел ПК», которые

могут быть присоединены к любому пользователю в конкретный момент времени, четырьмя (4). Вы ре-
шили, что не нужно ограничивать количество устройств, присоединенных к пользователю, пока Вы
обеспечиваете ограничение по количеству ПК. На основании этого, можно таким образом настроить про-
грамму управления, чтобы она разрешала доступ, если можно установить соотношение между узлом
«пользователь» и узлом, запрашивающим доступ. Тогда этот узел может быть либо ПК, либо устройство.

На фиг. 16 показана система, призванная удовлетворять вышеизложенным требованиям. Сервер
1600 присваивает объект «узел «пользователь»» 1602а, 1602b каждому новому пользователю 1604а,
1604b, и регулирует способность пользователей 1604а, 1604b связывать с собой устройства 1606, 1608 и
ПК 1610, 1612 с целью доступа к защищенному контенту. Когда пользователь 1604а желает связать но-
вое устройство 1606 со своим узлом «пользователь» 1602а, сервер 1600 определяет, содержит ли уже
устройство 1606 информацию персонализации 1614, что может иметь место, если устройство 1606 было
персонализовано во время изготовления. Если устройство не содержит информацию персонализации
1614, сервер 1600 использует эту информацию персонализации 1614 для создания связи 1616 от устрой-
ства 1606 к узлу 1602а пользователя, и передает связь 1616 устройству 1606 пользователя. Когда пользо-

012918

- 22 -

ватель 1604а получает защищенный контент 1618 (например, с сервера 1600 или от какого-либо другого
поставщика контента), этот контент 1618 нацеливается на узел 1602а пользователя (например, путем
шифрования ключа дешифрования контента одним из секретных ключей совместного пользования, свя-
занных с узлом 1602а пользователя), и с ним связывается лицензия 1619, указывающая условия, при ко-
торых можно осуществлять доступ к контенту. Когда пользователь 1604а пытается воспроизвести кон-
тент 1618 на устройстве 1606, механизм DRM 1620, выполняющийся на устройстве 1606, оценивает ли-
цензию 1619, которая указывает, что контент 1618 можно воспроизводить, пока доступен узел «пользо-
ватель» 1602а. Механизм DRM 1620 оценивает связь 1616, которая показывает, что узел «пользователь»
1602а доступен из устройства 1606, и удовлетворяет запрос пользователя 1604а на доступ к контенту
1618, например, авторизуя дешифрование ключа дешифрования контента, содержащегося в лицензии
1619.

Поскольку ключ дешифрования контента, в этом примере, зашифрован с использованием секретно-
го ключа, связанного с узлом 1602а пользователя, этот секретный ключ нужно получить, чтобы дешиф-
ровать ключ дешифрования контента. Если используются описанные здесь в другом месте необязатель-
ные методы вывода ключа, ключ узла «пользователь» можно получить, просто расшифровав информа-
цию вывода ключа, содержащуюся в связи 1616, с использованием одного из секретных ключей устрой-
ства 1606. Дешифрованная информация вывода ключа будет содержать ключ, необходимый для дешиф-
рования ключа дешифрования контента, содержащегося в лицензии 1619 (или информации, из которой
его можно вывести или получить).

Согласно, опять же, фиг. 16, предположим, что пользователь 1604а желает связать новый ПК 1610
со своим узлом «пользователь» 1602а. Сервер 1600 проверяет, не связано ли уже с узлом «пользователь»
1602а максимальное количество ПК, и авторизует связывание ПК 1610 с узлом «пользователь» 1602а.
Однако для осуществления связывания сервер 1600 должен получить информацию персонализации от
ПК 1610 (например, криптографические ключи, уникальный идентификатор и т.д.). Если же прежде не
был персонализован PC 1610 (что может иметь место, если пользователь просто загрузил копию про-
граммного обеспечения ПК), сервер 1600 осуществляет процесс персонализации (например, создавая
объект «узел PC» с использованием протокола загрузки, описанного здесь в другом месте) или направля-
ет пользователя к поставщику услуг, который может осуществить процесс персонализации. По заверше-
нии процесса персонализации, сервер 1600 может создать связь 1624 от ПК 1610 к узлу «пользователь»
1602а и передать связь на ПК 1610, который может продолжать пользоваться ею, пока она остается дей-
ствительной.

Позже пользователь может запросить добавление дополнительных ПК, и сервер будет применять
политику, которая ограничивает количество объектов «узел PC» на одного пользователя числом 4 (обыч-
но он также предоставляет пользователям возможность, при необходимости, удалять PCs из своего ак-
тивного списка).

В порядке еще одного примера, предположим, что поставщик услуг решил, что пользователи долж-
ны иметь возможность воспроизводить любой контент, которым они обладают, на любом принадлежа-
щем им устройстве. Поставщик услуг также может пожелать позволить программному обеспечению ПК
пользователя создавать связи с каждым из его устройств, не требуя от пользователя связаться с сервером
1600. В этом варианте осуществления, когда пользователь желает воспроизвести контент на новом уст-
ройстве, программное обеспечение ПК пользователя будет обращаться к конфиденциальной информации
персонализации нового устройства и использовать ее для создания новой связи для этого устройства (на-
пример, связи от нового устройства к узлу 1602а пользователя). Если устройство не персонализовано, то
программное обеспечение ПК может обратиться к удаленной службе или предписать устройству обра-
титься к удаленной службе, для осуществления процесса персонализации. Затем программное обеспече-
ние ПК передает связь на новое устройство, и при этом новое устройство получает возможность воспро-
изводить контент, пока она остается действительной, поскольку, в одном варианте осуществления, если
объект «связь» существует, нет необходимости создавать другую, пока не истечет срок действия объекта
«связь» или он станет недействительным по другой причине.

В вышеприведенных примерах, контент нацеливается на пользователя. Для этого, приложение упа-
ковщика выбирает новый ID для контента или использует существующий, создает ключ шифрования и
соответствующий объект ContentKey, а также объект «протектор» для связывания объекта «контент» и
объекта ContentKey. Затем упаковщик создает объект управления с программой управления (например,
компилированной в байт-код, который может выполняться на виртуальной машине механизма DRM),
что позволяет выполнять действие "воспроизведение", если и только если узел «пользователь» доступен
от узла ПК или «устройство», который запрашивает действие. Обычно объекты «управление», «контрол-
лер», «протектор» и ContentKeys по мере возможности внедряются в упакованный контент, благодаря
чему ПК и устройствам не приходится получать их отдельно.

В одном варианте осуществления, когда устройство или ПК хочет воспроизвести контент, оно вы-
полняет процесс, например, описанный выше в связи с фиг. 9. Таким образом, механизм DRM находит
объект «протектор» для content ID контента, затем объект ContentKey, указанный этим протектором, за-
тем объект «контроллер», на который ссылается этот объект ContentKey, и, наконец, объект управления,

012918

- 23 -

указанный этим контроллером. Механизм DRM выполняет программу управления объекта управления,
которая проверяет, доступен ли узел «пользователь». Если узел «устройство» или ПК имеет необходи-
мые объекты «связь» для проверки наличия пути между своим узлом и узлом «пользователь», то условие
выполняется, и программа управления позволяет использовать ключ, представленный в объекте Con-
tentKey. Затем механизм медиа-представления устройства или ПК может дешифровать и воспроизвести
контент.

5.2. Пример. Временный вход.
На фиг. 17 показан другой пример возможного применения описанных здесь систем и способов

DRM. Этот пример аналогичен примеру, приведенному в предыдущем разделе, за исключением того, что
здесь политика, которая регламентирует создание объектов «связь» между объектами «узел PC» и объек-
тами «узел «пользователь»» допускает временный вход не более чем на 12 ч, при условии, что пользова-
тель уже не имеет временный вход на другом ПК. Эта особенность позволяет пользователю 1700 перене-
сти свой контент 1702 на ПК друга 1704, зайти на этом ПК 1704 на период времени и воспроизвести кон-
тент 1702 на ПК друга 1704.

Для этого создается объект «связь» 1710 с ограниченным периодом действия. В одном варианте
осуществления это можно делать следующим образом.

Для простоты объяснения, предположим, что потребляющее программное обеспечение 1714 с раз-
решенным DRM, необходимое для воспроизведения DRM-защищенного контента 1702 уже присутствует
на ПК друга 1704. Файл, содержащий контент 1702 и лицензию 1708, переносится на ПК друга 1704. Ко-
гда пользователь пытается воспроизвести контент 1702, программное обеспечение 1714 распознает от-
сутствие действительных объектов «связь», связывающих локальный узел ПК с узлом пользователя, ко-
торый владеет контентом. Программное обеспечение 1714 предлагает пользователю представить мандат
1712 (это может обеспечиваться через имя пользователя/пароль, протокол аутентификации мобильного
телефона, смарт-карту или любую систему аутентификации, разрешенную согласно политике системы) и
связывается с вычислительной системой базы данных 1706. Вычислительная система базы данных 1706
проверяет атрибуты объекта «узел «пользователь»» и объекта «узел ПК», для которых запрошена связь,
и проверяет, нет ли активного объекта «связь» для временного входа, который все еще действителен.
При выполнении этих условий, служба базы данных 1706 создает объект «связь» 1710, связывающий
объект «узел PC» друга и узел пользователя, с периодом действия, ограниченным запрошенной длитель-
ностью входа (например, менее 12 ч, для согласования с политикой в этом примере). Наличие объекта
«связь» 1710 позволяет ПК друга 1704 воспроизводить контент 1702 пользователя, пока не истечет срок
действия связи 1710.

5.3. Пример: управление контентом предприятия.
На фиг. 18 показана высокоуровневая архитектура иллюстративной системы 1800 для управления

документацией предприятия (например, электронной почтой, документами текстового редактора, слай-
дами презентации, текстами мгновенного обмена сообщениями и/или т.п.). В примере, показанном на
фиг. 18, приложение редактирования документов (например, текстовый редактор) 1802, почтовый клиент
1804 и сервер директорий (например, сервер активной директории) 1806 используют плагин 1808 управ-
ления цифровыми правами (DRM), уровень согласования сетевых услуг 1810, службу регистрации 1812
и службу политик 1816 для упрощения обработки документов, сообщений электронной почты, и/или т.п.
в соответствии с политиками. В предпочтительном варианте осуществления, плагин DRM 1808, уровень
согласования сетевых услуг 1810, служба политик 1816 и служба регистрации 1812 реализованы с ис-
пользованием механизма DRM и технологии согласования услуг, описанной здесь в другом месте и в
заявке '551. Например, в одном варианте осуществления, плагин DRM 1808 может содержать вышеопи-
санный вариант осуществления механизма DRM. Очевидно, что, хотя на фиг. 18 показан вариант осуще-
ствления, в котором существующие приложения, например, текстовый редактор 1802 и почтовый клиент
1804 объединены с механизмом DRM посредством плагина, который приложения могут вызывать, в дру-
гих вариантах осуществления механизм DRM может составлять неотъемлемую часть одного или обоих
приложений. Также очевидно, что иллюстративную систему, показанную на фиг. 18, можно реализовать
в пределах одного предприятия или можно распространить на несколько предприятий.

В иллюстрации, показанной на фиг. 18, сервер директорий 1806 может, например, содержать про-
фили пользователей и определения групп. Например, системный администратор компании может задать
группу под названием "Команда особых проектов" путем идентификации членов Команды особых про-
ектов компании.

В одном варианте осуществления сервер директорий 1806 может содержать Сервер активной ди-
ректории, выполняющий веб-услуги, например, описанные в заявке '551 (и реализованные, например,
посредством стандартных технологий на основе IIS на платформе Windows®), которые выдают узлы,
связи и лицензии членам группы Команда особых проектов на основании контента, к которому осущест-
вляется доступ. Если состав членов группы меняется, выдаются новые жетоны. Для отмены прав, сервер
директорий 1806 может запустить услугу метаданных безопасности, основанную на технологии, напри-
мер, описанной в заявке '551 (иногда именуемой здесь технологией "NEMO"). В некоторых вариантах
осуществления, может потребоваться, чтобы клиент имел значение времени на данное число или обозна-

012918

- 24 -

чение времени (на основании того, насколько свежее значение задается по выбору компании (например,
1 неделя, 1 день, 1 ч, каждые 5 мин и т.д.)) для использования лицензий DRM. Например, жетон, предос-
тавляемый услугой метаданных безопасности, может включать в себя доверенное и аутентифицируемое
значение времени. В некоторых вариантах осуществления, клиент может идентифицировать ID узлов
«пользователь», взаимодействуя с услугой метаданных безопасности. Метаданные безопасности можно
оценивать непосредственно в контексте объектов управления лицензии для определения, все ли еще
пользователь имеет данную принадлежность. Метаданные безопасности также могут возвращать агенты,
которые могут определять, действительны ли соотношения, например, членство в Команде особых про-
ектов. Таким образом, в некоторых вариантах осуществления можно усовершенствовать существующую
инфраструктуру авторизации и аутентификации компании (например, Сервер активной директории ком-
пании), просто добавив несколько четко прописанных веб-услуг.

На фиг. 19 показан пример, как систему, например, показанную на фиг. 18, можно использовать для
управления доступом к документу или другим его использованием. В этом примере, конкретный служа-
щий (Джон) может часто работать над высокосекретными стратегическими проектами, и может иметь
уже установленный плагин DRM 1908 для своих приложений (например, программы текстового редак-
тора 1902, программы электронной почты 1904, программы календаря, программы или пакета программ,
которая(ый) объединяет такие программы, и/или т.п.). В какой-то момент при создании документа, Джон
обращается к элементу "полномочия" выпадающего меню, которое было добавлено в инструментальную
панель его приложения (действие 1913). Открывается диалоговое окно полномочий, которое связывается
с Сервером активной директории 1906 его компании для доступа к директории лиц и групп, зарегистри-
рованных в системе. Он выбирает "Команда особых проектов" из списка, и выбирает дать каждому члену
команды разрешение просматривать, редактировать и печатать документ. С использованием технологии
согласования услуг NEMO, описанной в заявке '551, плагин DRM 1908 связывается с расширением
службы политик 1916 с разрешенным NEMO до Активной директории 1906 и запрашивает копию поли-
тики для использования с целью защиты файлов Команды особых проектов (действие 1914). Когда Джон
сохраняет документ, плагин DRM автоматически шифрует файл 1912, и создает объект «лицензия», на-
целенный и связанный с группой под названием "Команда особых проектов" 1910. Лицензия 1910 позво-
ляет осуществлять доступ к файлу 1912 (например, просмотр, редактирование, печать и т.д.) со стороны
любого устройства, которое может создать действительную цепь связей от своего узла «устройство» к
узлу «группа» Команды особых проектов.

Джон может осуществлять доступ к документу 1912, поскольку его устройство имеет связь с узлом
«пользователь» Джона, а также имеет связь от узла «пользователь» Джона к узлу «группа» "Команды
особых проектов". Аналогично, если он пересылает этот документ другим людям, они могут осуществ-
лять доступ к нему только, если они также могут создать действительную цепь связей к узлу «группа»
"Команды особых проектов" (например, потребовав, чтобы узел «Команда особых проектов» был досту-
пен устройству).

Джон может сохранить файл (уже защищенный) на своем компьютере, и затем присоединить его к
сообщению электронной почты (действие 1920). Например, он может открыть старое сообщение элек-
тронной почты своему начальнику (Джорджу), присоединить файл, как он обычно это делает, и отпра-
вить сообщение. Согласно фиг. 20, Джордж также имеет плагин DRM 2000, установленный на его ком-
пьютере 2014. Когда он входит на свой компьютер 2014, плагин 2000 своевременно проверяет все груп-
пы, в которые он добавлен (действие 2006), и загружает новые, обновленные связи для всех тех, срок
действия которых истек (действие 2012). Если он добавлен в "Команду особых проектов" после своего
последнего входа, его плагин 2000 загружает объект «связь» 2008, который связывает его узел «пользо-
ватель» с узлом «группа» "Команды особых проектов". Эта связь 2008 указывает, что узел «пользова-
тель» Джорджа является членом узла «группа» "Команды особых проектов". В этом примере, предполо-
жим, что объект «связь» 2008 имеет дату окончания срока действия, после которой он уже недействите-
лен (например, 3 дня).

Согласно фиг. 21, когда Джордж пытается открыть документ (действия 2130, 2132), плагин DRM
2108 проверяет внедренную (или присоединенную) лицензию, и узнает, что узел "Команда особых про-
ектов" должен быть доступным. Его плагин 2108 строит (и удостоверяет) цепь связей 2120, 2122 от узла
«устройство» его компьютера к узлу «пользователь» Джорджа; и от узла «пользователь» Джорджа к узлу
«группа» "Команды особых проектов" (действие 2134). Поскольку устройство имеет действительную
цепь связей 2120, 2122, его плагин 2108 разрешает доступ к файлу.

Как описано здесь в другом месте, в некоторых вариантах осуществления связи также могут нести
защищенную цепь ключей. Таким образом, в некоторых вариантах осуществления, создавая цепь связей
к узлу «Команда особых проектов», плагин может удостоверять не только разрешение на доступ к кон-
тенту, но также то, что он способен дешифровать цепь ключей, которая позволяет ему дешифровать кон-
тент.

Если, например, другой сотрудник (Кэрол) случайно получает электронное письмо Джона и пыта-
ется открыть документ, ее плагин DRM извлекает лицензию, связанную с файлом, и оценивает условия
лицензии. Ее ПК имеет связь к ее узлу «пользователь» Кэрол; но, поскольку она не является членом ко-

012918

- 25 -

манды, не существует связи от "Кэрол" к узлу «группа» "Команды особых проектов". Поскольку "Ко-
манда особых проектов" недоступна, Кэрол не разрешено обращаться к файлу.

Если Кэрол со временем добавляется с группу "Команда особых проектов", в следующий раз, когда
ее плагин DRM будет обновлять ее отношения принадлежности, он обнаружит эту новую группу и за-
грузит объект «связь», который связывает ее узел «пользователь» с узлом «Команда особых проектов».
Теперь ее плагин имеет все необходимые связи для построения цепи от ее узла «устройство» к ее узлу
«пользователь» и далее к узлу «Команда особых проектов». Теперь узел «Команда особых проектов»
"доступен", и она может открывать любые документы и почтовые отправления, адресованные Команде
особых проектов, даже созданные до того, как она стала членом команды.

Предположим, что месяц спустя Джордж переводится на новую роль и удаляется из группы «Ко-
манда особых проектов» в Активной директории. В следующий раз, когда Джордж осуществляет вход,
его плагин не принимает новый, обновленный объект «связь», связывающий узел «пользователь»
Джорджа с "Командой особых проектов". Когда, спустя несколько недель, он пытается открыть файл
Джона, его плагин пытается построить цепь связей к Команде особых проектов. Его ПК все еще имеет
связь к узлу «пользователь» Джорджа (ПУ Джорджа все еще принадлежит ему); но связь от "Джорджа" к
"Команде особых проектов" уже недействительна. Поскольку "Команда особых проектов" недоступна,
ему не разрешено обращаться к файлу.

Предположим, что компания имеет политику, которая требует регистрировать в журнале доступ ко
всей конфиденциальной информации. В одном таком варианте осуществления, политика для Команды
особых проектов требует, чтобы все лицензии, созданные для этой группы, также требовали сбора ин-
формации о пользовании и передачи ее, например, в центральное хранилище. Таким образом, в этом
примере, при оценивании (например, выполнении) программы управления в лицензии, плагин выполняет
требование регистрировать доступ в журнале и делает это. Например, важные действия можно регистри-
ровать в локальной защищенной базе данных состояний, например, описанной здесь, и, после восстанов-
ления связности сети, соответствующий контент можно сообщать через вышеописанные услуги.

На фиг. 22 показана другая иллюстративная система 2200 для управления электронным контентом
на предприятии. В примере, показанном на фиг. 22, сервер LDAP 2206 используется для управления про-
филями пользователей, определениями групп и назначениями ролей и содержит определение группы под
названием "Команда особых проектов" и определение роли "Поверенный".

Предположим, что Джон является поверенным и желает послать электронное письмо с вложением
другим членам Команды особых проектов. Когда Джон устанавливает плагин DRM 2208 для своих при-
ложений, он также устанавливает элементы в инструментальную панель своего почтового клиента. В
некоторый момент при составлении сообщения электронной почты, Джон обращается к элементу "Уста-
новить полномочия" выпадающего меню, добавленного в его инструментальную панель. Плагин DRM
2208 связывается со службой политик 2216 и отображает список корпоративных политик обмена сооб-
щениями, из которого можно выбирать. Джон выбирает "Special Project DRM Template", и плагин DRM
2208 использует протокол NEMO для запроса и удостоверения аутентичности, целостности и конфиден-
циальности объекта «политика», который он принимает. Политика описывает, как следует создавать ли-
цензии, которые используют этот шаблон, в том числе, как их следует нацеливать и связывать.

Когда Джон кликает по элементу "Отправить", плагин DRM 2208 шифрует сообщение и вложение и
генерирует соответствующую(ие) лицензию(и). Лицензия требует, чтобы, для доступа к электронной
почте или вложению, узел «группа» Команды особых проектов или узел «группа» "Поверенные" должен
быть доступным.

Лицензии связываются с зашифрованной полезной нагрузкой сообщения и зашифрованным вложе-
нием. Затем сообщение передается в список получателей с использованием стандартных функций элек-
тронной почты. Поскольку правила лицензии и шифрование не зависят от адресации электронной почты,
тот факт, что неправильный получатель электронной почты может быть ошибочно включен, не подвер-
гает опасности содержимое электронного письма или вложения.

Поскольку такой непреднамеренный получатель не имеет действительного объекта «связь», связы-
вающего его узел «пользователь» с Командой особых проектов, ему не разрешается обращаться к кон-
тенту, если и когда он пытается сделать это. Кроме того, поскольку его устройство не имеет необходи-
мой цепи связей (и ключей, которые они содержат), его устройство даже не имеет возможности дешиф-
ровать контент.

Однако, если непреднамеренный получатель, в свою очередь, пересылает то же самое, неизменен-
ное электронное письмо с использованием стандартных функций электронной почты члену Команды
особых проектов, этот член будет иметь объект «связь», который связывает его узел «пользователь» с
узлом «группа» "Команды особых проектов", и будет способен обращаться к содержимому электронного
письма.

Предположим, что другой поверенный (Билл) в компании также получил объект «связь», который
связывает его с узлом «группа» "Команды особых проектов". Билл также может просматривать файл.
Если он пересылает сообщение помощнику юриста (Тренту), который не является поверенным и не свя-
зан с Командой особых проектов, Трент не будет иметь объекта «связь», который связывает его с узлом

012918

- 26 -

«группа» "Команды особых проектов", и он не получит доступ к документу.
Если Трент впоследствии добавляется в группу «Команда особых проектов» в директории LDAP

2206, он получает необходимые объекты «связь» и возможность доступа к ранее переправленному сооб-
щению электронной почты.

Если, как рассмотрено выше, компания имеет политику, указывающую, что требование отчетности
должно быть включено во все лицензии, то, в одном варианте осуществления, всякий раз при выполне-
нии программы управления в одной из этих лицензий (например, когда кто-то пытается обратиться к
файлу), может инициироваться событие отчетности. Этап отчетности может дополнительно включать в
себя указатель, предоставлен доступ или же отклонен - это вопрос выбора реализации. При использова-
нии такого указателя, может поддерживаться журнал количества попыток доступа к конкретному доку-
менту и состояния или иной информации каждой из них (например, успех, неудача и т.д.).

В порядке еще одного примера, предположим, что один из членов (Стивен) Команды особых проек-
тов переходит в другую компанию для работы над особым проектом. До его перехода в другую компа-
нию, почтовый клиент Стивена загружает локальную копию всех писем в его ящике входящих сообще-
ний. Защищенный отчет, присоединенный к одному из этих писем, также включает в себя внедренную
(или присоединенную) лицензию. Этот объект «лицензия» включает в себя как правила доступа к кон-
тенту, так и зашифрованный ключ контента. Только "отсутствующая связь", необходимая для доступа к
контенту, является необходимым объектом «связь» для достижения узла «группа» "Команды особых
проектов".

Поскольку в этом примере политика компании разрешает объектам «связь» оставаться действи-
тельными в течение 3 дней, объект «связь», который связывает узел «пользователь» Стивена с узлом
«Команда особых проектов», будет оставаться действительным, пока он переходит и отключается. Если
он попытается обратиться к файлу в автономном режиме, узел «группа» Команды особых проектов все
еще будет доступен, и ему будет разрешено обратиться к файлу.

Если же Stephen останется в автономном режиме в течение более трех дней, объект «связь», связы-
вающий его с Командой особых проектов, утратит силу. Узел «группа» Команды особых проектов станет
недоступным, и Стивену не будет разрешено обращаться к файлу.

Если Стивен, в конце концов, окажется в месте, где он сможет связаться с системой компании (на-
пример, через VPN), его плагин DRM запросит обновленные копии объектов «связь» для каждой из
групп, которым он принадлежит. Поскольку он все еще является членом группы "Команда особых про-
ектов", он получит новый объект «связь» от своего узла «пользователь» к узлу «группа» Команды осо-
бых проектов. Эта связь заменит 'старую' связь, которая утратила силу и более недействительна.

Поскольку узел "Команда особых проектов" теперь доступен с использованием этой новой, обнов-
ленной связи, Стивен опять получает возможность обращаться к защищенному отчету. Новый объект
«связь» будет действителен в течение 3 дней, после чего также утратит силу.

В порядке еще одного примера, предположим, что член Команды особых проектов (Салли) желает
связаться с другим членом команды посредством службы мгновенного обмена сообщениями, сохранить
копию сообщений и передать ее еще одному члену команды (например, в виде вложения электронной
почты, дискеты, защитной заглушки и т.п.). В этом примере, клиент службы мгновенного обмена сооб-
щениями (и, возможно, любых других продуктов для обмена сообщениями или связи, которыми компа-
ния снабжает своих сотрудников) привязывается к плагину DRM, which, как и в предыдущих примерах,
обращается к политике "Special Project DRM Template", которая определяет, как нужно нацеливать и
привязывать лицензии. Когда Салли пытается сохранить свои переговоры в службе мгновенного обмена
сообщениями (например, выбирая "Сохранить как..."), плагин выбирает ключ шифрования (например,
произвольно) и упаковывает (шифрует) текст переговоров. Согласно политике компании, плагин DRM
генерирует объект «лицензия», который нацеливается и привязывается к узлу «группа» Команды особых
проектов.

Файл, содержащий защищенный дубликат IM, связывается с лицензией на доступ к содержимому
дубликата. Как и в предыдущих примерах, лицензия содержит как правила, которые регламентируют
доступ к контенту, так и зашифрованную копию ключа контента.

Салли может перенести этот связанный файл в сообщение электронной почты, на защитную за-
глушку USB, дискету и т.д. с использованием стандартных процедур 'перетаскивания', и отправить его
кому-то еще. При условии, что устройство получателя может создавать действительные связи к узлу
«группа» особых проектов, доступ к контенту разрешен и возможен.

Предположим, что Салли передает файл Джону, который также является членом Команды особых
проектов. Если Джон имеет недавно обновленный объект «связь», который идентифицирует его как чле-
на Команды особых проектов, он сможет обращаться к файлу. Согласно политике компании этот объект
«связь» содержит дату окончания срока действия, согласно которой срок его действия истекает через три
дня. Поэтому, даже если Джон остается отключенным, он все же будет иметь доступ, пока эта связь ос-
тается действительной.

Если некоторое время спустя Джон уходит из Команды особых проектов на другую работу и нахо-
дит в своей сумке защитную заглушку USB от Салли и пытается открыть файл с использованием своего

012918

- 27 -

настольного компьютера, объект «связь», связывающий его узел «пользователь» с Командой особых
проектов утратит силу. Поскольку он больше не является членом команды, плагин DRM на его устройст-
ве уже не может найти новые, обновленные связи. Поскольку узел «группа» "Команды особых проектов"
уже недостижима с его устройства, доступ не разрешается.

Полагая, что его портативный компьютер не подключался к сети с тех пор, как он сменил работу,
он также пытается открыть файл с этого устройства. Поскольку максимальное предоставленное время
прошло, эта связь больше не действительна. В некоторых вариантах осуществления, каждый раз, когда
он пытается обратиться к файлу, может генерироваться отчет, который ставится в очередь на отправку в
центральное хранилище.

Центральное хранилище принимает многочисленные отчеты о безуспешных попытках доступа к
файлу и сигнализирует менеджеру по электронной почте. Менеджер напоминает Джону, что ему больше
не разрешено обращаться к конфиденциальному материалу, и просит уничтожить все файлы (несмотря
на то, что система указывает, что доступ не может быть предоставлен).

В порядке еще одного примера, предположим, что государственное агентство или внешний аудитор
желает провести расследование или инспекцию, как Команда особых проектов обращается с конфиден-
циальной информацией. Чтобы помочь расследованию, компания желает продемонстрировать контроль-
ные записи, касающиеся доступа важной информации в связи с Особым проектом.

С этой целью компания сначала сканирует все архивы незашифрованных сообщений на предмет
любых сообщений, связанных с Особым проектом. К их облегчению, они обнаруживают, что, в соответ-
ствии с политикой компании, никто из сотрудников не посылал сообщений, касающихся Особого проек-
та, без надлежащей DRM-защиты (например, за пределы системы).

Затем компания использует записи доступа DRM для создания контрольного журнала, где подробно
указано, кто и когда имел доступ к защищенной информации.

Согласно процедуре, принятой в компании, при создании группы «Команда особых проектов», в
нее по умолчанию вводится начальник правового отдела (ССО). Объект «связь» для начальника правово-
го отдела создается и сохраняется на архивном сервере, что позволяет ему, при необходимости, просмат-
ривать содержимое всех сообщений в будущем.

В этом примере политика, определенная для Команды особых проектов, указывающая, что все ли-
цензии, создаваемые командой, должны включать в себя обязательный отчет обо всех попытках доступа
к файлу, включающий в себя дату и время, UserNode, и был ли предоставлен доступ. Эти отчеты сохра-
няются в журнале доступа в центральном хранилище.

ССО проверяет журналы доступа для всех случаев доступа, связанных с Командой особых проек-
тов, до того дня, когда возникло подозрение в утечке информации или нарушении правил. ССО также
производит поиск в архивах электронной почты, IM и сетевого резервирования на предмет всех передан-
ных сообщений и системных файлов на этот день и до него. Поскольку к каждому файлу присоединена
лицензия (с ключом контента), и ССО имеет необходимые объекты «связь», удовлетворяющие требова-
ниям лицензии, ему разрешен доступ к содержимому всех сообщений, к которым был совершен доступ
до указанного времени.

Журналы доступа и содержимое незашифрованных сообщений поступают в полное распоряжение
агентства/аудитора в порядке расследования.

В некоторых вариантах осуществления политика для Команды особых проектов также может
включать в себя необходимость задавать дату окончания срока действия всех лицензий, относящихся к
Особому проекту. Например, если компания лишь по закону обязана хранить записи такого рода в тече-
ние 1 года, она может указать в политике, что лицензии утрачивают силу через год после даты выпуска.
В этом случае, компания может хранить записи ровно столько времени, сколько предписывает закон.
После этого даже ССО не имеет к ним доступ.

В рассмотренном выше материале иногда упоминалось "нацеливание" и "привязка". В предпочти-
тельных вариантах осуществления, нацеливание и привязка представляют два разных, но тесно связан-
ных между собою процесса. В предпочтительных вариантах осуществления, "привязка" это, в основном,
криптографический процесс, относящийся к защите ключа, который используется для шифрования кон-
тента. Когда лицензия 'привязана' к узлу (например, узлу "Команда особых проектов"), это может озна-
чать, например, что ключ контента зашифрован открытым ключом, связанным с этим узлом. Таким обра-
зом, только устройства, имеющие доступ к секретному ключу узла, будут иметь необходимый ключ для
дешифрования контента (и, в предпочтительных вариантах осуществления, единственным путем к полу-
чению доступа к секретному ключу узла является дешифровка цепи связей к этому узлу); однако, просто
наличие правильного секретного ключа указывает только, что устройство имеет возможность дешифро-
вать контент, но ему еще нужно получить на это разрешение.

В предпочтительных вариантах осуществления, разрешено ли устройству обращаться к контенту,
определяет программу управления в лицензии, и, в частности, как она "нацелена".

"Нацеливание" означает добавление требования в программу управления для указания, что кон-
кретный узел (или узлы) "доступны" для осуществления пользования контентом. В вышеприведенных
примерах, программа управления обычно указывает, что конкретный узел "Команда особых проектов"

012918

- 28 -

доступен потребляющему устройству.
В ряде случаев может быть желательно, чтобы лицензии были нацелены на более чем один узел,

например, команда по разработке нового продукта в компании ("Компания"), которая работает со мно-
гими поставщиками, поставляющими компоненты для нового совершенно секретного продукта. Предпо-
ложим, что на ранних стадиях проекта, поставщик А и поставщик В (конкуренты) имеют связи к "Secret-
ProjectX". Поставщик А желает поделиться своими идеями со всеми членами SecretProjectX, но не хочет,
чтобы, по неосторожности, они стали известны поставщику В. Поставщик А может нацеливать свои ли-
цензии так, что: ("SecretProjectX доступен") и ("Поставщик А доступен" или "Компания доступна"). Если
Компания непреднамеренно предает эту информацию гласности во всём Secret Project X (в том числе, и
для поставщика В), поставщик В не получит разрешения взглянуть на нее, что ограничивает всякую
опасность неразглашения для Компании и ограничивает возможность поставщика А потерять свои ком-
мерческие секреты.

5.4. Пример. Записи системы здравоохранения.
На фиг. 23 показано применение описанных здесь систем и способов для управления записями сис-

темы здравоохранения. Предположим, что медицинские записи имеют разные уровни конфиденциально-
сти, и что желательно предоставлять разные права доступа разным сущностям в системе (например, па-
циентам, врачам, страховым компаниям и т.п.). Например, может быть желательно разрешать просмат-
ривать некоторые записи только пациенту, разрешать просматривать некоторые записи только врачу па-
циента, разрешать просматривать некоторые записи пациенту, но только в редакции врача пациента, раз-
решать просматривать некоторые записи всем врачам, разрешать просматривать некоторые записи всем
страховым компаниям, разрешать просматривать некоторые записи только страховой компании пациен-
та, и/или т.п.

Согласно фиг. 23, эту экосистему здравоохранения 2300 можно смоделировать с использованием
объектов DRM наподобие узлов и связей, например, описанных здесь в другом месте. Например, узлы
можно присваивать пациенту 2302, врачам 2304 пациента, страховой компании 2306 пациента, устройст-
вам (2308, 2310) пациента, конкретному одному из врачей 2312 пациента, вычислительным устройствам
2314, 2316 врача, группе всех врачей 2318, группе врачей определенной специализации 2320, медицин-
скому учреждению 2322, страховой компании 2324, вычислительным устройствам, используемым стра-
ховой компанией 2326, группе всех страховых компаний 2328, и т.п.

Предположим, что врач пациента использует свой ПК для создания медицинской записи, касаю-
щейся пациента. Например, медицинская запись может содержать шаблон документа содержащий поля
для примечаний, диагнозов, рецептов, инструкций для пациента и/или т.п. Шаблон также может позво-
лять врачу выбирать политики безопасности для управления документом и/или отдельным его полем.
Например, приложение врача может предоставлять возможность выбора из набора стандартных политик
безопасности, и, получив выбор врача, может автоматически генерировать лицензию на основании этих
выборов и связывать защищенный (например, зашифрованный) контент медицинской записи.

В целях этого примера, предположим, что лицензия предоставляет доступ для просмотра пациенту,
всем поставщикам услуг здравоохранения, которые лечат пациента, и всем страховым компаниям, кото-
рые обеспечивают покрытие для пациента. Кроме того, предположим, в целях иллюстрации, что лицен-
зия предоставляет права редактирования только кардиологу в медицинском учреждении х.

Приложение упаковки принимает ввод, указывающий политику врача (который может просто со-
держать кликанье мышкой по стандартному шаблону) и генерирует лицензию, которая включает в себя
программу управления, например, приведенную ниже:

012918

- 29 -

Медицинскую запись и связанную с ней лицензию можно затем сохранить в центральной базе дан-
ных медицинских записей, базе данных, которой управляет конкретное медицинское учреждение, и/или
т.п. Если пациент Y впоследствии посещает другого поставщика услуг здравоохранения и авторизует
этого поставщика услуг здравоохранения как одного из его доверенных поставщиков услуг здравоохра-
нения (например, подписывая форму авторизации), этот поставщик услуг здравоохранения получает
связь к approved узлу «доверенный поставщик услуг здравоохранения» пациента у, которую поставщик
услуг здравоохранения будет хранить на своей компьютерной системе. Если этому поставщику услуг
здравоохранения понадобится обратиться к медицинской записи, созданной врачом х, он сможет полу-
чить доступ для просмотра этой медицинской записи, поскольку узел «доверенный поставщик услуг
здравоохранения» пациента у будет доступен от компьютерной системы нового поставщика услуг здра-
воохранения. Если же, недоверенный поставщик услуг здравоохранения захочет получить копию (за-
шифрованной) медицинской записи, он не сможет обратиться к ней ввиду отсутствия необходимых уз-
лов (т.е. узла пациента у, узла для всех доверенных поставщиков услуг здравоохранения пациента у и
узла для всех доверенных страховых компаний пациента у), которые были бы доступны от его вычисли-
тельной системы.

Заметим, однако, что показанная выше иллюстративная программа управления включает в себя до-
минирующую особенность, которую можно вызывать, например, в экстренных случаях, если, например,
поставщик услуг здравоохранения нуждается в доступе к защищенной медицинской записи, но не может
выполнить условия программы управления (например, потому, что поставщик услуг здравоохранения,
пытающийся сделать экстренный доступ к медицинской записи, ранее не был зарегистрирован как по-
ставщик услуг здравоохранения пациента Y). Однако заметим также, что вызов исключения экстренного
доступа приводит к автоматической записи информации, касающейся вызова и/или иных обстоятельств,
и, в этом примере, также приводит к отправке извещения (например, предпочтительному поставщику
услуг здравоохранения пациента, т.е. сущности, в явном виде авторизованной пациентом, и/или самому
пациенту). Связывание таких обязательств с экстренным исключением может препятствовать злоупот-
реблению исключением, поскольку будет существовать запись о злоупотреблении.

Очевидно, что эта иллюстративная программа представлена для облегчения объяснения определен-
ных вариантов осуществления описанных здесь систем и способов. Например, включает ли в себя систе-
ма поддержку экстренных исключений, обычно зависит от требований и желаний архитектора системы.
Таким образом, например, некоторые варианты осуществления могут не поддерживать экстренные ис-
ключения, другие могут поддерживать экстренные исключения, но ограничивать класс сущностей, кото-
рые могут вызывать такие исключения, классом "все врачи" (например, за счет требования, чтобы флаг
EmergencyException был задан равным "истина" И узел «все врачи» был доступен), и другие все же могут
поддерживать экстренные исключения, но не связывать с ними принудительные обязательства (посколь-
ку неспособность выполнить обязательство, в предпочтительном варианте осуществления, сделает кон-
тент недоступным), опираясь вместо этого на нетехнические, правовые или институциональные средства
применения (например, путем оказания доверия поставщикам услуг здравоохранения, не злоупотреб-
ляющим возможностью вызывать исключение, и/или опираясь на промышленную сертификацию и пра-
вовую систему для предотвращения злоупотреблений).

Еще одно изменение, которое можно внести в вышеприведенные примеры, состоит в том, что мож-
но потребовать более сильное доказательство того, что к медицинской записи обратился действительно
врач, или врач с конкретным именем, а не кто-то другой, сидящий за компьютером, который врач ис-
пользует для доступа к записям (и, таким образом, компьютером, потенциально содержащим связи, не-
обходимые для удовлетворения анализа доступности). Такую усиленную форму аутентификации можно
осуществлять любым подходящим способом. Например, ее можно полностью или частично осуществ-
лять на уровне приложения или системы, защищая компьютер врача и/или программное обеспечение,
используемое для доступа к медицинским записям, с использованием паролей, защитных заглушек, ме-
ханизмов биометрической идентификации и/или т.п. Альтернативно или дополнительно, программы
управления, связанные с определенными медицинскими записями сами могут включать в себя обяза-
тельство или условие, требующее такой усиленной идентификации, например, проверку наличия защит-
ной заглушки, требование, чтобы хост получил пароль, и/или т.п.

5.5. Пример. Подписки.
На фиг. 24 показано, как представленные здесь системы и способы можно использовать в контексте

службы электронной подписки. Пусть, например, пользователь (Алиса) желает получить подписку на
джазовую музыку от поставщика услуг интернета (XYZ ISP). Поставщик услуг интернета может предла-
гать разнообразные варианты подписки, включающие в себя пробную подписку, не требующую оплаты,
но которую можно использовать только для воспроизведения контента подписки пять раз до истечения
срока (например, проиграть одну песню пять раз, проиграть пять разных песен по одному разу, и т.п.).
Пробная подписка также может предусматривать обеспечение контента в слегка ухудшенной форме (на-
пример, с пониженным качеством звучания или разрешением). Алиса использует свой персональный
компьютер для доступа к интернет-сайту поставщика услуг и выбирает пробную подписку. Тогда по-
ставщик услуг создает объект «связь» 2400 и агент 2401 и передает их на персональный компьютер 2406

012918

- 30 -

Алисы. Агент 2401 способен инициализировать состояние защищенной базы данных состояний Алисы,
которая будет использоваться для отслеживания, сколько раз Алиса использовала пробный контент.
Связь 2400 идет от узла учетной записи ISP Алисы (Aflnca@XYZ_ISP) 2402 к узлу подписки 2404 и
включает в себя программу управления, которая, когда Алиса запрашивает воспроизведение фрагмента
контента, проверяет текущее значение переменной состояния, заданной агентом 2401, чтобы определить,
разрешены ли дополнительные воспроизведения.

Когда Алиса загружает фрагмент контента на свой ПК и пытается воспроизвести его, механизм
DRM на ее ПК оценивает лицензию, связанную с контентом, которая указывает, что узел подписки 2404
должен быть доступным для воспроизведения контента. Алиса ранее зарегистрировала свой ПК у своего
ISP, и при этом получила связь 2405 от своего узла ПК 2406 к своему узлу учетной записи 2402. Таким
образом, механизм DRM обладает объектами «связь» 2405, 2400, соединяющими узел ПК 2406 с узлом
подписки 2404; однако, прежде чем удовлетворить запрос Алисы на воспроизведение контента, меха-
низм DRM сначала определяет, действительны ли связи, выполняя любые программы управления, со-
держащиеся в связях. При выполнении программы управления в связи 2400, механизм DRM проверяет
элемент базы данных состояний для определения, осуществлено ли воспроизведение 5 раз, и, если нет,
удовлетворяет запрос на воспроизведение контента, но также выдает обязательство на приложение хоста.
Обязательство требует, чтобы хост ухудшил контент до представления. Приложение хоста определяет,
что оно способно выполнить это обязательство, и переходит к представлению контента. Для обеспечения
Алисы предварительным просмотром контента до учета этого контента в отношении ее пятикратного
пробного воспроизведения, программа управления должна также включать в себя обратный вызов, кото-
рый проверяет, например, через 20 с после удовлетворения запроса на воспроизведение фрагмент кон-
тента, продолжается ли воспроизведение контента. Если контент все еще воспроизводится, счетчик вос-
произведения уменьшается, а в противном случае - нет. Таким образом, Алиса может выбирать любые из
элементов контента, предлагаемых службой подписки, и воспроизводить любые пять из них до истече-
ния срока пробной подписки.

По истечении срока пробной подписки Алисы, она решает приобрести полную, месячную подпис-
ку, которая позволяет ей воспроизводить столько элементов контента, сколько она желает, за месячную
плату. Алиса использует свой ПК для заказа подписки и получает связь 2410 от своего узла учетной за-
писи 2402 к узлу подписки 2404. Связь включает в себя программу управления, указывающую, что связь
действительна только в течение одного месяца (например, программа управления проверяет элемент ба-
зы данных состояний, чтобы определить, истек ли месяц с момента выдачи связи). Эта связь 2410 пере-
дается на ПК Алисы совместно с программой-агентом, которая способна инициализировать соответст-
вующий элемент базы данных состояний механизма DRM ПК, указывающий дату выдачи связи. Когда
Алиса загружает фрагмент контента из службы подписки и пытается воспроизвести его, ее механизм
DRM ПК определяет, что существует путь к узлу подписки, состоящий из связей 2405, 2410. Механизм
DRM выполняет любые программы управления, содержащиеся в связях 2405, 2410 для определения,
действительны ли связи. Если с момента выдачи связи 2410 прошло меньше месяца, программа управле-
ния в связи 2410 возвращает результат, указывающий, что связь 2410 все еще действительна, и запрос
Алисы на воспроизведение фрагмента контента удовлетворяется. Если Алиса пытается воспроизвести
фрагмент контента, который она ранее получила в течение своего пробного периода, механизм DRM на
ее ПК осуществляет такой же анализ и удовлетворяет ее запрос. Поскольку лицензия, связанная с фраг-
ментом контента, полученная в течение пробного периода, указывает, что если переменна TrialState в
защищенной базе данных не задана, то единственное условие состоит в том, что узел подписки должен
быть доступным, Алиса может снова обратиться к этому контенту, поскольку узел подписки снова дос-
тупен от ПК Алисы, на этот раз через связь 2410, а не связь 2400, которая уже недействительна. Таким
образом, Алисе не нужно получать вторую копию элемента контента для замены копии, которую она
получила в течение бесплатного пробного предложения. Аналогично, если Алиса получает фрагмент
контента подписки от своего друга Боба, который также подписался на ту же услугу, Алиса, в этом при-
мере, тоже сможет воспроизводить этот контент, поскольку лицензия контента просто требует, чтобы
узел подписки был доступен, не обязательно через ПК или учетную запись Боба.

Очевидно, что вышеприведенные примеры призваны просто иллюстрировать некоторые функции,
которые могут быть обеспечены описанными здесь системами и способами, и не призваны указывать,
что подписки должны быть реализованы именно вышеописанным образом. Например, в других вариан-
тах осуществления, лицензия, связанная с фрагментом контента подписки можно связывать с узлом
пользователя, а не с узлом подписки, что препятствует двум подписчикам, например, Бобу и Алисе, со-
вместно использовать контент, что возможно в вышеописанном примере. Очевидно, что возможны мно-
гие другие вариации вышеприведенных примеров.

В нижеприведенной таблице представлен некоторый иллюстративный псевдокод для агента, связи
и программ управления лицензии в вышеописанном примере:

012918

- 31 -

Опять же, согласно фиг. 24, Алиса также имеет учетную запись 2420 у своего поставщика услуг мо-

012918

- 32 -

бильной связи, которая остается действительной, пока она остается подключенной к сети.
Алисе не требуется производить специальный платеж за подписку, взамен чего она получает связь;

вместо этого обновление связей 2424 автоматически поступает на ее телефон, когда она подключается к
сети. Эти связи позволяют ей осуществлять доступ к любым элементам контента или услугам, предла-
гаемым поставщиком услуг мобильной связи, которые имеют лицензии, которые требуют только, чтобы
узел подписки 2422 был доступен. Если Алиса сменит поставщика услуг мобильной связи, она не сможет
осуществлять доступ к ранее полученному контенту по истечении срока действия ее связей 2424.

На фиг. 25 показан пример того, как поставщик услуг может взаимодействовать с доменом домаш-
ней сети 2500. В этом примере, устройства зарегистрированы в домене домашней сети, где применяется
политика, которая позволяет до 5 устройств принадлежать домену в любой момент времени. Хотя по-
ставщик услуг кабельного телевидения семьи Смитов не обеспечивает программное обеспечение менед-
жера доменов, используемое для установления домена домашней сети 2500, поставщик услуг кабельного
телевидения знает, что менеджер доменов реализован сертифицированным поставщиком программного
обеспечения менеджера домена домашней сети, и, таким образом, доверяет программному обеспечению
менеджера доменов действовать, как положено. Согласно фиг. 25, семья Смитов подключает телефон и
ПК Алисы, PVR Карла и PSP Джо к домену 2500, в результате чего создаются связи от каждого из этих
устройств к узлу домена 2500. В случае приема нового контента, например, на PVR, услуги обнаруже-
ния, например, описанные в заявке '551, позволяют другим устройствам в домене автоматически полу-
чать контент и любые необходимые необходимый связи. Создаются связи от узла «домен» 2500 к узлу
«учетная запись» 2502 поставщика услуг. Контент некоторых поставщиков услуг кабельного телевиде-
ния имеет лицензию с обязательством, что перемотка вперед и назад должна быть отключена, чтобы
можно было показывать рекламу. PVR Карла и ПК Алисы способны выполнять обязательство и, таким
образом, могут воспроизводить контент. Мобильный телефон Алисы не может выполнять обязательство
и поэтому не получает доступ к контенту.

5.6. Дополнительные примеры: совместное использование контента и прав.
Как показано в предыдущих примерах, представленные здесь варианты осуществления систем и

способов позволяют естественным образом делать электронный контент совместно используемым. На-
пример, описанные здесь системы и способы можно использовать для того, чтобы потребители могли
совместно использовать развлекательный контент со своими друзьями и членами семьи, и/или наслаж-
даться им на всех своих семейных устройствах, и, в то же время, препятствовать более широкому, неав-
торизованному распространению. Например, можно использовать автоматизированные услуги обнару-
жения и оповещения равноправных устройств, в результате чего, когда одно устройство получает кон-
тент или соответствующие права, другие устройства могут автоматически узнавать об этом контенте, тем
самым обеспечивая виртуальную распределенную библиотеку, которая может автоматически обновлять-
ся. Например, в одном варианте осуществления, если один пользователь получает контент или права на
портативном устройстве в одном месте, а затем приходит домой, семейные устройства пользователя мо-
гут автоматически обнаруживать и использовать эти права. Напротив, если пользователь получает права
на устройстве в своей домашней сети, его портативные устройства могут обнаруживать и переносить
этот контент для использования в другом месте. Предпочтительные варианты осуществления описанных
здесь систем и способов можно использовать для создания объектов услуг и прав, которые позволяют
полностью автоматизировать вышеописанные сценарии с использованием, например, методов обнару-
жения и инспекции услуг, описанных в заявке '551. Например, устройства, зарегистрированные в кон-
кретном домене, могут предоставлять услуги друг другу (например, путем совместного использования
прав и контента), и/или можно вызывать удаленные службы для облегчения локального совместного
пользования контентом. Описанные системы и способы позволяют создавать структуры DRM, которые
не нацелены на предотвращение создания копий само по себе, но призваны работать в гармонии с сете-
вой технологии, позволяя совместно использовать контент, в то же время, не позволяя потребителям ста-
новиться незаконными распространителями контента.

Предпочтительные варианты осуществления описанных здесь систем и способов DRM также по-
зволяют определять права без обширной характеристики типов выражений прав некоторых других сис-
тем DRM. Вместо этого, предпочтительные варианты осуществления используют набор специализиро-
ванных объектов прав, которые могут взаимодействовать контекстуально. Эти объекты описывают соот-
ношения и управляющие элементы между сущностями, например пользователями, устройствами, кон-
тентом и их группами. Например, такие контекстуальные взаимодействия могут позволять устройству
определять, что данный фрагмент контента можно воспроизводить, поскольку (а) контент получен от
законной услуги контента, на которую пользователь в настоящее время подписан, (b) пользователь вхо-
дит в конкретную семейную группу, и (с) устройство связано с этой конкретной семейной группы. Су-
ществуют многочисленные типы соотношений, например, описанные в этом примере, которые пользова-
тели понимают интуитивно, и предпочтительные варианты осуществления описанных здесь систем и
способов способны создавать системы, которые естественным образом понимают эти виды соотноше-
ний. Соотношения между сущностями можно создавать, уничтожать и изменять со временем, и предпоч-
тительные варианты осуществления обеспечивают естественный способ определения прав в динамиче-

012918

- 33 -

ской сетевой среде - среде, которую потребители могут естественным образом понимать. Тем не менее,
если распространитель контента хочет использовать более традиционный подход к выражению прав,
предпочтительные варианты осуществления могут охватывать и его. Например, можно использовать ин-
струменты для перевода традиционных выражений прав в наборы объектов, например, описанных выше,
и/или можно реализовать механизм DRM, который работает непосредственно на таких выражениях прав.
Альтернативно, в некоторых вариантах осуществления, устройства не понимают такие традиционные
выражения прав, и не подчиняются их ограничениям.

Предпочтительные варианты осуществления описанных здесь систем и способов также имеют
очень общее обозначение медиа-услуг. Широковещательная служба и интернет-служба загрузки или
подписки являются примерами медиа-услуг. Ограничения, связанные с этими услугами, могут затруд-
нять совместное использование контента. Согласно предпочтительным вариантам осуществления опи-
санных здесь систем и способов, контент можно получать в рамках широковещательных, широкополос-
ных и мобильных услуг, и совместно использовать в группе сетевых устройств в доме, включающей в
себя портативные устройства. Альтернативно или дополнительно, услуги могут предоставляться отдель-
ными устройствами в режиме взаимодействия равноправных устройств посредством беспроводной свя-
зи. Например, новое поколение сотовых телефонов с функцией WiFi может обеспечивать услуги катало-
гов контента для других устройств. Такая услуга позволяет другим устройствам "видеть", что контент
доступен для совместного использования от устройства. Услуга обеспечивает информацию, которую
можно использовать для определения прав, что позволяет принимать или легко исключать любые огра-
ничения.

Предпочтительные варианты осуществления описанных здесь систем и способов не ограничивают-
ся одной услугой или одной платформой. Как объяснено выше, предпочтительные варианты осуществ-
ления способны работать с многочисленными услугами, в том числе "персональными" услугами. Это
приобретает все большее значение по мере распространения домашних и персональных сетей. Например,
в настоящее время доступны цифровые камеры с возможностью связи по WiFi, что создает большое
удобство для распространения фотографий по сетям. Полезно иметь возможность автоматического рас-
пространения фотографий, но камере придется иметь дело со многими разными сетями по мере ее пере-
мещения. Автоматизированное распространение удобно, но личные фотографии, конечно, являются лич-
ными. Варианты осуществления описанных здесь систем и способов позволяют легко распространять
фотографии в семье на семейных устройствах, но не с любыми устройствами, которые могут встретиться
камере в сети. В общем случае, чем больше устройств становятся сетевыми, тем важнее становится
управлять правами на весь контент на этих устройствах. Хотя целью подключения к сети является обес-
печение совместного использования информации на сетевых устройствах, сети будут перекрываться и
сливаться друг с другом. Сети позволяют легко обеспечивать совместное использование контента, но его
совместное использование не должно быть бесконтрольным. Таким образом, желательно иметь систему
DRM, которая адаптируется к сети и которая может использовать контекст, обеспечиваемый контентом,
пользователем, сетью и характеристиками устройств, для определения, следует ли обеспечивать совме-
стное использование контента и как это нужно делать. Предпочтительные варианты осуществления опи-
санных здесь систем и способов обеспечивают такой подход.

6. Иллюстративная архитектура для потребления и упаковки контента.
Ниже приведено описание базовой архитектуры потребляющего приложения (например, медиа-

проигрывателя), которое потребляет DRM-защищенный контент, и приложения упаковки (например,
приложения, установленного на сервере), которое упаковывает контент, адресованный потребляющим
приложениям.

6.1. Архитектура клиента.
Ниже приведен пример функций, которые механизм DRM согласно иллюстративному варианту

осуществления может осуществлять для приложения хоста, которое потребляет контент.
6.1.1. Интерфейс приложения хоста к механизму DRM.
Хотя в предпочтительном варианте осуществления для механизмов DRM не требуются API, ниже

приведены высокоуровневые описания разновидности интерфейса, обеспечиваемого иллюстративным
механизмом DRM (именуемым здесь механизмом DRM "Octopus") к приложению хоста в одном иллюст-
ративном варианте осуществления:

Octopus::CreateSession(hostContextObject) → Session.
Создает сеанс, заданный контекстом приложения хоста. Объект «контекст» используется механиз-

мом DRM Octopus для производства обратных вызовов в приложение.
Session::ProcessObject(drmObject).
Эта функция должна вызываться приложением хоста, когда он сталкивается с определенными ти-

пами объектов в медиа-файлах, которые можно идентифицировать как принадлежащие подсистеме
DRM. Такие объекты включают в себя программы управления контентом, жетоны принадлежности и т.д.
Синтаксис и семантика этих объектов непрозрачна для приложения хоста.

Session::OpenContent(contentReference) → Content.

012918

- 34 -

Приложение хоста вызывает эту функцию, когда ему нужно взаимодействовать с файлом мульти-
медийного контента. Механизм DRM возвращает объект Content, который затем можно использовать для
извлечения информации DRM о контенте и взаимодействия с ним.

Content::GetDrmInfo().
Возвращает метаданные DRM о контенте, которые отсутствуют в обычных метаданных для файла.
Content::CreateAction(actionInfo) → Action.
Приложение хоста вызывает эту функцию, когда оно хочет взаимодействовать с объектом Content.

Параметр ActionInfo указывает, какого типа действие должно осуществлять приложение (например, вос-
произведение), а также, если необходимо, любые связанные с ним параметры. Функция возвращает объ-
ект Action, который затем можно использовать для осуществления действия и извлечения ключа контен-
та.

Action::GetKeyInfo().
Возвращает информацию, которая необходима подсистеме дешифрования для дешифрования кон-

тента.
Action::Check().
Проверяет, авторизует ли подсистема DRM осуществление этого действия (т.е. будет ли выполнено

Action::Perform()).
Action::Perform().
Осуществляет действие и обеспечивает любые последствия (в том числе, побочные эффекты), со-

гласно правилу, которое управляет этим действием.
6.1.2. Интерфейс механизма DRM к услугам хоста.
Ниже приведен пример разновидности интерфейса услуг хоста, необходимый механизму DRM, со-

гласно иллюстративному варианту осуществления, от приложения хоста согласно иллюстративному ва-
рианту осуществления.

HostContext::GetFileSystem(type) → FileSystem.
Возвращает виртуальный объект FileSystem, к которому подсистема DRM имеет эксклюзивный

доступ. Этот виртуальный FileSystem можно использовать для сохранения информации состояния DRM.
Данные в этом FileSystem может читать и записывать только подсистема DRM.

HostContext::GetCurrentTime().
Возвращает текущие дату/время, поддерживаемые системой хоста.
HostContext::GetIdentity().
Возвращает уникальный ID этого хоста.
HostContext::ProcessObject(dataObject).
Передает обратно услугам хоста объект данных, который может быть внедрен в объект DRM, но

который подсистема DRM идентифицировала как управляемый хостом (например, сертификаты).
HostContext::VerifySignature(signatureInfo).
Проверяет действительность цифровой подписи на объекте данных. В одном варианте осуществле-

ния объект signatureInfo содержит информацию, эквивалентную информации, найденной в элементе
XMLSig. Услуги хоста отвечают за управление ключами и сертификатами ключей, необходимыми для
удостоверения подписи.

HostContext::CreateCipher(cipherType, keyInfo) → Cipher.
Создает объект Cipher, который подсистема DRM может использовать для шифрования и дешифро-

вания данных. Задается минимальный набор типов шифра, и для каждого из них реализация шифра тре-
бует формат для описания информации ключа.

Cipher::Encrypt(data).
Cipher::Decrypt(data).
HostContext::CreateDigester(digesterType) → Digester.
Создает объект Digester, который подсистема DRM может использовать для вычисления защищен-

ного хэша на некоторых данных. В одном варианте осуществления, можно задать минимальный набор
типов дайджеста.

Digester::Update(data).
Digester::GetDigest().
6.1.3. Диаграмма последовательности UML.
На фиг. 26 показано использование иллюстративных API, описанных в предыдущих разделах, и

взаимодействия, которые имеют место между приложением хоста и механизмом клиента DRM в иллю-
стративном варианте осуществления.

6.2. Иллюстративная архитектура упаковщика.
Ниже приведен пример функций, которые может осуществлять механизм упаковки для приложения

хоста, которое упаковывает контент. На практике, приложение упаковки может конкретно предназна-
чаться для упаковки, или составлять часть приложения общего назначения, действующего на пользова-
тельской системе, которое также осуществляет доступ к защищенному контенту (упакованному локально

012918

- 35 -

или в другом месте, например, в сети).
6.2.1. Интерфейс приложения хоста к механизму упаковки.
В этом разделе приведено высокоуровневое описание иллюстративного API между приложением

хоста и механизмом упаковки, используемым в связи с иллюстративным механизмом DRM, именуемым
"Octopus".

Octopus::CreateSession(hostContextObject) → Session.
Создает сеанс для данного контекста приложения хоста. Объект «контекст», возвращаемый этой

функцией, используется механизмом упаковки для осуществления обратных вызовов в приложение.
Session::CreateContent(contentReferences[]) → Content.
Приложение хоста вызывает эту функцию для создания объекта Content, который будет связан с

объектами «лицензия» на последующих этапах. Наличие более одной ссылки на контент в массиве con-
tentReferences подразумевает, что они связаны друг с другом в пучок (например, одна дорожка аудио и
одна дорожка видео), и что выданная лицензия должна быть нацелена на них как на одну неделимую
группу.

Content::SetDrmInfo(drmInfo).
Параметр drmInfo указывает метаданные лицензии, которая будет выдана, drmInfo выступает в роли

руководства по трансляции лицензии в байт-код для виртуальной машины.
Content::GetDRMObjects(format) → drmObjects.
Эта функция вызывается, когда приложение хоста готово получить drmObjects, созданные меха-

низмом упаковки. Параметр format указывает предполагаемый формат этих объектов (например, XML
или двоичные атомы).

Content::GetKeys() → keys[].
Эта функция вызывается приложением упаковки хоста, когда ему нужны ключи для шифрования

контента. В одном варианте осуществления, существует по одному ключу для каждой ссылки на кон-
тент.

6.2.2. Интерфейс механизма упаковки к услугам хоста.
Ниже приведен пример типа интерфейса, который нужен иллюстративному механизму упаковки

для обеспечения приложения хоста в одном варианте осуществления.
HostContext::GetFileSystem(type) → FileSystem.
Возвращает виртуальный объект FileSystem, к которому подсистема DRM имеет эксклюзивный

доступ. Этот виртуальный FileSystem можно использовать для сохранения информации состояния DRM.
Данные в этом FileSystem может читать и записывать только подсистема DRM.

HostContext::GetCurrentTime() → Time.
Возвращает текущие дату/время, поддерживаемые системой хоста.
HostContext::GetIdentity() → ID.
Возвращает уникальный ID этого хоста.
HostContext::PerformSignature(signatureInfo, data).
Некоторые объекты DRM, созданные механизмом упаковки, должны быть доверенными. Эта услу-

га, обеспеченная хостом, будет использоваться для подписывания указанного объекта.
HostContext::CreateCipher(cipherType, keyInfo) → Cipher.
Создает объект Cipher (объект, способный шифровать и дешифровать данные), который механизм

упаковки может использовать для шифрования и дешифрования данных. В одном варианте осуществле-
ния, объект Cipher используется для шифрования данных ключа контента в объекте ContentKey.

Cipher::Encrypt(data).
Шифрует данные.
Cipher::Decrypt(data).
Дешифрует данные.
HostContext::CreateDigester(digesterType) → Digester.
Создает объект Digester, который механизм упаковки может использовать для вычисления защи-

щенного хэша на некоторых данных.
Digester::Update(data).
Передает данные в объект Digester.
Digester::GetDigest().
Вычисляет дайджет.
HostContext::GenerateRandomNumber().
Генерирует случайное число, которое можно использовать для генерации ключа.
На фиг. 27 показана диаграмма UML, демонстрирующая пример использования вышеописанных

иллюстративных API и взаимодействий, которые имеют место между приложением хоста и механизмом
упаковки в одном иллюстративном варианте осуществления.

7. Объекты.
В этом разделе приведена дополнительная информация, относящаяся к объектам DRM, которые

012918

- 36 -

служат строительными блоками иллюстративной реализации механизма DRM. Сначала дадим сравни-
тельно общий обзор типов объектов, которые механизм DRM использует для защиты и администрирова-
ния контента. Затем приведем более подробное описание этих объектов и информации, которую они не-
сут, а также некоторых иллюстративных структур данных, используемых в одном иллюстративном вари-
анте осуществления.

7.1. Объекты DRM для защиты и администрирования контента.
Как описано выше в связи с фиг. 6, объекты управления контентом (иногда именуемые, совместно с

объектами «узел» и «связь», объектами DRM) используются для связывания правил и условия пользова-
ния с защищенным контентом. Совместно, эти объекты образуют лицензию.

Согласно фиг. 6, данные, представленные объектом «контент» 614, зашифрованы с использованием
ключа. Этот ключ, необходимый для дешифрования контента, представлен объектом ContentKey 602, и
связь между контентом и ключом, используемым для его шифрования, представлена объектом «протек-
тор» 604. Правила, которые регламентируют использование ключа дешифрования, представлены объек-
том управления 608, и связь между ContentKey 602 и объектом управления 608 представлена объектом
«контроллер» 606. В одном варианте осуществления, доверенные системы используют ключ дешифрова-
ния контента только согласно правилам, выраженные байт-кодом в объекте управления 608. На фиг. 28А
показана более подробная иллюстрация лицензии, например, показанной на фиг. 6, и показана схема
подписи, которая используется в одном варианте осуществления.

7.1.1. Общие элементы.
В одном варианте осуществления, объекты совместно используют общие основные особенности:

каждый из них может иметь ID, список атрибутов и список расширений.
7.1.1.1. ID.
Объекты, на которые ссылаются другие объекты, имеют уникальный ID. В одном варианте осуще-

ствления ID являются просто URI, и, по соглашению, эти URI являются URN.
7.1.1.2. Атрибуты.
Атрибуты являются типизированными значениями. Атрибуты могут быть именованными или бе-

зымянными. Имя именованного атрибута является простой строкой или URI. Значение атрибута является
простым типом (строка, целое число или массив байтов) или составным типом (список или массив). Ат-
рибуты типа 'список' содержат неупорядоченный список именованных атрибутов. Атрибуты типа
'массив' содержат упорядоченный массив безымянных атрибутов.

Поле 'attributes' объекта является (возможно, пустой) неупорядоченной коллекцией именованных
атрибутов.

7.1.1.3. Расширения.
Расширения это элементы, которые можно добавлять к объектам для переноса необязательных или

обязательных дополнительных данных. Расширения являются типизированными и также имеют уни-
кальные ID. Расширения могут быть внутренними или внешними.

7.1.1.3.1. Внутренние расширения.
Внутренние расширения содержатся в объекте, которые они расширяют. Они имеют флаг 'critical',

который указывает, необходима ли реализация, которая использует объект, знать конкретный тип дан-
ных расширения для расширения. В одном варианте осуществления, если реализация встречает объект с
критическим расширением, имеющим тип данных, который она не понимает, она может отбросить весь
объект.

В одном варианте осуществления, ID внутреннего расширения должен быть локально-уникальным:
объект не может содержать два расширения с одним и тем же ID, но возможно, что два разных объекта
содержат расширения с одинаковым ID.

Поле 'extensions' объекта является (возможно, пустой) неупорядоченной коллекцией внутренних
расширений.

7.1.1.3.2. Внешние расширения.
Внешние расширения не содержатся в объекте, который они расширяют. Они появляются незави-

симо от объекта и имеют поле 'subject', которое содержит ID объекта, который они расширяют. В одном
варианте осуществления, ID внешнего расширения должно быть глобально-уникальным.

7.1.2. Content.
В одном варианте осуществления, объект «контент» является "внешним" объектом. Его формат и

хранение не подчиняется механизму DRM, но подчиняется подсистеме управления контентом приложе-
ния хоста (например, контент может представлять собой видео-файл МР4, музыкальный трек МР3 и т.д.).
В одном варианте осуществления, формат контента нуждается в обеспечении поддержки связывания ID с
данными полезной нагрузки контента. Полезная нагрузка контента шифруется независимо от формата
(обычно симметричным шифром, например AES).

7.1.3. ContentKey.
Объект ContentKey представляет уникальный ключ шифрования и связывает с ним ID. ID предна-

значен для того, чтоб объекты Protector и объекты Controller могли ссылаться на объекты ContentKey.
Данные фактического ключа, инкапсулированные в объекте ContentKey, сами зашифрованы, в результате

012918

- 37 -

чего их могут прочитать только получатели, авторизованные на дешифрование контента. Объект Con-
tentKey указывает, какая криптосистема использовалась для шифрования данных ключа. Криптосистема,
используемая для защиты данных ключа контента, называется системой распространения ключей. Мож-
но использовать разные системы распространения ключей. Примером системы распространения ключей
является вышеописанная система распространения ключей Scuba.

7.1.4. Protector.
Объект Protector содержит информацию, которая позволяет определять, какой ключ использовался

для шифрования данных объектов Content. Он также содержит информацию, какой алгоритм шифрова-
ния использовался для шифрования этих данных. В одном варианте осуществления, объект Protector со-
держит один или несколько ID, которые являются ссылками на объекты Content, и в точности один ID,
который является ссылкой на объект ContentKey, который представляет ключ, который использовался
для шифрования данных. Если Protector указывает на более чем один объект Content, то все эти объекты
Content представляют данные, которые были зашифрованы с использованием одного и того же алгорит-
ма шифрования и одного и того же ключа. В одном варианте осуществления, пока используемая крипто-
система позволяет безопасно использовать один и тот же ключ для разных элементов данных, не реко-
мендуется, чтобы объект Protector указывал на более чем один объект Content.

7.1.5. Control.
Объект управления содержит информацию, которая позволяет механизму DRM принимать решения

относительно того, следует ли разрешить определенные действия над контентом, по запросу приложения
хоста. В одном варианте осуществления, правила, которые регламентируют использование ключей кон-
тента, закодированы в объекте управления в виде байт-кода для выполнения виртуальной машиной.
Объект управления также имеет уникальный ID, что позволяет объекту «контроллер» ссылаться на него.
В одном варианте осуществления, объекты управления подписаны, благодаря чему механизм DRM мо-
жет удостовериться, что байт-код объекта управления является действительным и доверенным, прежде
чем использовать его для принятия решений. Действительность объекта управления также, в необяза-
тельном порядке, можно выводить путем проверки защищенного хэша, содержащегося в объекте «кон-
троллер».

7.1.6. Controller.
Объект «контроллер» содержит информацию, которая позволяет механизму DRM определять, ка-

кой объект управления регламентирует использование одного или нескольких ключей, представленных
объектами ContentKey. Объект «контроллер» содержит информацию, которая привязывает его к объек-
там ContentKey и объекту управления, на который он ссылается. В одном варианте осуществления, объ-
екты «контроллер» подписываются (например, приложением упаковщика, который имеет сертификат,
позволяющий ему подписывать объекты «контроллер»), что позволяет устанавливать действительность
связи между ContentKey и объектом управления, который управляет им, а также действительность связи
между ContentKey ID и данными фактического ключа. Подпись объекта «контроллер» может представ-
лять собой подпись открытым ключом или подпись симметричным ключом или их комбинацию. Кроме
того, когда дайджест объекта управления, на который ссылается объект «контроллер», включен в объект
«контроллер», действительность объекта управления можно вывести без необходимости отдельно прове-
рять подпись объекта управления.

7.1.6.1. Подпись симметричным ключом.
В одном варианте осуществления это предпочтительный тип подписи для объектов «контроллер», и

она реализуется путем вычисления Кода аутентификации сообщения (MAC) объекта «контроллер»,
снабженного тем же ключом, который представлен соответствующим объектом ContentKey. В одном
варианте осуществления канонический метод для этого MAC предусматривает использование НМАС с
тем же алгоритмом хэширования, который был выбран в качестве алгоритма подписи PKI, используемо-
го в той же конфигурации.

7.1.6.2. Подпись открытым ключом.
Этот тип подписи используется, когда нужно знать идентичность сущности, подписывающей объ-

ект «контроллер». Этот тип подписи реализуется посредством алгоритма подписи открытым ключом,
подписывания секретным ключом принципала, который утверждает действительность этого объекта. В
одном варианте осуществления при использовании этого типа подписи подпись симметричным ключом
также будет присутствовать и подписывать как объект «контроллер», так и подпись открытым ключом,
что позволяет гарантировать, что принципал, подписавший своим секретным ключом, также знает фак-
тическое значение ключа контента, переносимого объектом ContentKey.

7.2. Объекты DRM идентичности и управления ключами.
Как описано выше объекты «узел» представляют сущности в профиле DRM, и никакой явной или

неявной семантики не используется для определения того, что представляют объекты «узел». Данная
конфигурация (профиль DRM) системы определяет, какие существуют типы принципалов, и какие роли
и идентичности представляют разные объекты «узел». Эта семантическая информация обычно выража-
ется с использованием атрибутов объекта «узел».

Объекты «связь» представляют соотношения между узлами. Объекты «связь» также, в необязатель-

012918

- 38 -

ном порядке, могут содержать некоторые криптографические данные, что позволяет использовать связь
для вывода ключа контента. Как и для узлов, в одном варианте осуществления, никакой явной или неяв-
ной семантики используется для определения, что означает соотношение связи means. В зависимости от
того, что представляют начальный и конечный узлы связи в данном профиле DRM, смысл соотношения
связи может выражать принадлежность, собственность, ассоциацию и/или многие другие типы соотно-
шений. В типичном профиле DRM, некоторые объекты «узел» могут представлять пользователей, другие
узлы могут представлять устройства, и прочие узлы могут представлять группы пользователей или авто-
ризованные домены (AD). В таком контексте, связи между устройствами и пользователями могут пред-
ставлять отношение собственности, и связи между пользователями и группами пользователей или доме-
нами авторизации могут представлять отношения принадлежности. На фиг. 28В показана структура и
взаимоотношение между узлами и связями в одном иллюстративном варианте осуществления.

7.2.1. Узел.
Объект «узел» представляет сущность в системе. Атрибуты объекта «узел» задают определенные

аспекты того, что представляет объект «узел», например, роль или идентичность, представленную объек-
том «узел» в контексте профиля DRM. Объект «узел» также может иметь пару асимметричных ключей
конфиденциальности, которая используется для нацеливания конфиденциальной информации на подсис-
темы, имеющие доступ к конфиденциальным частям объекта «узел» (обычно, сущность, представленную
узлом, или некоторую сущность, которая отвечает за управление этим узлом). Конфиденциальная ин-
формация, нацеленная на узел, может быть зашифрована открытым ключом конфиденциальности этого
узла. Объект «узел» также может иметь пару асимметричных ключей совместного пользования, и сим-
метричным ключом совместного пользования могут совместно использовать объекты «связь», когда сис-
тема использует Систему вывода ключа контента для распространения ключей контента, например, опи-
санную здесь в другом месте. В предпочтительном варианте осуществления, только сущностям, подле-
жащим ссылке со стороны объектов «связь» или «управление», или сущностям, которым необходимо
принимать криптографически нацеленную информацию, нужно иметь соответствующие объекты «узел».

7.2.2. Связь.
Объект «связь» - это подписанное утверждение, что существует ориентированное ребро в графе,

вершинами которого являются объекты «узел». Для данного множества узлов и связей, мы говорим, что
существует путь между узлом X и узлом Y, если существует ориентированный путь между вершиной
узла X и вершиной узла Y в графе. Когда существует путь между узлом X и узлом Y, мы говорим, что
узел Y доступен от узла X. Утверждения, представленные объектами «связь», используются для выраже-
ния, какие узлы доступны от других узлов. Объекты управления, которые управляют объектами «кон-
тент», могут проверить, прежде чем разрешить осуществление действия, что определенные узлы доступ-
ны от узла, связанного с сущностью, осуществляющей действие. Например, если узел D представляет
устройство, которое хочет осуществить действие "воспроизведение" на объекте «контент», объект управ-
ления, который управляет объектом «контент», может проверить, доступен ли определенный узел U,
представляющий определенного пользователя, от узла D. Чтобы определить, доступен ли узел U, меха-
низм DRM может проверить, существует ли множество объектов «связь», которые могут установить путь
между узлом D и узлом U.

В одном варианте осуществления, механизм DRM проверяет объекты «связь» прежде, чем исполь-
зовать их для принятия решения о наличии путей в графе узлов. В зависимости от конкретных особенно-
стей системы сертификатов (например, x509v3), используемой для подписывания объектов «связь», объ-
ектам «связь» можно назначать ограниченные сроки действия, отменять их и т.д. В одном варианте осу-
ществления, механизм DRM непосредственно не имеет дела с политиками, определяющие, какие ключи
могут подписывать объекты «связь», какие объекты «связь» можно создавать и срок действия объектов
«связь». Вместо этого, эти политики используют информацию атрибутов узла. Для облегчения задачи
применения определенных политик, в одном варианте осуществления предусмотрен способ расширения
стандартных форматов сертификата с дополнительной проверкой ограничений. Эти расширения дают
возможность выразить ограничения по действительности сертификатов для ключей, которые подписы-
вают связи, благодаря чему ограничения, например, какие типы узлов соединяет связь, а также другие
атрибуты, можно проверять прежде, чем признать связь действительной.

В одном варианте осуществления, объект «связь» может содержать объект управления, который
будет использоваться для ограничения действительности связи. Кроме того, в одном варианте осуществ-
ления объект «связь» может содержать криптографические данные вывода ключа, которые снабжают
пользователя ключами совместного пользования для распространения ключей. Эти криптографические
данные содержат, помимо метаданных, личные и/или симметричные ключи совместного пользования
начального узла, зашифрованные открытым ключом совместного пользования и/или симметричным
ключом совместного пользования конечного узла.

7.3. Структуры данных.
В нижеследующих разделах описана более подробно иллюстративная модель объекта для объектов,

рассмотренных выше, задающая поля, которые имеет объект каждого типа в одном иллюстративном ва-
рианте осуществления. Структуры данных описаны с использованием сравнительно простого синтаксиса

012918

- 39 -

описания объекта. Каждый тип объекта задается классом, который может расширять родительский класс
(т.е. отношение "это есть"). Описания классов приведены в терминах простых абстрактных типов "string"
(строки символов), "int" (целочисленное значение), "byte" (8-битовое значение), и "boolean" (истина или
ложь), но не определяют никаких конкретных правил кодирования ни для этих типов данных, ни для со-
ставных структур, содержащих эти типы. Способ кодирования или представления объектов может варь-
ироваться в зависимости от реализации механизма. На практике, данный профиль использования меха-
низма DRM может задавать, как представляются поля (например, с использованием схемы XML).

В одном иллюстративном варианте осуществления используются следующие обозначения:

012918

- 40 -

7.3.1. Общие структуры.
В одном иллюстративном варианте осуществления используются следующие общие структуры:

7.3.1.1. Атрибуты.
В одном варианте осуществления, существует четыре разновидности атрибутов: IntegerAttribute,

StringAttribute, ByteArrayAttribute, и ListAttribute, каждый из которых имеет имя и тип.

012918

- 41 -

7.3.1.2. Расширения.
В рассматриваемом иллюстративном варианте осуществления, существует два типа расширений:

внутренние расширения, которые переносятся внутри Octobject, и внешние расширения, которые перено-
сятся вне Octobject.

В некоторых вариантах осуществления, важно иметь возможность проверять подпись объекта, даже

если данная реализация не понимает конкретный тип ExtensionData. Таким образом, в одном варианте
осуществления, добавляется уровень косвенности с полем dataDigest. Если спецификация ExtensionData
требует, чтобы данные были частью подписи в контексте конкретного объекта, то поле dataDigest будет
присутствовать. Реализация, которая понимает этот тип ExtensionData и потому способна вычислять его
каноническое представление, может затем проверить дайджест. Если, в этом варианте осуществления,
спецификация этого типа ExtensionData чтобы данные не были частью подписи, то поле dataDigest будет
отсутствовать.

7.3.2. Объекты Node

7.3.3. Объекты Link

7.3.4. Объекты Control

7.3.5. Объекты ContentKey

В одном варианте осуществления, каждый ключ имеет уникальный id, формат, использование (ко-

торое может быть пустым), и данные. Поле 'usage', если оно не пусто, указывает, с какой целью можно
использовать ключ. Для нормальных ключей контента, это поле пусто. Согласно вариантам осуществле-
ния, в которых используется схема распространения ключей, например, вышеописанная, это поле может
указывать, является ли ключ ключом совместного пользования или ключом конфиденциальности. Поле
'format' указывает формат поля 'data' (например, 'RAW' для симметричных ключей или 'PKCS#8' для сек-
ретных ключей RSA и т.д.). Поле 'data' содержит данные фактического ключа, форматированные в соот-
ветствии с полем 'format'.

012918

- 42 -

Для ключей, которые входят в состав пары ключей (например, ключей RSA), дополнительное поле
'pairId' дает уникальный идентификатор пары, что позволяет ссылаться на пару из других структур дан-
ных.

В одном варианте осуществления поле данных в объекте «ключ» является незашифрованным зна-
чением фактического ключа (т.е. это незашифрованное значение ключа, которое будет хэшировано), да-
же если фактическое представление объекта содержит зашифрованную копию ключа.

7.3.6. Объекты Controller.

8. Виртуальная машина.
Предпочтительные варианты осуществления описанного здесь механизма DRM используют вирту-

альную машину (иногда именуемую здесь "виртуальной машиной управления", "VM управления" или
просто "VM") для выполнения программ управления, которые регламентируют доступ к контенту. Ниже
описаны иллюстративные варианты осуществления такой виртуальной машины, но этот иллюстратив-
ный вариант осуществления допускает различные модификации и изменения конструкции. Описано
также объединение иллюстративного варианта осуществления виртуальной машины (именуемой здесь
виртуальной машиной "Plankton") с иллюстративным вариантом осуществления механизма DRM (име-
нуемого здесь "Octopus"). Очевидно, однако, что варианты осуществления механизма управления цифро-
выми правами, архитектура и другие описанные здесь системы и способы можно использовать с любой
подходящей виртуальной машиной или, в некоторых вариантах осуществления, вообще без виртуальной
машины, и, таким образом, очевидно, что представленные ниже детали, касающиеся иллюстративных
вариантов осуществления виртуальной машины, предназначены для иллюстрации, но не ограничения.

В предпочтительном варианте осуществления, VM управления это традиционная виртуальная ма-
шина, которую легко реализовать с использованием различных языков программирования с очень малым
объемом кода. Она основана на простом наборе команд со стековой организацией, построенном исходя
из минимализма, без чрезмерной концентрации на скорости выполнения или плотность кода. В случаях,
когда требуется компактный код, можно использовать методы сжатия данных для сжатия байт-кода вир-
туальной машины.

В предпочтительных вариантах осуществления виртуальная машина управления призвана быть
пригодной в качестве конечного продукта для языков программирования низкого или высокого уровня, и
поддерживает ассемблер, С и FORTH. Кроме того, очевидно, что компиляторы для других языков, на-
пример, Java или специализированных языков, можно создавать относительно прямым путем для компи-
ляции кода в формат (например, байт-код), используемый виртуальной машиной. В одном варианте осу-
ществления виртуальная машина управления предназначена для размещения в среде хоста, а не для вы-
полнения непосредственно на процессоре или в логических устройствах. В предпочтительных вариантах
осуществления, естественной средой хоста для виртуальной машины является механизм DRM, хотя оче-
видно, что описанную здесь архитектуру виртуальной машины можно, альтернативно или дополнитель-
но, использовать в других контекстах.

На фиг. 29 показана операционная среда иллюстративной реализации виртуальной машины управ-
ления 2902. Согласно фиг. 29 в одном варианте осуществления виртуальная машина 2902 выполняется в
контексте своей среды хоста 2904, которая реализует некоторые функции, необходимые виртуальной
машине для выполнения программ 2906. Обычно VM управления выполняется в механизме DRM 2908,
который реализует ее среду хоста. Согласно фиг. 29, в предпочтительной базе данных, виртуальная ма-
шина 2902 и механизм DRM 2908 обращаются к защищенной базе данных 2910 для постоянного хране-
ния информации состояния.

8.1. Архитектура.
8.1.1. Модель выполнения.
В предпочтительных вариантах осуществления, VM выполняет программы путем выполнения ко-

манд, записанных в виде байт-кода в кодовых модулях. Некоторые из этих команд могут вызывать функ-
ции, реализованные вне самой программы, осуществляя системные вызов. Системные вызовы можно
реализовать на самой VM или делегировать среде хоста.

В одном варианте осуществления VM выполняет команды, записанные в кодовых модулях, в виде
потока байт-кодов, загружаемых в память. VM поддерживает виртуальный регистр, именуемый Program
Counter (PC) [счётчик команд], который увеличивается по мере выполнения команд. VM выполняет все
команды по очереди, пока не встретит команду OP_STOP, команду OP_RET с пустым стеком вызова,
или не возникнет исключение среды выполнения. Безусловные переходы указаны либо как относитель-
ный переход (указанный в виде байтового сдвига от текущего значения PC), либо как абсолютный адрес.

8.1.2. Модель памяти.
В одном варианте осуществления VM использует сравнительно простую модель памяти, в которой

память делится на память для хранения данных и кодовую память. Например, память для хранения дан-

012918

- 43 -

ных можно реализовать как единое, плоское, непрерывное пространство памяти, начинающееся по адре-
су 0, и можно реализовать как массив байтов, выделенный в динамической памяти приложения хоста или
среды хоста. В одном варианте осуществления, попытки обратиться к памяти за пределами выделенного
пространства будут приводить к исключению среды выполнения, которое приведет к завершению вы-
полнения программы.

Память для хранения данных может распределяться между несколькими кодовыми модулями, од-
новременно загружаемыми виртуальной машиной. К данным в памяти для хранения данных можно об-
ращаться посредством команд обращения к памяти, которые, в одном варианте осуществления, могут
обеспечивать 32-разрядный или 8-разрядный доступ. 32-разрядные обращения к памяти осуществляются
с использованием обратного порядка следования байтов. В предпочтительном варианте осуществления,
не делается никаких предположений относительно выравнивания между памятью, которую видит вирту-
альная машина, памятью, управляемой хостом (т.е. виртуальной или физической памятью ЦП хоста).

В одном варианте осуществления, кодовая память представляет собой плоское, непрерывное про-
странство памяти, начинающееся по адресу 0, и можно реализовать как массив байтов, выделенный в
динамической памяти приложения хоста или среды хоста.

VM может поддерживать загрузку более одного кодового модуля. Если VM загружает несколько
кодовых модулей, в одном варианте осуществления все кодовые модули совместно используют одну и ту
же память для хранения данных (хотя данные каждого модуля предпочтительно загружать по разным
адресам), но каждый из них имеет свою собственную кодовую память, что не дает команде перехода в
одном кодовом модуле вызвать переход к коду в другом кодовом модуле.

8.1.3. Стек данных.
В одном варианте осуществления, VM имеет так называемый стек данных, который представляет

32-битовые ячейки данных, хранящиеся в памяти для хранения данных. VM поддерживает виртуальный
регистр, именуемый Stack Pointer [Указатель стека] (SP). После сброса, SP указывает на конец памяти
для хранения данных, и стек растет вниз (при проталкивании данных в стек данных, регистр SP умень-
шается). 32-битовые ячейки данных в стеке интерпретируются либо как 32-битовые адреса, либо как 32-
битовые целые, в зависимости от команды, ссылающейся на данные стека. Адреса являются беззнаковы-
ми целыми. В одном варианте осуществления, все остальные 32-битовые целочисленные значения в сте-
ке данных интерпретируются как знаковые целые, если не указано обратное.

8.1.4. Стек вызова.
В одном варианте осуществления, VM управляет стеком вызова, который используется для вызова

подпроцедур. В одном варианте осуществления, команды обращения к памяти не могут непосредственно
считывать или записывать значения, протолкнутые в этот стек. Этот стек используется внутри VM при
выполнении команд OP_JSR, OP_JSRR и OP_RET. Для данной реализации VM, размер этого стека адре-
сов возврата может быть задан минимальным, в результате чего будет разрешено лишь определенное
количество вложенных вызовов.

8.1.5. Псевдорегистры.
В одном варианте осуществления, VM резервирует небольшое пространство адресов в начале памя-

ти для хранения данных для отображения псевдорегистров. В одном варианте осуществления, адреса
этих псевдорегистров фиксированы. Например, можно задать следующие регистры:

012918

- 44 -

8.1.6. Карта памяти.
Ниже показана компоновка памяти для хранения данных и кодовой памяти в иллюстративном ва-

рианте осуществления.
Память для хранения данных

012918

- 45 -

Кодовая память.

8.1.7. Выполнение процедур.
До выполнения кодовой процедуры, в одном варианте осуществления реализация виртуальной ма-

шины сбрасывает указатель стека данных, чтобы он указывал вершину инициализированного стека дан-
ных. Инициализированный стек данных содержит входные данные процедуры и доходит до конца памя-
ти для хранения данных. Инициализированный стек данных можно использовать для передачи входных
аргументов процедуре. В отсутствие инициализированного стека данных, указатель стека данных указы-
вает на конец памяти для хранения данных. В одном варианте осуществления, начальный стек вызова
либо пуст, либо содержит единый конечный адрес возврата, указывающий на команду OP_STOP, что
принудительно прекращает выполнение процедуры по команде OP_STOP в случае, когда процедура за-
канчивается командой OP_RET.

Когда выполнение останавливается, либо вследствие выполнения конечной команды OP_RET с
пустым стеком вызова, либо вследствие выполнения конечной команды OP_STOP, любые данные, ос-
тавшиеся в стеке данных, считаются выходом процедуры.

8.1.8. Исключения среды выполнения.
В одном варианте осуществления, любое из следующих условий считается исключением среды вы-

полнения, которое приводит к немедленной остановке выполнения:
попытка обращения к памяти для хранения данных за пределами текущего пространства адресов

памяти для хранения данных;
попытка задать PC равным или вызвать переход PC к адресу кода за пределами текущего простран-

ства адресов кодовой памяти;
попытка выполнения незаданного байт-кода;
попытка выполнения команды OP_DIV с операндом «вершина стека», равным 0;
попытка выполнения команды OP_MOD с операндом «вершина стека», авным 0;
переполнение или опустошение стека вызова.
8.2. Набор команд.
В одном варианте осуществления, VM управления использует сравнительно простой набор команд.

Хотя и ограниченный, этот набор команд достаточен для выражения программ любой сложности. Ко-
манды и их операнды представлены потоком байт-кодов. В одном варианте осуществления, набор ко-
манд работает со стеком, и, за исключением команды OP_PUSH, ни одна из команд не имеет прямых
операндов. Операнды считываются из стека данных, и результаты проталкиваются в стек данных. В од-
ном варианте осуществления, VM является 32-разрядной VM: все команды работают с 32-разрядными
стековыми операндами, представляющими либо адреса памяти, либо знаковые целые. Знаковые целые
представлены двоичным кодированием с дополнением двойки. Иллюстративный вариант осуществления
набора команд для использования с VM управления показан в нижеследующей таблице. В таблице, сте-
ковые операнды для команд с двумя операндами представлены как "А, В", где операнд на вершине стека
указан последним (т.е. "В"). Если не указано обратное, термин "проталкивание", используемый в ниже-
следующем описании одного иллюстративного варианта осуществления, означает продвижение 32-
битового значения к вершине стека данных.

012918

- 46 -

012918

- 47 -

012918

- 48 -

8.3. Кодовые модули.
В предпочтительном варианте осуществления кодовые модули хранятся в атомарном формате, ана-

логичном или идентичном тому, который используется для файлов MPEG-4, и атомы содержат 32-
битовый размер (например, представленный 4 байтами в обратном порядке следования байтов), после
которого следует 4-байтовый тип (например, байты, соответствующие значениям ASCII для букв алфа-
вита), после которого следует полезная нагрузка (например, 8 байтов).

На фиг. 30 показан формат иллюстративного кодового модуля 3000. Согласно фиг. 30, атом pkСМ
3002 является атомом верхнего уровня кодового модуля. Он содержит последовательность податомов. В
одном варианте осуществления, атом pkCM 3002 содержит один атом pkDS 3004, один атом pkCS 3006,
один атом pkEX 3008, и, возможно, один атом pkRQ 3010. Фтом pkСМ 3002 также может содержать лю-
бое количество других атомов, которые, в одном варианте осуществления, игнорируются, если присутст-
вуют. В одном варианте осуществления, порядок податомов не указан, поэтому реализации не обязаны
предусматривать конкретный порядок.

8.3.1. Атом pkDS.
Согласно фиг. 30, атом pkDS 3004 содержит образ памяти 3005 сегмента данных, который может

загружаться в память для хранения данных. Согласно фиг. 31А, в одном варианте осуществления образ
памяти 3005 представлен последовательностью байтов 3112, состоящей из одного байта заголовка 3114,
после которого следует ноль или более байтов данных 3116. Байт заголовка 3114 кодирует номер версии,
который идентифицирует формат следующих байтов 3116.

В одном варианте осуществления, задается только один номер версии (т.е. DataSegmentFormatVer-
sion=0), и в этом формате байты данных образа памяти представляют необработанный образ, подлежа-
щий загрузке в память. Загрузчик виртуальной машины загружает только байты данных 3116 образа па-
мяти 3105, не включающие в себя байт заголовка 3114. В одном варианте осуществления, загрузчик вир-
туальной машины способен отказываться загружать образ в любом другом формате.

8.3.2. Атом pkCS.
Согласно фиг. 30, атом pkCS 3006 содержит образ памяти 3007 сегмента кода, который может за-

гружаться в кодовую память. Согласно фиг. 31В в одном варианте осуществления образ памяти 3007
представлен последовательностью байтов 3120, состоящей из одного байта заголовка 3122, после кото-
рого следует ноль или более байтов данных 3124. Байт заголовка 3122 кодирует номер версии, который
идентифицирует формат следующих байтов 3124.

В одном варианте осуществления задается только один номер версии (т.е. CodeSegmentFormatVer-
sion=0), и, согласно фиг. 31С, в этой версии байт, следующий за байтом заголовка 3122, содержит еще
один байт заголовка 3130, содержащий номер версии, который идентифицирует кодирование в виде
байт-кода следующих байтов 3132. В примере, показанном на фиг. 31С, байт заголовка 3130 идентифи-
цирует ByteCodeVersion=0, который указывает, что байты данных 3132 содержат необработанную по-
следовательность байтов со значениями байт-код, например, заданными в вышеописанном иллюстратив-
ном наборе команд. В предпочтительном варианте осуществления, загрузчик виртуальной машины за-
гружает только часть 3132 байт-кода, состоящую из байтов данных, но не два байта заголовка 3122, 3130.

8.3.3. Атом pkEX.
Согласно фиг. 30, атом pkEX 3008 содержит список элементов экспорта. В примере, показанном на

фиг. 30, первые четыре байта 3009 атома pkEX 3008 кодируют 32-битовое беззнаковое целое в обратном
порядке следования байтов, равное количеству последующих элементов. Согласно фиг. 31D, каждый
следующий элемент экспорта 3160 состоит из имени, кодированного одним байтом 3162, содержащим
размер имени, S, после которого следует S байтов 3164, содержащих ASCII-символы имени, включая
оконечный нуль 3166, после которых следует 32-битовое беззнаковое целое 3168 в обратном порядке
следования байтов, представляющее байтовый сдвиг именованной точки входа, измеряемый от начала
данных байт-кода, хранящихся в атоме pkCS. На фиг. 31Е показан пример элемент 3170 таблицы экспор-
та для точки входа MAIN со сдвигом 64, в котором первый байт 3172 указывает, что размер имени (т.е.
"MAIN"), плюс оконечный нуль, равен пяти байтам, и в котором последние четыре байта 3174 указыва-
ют, что байтовый сдвиг равен 64.

8.3.4. Атом pkRQ.
Согласно фиг. 30, атом pkRQ 3010 содержит требования, которым должна удовлетворять реализа-

ция виртуальной машины для выполнения кода в кодовом модуле. В одном варианте осуществления,
этот атом является необязательным, и, если он отсутствует, виртуальная машина использует настройки
реализации, принятые по умолчанию, которые, например, могут быть заданы профилем реализации.

В одном варианте осуществления, атом pkRQ состоит из массива 32-битовых беззнаковых целочис-
ленных значений, по одному на каждое поле:

012918

- 49 -

8.3.5. Загрузчик модулей.
Виртуальная машина отвечает за загрузку кодовых модулей. При загрузке кодового модуля, образ

памяти сегмента данных, закодированный в атоме pkDS, загружается по адресу памяти в память для хра-
нения данных. Этот адрес выбирает загрузчик VM, и он хранится в псевдорегистре DS при выполнении
кода.

При загрузке кодового модуля выполняется особая процедура под названием "Global.OnLoad", если
эта процедура найдена среди элементов таблицы экспорта. Эта процедура не берет никаких аргументов в
стеке и возвращает целочисленный статус по возвращении, причем 0 обозначает успех, и отрицательный
код ошибки обозначает условие ошибки.

При выгрузке кодового модуля (или когда виртуальная машина, загрузившая модуль, избавляется
от него), выполняется особая процедура под названием «Global.OnUnload", если эта процедура найдена

012918

- 50 -

среди элементов таблицы экспорта. Эта процедура не берет никаких аргументов в стеке, и возвращает
целочисленный статус по возвращении, причем 0 обозначает успех, и отрицательный код ошибки обо-
значает условие ошибки.

8.4. Системные вызовы.
Программы виртуальной машины могут вызывать функции, реализованный вне сегмента кода ее

кодовых модулей. Это делается с использованием команды OP_CALL, которая берет целочисленный
стековый операнд, указывающий номер системного вызова, который должен быть сделан. В зависимости
от системного вызова, реализация может представлять собой процедуру байт-кода в другом кодовом мо-
дуле (например, библиотеке функций утилит), исполняемую непосредственно на VM в родном формате
реализации VM, или делегируемую внешнему программному модулю, например, среде хоста VM.

В одном варианте осуществления, если команда OP_CALL выполняется с операндом, который со-
держит число, которое не соответствует никакому системному вызову, VM ведет себя так, как если бы
был сделан системный вызов SYS_NOP.

8.4.1. Выделение номеров системного вызова.
В рассматриваемом иллюстративном варианте осуществления, номера системного вызова от 0 по

1023 зарезервированы для фиксированных системных вызовов (эти системные вызовы будут иметь один
и тот же номер во всех реализациях VM). Номера системного вызова с 1024 по 16383 доступны VM для
динамического присвоения (например, номера системного вызова, возвращаемые System.FindSystem
CallByName, могут динамически выделяться VM и не обязаны быть одинаковыми номерами во всех реа-
лизациях VM).

В одном иллюстративном варианте осуществления указаны следующие фиксированные номера
системного вызова:

8.4.2. Стандартные системные вызовы.
В одном варианте осуществления поддерживается несколько стандартных системных вызовов, ко-

торые полезны для записи программ управления. Эти вызовы включают в себя системные вызовы с фик-
сированными номерами, перечисленные в вышеприведенной таблице, а также системные вызовы, имею-
щие динамически определяемые номера (т.е. их номера системного вызова извлекаются путем осуществ-
ления системного вызова System.FindSystemCallByName, которому в качестве аргумента передаются их
имена).

В одном варианте осуществления системные вызовы, указанные в этом разделе, которые могут воз-
вращать отрицательный код ошибки, могут возвращать коды ошибки с любым отрицательным значени-
ем. В разделе 8.4.4 указаны конкретные иллюстративные значения. В одном варианте осуществления,
если возвращаются отрицательные значения кода ошибки, которые заранее не заданы, они интерпрети-
руются как общее значение кода ошибки FAILURE.

System.NoOperation. Этот вызов не берет никаких аргументов и ничего не возвращает, и просто за-
вершается, ничего не сделав. Он используется, в основном, для тестирования VM.

System.DebugPrint. Этот вызов берет в качестве аргумента из вершины стека адрес ячейки памяти,
содержащей строку, оканчивающуюся символом конца строки, и ничего не возвращает. Вызов этой
функции приводит к печати строки текста в выходе отладки, что может быть полезно при отладке. Если
реализация VM не предусматривает возможности вывода текста отладки (что, например, может иметь
место в среде без разработки), VM может игнорировать вызов и интерпретировать его как Sys-
tem.NoOperation.

System. FindSystemCallByName. Этот вызов находит номер системного вызова по его имени. Вызов
берет в качестве аргумента (из вершины стека) адрес строки ASCII, оканчивающейся символом конца
строки, содержащей имя искомого системного вызова, и возвращает (в вершину стека) номер системного
вызова, если системный вызов с указанным именем реализован, ERROR_NO_SUCH_ITEM, если систем-
ный вызов не реализован, и отрицательный код ошибки в случае возникновения ошибки.

System.Host.GetLocalTime. Этот вызов не берет никаких аргументов и возвращает, в вершину стека,
текущее значение местного времени хоста, которое, в одном варианте осуществления, выражается 32-
битовым знаковым целым, равным числу минут, прошедших с 00:00:00 1 января 1970 г., или отрицатель-
ным кодом ошибки.

System.Host.GetLocalTimeOffset. Этот вызов не берет никаких аргументов и возвращает, в вершину

012918

- 51 -

стека, текущее смещение по времени (относительно времени UTC) хоста, которое, в одном варианте
осуществления, выражается 32-битовым знаковым целым, равным числу минут, составляющему разницу
между местным временем и временем UTC (т.е. LocalTime - UTC).

System.Host.GetTrustedTime. Этот вызов не берет никаких аргументов и возвращает, в вершину сте-
ка, доверенное время и значение одного или нескольких флагов. В одном варианте осуществления, дове-
ренное время это текущее значение доверенных часов (если система включает в себя такие доверенные
часы), или отрицательный код ошибки, если доверенное время недоступно. В одном варианте осуществ-
ления, значение доверенного времени выражается 32-битовым знаковым целым, равным числу минут,
прошедших с 00:00:00 1 января 1970 г. согласно UTC, или отрицательным кодом ошибки. В одном вари-
анте осуществления, представляют собой набор битовых флагов, которые дополнительно задают теку-
щее состояние доверенных часов. В одном варианте осуществления, в случае возникновения ошибки
(например, значение TrustedTime равно отрицательному коду ошибки) возвращается значение флагов,
равное 0.

В одном варианте осуществления, задается следующий флаг:

Этот системный вызов имеет смысл в системах, где реализованы доверенные часы, которые можно

синхронизировать с доверенным источником времени, и поддерживается монотонный счетчик времени.
Не гарантируется, что значение доверенного времени всегда будет точным, но в одном варианте осуще-
ствления требуется наличие следующих свойств:

значение доверенного времени выражается как значение времени UTC (доверенное время не явля-
ется местным временем, поскольку текущее местоположение обычно нельзя точно определить);

доверенное время никогда не идет назад;
доверенные часы идут не быстрее реального времени.
Поэтому, в этом иллюстративном варианте осуществления, значение TrustedTime находится между

значением последнего синхронизированного времени (синхронизированного с доверенным источником
времени) и текущим реальным временем. Если система способна определить, что ее доверенные часы
действовали и обновлялись постоянно и нормально без перерыва с момента последней синхронизации с
доверенным источником времени, она может определить, что значение TrustedTime является не оценоч-
ным, а точным значением, и задать флаг TIME_IS_ESTIMATE равным 0.

В одном варианте осуществления, если доверенные часы обнаруживают, что наступило условие ап-
паратного или программного сбоя, и они не могут возвратить даже оценку доверенного времени, воз-
вращается код ошибки, и значение возвращаемых флагов задается равным 0.

System.Host.GetObject: Этот системный вызов является общим интерфейсом, который позволяет
программе обращаться к объектам, обеспеченным хостом виртуальной машины. Вызов Sys-
tem.Host.GetObject берет следующие аргументы (перечисленные от вершины стека вниз): Parent, Name,
ReturnBuffer и ReturnBufferSize. Где "Parent" это 32-битовый описатель родительского контейнера;
"Name" это адрес строки, оканчивающейся символом конца строки, содержащей путь к запрашиваемому
объекту относительно родительского контейнера; "ReturnBuffer" это адрес буфера памяти, где должно
храниться значение объекта; и "ReturnBufferSize" это 32-битовое целое, указывающее размер в байтах
буфера памяти, где должно храниться значение объекта.

Вызов System.Host.GetObject создает следующие выходы (перечисленные от вершины стека вниз):
TypeID, Size. "TypeId" это id типа объекта или отрицательный код ошибки, если вызов не удается. Если
запрашиваемый объект не существует, возвращается ошибка в виде ERROR_NO_SUCH_ITEM. Если бу-
фер, предоставленный для возвращаемого значения, слишком мал, возвращается ошибка в виде ER-
ROR_INSUFFICIENT_SPACE. Если часть дерева объектов, к которой происходит обращение, имеет
управление доступом, и вызывающая программа не имеет разрешения на доступ к объекту, возвращается
ERROR_PERMISSION_DENIED. Также могут возвращаться и другие коды ошибки. "Size" это 32-
битовое целое, указывающее размер в байтах данных, возвращаемых в буфер, предоставленный вызы-
вающей сущностью, или необходимый размер, если вызывающая сущность обеспечила слишком малый
буфер.

В одном варианте осуществления существует четыре типа объектов хоста: строки, целые числа,
массивы байтов и контейнеры.

012918

- 52 -

В одном варианте осуществления значение объекта «массив байтов» представляет собой массив 8-

битовых байтов, значение объекта «строка» представляет собой строку символов, оканчивающуюся сим-
волом конца строки, закодированную в UTF-8, и значение объекта «целое число» представляет собой 32-
битовое знаковое целочисленное значение. Контейнеры представляют собой контейнеры общего вида,
которые содержат последовательность из любого количества объектов любой комбинации типов. Объек-
ты, содержащиеся в контейнере, называются детьми этого контейнера. Значение контейнера представля-
ет собой 32-бтовый описатель контейнера, уникальный в данном экземпляре VM. В одном варианте осу-
ществления, корневой контейнер '/' имеет фиксированное значение описателя 0.

В одном варианте осуществления пространство имен для объектов хоста имеет иерархическую
структуру, где имя дочернего объекта контейнера строится путем присоединения имени дочернего объ-
екта к имени родительского контейнера, каковые имена разделены символом '/'. Объекты «строка» и «це-
лое число» не имеют детей. Например, если контейнер назван '/Node/Attributes' и имеет дочернюю строку
под именем 'Туре', то '/Node/Attributes/Type' относится к дочерней строке.

Корнем пространства имен является '/'. Все абсолютные имена начинаются с '/'. Имена, которые не
начинаются с '/', являются относительными именами. Относительные имена относятся к родительскому
контейнеру. Например, имя 'Attributes/Type', относительно родителя '/Node', это объект с абсолютным
именем '/Node/Attributes/Type'.

В одном варианте осуществления, объекты «контейнер» также могут иметь реальные и виртуаль-
ные дочерние объекты, к которым можно обращаться с использованием виртуальных имен. Виртуальные
имена это имена, которые не присоединены объектам хоста, но, по соглашению, идентифицируют либо
безымянные дочерние объекты, дочерние объекты с другим именем, либо виртуальные дочерние объек-
ты (дочерние объекты, которые не являются реальными детьми контейнера, но динамически создаются
по запросу).

В одном варианте осуществления, для объектов, следующие виртуальные имена заданы как имена
виртуальных дочерних объектов:

012918

- 53 -

Для контейнеров, следующие виртуальные имена заданы как имена виртуальных дочерних объек-
тов в одном варианте осуществления:

Примеры. В нижеследующей таблице приведен пример иерархии объектов Host:

В этом примере, вызов System.Host.GetObject (parent=0, name="Node") возвращает ID типа 0 (т.е.

контейнер) и приводит к записи значения описателя 1 в буфер, предоставленный вызывающей сущно-
стью. Размер значения равен 4 байтам.

Вызов System.Host.GetObject (parent=0, name="Node/Attributes/Domain") возвращает ID типа 2 (т.е.
строку) и приводит к записи строки "TopLevel" в буфер, предоставленный вызывающей сущностью. Раз-
мер значения равен 9 байтам.

Вызов System.Host.GetObject (parent=1, name="Attributes/@1") возвращает ID типа 1 (т.е. целое) и
приводит к записи целого числа 78 в буфер, предоставленный вызывающей сущностью. Размер значения
равен 4 байтам.

Вызов System. Host.GetObject (parent=0, name="DoesNotExist") возвращает код ошибки ER-
ROR_NO_SUCH_ITEM.

System.Host.SetObject. Этот системный вызов является общим интерфейсом, который позволяет
программе создавать, записывать и уничтожать объекты, обеспеченные хостом виртуальной машины.
Описание имен и типов объектов такое же, как для вышеописанного вызова System.Host.GetObject. Заме-
тим, что объекты хоста поддерживают возможность своей записи или уничтожения, и не все контейнеры
поддерживают создание дочерних объектов. Когда производится вызов SetObject объекта, который не
поддерживает операцию, возвращается ERROR_PERMISSION_DENIED.

Системный вызов System.Host.SetObject берет в качестве аргументов следующие параметры, пере-
численные от вершины стека вниз:

Вершина стека

012918

- 54 -

Parent: 32-битовый описатель родительского контейнера.
Name: адрес строки, оканчивающейся символом конца строки, содержащей путь к объекту относи-

тельно родительского контейнера.
ObjectAddress: адрес буфера памяти, где хранится значение объекта. Если адрес равен 0, вызов ин-

терпретируется как запрос на уничтожение объекта. Данные по адресу зависят от типа объекта.
Object Type: ID типа объекта.
ObjectSize: 32-битовое целое, указывающее размер в байтах буфера памяти, где хранится значение

объекта. В рассматриваемом иллюстративном варианте осуществления, размер задан равным 4 для объ-
ектов «целое число» и размеру буфера памяти, с учетом пустого символа конца строки, для объектов
«строка». Для объектов «массив байтов», размер равен количеству байтов в массиве.

Системный вызов System.Host.SetObject возвращает ResultCode в вершину стека в качестве выхода.
ResultCode равен 0, если вызов успешен, и равен отрицательному коду ошибки, если вызов неудачен.
Если вызов является запросом на уничтожение объекта, и запрашиваемый объект не существует, или
вызов является запросом на создание или запись объекта, и родитель объекта не существует, возвращает-
ся код ошибки в виде ERROR_NO_SUCH_ITEM. Если часть дерева объектов, к которой происходит об-
ращение, имеет управление доступом, и вызывающая программа не имеет разрешения на доступ к объек-
ту, возвращается ERROR_PERMISSION_DENIED. Также могут возвращаться и другие коды ошибки.

Существует особый случай, когда объект ссылается на контейнер, и ObjectAddress не равен 0. В
этом случае параметр ObjectSize задается равным 0, и значение ObjectAddress игнорируется. Если кон-
тейнер уже существует, ничего не происходит, и возвращается ResultCode равный SUCCESS. Если кон-
тейнер не существует, и родитель контейнера является записываемым, создается пустой контейнер.

Octopus.Links.IsNodeReachable. Этот системный вызов используется программами управления для
проверки, доступен ли данный узел от узла, связанного с сущностью, вмещающей этот экземпляр вирту-
альной машины. Вызов берет в качестве аргумента NodeId из вершины стека, где NodeId это строка,
оканчивающаяся символом конца строки, содержащая ID конечного узла, подлежащего тестированию на
доступность. В качестве выхода, вызов возвращает ResultCode и StatusBlockPointer в вершину стека. Re-
sultCode это целочисленное значение, равное 0, если узел доступен, или отрицательный код ошибки, если
нет. StatusBlockPointer это адрес стандартного ExtendedStatusBlock, или 0, если не возвращается ни одно-
го блока состояний.

System.Host.SpawnVm. Этот системный вызов используется программами управления для запроса
на создание нового экземпляра виртуальной машины и на загрузку нового кодового модуля. В одном
варианте осуществления, хост вновь созданной виртуальной машины предъявляет те же объекты хоста,
которые предъявлялись вызывающей сущности, за исключением того, что объект хоста "/Octopus/Run-
time/Parent/Id" задан равным идентификатору вызывающей сущности. В одном варианте осуществления,
этот объект хоста является контейнером. Детьми этого контейнера являются объекты типа строка, каж-
дый из которых имеет значение, представляющее имя. В одном варианте осуществления, семантика и
конкретные детали этих имен указаны в спецификации хоста виртуальной машины.

В одном варианте осуществления, когда виртуальная машина, которая выполняет код для вызы-
вающей сущности прекращает существование, любая порожденная виртуальная машина, которая не бы-
ла в явном виде освобождена путем вызова System.Host.ReleaseVm, автоматически освобождается систе-
мой, как при вызове System.Host.ReleaseVm.

Вызов System.Host.SpawnVm берет в качестве аргумента ModuleId из вершины стека. ModuleId
идентифицирует кодовый модуль, подлежащий загрузке в новый экземпляр виртуальной машины. В од-
ном варианте осуществления, спецификация хоста виртуальной машины описывает механизм, позво-
ляющий находить фактический кодовый модуль, соответствующий этому ID модуля.

Вызов System.Host.SpawnVm возвращает ResultCode и VmHandle в вершину стека. ResultCode это
целочисленное значение, равное 0, если вызов успешен, и отрицательному коду ошибки, если он неуда-
чен. VmHandle это целочисленное значение, идентифицирующее экземпляр виртуальной машины, кото-
рый был создан. В случае неудачного вызова, этот описатель задается равным 0. В одном варианте осу-
ществления, гарантируется лишь, что этот описатель будет уникальным в виртуальной машине, в кото-
рой делается этот вызов.

System.Host.CallVm. Этот системный вызов используется программами управления для вызова про-
цедур, реализованных в кодовых модулях, загруженных в экземпляры виртуальной машины, созданные с
использованием системного вызова System.Host.SpawnVm. Этот системный вызов берет следующие ар-
гументы, начиная с вершины стека.

Вершина стека:

012918

- 55 -

VmHandle: целочисленное значение, представляющее описатель виртуальной машины, созданной

путем вызова System.Host.SpawnVm.
EntryPoint: адрес строки, оканчивающейся символом конца строки, которая задает имя точки входа

в вызов. Это имя должно совпадать с именем одной из точек входа в таблице экспорта кодового модуля,
загруженного в экземпляр виртуальной машины, который соответствует параметру VmHandle.

ParameterBlockAddress: адрес блока памяти, который содержит данные, подлежащие передаче вы-
зываемой сущности. Если вызываемой сущности не передаются никакие параметры, этот адрес задается
равным 0.

ParameterBlockSize: размер в байтах блока памяти по адресу ParameterBlockAddress или 0, если Pa-
rameterBlockAddress равен 0.

ReturnBufferAddress: адрес буфера памяти, где вызывающая сущность может принимать данные от
вызываемой сущности. Если вызывающая сущность не ждет никаких данных от вызываемой сущности,
этот адрес задается равным 0.

ReturnBufferSize: размер в байтах буфера памяти по адресу ReturnBufferAddress или 0, если Return-
BufferAddress равен 0.

Вызов System.Host.CallVm возвращает следующий выход в вершину стека:
Вершина стека:

SystemResultCode: целочисленное значение, равное 0, если вызов увенчался успехом, или отрица-

тельному коду ошибки в случае неудачи. Это значение определяется системой, а не вызываемой сущно-
стью. Успех указывает лишь, что система смогла успешно найти процедуру для вызова, выполнить про-
цедуру и получить возвращаемое значение от процедуры. Возвращаемое значение от самой роцедуры
возвращается в виде значения CalleeResultCode.

CalleeResultCode: целочисленное значение, возвращаемое вызываемой сущностью.
ReturnBlockSize: размер в байтах данных, возвращаемых в буфер, предоставленный вызывающей

сущностью, или необходимый размер, если вызывающая сущность обеспечила слишком малый буфер.
Если вызываемая сущность не возвращает никаких данных, значени равно 0.

В рассматриваемом иллюстративном варианте осуществления, вызываемая процедура отвечает
следующим соглашениям по интерфейсу: при вызове процедуры, вершина стека содержит значение Pa-
rameterBlockSize, обеспеченное вызывающей сущностью, указывающее размер блока параметра, сле-
дующего после байтов данных ParameterBlockSize. Если размер не кратен 4, данные в стеке дополняются
нулями, чтобы указатель стека оставался кратным 4. По возвращении, вызываемая процедура помещает в
стек следующие возвращаемые значения:

Вершина стека:

ReturnBlockAddress: адрес блока памяти, который содержит данные, возвращаемые вызывающей

сущности. Если никаких данных не возвращается, этот адрес задается равным 0.
ReturnBlockSize: размер в байтах блока памяти по адресу ReturnBlockAddress или 0, если Return-

BlockAddress равен 0.
System.Host.ReleaseVm. Этот системный вызов используется программами управления для освобо-

ждения виртуальной машины, порожденной предыдущим вызовом System.Host.SpawnVm. Любые вирту-
альные машины, порожденные отпущенной виртуальной машиной, освобождаются, и т.д., рекурсивно.
Вызов System.Host.ReleaseVm берет в качестве аргумента VmHandle из вершины стека, причем VmHan-
dle представляет описатель виртуальной машины, созданной путем вызова System.Host.SpawnVm. Вызов
System.Host.ReleaseVm возвращает в вершину стека ResultCode в качестве выхода. ResultCode это цело-
численное значение, равное 0, если вызов увенчался успехом, или отрицательному коду ошибки в случае
неудачи.

8.4.3. Стандартные структуры данных.
Ниже описаны стандартные структуры данных, используемые некоторыми стандартными систем-

ными вызовами.
8.4.3.1. Стандартные параметры.

012918

- 56 -

ParameterBlock:

Name: имя параметра.
Value: значение параметра ExtendedParameterBlock:

Flags: вектор логических флагов.
Parameter: блок параметра содержащий имя и значение.
NameBlock:

Size: 32-битовое беззнаковое целое, равное размеру в байтах следующего за ним поля "characters".

Если это значение равно 0, поле characters остается пустым (т.е. после него ничего нет).
Characters: строка UTF-8, оканчивающая символом конца строки.
ValueBlock:

Туре: 32-битовый идентификатор типа. В одном варианте осуществления, заданы следующие типы:

012918

- 57 -

Size: 32-битовое беззнаковое целое, равное размеру в байтах следующего за ним поля "data". Если

это значение равно 0, поле данных остается пустым (т.е. после поля size в ValueBlock ничего нет).
Data: массив 8-битовых байтов, представляющий значение. Фактические байты зависят от кодиров-

ки данных, указанной в поле type.
ValueListBlock:

ValueCount: 32-битовое беззнаковое целое, равное количеству следующих после него структур Val-

ueBlock. Если это значение равно 0, структур ValueBlock нет.
Value0, Value1, ...: последовательность из нуля или более структур ValueBlock.
8.4.3.2. Стандартная структура ExtendedStatus.
Стандартная структура ExtendedStatusBlock это структура данных, обычно используемая для пере-

носа расширенной информации в качестве состояния возврата из вызова процедуры или системного вы-
зова. Это общего вида структура данных, которую можно использовать в различных контекстах, причем
ее поля могут принимать разнообразные значения. В одном варианте осуществления, ExtendedStatus-
Block задается следующим образом.

ExtendedStatusBlock:

012918

- 58 -

GlobalFlags: логические флаги, имеющие одну и ту же семантику вне зависимости от поля Category.

Позиция и смысл флагов определяются профилями, которые используют стандартные структуры данных
ExtendedStatusBlock.

Category: Уникальный целочисленный идентификатор категории, к которой принадлежит это со-
стояние. Значения идентификатора категории определяются профилями, которые используют стандарт-
ные структуры данных ExtendedStatusBlock.

SubCategory: Целочисленный идентификатор (уникальный в рамках категории) подкатегории, кото-
рая дополнительно классифицирует тип состояния, описанного этим блоком.

LocalFlags: Логические флаги, семантика которых локальна по отношению к категории и подкате-
гории этого блока состояний. Позиция и смысл флагов определяются профилями, которые задают и ис-
пользуют семантику категории.

CacheDuration: Указывает продолжительность времени, в течение которого это состояние может
кэшироваться (т.е. остается действительным). См. ниже определение типа CacheDurationBlock, чтобы
понять, как задается фактическое значение продолжительности времени.

Parameters: список из нуля или более структур ValueBlock. Каждая структура ValueBlock содержит
параметр, кодированный как значение типа Parameter или ExtendedParameter. Каждый параметр привязы-
вает имя к типизированному значению и используется для кодирования гибких изменяемых данных, ко-
торые описывают блок состояний более подробно, чем просто категория, подкатегория, время жизни
кэша и флаги.

CacheDurationBlock:

Type: Целочисленный идентификатор типа значения.
В одном варианте осуществления, заданы следующие типы:

012918

- 59 -

Value: 32-битовое целое, смысл которого зависит от поля Type.
8.4.4. Стандартные коды результата.
Стандартные коды результата используются в различных API. Для использования в более специ-

альных API можно задать другие коды результата.

8.5. Синтаксис ассемблера.
В этом разделе описан иллюстративный синтаксис для использования при компилировании про-

граммы в формат байт-кода описанный здесь в другом месте. Очевидно, что это лишь один пример воз-
можного синтаксиса, и что можно использовать любой подходящий синтаксис. Как указано выше, следу-
ет также понимать, что представленный здесь формат байт-кода также является иллюстративным, и что
описанные здесь системы и способы можно использовать с любым другим пригодным форматом байт-
кода или другим форматом кода.

Ассемблер считывает исходные файлы, содержащие код, данные и команды обработки, и создает
двоичные кодовые модули, которые могут загружаться виртуальной машиной управления. В одном ил-
люстративном варианте осуществления, ассемблер обрабатывает исходный файл последовательно, стро-
ку за строкой. Строки могут содержать нуль или более символов, после которых следует разделитель
строк. Каждая строка может представлять собой: пустую строку (только пробел), директиву сегмента,
директиву данных, директиву ассемблера, команду кода, метку или директиву экспорта. Кроме того, ка-
ждая строка может заканчиваться комментарием, который начинается с символа ';' и продолжается до
конца строки.

Данные и команды, считанные из исходных файлов, имеют неявный сегмент назначения (т.е., куда
они попадут, будучи загружены VM). В любой момент в ходе процесса анализа, ассемблер будет иметь
"текущий" сегмент, который является неявным сегментом назначения для данных и команд. Текущий
сегмент можно менять с использованием директив сегмента.

8.5.1. Директива сегмента.
Директивы сегмента изменяют текущий сегмент анализатора. В одном варианте осуществления

поддерживаются директивы сегмента .code и .data. Сегмент .code содержит команды байт-кода, и сегмент
.data содержит глобальные переменные.

012918

- 60 -

8.5.2. Директивы данных.
Директивы данных указывают данные (например, целые числа и строки), которые будут загружены

в сегмент данных виртуальной машины. В одном варианте осуществления поддерживаются следующие
директивы данных:

.string "<some chars>" - Задает строку символов. В одном варианте осуществления ассемблер добав-
ляет октет со значением 0 в конец строки.

.byte <value> - Задает 8-битовое значение. <value> может выражаться десятеричным числом или
шестнадцатеричным числом (предваряемым 0х).

8.5.3. Директивы ассемблера.
В одном варианте осуществления поддерживается директива ассемблера .equ <symbol>, <value>,

которая задает символ <symbol> равным значению <value>. Символы обычно используются в качестве
операндов или кодовых команд.

8.5.4. Labels.
Метки это символы, указывающие те или иные позиции в сегментах. Метки, указывающие на ко-

манды в сегменте кода, обычно используются для команд перехода/ветвления. Метки, указывающие на
данные в сегменте данных, обычно используются для ссылки на переменные. В одном варианте осуще-
ствления используется следующий синтаксис метки: <LABEL>:

Заметим, что после ":" ничего не стоит, кроме необязательного комментария. Метка указывает по-
зицию следующего(ей) элемента данных или команды. В одном варианте осуществления разрешено
иметь более одной метки, указывающей один и тот же адрес.

8.5.5. Директивы экспорта.
Директивы экспорта используются для создания элементов в секции "export" кодового модуля, соз-

даваемого ассемблером. Каждый элемент в секции экспорта представляет собой пару (имя, адрес). В рас-
сматриваемом иллюстративном варианте осуществления в секции экспорта можно указывать только ад-
реса в сегменте кода.

Синтаксис директивы экспорта: .export <label>, которая экспортирует адрес, указанный посредст-
вом <label>, под именем "<label>".

8.5.6. Кодовые команды.
При компилировании данных, предназначенных для сегмента кода, ассемблер считывает команды,

которые отображаются, прямо или косвенно, в байт-коды. В иллюстративном наборе команд, показанном
выше, большинство байт-кодов виртуальной машины не имеют прямых операндов и выглядят как про-
стой мнемокод в одной строке. Чтобы сделать синтаксис ассемблера более читаемым, некоторые коман-
ды принимают псевдооперанды, которые выглядят так, как если бы они были операндами байт-кода, но в
действительности таковыми не являются; в этом случае, ассемблер генерирует одну или несколько ко-
манд байт-кода для создания такого же эффекта, как если бы команда имела прямой операнд. Например,
команды ветвления используют псевдооперанды.

8.5.6.1. Операнды ветвления.
Команды ветвления можно задавать дословно (безо всяких операндов) или с необязательным опе-

рандом, который ассемблер будет преобразовывать в соответствующую последовательность байт-кодов.
Необязательный операнд является целочисленной константой или символом. Когда операнд является
символом, ассемблер вычисляет правильное целочисленное относительное смещение, чтобы ветвление
заканчивалось по адресу, соответствующему символу.

8.5.6.2. Операнды Push.
В одном варианте осуществления команда PUSH всегда берет один операнд. Операнд может пред-

ставлять собой целочисленную константу, символ или префикс "@", после которого сразу следует имя
метки. Когда операнд является символом, проталкиваемое значение является непосредственным значе-
нием этого символа, независимо от того, является ли символ меткой или символом .equ (значение не уве-
личивается на величину смещения сегмента). Когда операнд является именем метки, предваряемым "@",
проталкиваемое значение зависит от того, на что указывает метка. Значение, проталкиваемое в стек, яв-
ляется абсолютным адресом, представленным меткой (т.е. суммой локального значения метки и смеще-
ния сегмента).

8.5.7. Примеры.

012918

- 61 -

8.5.8. Синтаксис командной строки.
В одном варианте осуществления, ассемблер представляет собой инструмент командной строки,

который можно вызывать с помощью следующего синтаксиса:
"PktAssembler[опции]<input_file_path><output_file_path>", где [опции] могут быть: -cs int, -ds int, -

xml id или -h, где "-cs int." это Сегмент кода Address Value (default = 8), ''-ds int" представляет собой зна-
чение адреса сегмента данных (по умолчанию = 4), "-xml id" используется для вывода объекта управле-
ния в виде файла XML с указанным ID, и ''-h" используется для отображения информации помощи.

9. Объекты управления.
В этом разделе описаны иллюстративные варианты осуществления объектов управления. Объекты

управления можно использовать для представления правил, которые регламентируют доступ к контенту
путем разрешения или запрещения использования объектов ContentKeys, которыми они управляют. Их
также можно использовать для представления ограничений по действительности объекта «связь», в ко-
торый они внедрены. Их также можно использовать в качестве самостоятельных программных контей-
неров, которые выполняются от имени другой сущности, например, в агентах или делегатах. В одном
варианте осуществления объекты управления содержат метаданные и программы в виде байт-кода, кото-
рые реализуют конкретный протокол взаимодействия. Протокол управления имеет целью задавать взаи-
модействие между механизмом DRM и программой управления или между приложением хоста и про-
граммой управления через механизм DRM. В этом разделе также описаны иллюстративные действия,
которые приложение может осуществлять на контенте, параметры действия, которые нужно передавать
программе управления, и показано, как программа управления кодирует состояние возврата, указываю-
щее, что запрошенное действие может или не может быть выполнено, а также параметры, которые могут
дополнительно описывать состояние возврата.

В этом разделе используются следующие аббревиатуры и акронимы:
ESB: расширенный блок состояний;
LSB: младший бит;
Byte: 8-битовое значение или октет;
Байт-код: поток байтов, которые кодируют исполнимые команды и их операнды.
9.1. Программы управления.
В одном варианте осуществления объект управления содержит программу управления. Программа

управления включает в себя кодовый модуль, содержащий байт-код, который может выполнять вирту-
альная машина, и список именованных процедур (например, элементов таблицы экспорта).

В одном варианте осуществления набор процедур, которые представляют правила, регламенти-
рующие осуществление определенной операции (например "воспроизведение") на элементе контента,
называется 'управляющий элемент действия'. Набор процедур, которые представляют ограничения по
действительности на объекте «связь», называется "ограничение по связи". Набор процедур, предназна-
ченных для выполнения от имени удаленной сущности (например, в течение сеанса протокола, когда
механизм DRM выполняется на другом хосте), называется "агент". Набор процедур, предназначенных
для выполнения от имени другого управляющего элемента (например, когда программа управления ис-
пользует системный вызов System.Host.CallVm), называется "делегат".

9.1.1. Интерфейс к программам управления.

012918

- 62 -

В одном варианте осуществления программы управления выполняются виртуальной машиной, вы-
полняющейся в среде хоста. Среду хоста можно реализовать любым подходящим способом; однако, для
простоты объяснения и в целях иллюстрации, в нижеследующем рассмотрении предполагается, что реа-
лизацию среды хоста виртуальной машины можно логически разделить на две части: приложение хоста
и механизм DRM. Однако очевидно, что другие варианты осуществления могут иметь другое логическое
разделение функций, которое может быть эквивалентным вышеописанной логической структуре.

Как и на фиг. 29, в предпочтительных вариантах осуществления механизм DRM 2908 является ло-
гическим интерфейсом между приложением хоста 2900 и программами управления 2906. Приложение
хоста 2900 делает логические запросы механизму 2908, например, запрашивая доступ к ключу контента с
определенной целью (например, для воспроизведения или представления потока контента). В одном ва-
рианте осуществления механизм 2908 гарантирует, что описанный ниже протокол взаимодействия реа-
лизован правильно, например, гарантируя, что любые гарантии, касающиеся инициализации программы
управления, последовательности вызовов и других деталей взаимодействия соблюдаются.

Когда приложение хоста 2900 запрашивает использование ключей контента для набора ID контен-
та, механизм DRM 2908 определяет, какой объект Control использовать. Объекты Protector позволяют
механизму определять, к каким объектам ContentKey нужно обращаться на предмет запрошенных ID
контента. Затем механизм находит объект Controller, который ссылается на эти объекты ContentKey. В
одном варианте осуществления, объект Controller может ссылаться на более чем один объект ContentKey.

Это позволяет управлять несколькими объектами ContentKey посредством одного и того же объекта
Control. Когда приложение хоста запрашивает доступ к ключу контента путем вызова действия, оно мо-
жет запросить множественные ID контента как группу, в той мере, в какой один и тот же объект Control-
ler ссылается на соответствующие им объекты ContentKey. В одном варианте осуществления, запрос на
доступ к группе ключей контента, на которые ссылаются более одного объекта «контроллер», не разре-
шен.

В одном варианте осуществления механизм DRM следует соглашению по отображению действий в
имена процедур. Например, в одном варианте осуществления для каждой из описанных ниже процедур,
имя, которое появляется в элементе таблицы экспорта в кодовом модуле, является соответствующей
строкой, показанной ниже в разделах 9.1.4-9.1.7.

9.1.1.1. Загрузка объекта управления.
В одном варианте осуществления прежде чем механизм сможет произвести вызовы процедур

управления, ему необходимо загрузить кодовый модуль объекта управления в виртуальную машину. В
одном варианте осуществления в одну VM загружается только один кодовый модуль.

9.1.1.2. Атомарность.
В одном варианте осуществления механизм гарантирует, что вызовы процедур в программах

управления являются атомарными в отношении ресурсов, выделяемых процедуре, например, базы дан-
ных объектов (или "состояний"). Таким образом, в этом варианте осуществления, механизм должен га-
рантировать, что эти ресурсы остаются неизменными в ходе выполнения любой процедуры, которую он
вызывает. Для этого можно эффективно блокировать эти ресурсы при вызове процедуры, или можно за-
претить одновременное выполнение нескольких VM. Однако механизму не нужно гарантировать, что эти
ресурсы останутся неизменными при последующих вызовах процедуры.

9.1.2. Протокол управления.
В одном варианте осуществления, именование процедур, входной/выходной интерфейс и структуры

данных для каждой процедуры в кодовом модуле, вместе образуют протокол управления. Протокол, реа-
лизованный кодовым модулем, указан в поле "protocol" объекта управления. Описанный ниже иллюстра-
тивный протокол управления будем называть Стандартным протоколом управления, и его идентифика-
тор (значение поля 'protocol') есть "http://www.octopus-drm.com/specs/scp-l_0".

В одном варианте осуществления прежде чем механизм DRM загрузит кодовый модуль и вызовет
процедуры в программе управления, ему нужно гарантировать, что взаимодействие с программой управ-
ления будет соответствовать спецификации конкретного id протокола, указанного в поле «протокол».
Это включает в себя любую гарантию относительно особенностей виртуальной машины, которые необ-
ходимо реализовать, гарантии относительно размера пространства адресов, доступного программе
управления, и т.п.

Протоколы управления, например Стандартный протокол управления, можно усовершенствовать со
временем без необходимости создавать новую спецификацию протокола. Пока изменения, вносимые в
протокол, согласуются с предыдущими ревизиями спецификации, и пока существующие реализации ме-
ханизма DRM, а также существующие программы управления, которые согласуются с этим протоколом,
продолжают осуществляться согласно спецификации, изменения считаются совместимыми. Такие изме-
нения могут включать в себя, например, новые типы действий.

9.1.3. Тип байт-кода.
В вышеописанном иллюстративном варианте осуществления, предусматривающем Стандартный

протокол управления, тип байт-кодового модуля это "Байт-кодовый модуль Plankton версия 1.0". В этом
иллюстративном варианте осуществления, значение поля "type" объекта управления есть

012918

- 63 -

"http://www.octopus-drm. com/specs/pkcm-1_0".
9.1.4. Общие процедуры управления.
Общие процедуры - это процедуры, которые применимы для объектов управления в целом, и не

предназначены для данного действия или ограничения по связи. В одном иллюстративном варианте осу-
ществления используются следующие общие процедуры управления.

9.1.4.1. Control.Init
Эта процедура является необязательной (т.е. она не требуется во всех объектах управления). Если

эта процедура используется, механизм вызывает ее один раз до вызова любой другой процедуры управ-
ления. Процедура не имеет аргументов и возвращает ResultCode в вершину стека в качестве выхода. Re-
sultCode равен 0 в случае успеха или отрицательному коду ошибки в случае неудачи. В одном варианте
осуществления, если ResultCode не равен 0, механизм прерывает текущую операцию объекта управления
и не делает никаких дополнительных вызовов процедур для этого объекта управления.

9.1.4.2. Control.Describe
Эта процедура является необязательной. Процедура вызывается, когда приложение запрашивает

описание смысла правил, представленных программой управления в целом (т.е. не для конкретного дей-
ствия). Процедура не имеет аргументов и возвращает ResultCode и StatusBlockPointer в вершину стека в
качестве выходов, где ResultCode является целочисленным значением (0 если процедура завершена ус-
пешно, или, в противном случае, отрицательный код ошибки), и где StatusBlockPointer это адрес стан-
дартного ExtendedStatusBlock. ExtendedStatusBlock содержит информацию, которую приложение может
интерпретировать и использовать для предоставления пользователю информации относительно смысла
правил, представленных программой управления.

9.1.4.3. Control.Release
Эта процедура является необязательной. Если эта процедура существует, механизм DRM вызывает

ее один раз после того, как ему уже не нужно вызывать какую-либо другую процедуру для объекта
управления. Никакая другая процедура не будет вызвана для объекта управления, пока не будет иниции-
ровано новое использование объекта управления (в каковом случае, снова будет вызвана процедура Con-
trol.Init). Процедура не имеет аргументов и возвращает ResultCode в вершину стека в качестве выхода.

ResultCode равен 0 в случае успеха или отрицательному коду ошибки в случае неудачи.
9.1.5. Процедуры Action
Всякое возможное действие имеет имя (например, «воспроизведение», «перенос», «экспорт» и т.д.).

В одном иллюстративном варианте осуществления, для данного действия <Action>, заданы следующие
имена процедур (где "<Action>" обозначает фактическое имя действия (например, "play", "transfer", "ex-
port", и т.д.)).

9.1.5.1. Control.Actions.<Action>.Init
Эта процедура является необязательной. Если она существует, механизм вызывает ее один раз до

того, как вызвать какую-либо другую процедуру для этого действия. Процедура не имеет аргументов и
возвращает ResultCode в вершину стека в качестве выхода. ResultCode равен 0 в случае успеха или отри-
цательному коду ошибки в случае неудачи. В одном варианте осуществления, если ResultCode не равен
0, механизм прерывает текущее действие и не делает никаких дополнительных вызовов процедур для
этого действия в этом объекте управления.

9.1.5.2. Control.Actions.<Action>.Check
В рассматриваемом иллюстративном варианте осуществления, эта процедура является обязатель-

ной и вызывается для проверки, без фактического осуществления данного действия, каково было бы со-
стояние возврата, если бы для этого действия была вызвана процедура Perform. Важно, чтобы эта проце-
дура не имела побочных эффектов. Заметим, что если процедура Perform также не имеет побочных эф-
фектов, элементы Check и Perform в таблице элементов объекта управления могут указывать на ту же
процедуру. Эта процедура имеет те же входы и выходы, что и описанная ниже процедура Perform.

9.1.5.3. Control.Actions.<Action>.Perform
В одном варианте осуществления эта процедура является обязательной и вызывается, когда прило-

жение собирается осуществить действие. Процедура не имеет аргументов и возвращает ResultCode и
StatusBlockPointer в вершину стека в качестве выходов, где ResultCode это целочисленное значение (0
если процедура завершена успешно, или, в противном случае, отрицательный код ошибки), и где Status-
BlockPointer это адрес стандартного ExtendedStatusBlock. Заметим, что в одном варианте осуществления
ResultCode успеха (т.е. 0) не означает, что запрос удовлетворен. Он означает только то, что процедура
выполнена без ошибок. Удовлетворен или отклонен запрос, указывает ExtendedStatusBlock. Однако, если
ResultCode указывает неудачу, приложение хоста реагирует, как будто запрос отклонен. Например, в од-
ном варианте осуществления категория структуры StatusBlock должна быть ACTION_DENIED, или воз-
вращаемый ExtendedStatusBlock должен отвергаться, и тогда приложение хоста прерывает действие.

При осуществлении действия нужно вызывать только процедуру Perform. Механизму не нужно
предварительно вызывать процедуру Check. Реализация процедуры Perform может предусматривать
внутренний вызов процедуры Check, по ее собственному усмотрению, но не следует полагать, что систе-
ма будет заранее вызывать процедуру Check.

012918

- 64 -

9.1.5.4. Control.Actions.<Action>.Describe
Эта процедура является необязательной и вызывается, когда приложение запрашивает описание

смысла правил и условий, представленных программой управления для данного действия. Процедура не
имеет аргументов и возвращает ResultCode и StatusBlockPointer в вершину стека в качестве выходов, где
ResultCode это целочисленное значение (0 если процедура завершена успешно, или, в противном случае,
отрицательный код ошибки), и где StatusBlockPointer это адрес стандартного ExtendedStatusBlock.

9.1.5.5. Control.Actions.<Action>.Release
Эта процедура является необязательной. Если она существует, она вызывается один раз, когда ме-

ханизму DRM уже не нужно вызывать какие-либо другие процедуры для данного действия. Для данного
действия не вызываются никакие другие процедуры, пока не будет инициировано новое использование
действия (в каковом случае, снова будет вызвана процедура Init). Процедура не имеет аргументов и воз-
вращает ResultCode в вершину стека в качестве выхода. ResultCode равен 0 в случае успеха и отрица-
тельному коду ошибки в случае неудачи. Если ResultCode не равен 0, механизм не делает никаких до-
полнительных вызовов процедур для данного действия.

9.1.6. Процедуры ограничения по связи.
В одном варианте осуществления, когда в объект «связь» внедрен объект управления, механизм

DRM вызывает процедуры ограничения по связи в этом объекте управления для проверки действитель-
ности объекта «связь». В одном иллюстративном варианте осуществления используются следующие
процедуры ограничения по связи.

9.1.6.1. Control.Link.Constraint.Init
Эта процедура является необязательной, и, если существует, вызывается только один раз прежде,

чем будет вызвана какая-либо другая процедура для данного ограничения по связи. Процедура не имеет
аргументов и возвращает ResultCode в вершину стека в качестве выхода. ResultCode равен 0 в случае ус-
пеха и отрицательному коду ошибки в случае неудачи. Если ResultCode не равен 0, механизм считает,
что ограничение по действительности для объекта «связь» не выполнено, и блокирует дальнейшие вызо-
вы процедур для объекта управления связи.

9.1.6.2. Control.Link.Constraint.Check
В рассматриваемом иллюстративном варианте осуществления, эта процедура является обязатель-

ной и вызывается для проверки, выполняется ли ограничение по действительности для данной связи.
Процедура не имеет аргументов и возвращает ResultCode и StatusBlockPointer в вершину стека в качестве
выходов, где ResultCode это целочисленное значение (0 если процедура завершена успешно, или, в про-
тивном случае, отрицательный код ошибки), и где StatusBlockPointer это адрес стандартного Extended-
StatusBlock. Если ResultCode не равен 0, механизм считает, что ограничение по действительности для
объекта «связь» не выполнено, и блокирует дальнейшие вызовы процедур для объекта управления связи.
Даже если ResultCode равен 0 (успех), это не означает, что ограничение выполнено; это означает только
то, что процедура выполнена без ошибок.

Выполнено ограничение или нет, указывает StatusBlock.
9.1.6.3. Control.Link.Constraint.Describe
Эта процедура является необязательной и вызывается, когда приложение запрашивает описание

смысла ограничения, представленного программой управления для данной связи. Процедура не имеет
аргументов и возвращает ResultCode и StatusBlockPointer в вершину стека в качестве выходов, где Re-
sultCode это целочисленное значение (0 если процедура завершена успешно, или, в противном случае,
отрицательный код ошибки), и где StatusBlockPointer это адрес стандартного ExtendedStatusBlock.

9.1.6.4. Control.Link.Constraint.Release
Эта процедура является необязательной и, если существует, вызывается механизмом после того, как

механизму уже не нужно вызывать какую-либо другую процедуру для данного ограничения. Процедура
не имеет аргументов и возвращает ResultCode в вершину стека в качестве выхода. ResultCode равен 0 в
случае успеха и отрицательному коду ошибки в случае неудачи. Согласно рассматриваемому варианту
осуществления, после вызова этой процедуры, нельзя вызвать никакую другую процедуру для данного
ограничения, пока не будет инициирован новый цикл (в каковом случае, снова вызвается процедура Init).
Аналогично, если ResultCode не равен 0, механизм не делает никаких дополнительных вызовов процедур
для данного ограничения по связи.

9.1.7. Процедуры агента.
В одном варианте осуществления агент это объект управления, который призван выполняться от

имени сущности. Агенты обычно используются в контексте взаимодействия услуг между двумя конеч-
ными точками, когда одна конечная точка должна выполнять код некоторой виртуальной машины в кон-
тексте второй конечной точки и, возможно, получать результат этого выполнения. В одном варианте
осуществления объект управления может содержать несколько агентов, и каждый агент может содержать
любое количество процедур, которые могут выполняться; однако, на практике, агенты обычно имеют по
одной процедуре.

В одном иллюстративном варианте осуществления заданы следующие точки входа для агентов, где
<Agent> это строка имени, которая является ссылкой на фактическое имя агента.

012918

- 65 -

9.1.7.1. Control.Agents.<Agent>.Init
Эта процедура является необязательной и, если она существует, механизм вызывает ее один раз до

того, как какая-либо другая процедура будет вызвана для данного агента. Процедура не имеет аргумен-
тов и возвращает ResultCode в вершину стека в качестве выхода. ResultCode равен 0 в случае успеха и
отрицательному коду ошибки в случае неудачи.

9.1.7.2. Control.Agents.<Agent>.Run
В рассматриваемом иллюстративном варианте осуществления, эта процедура является обязатель-

ной и является главной процедурой агента. Процедура не имеет аргументов и возвращает ResultCode,
ReturnBlockAddress и ReturnBlockSize в вершину стека в качестве выходов. ResultCode это целочислен-
ное значение (0 если процедура завершена успешно, или, в противном случае, отрицательный код ошиб-
ки), ReturnBlockAddress это адрес блока памяти, предназначенного для хранения данных, которые агент-
ский код должен возвратить вызывающей сущности (если процедура ничего не должна возвращать, ад-
рес равен 0), и ReturnBlockSize это размер в байтах блока памяти по адресу ReturnBlockAddress. В одном
варианте осуществления, если ReturnBlockAddress равен 0, то значение ReturnBlockSize также равно 0.

9.1.7.3. Control.Agents.<Agent>.Describe
Эта процедура является необязательной и вызывается, когда приложение запрашивает описание

данного агента. Процедура не имеет аргументов и возвращает ResultCode и StatusBlockPointer в вершину
стека в качестве выходов, где ResultCode это целочисленное значение (0 если процедура завершена ус-
пешно, или, в противном случае, отрицательный код ошибки), и где StatusBlockPointer это адрес стан-
дартного ExtendedStatusBlock.

9.1.7.4. Control.Agents.<Agent>.Release
Эта процедура является необязательной и, если она существует, механизм вызывает ее один раз, ко-

гда механизму уже не нужно вызывать какие-либо другие процедуры для этого агента.
Для этого агента не будет вызвана никакая другая процедура, пока не будет инициирован новый

цикл (в каковом случае, снова будет вызвана процедура Init). Процедура не имеет аргументов и возвра-
щает ResultCode в вершину стека в качестве выхода. ResultCode равен 0 в случае успеха и отрицательно-
му коду ошибки в случае неудачи.

9.2. Расширенные блоки состояний.
Нижеследующие иллюстративные определения применимы к структурам данных ExtendedStatus-

Block, возвращаемым несколькими вышеописанными процедурами согласно иллюстративным вариантам
осуществления. Примеры структур данных ExtendedStatusBlock описаны в связи с описанием виртуаль-
ной машины.

В одном варианте осуществления, не существует глобальных флагов для ExtendedStatusBlock. В
этом варианте осуществления, программы управления задают поле GlobalFlag структуры Extended-
StatuBlock равным 0.

9.2.1. Категории.
В нижеследующих разделах заданы значения для поля Category структур ExtendedStatusBlock со-

гласно одному варианту осуществления. В одном варианте осуществления, ни одна из этих категорий не
имеет подкатегорий, и поэтому значение поля SubCategory структур ExtendedStatusBlock задано равным
0.

В одном варианте осуществления заданы следующие коды категорий.
9.2.1.1. Процедуры Check и Perform для действий.

012918

- 66 -

В одном варианте осуществления в контексте параметров ExtendedStatusBlock, возвращаемых про-

цедурами действия, ограничение означает условие, которое должно быть выполнено, или критерий, ко-
торому нужно удовлетворить, чтобы процедура возвратила ExtendedStatusBlock с категорией AC-
TION_GRANTED.

В одном варианте осуществления значения поля LocalFlags, общие для обеих вышеописанных кате-
горий, включают в себя:

012918

- 67 -

Согласно вышеприведенной таблице, упомянутый в ней список параметров представляет собой по-

ле "Parameters" структуры данных ExtendedStatusBlock.
9.2.1.2. Коды категорий процедур Describe.
В одном варианте осуществления для процедур Describe коды категорий не заданы. В одном вари-

анте осуществления, к процедурам Describe применяются те же локальные флаги, которые заданы для
процедур Action, и процедуры Describe должны включать в возвращаемую ими структуру Extended-
StatusBlock параметр по имени 'Description', описанный ниже. В одном варианте осуществления, проце-
дуры Describe не содержат в возвращаемой ими структуре ExtendedStatusBlock никаких параметров обя-
зательства или обратного вызова; однако процедуры Describe должны включать в возвращаемую ими
структуру ExtendedStatusBlock параметры, описывающие некоторые или все ограничения, применимые к
соответствующему действию или ограничению по связи.

9.2.1.3. Коды категорий процедур для ограничения по связи.

В одном варианте осуществления, для каждой из этих категорий применяются те же локальные

флаги, которые заданы для процедур Action.
В одном варианте осуществления, в контексте параметров ExtendedStatusBlock, возвращаемых про-

цедурами для ограничения по связи, ограничение означает условие, которое должно быть выполнено,
или критерий, которому нужно удовлетворить, чтобы процедура возвратила ExtendedStatusBlock с кате-
горией LINK_VALID.

9.2.2. Времена жизни кэша.
Поле CacheDuration структуры ExtendedStatusBlock указывает период действия информации, зако-

дированной в ExtendedStatusBlock. Когда ExtendedStatusBlock имеет ненулевой период действия, это оз-

012918

- 68 -

начает, что ExtendedStatusBlock можно сохранять в кэше, и что, в течение этого периода времени, точно
такой же процедуры с теми же самыми параметрами возвратит точно такую же структуру Extended-
StatusBlock, поэтому приложению хоста можно возвращать кэшированное значение вместо того, чтобы
вызывать процедуру.

9.2.3. Параметры.
Некоторые параметры используются для переноса подробной информации о состоянии возврата, а

также связки переменных для обработки шаблонов (см. раздел 9.4).
В одном варианте осуществления, кроме обязательств и обратных вызовов, все описанные здесь ог-

раничения имеют своей единственной целью помощь в классификации и отображении приложения хос-
та, а не применение правил пользования. За применение правил отвечает программа управления.

В одном варианте осуществления, параметры, заданные в нижеследующем разделе, кодируются ли-
бо как ParameterBlock, если никакие флаги параметра не применимы, либо как ExtendedParameterBlock,
если один или несколько флагов применимы. Ниже описаны иллюстративные флаги.

9.2.3.1. Описание.
Имя параметра: Description.
Тип параметра: ValueList.
Описание: Список параметров описания. Каждое значение в списке имеет тип Parameter или Ex-

tendedParameter. В одном варианте осуществления, заданы следующие параметры: Default, Short и Long.
Каждый из них, если присутствует, имеет в качестве значения ID одного из ресурсов объекта управле-
ния. Этот ресурс должен содержать полезную нагрузку в виде текста или полезную нагрузку в виде шаб-
лона. Если ресурс является шаблоном, он обрабатывается для получения текстуального описания резуль-
тата (описания либо всей программы управления, либо конкретного действия). Шаблон обрабатывается с
использованием, в качестве связок переменных, других параметров из списка, в котором присутствует
параметр 'Description'.

В одном варианте осуществления, описания 'Short' и 'Long' могут быть включены только, если
включено также описание 'Default'.

9.2.3.2. Ограничения.
В одном варианте осуществления, параметры ограничения сгруппированы в списки, которые со-

держат ограничения сходных типов. В одном варианте осуществления, заданы стандартные ограничения
для некоторых типов. В одном варианте осуществления, объекты управления могут возвращать парамет-
ры ограничения, которые не включены в набор стандартных ограничений, при условии, что имя пара-
метра ограничения является URN в пространстве имен, что гарантирует уникальность этого имени. Та-
кие ограничения могут включать в себя ограничения, относящиеся к поставщику, или ограничения, уста-
новленные в других спецификациях.

9.2.3.2.1. Общие ограничения.
Имя параметра: GenericConstraints.
Тип параметра: ValueList.
Описание: Список общих ограничений, которые можно применять. Каждое значение в списке имеет

тип Parameter или ExtendedParameter.
В одном варианте осуществления, общие ограничения являются ограничениями, которые не при-

надлежат никакому другому типу ограничения, заданному в этом разделе. В одном варианте осуществ-
ления, никакие общие параметры ограничения не заданы.

9.2.3.2.2. Временные ограничения.
Имя параметра: TemporalConstraints.
Тип параметра: ValueList.
Описание: Список временных ограничений, которые можно применять. Каждое значение в списке

имеет тип Parameter или ExtendedParameter. Временные ограничения это ограничения, которые относятся
к времени, дате, длительности и/или т.п. В одном варианте осуществления заданы следующие временные
параметры ограничения:

012918

- 69 -

9.2.3.2.3. Пространственные ограничения.
Имя параметра: SpatialConstraints.
Тип параметра: ValueList.
Описание. Список пространственных ограничений, которые можно применять. В одном варианте

осуществления, каждое значение в списке имеет тип Parameter или ExtendedParameter. Пространственные
ограничения это ограничения, которые относятся к физическим положениям. В одном варианте осущест-
вления, никакие стандартные пространственные ограничения не заданы.

9.2.3.2.4. Групповые ограничения.
Имя параметра: GroupConstraints.
Тип параметра: ValueList.
Описание: Список групповых ограничений, которые можно применять. Каждое значение в списке

имеет тип Parameter или ExtendedParameter. Групповые ограничения это ограничения, которые относятся
к группам, групповой принадлежности, идентификации групп и/или т.п. В одном варианте осуществле-
ния заданы следующие параметры:

9.2.3.2.5. Ограничения по устройству.
Имя параметра: DeviceConstraints.
Тип параметра: ValueList.
Описание: Список ограничений по устройству, которые можно применять. Каждое значение в спи-

ске имеет тип Parameter или ExtendedParameter. Ограничения по устройству это ограничения, которые
относятся к характеристикам устройства, например признакам, атрибутам, именам, идентификаторам
и/или т.п. В одном варианте осуществления заданы следующие параметры:

012918

- 70 -

9.2.3.2.6. Ограничения по счетчику.
Имя параметра: CounterConstraints.
Тип параметра: ValueList.
Описание: Список ограничений по счетчику, которые можно применять. Каждое значение в списке

имеет тип Parameter или ExtendedParameter. Ограничения по счетчику это ограничения, которые относят-
ся к значениям счетчика, например, счетчику воспроизведения, накопленному значению счетчика и/или
т.п. В одном варианте осуществления, никакие стандартные ограничения по счетчику не заданы.

9.2.3.3. Флаги параметра.
В одном варианте осуществления, следующие флаги можно использовать для всех параметров,

описанных в разделе 9.2.3, когда они закодированы в виде ExtendedStatusBlock:

9.4. Обязательства и обратные вызовы.
В одном варианте осуществления, определенные действия, когда они разрешены, требуют дополни-

тельного участия приложения хоста. Обязательства представляют операции, которые должно осуществ-
лять приложение хоста после использования ключа контента, которые они запрашивают. Обратные вы-
зовы представляют вызовы одной или нескольких процедур программы управления, которые должно
осуществлять приложение хоста после использования ключа контента, которые они запрашивают.

В одном варианте осуществления, если приложение встречает какое-либо критическое обязательст-
во или обратный вызов, которое(ый) оно не поддерживает или не понимает (например, потому, что тип
обязательства был задан после реализации приложения), оно должно отказаться продолжать действие,
для которого был возвращен этот параметр обязательства или обратного вызова. В одном варианте осу-
ществления, критическое (ий) обязательство или обратный вызов указывается путем задания флага па-
раметра CRITICAL для параметра, который его описывает.

Если управление имеет побочные эффекты (например, уменьшение счетчика воспроизведения), оно
должно использовать обратный вызов OnAccept, чтобы потребовать от приложения хоста вызов опреде-
ленной процедуры, если оно способно понимать все критические обязательства и обратные вызовы и
выполнять их. Побочный эффект имеет место в процедуре обратного вызова. В одном иллюстративном

012918

- 71 -

варианте осуществления, реализации должны понимать и реализовывать обратный вызов OnAccept, по-
скольку это может быть полезно для предотвращения преждевременного возникновения побочных эф-
фектов (например, обновлений базы данных состояний) (например, прежде чем приложение хоста опре-
делит, что оно неспособно выполнить данное(ый) критическое обязательство или обратный вызов и
должно прекратить выполнение действия), что обеспечивает меру транзакционной атомарности.

9.4.1. Параметры.
Следующие параметры задают несколько типов обязательств и обратных вызовов, которые могут

возвращаться в структурах данных ExtendedStatusBlock.
9.4.1.1. Обязательства.
Имя параметра: Obligations.
Тип параметра: ValueList.
Описание: Список параметров обязательства. Каждое значение в списке имеет тип Parameter или

ExtendedParameter. В одном варианте осуществления заданы следующие параметры обязательства:

9.4.1.2. Обратные вызовы.
Имя параметра: Callbacks.
Тип параметра: ValueList.
Описание: список параметров обратного вызова. Каждое значение в списке имеет тип Parameter или

ExtendedParameter. В одном варианте осуществления заданы следующие параметры обратных вызовов:

012918

- 72 -

012918

- 73 -

В одном варианте осуществления тип 'Callback', указанный в вышеприведенной таблице, представ-

лен как ValueListBlock с тремя элементами ValueBlock:

012918

- 74 -

9.4.1.3. Флаги параметра.
В одном варианте осуществления используются те же самые флаги параметра, которые определены

в предыдущем разделе. В одном варианте осуществления, обратные вызовы и обязательства, необходи-
мые вызывающей сущности для реализации, помечаются как CRITICAL, чтобы приложение хоста не
имело возможности игнорировать эти параметры.

9.4.2. События.
В одном варианте осуществления события указаны именем. В зависимости от типа события может су-

ществовать набор заданных флагов, которые дополнительно описывают событие. В одном варианте осущест-
вления, если для конкретного события не задано никаких флагов, значение поля flag задается равным 0. Кро-
ме того, некоторые события могут указывать, что некоторая информация должна передаваться процедуре
обратного вызова при наступлении события. В одном варианте осуществления если от приложения хоста не
требуется никакой специальной информации, приложение хоста должно совершать вызов с пустым Argu-
mentsBlock (см. описание интерфейса процедуры обратного вызова в разделе 3.3, ниже).

В одном варианте осуществления, если приложение хоста не понимает или не поддерживает имя
события в параметре обратного вызова, помеченном CRITICAL, приложение хоста должно рассматри-
вать этот параметр как непонятый CRITICAL параметр (и действие, на которое запрошено разрешение,
не должно осуществляться).

В одном варианте осуществления заданы следующие имена событий:

012918

- 75 -

9.4.3. Процедуры обратного вызова.
В одном варианте осуществления процедуры обратного вызова принимают один и тот же вход.
Input: Вершина стека:

Cookie: значение поля Cookie, указанное в параметре обратного вызова.
ArgumentsBlockSize: число байтов данных, передаваемых в стек под этим параметром. При вызове

процедуры, стек содержит значение ArgumentsBlockSize, выданное вызывающей сущностью, указываю-
щее размер блока аргументов на вершине, после которого следует ArgumentsBlockSize байтов данных. В
одном варианте осуществления, если размер не кратен 4, данные в стеке дополняются нулевыми байта-
ми, чтобы гарантировать, что указатель стека остается кратным 4.

9.4.3.1. Обратные вызовы CONTINUE.
В одном варианте осуществления обратные вызовы типа CONTINUE (ID типа = 0) имеют следую-

щий выход.
Output: Вершина стека:

ResultCode: целочисленное значение. Значение результата равно 0, если процедура выполнена, или

отрицательному коду ошибки, если произошла ошибка.
Описание: если ResultCode указывает, что процедура обратного вызова выполнена (т.е. значение

равно 0), приложение хоста может продолжать текущую операцию. Если ResultCode указывает, что про-
изошла ошибка, приложение хоста прерывает текущую операцию и отменяет все ожидающие обратные
вызовы и обязательства.

9.4.3.2. Обратные вызовы RESET.
Когда процедура управления указывает один или несколько обратных вызовов типа RESET в ESB,

возвращаемой процедурой, приложение хоста вызывает любую указанную процедуру обратного вызова,
когда условие для этого обратного вызова выполняется. В одном варианте осуществления, если выпол-
няются условия любого из обратных вызовов, приложение хоста должно:

отменить все остальные ожидающие обратные вызовы;
отменить все текущие обязательства;
обеспечить все необходимые параметры (если существуют) для этого обратного вызова;
вызвать указанную процедуру обратного вызова.
Состояние возврата из процедуры указывает приложение хоста, если оно может продолжать осуще-

ствление текущей операции. В одном варианте осуществления, если в разрешении отказано, или не уда-
ется успешно выполнить процедуру, приложение хоста должно прервать осуществление текущей опера-
ции. Аналогично, если разрешение дано, приложение хоста должно подчиняться любому обязательству
или обратному вызову, которое(ый) может быть возвращен(о) в ESB, как если бы оно вызвало исходную
процедуру Control.Actions.<Action>.Perform. Предыдущие обязательства или спецификации обратных
вызовов больше не имеют силы.

В одном варианте осуществления все процедуры, указанные как точки входа обратного вызова для
этого типа обратного вызова имеют следующий выход.

Output: Вершина стека:

ResultCode: целочисленное значение. Значение результата равно 0, если процедура выполнена, или

012918

- 76 -

отрицательному коду ошибки, если произошла ошибка.
StatusBlockPointer: адрес стандартного ExtendedStatusBlock.
Описание: семантика возврата этой процедуры эквивалентна описанной для процедуры Con-

trol.Actions.<Action>.Perform.
9.5. Ресурсы Метаданных.
В одном варианте осуществления объекты управления могут содержать ресурсы метаданных, к ко-

торым можно обращаться через параметры, возвращаемые в структурах данных ExtendedStatusBlock.
Ресурсы могут представлять собой простой текст, шаблоны текста или другие типы данных. Каждый
ресурс идентифицируется посредством ID ресурса и может содержать одну/один или несколько строк
текста или элементов кодированных данных, по одной/м для каждой версии на том или ином языке. Не
обязательно обеспечивать ресурсы на всех языках. Приложение хоста само решает, версия на каком язы-
ке наиболее подходит для его нужд.

Ресурсы сопровождают программы управления, будучи включены в качестве расширений в объект

управления. Id ресурса отображается в Id внутреннего расширения объекта управления, который содер-
жит кодовый модуль с процедурой, выполняющейся в данный момент.

С целью вычисления канонической последовательности байтов для объектов Resource, в одном ва-
рианте осуществления предусмотрено следующее описание структуры данных:

9.5.1. Простой текст.
Простой текст указан как MIME-тип 'text'.
9.5.2. Шаблоны текста.
Помимо стандартных текстовых ресурсов в одном варианте осуществления задан тип «шаблон тек-

ста». MIME-тип для него: 'text/vnd.intertrust.octopus-text-template'.
В одном варианте осуществления шаблон текста содержит символы текста, кодированные в UTF-8,

а также именованные заполнители, которые заменяются текстовыми значениями, полученными из пара-
метров, возвращенных в списке параметров, например, для ExtendedStatusBlock. Синтаксис для заполни-
теля: '\PLACEHOLDER\', где PLACEHOLDER задает имя блока параметра и необязательное указание по
форматированию. В одном варианте осуществления, процессор шаблонов должен заменять весь жетон
'\PLACEHOLDER\' форматированным представлением поля Value этого блока параметра, и форматиро-
вание данных Value указано ниже в разделе 4.2.1.

012918

- 77 -

В одном варианте осуществления, если символ '\' появляется в тексте вне заполнителя, он должен
кодироваться как '\\', и процессор шаблонов, встретив в тексте '\\' всегда будет превращать его обратно в
'\'.

Синтаксис для заполнителя: FORMAT|NAME, где NAME это имя блока параметра, и FORMAT это
указание по форматированию для преобразования данных параметра в текст. Если правил форматирова-
ния, принятые по умолчанию, для типа данных значения параметра достаточно, то указание по формати-
рованию можно исключить, и заполнитель будет просто NAME.

9.5.2.1. Форматирование.
9.5.2.1.1. Форматирование по умолчанию.
В одном варианте осуществления, правила форматирования, принятые по умолчанию, для разных

типов значения таковы:

9.5.2.1.2. Явное форматирование.
Явные имена форматов можно использовать в качестве части FORMAT тега заполнителя. Если

встречается неизвестное имя формата, механизм обработки шаблонов использует правила форматирова-
ния, принятые по умолчанию.

012918

- 78 -

9.6. Объекты «контекст».
В одном варианте осуществления, когда процедура управления выполняется, она обращается к ряду

объектов «контекст» с использованием системного вызова System.Host.GetObject.
9.6.1. Общий контекст.
В одном варианте осуществления для выполняющихся объектов управления присутствует следую-

щий контекст.

9.6.2. Контекст среды выполнения.
В одном варианте осуществления следующий контекст присутствует для всех объектов управления,

которые выполняются на VM, созданной с использованием системного вызова System.Host.SpawnVm. В
одном варианте осуществления, этот контекст не должен существовать или должен быть пустым контей-
нером для объектов управления, которые выполняются на VM, не созданной с использованием Sys-
tem.Host.SpawnVm.

9.6.3. Контекст объекта управления.
В одном варианте осуществления, всякий раз, когда выполняется процедура объекта управления,

присутствует следующий контекст:

012918

- 79 -

9.6.4. Контекст объекта «контроллер».
В одном варианте осуществления, всякий раз, когда выполняется процедура объекта управления, и

объект управления указан объектом «контроллер» (например, при обращении к объекту ContentKey для
потребления защищенного контента), присутствует следующий контекст.

Согласно вариантам осуществления, когда приложению хоста разрешено только группировать

ключи контента, которыми управляет единый объект «контроллер», для данного действия, применим
лишь один объект «контроллер».

9.6.5. Контекст действия.
В одном варианте осуществления, следующий контекст присутствует всякий раз, когда объект

управления вызывается с целью управления действием.

9.6.6. Контекст объекта «связь».
В одном варианте осуществления, следующий контекст присутствует всякий раз, когда объект

управления вызывается с целью ограничения действительности объекта «связь» (например, объекта
управления, внедренного в объект «связь»):

012918

- 80 -

9.6.7. Контекст агента.
В одном варианте осуществления, следующий контекст присутствует, когда выполняется процеду-

ра агента объекта управления:

Контейнеры Parameter и Session обычно используются для того, чтобы протоколы, которые требуют

от одной сущности передать агент на другую сущность и запустить его там, могли указать, какие вход-
ные параметры передать агенту и какие объекты «контекст сеанса» нужно установить хосту при опреде-
ленных условиях. Наличие или отсутствие определенных объектов «контекст сеанса» позволяет агент-
скому коду решить, выполняется ли он как часть протокола, который он призван поддерживать, или же
он выполняется вне контекста, в каковом случае он может отказаться выполняться. Например, агент, це-
лью которого является создание объекта «состояние» на хосте, на котором он выполняется, может отка-
заться выполняться, пока он не будет выполняться в ходе конкретного взаимодействия протоколов.

9.7. Действия.
В одном варианте осуществления, каждое действие имеет имя и список параметров. В одном вари-

анте осуществления, некоторые параметры являются обязательными - приложение должно предоставить
их при осуществлении этого действия - и некоторые являются необязательными - приложение может
предоставить их, а может и опустить.

В одном варианте осуществления заданы следующие стандартные действия.
9.7.1. Воспроизведение.
Описание. Нормальное воспроизведение мультимедийного контента.
9.7.2. Перенос.
Описание. Перенос на совместимую конечную систему.
Перенос на совместимую конечную систему используется, когда контент нужно сделать доступным

системе с той же технологией DRM, чтобы конечная система могла использовать такую же лицензию,
как та, которая содержит этот объект управления, но может понадобиться изменить информацию состоя-
ния на источнике, приемнике или на обеих системах. Система, с которой осуществляется перенос, назы-
вается источником. Конечная система, на которую осуществляется перенос, называется приемником.

Это действие предназначено для использования совместно с протоколом обслуживания, который
позволяет переносить агент из источника на приемник для выполнения необходимых обновлений в со-
храняемых состояниях источника и приемника (например, объектов в описанной здесь базе данных со-
стояний). В одном варианте осуществления, объект управления использует с этой целью обязательство
RunAgentOnPeer. Дополнительная информация об иллюстративных вариантах осуществления этого про-
токола обслуживания предоставлена ниже в связи с рассмотрением базы данных состояний.

Параметры:

012918

- 81 -

9.7.3. Экспорт.
Описание. Экспорт в стороннюю конечную систему.
Экспорт в стороннюю конечную систему это действие, которое используется, когда контент нужно

экспортировать в system, где нельзя использовать исходную лицензию контента. Это может быть система
с другой технологией DRM, система без технологии DRM или система с той же технологией, но в усло-
виях, когда требуется лицензия, отличная от исходной лицензии. Система, из которой осуществляется
перенос, называется источником. Конечная система, на которую осуществляется перенос, называется
приемником.

В одном варианте осуществления, в результате Extended Status для методов Describe, Check и Per-
form этого действия, должен быть задан следующий парметр:

012918

- 82 -

Параметры:

Конкретные конечные системы могут требовать других входных параметров.
9.7.3.1. Стандартные конечные системы.
9.7.3.1.1. Аудио-CD или DVD.
В одном варианте осуществления используется стандартный TargetSystem ID 'CleartextPcmAudio',

когда конечная система является незашифровванным носителем, на который записан несжатый аудио-
сигнал ИКМ, например, записываемый аудио-CD или DVD. Для этой конечной системы, параметр Ex-
portInfo является единичным целочисленным параметром, представляющим флаг авторских прав. Этот
флаг задается в младшем бите целочисленного значения.

10. База данных состояний.
Ниже описано защищенное хранилище объектов, которое механизм DRM, согласно предпочтитель-

ным вариантам осуществления, может использовать для обеспечения механизма защищенного хранили-
ща состояний. Такое приспособление полезно для обеспечения программ управления, способных считы-
вать и записывать в защищенную базу данных состояний, которая сохраняет от вызова к вызову. Такую
базу данных состояний можно использовать для сохранения объектов состояния, например счетчиков

012918

- 83 -

воспроизведения, даты первого использования, совокупного времени представления и/или т.п. В пред-
почтительном варианте осуществления защищенная база данных реализована в энергонезависимой па-
мяти, например, флэш-памяти на портативном устройстве, или зашифрованной области жесткого диска
на ПК. Однако очевидно, что защищенную базу данных можно реализовать на любом подходящем носи-
теле.

Термин "объект", используемый в этом разделе, в целом относится к объектам данных, содержа-
щимся в защищенном хранилище объектов, но не к объектам (например, объектам управления, контрол-
лерам, связям и т.д.), рассматриваемым здесь в других местах; при необходимости провести различие
между этими двумя категориями объектов, термин "DRM объект" будет использоваться в отношении
объектов, описанных здесь в другом месте (т.е. объектов управления, контроллеров, протекторов, клю-
чей контента, связей, узлов, и т.п.), тогда как термин "объект состояния" будет использоваться в отноше-
нии объектов, хранящихся в базе данных состояний. В нижеследующем рассмотрении, мы будем описы-
вать иллюстративную реализацию базы данных состояний, именуемую "Seashell", которая используется
в связи с вариантом осуществления механизма DRM Octopus, описанным здесь в другом месте. Однако
очевидно, что варианты осуществления описанных здесь систем и способов можно осуществлять на
практике без некоторых или всех признаков этой иллюстративной реализации.

10.1. Объекты базы данных.
Хранилище объектов (например, база данных) содержит объекты данных. В одном варианте осуще-

ствления, объекты организованы в логическую иерархию, где объекты «контейнер» являются родителя-
ми по отношению к содержащимся в них дочерним объектам. В одном варианте осуществления, сущест-
вует четыре типа объектов: строка, целое число, массив байтов, и контейнер. С каждым объектом связа-
ны метаданные и тип. В зависимости от типа, объект также может иметь значение.

В одном варианте осуществления программы виртуальной машины могут обращаться к объектам
состояния с использованием системных вызовов System.Host.GetObject и System.Host.SetObject, и, как
описано более подробно ниже, к метаданным объекта можно обращаться с использованием виртуальных
имен. В одном варианте осуществления клиенты базы данных могут изменять некоторые поля метадан-
ных (т.е. они являются доступными для чтения/записи (RW)), тогда как другие поля метаданных доступ-
ны только для чтения (RO).

В одном варианте осуществления заданы поля метаданных, представленные нижеследующей таб-
лице:

012918

- 84 -

В одном варианте осуществления, задается флаг метаданных, представленный в нижеследующей

таблице:

Как указано выше, в одном варианте осуществления существует четыре типа объектов состояния:

строки, целые числа, массивы байтов и контейнеры. В этом варианте осуществления, значение объекта
«строка» является строкой символов в кодировке UTF-8, значение объекта «целое число» является 32-
битовым целочисленным значением, и значение объекта «массив байтов» является массивом байтов. В

012918

- 85 -

этом варианте осуществления объект «контейнер» содержит ноль или более объектов. Объект «контей-
нер» является родительским по отношению к объектам, которые он содержит. Содержащиеся объекты
являются дочерними объектами контейнера. Все объекты «контейнер», образующие цепь из родителя
объекта, родителя и т.д., называются предками объекта. Если объект имеет другой объект своим родите-
лем, этот объект называется потомком объекта-предка.

10.2. Время жизни объекта.
В одном варианте осуществления, время жизни объектов в базе данных состояний подчиняется ря-

ду правил. Объекты можно уничтожать явно или неявно. Объекты также можно уничтожать в порядке
очистки базы данных от мусора. Независимо от того, как уничтожается объект, в одном варианте осуще-
ствления применяются следующие правила:

ModificationDate для родительского контейнера этого объекта задается равной текущему местному
времени.

Если объект является контейнером, все его дети уничтожаются при уничтожении объекта.
10.2.1. Явное уничтожение объека.
Явное уничтожение объекта происходит, когда клиент базы данных запрашивает удаление объекта

(см. «Доступ к объекту» на предмет подробностей относительно того, как это можно сделать с использо-
ванием системного вызова Host.SetObject).

10.2.2. Неявное уничтожение объекта.
Неявное уничтожение объекта происходит, когда объект уничтожается в результате уничтожения

одного из его объектов-предков.
10.2.3. Очистка от мусора.
В одном варианте осуществления, база данных состояний уничтожает любой объект, срок действия

которого истек. Считается, что срок действия объекта истек, когда местное время системы, в которой
реализована база данных, превышает значение поля ExpirationDate метаданных объекта. Реализация мо-
жет периодически сканировать базу данных на предмет объектов, срок действия которых истек, и унич-
тожать их, или может ждать обращения к объекту, чтобы проверить дату окончания его срока действия.
В одном варианте осуществления, реализация не должна возвращать клиенту объект, срок действия ко-
торого истек. В одном варианте осуществления, при уничтожении объекта «контейнер» (например,
вследствие истечения его срока действия), его дочерние объекты также уничтожаются (и все их потомки,
рекурсивно), даже если они еще действительны.

10.3. Доступ к объекту.
В одном варианте осуществления, программы виртуальной машины могут обращаться к объектам в

базе данных состояний посредством пары системных вызовов: System.Host.GetObject для считывания
значения объекта, и System.Host.SetObject для создания, уничтожения, или задания значения объекта.

В одном варианте осуществления, чтобы выглядеть как дерево объектов хоста, база данных состоя-
ний "монтируется" под определенным именем в дереве объектов хоста. Таким образом, база данных вы-
глядит как поддерево в более общем дереве объектов хоста. С этой целью в одном варианте осуществле-
ния, база данных состояний содержит встроенный корневой объект «контейнер» высшего уровня, кото-
рый существует всегда. Этот корневой контейнер, по существу, является именем базы данных.

Все остальные объекты в базе данных являются потомками корневого контейнера. Множественные
базы данных состояний можно смонтировать в разных местах дерева объектов хоста (для двух баз дан-
ных, монтируемых под одним и тем же контейнером хоста, они должны иметь разные имена своего кор-
невого контейнера). Например, если база данных состояний, корневой контейнер которой имеет имя Da-
tabase1, содержит единственный дочерний объект «целое число» по имени Child1, базу данных можно
смонтировать под объектом «контейнер» хоста "/SeaShell", в каковом случае объект Child1 будет виден
как "/SeaShell/Database1/Child1". В одном варианте осуществления, доступ к объектам в базе данных со-
стояний регламентирует политика доступа.

10.3.1. Чтение объектов.
Значение объекта можно читать с использованием системного вызова System.Host.GetObject. В од-

ном варианте осуществления базы данных состояний, четыре типа объекта (целое число, строка, массив
байтов и контейнер), которые могут существовать в базе данных, отображаются непосредственно на свои
эквиваленты в виртуальной машине. К значениям объектов можно обращаться обычным путем, и можно
реализовать стандартные виртуальные имена.

10.3.2. Создание объектов.
Объекты можно создавать, вызывая System.Host.SetObject для имени объекта, который еще не су-

ществует. Создание объекта осуществляется согласно спецификации системного вызова. В одном вари-
анте осуществления при создании объекта база данных состояний делает следующее:

Задает поле "owner" метаданных объекта равным значению поля "owner" метаданных родительско-
го объекта «контейнер».

Задает поле CreationDate метаданных равным текущему местному времени.
Задает поле ModificationDate метаданных равным текущему местному времени.
Задает поле ExpirationDate метаданных равным 0 (не имеет срока действия).

012918

- 86 -

Задает поле Flags метаданных равным 0.
Задает поле ModificationDate родительского контейнера равным текущему местному времени.
При создании объекта по пути более глубокому, чем существующая иерархия контейнеров, в одном

варианте осуществления, база данных состояний неявно создает объекты «контейнер», которые должны
существовать для создания пути к создаваемому объекту. В одном варианте осуществления, неявное соз-
дание объектов «контейнер» подчиняется тем же правилам, что и явное создание. Например, если суще-
ствует контейнер "А", не имеющий детей, запрос на задание "A/B/C/SomeObject" приведет к неявному
созданию контейнеров "А/В" и "А/В/С" до создания "A/B/C/SomeObject".

10.3.3. Запись объектов.
Значение объекта можно изменять путем вызова System.Host.SetObject для объекта, который уже

существует. Если указанный ObjectType не совпадает с ID типа существующего объекта, возвращается
ERROR_INVALID_PARAMETER. В одном варианте осуществления, если ID типа равен
OBJECT_TYPE_CONTAINER, не нужно указывать никакого значения (ObjectAddress должен быть нену-
левым, но его значение будет игнорироваться). При задании существующего объекта, база данных со-
стояний задает ModificationDate объекта равным текущему местному времени.

10.3.4. Уничтожение объектов.
Объекты можно явно уничтожать путем вызова System.Host.SetObject для объекта, который уже

существует, со значеним ObjectAddress равным 0. При уничтожении объекта, база данных состояний
предпочтительно

задает ModificationDate родительского контейнера равным текущему местному времени;
уничтожает все его дочерние объекты, если уничтожаемый объект является контейнером.
10.3.5. Метаданные объекта
В одном варианте осуществления, к метаданным для объектов базы данных состояний обращаются

с использованием системных вызовов System.Host.GetObject и System.Host.SetObject c виртуальными
именами. В нижеследующей таблице приведены стандартные и расширенные виртуальные имена, кото-
рые могут иметь объекты в одном варианте осуществления базы данных состояний, и указано, как они
могут отображаться в поля метаданных.

В одном варианте осуществления, реализация должна отклонять запрос на установление поля Flags

метаданных, если один или несколько неопределенных флагов заданы равными 1. В этом случае возвра-
щаемое значение для System.Host.SetObject равно ERROR_INVALID_PARAMETER. В одном варианте
осуществления при чтении поля Flags метаданных, клиент должен игнорировать любой флаг, который
заранее не задан, и при задании поля Flags объекта, клиент должен сначала прочитать его существующее
значение и сохранить значение любого флага, который заранее не задан (например, в спецификации сис-
темы).

10.4. Управление правами собственности и доступом к объектам.
В одном варианте осуществления, всякий раз, когда делается запрос на чтение, запись, создание или

уничтожение объекта, реализация базы данных состояний сначала проверяет, имеет ли вызывающая
сущность разрешение на осуществление запроса. Политика, которая регламентирует доступ к объектам,
основана на концепциях идентичностей и делегирования принципалов. Для реализации политики, дове-
ренная модель, согласно которой действует реализация, должна поддерживать систему обозначений ау-

012918

- 87 -

тентифицированных программ управления. Для этого виртуальная машина обычно имеет кодовый мо-
дуль, который содержит программу, снабжаемую цифровой подписью (прямо или косвенно через защи-
щенную ссылку) с помощью секретного ключа пары ключей PKI, и имеет сертификат имени, который
связывает имя принципала с ключом подписания; однако, очевидно, что возможны разные способы оп-
ределения идентичностей программ управления, любой возможный из которых можно использовать.

В одном варианте осуществления, политика доступа к объектам в базе данных состояний состоит из
нескольких простых правил:

доступ для чтения значения объекта предоставляется, если идентичность вызывающей сущности
совпадает с владельцем объекта, или если флаг PUBLIC_READ задан в поле метаданных Flags объекта;

доступ для чтения значения объекта предоставляется, если вызывающая сущность имеет доступ для
чтения родительского контейнера объекта;

доступ для записи значения объекта предоставляется, если вызывающая сущность имеет доступ для
записи в родительский контейнер объекта;

доступ для создания или уничтожения объекта предоставляется, если вызывающая сущность имеет
доступ для чтения родительского контейнера объекта;

доступ для чтения или записи метаданных объекта (с использованием виртуальных имен) подчиня-
ется той же политике, что и доступ для чтения и записи значения объекта, с дополнительным ограниче-
нием, состоящим в том, что в поля, предназначенные только для чтения, нельзя производить запись.

В одном варианте осуществления, когда политика доступа отклоняет запрос клиента, возвращаемое
значение системного вызова для запроса равно ERROR_PERMISSION_DENIED.

Корневой контейнер базы данных состояний, предпочтительно, фиксируется при создании базы
данных. При создании объекта, значение его поля Owner метаданных задается равным тому же значе-
нию, которое имеет поле Owner метаданных его родительского контейнера. Право собственности объек-
та может изменяться. Для изменения права собственности объекта, значение поля Owner метаданных
можно задать путем вызова системного вызова System.Host.SetObject для виртуального имени '@Owner'
этого объекта, при условии, что это разрешено правилами управления доступом.

Согласно вариантам осуществления, где программа управления не имеет доступа к объектам, кото-
рые не находятся в собственности того же принципала, от имени которого она выполняется, программа
управления должна делегировать "сторонним" объекта доступ к программам, загружаемым из кодовых
модулей, которые имеют способность выполняться от имени владельца "стороннего" объекта. Для этого,
программа управления может использовать системные вызовы System.Host.SpawnVm, Sys-
tem.Host.CallVm и System.Host.ReleaseVm в виртуальной машине управления.

10.5. Протокол передачи лицензии.
Хранение информации состояния в базе данных, например, вышеописанной, позволяет передавать

права между устройствами или экспортировать их из домена (например, путем переноса информации
состояния на другое устройство). Нижеследующий раздел описывает варианты осуществления протоко-
лов, посредством которых состояние базы данных можно переносить от источника к приемнику. Заме-
тим, что, хотя этот процесс будет относиться к протоколу передачи лицензии, переносится именно со-
стояние базы данных состояний, а не только фактическая лицензия (например, объект управления и т.д.).
Протокол называется протоколом передачи лицензии потому, что, в одном варианте осуществления, пе-
ренос инициируется выполнением действия «перенос» в программе управления, и потому, что перенос
информации состояния позволяет приемнику успешно применять соответствующую лицензию к фраг-
менту контента.

На фиг. 32 показан пример передачи 3200 лицензии, состоящей из трех сообщений 3202, 3204, 3206.
В примере показанный на фиг. 32 приемник 3210 инициирует протокол, направляя запрос 3202 источни-
ку 3212. В одном варианте осуществления, запрос 3202 содержит ID фрагмента контента, подлежащего
переносу. Источник 3212 передает ответ 3204 на приемник 3210, содержащий (i) агент, который будет
задавать состояние в базе данных состояний приемника 3210, а также (ii) объект(ы) ContentKey, нацелен-
ный(е) на приемник 3210. Согласно фиг. 32, приемник 3210 передает на источник 3212 подтверждение
3206, что агент запущен. Получив Ключ(и) контента и/или фрагмент контента, приемник может затем
использовать контент (например, воспроизводить его через громкоговорители, отображать его на экране
и/или представлять его каким-то иным образом) в соответствии со связанными с ним объектами управ-
ления.

Хотя в некоторых вариантах осуществления можно использовать подход, показанный на фиг. 32,
некоторые потенциальные проблемы включают в себя следующее.

Нет возможности превентивно сообщить источнику, что представление закончилось. В одном вари-
анте осуществления, протокол, показанный на фиг. 32, поддерживает два режима, в которых возникают
проблемы: (i) Render (представление не останавливается), и (ii) Checkout (нет регистрации). Ввиду этой
проблемы, сущности, выполняющие объект управления, могут придти к выдаче таймаутов на переноси-
мых состояниях. Однако это может приводить к неудобствам для потребителя, когда, например, пользо-
ватель намеревается представить контент на одном устройстве, но решает, что на самом деле он хочет
представить этот контент на другом устройстве: при существующей конструкции, ему, скорее всего,

012918

- 88 -

придется ждать, пока весь фрагмент контента не будет представлен на первом устройстве, прежде чем он
может представить его на другом устройстве. Это может быть нежелательным, если контент сравнитель-
но долог (например, является фильмом).

Может быть трудно анализировать лицензию, связанную с Content ID в запросе. В одном варианте
осуществления, запрос содержит только Content ID, и источник извлекает лицензию, связанную с Content
ID из его базой данных лицензий. Однако этот процесс может быть подвержен ошибкам, поскольку ли-
цензии могут храниться на сменных носителях, и во время применения протокола, конкретная лицензия
может отсутствовать, если носитель был удален. Кроме того, даже при наличии лицензии, может быть
неудобно осуществлять поиск лицензий в хранилище лицензий. Кроме того, поскольку с набором Con-
tent ID может быть связано несколько лицензий, может быть трудно определить, является ли проанали-
зированная лицензия именно той, которая была предусмотрена в запросе.

Невозможно превентивно запросить у программы управления проверку близости. В одном варианте
осуществления, набор системных вызовов/обратных вызовов/обязательств не поддерживает способ, ко-
торым программа управления может запрашивать проверку близости равноправного устройства. Вместо
этого, программа управления можно только считывать значение объекта хоста Octopus/Action/Parameters/
Sink/Proximity/LastProbe, в который приложение в ходе переноса загружает значение, которое оно полу-
чило из предыдущего выполнения протокола проверки близости. Это может составлять проблему в слу-
чае, когда может быть желательно избегать проверки близости, если такая проверка близости не требует-
ся (например, если известно, что приемник находится в определенном домене).

Протокол имеет только три цикла передачи сообщений. Согласно варианту осуществления пока-
занному на фиг. 32, протокол ограничивается тремя циклами передачи сообщений. Это может быть серь-
езным ограничением, поскольку протокол будет не способен работать в случае, когда обратный вызов
OnAgentCompletion возвращает расширенный блок состояний с другим обязательством RunAgentOnPeer.
Кроме того, по окончании протокола, приемник не будет знать наверняка, успешно ли выполнен прото-
кол. Кроме того, проверка близости понадобится до передачи ответа (см. предыдущую проблему), но это
не нужно в случае, когда источник и приемник находится в одном и том же домене. Кроме того, в прото-
коле, показанном на фиг. 32, источник передает ключ контента приемнику, не зная, будет ли когда-либо
использоваться этот ключ контента.

Нет возможности указать в ESB, необходима ли передача лицензии. Согласно варианту осуществ-
ления показанному на фиг. 32, когда клиент DRM оценивает лицензию (например, Con-
trol.Actions.Play.Check), непросто указать сущности, записывающей объект управления, что передача
лицензии необходима для получения состояния, которое позволит успешно оценить объект управления.

Источник не может инициировать перенос. В протоколе, показанном на фиг. 32, передача лицензии
инициируется приемником. Желательно, чтобы источник также мог инициировать перенос.

Усовершенствованные варианты осуществления
Варианты осуществления, описанные ниже, могут разрешать или смягчать некоторые или все вы-

шеописанные проблемы.
Решение проблемы освобождения. В одном варианте осуществления предусмотрена новая операция

освобождения. Когда эта операция указана в запросе, Transfer Mode ID задается равным Release. Чтобы
клиент осуществлял корреляцию между операциями Render/CheckOut и Release, в запрос добавляется
необязательный элемент SessionId (см. нижеследующий раздел). В одном варианте осуществления, при
наличии этого элемента, это отражается в дереве объектов хоста для контекста действия «перенос» под
SessionId.

Приемник знает, что он отправил этот SessionId в запросе на освобождение, если расширенный
блок состояний, который он получил в сообщении Teardown (см. ниже) содержит параметр:

Имя параметра: SessionId;
Тип параметра: String;
Флаг этого параметра задан равным CRITICAL.
Решение проблемы анализа лицензий (повторного анализа запроса). В одном варианте осуществле-

ния решение состоит в том, что устройство-приемник помещает пучок(и) лицензий в запрос, что, по су-
ществу, гарантирует, что приемник и источник будут выполнять одну и ту же лицензию. Согласно вари-
анту осуществления, показанному на фиг. 32, схема XML для запроса такова:

Когда ContentIdList содержит список Content ID (по одному на каждый трек/поток), идентифици-

рующих контент, Operation содержит тип операции передачи лицензии и Bundle содержит узел Personal-
ity запрашивающей сущности и связанную с ним подпись.

Для ухода от вышеописанной проблемы анализа лицензий, пучок(и) лицензий можно включить в

012918

- 89 -

запрос, например, изменив схему следующим образом:

В этой схеме, элемент ContentIdList заменен элементом License. Этот элемент несет набор элемен-

тов LicensePart. Элемент LicensePart несет элемент oct:Bundle, содержащий объекты «лицензия», а также
необязательный атрибут ContentId указывающий, что объекты «лицензия» применяются к этому кон-
кретному ContentId. Элемент LicensePart без атрибута ContentId означает, что объекты, содержащиеся в
нижележащем пучке, применяются ко всем Content ID (обычно контроллерам и объектам управления).

В одном варианте осуществления необязательный элемент SessionId не может присутствовать, за
исключением случая, когда операция представляет собой urn:marlin:core:1-2:service:license-transfer:release
в каковом случае он может присутствовать, если параметр SessionId принят в Расширенном блоке со-
стояний соответствующего действия render или checkout (см. выше).

В одном варианте осуществления, необязательный элемент NeedsContentKeys должен присутство-
вать со значением «ложь», если приемник знает, что он уже способен дешифровать ключи контента. От-
сутствие этого элемента означает, что источник должен перешифровать Ключи контента приемника в
случае успеха протокола.

В одном варианте осуществления, при получении такого запроса, элемент лицензии обрабатывается
следующим образом:

(1) собирают все атрибуты ContentId, найденные в элементах LicensePart;
(2) обрабатывают все элементы Bundle, найденные в элементах LicensePart;
(3) открывают набор ContentId, собранных ранее;
(4) проверяют соответствующие подписи соответствующих объектов;
(5) в необязательном порядке, вызывают метод Control.Actions.Transfer.Check на обработанном объ-

екте управления;
(6) вызывают Control.Actions.Transfer.Perform на объекте управления процесса.
Разрешение программам управления превентивно запрашивать проверку близости приемника. Что-

бы позволить программам управления делать это, можно задать новую пару Obligations/Callbacks. В ча-
стности, объект управления может поместить обязательство "ProximityCheckSink" в свой расширенный
блок состояний. Это указывает приложению, что близость к приемнику должна проверяться. Когда про-
верка близости произведена, приложение производить обратный вызов объекта управления с использо-
ванием обратного вызова "OnSinkProximityChecked".

В одном варианте осуществления, задается обязательство ProximityCheck, которое применимо
только в контексте передачи лицензии. В этом варианте осуществления, должно существовать нуль или
одно такое обязательство на расширенный блок состояний, и, если оно присутствует, также должен при-
сутствовать обратный вызов OnSinkProximityChecked.

Обратный вызов OnSinkProximityChecked

012918

- 90 -

Разрешение множественных циклов передачи сообщений в протоколе. На фиг. 33 показано измене-

ние протокола, которое допускает множественные циклы передачи сообщений. Согласно варианту осу-
ществления, показанному на фиг. 33, сообщение Setup 3302 может, например, быть таким же, как усо-
вершенствованное сообщение запроса на передачу лицензии, описанное выше в связи с пробле-
мой/решением анализа лицензий.

Согласно фиг. 33, после Setup 3302, приложение запускает объект управления, как объяснено выше,
и получает Расширенный блок состояний (ESB). Этот ESB может содержать обязательство RunAgentOn-
Peer/обратный вызов OnAgentCompletion. В одном варианте осуществления, обязательство RunAgentOn-
Peer содержит все параметры, которые приложение источника 3312 должно встроить в сообщение RunA-
gent 3304. Заметим, что в одном варианте осуществления, сообщение RunAgent 3304 также отправляется,
если приложение сталкивается с другой парой обратный вызов/обязательство RunAgentOnPeer/OnAgent
Completion в Расширенном блоке состояний обратного вызова OnAgentCompletion (после одного или
нескольких обменов сообщениями RunAgent/AgentResult).

В одном варианте осуществления, если ESB не содержит обязательство RunAgentOnPeer/обратный
вызов OnAgentCompletion, это значит, что нужно отправить сообщение Teardown (см. ниже). Заметим,
что этот ESB может содержать обязательство ProximityCheck/обратный вызов OnSinkProximityChecked, в
каковом случае осуществляется протокол проверки близости, и результат считывается из ESB проверен-
ного обратного вызова OnSinkProximity до отправки сообщения Teardown.

В одном варианте осуществления, полезная нагрузка сообщение RunAgent 3304 идентично сообще-
нию Response, предусмотренного в предыдущей конструкции, за исключением того, что оно не несет
ContentKeyList.

Согласно фиг. 33, после того, как приемник 3310 запустит агент, переданный источником в сооб-
щении RunAgent 3304, приемник 3310 передает сообщение AgentResult 3306 на источник 3312. В одном
варианте осуществления, полезная нагрузка сообщения такая же, как в сообщении Confirmation, описан-
ном в связи с фиг. 32.

Согласно фиг. 33, сообщение Teardown 3308 передается приложением-источником 3312, когда рас-
ширенный блок состояний обратного вызова OnAgentCompletion не несет никакой пары обратный вы-
зов/обязательство RunAgentOnPeer/OnAgentCompletion, и это значит, что протокол завершен. В одном
варианте осуществления, сообщение Teardown 3308 несет два фрагмента информации: (i) описание ре-
зультата протокола, благодаря чему приемник 3310 знает, успешно ли завершился протокол, указание
причины неудачи (дополнительные подробности см. ниже), и (ii) в случае успеха протокола, обновлен-
ные объекты ContentKey (ContentKeyList ответа в предыдущем сообщении), если элемент NeedsContent-
Key сообщения «установка» задан равным «истина» или отсутствует.

В одном варианте осуществления, описание результата протокола фактически представляет собой
Расширенный блок состояний (ESB) последнего вызова объекта управления, не несущего никаких пар
обязательство/обратный вызов, связанных с агентом.

В случае неудачи, параметры ESB могут указывать на ресурсы. В одном варианте осуществления,
эти ресурсы размещены в расширении ResourceList объекта управления, которое отправлено в сообще-
нии Setup.

В случае успеха, в одном варианте осуществления, время жизни кэша указывает, в течение какого
времени можно использовать Ключи контента без нового запроса объекта управления.

Пример такого XML-представления ESB показан ниже и может быть добавлен в схему виртуальной
машины:

012918

- 91 -

Ниже приведен пример случая использования представления в соответствии с вариантом осуществ-

ления вышеописанных усовершенствованных механизмов передачи лицензии. В этом примере функция
импорта вещания импортирует фрагмент контента со следующей лицензией:

Play: OK, при наличии локального состояния;
Transfer:
Render OK, если приемник находится в домене X, или если приемник находится поблизости. Еди-

новременно можно представлять только один параллельный поток.
Пусть Core DRMClient1 запрашивает разрешение на представление потока контента. Setup Request

передается от приемника (Core DRMClient1) на источник (функция ВС Import), содержащая следующие
параметры:

License: лицензия, связанная с контентом, который приемник хочет представить;
Operation = urn:marlin:core:1-0:service:license-transfer:render
Bundle = Узел индивидуальности приемника.
Получив запрос, приложение-источник наполняет соответствующие объекты хоста и вызывает ме-

тод Control.Actions.Transfer.Perform. Ниже показан иллюстративный псевдокод метода, регламентирую-
щего перенос представления:

Предположим, представление не заблокировано, и выполняется обязательство RunAgentOnPeer.

Сообщение RunAgent передается с объектом управления, содержащим метод CheckDomainAgent. Полу-
чив это сообщение, приемник наполняет соответствующие объекты хоста и вызывает метод CheckDo-
mainAgent. Ниже показан иллюстративный псевдокод для CheckDomainAgent:

012918

- 92 -

Предположим, в целях этой иллюстрации, что приемник действительно находится в домене. Затем

приемник передает сообщение AgentResult, содержащее результат этого агента. Получив AgentResult,
источник вызывает метод обратного вызова. Ниже показан иллюстративный псевдокод для Render-
AgentCompleted:

Мы предположили, что агент успешно проверил принадлежность приемника домену. Сообщение

Teardown передается с (i) перешифрованными ключами контента для приемника (с использованием клю-
чей, снабженными узлом «приемник» в запросе Setup), и (ii) ESB, несущим время жизни кэша, указан-
ный выше (0 в этом случае указывает, что приемнику нужно повторно сделать запрос в следующий раз,
когда он хочет обратиться к контенту). Когда приемник принимает это сообщение, он знает, что разре-
шено представлять контент, и имеет необходимые ключи контента.

Теперь предположим, что пользователь хочет представлять контент на другом своем устройстве,
DRMClient2. Проблема в том, что контент заблокирован на 180 мин на источнике. К счастью, когда
пользователь нажимает STOP на DRMClient1, DRMClient1 инициирует новый протокол передачи лицен-
зии с операцией: Release. Получив запрос, приложение-источник наполняет соответствующие объекты
хоста и вызывает метод Control.Actions.Transfer.Perform. Ниже показан иллюстративный псевдокод ме-
тода, регламентирующего освобождение переноса:

Поскольку в ESB не найдено никакого обязательства/обратного вызова, это означает, что сообще-

ние Teardown отправляется обратно с этим ESB.
Таким образом, этот случай использования представления иллюстрирует, что, в определенных ва-

риантах осуществления, нет необходимости запрашивать DRMClient операции представления на локаль-
ную повторную оценку объекта управления, состояние не нужно переносить от источника к приемнику,
объект управления может превентивно запрашивать проверку близости, и контент можно освобождать,
когда представляющая сущность закончила работать с ним.

11. Сертификаты.
В одном варианте осуществления сертификаты используются для проверки мандата, связанного с

криптографическими ключами, до принятия решений на основании цифровой подписи, созданной с по-
мощью этих ключей.

В некоторых вариантах осуществления механизм DRM построен так, чтобы быть совместимым со
стандартными технологиями сертификатов, и может пользоваться информацией, найденной в элементах
таких сертификатов, например, периодах действия, именах и т.п. Помимо этих основных ограничений, в
некоторых вариантах осуществления можно задать дополнительные ограничения в отношении того, для
чего можно использовать сертифицированный ключ, а для чего его нельзя использовать. Это можно де-
лать, например, с использованием расширений использования ключа, доступных как часть стандартного

012918

- 93 -

правила кодирования сертификатов. Информация, закодированная в таких расширениях, позволяет ме-
ханизму DRM проверять, авторизован ли ключ, которым подписан конкретный объект, для использова-
ния с этой целью. Например, определенный ключ может иметь сертификат, который позволяет ему под-
писывать объекты «связь» только, если связь идет от узла с конкретным атрибутом к узлу с другим кон-
кретным атрибутом, но не другую связь. Поскольку семантика общей технологии, используемая для вы-
ражения сертификата, обычно не способна выражать такое ограничение, поскольку она не располагает
средствами для выражения условий, которые относятся к элементам, например, связям и узлам, харак-
терным для механизма DRM, в одном варианте осуществления такие ограничения для конкретного меха-
низма DRM переносятся как расширение пользования ключом для базового сертификата, которое будет
обрабатываться приложениями, которые сконфигурированы для использования механизма DRM.

В одном варианте осуществления ограничения в расширении пользования ключом выражаются ка-
тегорией пользования и программой ограничения VM. Категория пользования указывает, объекты каких
типов ключ авторизован подписывать. Программа ограничения может выражать динамические условия
на основании контекста. В одном варианте осуществления любая проверяющая сущность, получающая
запрос на проверку действительности такого сертификата, должна понимать семантику механизма DRM,
и делегирует оценивание выражения расширения пользования ключом механизму DRM, который ис-
пользует экземпляр виртуальной машины для выполнения программы. Сертификат считается действи-
тельным, если результат выполнения этой программы успешен.

В одном варианте осуществления роль программы ограничения состоит в возвращении логического
значения. "Истина" означает, что условия ограничения выполнены, и "ложь" означает, что они не выпол-
нены. В одном варианте осуществления программа управления обращается к некоторой информации
контекста, которую можно использовать для принятия решения, например, информации, доступной про-
грамме через интерфейс «объект хоста» виртуальной машины. Информация, доступная в качестве кон-
текста, зависит от того, какого типа решение пытается принять механизм DRM, когда он запрашивает
проверку сертификата. Например, прежде чем использовать информацию в объекте «связь», в одном ва-
рианте осуществления, механизму DRM нужно проверить, что сертификат ключа, которым подписан
объект, позволяет использовать этот ключ с этой целью. При выполнении программы ограничения, среда
виртуальной машины наполняется информацией, относящейся к атрибутам связи, а также атрибутам уз-
лов, на которые ссылается связь.

В одном варианте осуществления программа ограничения, внедренная в расширение пользования
ключом, кодируется как кодовый модуль виртуальной машины, который экспортирует по меньшей мере
одну точку входа по имени "Octopus.Certificate.<Category>.Check", где имя "Category" указывает серти-
фикаты какой категории нужно проверить. Параметры для программы проверки проталкиваются в стек
до вызова точки входа. Количество и типы параметров, передаваемых в стек, обычно зависит от катего-
рии оцениваемого расширения сертификата.

12. Цифровые подписи.
В предпочтительных вариантах осуществления некоторые или все объекты, используемые меха-

низмом DRM, подписываются. Ниже приведено описание, как объекты снабжаются цифровыми подпи-
сями в одном варианте осуществления с использованием спецификации цифровой подписи XML
(http://www.w3.org/TR/xmldsig-core) ("XMLDSig"). Кроме того, описан метод каноникализации XML,
совместимый с эксклюзивной каноникализацией XML (http://www.w3.org/TR/xml-exc-c14n/) ("c14n-ex"),
выход которого может обрабатываться анализатором, не знающим пространства имен XML. В Приложе-
нии D представлена дополнительная информация по иллюстративной сериализации объектов, включаю-
щую в себя иллюстративный способ вычисления канонической последовательности байтов для объектов,
не зависящий от кодировки.

Как показано на фиг. 28, 34 и 35, в предпочтительных вариантах осуществления, определенные эле-
менты в лицензии DRM подписываются. Методы, например, показанные на фиг. 28, 34 и 35 полезны для
предотвращения или затруднения подделки путем замены компонентов лицензии. Согласно фиг. 34, в
предпочтительном варианте осуществления, объект «контроллер» 3402 включает в себя криптографиче-
ские дайджесты или хэши (или другие подходящие связки) 3405, 3407 объекта ContentKey 3404 и объек-
та управления 3406, соответственно. Контроллер 3402 сам подписывается с помощью MAC (или, пред-
почтительно, НМАС, который использует ключ контента) и подписи открытым ключом (обычно по-
ставщика контента или лицензии) 3412. В предпочтительном варианте осуществления, подпись откры-
тым ключом контроллера 3412 сама подписывается с помощью НМАС 3410 с использованием ключа
контента. Очевидно, что в других вариантах осуществления, можно использовать другие схемы подписи,
в зависимости от нужного уровня безопасности и/или других системных требований. Например, можно
использовать разные схемы подписи для подписывания контроллера и/или объекта управления, напри-
мер PKI, стандартных MAC и/или т.п. Согласно другому примеру можно вычислять отдельную подпись
MAC для объекта управления и контроллера, вместо того, чтобы включать дайджест объекта управления
в контроллер и вычислять единую подпись MAC контроллера. В порядке еще одного примера контрол-
лер можно подписывать как подписью MAC, так и подписью открытым ключом. Альтернативно или до-
полнительно, можно использовать ключи, отличные от вышеописанных, для генерации различных под-

012918

- 94 -

писей. Таким образом, хотя на фиг. 28, 34 и 35 показано несколько преимущественных методов подписа-
ния в соответствии с несколькими вариантами осуществления, очевидно, что эти методы являются ил-
люстративными и неограничительными. На фиг. 35 показан вариант осуществления, в котором контрол-
лер ссылается на множественные ключи контента. Согласно фиг. 35, в одном варианте осуществления,
каждый из ключей контента используется для генерации НМАС контроллера и подписи PKI.

В одном варианте осуществления режим данных, обработка, входные параметры и выходные для
каноникализации XML такие же, как для эксклюзивного канонического XML (с14n-ex) за исключением
того, что префиксы пространств имен удалены (пространства имен обозначаются с использованием при-
нятого по умолчанию механизма пространства имен) и внешние сущности не поддерживаются, за ис-
ключением символьных сущностей. Первое ограничение предусматривает, что атрибут и его элемент
должны находиться в одном и том же пространстве имен.

На фиг. 42 показано соотношение между с14n-ex и иллюстративной каноникализацией XML в од-
ном варианте осуществления, где <xml> является одной действительной XML, и где <xml>' = <xml>"
только, если <xml> не имеет внешних сущностей и префиксов пространств имен.

Ниже приведен простой пример упрощенной схемы подписи: однако, в предпочтительном варианте
осуществления, используется стандартная каноникализация XML.

Элементы подписи, рассмотренные в этом разделе, принадлежат пространству имен XMLDSig

(xmlns=http://www.w3.org/2000/09/xmldsig#) и заданы в схеме XML, заданной в спецификации XMLDSig.
В одном варианте осуществления, элемент «контейнер» XML-представления объектов DRM представля-
ет собой элемент <Bundle>.

В одном варианте осуществления нужно подписывать следующие объекты:
узлы;
связи;
контроллеры;
Объекты управления (необязательные);
расширения (в зависимости от переносимых ими данных).
В одном варианте осуществления подписи нужно отсоединять и элемент <Signature> должен при-

сутствовать в объекте <Bundle>, который содержит XML-представление объектов, которые нужно под-
писывать.

В одном варианте осуществления блок <Signature> содержит
элемент <SignedInfo>
элемент <SignatureValue>
элемент <KeyInfo>
В одном варианте осуществления <SignedInfo> встроен в следующие элементы:
<CanonicalizationMethod> В одном варианте осуществления, элемент <CanonicalizationMethod>

пуст, и его атрибут Algorithm имеет следующее значение: http://www.w3.org/2001/10/xml-exc-c14n#
<SignatureMethod>
В одном варианте осуществления элемент <SignatureMethod> пуст, и его атрибут Algorithm имеет

следующие значения:
http://www.w3.org/2000/09/xmldsig#hmac-sha1 (подпись HMAC)
http://www.w3.org/2000/09/xmldsig#rsa-sha1 (подпись открытым ключом) <Reference>
В одном варианте осуществления может существовать один или несколько элементов <Reference> в

блоке <SignedInfo>, если более одного объекта нужно подписывать одним и тем же ключом (например,
это может иметь место для объекта Control и Controller).

В одном варианте осуществления при подписывании объекта, значение атрибута 'URI' элемента
<Reference> равно ID объекта, на который ссылаются. При подписывании локального элемента XML
(например, в случае множественных подписей для метода открытой подписи для объектов Controller),
значение URI равно значению атрибута 'Id' элемента, на который ссылаются.

В одном варианте осуществления, когда ссылка указывает на объект, который снабжен дайджестом
в ссылке, является не XML-представлением объекта, но его канонической последовательностью байтов.
Это преобразование объекта указано в XMLDSig посредством блока <Tranforms>. Поэтому, в одном ва-
рианте осуществления, элемент <Reference> внедряет этот блок:

012918

- 95 -

В Приложении D представлена дополнительная информация. В одном варианте осуществления ни-

какие другие блоки <Tranform> не разрешены в качестве ссылок на объект.
В одном варианте осуществления элемент <DigestMethod> пуст, и его атрибут Algorithm имеет сле-

дующее значение: http://www.w3.org/2000/09/xmldsig#sha1
Элемент <DigestValue> содержит значение дайджеста в кодировке base64.
<SignatureValue> В одном варианте осуществления, значение подпись является значением в коди-

ровке base64 подписи элемента <SignedInfo>, каноникализированного (ех-с14n) ключом, описанным в
элементе <KeyInfo>.

<KeyInfo>
Случай HMAC-SHA1 для подписей объектов Controller
В одном варианте осуществления в этом случае <KeyInfo> имеет только один дочерний элемент:

<KeyName>, который указывает ID ключа, использованного для подписи НМАС.
Пример:

Случай RSA-SHA1.
В одном варианте осуществления, в этом случае, открытый ключ, используемый для проверки под-

писи, переносится в сертификате Х.509 v3 и может сопровождаться другими сертификатами, которые
могут быть необходимы для завершения пути от сертификата к корню СА.

Эти сертификаты переносятся, в кодировке base64, в элементах <X509Certificate>. Эти элементы
<X509Certificate> внедрены в элемент <X509Data>, дочерний по отношению к элементу <KeyInfo>, и
появляется последовательно, начиная с сертификата ключа подписи. Сертификат корня обычно опуска-
ют.

Пример (для краткости, воспроизводятся не все значения иллюстративных сертификатов; опущен-
ный материал указан многоточиями):

В одном варианте осуществления, объекты «контроллер» должны иметь по меньшей мере одну

подпись НМАС для каждого ContentKey, указанного в их списке управляемых целей. Ключ, используе-
мый для каждой из этих подписей, представляет собой значение ключа контента, содержащегося в ука-
занном объекте ContentKey.

Контроллеры также могут иметь подпись RSA. В одном варианте осуществления, если такая под-
пись присутствует, эта подпись также появляется как <Reference> в каждой из подписей НМАС объекта.
Для этого, в одном варианте осуществления, элемент <Signature> для подписи RSA должен иметь атри-
бут 'Id', уникальный в охватывающем документе XML, который используется в качестве атрибута 'URI' в
одном из элементов <Reference> каждой из подписей НМАС. В одном варианте осуществления, прове-
ряющая сущность должна отвергать подписи RSA, не удостоверенные подписью НМАС.

Пример:

012918

- 96 -

13. Протокол проверки близости.
В некоторых вариантах осуществления, может быть желательно ограничивать доступ к контенту,

услугам и/или другим системным ресурсам на основании физической близости запрашивающей сущно-
сти (например, для применения правил, указывающих, что защищенный фрагмент контента нельзя копи-
ровать за пределы домашней сети пользователя, офисного комплекса, и/или т.п.). Ниже описаны вариан-
ты осуществления протокола проверки близости, которые обеспечивают безопасность без ненужного
препятствования осуществлению самой проверки близости. Протокол проверки близости приспосабли-
вается к приложению в разнообразных контекстах, один из которых, как указано выше, является контек-
стом объектов управления цифровыми правами; однако очевидно, что описанные ниже системы и спосо-
бы проверки близости не ограничиваются применением к контексту управления цифровыми правами.
Например, без ограничения, представленные здесь методы проверки близости также можно использовать
в контексте системе согласования сетевых услуг, например описанной в заявке '551 и/или в любом дру-
гом подходящем контексте.

В одном варианте осуществления, проверка близости осуществляется путем измерения времени,
которое требуется первому вычислительному узлу для приема ответа от второго вычислительного узла
на запрос первого вычислительного узла.

Если промежуток времени меньше заранее заданного порога (что обычно указывает, что второй
вычислительный узел находится в пределах определенного физического расстояния от первого вычисли-
тельного узла), то проверка близости считается успешной.

Очевидно, что вследствие большого разнообразия различных сетевых соединений, по которым мо-
гут передаваться запрос и/или ответ, данный промежуток времени может соответствовать диапазону раз-
личных расстояний. В некоторых вариантах осуществления, этот разброс просто игнорируется, и про-
верка близости считается успешной, если время цикла обмена сообщениями запрос/ответ меньше заранее
заданного порога (например, 8 миллисекунд или любой другой подходящий промежуток времени), неза-
висимо от того, например, используется ли первое сетевое соединение, что может означать, что запра-
шивающий и отвечающий узлы действительно относительно отстоят друг от друга. В других вариантах
осуществления, можно производить определение типа используемого сетевого соединения, и другие тре-
бования к циклу обмена сообщениями можно применять ко всем остальным сетевым соединениям.

В предпочтительном варианте осуществления, проверка близости позволяет анкеру (например, кли-
енту) проверять близость к цели (например, услуге). В одном варианте осуществления, протокол асим-
метричен, в том, что анкер генерирует секретное порождающее число, которое используется, и только он
один использует защищенный таймер. Кроме того, цель не обязана доверять анкеру. Предпочтительные
варианты осуществления проверки близости также криптографически эффективны: в одном варианте
осуществления используются только две операции открытого ключа.

Генерация множества R из Q пар на основе порождающего числа S.
В одном варианте осуществления, множество R получается из порождающего числа S согласно

следующей формуле: Ri=H2Q-i(S). Здесь Н(М) это значение дайджеста хэш-функции Н над сообщением
М, и Hn(M)=H(Hn-1(M)) для n>=1 и Н0(М)=М. Очевидно, что это просто один иллюстративный метод ге-
нерации секрета совместного пользования, и что в других вариантах осуществления можно использовать
другие методы, не отходя от его принципов.

В одном варианте осуществления алгоритм, используемый для хэш-функции Н, представляет собой
SHA1 (см., например, FIPS PUB 180-1. Secure Hash Standard. U.S. Department of Commerce/National Insti-
tute of Standards and Technology), хотя очевидно, что в других вариантах осуществления можно использо-
вать другие хэш, дайджест сообщения или функции.

В одном варианте осуществления проверка близости осуществляется следующим образом, где "А"
это анкер (например, клиент) и "В" это цель (например, услуга):

(a) А генерирует множество R из Q пар случайных чисел {R0, R1}, {R2, R3}... {R2Q-2, R2Q-1}, как пока-

012918

- 97 -

зано выше.
(b) А передает В: E(PubB, {Q,S}), где Е(Y, X) обозначает шифрование X ключом Y, и PubB обозна-

чает открытый ключ для В в паре открытого/секретного ключей.
(c) В дешифрует {Q,S} и предварительно вычисляет R, как показано выше.
(d) В передает А подтверждение приема, указывающее, что он готов продолжать.
(e) А задает счетчик циклов k равным нулю.
(f) А измеряет Т0 = текущее время, (g) А передает В: {k, R2*k}.
(h) Если значение R2*k верно, В передает в ответ R2*k+1.
(i) А измеряет D = новое текущее время - Т0.
(j) Если В передало А верное значение для R2*k+1, и D меньше заранее заданного порога, то проверка

близости считается успешной.
Если k+1<Q, А может выполнить новое измерение, увеличив k и перейдя к этапу (f). Если необхо-

димо осуществить более Q измерений, А может начать с этапа (а) с новым множеством R. Например, в
некоторых вариантах осуществления проверку близости можно осуществлять повторно (или заранее за-
данное число раз) пока не будет получен верный ответ в пределах заранее заданного порога (или если
верные ответы принимаются в пределах заранее заданного порога сверх заранее заданного процента по-
следовательности вызовов/ответов), поскольку, даже если два вычислительных узла находятся в необхо-
димой близости друг от друга, аномально медленное сетевое соединение, интенсивный трафик, шум
и/или т.п. может привести к задержке ответа от В.

На фиг. 36 показан вариант осуществления вышеописанного протокола, в котором анкер (А) опре-
деляет, находится ли цель (В) в приемлемой близости от анкера (А). Например, согласно фиг. 36, А мо-
жет содержать вычислительный узел 3602, который содержит защищенный контент (например, музыку,
видео, текст, программное обеспечение и/или т.п.) и/или материал доступа к контенту (например, связь,
ключ и/или т.п.), необходимый удаленному вычислительному узлу (В) 3606 для доступа к защищенному
контенту, хранящемуся на вычислительном узле В 3606 или доступному ему. Объекты управления, свя-
занные с контентом или материалом доступа к контенту, могут указывать, что его могут совместно ис-
пользовать только устройства в определенной близости от узла А 3602 (например, для аппроксимации
ограничения распространения контента на домашнюю сеть). Альтернативно или дополнительно, такую
политику можно применять на системном уровне вычислительного узла А 3602 (который может, напри-
мер, содержать менеджер доменов домашней сети или сети предприятия). Таким образом, проверка бли-
зости не обязана должна быть условием в программе управления, выполняемой виртуальной машиной;
вместо этого она просто может быть чем-то, что вычислительный узел А 3602 требует в качестве пред-
мета операционной политики прежде, чем отправить контент или материал доступа к контенту на вычис-
лительный узел В 3606. Для применения таких объектов управления и/или политик, программное и/или
аппаратное обеспечение, выполняющееся на вычислительном узле А 3602, может осуществлять выше-
описанный протокол проверки близости каждый раз при подаче запроса на распространение защищенно-
го контента или материала доступа к контенту на вычислительный узел В 3606. Альтернативно или до-
полнительно, проверка близости можно осуществлять с заранее заданными интервалами (например, раз в
день) для определения, находится ли узел В 3606 в необходимой близости, и, в случае успешной провер-
ки близости, можно считать, что узел В 3606 находится в необходимой близости в течение заранее за-
данного периода (например, до осуществления следующей проверки, до истечения заранее заданного
времени, и/или т.п.).

Согласно фиг. 36, когда А и В завершают все начальные этапы установки (например, вышеописан-
ные этапы (а)-(е)) 3604, 3608, А и В начинают защищенный, хронируемый обмен вызовами-ответами
(например, на вышеописанных этапах (f)-(i)) 3610, который позволяет А определить, находится ли В в
приемлемой близости.

Согласно фиг. 36, в одном варианте осуществления А 3602 передает В 3606 запрос установки 3604,
содержащий Е (PubB, {Q, S}), т.е. число пар Q, а также секретное порождающее число S для пар, зашиф-
рованное открытым ключом шифрования для В (например, ключом, который В используется в контексте
согласования услуг). В одном варианте осуществления, {Q, S} представляет собой поток байтов, сцеп-
ляющий Q (1 байт) и S (16 байтов) в сетевом порядке следования байтов. В одном варианте осуществле-
ния, шифрование осуществляется с использованием шифрования открытым ключом RSA (например, как
описано в В. Kaliski, J. Staddon, PKCS #1; RSA Cryptography specifications Version 2.0. IETF RFC2437.
October 1998). В предпочтительном варианте осуществления, А предварительно осуществляет доступ к
PubB в порядке инспекции, и его сертификат проверяется. Хотя на фиг. 36 показан ответ установки 3608
от В 3606 к А 3602, в других вариантах осуществления, ответ установки 3608 не используется. Как ука-
зано выше, получив запрос установки 3604, В 3606, предпочтительно, предварительно вычисляет множе-
ство R, что способствует быстрому ответу на последующие вызовы от А 3602.

Согласно фиг. 36, А 3602 передает В запрос вызова 3612, состоящий из [k, R2*k], т.е. индекса k и со-
ответствующего секрета, вычисленного из порождающего числа. В одном варианте осуществления, [k,
R2*k] представляет собой поток байтов, сцепляющий k (1 байт) и R2*k (20 байтов) в сетевом порядке сле-
дования байтов, в кодировке base64 для переноса. Согласно фиг. 36, в одном варианте осуществления, В

012918

- 98 -

3606 способен передавать ответ вызова 3614 на А 3602, причем ответ вызова 3614 состоит из R2*k+1, т.е.
соответствующего секрета из запроса вызова 3612. В одном варианте осуществления, R2*k+1 представляет
собой поток байтов R2*k+1 (20 байтов) в сетевом порядке следования байтов, в кодировке base64 для пе-
реноса.

На фиг. 37 показан пример того, как можно использовать вариант осуществления вышеописанного
протокола проверки близости для управления доступом к защищенному контенту. Согласно фиг. 37,
предположим, что кабельный или спутниковый поставщик контента имеет политику, позволяющую всем
устройствам в заранее заданной близости 3708 от персонального видеомагнитофона (PVR) 3702 пользо-
вателя осуществлять доступ к контенту через PVR. Таким образом, например, программное обеспечение
менеджера доменов, выполняющееся на PVR 3702, может осуществлять проверку близости на устройст-
ве 3704 и 3706, запрашивая доступ к контенту через PVR 3702. В примере, показанном на фиг. 37, уст-
ройство 3706 не находится в пределах близости 3708, заданных политикой поставщика услуг, и получает
от PVR 3702 отказ в доступе. Напротив, устройство 3704 находится в пределах близости, и получает дос-
туп, например, принимая контент совместно со связью ограниченного периода действия от устройства
3704 на PVR 3702. Альтернативно или дополнительно, связь может содержать программу управления,
которая способна самостоятельно инициировать проверку близости к PVR 3702 и отказывать устройству
3704 в дальнейшем доступе к контенту, если device 3704 перемещается за пределы заранее заданной бли-
зости 3708 к PVR 3702.

Соображения безопасности
В предпочтительных вариантах осуществления, следует обратить внимание выполнению некоторых

или всех из следующих условий:
цикл, содержащий этапы (f)-(i) не повторяется с одним и тем же значением k для любого множества

R;
протокол прерывается, если какая-либо сторона принимает неожиданное сообщение, в том числе:
если В принимает неверное значение для R2*k на этапе (g);
если Q не находится в указанном диапазоне на этапе (а);
если к повторяется в цикле;
если k превышает Q.
Протокол может альтернативно или дополнительно прерываться, если А принимает неверное зна-

чение R2*k+1 на этапе (h). В других вариантах осуществления допустимо определенное количество невер-
ных ответов от В.

Очевидно, что оптимальные значения для Q и заранее заданный временной порог обычно зависят
от уникальных условий конкретного применения (например, скорости сети, важности обеспечения отно-
сительно тесной близости и т.д.). Поэтому предпочтительно обеспечивать гибкость реализаций в уста-
новлении этих значений. В одном варианте осуществления предполагается, что реализации поддержива-
ют минимальное значение Q, равное 64, и значение порога, равное 8 мс (причем, для некоторых совре-
менных скоростей сети, 8 мс может соответствовать расстоянию в несколько миль).

Политики безопасности протокола.
В предпочтительном варианте осуществления, для обмена запросами и ответами не требуется ника-

кой дополнительной защиты. Ввиду размера передаваемых сообщений (например, 20 байтов), и их эф-
фективной случайности (при использовании алгоритма хэширования SHA1 или другого метода), для на-
рушителя криптографически невыполнимо определение верного ответа, даже если нарушитель способен
перехватывать запрос.

Очевидно, что вышеописанные варианты осуществления являются иллюстративными, и что можно
предложить многочисленные модификации, не отклоняясь от представленных здесь принципов изобре-
тения. Например, хотя выше описано рекурсивно хэшированное секретное порождающее число, для вы-
зова/ответа можно использовать любой подходящий секрет совместного пользования. В одном варианте
осуществления, секрет совместного пользования может просто содержать зашифрованное чис-
ло/сообщение, передаваемое от А к В, и вызов/ответ может просто содержать обмен между А и В фраг-
ментами числа/сообщения (например, А передает В первый символ сообщения, и В передает А второй
символ сообщения, и т.д.). Хотя такому методу может недоставать защищенности, характерной для вари-
анта осуществления, описанного в связи с фиг. 36 (поскольку символ в сообщении гораздо легче разга-
дать, чем 20-байтовый хэш), в некоторых вариантах осуществления такой уровень безопасности может
быть достаточным (в особенности, когда, например, изменчивость сетевых задержек, так или иначе, де-
лает механизм проверки близости весьма грубым средством контроля фактической близости), тогда как в
других вариантах осуществления безопасность нужно повысить, осуществляя проверку близости не-
сколько раз, где, хотя любую конкретную цифру или бит сравнительно легко угадать, вероятность того,
что нарушитель сможет правильно разгадать данную последовательность цифр или битов, быстро
уменьшается с увеличением длины последовательности. В этом варианте осуществления проверку бли-
зости можно считать успешной, только если В способен обеспечить свыше заранее заданного количества
верных ответов подряд (или свыше заранее заданного процента верных ответов).

В целях иллюстрации и объяснения, ниже представлен дополнительный иллюстративный пример

012918

- 99 -

протокола проверки близости. В этом примере, первое устройство, SRC, осуществляет связь со вторым
устройством, SNK, по каналу связи (например, компьютерной сети). Мы хотим иметь возможность безо-
пасно определять, близки ли SRC и SNK друг к другу, что измеряется временем, необходимым SNK для
ответа на запрос установления связи от SRC. Вызов или пробное сообщение передается от SRC на SNK,
и SNK отвечает ответным сообщением. Период времени между отправкой вызова и приемом ответа на-
зывается временем цикла обмена или RTT. Во избежание внесения дополнительной задержки в период
времени, которое требуется SNK для вычисления и отправки назад ответа на вызов, обычно желательно,
чтобы передача вызовов/ответов была как можно более «легкой». В частности, обычно желательно избе-
гать условий, когда SRC или SNK требует осуществления криптографических операций между отправ-
кой вызова и приемом ответа.

Кроме того, чтобы гарантировать, что только SNK способен создавать правильный ответ на вызов
от SRC (например, во избежание атаки перехватчика, когда третья сторона перехватывает вызов от SRC
и посылает назад ответ под видом SNK), протокол должен выполняться следующим образом:

(1) SRC создает секрет. Этот секрет состоит из одной или нескольких пар случайных или псевдо-
случайных чисел.

(2) SRC передает секрет на SNK. Эта часть протокола не зависит от времени. SRC и SNK хранят
секрет в тайне. Секрет также передается таким образом, чтобы гарантировать, что его знает только SNK.
Для этого обычно предусмотрена передача секрета по защищенному аутентифицированному каналу ме-
жду SRC и SNK (например, SRC может шифровать секретные данные открытым ключом, про который
он знает, что только SNK имеет соответствующий секретный ключ). Секретные данные не обязаны быть
вышеописанной(ыми) парой(ами) случайных или псевдослучайных чисел. Даже согласно вариантам
осуществления, где используются такие пары, секретные данные, передаваемые на этом этапе, должны
лишь содержать достаточно информации, чтобы SNK мог вычислить или вывести значения пар чисел.
Например, секретные данные могут быть случайным порождающим числом, из которого можно сгенери-
ровать одну или несколько пар псевдослучайных чисел с использованием генератора псевдослучайных
чисел на основе порождающего числа.

(3) Когда SRC знает, что SNK готов принять вызов (например, SNK может отправить сообщение
READY после приема и обработки секретных данных), SRC создает сообщение вызова. Для создания
сообщения вызова. Например, в предпочтительном варианте осуществления, SRC выбирает одну из пар
случайных чисел. Если используется более одной пары, данные сообщения вызова содержат информа-
цию, указывающую, какая пара выбрана, а также одно из двух чисел этой пары.

(4) SRC измеряет значение текущего времени Т0. Сразу после этого SRC передает сообщение вызо-
ва (шифрование или цифровая подпись не требуется) на SNK и ожидает ответа. Альтернативно, SRC мо-
жет измерить текущее время Т0 сразу после отправки сообщения вызова, хотя, предпочтительно, после
осуществления каких-либо соответствующих криптографических операций (например, шифрования,
подписывания и/или т.п.).

(5) SNK принимает вызов, на основании которого он может идентифицировать одну из пар, приня-
тых им ранее. SNK удостоверяется, что случайное число в вызове является частью пары, и строит ответ-
ное сообщение, которое содержит значение другого случайного числа этой пары.

(6) SNK передает ответное сообщение на SRC (шифрование или цифровая подпись не требуется).
(7) SRC принимает ответное сообщение и измеряет значение текущего времени Т1. Время цикла

обмена RTT равно Т1-Т0.
(8) SRC удостоверяется, что число, полученное в ответе, равно другому значению в паре, которая

была выбрана для вызова. Если числа совпадают, ответ вызова является успешным, и SRC может быть
уверен, что SNK отвечает той степени близости, которая определяется временем цикла обмена. Если
числа не совпадают, SRC может прервать протокол или, если совместно используется более одной пары,
и существует по меньшей мере одна пара, которая не была использована, возвратиться к этапу (3) и ис-
пользовать другую пару.

Очевидно, что вышеописанные иллюстративные протоколы проверки близости допускают ряд из-
менений, не отклоняющихся от его принципов. Например, без ограничения, можно использовать другие
криптографические алгоритмы, можно использовать другие секреты совместного пользования и/или т.п.

14. Безопасность.
В практических применениях описанных здесь систем и способов, безопасность можно обеспечи-

вать на различных уровнях и с использованием различных методов. Нижеследующее рассмотрение отно-
сится, в основном, к конструкции и принципу работы механизма DRM и соответствующего приложения
хоста для использования с целью эффективной регуляции потенциально сложных деловых отношений.
Когда механизм DRM и приложение хоста действуют надлежащим образом, осуществляется защита кон-
тента от неавторизованного доступа или иного использования за счет применения условий связанной с
ним лицензии.

Защиту механизма DRM и/или среды, в которой выполняется механизм DRM (например, приложе-
ния и оборудование, с которым он взаимодействует) от злонамеренной подделки или модификации мож-
но осуществлять с использованием любой подходящей комбинации методов безопасности. Например,

012918

- 100 -

можно применять такие криптографические механизмы, как шифрование, цифровые подписи, цифровые
сертификаты, коды аутентификации сообщения, и т.п., например, описанные здесь в другом месте, для
защиты механизма DRM, приложения хоста и/или другого системного программного обеспечения или
оборудования от подделки и/или иных атак, которые могут представлять собой структурные и/или так-
тические меры безопасности, например, умышленное придание непонятности программному обеспече-
нию, самопроверка, разработка заказных модулей, создание «водяных знаков», противодействие средст-
вам отладки и/или иные механизмы. Иллюстративные примеры таких методов можно найти, например, в
патенте США № 6,668,325 В1, Obfuscation Methods for Enhancing Software Security, и в совместно при-
своенной патентной заявке США № 11/102,306, опубликованной под номером US-2005-0183072-A1; па-
тентной заявке США № 09/629,807; патентной заявке США № 10/172,682, опубликованной под номером
US-2003-0023856-A1; патентной заявке США № 11/338,187, опубликованной под номером US-2006-
0123249-А1; и в патенте США № 7,124,170 B1, Secured Processing Unit Systems and Methods, которые все,
таким образом, включены сюда посредством ссылки в полном объеме. Альтернативно или дополнитель-
но, можно использовать физические методы безопасности (например, использование относительно не-
доступной памяти, защищенных процессоров, защищенных блоков управления памятью, режимов рабо-
ты операционной системы с аппаратной защитой и/или т.п.) для дополнительного повышения безопасно-
сти. Такие методы безопасности общеизвестны специалистам в данной области техники, и, очевидно, что
можно использовать любую подходящую комбинацию из некоторых, ни одного или всех этих методов в
зависимости от нужного уровня защиты и/или особенностей конкретного применения. Таким образом,
очевидно, что, хотя здесь описаны определенные механизмы безопасности (например, методы вывода
ключа, методы цифровой подписи, методы шифрования, и т.п.) в связи с определенными вариантами
осуществления, не все варианты осуществления предусматривают использование этих методов.

Еще одна форма безопасности может обеспечиваться институциональной конструкцией и работой
системы, а также юридической и социальной регуляцией ее участников. Например, для получения узла
индивидуальности, материала, зашифрованного ключом, защищенного контента, и/или т.п., от устройст-
ва или сущности может понадобиться подтвердить свое согласие следовать спецификациям и требовани-
ям системы, может понадобиться пройти процесс сертификации, в ходе которого проверяется согласо-
ванность сущности с системными требованиями, и/или т.п. Например, устройству или приложению мо-
жет понадобиться реализовать механизм DRM таким образом, чтобы он был совместимым с другими
реализациями в среде, и/или может понадобиться обеспечить определенный тип или уровень защиты от
подделки или иных защитных средств. Можно выдавать цифровые сертификаты, свидетельствующие о
согласовании устройства или иной сущности с такими требованиями, и эти сертификаты можно прове-
рять до дачи разрешения устройству или сущности участвовать в системе, или как условие предоставле-
ния постоянного доступа.

Ниже представлена дополнительная, неограничительная информация по методам безопасности, ко-
торые можно использовать согласно изобретению.

Защита системы
В некоторых вариантах осуществления, разработчик системы может, по своему выбору, использо-

вать сочетание методов обновляемости, отказа и/или исправления для управления рисками и ослабления
угроз, которые могут возникать вследствие атак на устройства, приложения и службы или их компроме-
тации. Ниже представлены примеры различных технических механизмов, которые можно использовать
для ослабления угроз.

Механизмы обновления можно использовать по меньшей мере в двух различных целях. Во-первых,
их можно использовать для передачи обновленной информации доверенным системным сущностям, ко-
торая позволяет им отказывать в доступе или обслуживании недоверенным системным сущностям. Во-
вторых, механизмы обновления позволяют недоверенной сущности восстановить доверенное состояние
путем обновления любого скомпрометированного компонента. Отказные контрмеры можно дополни-
тельно охарактеризовать как демонстрирующие один или несколько из следующих режимов поведения:

Отмена или аннулирование мандата (обычно, путем занесения какой-либо сущности в черный спи-
сок);

Исключение или блокировка доступа путем применения криптографических механизмов или меха-
низмов применения политики;

Бойкот или блокировка доступа или обслуживания на основании идентичности или какого-либо
другого атрибута, привязанного к мандату;

Прекращение действия или аннулирование мандата или привилегии на основании временного со-
бытия.

Например, механизмы отказа можно использовать для противодействия таким угрозам, как клони-
рование устройства, маскировка под законного пользователя, сбои протокола, сбои в применении поли-
тики, сбои в защите приложений и устаревшая или подозрительная информация.

В нижеследующей таблице приведены примеры потенциальных угроз, некоторых рисков, которые
они представляют, и механизмов противодействия угрозам и обновления защиты системы.

012918

- 101 -

Отмена

Отмену можно рассматривать как механизм исправления, опирающийся на занесение сущности в
черный список. Обычно отменяется мандат, например, сертификат открытого ключа. После отмены ман-
дата, черный список нужно обновить и использовать механизм обновления для переноса обновления,
чтобы заинтересованная сторона могла извлечь из него пользу.

Таким образом, например, можно потребовать, чтобы устройства, пользователи и/или другие сущ-
ности представили сертификаты идентичности, другой мандат и различные данные безопасности, прежде
чем предать им информацию, необходимую для потребления контента или услуги. Аналогично, чтобы
клиент доверял службе, можно потребовать, чтобы служба представила свой мандат клиенту.

Примеры того, как сущность может эффективно сделать недействительной информацию, необхо-
димую для доступа к службе, включают в себя:

списки отмены сертификата (CRL);
службы действительности мандата и данных, например, ответчик протокола Online Certificate Status

Protocol (OCSP);
команды самоуничтожения мандата и данных.

Списки отмены сертификата (CRL)
Различные сущности могут использовать списки отмены для отмены сертификатов идентичности,

лицензий, связей и других утверждений безопасности. Этот механизм наиболее эффективен для исправ-
ления ситуации, которая возникает вследствие компрометации службы. Можно использовать ряд мето-
дов для распространения CRL. Например, некоторые системы могут применять косвенный CRL, т.е. су-
ществует единственный CRL, управляющей всей экосистемой. Кроме того, сущности могут объявлять
(или публиковать) имеющиеся у них CRL и/или подписаться на услугу обновления. CRL можно вирту-
ально распространять между равноправными устройствами, и/или портативные устройства могут полу-
чать опубликованные CRL, будучи привязанными. С этой целью также можно использовать методы со-
гласования услуг, описанные в заявке '551.

Службы действительности
Службы действительности можно использовать для обеспечения обновленной информации о со-

стоянии мандата и других данных, связанных с безопасностью. Службы действительности могут осуще-
ствлять либо операции активного удостоверения от имени заинтересованной стороны, либо могут ис-
пользоваться для управления информацией безопасности от имени заинтересованной стороны. Приме-
ром активной службы действительности является служба, которая может проверять действительность
мандата или атрибута. Примерами служб действительности, которые управляют информацией безопас-
ности, являются службы, которые распространяют CRL или обновления политики безопасности, или
обеспечивают защищенную службу времени. Использование служб действительности позволяет гаран-

012918

- 102 -

тировать, что заинтересованные стороны имеют обновленные данные для принятия решений по управ-
лению.

Обычно не всем системным сущностям требуется ежеминутно обновляемая информация о действи-
тельности мандата и данных безопасности. Например, не все потребительские устройства используют
службу Online Certificate Status Protocol (OCSP) для удостоверения цепи сертификатов сервера лицензий
каждый раз при использовании лицензии или получении новой лицензии. Однако сервер лицензий может
достаточно часто использовать службу OCSP для проверки действительности мандата подписчика. По-
литика (которую легко обновлять) может определять, когда и какие службы нужно использовать. Благо-
даря возможности динамически обновлять политику, серверы лицензий могут адаптироваться к измене-
ниям условий работы. Таким образом, политика безопасности может развиваться на основании опыта,
технологического прогресса и рыночных факторов.

Принудительное самоуничтожение объектов безопасности
Самоуничтожение мандата и данных сущностью имеет смысл, когда целостность защитных про-

цессов сущности не вызывает сомнений. При наличии такой возможности, это, зачастую, является наи-
более прямым, быстрым и эффективным методом отмены. Это может быть особенно полезно, при нали-
чии малого или, вовсе, отсутствия подозрений в нарушении целостности, и когда двусторонняя связь
поддерживает протокол, допускающий конкретные команды уничтожения совместно с проверкой, что
это уничтожение было произведено.

Существует ряд объектов безопасности, которые часто бывает полезно уничтожать или отключать.
Например, когда устройство покидает домен, или заканчивается срок действия лицензии контента, быва-
ет полезно уничтожить соответствующие объекты, которые содержат ключи и которые можно использо-
вать для доступа к контенту. Агентские программы управления, более подробно описанные в другом
месте, весьма пригодны для реализации механизмов самоуничтожения. Агенты можно приспособить для
уничтожения состояния в защищенном хранилище (например, базе данных состояний) для актуализации
изменений в доменной принадлежности или для удаления ключей, которые уже невозможно использо-
вать (например, вследствие изменений в принадлежности или политике).

Исключение
Исключение это механизм исправления, который препятствует злонамеренному пользователю (или

группе злонамеренных пользователей) участвовать в дальнейшем потреблении товаров и услуг. В силу
суровых последствий исключения, оно обычно используется как последнее средство, когда этого требу-
ют обстоятельства. Исключение базируется на механизме, который эффективно заносит в черный список
злонамеренных пользователей, тем самым запрещая им потреблять медиа-ресурсы и связанные с ними
услуги. Распространение черного списка опирается на механизм обновления для обеспечения этого ис-
правления. Однако исключение не обязательно обеспечивает механизм обновления для восстановления
злонамеренного пользователя в доверенное состояние.

Исключение ключа
Исключение ключа это механизм управление ключами, который используется для рассылки ин-

формации ключа множеству приемников таким образом, чтобы в любое данное время можно было при-
нять решение на логическое лишение некоторого подмножества приемников возможности дешифровать
контент в будущем. Этот механизм активируется с использованием эффективных методов построения
Блока рассылки ключей (ВКВ), который включает в себя информацию, необходимую каждому члену
большой группы приемников для дешифрования контента. ВКВ имеет структуру, позволяющую легко
обновлять его, чтобы лишить одного или нескольких членов группы возможности дешифровать контент.
Иными словами, конструкция ВКВ позволяет управляющей сущности обновлять систему новым ВКВ,
что позволяет поставщику контента избирательно исключать нужное множество устройств из пользова-
ния ВКВ, даже если оно может обращаться к нему.

Этот механизм особенно эффективен против атаки клонирования, когда пират обращает инженеров
к законному устройству, извлекает его ключи и затем использует копии этих ключей для клонирования
устройств. Клоны внешне действуют как оригинал, за исключением того, что эти клоны не всегда сле-
дуют модели администрирования. Когда компрометация выявлена, можно распространить обновленный
ВКВ, который исключает скомпрометированное устройство и все его клоны. Однако исключение ключа
влечет за собой некоторую избыточную нагрузку, связанную с хранением, переносом и вычислением,
что, в ряде случаев, делает его менее эффективным по сравнению с другими методами. Это особенно
верно, когда контент не подлежит вещанию, или когда существует обратный канал.

Бойкот
Бойкот это механизм исправления, действующий аналогично исключению, но с менее суровыми

последствиями. По существу, это средство отказа в обслуживании по решению политики среды выпол-
нения. Вместо более тяжеловесных подходов к лишению устройства дееспособности путем принуди-
тельного самоуничтожения или блокировки доступа посредством исключения ключа, бойкот предусмат-
ривает простой подход к отключению устройства за счет того, что поставщики услуг отказываются пре-
доставлять ему услуги. При современной тенденции к повышению значимости устройств за счет исполь-
зования услуг, предоставляемых извне, бойкот становится более эффективным механизмом безопасно-

012918

- 103 -

сти.
Бойкот устройства инициируется политикой, и его можно использовать для обеспечения дискрими-

национных мер против сущностей (например, клиентов, серверов и конкретных ролевых игроков) кото-
рые не предъявляют все необходимые мандаты, которые требует политика. Политика, например, может
требовать, чтобы сущность продемонстрировала, что она получила последнее обновление безопасности.
Поэтому бойкот может быть следствие либо отмены, либо неудачной попытки совершить какое-либо
конкретное действие. Бойкот в среде взаимодействия равноправных устройств с использованием можно
обеспечить с помощью инспекционных служб и таких служб, которые, например, описаны в заявке '551.
Кроме того, служба сертификации данных (например, экземпляр службы действительности) может осу-
ществлять бойкот в момент применения политики. Когда системная сущность бойкотирована, ей можно
сообщить, какой конкретный мандат или объект не отвечает требованиям политики службы. Это может
побудить бойкотируемую сущность к обновлению объекта через соответствующий интерфейс службы.

Прекращение действия
Прекращение действия это механизм исправления, который опирается на некоторое временное со-

бытие для объявления мандата или объекта недействительным. Прекращение действия эффективно при
предоставлении временного доступа к медиа-ресурсам или медиа-услугам; по истечении его срока дей-
ствия, модель администрирования гарантирует, что доступ более не разрешен. Для эффективного ис-
пользования прекращения действия могут потребоваться механизмы обновления, позволяющие обновить
мандат или объект для обеспечения продолжения доступа к медиа-ресурсам или медиа-услугам.

Прекращение действия мандатов
Сертифицированные ключи имеют различные атрибуты прекращения действия, присвоенные для

защиты заинтересованных сторон. Прекращение действия мандат можно использовать для гарантии то-
го, что сущностям, срок действия сертификатов которых истек, будет отказано в обслуживании, и ис-
пользовать совместно с процедурами пролонгации ключа и обновления ключа. Когда предполагается,
что сущности часто подключаются к глобальной сети, с практической точки зрения целесообразно регу-
лярно обновлять мандат и другие данные безопасности. Другая практическая мера состоит в том, чтобы
сделать период действия этих объектов как можно короче. В политиках проверки действительности
можно использовать различные методы, например, перекрывающиеся периоды действия и льготные пе-
риоды, чтобы обеспечить непрерывность работы во время транзакций. Короткие периоды действия так-
же помогают уменьшить размер CRL.

Прекращение действия связей
Как описано выше, объектам «связь» можно присваивать периоды действия. По истечении срока

действия, связь считается недействительной, и механизм DRM не учитывает ее при построении своего
графа. Этот механизм можно использовать для обеспечения временного доступа к товарам и услугам.
Связи можно обновлять, чтобы непрерывный доступ к медиа-ресурсам можно было предоставлять, пока
это разрешает политика. Поскольку, в одном варианте осуществления, связи являются сравнительно лег-
кими, самозащищенными объектами, их легко распространять по протоколам взаимодействия равно-
правных устройств.

Механизмы обновляемости: обновляемость приложений и политик
Эффективная обновляемость обычно обеспечивает быстрое применение исправлений к сбоям про-

токола, которые часто являются основными проблемами безопасности, возникающими в сфере обеспе-
чения безопасности (в том числе, в системах DRM). Обновления программного обеспечения можно ис-
пользовать для обновления бизнес-логики и протоколов безопасности. Когда приложения приспособле-
ны к политике безопасности и политике доверия, отдельно от логики приложения, можно использовать
отдельный механизм для обновления политики; это менее рискованный подход. Фактически, можно ис-
пользовать механизмы публикации между равноправными устройствами для быстрого обновления поли-
тики. В противном случае, можно использовать методы обновления программного обеспечения разра-
ботчика приложения для обновления политик безопасности и доверия.

Использование инструмента прав для правовой работы
Обычно желательно использовать относительно легкие инструменты, когда возможно. Использова-

ние мандатов с ограниченными периодами действия и политик, которые проверяют даты окончания сро-
ка действия, способствует поддержанию общей совокупности сущностей в управляемых пределах и из-
бавляет от необходимости в слишком быстром увеличении размеров CRL. Бойкот сущности вместо ли-
шения ее доступа к ключам может увеличивать срок действия ВКВ; кроме того, его преимущество со-
стоит в обеспечении дифференцируемых политик, которые могут иметь временный характер и изменять-
ся в зависимости от обстоятельств. Разные CRL, которые отслеживают конкретные типы мандата, пред-
ставляющие интерес для различных ролевых игроков, можно использовать вместо ВКВ, которые можно
распространять там, где они наиболее эффективны (например, имея дело с клонированными приемника-
ми). Политики могут предписывать использование онлайновых служб действительности, когда предпо-
лагается, что эти службы обеспечивают разумную компенсацию затрат времени и усилий, когда свежие
мандаты очень важны, и когда более медленные механизмы отмены непригодны. Когда узел, предполо-
жительно, обладает целостностью и совершает правильные действия, и когда объект лицензии или безо-

012918

- 104 -

пасности (например, связь для подписки или связь домена) подлежит отмене, то разумный подход обыч-
но состоит в предписании узлу уничтожить объект. В такой ситуации, нет необходимости объявлять ли-
цензию недействительной и нет необходимости распространять ВКВ или повторно снабжать домен клю-
чом. Самоуничтожение, инициируемое локальной политикой или самостоятельной командой, является
одним из более эффективных методов отмены.

Очевидно, что хотя были описаны разнообразные технологии отмены, обновления, исправления и
другие технологии и практики, очевидно, что для разных ситуаций используются разные инструменты, и
что предпочтительные варианты осуществления описанных здесь систем и способов можно практически
применять с использованием любой подходящей комбинации из некоторых или ни одного из этих мето-
дов.

Защита сетевых служб
В нижеследующем рассмотрении представлены некоторые соображения и методы безопасности,

которые могут относиться к вариантам осуществления, в которых вышеописанные механизм DRM и
приложения используются в связи с системами и способами согласования сетевых служб, например,
описанными в заявке '551.

Практические реализации систем DRM, используемые механизмом и архитектурой DRM, напри-
мер, раскрытыми здесь, часто осуществляют сетевые транзакции для доступа к контенту и объектам
DRM. В таком контексте, системы и способы, описанные в заявке '551, можно использовать, в том числе,
для стандартизации защиты на уровне сообщений, включающей в себя аутентификацию сущностей и
форматы атрибутов авторизации (ролей).

В целях рассмотрения, транзакции, которые происходят в системе DRM, можно разделить на по
меньшей мере две общие категории на основании типа информации, к которой осуществляется доступ,
которую получают, или над которой производятся манипуляции.

Транзакции доступа к контенту предусматривают прямой доступ или манипулирование мультиме-
дийным или развлекательным контентом или другой важной информацией, защищаемой системой DRM.
Примеры транзакций доступа к контенту включают в себя представление защищенного видеоклипа, соз-
дание копии защищенного аудиотрека на компакт-диске, перемещение защищенного файла на портатив-
ное устройство, передачу конфиденциального документа по электронной почте и т.п. Транзакции досту-
па к контенту обычно предусматривают прямой доступ к ключу защиты контента и осуществляются на
месте потребления по требованию пользователя.

Объектные транзакции это транзакции, в которых пользователь или система получает или взаимо-
действует с объектами, заданными системой DRM, которая тем или иным образом регламентирует дос-
туп к защищенному контенту. Такие объекты включают в себя лицензии DRM, жетоны принадлежности,
списки отмены и т.д. Одна или несколько объектных транзакций обычно необходимы прежде, чем будет
доступно все обеспечение, необходимое для осуществления транзакции доступа к контенту. Объектные
транзакции обычно характеризуются использованием того или иного типа сети связи для сборки объек-
тов DRM на месте потребления.

Эти два типа транзакций задают два пункта управления, которые, в общем случае, относятся к
большинстве систем DRM. На фиг. 38 показана типичная пара взаимодействий, в которых клиент 3800 с
наличием DRM запрашивает лицензию DRM 3802 у соответствующей службы 3804 лицензий DRM. В
примере, показанном на фиг. 38, лицензия DRM 3802 передается от службы 3804 лицензий DRM на кли-
ент 3800, где она оценивается для обеспечения доступа к контенту 3806.

Системы DRM обычно требуют, чтобы транзакции доступа к контенту и объектные транзакции
осуществлялись таким образом, что препятствовать неавторизованному доступу к контенту и создавать
объекты, защищающие контент. Однако вопросы безопасности для двух типов транзакций принципиаль-
но различны. Например: транзакции доступа к контенту могут требовать аутентификации принципала-
человека, проверки защищенного счетчика представления, оценивания лицензии DRM для вывода ключа
защиты контента, и т.д. Основной угрозой законному выполнению транзакции доступа к контенту явля-
ется нарушение границы, устойчивой к подделке, которая защищает объекты и данные внутри.

Объектные транзакции обычно предусматривают канал связи между сущностью, которая требует
объект DRM, и сущностью, которая его обеспечивает. По этой причине объектные транзакции сталкива-
ются с угрозами на основе связи, например атаками перехватчика, атаками ретрансляции, атаками отме-
ны услуг и атаками, в которых неавторизованные сущности получают объекты DRM, которые они не
могут законно обрабатывать.

В общем случае, объектные транзакции предусматривают аутентификацию двух взаимодействую-
щих сущностей, защиту сообщений, передаваемых между ними, и авторизацию транзакции. Основной
целью таких транзакций является сбор объектов DRM с защищенной целостностью из законных источ-
ников, что позволяет осуществлять транзакции доступа к контенту. С точки зрения транзакции доступа к
контенту, механизмы, посредством которых получаются законные объекты DRM и дополнительная ин-
формация, используемая при их получении, по существу, не имеют значения; эти механизмы могут (и,
предпочтительно, должны) быть невидимыми для самого доступа к контенту. Это принципиальное раз-
деление вопросов приводит, в предпочтительном варианте осуществления, к многоуровневой модели

012918

- 105 -

связи, которая отличает доверенную инфраструктуру связи от приложений, надстроенных на ней.
Упрощенный пример получения лицензии и потребления, показанный на фиг. 38, затемняет неко-

торые детали, которые обычно играют важную роль в практическом применении. Например, в этом при-
мере не показано, как служба лицензий DRM удостоверяется, что сущность, запрашивающая лицензию
DRM, действительно является законным клиентом DRM, а не злонамеренной сущностью, пытающейся
получить неавторизованную лицензию или заблокировать обслуживание законных клиентов путем по-
требления полосы сети и мощности обработки. Также не показано, как осуществляется защита важной
информации в отношении конфиденциальности и целостности при ее переносе по каналам связи, соеди-
няющим клиент и службу.

Эта иллюстративная транзакция более подробно показана на фиг. 39. На фиг. 39 пунктирная линия
представляет логическую транзакцию с точки зрения клиента 3800 представления контента и сервера
3804 лицензий DRM на уровне приложений. Стек 3900, изображенный под ними, представляет уровни
обработки, используемые для обеспечения доверенной и защищенной доставки между двумя конечными
точками.

Согласно фиг. 39, клиент представления 3800 запрашивает лицензию 3802 у сервера 3804 лицензий
DRM. Пунктирная линия на этой схеме указывает, что оригинальный источник и конечный потребитель
информации представляют собой клиент 3800 представления контента и сервер 3804 лицензий DRM.
Однако, на практике, полезная нагрузка сообщения фактически может обрабатываться на нескольких
уровнях обработки, находящихся между логикой уровня приложений и незащищенным каналом связи
3902, соединяющим две конечные точки.

Уровни обработки, которые отделяют компоненты уровня приложений от незащищенного канала
связи, совместно называются стеком безопасности. Стек безопасности можно рассматривать как защи-
щенную инфраструктуру обмена сообщениями, которая гарантирует, конфиденциальную передачу, с
защитой целостности, сообщений между доверенными конечными точками. Многоуровневая модель
стека обеспечивает следующие преимущества:

(1) Конструкторам логики уровня приложений не нужно тратить усилий на разработку нижележа-
щих механизмов защищенной связи, которые соединяют конечные точки. Доверенный инфраструктуры
обмена сообщениями является общим шаблоном конструкции, который, будучи однажды построен, мо-
жет быть распространен на многие разные ситуации независимо от логики уровня приложений, которая
их поддерживает.

(2) Сама инфраструктура обмена сообщениями может оставаться независимой от конкретной се-
мантики передаваемых ею сообщений и упора, который она делает на предупреждение атак, относящих-
ся к связи, и атак на аутентичность конечных точек обмена сообщениями.

В одном варианте осуществления, стек безопасности состоит из нескольких разных уровней обра-
ботки, которые описаны ниже. В одном варианте осуществления системы и способы согласования услуг,
описанные в заявке '551, можно использовать для обеспечения некоторых или всех операций стека безо-
пасности.

Аутентификация
В одном варианте осуществления, конечные точки обмена сообщениями можно аутентифициро-

вать. Аутентификация это процесс, в котором данная конечная точка демонстрирует другой, что ей дано
действительное имя органом, которому доверено делать это. Опорная конечная точка в транзакции
должна доверять органу присвоения имен; установление такого органа обычно осуществляется органи-
зациями, применяющими доверенную технологию.

Общий механизм для демонстрации обладания действительного имени использует криптографию
открытого ключа и цифровые подписи. Согласно этому подходу сущность снабжается тремя фрагмента-
ми информации:

(1) различимое имя, которое обеспечивает идентификатор сущности;
(2) пара асимметричных ключей, состоящая из открытого ключа и секретного личного ключа; и
(3) сертификат, снабженный цифровой подписью, который утверждает, что держателю секретного

ключа дано различимое имя.
Сертификат связывает различимое имя и секретный ключ. Сущности, которая использует секрет-

ный ключ для подписывания фрагмента информации, доверено иметь данное различимое имя. Подпись
можно проверить с использованием только открытого ключа. Например, аутентификация может произ-
водиться на основании стандарта X.509v3.

Поскольку в одном варианте осуществления сущности, которая может продемонстрировать облада-
ние сертифицированным секретным ключом, доверено иметь различимое имя, указанное в сертификате,
защита секретного ключа, используемого для подписывания информации, приобретает особую важность.
Таким образом, возможность использования личного ключа для подписывания задает границы сущности,
идентифицируемой различимым именем. На уровне приложений отправители и получатели должны
знать, что сообщения отправлены доверенными сторонами. Поэтому, в одном варианте осуществления
важно, чтобы логика уровня приложений сама была частью аутентифицированной сущности. По этой
причине в одном варианте осуществления стек безопасности и уровни приложений, которые опираются

012918

- 106 -

на него, предпочтительно заключены в границу доверия, в связи с чем предполагается, что подсистема,
содержащаяся в границе доверия, обобществляет доступ к личному ключу подписывания сообщений
сущности.

Авторизация
Вышеописанный механизм аутентификации доказывает распределенным конечным точкам обмена

сообщениями, что идентичность их корреспондента заслуживает доверия. Во многих вариантах осущест-
вления эта информация является слишком грубой - более подробная информация о возможностях и
свойствах конечных точек может потребоваться для принятия политических решений в отношении опре-
деленных транзакций. Например, в контексте фиг. 38, клиенту представления контента может понадо-
биться знать, не только, что он осуществляет связь с аутентифицированной конечной точкой, но также,
осуществляет ли он связь со службой, которая считается уполномоченной обеспечивать действительные
объекты «лицензия» DRM.

Варианты осуществления стека безопасности обеспечивают механизм для объявления, переноса и
применения политики, который основан на более дифференцируемых атрибутах аутентифицированных
сущностей, посредством механизма авторизации. С использованием этого механизма, сущностям, кото-
рые уже обладают мандатом аутентификации, присваиваются утверждения ролей, которые связывают
именованное множество возможностей с различимым именем сущности. Например, имена ролей можно
задавать для клиента DRM и сервера лицензий DRM.

Именованные роли призваны переносить конкретные возможности, которыми владеет сущность.
На практике, роли можно присоединять к сущности, объявляя связь между различимым именем сущно-
сти и именем роли. Как и сертификаты аутентификации, которые связывают ключи с различимыми име-
нами, в одном варианте осуществления, объявления ролей, используемые для авторизации, подписыва-
ются доверенным органом объявления роли, который может отличаться от генератора имен. Внутри
сущности, объявления ролей проверяются совместно с мандатом аутентификации как условие предос-
тавления доступа к уровню приложений конечной точки обмена сообщениями.

Сущность может носить столько атрибутов роли, сколько необходимо для построения приложения.
Пример, показанный на фиг. 40, демонстрирует сущность с множественными ролями: одной ролью, ко-
торая указывает способность функционировать в качестве клиента DRM, и двумя служебными ролями.
Например, одна сущность может быть одновременно клиентом DRM, поставщиком объектов DRM и по-
ставщиком данных безопасности. В одном варианте осуществления, SAML 1.1 используется для объяв-
лений, касающихся атрибутов сущности.

Защита сообщений
Нижним уровнем стека безопасности является уровень защиты сообщений, который обеспечивает

целостность, конфиденциальность и актуальность защиты сообщений, и снижает риск атак на канал свя-
зи, например, атак ретрансляции. На уровне защиты сообщений:

сообщения между процессами уровня приложений подписываются с использованием личного клю-
ча подписывания сообщений сущности, что обеспечивает защиту целостности и устойчивость к атакам
перехватчика;

сообщения шифруются с использованием открытого ключа, которым владеет сущность-адресат.
Это гарантирует, что непредназначенные получатели не могут читать сообщения, перехваченные при
переносе;

в сообщение добавляются примечания и метки времени, обеспечивающие иммунитет к атакам
ретрансляции и облегчающие испытания на живучесть между конечными точками обмена сообщениями;

Используются метки времени сервера для обновления доверенного времени механизма DRM.
В одном иллюстративном варианте осуществления, предусмотрена поддержка симметричного шиф-

рования AES, криптографии открытого ключа RSA, дайджестов подписи SHA-256, и механизмов для
сигнализации других алгоритмов в сообщениях.

15. Протокол автозагрузки.
В некоторых вариантах осуществления протокол автозагрузки используется для доставки началь-

ных конфиденциальных данных конфигурации на сущности, например, устройства и программные кли-
енты. Например, когда сущность желает войти в более крупную сеть или систему и осуществлять связь с
другими сущностями с использованием криптографических протоколов, может потребоваться конфигу-
рирование ее персонализованными данными, включающими в себя набор ключей (совместного пользо-
вания, секретного и открытого). Когда для невозможно или непрактично предварительно конфигуриро-
вать сущности персонализованными данными, ей приходится "самозагружаться" с использованием крип-
тографического протокола.

Описанный ниже иллюстративный протокол использует секрет совместного пользования в качестве
основания для автозагрузки сущности с набором ключей и другими данными конфигурации. В нижесле-
дующих разделах будет использоваться следующая система обозначений:

Е(K, D) - шифрование некоторых данных D ключом K;
D(K, D) - дешифрование некоторых зашифрованных данных D ключом K;
S(K, D) - подпись некоторых данных D ключом K. Это может быть подпись открытым ключом или

012918

- 107 -

MAC.
H(D) - дайджест сообщения для данных D.
V(K, D) - проверка подписи на некоторых данных D ключом K. Это может быть проверка подписи

открытым ключом или MAC.
CertChain(K) - цепь сертификатов, связанная с открытым ключом К. Значение К включено в первый

сертификат цепи.
CertVerify(RootCert, CertChain) - проверка того, что цепь сертификатов CertChain (включающая в

себя открытый ключ, найденный в первом сертификате цепи) действительна под корневым сертифика-
том RootCert.

А | В | С | ... - последовательность байтов, полученная связыванием отдельных последовательностей
байтов А, В, С,....

CN(А) - каноническая последовательность байтов для А.
CN (А, В, С,...) - каноническая последовательность байтов для сложных полей А, В, С
15.1. Начальное состояние.
15.1.1. Клиент.
В одном варианте осуществления клиент имеет следующий набор жетонов автозагрузки (заранее

загруженных во время изготовления и/или в программно-аппаратном/программном обеспечении).
Один или несколько сертификатов, предназначенных только для чтения, которые являются корнем

доверия для процесса автозагрузки: BootRootCertificate.
Один или несколько секретных ключей аутентификации автозагрузки: ВАК (совместного пользова-

ния).
Необязательный секретный ключ генерации порождающего числа автозагрузки (уникальный для

каждого клиента) BSGK. Если клиент имеет хороший источник случайных данных, это порождающее
число не нужно.

Некоторая информация ClientInformation, которую клиент должен передать службе автозагрузки
для получения своего ключа конфиденциальности (например, ClientInformation может включать в себя
серийный номер устройства, имя изготовителя и т.д.). Эта информация состоит из списка атрибутов. Ка-
ждый атрибут является парой (имя, значение).

Клиент можно конфигурировать множественными сертификатами BootRootCertificate и ключами
аутентификации ВАК, чтобы он имел возможность участвовать в протоколе загрузки с различными сер-
верами загрузки, которые могут требовать разных доверенных доменов.

15.1.2. Сервер.
В одном варианте осуществления сервер имеет следующие жетоны:
по меньшей мере один из ключей аутентификации автозагрузки клиента: ВАК (секрет совместного

пользования);
пара открытого/секретного ключей, используемая для подписи: (Es,Ds);
цепь сертификатов ServerCertificateChain = CertChain(Es), которая действительна под одним из кор-

невых сертификатов: BootRootCertificate;
пара открытого/секретного ключей, используемая для шифрования: (Ee/De).
15.2. Описание протокола.
Иллюстративный вариант осуществления протокола автозагрузки показан на фиг. 41 и описан ни-

же. Неудача при выполнении процесса (например, при проверке подписи или цепи сертификатов) приве-
дет к ошибке и остановке выполнения протокола.

BootstrapRequestMessage.
Клиент передает на сервер запрос, указывающий, что он хочет инициировать сеанс автозагрузки, и

обеспечивает некоторые начальные параметры (например, версию протокола, профиль и т.д.), а также ID
сеанса (для предотвращения атак ретрансляции) и список доверенных доменов, в которых он может уча-
ствовать. В нижеследующей таблице показан иллюстративный формат для BootStrapRequestMessage:

012918

- 108 -

Атрибуты Protocol и Version сообщения указывают, какую спецификацию протокола использует
клиент, и поле Profile идентифицирует заранее заданный набор криптографических протоколов и форма-
тов кодирования, используемый для обмена сообщениями и данными.

Клиент выбирает SessionId, который должен быть уникальным для этого клиента и не подлежит по-
вторному использованию. Например, для генерации уникального ID сеанса можно использовать уни-
кальный ID для клиента и значение возрастающего счетчика.

В одном варианте осуществления клиент также передает список всех доверенных доменов, для ко-
торых он был сконфигурирован.

В одном варианте осуществления, сервер принимает BootstrapRequestMessage и осуществляет сле-
дующие этапы:

Проверяет, поддерживает ли он указанные Protocol, Version и Profile, запрошенные клиентом.
Генерирует Nonce (строго случайное число).
В необязательном порядке генерирует Cookie для переноса информации например, метки времени,

жетона сеанса или любой другой информации со стороны сервера, которая будет сохраняться на протя-
жении сеанса. Значение куки имеет смысл только для сервера, и рассматривается клиентом как непро-
зрачный блок данных.

Извлекает значение SessionId из BootstrapRequestMessage.
Генерирует вызов: Challenge = [Nonce, Ее, Cookie, SessionId].
Вычисляет S (Ds, Challenge) для подписывания вызова с помощью Ds.
Строит ChallengeRequestMessage и передает его обратно на клиент в порядке ответа.
ChallengeRequestMessage.
В нижеследующей таблице показан иллюстративный формат для ChallengeRequestMessage:

012918

- 109 -

В одном варианте осуществления, получив ChallengeRequestMessage, клиент осуществляет сле-
дующие этапы.

Удостоверяется, что цепь сертификатов ServerCertificateChain действительная под корневым серти-
фикатом BootRootCertificate: CertVerif(BootRootCertificate, ServerCertificateChain).

Извлекает открытый ключ Es из ServerCertificateChain.
Проверяет подпись вызова: V(Es, Challenge).
Проверяет, совпадает ли SessionId с идентификатором сеанса, выбранным для сеанса при отправке

BootRequestMessage.
Строит ChallengeResponseMessage и передает его на сервер.
ChallengeResponseMessage.
Для генерации ChallengeResponseMessage клиент осуществляет следующие этапы.
Генерирует сеансовый ключ SK с использованием одного из следующих методов:
прямого, с использованием защищенного генератора случайных ключей;
косвенного, с использованием Nonce и BSGK: вычисляет HSK = Н (BSGK | Nonce), и задает SK =

первые N байтов из HSK;
генерирует объект ChallengeRepsonse, который содержит [Challenge, ClientInformation, SessionKey].

Здесь, Challenge входит в состав ранее принятого ChallengeRequestMessage, где ServerEncryptionKey
опущен;

вычисляет S (ВАК, ChallengeResponse) для подписывания ответа с помощью ВАК;
шифрует подписанный ChallengeReponse с помощью SK: E (SK, [ChallengeResponse, S(ВАК, Chal-

lengeResponse)]);
шифрует SessionKey открытым ключом сервера Ее.
строит ChallengeResponseMessage и передает его на сервер

012918

- 110 -

Сервер принимает BootstrapChallengeResponse и осуществляет следующие этапы:
дешифрует сеансовый ключ SK с использованием своего секретного ключа De: D(De, SessionKey);
дешифрует ChallengeResponse сеансовым ключом SK, полученным на предыдущем этапе: D(SK,

Challenge);
проверяет подпись вызова: V(BAK, ChallengeResponse);
проверяет, совпадает ли сеансовый ключ SK с ключом, используемым для дешифрования;
проверяет, при необходимости, значения Cookie и Nonce (например, метку времени);
проверяет, совпадает ли SessionId с идентификатором сеанса, выбранным для сеанса при отправке

BootRequestMessage;
строит BootstrapResponseMessage и предает его на клиент.
BootstrapResponseMessage.
Для генерации BootstrapResponseMessage, сервер осуществляет следующие этапы:
анализирует ClientInformation, полученную в ChallengeResponseMessage и ищет или генерирует дан-

ные;
конфигурации клиента, которые нужно передать для этого запроса автозагрузки (они могут вклю-

чать в себя ключи конфиденциальности (Ec/Dc) для узла, представляющего клиент). Обычно сервер ис-
пользует значение Nonce и Cookie для облегчения извлечения верной информации для клиента.

создает BootstrapResponse с SessionId и данными конфигурации;
вычисляет S (Ds, BootstrapResponse) для подписывания Data с помощью Ds;
шифрует подписанный BootstrapResponse сеансовым ключом SK: E(SK, [BootstrapResponse, S(Ds,

BootstrapResponse)])

15.3. Доверенные домены.
В одном варианте осуществления каждый доверенный домен включает в себя орган корневого сер-

тификата и уникальное имя домена. Когда клиент передает BootstrapRequest, он идентифицирует все до-
веренные домены, которые он желает принимать (т.е. сертификаты которых он будет считать действи-
тельными). Сервер выбирает доверенный домен из списка, переданного клиентом, если он поддерживает
хотя бы один из них.

15.4. Подписи.
В одном варианте осуществления всякий раз при использовании подписей в полезной нагрузке со-

общений, подписи вычисляются на канонической последовательности байтов для полей данных, содер-
жащихся в подписанной(ых) части(ях) сообщения. Каноническая последовательность байтов вычисляет-
ся из значений полей, но не из кодировки значений полей. Каждый профиль, предпочтительно, задает
алгоритм, используемый для вычисления канонической последовательности байтов полей для каждого
типа сообщения.

15.5. Профили.
Профиль протокола автозагрузки это набор вариантов различных криптографических шифров и

форматов сериализации. Каждый профиль, предпочтительно, имеет уникальное имя и включает в себя
следующие варианты:

алгоритм шифрования открытым ключом;
алгоритм подписи открытым ключом;
алгоритм шифрования секретным ключом;
алгоритм подписи секретным ключом;
кодирование открытым ключом;
алгоритм дайджеста;
каноническая сериализация объекта;
формат сертификата;
минимальный размер нонса;

012918

- 111 -

маршализация сообщений.
Приложение А

Ниже приведен пример объекта «контроллер» с множественными блокирующими подписями.
Примечание: в этом примере ключи контента не шифруются

012918

- 112 -

012918

- 113 -

Приложение В
В этом приложении В представлено XML-кодирование объектов в одном варианте осуществления

системы с использованием иллюстративного механизма DRM Octopus, описанного здесь в другом месте.
Для конкретного приложения, можно создать схему XML, зависящую от приложения, путем импорта
схемы XML, показанной ниже ("Octopus XML Schema") и добавления элементов, зависящих от приложе-
ния (например, расширений, используемых для отмены). В одном варианте осуществления, кодировка
объектов в XML должна быть способно проходить удостоверение согласно схеме XML, зависящей от
приложения. Дополнительные возможные ограничения на эти XML-кодировки представлены ниже.

В примере, представленном в этом приложении В, базовым типом схемы XML для всех объектов
DRM является OctopusObjectType. Это означает, что все объекты поддерживают атрибуты и расширения.
Тип каждого элемента объекта Octopus является производным этого базового типа. Эти типы могут
группировать другие элементы, например, элемент SecretKey для ContentKeyType.

В этом иллюстративном варианте осуществления ключи системы распространения ключей Scuba
описаны применительно к исключению: элемент ScubaKeys является дочерним по отношению к элемен-
ту расширения. То же самое касается ключей отмены с расширением Torpedo.

Как описано здесь в другом месте, существуют разные виды объектов Octopus (например, Content-
Key, Protector, Controller, Control, Node и Link). Эти объекты можно связывать друг с другом совместно с
расширениями с использованием элемента <Bundle>. В одном варианте осуществления, если объекты
или расширения подписаны в <Bundle>, то <Bundle> содержит элементы <Signature>, описанные здесь в
другом месте.

Схема XML Octopus (Octopus.xsd):

012918

- 114 -

012918

- 115 -

012918

- 116 -

012918

- 117 -

Иллюстративная схема, зависящая от приложения:

012918

- 118 -

B.1. Дополнительные ограничения.
В.1.1. Узлы.
В одном варианте осуществления заданы следующие типы узлов.
Узел индивидуальности Octopus, которые являются корневыми узлами данного механизма DRM

(например, узел «устройство» или узел «программное обеспечение ПК»).
Другие типы узлов, например узлы «пользователь» или узлы для группы пользователей, например,

узлы подписки или узлы принадлежности.
В одном варианте осуществления узлы содержат ключи (например, в Extensions, например, Scu-

baKeys), и должна быть возможность разделять открытую информацию узла (например, id, атрибуты и
открытые ключи) и его личные расширения (которые, например, несут секретный и личный ключи).
Кроме того, должно существовать по одной подписи на часть (открытую или личную), чтобы можно бы-
ло экспортировать открытый узел со своей подписью, как есть (например, как параметр запроса к сле-
дующей лицензий).

В одном варианте осуществления, личные расширения переносятся в ExternalExtension и подписы-
ваются. Открытый узел и его личные расширения могут быть упакованы в одном и том же элементе
<Bundle>, или могут приходить раздельно. Пример подписанного узла индивидуальности Octopus приве-
ден ниже в дополнении А к приложению В.

В.1.1.1. Атрибуты.
В одном варианте осуществления, каждая XML-кодировка объекта «узел» несет <AttributeList> со

следующими полями <Attribute>:
Для индивидуальностей Octopus:

В.1.1.2 Расширения.
Согласно дополнению А к этому приложению В, в одном варианте осуществления узлы индивиду-

альности Octopus несут расширения для ScubaKeys (ключи совместного пользования и конфиденциаль-
ности) и Torpedo (широковещательный секретный ключ). Узлы других типов несут только ключи совме-
стного пользования Scuba.

Все открытые ключи переносятся внутри элемента <Node> в <Extension> в <ExtensionList>. Другие
ключи переносятся в отдельном элементе <Extension> вне элемента <Node>.

В одном варианте осуществления, расширения <ScubaKeys> подписаны в <Node>. В этом варианте
осуществления, внутреннее <Extension>, несущее <ScubaKeys> внутри <Node> (открытые ключи) долж-
но включать в себя элемент <ds:DigestMethod>, а также элемент <ds:DigestValue>. Секретные ключи,
переносимые во внешнем <Extension>, должны быть подписаны, и это делается путем подписывания

012918

- 119 -

всего расширения. Аналогично, подписано расширение <Torpedo>.
В.1.2. Связи.
В одном варианте осуществления, элементы <LinkTo> и <LinkFrom> элемента <Link> содержат

только элемент <Id> и ни одного элемента <Digest>. Элемент <Control> является необязательным. До-
полнение С к этому приложению В содержит пример подписанного объекта «связь».

В.1.2.1. Атрибуты.
В одном варианте осуществления, связи не имеют обязательных атрибутов. Это означает, что <At-

tributeList> не обязателен и будет игнорироваться гибкой реализацией.
В.1.2.2. Расширения.
В иллюстративном варианте осуществления, показанном в этом приложении В, связи имеют внут-

ренние расширения <ScubaKeys>, переносимые внутри <Link>, и, таким образом, элемент <Exten-
sionList> является обязательным. Кроме того, расширение <ScubaKeys> в связи не подписано, и, таким
образом, ни элемент <ds:DigestMethod>, ни элемент <ds:DigestValue> не переносится внутри элемента
<Extension>. Это расширение <ScubaKeys> содержит зашифрованную версию открытого/секретного
ключей совместного пользования Scuba (в элементах <PrivateKey> и <SecretKey>) "конечного узла" с
открытым или секретным ключом совместного пользования Scuba от "начального узла". Это шифрова-
ние сигнализируется с использованием синтаксиса шифрования XML. Согласно варианту осуществле-
ния, представленному в этом приложении В, атрибут "encoding" элемента <KeyData>, дочернего по от-
ношению к элементам <PrivateKey> и <SecretKey>, задан равным "xmlenc". Дочерним элементом этого
элемента <KeyData> будет элемент <xenc:EncryptedData>. Имя ключа шифрования объявлено в элементе
<KeyInfo>/<KeyName>.

В одном варианте осуществления, если ключ шифрования является открытым ключом, то элемент
<KeyName> является именем пары, которой принадлежит ключ;

если зашифрованные данные, например секретный ключ, слишком велики для шифрования непо-
средственно открытым ключом, генерируется промежуточный 128-битовый секретный ключ. Затем дан-
ные шифруются этим промежуточным ключом с использованием, например, aes-128-cbc, и промежуточ-
ный ключ шифруется открытым ключом (с использованием элемента <EncryptedKey>).

Фрагмент XML-кода будет выглядеть примерно так:

012918

- 120 -

В.1.3. Объекты «лицензия».
В дополнении С к этому приложению В приведен пример подписанной лицензии (до того, как про-

изойдет первая отмена, см. ниже раздел ContentKey).
В.1.3.1. Protector.
В иллюстративном варианте осуществления, показанном в этом приложении В, элемент <Content-

KeyReference> и элементы <ContentReference> (например, внутри элемента <ProtectedTargets>) содержат
только element <Id> и ни одного элемента <Digest>. В этом иллюстративном варианте осуществления,
объекты Protector не содержат обязательных атрибутов или расширений; элементы <AttributeList> и <Ex-
tensionList> являются необязательными и будут игнорироваться.

В.1.3.2. ContentKey.
В иллюстративном варианте осуществления, показанном в этом приложении В, объекты ContentKey

не содержат обязательных атрибутов или расширений. Поэтому, элементы <AttributeList> и <Exten-
sionList> являются необязательными и будут игнорироваться.

В одном варианте осуществления, элементы <ContentKey> содержат элемент <SecretKey>, который
представляет фактический ключ, который будет использоваться для дешифрования контента. <KeyData>,
связанный с <SecretKey>, зашифрован. В одном варианте осуществления, обязательно, чтобы атрибут
"encoding" элемента <KeyData> был задан равным "xmlenc".

В одном варианте осуществления, существует два разных варианта для объектов ContentKey: (1) До
первой отмены устройства или приложения ПК: в этом случае, ключ контента Кс, представленный эле-
ментом <SecretKey>, шифруется только ключом Scuba (открытым или секретным) сущности, к которой
привязан контент (например, пользователя). (2) После первой отмены, когда ключ контента шифруется
согласно схеме широковещательного шифрования Mangrove. Затем результирующие данные шифруются
ключом Scuba (открытым или секретным) сущности, к которой привязан контент. В этом случае, мы
имеем супер-шифрование.

Иллюстративные методы шифрования элемента <EncryptedData> в случае супер-шифрования опи-
саны здесь в другом месте. Ниже объясняется, как применить это к случаю b.

В одном варианте осуществления, синтаксис xmlenc для шифрования ключа контента Кс согласно
схеме широковещательного шифрования Mangrove таков:

(*) это URL, идентифицирующий схему широковещательного шифрования Mangrove, которая, в
одном варианте осуществления, также является алгоритмом <BroadcastKeyMethod> расширения <Tor-
pedo> в вызове схемы xml, зависящей от приложения "kformat.xsd".

(**) это имя дерева ключей Mangrove. В одном варианте осуществления, это значение должно быть
таким же, как у атрибута «source» элемента <BroadcastKey>, заданного в kformat.xsd.

(***) это значение, в кодировке base64, последовательности ASN.1, представляющей шифрование
ключа контента Кс согласно алгоритму широковещательных ключей Mangrove:

В одном варианте осуществления последовательность байтов <EncryptedData>, согласно вышеска-

занному, шифруется ключом совместного пользования scuba (открытым или секретным) сущности, к
которой привязана лицензия. Если используется открытый ключ, то применяются те же соглашения, ко-
торые описаны ниже (см., например, шифрование открытым ключом), и необходим промежуточный
ключ, если последовательность байтов <EncryptedData> слишком велика для открытого ключа RSA 1024.
Пример XML-кодирования такого объекта ContentKey можно найти в дополнении D к этому приложе-
нию В.

В. 1.3.3. Controller.
В одном варианте осуществления объекты «контроллер» не содержат обязательных атрибутов или

расширений. Поэтому элементы <AttributeList> и <ExtensionList> являются необязательными и будут
игнорироваться гибкой реализацией.

В одном варианте осуществления значение атрибута Algorithm элементов <DigestMethod> всегда
равны http://www.w3.org/2000/09/xmldsig#sha1.

В одном варианте осуществления <ControlReference> должен иметь элемент <Digest>. Элемент

012918

- 121 -

<DigestValue> должен содержать кодировку base64 дайджеста объекта управления, на который имеется
ссылка.

В одном варианте осуществления, если подпись на контроллере является подписью PKI (rsa-sha1),
элементы <ContentKeyRefence> (в элементах <ControlledTargets>) должны включать в себя элемент <Di-
gest>, и элемент <DigestValue> должен содержать дайджест незашифрованного ключа контента, вне-
дренного в объект ContentKey.

В.1.3.4. Control.
В одном варианте осуществления, объекты управления не содержат обязательных атрибутов или

расширений. Поэтому элементы <AttributeList> и <ExtensionList> являются необязательными и будут
игнорироваться гибкой реализацией.

В одном варианте осуществления, атрибут «type» элемента <ControlProgram> задан равным "plank-
ton", и атрибут byte-codeType элемента <CodeModule> задан равным "Plankton-1-0."

Приложение В

Дополнение А. Пример подписанного узла индивидуальности Octopus

012918

- 122 -

012918

- 123 -

Приложение В. Дополнение В. Пример подписанной связи Octopus

012918

- 124 -

012918

- 125 -

Приложение В. Дополнение С. Пример подписанной лицензии Octopus (без отмены)

012918

- 126 -

Приложение В. Дополнение D. Пример ContentKey с отменой

012918

- 127 -

Приложение С

В этом приложении С приведен пример простого профиля для использования с вышеописанным
протоколом автозагрузки. Кроме того, предусмотрены простая каноническая сериализация, иллюстра-
тивная маршализация XML, и иллюстративный WSDL для Octopus Bootstrap SOAP Web Serivce.

Простой профиль
В одном варианте осуществления, используется простой профиль, имеющий следующий состав:

Простая каноническая сериализация 1.0.
В одном варианте осуществления вышеописанная простая каноническая последовательность бай-

тов, используемая в простом профиле, состоит в построении последовательностей байтов из значений
полей объектов в сообщениях. Каждое сообщение и каждый объект состоит из одного или нескольких
полей. Каждое поле является либо простым полем, либо составным полем.

Простые поля могут быть четырех типов: целое число, строка, последовательность байтов или мас-
сив полей. Сложные поля состоят из одного или нескольких подполей, каждое из которых может быть
простым или составным.

В одном варианте осуществления существуют следующие правила построения канонической по-
следовательности байтов для каждого типа поля:

Сложные поля

Каноническая последовательность байтов является сцепкой канонических последовательностей

байтов каждого из подполей (необязательные поля не пропускаются, но сериализуются согласно правилу
для необязательных полей).

Массив полей

Счетчик полей закодирован в виде последовательности из 4 байтов в обратном порядке следования

байтов, после него следуют канонические последовательности байтов каждого из полей. Если счетчик
полей равен 0, то после 4-байтового счетчика полей ничего нет (в этом случае, все 4 байта имеют значе-
ние 0).

012918

- 128 -

Целое число

32-битовое знаковое значение, закодированное в виде последовательности из 4 байтов, в обратном

порядке следования байтов.
Строка

Строка представлена последовательностью 8-битовых байтов в кодировке UTF-8. Счетчик байтов

закодированной последовательности байтов кодируется в виде последовательности из 4 байтов в обрат-
ном порядке следования байтов. После счетчика байтов следует последовательность байтов строки в ко-
дировке UTF-8.

Последовательность байтов

Счетчик байтов закодирован в виде последовательности из 4 байтов в обратном порядке следования

байтов (если последовательность байтов пуста, или соответствующее поле пропущено, счетчик байтов
равен 0, и после 4-байтового счетчика байтов нет никаких байтовых значений). Каждый байт кодируется
как есть.

Простая маршализация XML 1.0
Схема SimpleBootProtocol.xsd

012918

- 129 -

012918

- 130 -

012918

- 131 -

012918

- 132 -

Приложение D
Ниже представлен способ вычисления, не зависящий от кодирования, канонической последова-

тельности байтов (CBS) для объектов, который используется, в предпочтительных вариантах осуществ-
ления, при вычислении дайджестов для использования цифрового подписывания объектов. Эта последо-
вательность байтов не зависит от способа представления или передачи объектов, что позволяет исполь-
зовать одни и те же значения дайджеста и подписи в системах, где используются множественные форма-
ты кодирования (например, XML, ANS1), языки программирования, и т.п.

1. Алгоритм канонической последовательности байтов.
Алгоритм канонической последовательности байтов состоит в построении последовательностей

байтов из значений полей. Каждое поле имеет значение простого типа или составного типа. Некоторые
поля могут быть заданы как необязательные (поле может присутствовать или отсутствовать).

В одном варианте осуществления простые типы представляют собой целое число, строку, байт и
логическое значение.

Составные типы состоят из одного или нескольких подполей, каждое из которых имеет значение
простого или составного типа. Составные типы могут быть разнородными или однородными, в том
смысле, что содержат одно или несколько значений подполей (простых или составных) разных типов
(т.е., разнородные), или содержат одно или несколько значений подполей (простых или составных) одно-
го типа (однородные).

Каноническая последовательность байтов поля получается путем применения правила кодирования
к значению поля, когда поле всегда присутствует, или правила кодирования для необязательных полей,
когда поле задано как необязательное. В нижеследующих описаниях правил кодирования, термин байт
означает 8-битовое значение (октет).

1.1. Необязательные поля.
Если необязательное поле присутствует, его значение сериализуется как байтовое значение 1, после

которого следует каноническая последовательность байтов значения поля. Если оно опущено, его значе-
ние сериализуется как байтовое значение 0.

1.2. Разнородный составной тип.

012918

- 133 -

Каноническая последовательность байтов является сцеплением канонических последовательностей
байтов значений всех подполей (необязательные поля не пропускаются, но сериализуются согласно пра-
вилу для необязательных полей).

1.3. Однородный составной тип.
Каноническая последовательность байтов представляет собой счетчик подполей, закодированный в

виде последовательности из 4 байтов в обратном порядке следования байтов, после которого следует
сцепление канонических последовательностей байтов значений всех подполей. Если счетчик подполей
равен 0, то после 4-байтового счетчика полей ничего нет (в этом случае, все 4 байта имеют значение 0).

1.4. Целое число.
32-битовое целочисленное значение, закодированное в виде последовательности из 4 байтов, в об-

ратном порядке следования байтов.
1.5. Строка.

Строки представлены последовательностью байтов в кодировке UTF-8 (без символа конца строки).

Каноническая последовательность байтов для строки состоит из (1) счетчика байтов строки, закодиро-
ванного в виде последовательности из 4 байтов в обратном порядке следования байтов, после которого
следует (2) последовательность байтов строки.

1.6. Байт.
8-битовое значение.
1.7. Логическое значение.
8-битовое значение: 0 означает ложь и 1 - истину.
2. Применение к объектам Octopus.
В одном варианте осуществления, каноническая последовательность байтов для объекта Octopus

представляет собой сцепление канонических последовательностей байтов всех его полей, в том порядке,
в каком они заданы в модели объекта.

Для разнородных составных типов, порядок полей указан в определении типа. Для однородных со-
ставных типов, порядок элементов указан в нижеследующих разделах.

Атрибуты
Поле "attributes" объекта рассматривается как безымянный атрибут типа "list" (это несортированный

контейнер именованных атрибутов). Именованные атрибуты, содержащиеся в значении attributes типа
"list", рассортированы лексикографически по их полю "name". Безымянные атрибуты, содержащиеся в
значении attributes типа "array", не сортированы (они сериализуются в порядке их размещения в массиве).

Расширения
Внутренние расширения объекта рассортированы лексикографически по их полю 'id'. В одном ва-

рианте осуществления для внутренних расширений, поле 'extensionData' не используется при вычислении
канонической последовательности байтов. Для таких расширений, если необходимо их включение в вы-
числение дайждеста с целью подписи, они будут содержать поле 'digest', представляющее дайджест фак-
тических данных, переносимых в 'extensionData'. Для каждого типа данных расширения предусмотрено
определение, которое позволяет вычислять его каноническую последовательность байтов.

Контроллер
Ссылки на ContentKey рассортированы лексикографически по их полю 'id' .
3. ScubaKeys.
Ключи в полях 'publicKeys', 'privateKeys' и 'secretKeys' рассортированы лексикографически по их

полю 'id'.
4. Пример

Каноническая последовательность байтов экземпляра класса В, где а[] = {7,8,9}, s = "Abe", x =

012918

- 134 -

{5,4}, s2="" и optioinal_x отсутствует, сериализуется следующим образом:

где Cano(X) представляет собой:

Приложение Е

Ниже приведен пример программы управления. В этом примере, лицензия указывает, что действие
«воспроизведение» может быть разрешено, если состояние принадлежности (предусмотренное при реги-
страции) или состояние лицензии (предусмотренное при передаче лицензии) можно найти в базе данных
состояний (именуемой в этом иллюстративном варианте осуществления базой данных "Seashell"). Ли-
цензия также позволяет равноправному устройству запрашивать передачу лицензии. Эта передача раз-
решается, если два равноправных устройства находятся в данной степени близости друг от друга. Лицен-
зия содержит агент, который задает состояние лицензии на равноправном устройстве.

В нижеследующих полях кода, "MovableDomainBoundLicense.asm" является главным объектом
управления, "LicenseUtils/*" являются помощниками для лицензии, "GenericUtils/*" являются помощни-
ками общего назначения, которые осуществляют, например, функции вычисления длины строки, сравне-
ния строк, манипулирования стеком и/или т.п., и "ExtendedStatusBlockParameters/*" содержит XML-
описание параметра расширенного блока состояний и соответствующее представление в виде ряда бай-
тов, скомпилированных из XML.

012918

- 135 -

012918

- 136 -

012918

- 137 -

012918

- 138 -

012918

- 139 -

012918

- 140 -

012918

- 141 -

012918

- 142 -

012918

- 143 -

012918

- 144 -

012918

- 145 -

012918

- 146 -

012918

- 147 -

012918

- 148 -

012918

- 149 -

012918

- 150 -

012918

- 151 -

012918

- 152 -

012918

- 153 -

012918

- 154 -

012918

- 155 -

012918

- 156 -

Хотя вышеприведенное подробное описание было предоставлено для пояснения изобретения, оче-

видно, что возможны определенные изменения и модификации в пределах объема прилагаемой формулы
изобретения. Заметим, что существует много альтернативных способов реализации описанных здесь
процессов и устройств. Соответственно, настоящие варианты осуществления следует рассматривать как
иллюстративные и неограничительные, и изобретение не подлежит ограничению рассмотренными здесь
деталями, но допускает модификации в рамках объема и эквивалентов прилагаемой формулы изобрете-
ния.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ авторизации доступа к фрагменту электронного контента на компьютерной системе хос-
та, при этом способ содержит этапы, на которых

принимают запрос от пользователя компьютерной системы хоста для доступа к фрагменту элек-
тронного контента,

извлекают лицензию, связанную с фрагментом электронного контента, причем лицензия содержит
объект управления, объект контроллера, объект протектора и объект ключа контента,

извлекают первую программу управления из объекта управления и
выполняют первую программу управления с использованием механизма управления цифровыми

правами, выполняющегося на компьютерной системе хоста, для определения, можно ли удовлетворить
запрос, причем при выполнении программы управления оценивают один или несколько объектов связи,
причем каждый объект связи представляет соотношение между двумя сущностями, причем по меньшей
мере один из одного или нескольких объектов связи содержит вторую программу управления, и при оце-
нивании одного или нескольких объектов связи выполняют вторую программу управления с использова-
нием механизма управления цифровыми правами для определения, действительна ли связь, причем при
выполнении определяют, выполняются ли одно или несколько условий, выраженных программой управ-
ления.

2. Способ по п.1, в котором объект контроллера способен безопасно связывать объект управления с
объектом ключа контента.

3. Способ по п.1, в котором объект протектора способен безопасно связывать объект ключа контен-

012918

- 157 -

та с фрагментом электронного контента.
4. Способ по п.1, в котором по меньшей мере одно из одного или нескольких условий содержит

требование, чтобы текущее время было до заранее заданного времени.
5. Способ по п.1, в котором по меньшей мере одно из одного или нескольких условий содержит

требование, чтобы текущее время было после определенного времени.
6. Способ по п.1, в котором по меньшей мере одно из одного или нескольких условий содержит

требование, чтобы вторая программа управления предварительно не была выполнена больше заранее
заданного числа раз.

7. Способ по п.1, в котором по меньшей мере одно из одного или нескольких условий содержит
требование, чтобы счетчик, хранящийся в памяти, не превышал заранее заданного значения.

8. Способ по п.1, в котором по меньшей мере одно из одного или нескольких условий содержит
требование, чтобы заранее заданное событие ранее не происходило.

9. Способ по п.1, в котором по меньшей мере одно из одного или нескольких условий содержит
требование, чтобы компьютерная система хоста имела одну или несколько заранее заданных характери-
стик.

10. Способ по п.1, в котором по меньшей мере одно из одного или нескольких условий содержит
требование, чтобы программное обеспечение, выполняющееся на компьютерной системе хоста для пред-
ставления фрагмент электронного контента, было неспособно экспортировать фрагмент электронного
контента на заранее заданный интерфейс.

11. Способ авторизации выполнения данного действия на фрагменте электронного контента, при
этом способ содержит этапы, на которых

выполняют первую программу управления с использованием виртуальной машины, выполняющей-
ся на первом механизме управления цифровыми правами, причем первая программа управления способ-
на определять, может ли данное действие осуществляться на фрагменте электронного контента, причем
первая программа управления способна оценивать первое множество из одного или нескольких условий,
которые должны выполняться для того, чтобы осуществление данного действия было авторизовано, при-
чем по меньшей мере одно из первого множества из одного или нескольких условий содержит требова-
ние, чтобы один или несколько объектов связи были доступны механизму управления цифровыми пра-
вами, причем объекты связи логически связывают первый узел, представляющий первую сущность, со
вторым узлом, представляющим вторую сущность,

извлекают один или несколько объектов связи, причем каждый из объектов связи выражает соот-
ношение между двумя сущностями, и по меньшей мере один из объектов связи включает в себя вторую
программу управления, причем вторая программа управления способна оценивать второе множество из
одного или нескольких условий, которые должны выполняться, чтобы по меньшей мере один объект свя-
зи можно было считать действительным, и

используют механизм управления цифровыми правами для выполнения второй программы управ-
ления.

12. Способ по п.11, в котором первое множество из одного или нескольких условий включает в себя
условие, относящееся к времени.

13. Способ по п.11, в котором второе множество из одного или нескольких условий включает в себя
условие, относящееся к времени.

14. Способ по п.11, в котором по меньшей мере одно из первого множества условий и второго мно-
жества условий содержит требование, чтобы счетчик, хранящийся в памяти, не превышал заранее задан-
ного значения.

15. Способ авторизации доступа к фрагменту электронного контента в системе управления цифро-
выми правами, содержащей механизм управления цифровыми правами, включающий в себя виртуаль-
ную машину, причем способ содержит этапы, на которых

принимают запрос на доступ к фрагменту электронного контента или иное его использование,
идентифицируют лицензию, связанную с фрагментом электронного контента, причем лицензия со-

держит программу управления и ключ контента,
выполняют программу управления с использованием виртуальной машины,
получают выход виртуальной машины, причем выход указывает, что запрашиваемый доступ или

иное использование фрагмента электронного контента авторизован(о), пока выполняется обязательство,
определяют, что приложение хоста способно выполнять обязательство, и
разрешают запрашиваемый доступ или иное использование фрагмента электронного контента при

выполнении обязательства, включающего в себя использование ключа контента для дешифрования
фрагмента электронного контента.

16. Способ по п.15, в котором обязательство содержит представление фрагмента электронного кон-
тента в формате пониженного качества.

17. Способ по п.15, в котором обязательство содержит запись информации аудита, относящейся к
доступу или иному использованию фрагмента электронного контента, и передачу информации аудита в
удаленное место.

012918

- 158 -

18. Способ по п.15, в котором обязательство содержит требование, чтобы указанные функции среды
хоста, в которой выполняется система управления цифровыми правами, были отключены.

19. Способ по п.18, в котором фрагмент электронного контента включает в себя рекламу и в кото-
ром указанные функции включают в себя возможность перемотки вперед и назад в ходе представления
фрагмента электронного контента.

20. Способ по п.18, в котором указанные функции включают в себя возможность экспорта фрагмен-
та электронного контента в определенную технологию.

21. Способ авторизации доступа к фрагменту электронного контента в системе хоста, содержащей
механизм управления цифровыми правами, включающий в себя виртуальную машину, при этом способ
содержит этапы, на которых

принимают запрос на доступ к фрагменту электронного контента или иное его использование,
идентифицируют лицензию, связанную с фрагментом электронного контента, причем лицензия со-

держит программу управления и ключ контента,
выполняют программу управления с использованием виртуальной машины,
определяют, что запрашиваемый доступ или иное использование фрагмента электронного контента

можно авторизовать, пока выполняется обязательство,
определяют, что система хоста не способна выполнять обязательство, и
отказывают в запрашиваемом доступе или ином использовании фрагмента электронного контента.

Фиг. 1

012918

- 159 -

Фиг. 2

Фиг. 3

012918

- 160 -

Фиг. 4

Фиг. 5

012918

- 161 -

Фиг. 6

Фиг. 7А

Фиг. 7В

Фиг. 8

012918

- 162 -

Фиг. 9

Фиг. 10

012918

- 163 -

Фиг. 11

Фиг. 12

012918

- 164 -

Фиг. 13

Фиг. 14

Фиг. 15

012918

- 165 -

Фиг. 16

Фиг. 17

Фиг. 18

012918

- 166 -

Фиг. 19

Фиг. 20

Фиг. 21

012918

- 167 -

Фиг. 22

Фиг. 23

Фиг. 24

012918

- 168 -

Фиг. 25

Фиг. 26

012918

- 169 -

Фиг. 27

Фиг. 28А

012918

- 170 -

Фиг. 28В

Фиг. 29

012918

- 171 -

Фиг. 30

Фиг. 31А

Фиг. 31В

Фиг. 31С

012918

- 172 -

Фиг. 31D

Фиг. 31Е

Фиг. 32

012918

- 173 -

Фиг. 33

Фиг. 34

Фиг. 35

012918

- 174 -

Фиг. 36

Фиг. 37

Фиг. 38

012918

- 175 -

Фиг. 39

Фиг. 40

Фиг. 41

012918

- 176 -

Фиг. 42

Евразийская патентная организация, ЕАПВ

Россия, 109012, Москва, Малый Черкасский пер., 2

	Description
	Claims
	Drawings

