

US008187839B2

(12) United States Patent Li et al.

(10) Patent No.: US 8,187,839 B2 (45) Date of Patent: May 29, 2012

(54) ANTI-NOTCH3 AGONIST ANTIBODIES AND THEIR USE IN THE TREATMENT OF NOTCH3-RELATED DISEASES

(75) Inventors: Kang Li, San Diego, CA (US); Bin-Bing Stephen Zhou, Ho Hokus, NJ (US); Wenjuan Wu, Houston, TX (US); Sek Chung Fung, Gaithersburg, MD (US); Sanjaya Singh, Sandy Hook, CT (US)

(73) Assignee: **Genentech, Inc.**, South San Francisco, CA (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 13/033,500

(22) Filed: Feb. 23, 2011

(65) **Prior Publication Data**

US 2011/0206675 A1 Aug. 25, 2011

Related U.S. Application Data

- (62) Division of application No. 11/874,682, filed on Oct. 18, 2007, now Pat. No. 7,915,390.
- (60) Provisional application No. 60/879,218, filed on Jan. 6, 2007, provisional application No. 60/875,597, filed on Dec. 18, 2006, provisional application No. 60/852,861, filed on Oct. 19, 2006.
- (51) **Int. Cl.** (2006.01)

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

	0.0.	11111111	DOCUMENTS
5,648,464		7/1997	Artavanis-Tsakonas et al.
5,780,300	A	7/1998	Artavanis-Tsakonas et al.
5,786,158	Α	7/1998	Artavanis-Tsakonas et al.
5,789,195	A	8/1998	Artavanis-Tsakonas et al.
6,083,904	A	7/2000	Artavanis-Tsakonas
6,090,922	A	7/2000	Artavanis-Tsakonas et al.
6,149,902	A	11/2000	Artavanis-Tsakonas et al.
6,436,650	В1	8/2002	Artavanis-Tsakonas et al.
6,692,919	B1	2/2004	Artavanis-Tsakonas et al.
7,935,791	B2	5/2011	Fung et al.
7,994,285	B2	8/2011	Li et al.
2002/0151487	A1	10/2002	Nickoloff et al.
2003/0186290	A1	10/2003	Tournier-Lasserve et al.
2004/0058443	A1	3/2004	Artavanis-Tsakonas et al.
2004/0242482	A1	12/2004	Gehring et al.
2005/0112121	A1	5/2005	Artavanis-Tsakonas et al.
2005/0158859	A1	7/2005	Artavanis-Tsakonas et al.
2005/0208027	A1	9/2005	Conboy et al.
2006/0002924	A1	1/2006	Bodmer et al.
2007/0003983	A1	1/2007	Artavanis-Tsakonas et al.
2008/0107648	A1	5/2008	Noguera et al.
			_

2008/0131908 A1	6/2008	Li et al.
2008/0226621 A1	9/2008	Fung et al.
2011/0223155 A1	9/2011	Fung et al.

FOREIGN PATENT DOCUMENTS

FR	2 777 285 A1	10/1999
WO	95/15982	6/1995
WO	00/20576	4/2000
WO	WO 02/24221 A2	3/2002
WO	2006/017173 A1	2/2006
WO	WO 2006/053063 A2	5/2006
WO	WO 2006/068822 A1	6/2006
WO	WO 2006/015375 A2	9/2006
WO	WO 2008/057144 A2	5/2008
WO	WO 2008/150525 A1	12/2008

OTHER PUBLICATIONS

Allenspach et al., "Notch signaling in cancer" *Cancer Biol Ther.* 1(5):466-76 (2002).

Anastasi et al., "Expression of activated Notch3 in transgenic mice enhances generation of T regulatory cells and protects against experimental autoimmune diabetes" *J Immunol.* 171(9):4504-11 (Nov. 2003).

Androutsellis-Theotokis et al., "Notch signalling regulates stem cell numbers in vitro and in vivo" *Nature* 442:823-6 (Aug. 2006)

Artavanis-Tsakonas et al., "Notch Signaling" *Science* 268:225-232 (Apr. 14, 1995).

Artavanis-Tsakonas et al., "Notch Signaling: Cell Fate Control and Signal Integration in Development" *Science* 284:770-776 (1999).

Aster et al., "The folding and structural integrity of the first LIN-12 module of human Notch1 are calcium-dependent" *Biochemistry* 38(15):4736-42 (Apr. 1999).

Bellavia et al., "Combined expression of pTalpha and Notch3 in T cell leukemia identifies the requirement of preTCR for leukemogenesis" *Proc Natl Acad Sci U S A*. 99(5):3788-93 (Mar. 2002).

Bellavia et al., "Notch3: from subtle structural differences to functional diversity" *Oncogene* 27:5092-5098 (2008).

Bocchetta et al., "Notch-1 induction, a novel activity of SV40 required for growth of SV40-transformed human mesothelial cells" *Oncogene* 22(1):81-9 (Jan. 2003).

Bolos et al., "Notch signaling in development and cancer" *Endocr Rev.* 28(3):339-63 (May 2007).

Bray, "Notch signalling: a simple pathway becomes complex" *Nat Rev Mol Cell Biol.* 7(9):678-89 (Sep. 2006).

Buchler et al., "The Notch signaling pathway is related to neurovascular progression of pancreatic cancer" *Ann Surg.* 242(6):791-800 (Dec. 2005).

Caldas, Cristina. et al., "Humanization of the anti-CD18 antibody 6.7: an unexpected effect of a framework residue in binding to antigen" *Molecular Immunology* 39:941-952 (2003).

Casset, F. et al., "A peptide mimetic of an anti-CD4 monoclonal antibody by rational design" *Biochem. & Biophys. Res. Comm.* 307:198-205 (2003).

(Continued)

Primary Examiner — Stephen Rawlings

(74) Attorney, Agent, or Firm — Danielle Pasqualone; Julia vom Wege

(57) ABSTRACT

The present invention relates to agonist antibodies that specifically bind to Notch 3 and activate signaling. The present invention includes antibodies binding to an epitope comprising the first Lin12 domain. The present invention also includes uses of these antibodies to treat or prevent Notch 3 related diseases or disorders.

15 Claims, 18 Drawing Sheets

OTHER PUBLICATIONS

Chiba, "Notch signaling in stem cell systems" *Stem Cells* 24(11):2437-47 (Nov. 2006).

Chien, Nadine C. et al., "Significant structural and functional change of an antigen-binding site by a distant amino acid substitution: Proposal of a structural mechanism" *Proc. Natl. Acad.Sci. USA* 86:5532-5536 (Jul. 1989).

Coffman et al., "Expression of an extracellular deletion of Xotch diverts cell fate in *Xenopus* embryos" *Cell* 73(4):659-71 (May 1993). Davies et al., "Affinity improvement of single antibody VH domains: residues in all three hypervariable regions affect antigen binding" *Immunotechnology* 2:169-179 (1996).

De Pascalis et al., "Grafting of "abbreviated" complementarity-determining regions containing specificity-determining residues essential for ligand contact to engineer a less immunogenic humanized monoclonal antibody" *J. Immunol.* 169:3076-3084 (2002).

Domenga et al., "Notch3 is required for arterial identity and maturation of vascular smooth muscle cells" *Genes Dev.* 18(22):2730-5 (Nov. 2004).

Ellisen et al., "TAN-1, the human homolog of the *Drosophila* notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms" *Cell* 66(4):649-61 (Aug. 1991).

Fan et al., "Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors" *Cancer Research* 66(15):7445-52 (Aug. 2006).

Flynn et al., "The role of Notch receptor expression in bile duct development and disease" *J Pathol.* 204(1):55-64 (Sep. 2004).

Fre et al., "Notch signals control the fate of immature progenitor cells in the intestine" *Nature* 435:964-8 (Jun. 2005).

George et al. Circulation 97:900-906 (1998).

Giusti et al., "Somatic Diversification of S107 from an Antiphosphocholine to an anti-DNA Autoantibody is Due to a Single Base Change in its Heavy Chain Variable Region" *Proc. Natl. Acad. Sci. USA* 84:2926-2930 (May 1987).

Gordon et al., "Structural basis for autoinhibition of Notch" *Nat Struct Mol Biol.* 14(4):295-300 (Apr. 2007).

Greenspan et al., "Defining epitopes: It's not as easy as it seems" *Nature Biotechnology* 7:936-937 (Oct.1999).

Gussow & Seemann, "Humanization of Monoclonal Antibodies" *Meth. Enzymology*, Academic Press, Inc. vol. 203:99-121 (1991).

Haruki et al., "Dominant-negative Notch3 receptor inhibits mitogenactivated protein kinase pathway and the growth of human lung cancers" *Cancer Research* 65(9):3555-61 (May 2005).

Hedvat et al., "Insights into extramedullary tumour cell growth revealed by expression profiling of human plasmacytomas and multiple myeloma" *Br J Haematol.* 122(5):728-44 (Sep. 2003).

Heller et al., "Amino Acids at the Site of V.-J. Recombination Not Encoded by Germline Sequences" *Journal of Experimental Medicine* 166:637-646 (1987).

Holm, P. et al., "Functional mapping and single chain construction of the anti-cytokeratin 8 monoclonal antibody TS1" *Molecular Immunology* 44:1075-1084 (2007).

Holt et al., "Domain antibodies: proteins for therapy" *Trends Biotechnol*. 21(11):484-490 (Nov. 2003).

Houde et al., "Overexpression of the NOTCH ligand JAG2 in malignant plasma cells from multiple myeloma patients and cell lines" *Blood* 104(12):3697-704 (Dec. 2004).

Hu et al., "Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors" *Am J Pathol.* 168(3):973-90 (Mar. 2006).

Jang et al., "Notch signaling as a target in multimodality cancer therapy" *Curr Opin Mol Ther.* 2(1):55-65 (Feb. 2000).

Jiang et al., "A Novel Peptide Isolated from a Phage Display Peptide Library with Trastuzumab Can Mimic Antigen Epitope of HER-2" *Journal of Biological Chemistry* 280(6):4656-4662 (2005).

Joutel et al., "Notch signalling pathway and human diseases" *Semin Cell Dev Biol.* 9(6):619-25 (Dec. 1998).

Joutel et al., "Notch3 mutations in CADASIL, a hereditary adultonset condition causing stroke and dementia" *Nature* 383:707-10 (Oct. 1996).

Joutel et al., "Skin biopsy immunostaining with a Notch3 monoclonal antibody for CADASIL diagnosis" *Lancet* 358:2049-2051 (2001).

Jundt et al., "Jaggedl-induced Notch signaling drives proliferation of multiple myeloma cells" *Blood* 103(9):3511-5 (May 2004).

Jurynczyk et al., "Notch3 Inhibition in Myelin-Reactive T Cells Down-Regulates Protein Kinase Cθ and Attenuates Experimental Autoimmune Encephalomyelitis" *Journal of Immunology* 180(4):2634-2640 (2008).

Kadesch, "Notch signaling: a dance of proteins changing partners" *Exp Cell Res.* 260(1):1-8 (Oct. 2000).

Kidd et al., "Sequence of the notch locus of *Drosophila melanogaster*: relationship of the encoded protein to mammalian clotting and growth factors" *Mol Cell Biol.* 6(9):3094-108 (Sep. 1986).

Kopczynski et al., "Delta, a *Drosophila* neurogenic gene, is transcriptionally complex and encodes a protein related to blood coagulation factors and epidermal growth factor of vertebrates" *Genes Dev.* 2:1723-35 (1988).

Leong et al., "Recent insights into the role of Notch signaling in tumorigenesis" *Blood* 107(6):2223-33 (Mar. 2006).

Li et al., "Modulation of Notch Signaling by Antibodies Specific for the Extracellular Negative Regulatory Region of NOTCH3" *Journal* of *Biological Chemistry* 283(12):8046-8054 (Mar. 21, 2008).

Lu et al., "Selection of potential markers for epithelial ovarian cancer with gene expression arrays and recursive descent partition analysis" *Clin Cancer Res.* 10(10):3291-300. (May 2004).

MacCallum et al., "Antibody-antigen Interactions: Contact Analysis and Binding Site Topography" *J. Mol. Biol.* 262:732-745 (1996).

Mailhos et al., "Delta4, an Endothelial Specific Notch Ligand Expressed at Sites of Physiological and Tumor Angiogenesis" *Differentiation* 69:135-144 (2001).

Malecki et al., "Leukemia-associated mutations within the NOTCH1 heterodimerization domain fall into at least two distinct mechanistic classes" *Mol Cell Biol.* 26(12):4642-51 (Jun. 2006).

Mariuzza et al., "The Structure Basis of Antigen-Antibody Recognition" *Ann. Rev. Biophys. Biophys. Chem.* 16:139-159 (1987).

Nam et al., "Notch signaling as a therapeutic target" *Curr Opin Chem Biol.* 6(4):501-9 (Aug. 2002).

Park et al., "Notch3 gene amplification in ovarian cancer" *Cancer Research* 66(12):6312-8 (Jun. 2006).

PCT International Search Report mailed Jun. 10, 2008, in counterpart PCT Application No. PCT/US2007/081797, filed Oct. 18, 2007.

Rao et al., "K Chain Variable Regions from Three Galactan Binding Myeloma Proteins" *Biochemistry* 17(25):5555-5559 (1978).

Reya et al., "Stem cells, cancer, and cancer stem cells" *Nature* 414:105-11 (2001).

Riemer et al., "Matching of trastuzumab (Herceptin) epitope mimics onto the surface of Her-2/neu—a new method of epitope definition" *Molecular Immunology* 42:1121-1124 (2005).

Rudikoff et al., "K chain joining segments and structural diversity of antibody combining sites" *Proc. Natl. Acad. Sci. USA* 77(7):4270-4274 (1980).

Rudikoff et al., "Single amino acid substitution altering antigenbinding specificity" *Proc. Natl. Acad. Sci. USA* 79:1979-1983 (Mar. 1982).

Sanchez-Irizarry et al., "Notch subunit heterodimerization and prevention of ligand-independent proteolytic activation depend, respectively, on a novel domain and the LNR repeats" *Mol Cell Biol.* 24(21):9265-73 (2004).

Screpanti et al., "Notch, a unifying target in T-cell acute lymphoblastic leukemia?" *Trends Mol Med.* 9(1):30-5 (Jan. 2003). Shimizu et al., "Physical interaction of Deltal, Jagged1, and Jagged2 with Notch1 and Notch3 receptors" *Biochem Biophys Res Commun.* 276(1):385-9 (Sep. 2000).

Stancoviski et al., "Mechanistic Aspects of the Opposing Effects of Monoclonal Antibodies to the ERBB2 Receptor on Tumor Growth" *Proc. Natl. Acad. Sci. USA* 88:8691-8695 (1991).

Sullivan and Bicknell, "New molecular pathways in angiogenesis" *British Journal of Cancer* 89(2):228-231 (Jul. 21, 2003).

Sweeney et al., "Notch 1 and 3 receptor signaling modulates vascular smooth muscle cell growth, apoptosis, and migration via a CBF-1/RBP-Jk dependent pathway" *FASEB J.* 18(12):1421-3 (Sep. 2004). Swiatek et al., "Notch1 is essential for postimplantation development in mice" *Genes Dev.* 8(6):707-19 (Mar. 1994).

Taichman et al., "Notch1 and Jagged1 expression by the developing pulmonary vasculature" *Dev Dyn.* 225(2):166-75 (Oct. 2002).

Thelu et al., "Notch signalling is linked to epidermal cell differentiation level in basal cell carcinoma, psoriasis and wound healing" *BMC Dermatol.* 2:7 (Apr. 2002).

Vacca et al., "Notch3 and pre-TCR interaction unveils distinct NF-

Vacca et al., "Notch3 and pre-TCR interaction unveils distinct NF-kappaB pathways in T-cell development and leukemia" *EMBO Journal* 25(5):1000-8 (Mar. 2006).

Vajdos et al., "Comprehensive functional maps of the antigen-binding site of an anti-ErbB2 antibody obtained with shotgun scanning mutagenesis" *J Mol Biol.* 320:415-428 (2002).

van Es et al., "Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells" *Nature* 435:959-63 (Jun. 2005).

van Limpt et al., "Phox2B mutations and the Delta-Notch pathway in neuroblastoma" *Cancer Lett.* 228:59-63 (Oct. 2005).

Vardar et al., "Nuclear magnetic resonance structure of a prototype Lin12-Notch repeat module from human Notch1" *Biochemistry* 42(23):7061-7 (Jun. 2003).

Von Boehmer, "Notch in lymphopoiesis and T cell polarization" *Nat Immunol.* 6(7):641-2 (Jul. 2005).

Weijzen et al., "Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells" *Nat Med.* 8(9):979-986 (Sep. 2002).

Weng et al., "Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia" *Science* 306(5694):269-271 (Oct. 8, 2004). Wharton et al., "Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats" *Cell* 43:567-81 (Dec. 1985).

Winkler et al. Journal of Immunology 165(8):4505-4514 (2000).

Wu et al., "Humanization of a Murine Monoclonal Antibody by Simultaneous Optimization of Framework and CDR Residues" *J. Mol. Biol.* 294:151-162 (1999).

Xu et al., "Antibody-Induced Growth Inhibition is Mediated Through Immunochemically and Functionally Distinct Epitopes on the Extracellular Domain of the c-erbB-2 (HER-2/neu) Gene Product p185" *International Journal of Cancer* 53(3):401-408 (Feb. 1, 1993). Xu et al., "Regions of *Drosophila* Notch that contribute to ligand binding and the modulatory influence of Fringe" *J Biol Chem.* 280(34):30158-65 (Aug. 2005).

Yabe et al., "Immunohistological localization of Notch receptors and their ligands Delta and Jagged in synovial tissues of rheumatoid arthritis" *J Orthop Sci.* 10(6):589-94 (Nov. 2005).

Yochem et al., "The Caenorhabditis elegans lin-12 gene encodes a transmembrane protein with overall similarity to *Drosophila* Notch" *Nature* 335:547-50 (Oct. 1988).

Zeng et al., "Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling" *Cancer Cell* 8(1):13-23 (Jul. 2005).

Zweidler-McKay et al., "Notch signaling is a potent inducer of growth arrest and apoptosis in a wide range of B-cell malignancies" *Blood* 106(12):3898-906 (Dec. 2005).

U.S. Appl. No. 13/174,285, Kang Li et al.

Maynard et al., "Antibody Engineering" Annu. Rev. Biomed. Eng. (2):339-379 (2000).

Pini et al., "Design and Use of a Phage Display Library" The Journal of Biological Chemistry 273:21769-21776 (1998).

FIGURE 1

Amino Acid Sequence of Human Notch 3 (NP_ 000426)

1	MGPGARGRRR	RRRPMSPPPP	PPPVRALPLL	LLLAGPGAAA	PPCLDGSPCA	NGGRCTQLPS
61	REAACLCPPG	WVGERCQLED	PCHSGPCAGR	GVCQSSVVAG	TARFSCRCPR	GFRGPDCSLP
121	DPCLSSPCAH	GARCSVGPDG	RFLCSCPPGY	QGRSCRSDVD	ECRVGEPCRH	GGTCLNTPGS
181	FRCQCPAGYT	GPLCENPAVP	CAPSPCRNGG	TCRQSGDLTY	DCACLPGFEG	QNCEVNVDDC
241	PGHRCLNGGT	CVDGVNTYNC	QCPPEWIGQF	CTEDVDECQL	QPNACHNGGT	CFNTLGGHSC
301	VCVNGWTGES	CSQNIDDCAT	AVCFHGATCH	DRVASFYCAC	PMGKTGLLCH	LDDACVSNPC
361	HEDAICDTNP	VNGRAICTCP	PGFTGGACDQ	DVDECSIGAN	PCEHLGRCVN	TQGSFLCQCG
421	RGYTGPRCET	DVNECLSGPC	RNQATCLDRI	GQFTCICMAG	FIGTYCEVDI	DECQSSPCVN
481	GGVCKDRVNG	FSCTCPSGFS	GSTCQLDVDE	CASTPCRNGA	KCVDQPDGYE	CRCAEGFEGT
541	LCDRNVDDCS	PDPCHHGRCV	DGIASFSCAC	APGYTGTRCE	SQVDECRSQP	CRHGGKCLDL
601	VDKYLCRCPS	GTTGVNCEVN	IDDCASNPCT	FGVCRDGINR	YDCVCQPGFT	GPLCNVEINE
661	CASSPCGEGG	SCVDGENGFR	CLCPPGSLPP	LCLPPSHPCA	HEPCSHGICY	DAPGGFRCVC
721	EPGWSGPRCS	QSLARDACES	QPCRAGGTCS	SDGMGFHCTC	PPGVQGRQCE	LLSPCTPNPC
781	EHGGRCESAP	GQLPVCSCPQ	GWQGPRCQQD	VDECAGPAPC	GPHGICTNLA	GSFSCTCHGG
841	YTGPSCDQDI	NDCDPNPCLN	GGSCQDGVGS	FSCSCLPGFA	GPRCARDVDE	CLSNPCGPGT
901	CTDHVASFTC	TCPPGYGGFH	CEQDLPDCSP	SSCFNGGTCV	DGVNSFSCLC	RPGYTGAHCQ
961	HEADPCLSRP	CLHGGVCSAA	HPGFRCICLE	SFTGPQCQTL	VDWCSRQPCQ	NGGRCVQTGA
1021	YCLCPPGWSG	RLCDIRSLPC	REAAAQIGVR	LEQLCQAGGQ	CVDEDSSHYC	VCPEGRIGSH
1081	CEQEVDPCLA	QPCQHGGTCR	GYMGGYMCEC	LPGYNGDNCE	DDVDECASQP	CQHGGSCIDL
1141	VARYLCSCPP	GTLGVLCEIN	EDDCGPGPPL	DSGPRCLHNG	TCVDLVGGFR	CTCPPGYTGL
1201	RCEADINECR	SGACHAAHTR	DCLQDPGGGF	RCLCHAGFSG	PRCQTVLSPC	ESQPCQHGGQ
1261	CRPSPGPGGG	LTFTCHCAQP	FWGPRCERVA	RSCRELQCPV	GVPCQQTPRG	PRCACPPGLS
1321				RPAPLAPFFR		
1381	VSE EPRCPRA	# GO # # D C D O D		ALTO A A D A A T A		
4 4 4 4		ACQAKRGDQR	CDRECNSPGC	GWDGGDCSLS	VGDPWRQCEA	LQCWRLFNNS
	RCDPACSSPA	CLYDNFDCHA	GGRERTCNPV	YEKYCADHFA	DGRCDQGCNT	EECGWDGLDC
		CLYDNFDCHA	GGRERTCNPV	YEKYCADHFA	DGRCDQGCNT	EECGWDGLDC
1501	RCDPACSSPA	CLYDNFDCHA GVLVLTVLLP	<i>GGRERTCNPV</i> PEELLRSSAD	YEKYCADHFA FLQRLSAILR	DGRCDQGCNT	EECGWDGLDC GQAMVFPYHR
1501 1561	RCDPACSSPA ASEVPALLAR	CLYDNFDCHA GVLVLTVLLP RELAPEVIGS	<i>GGRERTCNPV</i> PEELLRSSAD VVMLEIDNRL	YEKYCADHFA FLQRLSAILR CLQSPENDHC	DGRCDQGCNT TSLRFRLDAH FPDAQSAADY	EECGWDGLDC GQAMVFPYHR LGALSAVERL
1501 1561	RCDPACSSPA ASEVPALLAR PSPGSEPRAR DFPYPLRDVR	CLYDNFDCHA GVLVLTVLLP RELAPEVIGS GEPLEPPEPS	GGRERTCNPV PEELLRSSAD VVMLEIDNRL VPLLPLLVAG	YEKYCADHFA FLQRLSAILR CLQSPENDHC	DGRCDQGCNT ISLRFRLDAH FPDAQSAADY GVMVARRKRE	EECGWDGLDC GQAMVFPYHR LGALSAVERL HSTLWFPEGF
1501 1561 1621 1681	RCDPACSSPA ASEVPALLAR PSPGSEPRAR DFPYPLRDVR	CLYDNFDCHA GVLVLTVLLP RELAPEVIGS GEPLEPPEPS KGRREPVGQD	GGRERTCNPV PEELLRSSAD VVMLEIDNRL VPLLPLLVAG ALGMKNMAKG	YEKYCADHFA FLQRLSAILR CLQSPENDHC AVLLLVILVL ESLMGEVATD	DGRCDQGCNT TSLRFRLDAH FPDAQSAADY GVMVARRKRE WMDTECPEAK	EECGWDGLDC GQAMVFPYHR LGALSAVERL HSTLWFPEGF
1501 1561 1621 1681	RCDPACSSPA ASEVPALLAR PSPGSEPRAR DFPYPLRDVR SLHKDVASGH AEEAVDCRQW	CLYDNFDCHA GVLVLTVLLP RELAPEVIGS GEPLEPPEPS KGRREPVGQD TQHHLVAADI	GGRERTCNPV PEELLRSSAD VVMLEIDNRL VPLLPLLVAG ALGMKNMAKG	YEKYCADHFA FLQRLSAILR CLQSPENDHC AVLLLVILVL ESLMGEVATD PQGDADADGM	DGRCDQGCNT TSLRFRLDAH FPDAQSAADY GVMVARRKRE WMDTECPEAK	EECGWDGLDC GQAMVFPYHR LGALSAVERL HSTLWFPEGF RLKVEEPGMG TPLMLASFCG
1501 1561 1621 1681 1741 1801	RCDPACSSPA ASEVPALLAR PSPGSEPRAR DFPYPLRDVR SLHKDVASGH AEEAVDCRQW	CLYDNFDCHA GVLVLTVLLP RELAPEVIGS GEPLEPPEPS KGRREPVGQD TQHHLVAADI DEADDTSASI	GGRERTCNPV PEELLRSSAD VVMLEIDNRL VPLLPLLVAG ALGMKNMAKG RVAPAMALTP ISDLICQGAQ	YEKYCADHFA FLQRLSAILR CLQSPENDHC AVLLLVILVL ESLMGEVATD PQGDADADGM	DGRCDQGCNT TSLRFRLDAH FPDAQSAADY GVMVARRKRE WMDTECPEAK DVNVRGPDGF	EECGWDGLDC GQAMVFPYHR LGALSAVERL HSTLWFPEGF RLKVEEPGMG TPLMLASFCG
1501 1561 1621 1681 1741 1801	RCDPACSSPA ASEVPALLAR PSPGSEPRAR DFPYPLRDVR SLHKDVASGH AEEAVDCRQW GALEPMPTEE AGADTNAQDH	CLYDNFDCHA GVLVLTVLLP RELAPEVIGS GEPLEPPEPS KGRREPVGQD TQHHLVAADI DEADDTSASI	GGRERTCNPV PEELLRSSAD VVMLEIDNRL VPLLPLLVAG ALGMKNMAKG RVAPAMALTP ISDLICQGAQ TADAQGVFQI	YEKYCADHFA FLQRLSAILR CLQSPENDHC AVLLLVILVL ESLMGEVATD PQGDADADGM LGARTDRTGE	DGRCDQGCNT TSLRFRLDAH FPDAQSAADY GVMVARRKRE WMDTECPEAK DVNVRGPDGF TALHLAARYA ARMADGSTAL	EECGWDGLDC GQAMVFPYHR LGALSAVERL HSTLWFPEGF RLKVEEPGMG TPLMLASFCG RADAAKRLLD ILAARLAVEG
1501 1561 1621 1681 1741 1801 1861 1921	RCDPACSSPA ASEVPALLAR PSPGSEPRAR DFPYPLRDVR SLHKDVASGH AEEAVDCRQW GALEPMPTEE AGADTNAQDH	CLYDNFDCHA GVLVLTVLLP RELAPEVIGS GEPLEPPEPS KGRREPVGQD TQHHLVAADI DEADDTSASI SGRTPLHTAV DVNAVDELGK	GGRERTCNPV PEELLRSSAD VVMLEIDNRL VPLLPLLVAG ALGMKNMAKG RVAPAMALTP ISDLICQGAQ TADAQGVFQI SALHWAAAVN	YEKYCADHFA FLQRLSAILR CLQSPENDHC AVLLLVILVL ESLMGEVATD PQGDADADGM LGARTDRTGE LIRNRSTDLD	DGRCDQGCNT TSLRFRLDAH FPDAQSAADY GVMVARRKRE WMDTECPEAK DVNVRGPDGF TALHLAARYA ARMADGSTAL NGANKDMQDS	EECGWDGLDC GQAMVFPYHR LGALSAVERL HSTLWFPEGF RLKVEEPGMG TPLMLASFCG RADAAKRLLD ILAARLAVEG KEETPLFLAA
1501 1561 1621 1681 1741 1801 1861 1921	RCDPACSSPA ASEVPALLAR PSPGSEPRAR DFPYPLRDVR SLHKDVASGH AEEAVDCRQW GALEPMPTEE AGADTNAQDH MVEELIASHA REGSYEAAKL	CLYDNFDCHA GVLVLTVLLP RELAPEVIGS GEPLEPPEPS KGRREPVGQD TQHHLVAADI DEADDTSASI SGRTPLHTAV DVNAVDELGK LLDHFANREI	GGRERTCNPV PEELLRSSAD VVMLEIDNRL VPLLPLLVAG ALGMKNMAKG RVAPAMALTP ISDLICQGAQ TADAQGVFQI SALHWAAAVN TDHLDRLPRD	YEKYCADHFA FLQRLSAILR CLQSPENDHC AVLLLVILVL ESLMGEVATD PQGDADADGM LGARTDRTGE LIRNRSTDLD NVEATLALLK	DGRCDQGCNT TSLRFRLDAH FPDAQSAADY GVMVARRKRE WMDTECPEAK DVNVRGPDGF TALHLAARYA ARMADGSTAL NGANKDMQDS VRLLDQPSGP	EECGWDGLDC GQAMVFPYHR LGALSAVERL HSTLWFPEGF RLKVEEPGMG TPLMLASFCG RADAAKRLLD ILAARLAVEG KEETPLFLAA RSPPGPHGLG
1501 1561 1621 1681 1741 1801 1861 1921 1981 2041	RCDPACSSPA ASEVPALLAR PSPGSEPRAR DFPYPLRDVR SLHKDVASGH AEEAVDCRQW GALEPMPTEE AGADTNAQDH MVEELIASHA REGSYEAAKL	CLYDNFDCHA GVLVLTVLLP RELAPEVIGS GEPLEPPEPS KGRREPVGQD TQHHLVAADI DEADDTSASI SGRTPLHTAV DVNAVDELGK LLDHFANREI PGLKAAQSGS	GGRERTCNPV PEELLRSSAD VVMLEIDNRL VPLLPLLVAG ALGMKNMAKG RVAPAMALTP ISDLICQGAQ TADAQGVFQI SALHWAAAVN TDHLDRLPRD KKSRRPPGKA	YEKYCADHFA FLQRLSAILR CLQSPENDHC AVLLLVILVL ESLMGEVATD PQGDADADGM LGARTDRTGE LIRNRSTDLD NVEATLALLK VAQERLHQDI GLGPQGPRGR	DGRCDQGCNT TSLRFRLDAH FPDAQSAADY GVMVARRKRE WMDTECPEAK DVNVRGPDGF TALHLAARYA ARMADGSTAL NGANKDMQDS VRLLDQPSGP GKKLTLACPG	EECGWDGLDC GQAMVFPYHR LGALSAVERL HSTLWFPEGF RLKVEEPGMG TPLMLASFCG RADAAKRLLD ILAARLAVEG KEETPLFLAA RSPPGPHGLG PLADSSVTLS
1501 1561 1621 1681 1741 1801 1861 1921 1981 2041 2101	RCDPACSSPA ASEVPALLAR PSPGSEPRAR DFPYPLRDVR SLHKDVASGH AEEAVDCRQW GALEPMPTEE AGADTNAQDH MVEELIASHA REGSYEAAKL PLLCPPGAFL	CLYDNFDCHA GVLVLTVLLP RELAPEVIGS GEPLEPPEPS KGRREPVGQD TQHHLVAADI DEADDTSASI SGRTPLHTAV DVNAVDELGK LLDHFANREI PGLKAAQSGS FGGPPASPGG	GGRERTCNPV PEELLRSSAD VVMLEIDNRL VPLLPLLVAG ALGMKNMAKG RVAPAMALTP ISDLICQGAQ TADAQGVFQI SALHWAAAVN TDHLDRLPRD KKSRRPPGKA FPLEGPYAAA	YEKYCADHFA FLQRLSAILR CLQSPENDHC AVLLLVILVL ESLMGEVATD PQGDADADGM LGARTDRTGE LIRNRSTDLD NVEATLALLK VAQERLHQDI GLGPQGPRGR TATAVSLAQL	DGRCDQGCNT TSLRFRLDAH FPDAQSAADY GVMVARRKRE WMDTECPEAK DVNVRGPDGF TALHLAARYA ARMADGSTAL NGANKDMQDS VRLLDQPSGP GKKLTLACPG GGPGRAGLGR	EECGWDGLDC GQAMVFPYHR LGALSAVERL HSTLWFPEGF RLKVEEPGMG TPLMLASFCG RADAAKRLLD ILAARLAVEG KEETPLFLAA RSPPGPHGLG PLADSSVTLS QPPGGCVLSL
1501 1561 1621 1681 1741 1801 1861 1921 1981 2041 2101	RCDPACSSPA ASEVPALLAR PSPGSEPRAR DFPYPLRDVR SLHKDVASGH AEEAVDCRQW GALEPMPTEE AGADTNAQDH MVEELIASHA REGSYEAAKL PLLCPPGAFL PVDSLDSPRP GLLNPVAVPL	CLYDNFDCHA GVLVLTVLLP RELAPEVIGS GEPLEPPEPS KGRREPVGQD TQHHLVAADI DEADDTSASI SGRTPLHTAV DVNAVDELGK LLDHFANREI PGLKAAQSGS FGGPPASPGG DWARLPPPAP	GGRERTCNPV PEELLRSSAD VVMLEIDNRL VPLLPLLVAG ALGMKNMAKG RVAPAMALTP ISDLICQGAQ TADAQGVFQI SALHWAAAVN TDHLDRLPRD KKSRRPPGKA FPLEGPYAAA	YEKYCADHFA FLQRLSAILR CLQSPENDHC AVLLLVILVL ESLMGEVATD PQGDADADGM LGARTDRTGE LIRNRSTDLD NVEATLALLK VAQERLHQDI GLGPQGPRGR TATAVSLAQL PGPQLLNPGT	DGRCDQGCNT TSLRFRLDAH FPDAQSAADY GVMVARRKRE WMDTECPEAK DVNVRGPDGF TALHLAARYA ARMADGSTAL NGANKDMQDS VRLLDQPSGP GKKLTLACPG GGPGRAGLGR	EECGWDGLDC GQAMVFPYHR LGALSAVERL HSTLWFPEGF RLKVEEPGMG TPLMLASFCG RADAAKRLLD ILAARLAVEG KEETPLFLAA RSPFGPHGLG PLADSSVTLS QPPGGCVLSL YLAVPGHGEE

FIGURE 2A Amino acid sequence Comparison of Notch1, 2, 3 and 4.

1 1 1	 K (G P	- G -	- - A -	- R -	- G -	- R -	- R -	- - R -	 R I	 R R	- P		_ M S _	- Р Р	- A P	L P M	R ⊇	P[P	L P	L	W R	A	L		C A L L	L L L	Notch1.pro Notch2.pro Notch3.pro Notch4.pro
12 16 31 13	A I I L I	T C	С	A A G V	<u>A</u> P	P	A A		_	- [3 - 2 - 2 R [3	A L		C	S R I	Q D D	F G G F	Y -	E E S E	P P	c [V A	N [E	G G	K M R T	0 0 0	E V T L	A T Q S	Notch1.pro Notch2.pro Notch3.pro Notch4.pro
40 44 58 43	A I	I N	G G R G	Ξ Ε Q	G A	Y A		L	0 _	P I	A E G P G	F	Ā	G G G	Ε	R Y R	0000	Q Q Q Q	H L	R E	N D D D		C C		- '	S K S A	Ν	P R P L	Notch1.pro Notch2.pro Notch3.pro Notch4.pro
68 73 87 73	C (2 K	G G G	G G G		- 1	ν [Ω	A S	Ω S	A 1	R R 4 L 7 A	٦-	-	G G G	V K T	A A A P	D T R	Y S	-	- - - - -	- - - P	- - - L	~	- - - P	- - - s	- - F	- - L	C C	Notch1.pro Notch2.pro Notch3.pro Notch4.pro
88 91 104 103	S G R G	2 A	S -	G G - G	F' -	T	G G - G	E -	ے -	c \	. T	S -	T -	_ 	N H - D	P	C - C	<u>-</u>	v [-	S -	R -	P	c -	К [_ _ S	N -	G G - R [G G -	T T R	Notch1.pro Notch2.pro Notch3.pro Notch4.pro
117 121 104 132	C F) L M 	L C	S - A	L R - S	T D - G	E T - R	Y	E S	0 [. 0]	₹ 0 ₹ 0 ₹ 0	Q P	V R	G G G	E F W	T R T	G G G	K K P E	E D	c c c	S	W L	T P	D	A P	0 0 0 0	L L S	S S A	No.ch1.pro No.ch2.pro No.ch3.pro No.ch4.pro
147 151 126 162	N I H I S I	? C	A A A	N E N		A	T R	C	T		~	A D	N G	S Q R Q	Y F F	I S - Q	C C C	H K S H	С	E L P P	T	G G	F Y	T Q		P Q R H	r K S A	0 0 0	Notch1.pro Notch2.pro Notch3.pro Notch4.pro
176 180 156 191	R (E E E	t D S D		N N	E	С	D R	-	v [P :	G H	C	Q	H H H K	G G G	G G G	T T T	0000	L L	N N	L T	P P	G G	s	Y	R Q R Q	000	Q Q	Notch1.pro Notch2.pro Notch3.pro Notch4.pro
206 209 185 221	C F	Q Q A	G G	F F V	T	e e [Q P	Y Tı	c [D s	R P	Y	V	P P P	c c c	S A A	ם ם ם	S S S	P P	С	Q V R S	N	G G	G G		C C C	R R	P Q Q T.	Notch1.pro Notch2.pro Notch3.pro Notch4.pro
236 239 215 251	T C	9 D 9 D	-	- - D	1 1 1 50	V F L T	T T	F [Y	E D	c [7 C	L	P P	G G G	F F F	T E E	G G G	Q S Q	T N	C C C	E	R	N N [I	D D D	D D D	c c c	P P V	Notch1.pro Notch2.pro Notch3.pro Notch4.pro
263 266 242 281	N H	I R	c	Q L Q	2, 2, 2, 3,	G G	G G	V	c _	V I) (d) (d) (d) (d	V	N N	T T T	Y Y Y	N N N	C C C	R R Q L	C C	P P		Q E	W	T T	C C C	0 0 W	F F	0 0 0 0	Notch1.pro Notch2.pro Notch3.pro Notch4.pro
293 296 272 311	T I	D D	V V V	D D D	E E E	c ˈ	L Q	L L L	Ω Ω	- 1	P N P N P P	A A	. c	Q Q H R	N N N	G G G	G G G	T T T	C C	A F	N	R	N L	G	G	Y	G S	0 0 0	Notch1.pro Notch2.pro Notch3.pro Notch4.pro

FIGURE 2B V N G W T G E D C S E N I D D C A S A A C F H G A T C H Notch1.pro V C V N G W S G D D C S E N I D D C A F A S C T P G S T C I V C V N G W T G E S C S Q N I D D C A T A V C F H G A T C H 325 Notch2.pro 301 Notch3.pro V C V S G W G G T S C E E N L D D C I A A T C A P G S T C I 341 Notch4.pro D R V A S F Y C E C P H G R T G L L C H L N D A C I S N P C D R V A S F Y C A C P M G K T G L L C H L D D A C V S N P C 352 Notchl.pro 331 Notch3.pro SCLCPPGRTGLLCHLEDMCLSQPC 371 Notch4.pro 382 N E G S N C D T N P V N G K A I C I C P S G Y T G P A C S Q Notch1.pro H K G A L C D T N P L N G Q Y I C C C P Q G Y K G A D C T E H E D A I C D T N P V N G R A I C C C P P G F T G G A C D Q Notch2.pro Notch3.pro 361 H G D A Q C S T N P L T G S T L C L C Q P G Y S G P T C H Q Notch4.pro D V D E C S L G - - - A N P C E H A G K C I N T L G S F E C D V D E C A M A N - - S N P C E H A G K C V N T D G A F H C D V D E C S T G - - A N P C F H T G R C V N T Q G S F T C C D L D E C L M A Q Q G F S P C E H G G S C L N T P G S F N C 412 Notch1.pro 415 Notch2.pro Notch3.pro 391 431 Notch4.pro 439 Q C L Q G Y T G P R C E L D V N E C V S N P C Q N D A T C Notchl.pro ECLKGYAGPRCEMDINECHSDPCQNDATCL QCGRGYTGPRCETDVNECLSGPCRNQATCL 443 Notch2.pro 418 Notch3.pro LCPPGYTGSRCEADHNECLSQPCHPGSTCL Notch4.pro D Q I G E F Q C I C M P G Y E G V H C E V N T D E C A S S P D K I G G F T C C F 469 Notch1.pro 473 Notch2.pro 448 Notch3.pro 491 Notch4.pro 499 503 Notch2.pro 478 Notch3.pro 521 Notch4.pro Notchl.pro Notch2.pro 533 508 Notch3.pro 551 IDBCRSSPCANGGQCQDQP~ Notch4.pro Notch1.pro 563 Notch2.pro 538 Notch3.pro 570 Notch4.pro 589 Notchl.pro 593 Notch2.pro Notch3.prc 574 C K C L P G F E G P R C Q T E V D E C L S D P C P V G A S C Notch4.pro 619 Notch1.pro 623 Notch2.pro 598 Notch3.pro 604 Notch4.pro P C D S G T C T D K T D G Y F C A C F P G Y T G S M C N T N F C A C F P G Y T G S M C N T N D G Y F C A C F P G Y T G S M C N T N D C T F G V C R D C T N R Y D C V C Q P G F T G P T C N V F C C C F P G T G Q A C E V P Notch1.pro 653 Notch2.pro Notch3.pro 617 Notch4.pro

FIGURE 2C I D E C A G N P C E N G G T C E D G I N G F T C R C P E G Y I D E C A S N P C R K G A T C I N G V N G F R C I C P E G P I N E C A S S P C G E G G S C V D G E N G F R C D C P P G S 679 Notch1.pro 683 Notch2.pro 658 Notch3.pro - CAPNICQPKQICKDQKJKANCICPDG-Notch4.pro 709 713 688 654 PGWSGTNC - - DINNNECESNPCVNGG 739 C L C D A G W V G I N C - - E V D X N E C L S N P C Q N G G C V C E P G W S G P R C S Q S I A R D A C E S Q P C R A G G C V C D V G W T G P E C - - E A Z L G G C I S A P C A H G G 743 Notch2.pro Notch3.pro 718 676 Notch4.pro Notch1.pro CRFGFSGPNCQTN T C D N L V N G Y R C T C K K G F K G Y N C Q V N 1 D E C A T C S S D G M G F E C T C P P G V Q G R Q C E L - - - - - -771 Notch2.pro 748 Notch3.pro TCYPQPSGYNCTCPT-Notch4.pro 7.04 $\begin{bmatrix} \texttt{S} & \texttt{N} & \texttt{P} & \texttt{C} & \texttt{L} & \texttt{N} & \texttt{Q} & \texttt{G} & \texttt{T} & \texttt{C} \end{bmatrix} \textbf{I} \begin{bmatrix} \texttt{D} & \texttt{D} \end{bmatrix} \textbf{V} & \texttt{A} \begin{bmatrix} \texttt{G} & \texttt{Y} \end{bmatrix} \textbf{X} \begin{bmatrix} \texttt{C} & \texttt{N} \end{bmatrix} \textbf{K} \begin{bmatrix} \texttt{C} & \texttt{L} \end{bmatrix} \textbf{L} & \texttt{P} & \texttt{Y} & \texttt{T} & \texttt{G} \end{bmatrix} \textbf{A} & \texttt{T} \begin{bmatrix} \texttt{C} & \texttt{C} & \texttt{C} \end{bmatrix} \textbf{A}$ Notchl.pro 801 SNPCLNQGTCFDDISGYTCHCVL?YTGKNC Notch2.pro 772 719 Notch4.pro 827 Notchl.pro 831 Notch2.pro 772 Notch3.pro Notch4.pro 857 Notchl.pro 861 Notch2.pro Notch3.pro 798 Notch4.pro 886 Notchl.pro 889 Notch2.pro 827 Notch3.pro GYTGPTCSEEMTACHSG 719 Notch4.pro P C H N G G S C T D G I N T A F C D C L P G F R G T F C E E Notch1.pro P C Q N G G S C M D G V N T F S C T C T P G F T G D K C Q T Notch2.pro P C L N G G S C Q D G V G S F S C S C L P G F A G P R C A R Notch3.pro 916 919 857 PCLNGGSCNPSPGGYYCTCPPSHTGPQC2T Notch4.pro 736 DINECASDPCRNGANCTDCVDSYTCTCPAG 946 Notchl.pro 949 Notch2.pro 887 Notch3.pro 766 Notch4.pro F S G I H C E N N T P D C T E S S C F N G G T C V D G I N S F D G G F D C V D G I N S S Y G G F D C V D G I N S S S C F N G G T C V D G I N S S Y G G F D C S P S S C F N G G T C V D G V N S 976 Notchl.pro 979 916 Notch3.pro 776 ---FNGGTCVNRPGT 1006 946 F S C L C A M G F Q G P R C E G X L R P S C A D S P C R N R 788

FIGURE 2D G T C Q D G C G S Y R C T C P Q G Y T G P N C Q N L V H W C Notch1.prc G T C V D G L G T Y R C S C P L G Y T G K N C Q T L V N L C Notch2.pro G V C S A A H P G F R C T C L E S F T G P Q C Q T L V D W C Notch3.prc AFCQDSPQGPRCLCPTGYTGGSCQTLMDLCNotch4.prc 1065 DSSPCKNGGKCWQTHTQYRCECPSGWTGLYNOtch1.prc 1068 SRSPCKNKGTCVQKKAESQCLCPSGWAGAYNotch2.prc SRQPCQNGGRCVQTG-- AYCLCPPGWSGRL Notch3.prc A Q K P C P R N S H C L Q T G P S F E C L C L Q G W T G P L Notch4.prc 1095 C D V P S V S C E V A A Q R Q G V D V A R L C Q H G G L C V Notch1.prc 1096 C D V P N V S C D I A A S R R G V L V E H L C Q H S G V C T Notch2.prc 1033 C D I R S L P C R E A A A Q I G V R L E Q L C Q A G G Q C V Notch3.prc CN L P L S S C Q K A A L S Q G I D V S S L C H N G G L C V Notch4.pro 1125 DAGNTHHCRCQAGYTGSYCEDLVDECSPSP 1128 NAGNT II Y CQCP LGYTGSYCE EQLDECASNP Notch2.prc DEDSSHYCVCPEGRTGSHCEQEVDPCLAQP DSGPSYFCHCPPGFQGSLCQDHVNPCESRPNotch4.prc 1093 C Q H G G T C R G Y M G G Y M C E C L P G Y N G D N C E D D Notch3.prc CQNGATCMAQPSGYLCQCAPGYDGQNCSKE Notch4.pro I D E C L S H P C Q N G G T C L D L P N T Y K C S C P R G V D E C Q N Q P C Q N G G T C I D L V N H F K C S C P P G T 1188 Notch2.prc 1123 V D E C A S Q P C Q II G G S C I D L V A R Y L C S C P P G T Notch3.prc LDACQSQPCHN-----Notch4.prc Q G V H C E I N V D D C N P P V D P V S R S P K C F N N G T Notch1.prc R G L L C E E N I D D C - - - - - A R G P H C L N G G Q Notch2.prc L G V I C R T N F D D C G P G - P P I D S G P R C I H N G T Notch3.prc '- - - H G 🗆 Notch4.prc C V D Q V G G Y S C T C P P G F V G E R C E G D V N E C L S C M D R I G G Y S C R C L P G F A G E R C E G D I N E C L S Notch2.prc C V D L V G C F R C T C P P G Y T C L R C E A D I N E C R S Notch3.prc C T P K P G G F H C A C P P G F V G L R C E G D V D E C L D Notch4.prc N P C D A R G T Q N C V Q R V N - D F H C E C R A G H T G R Notch1.prc N P C S S E G S L D C I Q I T N - D Y L C V C R S A F T G R Notch2.prc G A C H A A H T R D C L Q D P G G G F R C L C H A G F S G P Notch3.prc 1271 QPCHPTGTAACHSLAN-AFYCQCLPGHTGQ R C E S V I N G C K G K P C K N G G T C A V A S N T A R G -1300 WCEVEIDPCHSQPCFHGGTCEATAGSPLG-1041 Notch4.prc - F I C K C P A G F E G A T C E N D A R T C G S L R C L N G Notch1.prc - F I C R C P P G F S G A R C Q S - - - S C G Q V K C R K G Notch2.prc T F T C H C A Q P F W G P R C E R V A R S C R E L Q C P V G Notch3.prc - F I C H C P K G F E G P T C S H R A P S C G F H H C H H G Notch4.prc 1272 G T C I S G P R S - - - P T C L C L G P F T G P E C Q F P A Notch1.prc E Q C V H T A S G - - - P R C F C P S P R D - - - C E S G C Notch2.prc V P C Q Q T P R G - - - P R C A C P P G L S G P S C R S F P Notch3.prc 1355 G L C L P S P K P G F P P R C A C L S G Y G G P D C L T P P Notch4.pro

FIGURE 2E

S S P - - - - - C L G G N P C Y N Q G T C E P T S - - E S Notch1.pro A S - - - - - - - - S P C Q H G G S C F P Q R - - Q P Notch2.pro G S P P G A S N A S C A A A P C L H G G S C R P A P - - L A Notch3.pro 1.329 APKG----CGPFSPCLYNGSCSETTGLGGNotch4.pro P F Y R C L L C P A K F N C L L C H I L D Y S F G C S A S R D Notch1.pro P Y Y S C Q C A P P F S G S R C E L Y T - - - - - - - - - Notch2.pro P F F R C A C A Q G W T G P R C E A P A - - - - - - - - A Notch3.pro P G F R C S C P I S S P G P R C Q K P G - - - - - - - - Notch4.pro 1.357 I P P P L I E E A C F L P E C Q E D A G N K V C S L Q C N N Notch1.prc A P P S T P P A T C L S Q Y C A D K A R D G V C D E A C N S Notch2.prc A P E V S E E P R C P R A A C Q A K R G D Q R C D R E C N S Notch3.prc - - - - A K G - - - - - - C E G R S G D G A C D A G C S G Notch4.prc H A C G W D G G D C S I N F N D P W K N C T Q S I Q C W K Y Notch1.pro H A C Q W D G G D C S L T M E N P W A N C S S P L P C W D Y Notch2.pro P G C G W D G G D C S L S V G D P W R Q C - E A L Q C W R L Notch3.pro P G G N W D G G D C S L G V P D P W K G C P S H S R C W L L Notch4.pro F S D G H C D S Q C N S A G C L F D G F D C Q R A - - E G Q Notch1.pro I N N - Q C D E L C N T V E C L F D N F E C Q G N - - S K T Notch2.pro F N N S R C D P A C S S 7 A C L Y D N F D C H A G G R E R T Notch3.pro F R D G Q C F P Q C D S E E C L F D S Y D C E T P - - P A Notch4.pro N P L Y D Q Y C K D H F S D G H C D Q G C N S A E C E W D Notch1.pro C K - - Y D K Y C A D H F K D N H C D Q G C N S E E C G W D Notch2.pro C N P V Y E K Y C A D H F A D G R C D Q G C N T E E C G W D Notch3.pro C T P A Y D Q Y C H D H F F N G H C F K G C N T A F C G W D Notch4.pro S S F II F L R E L S R V I I T N V V F K R D A II G Q Q M I F Notch1.pro D A R S F L R A L G T L I E T N L R I K R D S Q G E L M V Y Notch2.pro S S A D F I Q R I S A I I R T S I R F R I D A H G Q A M V F Notch3.pro Q I F A L A R V L S I T I R V G L W V R K D R D G R D M V Y Notch4.pro P Y Y C E K S A A M K K - - - - - - Q - - - - - - R Notch2.pro P Y H R P S P G S K P R - - - - - - - - - - - - Notch3.pro PYPGARAEEKLG------GTRDPTYQER Notch4.pro V K A S L L P G G S E G G R R R R E L D P M D V R G S I V Y Notch1.pro M T R R S L P G E - - - - - - Q E - - - Q E V A G S K V F Notch2.pro A R E L A P - - - - - - - - - E V I G S V V M Notch3.pro AAPQTQPLG-----KETDSLSAGFVVV L E I D N R Q C V Q - - A S S Q C F Q S A T D V A A F L G A Notch1.pro L E I D N R L C L Q S P E N D H C F P D A Q S A A D Y L G A Notch3.pro M G V D L S R C G P D H P A S R C P W D P G L L R F L A S L G S L N - - 1 P Y K 1 5 A V Q S E T V E P P P P - - Notch1.pro H A I Q G T L S - - Y P - - L V S V V S E S L T P - - - - Notch2.pro L S A V E R L D - - F P Y P L R D V R G E P L E P E - - - Notch3.pro M A A V G A L E P L L P G P L L A V H P E A G T A P F A N Q Notch4.pro 1.653

Notch4.pro

FIGURE 2F - A Q L H F M Y V A A A A F V L L F F V G C G V L L S R X R Notch1.prc - H R T Q H L Y L L A V A V V V I T L F F V G C G V L L S R X R Notch2.prc - P S V P L L P L L V A G A V L L L V L G V M V A R R Notch3.prc L P W P V L C S P V A G V I L L A L G A L L V L Q L I R R R Notch4.prc 1674 1639 R R C H C Q L W F P E G F X V S - E A S K - - K K R R E P L Notch1.prc K R K H G S L W L P E G F T L R R D A S N - - H K R R E P V Notch2.prc K R E H S T L W F P E G F S L H K D V A S G F K G R R E P V Notch3.prc R R E H G A L W L P P G F T R R P R T Q S A P H R R R P P I Notch4.prc 1762 1703 1668 1474 G E D S V G L K P L K N - A S D G A L M D D N Q N E - - W G Notch1.prc G Q D A V G L K N L S V Q V S E A N L T G T G T S E H W V D Notch2.prc G Q D A L G M K N M A K - - - G F S L M G E V A T D - W M D Notch3.prc 1731 1698 GEDSIGLKALKP-----KAEVDEDG-Notch4.pro D E D L E T K K F R F E E P V V L P D L D D Q T D H R Q W T Notch1.pro D E G P Q P K K V K A E D E A L L S E E D D P I D R R P W T Notch2.pro T E C P E A K R L K V E E P G M G - - A E E A V D C R Q W T Notch3.pro 1816 1761 1724 -- EGEEVGQAEETGPPSTCQLWS Notch4.pro 1527 QQHLDAADLR-MSAMAPTPPQGEVDADCMDNotch1.pro Q Q H L E A A D I R R T P S L A L T P P C A E Q E V D V L D Q H H L V A A D I R V A P A M A L T P P Q G D A D A D G M D L S G G C G A L P Q - - - A A M L T P P Q - E S E M E A P D 1791 Notch2.pro Notch3.pro 1752 Notch4.pro LMIASCSGGGLETGNSEE 1875 V N V R G P D G C T P L M L A S L R G G S S D L S D E D 5 D Not.ch2.prc V N V R G P D G F T P L M L A S F C G G A L F P M P T F 5 D Not.ch3.prc L D T R G P D G V T P L M S A V C C G - E V Q S G T F Q G - Not.ch4.prc 1782 1579 1904 1851 1812 - A W L G C P E P W E P L L D G G A C P Q A E T V G T G E T A L H L A A R Y S R S D A A K R L L E A S A D A N I Q D K M Notchl.pro A L H L A A R Y S R A D A A K R L L D A G A D A N A Q D K M Notch2.pro 1932 1880 Notch2.prc A L H L A A R Y A R A D A A K R L L D A G A D T N A Q D H S 1842 Netch3.pre 1636 P L H L A A R F S R P T A A R R L L E A G A N P N Q P D R A Notch4.pro GRTPLHAAVSAAAGGVFQILIRNRATDLDA Notch1.pro G R C P L H A A V A A D A Q G V F Q I L I R N R V T D L D A G R T P L H T A V T A D A Q G V F Q I L I R N R S T D L D A G R T P L H A A V A A D A R E V C Q L L I R S R Q T A V D A 1910 Notch2.pro 1872 Notch3.pro Notch4.pro 1666 1992 RMHDGTTPLILAARLAVEGMLEDLINSHAD R M N D G T T P L I L A A R L A V E G M V A E L I N C Q A D R M A D G S T A L I L A A R L A V E G M V E E L I A S H A D 1940 Notch2.pro Notch3.pro 1902 1696 RTEDGTT PLM LAARLAVEDLVEELIAAQAD Notch4.pro 2022 V N A V D D L G K S A L H W A A A V N N V D A A V V L L K N Notch1.pro Notch2.pro 1970 V N A V D D H G K S A L H W A A A V N N V E A T L L L K N V N A V D E L G K S A L H W A A A V N N V E A T L A L L K N Notch3.pro V G A R D K W G K T A L H W A A A V N N A R A A R S L L Q A Notch4.pro 1726 G A N K D M Q N N R E E T P L F L A A R E G S Y E T A K V G A N R D M Q D N K E E T P L F L A A R E G S Y E A A K L G A N K D M Q D S K E E T P L F L A A R E G S Y E A A K L 2052 Notchl.pro Notch2.pro 2000 1962 Notch3.pro

G A D K D A Q D N R E Q T P L F L A A R E G A V E V A Q L L

FIGURE 2G L D H F A N R D I T D H M D R L P R D I A Q E R M H H D I V Notch1.pro L D II F A N R D I T D II M D R L P R D V A R D R M H II D I V L D H F A N R E I T D H L D R L P R D V A Q F R L H Q D I V L G L G A A R E L R D C A G L A P A D V A H Q R N H W D L L 2030 Notch2.pro 1992 Notch3.pro 1786 Notch4.pro R L L D E Y N L V R S P Q L H G A P L G G T P T L S P P L C 2112 Notchl.pro R L L D E Y N V T P S P - - P G T V L - - T S A L S P V I C R L L D Q P S G P R S P - - P G P H G - - - - L G P L L C 2060 Notch2.pro 2022 Notch3.pro TLLEGAGPPEAR--Notch4.pro 2142 2086 PPGAFLPGLKAAQSSSKKSRRPPGK---- Notch3.pro 2045 2166 2115 2070 ----AGLGPQGPRGRGKKLTLACPGPLADS Notch3.pro 1844 Notch4.pro S G M L S P V D S L E S P H G Y L S D V A S P P L L P S P - Notch1.pro S V T L S P V D S L E S P H T Y V S D T T S S P M I T S P G Notch2.pro S V T L S P V D S L D S P R P F G G P P A S P G G F P - Notch3.pro S V S V P P H G G G A L P R C R T L S A G A C P R G G - - Notch4.pro 2195 2145 2096 1846 2224 I L Q A S P N P M L A T A A P P A P V H A Q H A L S F S N L Notch2.pro 2175 2123 1873 P | E | M | A A L G G G G R L A F E T G P | P | R | L S H | L P V A | S | G T Notchl.pro H E M Q P L A H G A S T V L P S V S Q L L S H H H I V S - - Notch2.pro V S L A Q L G G P G R A G L G R Q P P - - - - - - - - - Notch3.pro V D L A A R G G G A Y S II C R S L S G - - - - - - - - Notch4.pro S T V L G S S S G G A L N F T V G G S S T S L N G Q C E W L S Notch1.pro - - - P G S G S A G S L S R - - - - L H P V P V P A D W M N Notch2.pro - - - - G G C V L S L G L - - - - L N P V A V P L D W A R Notch3.pro - - - - V G A G G - - - - - - - - - - Notch4.pro 2284 2233 2154 1902 2314 2256 2175 1908 Q H G M V G P L H S S L A A S A L S Q M M S Y Q G L P S T $\overline{\mathbb{R}}$ Notchl.pro 2344 2282 ----QSR Notch2.pro 2185 2288 2189 ---FSAGMRGPR-----Notch4.pro 1915

FIG	JRE 2H	
2434	FLSGEPSQADVQPLGPSSLAVHTILPQESP Notchi	l.pro
2340	Y Q I P E M A R L P S V A F P T A M M P Q Q D G Q Notchi	-
2226	A + S S P P K A R F T R Notch	-
1942		
1712		1.010
2464	A L P T S L P S S L V P P V T A A Q F L T P P S Q H S Y S S Notchi	l.pro
2365	VAQTILPAYHPFPASVGKYPTPPSQHSYAS Notch2	2.pro
2238	- VPSEHPYLTPSPESPEHWASPSPSTSDW Notch:	3.pro
1942	RVSTDDWPCDWVALGACG Notch4	1.pro
	L	
2494	P V D N T P S H Q L Q V P - E H P F L T P S P E S P D Q NotchI	L.pro
2395	SNAAERTPSHSGHLQGEHPYLTPSPESPDQ Notch2	2.pro
2267	S E S T P S P A T A T C A M A T T T C A L P A Q Notch	3.pro
1960	S A S N I P I P P P C L T P S P E R G S P Notch	1.pro
		-
2521	- W S S S S P H S N V S D W S E G V S S P P T S M Q S Q I A Notchi	L.pro
2425	- W S S S P H S - A S D W S D V T T S P T P G G A G G G Q Notch2	2.pro
2291	PLPLSVPSSLAQAQTQLGPQPEVTPKRQVL Notch	B.pro
1981	Q L D C G P P A I C E M P I N Q G G E G K K Notch	
2550	RIPEAFK Notch	l.pro
2453	R G P G T H M S E P P H N N M Q V Y A Notch2	2.pro
2321	Notch3	3.pro
2002	Notch4	1.pro

FIGURE 3 Statistics of amino acid alignment for Notch1-4

Percent of identity

Divergence

	1	2	3	4	
1		56.1	52.7	42.6	1
2	64.9		52.7	42.5	2
3	73.0	72.9		43.4	3
4	102.0	102.4	99.3		4
	1	2	3	4	

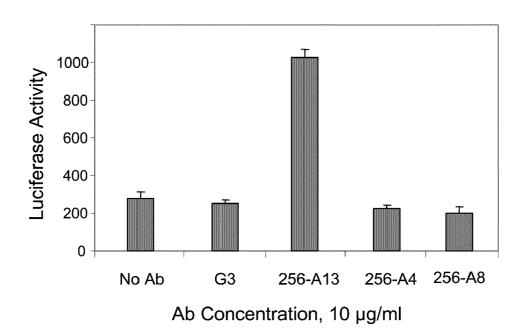
FIGURE 4A

mAb 256A-13 heavy chain variable region sequence

 ${\tt SQVQLQQSGAELAKPGTSVKMACKASGYTFTTHWMNWVKQRPGQGLEWIGTINPSNDFTDCN}$ CDR-H1 CDR-H2

QKFKDKAILTADKSSSTAYMQLSSLTSEDSAIYYCASGLTARAWFAYWGQGTLVTVSAA CDR-H3

(SEQ ID NO: 2)


FIGURE 4B

mAb 256A-13 light chain (kappa) variable region sequence

RATISCRASQSVTTSNYSYMHWFQQKPGQPPKLLIKYASNLDSGVPARFSGSGSGTDFTLNI CDR-L1 CDR-L2

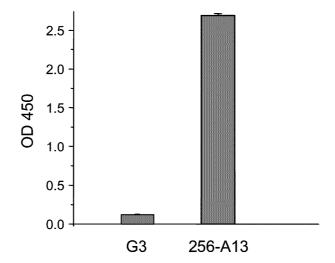
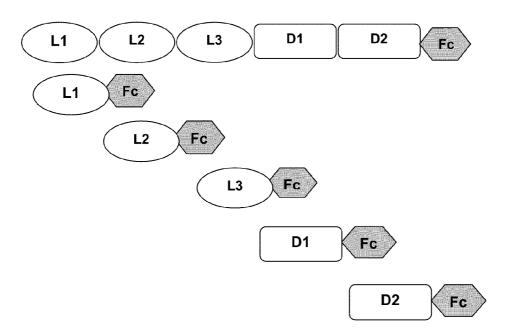

HPVEEEDTATFYCQHSWEIPYTFGGGTNLEIKRADAAPTV (SEQ ID NO: 3) CDR-L3

FIGURE 5 LIGAND INDEPENDENT NOTCH3 SIGNALING



US 8,187,839 B2

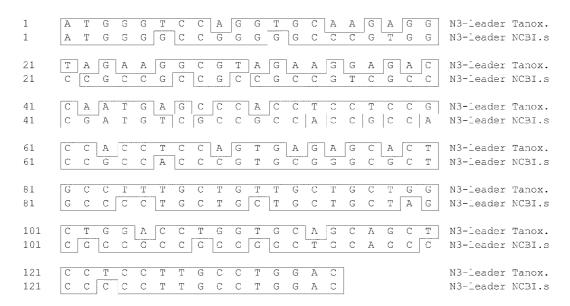

FIGURE 6 METALLOPROTEASE CLEAVAGE OF NOTCH3

FIGURE 7 NOTCH3/Fc PROTEIN CONSTRUCTS FOR EPITOPE MAPPING

FIGURE 8A

FIGURE 8B

FIGURE 8C

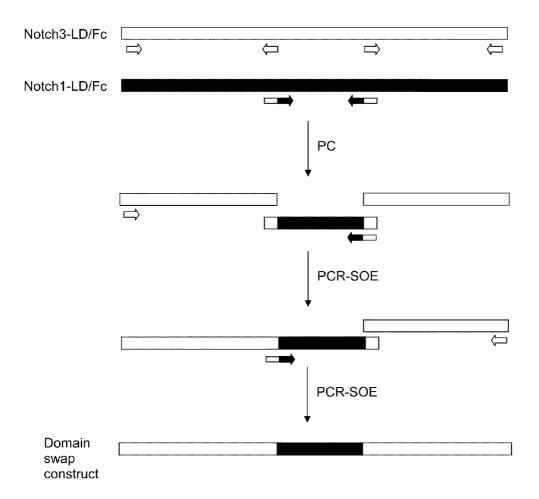

EPRCPRAACQ AKRGDQRCDR ECNSPGCGWD GGDCSLSVG (SEQ ID NO 10)

FIGURE 8D

AKRGDQRCDR ECNSPGCGWD GGDCSLSVG (SEQ ID NO 11)

May 29, 2012

FIGURE 9

May 29, 2012

FIGURE 10 Summary of subdomain swap and amino acid (aa) cluster swap sequence in first LIN12 domain and Mab binding strength in **ELISA** assays

Expression constructs	Sequence ID	Wild type and swapped sequences of Notch3 1st LIN12 (L1) domain	256A-13	G3	Hu-Fc	% of difference
Notch3-L1	10	EPRCPRAACQAKRGDQRCDRECNSPGCGWDGGDCSLSVG	+++	_	+++	0
L1-sub1	14	-EACELPE	+++	-	+++	15.34
L1-sub2	15	EDAGNKVCS	+	_	+++	17.95
L1-aa swap1	17	EDA	4		+-+-	20.51
L1-aa swap2	18	NKV	+++	-	++	7.69
L1-sub3	16	LQCNNHACGWDGGDCSLNFN	- -		+++	7.69
L1-aa swap3	19	SLQ	***	-	+-+	7.69
L1-aa swap4	20	NHA	+++	-	+++	7.69
L1-aa swap5	21	NFN	+++	-	+++	7.69

In these ELISA experiments, binding of Mab 256A-13 to Notch3-LD/Fc (L1) was used as positive control, i.e. 100% binding. Binding read-out to swap recombinant proteins were compared to that of positive standard. +++: >50% of standard binding; +: 10-40% of standard binding; +: 10% to minimum positive signal. -: no binding, i.e. Mab G3 mean binding readout +/- 3 X standard error. Mab G3 is a human IgG1 control Mab used as negative control.

FIGURE 11 Alanine scanning peptides for epitope mapping of 256A-13

Expression constructs	Sequence ID	Wild type and swapped sequences of Notch3 1st LIN12 (L1) domain
Notch3-L1	10	EPRCPRAACQAKRGDQRCDRECNSPGCGWDGGDCSLSVG
AA-scan 1	22	AACQA AA GDQRC
AA-scan 2	23	ACQAK AA DQRCD
AA-scan 3	24	CQAKR <u>AAQ</u> RCDR
AA-scan 4	25	QAKRG AA RCDRE
AA-scan 5	26	AKRGD AA CDREC
AA-scan 6	27	krgdo <u>aa</u> drecn
AA-scan 7	28	RGDQR AA RECNS
AA-scan 8	29	GDQRC AA ECNSP
AA-scan 9	30	DQRCD AA CNSPG
AA-scan 10	31	QRCDR AA NSPGC
AA-scan 11	32	RCDRE AA SPGCG
AA-scan 12	33	CDREC AA PGCGW
AA-scan 13	34	drecn aa gcgwd
AA-scan 14	35	RECNS AA CGWDG
AA-scan 15	36	ECNSP AA GWDGG
AA-scan 16	37	CNSPG AA WDGGD

ANTI-NOTCH3 AGONIST ANTIBODIES AND THEIR USE IN THE TREATMENT OF NOTCH3-RELATED DISEASES

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional application of U.S. application Ser. No. 11/874,682, filed Oct. 18, 2007, now U.S. Pat. No. 7,915,390, which claims the benefit of U.S. Provisional Application No. 60/852,861, filed Oct. 19, 2006, U.S. Provisional Application No. 60/875,597, filed Dec. 18, 2006, and U.S. Provisional Application No. 60/879,218, filed Jan. 6, 2007. The disclosures of U.S. application Ser. No. 11/874, 682, U.S. Provisional Application No. 60/852,861, and U.S. Provisional Application No. 60/879,218 are incorporated herein by reference in their entirety.

FIELD OF THE INVENTION

The present invention relates to anti-Notch3 agonist antibodies and their use in the amelioration, treatment, or prevention of a Notch3-related disease or disorder.

BACKGROUND OF THE INVENTION

The Notch gene was first described in 1917 when a strain of the fruit fly Drosophila melanogaster was found to have notched wing blades (Morgan, Am Nat 51:513 (1917)). The gene was cloned almost seventy years later and was deter- 30 mined to be a cell surface receptor playing a key role in the development of many different cell types and tissues in Drosophila (Wharton et al., Cell 43:567 (1985)). The Notch signaling pathway was soon found to be a signaling mechanism mediated by cell-cell contact and has been evolution- 35 arily conserved from *Drosophila* to human. Notch receptors have been found to be involved in many cellular processes, such as differentiation, cell fate decisions, maintenance of stem cells, cell motility, proliferation, and apoptosis in various cell types during development and tissue homeostasis 40 (See review Artavanis-Tsakonas, et al., Science 268:225 (1995)).

Mammals possess four Notch receptor proteins (designated Notch1 to Notch4) and five corresponding ligands (designated Delta Like-1 (DLL-1), Delta Like-3 (DLL-3), Delta 45 Like-4 (DLL-4), Jagged-1 and Jagged-2). The mammalian Notch receptor genes encode ~300 kD proteins that are cleaved during their transport to the cell surface and exist as heterodimers. The extracellular portion of the Notch receptor has thirty-four epidermal growth factor (EGF)-like repeats 50 and three cysteine-rich Notch/LIN12 repeats. The association of two cleaved subunits is mediated by sequences lying immediately N-terminal and C-terminal of the cleavage site, and these two subunits constitute the Notch heterodimerization (HD) domains (Wharton, et al., Cell 43:567 (1985); 55 Kidd, et al., Mol Cell Biol 6:3431 (1986); Kopczynski, et al., Genes Dev 2:1723 (1988); Yochem, et al., Nature 335:547 (1988)).

At present, it is still not clear how Notch signaling is regulated by different receptors or how the five ligands differ 60 in their signaling or regulation. The differences in signaling and/or regulation may be controlled by their expression patterns in different tissues or by different environmental cues. It has been documented that Notch ligand proteins, including Jagged/Serrate and Delta/Delta-like, specifically bind to the 65 EGF repeat region and induce receptor-mediated Notch signaling (reviewed by Bray, *Nature Rev Mol Cell Biol.* 7:678

2

(2006), and by Kadesch, Exp Cell Res. 260:1 (2000)). Among the EGF repeats, the 10th to 12th repeats are required for ligand binding to the Notch receptor, and the other EGF repeats may enhance receptor-ligand interaction (Xu, et al., J Biol. Chem. 280:30158 (2005); Shimizu, et al., Biochem Biophys Res Comm. 276:385 (2000)). Although the LIN12 repeats and the dimerization domain are not directly involved in ligand binding, they play important roles in maintaining the heterodimeric protein complex, preventing ligand-independent protease cleavage and receptor activation (Sanche-Irizarry, et al., Mol Cell Biol. 24:9265 (2004); Vardar et al., Biochem. 42:7061 (2003)).

Normal stem cells from many tissues including intestinal and neuronal stem cells depend on Notch signaling for selfrenewal and fate determination (Fre, et al., Nature, 435: 964 (2005); van Es, et al., Nature, 435: 959 (2005); Androutsellis-Theotokis, et al., Nature, 442: 823 (2006)). Therefore, the Notch3 agonistic antibody could have application in degenerative diseases. CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) causes a type of stroke and dementia whose key features include recurrent subcortical ischaemic events and vascular dementia. CADASIL has been found to be associated with a mutant gene localized to chromosome 19 (Joutel, et al., 25 Nature 383:707 (1996)). Joutel et al. identified mutations in CADASIL patients that cause serious disruption of the Notch 3 gene, indicating that Notch3 could be the defective protein in CADASIL patients. Unfortunately, this highly incapacitating and often lethal disease has remained largely undiagnosed or misdiagnosed as multiple sclerosis and Alzheimer's disease. Current studies would tend to demonstrate that it is a condition that is much more widespread than first thought.

An additional example of a Notch 3 related disease is familial hemiplegic migraine (FHM), the dominant autosomal form of migraine with aura, located in the same region of chromosome 19 as the Notch3 gene. It should be noted that more than 30% of patients suffering from CADASIL also suffer from migraine with aura. However, the latter is observed in only about 5% of the population and this observation led to the discovery of Notch3 gene involvement in the mechanism of this condition. Similarly, familial paroxytic ataxia has been linked to a gene located in the same region of chromosome 19 and Notch3 has been implicated in this condition. Other conditions and diseases that have been linked to Notch3 include Alagille syndrome (Flynn, et al., *J Pathol* 204:55 (2004)).

Ongoing research studies are currently being pursued to identify other diseases and conditions linked to Notch3 expression and/or signaling deficiencies. In view of the large number of human diseases associated with the Notch 3 signaling pathway, it is important that new ways of preventing and treating these diseases be identified. The current invention provides novel anti-Notch 3 agonist antibodies useful for this unmet medical need.

SUMMARY OF THE INVENTION

The present invention provides novel agonist antibodies and fragments thereof that specifically bind to an epitope of the human Notch3 receptor in the LIN12 domain. Another aspect of the invention includes the epitope binding site and antibodies that bind this same epitope as the antibodies of the present invention. The antibodies of the present invention activate Notch3-mediated signaling through the Notch3 receptor independent of ligand binding.

The invention includes the amino acid sequences of the variable heavy and light chain of the antibodies and their

corresponding nucleic acid sequences. Another embodiment of the invention includes the CDR sequences of these antibodies

Another embodiment of the present invention includes the cell lines and vectors harboring the antibody sequences of the present invention.

The present invention also includes the epitope recognized by the agonist antibodies of the invention. The present invention also includes antibodies that bind this epitope. The embodiments include a Notch 3 epitope comprising the Lin 10 12 domain having at least 80%, 85%, 90%, or 95% sequence identity with SEQ ID NO. 10. More particularly, the Notch 3 epitope comprises SEQ ID NO 11. The present invention includes agonist antibodies that bind this epitope.

Another embodiment of the present invention is the use of 15 these antibodies for the preparation of a medicament or composition for the treatment of Notch 3 related diseases and disorders associated with e.g., receptor inactivation.

Another embodiment of the preset invention is the use of these antibodies in the treatment of Notch 3 related diseases 20 or disorders associated with e.g. receptor inactivation comprising the activation of said defects by, e.g., activating Notch 3 signaling independent of ligand binding. Notch 3 related disorders may include, but not limited to, CADASIL, familial hemiplegics migraine (FHM), familial paroxytic ataxia, 25 Alagille syndrome and other degenerative diseases.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 depicts the amino acid sequence of Notch3. The 30 EGF repeat region extends from amino acid residue 43 to 1383; the LIN12 domain extends from amino acid residue 1384 to 1503; and the dimerization domain extends from amino acid residue 1504 to 1640.

FIG. 2 (A-H) depicts the amino acid sequence comparison 35 between human Notch 1 (SEQ ID NO:39), Notch 2 (SEQ ID NO:40), Notch 3 (SEQ ID NO:1), and Notch 4 (SEQ ID NO:41).

FIG. 3 depicts the percent identity of Notch 1, Notch 2, Notch 3, and Notch 4.

FIGS. 4A and 4B depict the heavy and light chain variable region sequences of anti-Notch3 monoclonal antibody MAb 256A-13 (SEQ ID NO: 2 and SEQ ID NO:3, respectively), with the following CDR regions underlined: CDR-H1 (SEQ ID NO:4), CDR-H2 (SEQ ID NO:5), CDR-H3 (SEQ ID 45 NO:6), CDR-L1 (SEQ ID NO:7), CDR-L2 (SEQ ID NO:8) and CDR-L3 (SEQ ID NO:9).

FIG. 5 depicts a luciferase reporter assay of Example 5 showing activating effects by anti-Notch3 MAbs on the Notch3 receptor.

FIG. 6 depicts the impact of Notch3 agonistic antibodies on metalloprotease cleavage of Notch3.

FIG. 7 depicts Notch3-Fc fusion protein constructs for epitope mapping of the binding site of 256A-13.

FIGS. **8**A and **8**B depict the comparison of the engineered 55 Notch3 leader peptide coding sequence (SEQ ID NO:42, upper row in FIG. **8**A) to the native Notch3 leader peptide coding sequence (NCBI GenBank Accession No. NM_000435) (SEQ ID NO:43, lower row in FIG. **8**A) showing the changes of nucleotides (FIG. **8**A) and the translated 60 amino acid sequence of the engineered Notch leader peptide sequence (SEQ ID NO:44, FIG. **8**B). FIG. **8**C depicts the LIN 12 domain (SEQ ID NO:10) and FIG. **8**D depicts a subdomain epitope of LIN12 (SEQ ID NO:11).

FIG. 9 depicts the generation of domain swap construct by 65 PCR-SOE method. Arrow bars represent PCR primers. Open bar, Notch3 sequence. Filled bar, Notch1 sequence.

4

FIG. 10 depicts the amino acid sequences used in the Notch3 LIN12 domain epitope mapping of the MAb 256A-13

FIG. 11 depicts the Alanine scanning peptides for linear epitope mapping of 256A-13.

DETAILED DESCRIPTION

This invention is not limited to the particular methodology, protocols, cell lines, vectors, or reagents described herein because they may vary. Further, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the scope of the present invention. As used herein and in the appended claims, the singular forms "a", "an", and "the" include plural reference unless the context clearly dictates otherwise, e.g., reference to "a host cell" includes a plurality of such host cells. Unless defined otherwise, all technical and scientific terms and any acronyms used herein have the same meanings as commonly understood by one of ordinary skill in the art in the field of the invention. Although any methods and materials similar or equivalent to those described herein can be used in the practice of the present invention, the exemplary methods, devices, and materials are described herein.

All patents and publications mentioned herein are incorporated herein by reference to the extent allowed by law for the purpose of describing and disclosing the proteins, enzymes, vectors, host cells, and methodologies reported therein that might be used with the present invention. However, nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

Terms used throughout this application are to be construed with ordinary and typical meaning to those of ordinary skill in the art. However, Applicants desire that the following terms be given the particular definition as defined below.

The phrase "substantially identical" with respect to an antibody chain polypeptide sequence may be construed as an antibody chain exhibiting at least 70%, or 80%, or 90%, or 95% sequence identity to the reference polypeptide sequence. The term with respect to a nucleic acid sequence may be construed as a sequence of nucleotides exhibiting at least about 85%, or 90%, or 95%, or 97% sequence identity to the reference nucleic acid sequence.

The term "identity" or "homology" shall be construed to mean the percentage of amino acid residues in the candidate sequence that are identical with the residue of a corresponding sequence to which it is compared, after aligning the sequences and introducing gaps, if necessary to achieve the maximum percent identity for the entire sequence, and not considering any conservative substitutions as part of the sequence identity. Neither N- or C-terminal extensions nor insertions shall be construed as reducing identity or homology. Methods and computer programs for the alignment are well known in the art. Sequence identity may be measured using sequence analysis software.

The term "antibody" is used in the broadest sense, and specifically covers monoclonal antibodies (including full length monoclonal antibodies), polyclonal antibodies, and multispecific antibodies (e.g., bispecific antibodies), and antibody fragments so long as they exhibit the desired biological activity. Antibodies (Abs) and immunoglobulins (Igs) are glycoproteins having the same structural characteristics. While antibodies exhibit binding specificity to a specific tar-

get, immunoglobulins include both antibodies and other antibody-like molecules which lack target specificity. The antibodies of the invention can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass. Native antibodies and immunoglobulins are usually heterotetrameric glycoproteins of about 150, 000 Daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each heavy chain has at one end a variable domain (V_H) followed by a number of constant domains. Each light chain has a variable domain at one end V_I) and a constant domain at its other end.

As used herein, "anti-Notch3 antibody" means an antibody which binds specifically to human Notch3 in such a manner so as to activate Notch3 signaling independent of ligand.

The term "variable" in the context of variable domain of antibodies, refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular target. However, the variability 20 is not evenly distributed through the variable domains of antibodies. It is concentrated in three segments called complementarity determining regions (CDRs; i.e., CDR1, CDR2, and CDR3) also known as hypervariable regions both in the light chain and the heavy chain variable domains. The 25 more highly conserved portions of variable domains are called the framework (FR). The variable domains of native heavy and light chains each comprise four FR regions, largely a adopting a β -sheet configuration, connected by three CDRs, which form loops connecting, and in some cases forming part 30 of, the β -sheet structure. The CDRs in each chain are held together in close proximity by the FR regions and, with the CDRs from the other chain, contribute to the formation of the target binding site of antibodies (see Kabat, et al. Sequences of Proteins of Immunological Interest, National Institute of 35 Health, Bethesda, Md. (1987)). As used herein, numbering of immunoglobulin amino acid residues is done according to the immunoglobulin amino acid residue numbering system of Kabat, et al., unless otherwise indicated

The term "antibody fragment" refers to a portion of a 40 full-length antibody, generally the target binding or variable region. Examples of antibody fragments include F(ab), F(ab'), F(ab'), and Fv fragments. The phrase "functional fragment or analog" of an antibody is a compound having qualitative biological activity in common with a full-length anti- 45 body. For example, a functional fragment or analog of an anti-Notch3 antibody is one which can bind to a Notch3 receptor in such a manner so as to prevent or substantially reduce the ability of the receptor to bind to its ligands or initiate signaling. As used herein, "functional fragment" with 50 respect to antibodies, refers to Fv, F(ab) and F(ab'), fragments. An "Fv" fragment consists of a dimer of one heavy and one light chain variable domain in a tight, non-covalent association (V_H - V_L dimer). It is in this configuration that the three CDRs of each variable domain interact to define a target 55 binding site on the surface of the $\mathbf{V}_{H}\text{-}\mathbf{V}_{L}$ dimer. Collectively, the six CDRs confer target binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for a target) has the ability to recognize and bind target, although at a lower affin- 60 ity than the entire binding site.

"Single-chain Fv" or "sFv" antibody fragments comprise the V_H and V_L domains of an antibody, wherein these domains are present in a single polypeptide chain. Generally, the Fv polypeptide further comprises a polypeptide linker between 65 the V_H and V_L domains which enables the sFv to form the desired structure for target binding.

6

The term "diabodies" refers to small antibody fragments with two antigen-binding sites, which fragments comprise a heavy chain variable domain (V_H) connected to a light chain variable domain (V_L) in the same polypeptide chain. By using a linker that is too sort to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another changing and create two antigen-binding sites.

The F(ab) fragment contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain. F(ab') fragments differ from F(ab) fragments by the addition of a few residues at the carboxyl terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region. F(ab') fragments are produced by cleavage of the disulfide bond at the hinge cysteines of the F(ab')₂ pepsin digestion product. Additional chemical couplings of antibody fragments are known to those of ordinary skill in the art.

The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies herein specifically include "chimeric" antibodies (immunoglobulins) in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, which the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Pat. No. 4,816,567; and Morrison, et al., Proc Natl Acad Sci USA 81:6851 (1984)). Monoclonal antibodies are highly specific, being directed against a single target site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the target. In addition to their specificity, monoclonal antibodies are advantageous in that they may be synthesized by the hybridoma culture, uncontaminated by other immunoglobulins. The modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies for use with the present invention may be isolated from phage antibody libraries using the well known techniques. The parent monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler, et al., Nature 256:495 (1975), or may be made by recombinant methods.

"Humanized" forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')₂ or other target-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin template sequence. The humanized anti-

body may also comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin template chosen.

The terms "cell," "cell line," and "cell culture" include progeny. It is also understood that all progeny may not be 5 precisely identical in DNA content, due to deliberate or inadvertent mutations. Variant progeny that have the same function or biological property, as screened for in the originally transformed cell, are included. The "host cells" used in the present invention generally are prokaryotic or eukaryotic 10 hosts.

"Transformation" of a cellular organism, cell, or cell line with DNA means introducing DNA into the target cell so that the DNA is replicable, either as an extrachromosomal element or by chromosomal integration. "Transfection" of a cell or organism with DNA refers to the taking up of DNA, e.g., an expression vector, by the cell or organism whether or not any coding sequences are in fact expressed. The terms "transfected host cell" and "transformed" refer to a cell in which DNA was introduced. The cell is termed "host cell" and it may 20 be either prokaryotic or eukaryotic. Typical prokaryotic host cells include various strains of E. coli. Typical eukaryotic host cells are mammalian, such as Chinese hamster ovary or cells of human origin. The introduced DNA sequence may be from the same species as the host cell of a different species from the 25 host cell, or it may be a hybrid DNA sequence, containing some foreign and some homologous DNA.

The term "vector" means a DNA construct containing a DNA sequence which is operably linked to a suitable control sequence capable of effecting the expression of the DNA in a 30 suitable host. Such control sequences include a promoter to effect transcription, an optional operator sequence to control such transcription, a sequence encoding suitable mRNA ribosome binding sites, and sequences which control the termination of transcription and translation. The vector may be a 35 plasmid, a phage particle, or simply a potential genomic insert. Once transformed into a suitable host, the vector may replicate and function independently of the host genome, or may in some instances, integrate into the genome itself. In the present specification, "plasmid" and "vector" are sometimes 40 used interchangeably, as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of vectors which serve equivalent function as and which are, or become, known in the art.

"Mammal" for purposes of treatment refers to any animal 45 classified as a mammal, including human, domestic and farm animals, nonhuman primates, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, etc.

The word "label" when used herein refers to a detectable compound or composition which can be conjugated directly or indirectly to a molecule or protein, e.g., an antibody. The label may itself be detectable (e.g., radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition which is detectable.

As used herein, "solid phase" means a non-aqueous matrix to which the antibody of the present invention can adhere. Example of solid phases encompassed herein include those formed partially or entirely of glass (e.g., controlled pore glass), polysaccharides (e.g., agarose), polyacrylamides, 60 polystyrene, polyvinyl alcohol, and silicones. In certain embodiments, depending on the context, the solid phase can comprise the well of an assay plate; in others it is a purification column (e.g., an affinity chromatography column).

As used herein, the term "Notch3-mediated disorder" 65 means a condition or disease which is characterized by the defective or underexpressed Notch3 receptor. Specifically it

8

would be construed to include conditions associated with degenerative diseases such as. CADASIL, FHM, familial paroxytic ataxia, Alagille syndrome, and other degenerative diseases.

Notch 3 Receptor Immunogen for Generating Antibodies

Soluble targets or fragments thereof can be used as immunogens for generating antibodies. The antibody is directed against the target of interest. Preferably, the target is a biologically important polypeptide and administration of the antibody to a mammal suffering from a disease or disorder can result in a therapeutic benefit in that mammal. Whole cells may be used as the immunogen for making antibodies. The immunogen may be produced recombinantly or made using synthetic methods. The immunogen may also be isolated from a natural source.

For transmembrane molecules, such as receptors, fragments of these (e.g., the extracellular domain of a receptor) can be used as the immunogen. Alternatively, cells expressing the transmembrane molecule can be used as the immunogen. Such cells can be derived from a natural source (e.g., cancer cell lines) or may be cells which have been transformed by recombinant techniques to over-express the transmembrane molecule. Other forms of the immunogen useful for preparing antibodies will be apparent to those in the art.

Alternatively, a gene or a cDNA encoding human Notch3 receptor may be cloned into a plasmid or other expression vector and expressed in any of a number of expression systems according to methods well known to those of skill in the art. Methods of cloning and expressing Notch3 receptor and the nucleic acid sequence for human Notch3 receptor are known (see, for example, U.S. Pat. Nos. 5,821,332 and 5,759, 546). Because of the degeneracy of the genetic code, a multitude of nucleotide sequences encoding Notch3 receptor protein or polypeptides may be used. One may vary the nucleotide sequence by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the nucleotide sequence that codes for naturally occurring Notch3 receptor and all such variations may be considered. Any one of these polypeptides may be used in the immunization of an animal to generate antibodies that bind to human Notch3 receptor.

Recombinant Notch3 proteins from other species may also be used as immunogen to generate antibodies because of the high degree of conservation of the amino acid sequence of Notch3. A comparison between human and mouse Notch3 showed that over 90% amino acid sequences are identical between the two species.

The immunogen Notch3 receptor may, when beneficial, be
expressed as a fusion protein that has the Notch3 receptor
attached to a fusion segment. The fusion segment often aids in
protein purification, e.g., by permitting the fusion protein to
be isolated and purified by affinity chromatography, but can
also be used to increase immunogenicity. Fusion proteins can
be produced by culturing a recombinant cell transformed with
a fusion nucleic acid sequence that encodes a protein including the fusion segment attached to either the carboxyl and/or
amino terminal end of the protein. Fusion segments may
include, but are not limited to, immunoglobulin Fc regions,
glutathione-S-transferase, β-galactosidase, a poly-histidine
segment capable of binding to a divalent metal ion, and maltose binding protein.

Recombinant Notch3 receptor protein as described in Example 1 was used to immunize mice to generate the hybridomas that produce the monoclonal antibodies of the present invention. Exemplary polypeptides comprise all or a portion of SEQ ID NO. 1 or variants thereof.

Antibody Generation

The antibodies of the present invention may be generated by any suitable method known in the art. The antibodies of the present invention may comprise polyclonal antibodies. Methods of preparing polyclonal antibodies are known to the 5 skilled artisan (Harlow, et al., Antibodies; a Laboratory Manual, Cold spring Harbor Laboratory Press, 2nd ed. (1988)), which is hereby incorporated herein by reference in its entirety).

For example, an immunogen as described in Example 1 10 may be administered to various host animals including, but not limited to, rabbits, mice, rats, etc., to induce the production of sera containing polyclonal antibodies specific for the antigen. The administration of the immunogen may entail one or more injections of an immunizing agent and, if desired, an 15 adjuvant. Various adjuvants may be used to increase the immunological response, depending on the host species, and include but are not limited to, Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, 20 polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum. Additional examples of adjuvants which may be employed include the MPL-TDM adjuvant 25 (monophosphoryl lipid A, synthetic trehalose dicorynomycolate). Immunization protocols are well known in the art in the art and may be performed by any method that elicits an immune response in the animal host chosen. Adjuvants are also well known in the art.

Typically, the immunogen (with or without adjuvant) is injected into the mammal by multiple subcutaneous or intraperitoneal injections, or intramuscularly or through IV. The immunogen may include a Notch3 polypeptide, a fusion protein, or variants thereof. Depending upon the nature of the 35 polypeptides (i.e., percent hydrophobicity, percent hydrophilicity, stability, net charge, isoelectric point etc.), it may be useful to conjugate the immunogen to a protein known to be immunogenic in the mammal being immunized. Such conjugation includes either chemical conjugation by derivatizing 40 active chemical functional groups to both the immunogen and the immunogenic protein to be conjugated such that a covalent bond is formed, or through fusion-protein based methodology, or other methods known to the skilled artisan. Examples of such immunogenic proteins include, but are not 45 limited to, keyhole limpet hemocyanin, ovalbumin, serum albumin, bovine thyroglobulin, soybean trypsin inhibitor, and promiscuous T helper peptides. Various adjuvants may be used to increase the immunological response as described above.

The antibodies of the present invention comprise monoclonal antibodies. Monoclonal antibodies are antibodies which recognize a single antigenic site. Their uniform specificity makes monoclonal antibodies much more useful than polyclonal antibodies, which usually contain antibodies that 55 recognize a variety of different antigenic sites. Monoclonal antibodies may be prepared using hybridoma technology, such as those described by Kohler, et al., Nature 256:495 (1975); U.S. Pat. No. 4,376,110; Harlow, et al., Antibodies: A Laboratory Manual, Cold spring Harbor Laboratory Press, 60 2nd ed. (1988) and Hammerling, et al., Monoclonal Antibodies and T-Cell Hybridomas, Elsevier (1981), recombinant DNA methods, or other methods known to the artisan. Other examples of methods which may be employed for producing monoclonal antibodies include, but are not limited to, the 65 human B-cell hybridoma technique (Kosbor, et al., Immunology Today 4:72 (1983); Cole, et al., Proc Natl Acad Sci USA

10

80:2026 (1983)), and the EBV-hybridoma technique (Cole, et al., Monoclonal Antibodies and Cancer Therapy, pp. 77-96, Alan R. Liss (1985)). Such antibodies may be of any immunoglobulin class including IgG, IgM, IgE, IgA, IgD and any subclass thereof. The hybridoma producing the MAb of this invention may be cultivated in vitro or in vivo.

In the hybridoma model, a host such as a mouse, a humanized mouse, a mouse with a human immune system, hamster, rabbit, camel, or any other appropriate host animal, is immunized to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization. Alternatively, lymphocytes may be immunized in vitro. Lymphocytes then are fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, pp. 59-103 (1986)).

Generally, in making antibody-producing hybridomas, either peripheral blood lymphocytes ("PBLs") are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, pp. 59-103 (1986)). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine or human origin. Typically, a rat or mouse myeloma cell line is employed. The hybridoma cells may be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), substances that prevent the growth of HGPRT-deficient cells.

Preferred immortalized cell lines are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. Among these myeloma cell lines are murine myeloma lines, such as those derived from the MOPC-21 and MPC-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, Calif. U.S. Application No., and SP2/0 or X63-Ag8-653 cells available from the American Type Culture Collection, Rockville, Md. USA. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, JImmunol 133:3001 (1984); Brodeur, et al., Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc, pp. 51-63 (1987)). The mouse myeloma cell line NSO may also be used (European Collection of Cell Cultures, Salisbury, Wilshire, UK).

The culture medium in which hybridoma cells are grown is assayed for production of monoclonal antibodies directed against Notch3. The binding specificity of monoclonal antibodies produced by hybridoma cells may be determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques are known in the art and within the skill of the artisan. The binding affinity of the monoclonal antibody to Notch3 can, for example, be determined by a Scatchard analysis (Munson, et al., *Anal Biochem* 107:220 (1980)).

After hybridoma cells are identified that produce antibodies of the desired specificity, affinity, and/or activity, the

clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, pp. 59-103 (1986)). Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium (D-MEM) 5 or RPMI-1640 medium. In addition, the hybridoma cells may be grown in vivo as ascites tumors in an animal.

The monoclonal antibodies secreted by the subclones are suitably separated or isolated from the culture medium, ascites fluid, or serum by conventional immunoglobulin puri- 10 fication procedures such as, for example, protein A-SEPHAROSE® affinity media, hydroxylaptite chromatography, gel exclusion chromatography, gel electrophoresis, dialysis, or affinity chromatography.

A variety of methods exist in the art for the production of 15 monoclonal antibodies and thus, the invention is not limited to their sole production in hybridomas. For example, the monoclonal antibodies may be made by recombinant DNA methods, such as those described in U.S. Pat. No. 4,816,567. In this context, the term "monoclonal antibody" refers to an 20 antibody derived from a single eukaryotic, phage, or prokaryotic clone. DNA encoding the monoclonal antibodies of the invention is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the 25 herein by reference in their entirety. heavy and light chains of murine antibodies, or such chains from human, humanized, or other sources) (Innis, et al. In PCR Protocols. A Guide to Methods and Applications, Academic (1990), Sanger, et al., Proc Natl Acad Sci 74:5463 (1977)). The hybridoma cells serve as a source of such DNA. 30 Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as E. coli cells, NS0 cells, Simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of mono- 35 clonal antibodies in the recombinant host cells. The DNA also may be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences (U.S. Pat. No. 4,816,567; Morrison, et al., *Proc Natl Acad Sci USA* 81:6851 40 (1984)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a nonimmunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the vari- 45 able domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.

The antibodies may be monovalent antibodies. Methods for preparing monovalent antibodies are well known in the art. For example, one method involves recombinant expres- 50 sion of immunoglobulin light chain and modified heavy chain. The heavy chain is truncated generally at any point in the Fc region so as to prevent heavy chain cross-linking. Alternatively, the relevant cysteine residues are substituted with another amino acid residue or are deleted so as to prevent 55 cross-linking.

Antibody fragments which recognize specific epitopes may be generated by known techniques. Traditionally, these fragments were derived via proteolytic digestion of intact antibodies (see, e.g., Morimoto, et al., J Biochem Biophys 60 Methods 24:107 (1992); Brennan, et al., Science 229:81 (1985)). For example, Fab and F(ab')₂ fragments of the invention may be produced by proteolytic cleavage of immunoglobulin molecules, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')₂ fragments). 65 F(ab')₂ fragments contain the variable region, the light chain constant region and the CH1 domain of the heavy chain.

12

However, these fragments can now be produced directly by recombinant host ells. For example, the antibody fragments can be isolated from an antibody phage library. Alternatively, $F(ab')_2$ -SH fragments can be directly recovered from E. coli and chemically coupled to form F(ab')₂ fragments (Carter, et al., Bio/Technology 10:163 (1992). According to another approach, F(ab')₂ fragments can be isolated directly from recombinant host cell culture. Other techniques for the production of antibody fragments will be apparent to the skilled practitioner. In other embodiments, the antibody of choice is a single chain Fv fragment (Fv) (PCT patent application WO 93/16185).

For some uses, including in vivo use of antibodies in humans and in vitro detection assays, it may be preferable to use chimeric, humanized, or human antibodies. A chimeric antibody is a molecule in which different portions of the antibody are derived from different animal species, such as antibodies having a variable region derived from a murine monoclonal antibody and a human immunoglobulin constant region. Methods for producing chimeric antibodies are known in the art. See e.g., Morrison, Science 229:1202 (1985); Oi, et al., *BioTechniques* 4:214 (1986); Gillies, et al., J Immunol Methods 125:191 (1989); U.S. Pat. Nos. 5,807, 715; 4,816,567; and 4,816,397, which are incorporated

A humanized antibody is designed to have greater homology to a human immunoglobulin than animal-derived monoclonal antibodies. Humanization is a technique for making a chimeric antibody wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. Humanized antibodies are antibody molecules generated in a non-human species that bind the desired antigen having one or more complementarity determining regions (CDRs) from the nonhuman species and framework (FR) regions from a human immunoglobulin molecule. Often, framework residues in the human framework regions will be substituted with the corresponding residue from the CDR donor antibody to alter, preferably improve, antigen binding. These framework substitutions are identified by methods well known in the art, e.g., by modeling of the interactions of the CDR and framework residues to identify framework residues important for antigen binding and sequence comparison to identify unusual framework residues at particular positions. See, e.g., U.S. Pat. No. 5,585,089; Riechmann, et al., Nature 332:323 (1988), which are incorporated herein by reference in their entireties. Antibodies can be humanized using a variety of techniques known in the art including, for example, CDR-grafting (EP 239,400; PCT publication WO 91/09967; U.S. Pat. Nos. 5,225,539; 5,530,101; and 5,585,089), veneering or resurfacing (EP 592, 106; EP 519,596; Padlan, Molecular Immunology 28:489 (1991); Studnicka, et al., Protein Engineering 7:805 (1994); Roguska, et al., Proc Natl Acad Sci USA 91:969 (1994)), and chain shuffling (U.S. Pat. No. 5,565,332).

Generally, a humanized antibody has one or more amino acid residues introduced into it from a source that is nonhuman. These non-human amino acid residues are often referred to as "import" residues, which are typically taken from an "import" variable domain. Humanization can be essentially performed following the methods of Winter and co-workers (Jones, et al., Nature 321:522 (1986); Riechmann, et al., Nature 332:323 (1988); Verhoeyen, et al., Science 239:1534 (1988)), by substituting non-human CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567), wherein substantially less than an intact human variable domain has been

substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possible some FR residues are substituted from analogous sites in rodent antibodies.

It is further important that humanized antibodies retain higher affinity for the antigen and other favorable biological properties. To achieve this goal, according to a preferred method, humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimen- 15 sional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of certain residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate 20 immunoglobulin sequences, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen. In this way, FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for 25 the target antigen(s), is maximized, although it is the CDR residues that directly and most substantially influence antigen binding.

The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is 30 important to reduce antigenicity. According to the so-called "best-fit" method, the sequence of the variable domain of a non-human antibody is screened against the entire library of known human variable-domain sequences. The human sequence which is closest to that of that of the non-human 35 parent antibody is then accepted as the human FR for the humanized antibody (Sims, et al., *J Immunol* 151:2296 (1993); Chothia, et al., *J Mol Biol* 196:901 (1987)). Another method uses a particular framework derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework may be used for several different humanized antibodies (Carter, et al., *Proc Natl Acad Sci USA* 89:4285 (1992); Presta, et al., *J Immunol* 151:2623 (1993)).

Completely human antibodies are particularly desirable for therapeutic treatment of human patients. Human antibodies can be made by a variety of methods known in the art including phage display methods described above using antibody libraries derived from human immunoglobulin sequences. See also, U.S. Pat. Nos. 4,444,887 and 4,716,111; and PCT 50 publications WO 98/46645, WO 98/50433, WO 98/24893, WO 98/16654, WO 96/34096, WO 96/33735, and WO 91/10741; each of which is incorporated herein by reference in its entirety. The techniques of Cole, et al. and Boerder, et al. are also available for the preparation of human monoclonal 55 antibodies (Cole, et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Riss (1985); and Boerner, et al., *J Immunol* 147:86 (1991)).

Human antibodies can also be produced using transgenic mice which are incapable of expressing functional endogenous immunoglobulins, but which can express human immunoglobulin genes. For example, the human heavy and light chain immunoglobulin gene complexes may be introduced randomly or by homologous recombination into mouse embryonic stem cells. Alternatively, the human variable 65 region, constant region, and diversity region may be introduced into mouse embryonic stem cells in addition to the

14

human heavy and light chain genes. The mouse heavy and light chain immunoglobulin genes may be rendered nonfunctional separately or simultaneously with the introduction of human immunoglobulin loci by homologous recombination. In particular, homozygous deletion of the JH region prevents endogenous antibody production. The modified embryonic stem cells are expanded and microinjected into blastocysts to produce chimeric mice. The chimeric mice are then bred to produce homozygous offspring which express human antibodies. See, e.g., Jakobovitis, et al., Proc Natl Acad Sci USA 90:2551 (1993); Jakobovitis, et al., Nature 362:255 (1993); Bruggermann, et al., Year in Immunol 7:33 (1993); Duchosal, et al., Nature 355:258 (1992)). The transgenic mice are immunized in the normal fashion with a selected antigen, e.g., all or a portion of a polypeptide of the invention. Monoclonal antibodies directed against the antigen can be obtained from the immunized, transgenic mice using conventional hybridoma technology. The human immunoglobulin transgenes harbored by the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation. Thus, using such a technique, it is possible to produce therapeutically useful IgG, IgA, IgM and IgE antibodies. For an overview of this technology for producing human antibodies, see Lonberg, et al., Int Rev Immunol 13:65-93 (1995). For a detailed discussion of this technology for producing human antibodies and human monoclonal antibodies and protocols for producing such antibodies, see, e.g., PCT publications WO 98/24893; WO 92/01047; WO 96/34096; WO 96/33735; European Patent No. 0 598 877; U.S. Pat. Nos. 5,413,923; 5,625,126; 5,633,425; 5,569,825; 5,661,016; 5,545,806; 5,814,318; 5,885,793; 5,916,771; and 5,939,598, which are incorporated by reference herein in their entirety. In addition, companies such as Abgenix, Inc. (Freemont, Calif.), Genpharm (San Jose, Calif.), and Medarex, Inc. (Princeton, N.J.) can be engaged to provide human antibodies directed against a selected antigen using technology similar to that described

method uses a particular framework derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework may be used for several different humanized antibodies (Carter, et al., *Proc Natl Acad Sci USA* 89:4285 (1992); Presta, et al., *J Immunol*Completely human antibodies are particularly desirable for therapeutic treatment of human patients. Human antibodies can be made by a variety of methods known in the art includ-

Further, antibodies to the polypeptides of the invention can, in turn, be utilized to generate anti-idiotype antibodies that "mimic" polypeptides of the invention using techniques well known to those skilled in the art (See, e.g., Greenspan, et al., FASEB J 7:437 (1989); Nissinoff, J Immunol 147:2429 (1991)). For example, antibodies which bind to and competitively inhibit polypeptide multimerization and/or binding of a polypeptide of the invention to a ligand can be used to generate anti-idiotypes that "mimic" the polypeptide multimerization and/or binding domain and, as a consequence, bind to and neutralize polypeptide and/or its ligand. Such neutralizing anti-idiotypes or Fab fragments of such anti-idiotypes can be used in therapeutic regimens to neutralize polypeptide ligand. For example, such anti-idiotypic antibodies can be used to bind a polypeptide of the invention and/or to bind its ligands/receptors, and thereby block its biological activity.

The antibodies of the present invention may be bispecific antibodies. Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present inven-

tion, one of the binding specificities may be directed towards Notch3, the other may be for any other antigen, and preferably for a cell-surface protein, receptor, receptor subunit, tissue-specific antigen, virally derived protein, virally encoded envelope protein, bacterially derived protein, or bacterial surface protein, etc.

Methods for making bispecific antibodies are well known. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains 10 have different specificities (Milstein, et al., *Nature* 305:537 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. 15 The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829 and in Traunecker, et al., *EMBO J.* 10:3655 (1991).

Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It may have the first heavy-chain constant region 25 (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transformed into a suitable 30 host organism. For further details of generating bispecific antibodies see, for example Suresh, et al., *Meth In Enzym* 121:210 (1986).

Heteroconjugate antibodies are also contemplated by the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Pat. No. 4,676,980). It is contemplated that the antibodies may be prepared in vitro using known methods in synthetic protein chemistry, including those involving cross-linking agents. For example, immunotoxins may be constructed using a disulfide exchange reaction or by forming a thioester bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Pat. 45 No. 4,676,980.

In addition, one can generate single-domain antibodies to Notch3. Examples of this technology have been described in WO9425591 for antibodies derived from Camelidae heavy chain Ig, as well in US20030130496 describing the isolation of single domain fully human antibodies from phage libraries.

One can also create a single peptide chain binding molecules in which the heavy and light chain Fv regions are connected. Single chain antibodies ("scFv") and the method of their construction are described in U.S. Pat. No. 4,946,778. 55 Alternatively, Fab can be constructed and expressed by similar means. All of the wholly and partially human antibodies are less immunogenic than wholly murine MAbs, and the fragments and single chain antibodies are also less immunogenic.

Antibodies or antibody fragments can be isolated from antibody phage libraries generated using the techniques described in McCafferty, et al., *Nature* 348:552 (1990). Clarkson, et al., *Nature* 352:624 (1991) and Marks, et al., *J Mol Biol* 222:581 (1991) describe the isolation of murine and 65 human antibodies, respectively, using phage libraries. Subsequent publications describe the production of high affinity

16

(nM range) human antibodies by chain shuffling (Marks, et al., *Bio/Technology* 10:779 (1992)), as well as combinatorial infection and in vivo recombination as a strategy for constructing very large phage libraries (Waterhouse, et al., *Nuc Acids Res* 21:2265 (1993)). Thus, these techniques are viable alternatives to traditional monoclonal antibody hybridoma techniques for isolation of monoclonal antibodies.

The DNA also may be modified, for example, by substituting the coding sequence for human heavy- and light-chain constant domains in place of the homologous murine sequences (U.S. Pat. No. 4,816,567; Morrison, et al., *Proc Natl Acad Sci USA* 81:6851 (1984)).

Another alternative is to use electrical fusion rather than chemical fusion to form hybridomas. This technique is well established. Instead of fusion, one can also transform a B cell to make it immortal using, for example, an Epstein Barr Virus, or a transforming gene. See, e.g., "Continuously Proliferating Human Cell Lines Synthesizing Antibody of Predetermined Specificity," Zurawaki, et al., in Monoclonal Antibodies, ed. by Kennett, et al., Plenum Press, pp. 19-33. (1980)). Anti-Notch3 MAbs can be raised by immunizing rodents (e.g., mice, rats, hamsters, and guinea pigs) with Notch3 protein, fusion protein, or its fragments expressed by either eukaryotic or prokaryotic systems. Other animals can be used for immunization, e.g., non-human primates, transgenic mice expression immunoglobulins, and severe combined immunodeficient (SCID) mice transplanted with human B lymphocytes. Hybridomas can be generated by conventional procedures by fusing B lymphocytes from the immunized animals with myeloma cells (e.g., Sp2/0 and NSO), as described earlier (Köhler, et al., *Nature* 256:495 (1975)). In addition, anti-Notch3 antibodies can be generated by screening of recombinant single-chain Fv or Fab libraries from human B lymphocytes in phage-display systems. The specificity of the MAbs to Notch3 can be tested by ELISA, Western immunoblotting, or other immunochemical techniques. The inhibitory activity of the antibodies on complement activation can be assessed by hemolytic assays, using sensitized chicken or sheep RBCs for the classical complement pathway. The hybridomas in the positive wells are cloned by limiting dilution. The antibodies are purified for characterization for specificity to human Notch3 by the assays described above. Identification of Anti-Notch-3 Antibodies

The present invention provides agonist monoclonal antibodies that activate Notch3-mediated signaling independent of ligand. In particular, the antibodies of the present invention bind to and activate Notch3. The antibodies of the present invention include the antibody designated 256A-13. The present invention also includes antibodies that bind to the same epitope as 256A-13.

Candidate anti-Notch3 antibodies were tested by enzyme linked immunosorbent assay (ELISA), Western immunoblotting, or other immunochemical techniques. Assays performed to characterize the individual antibodies are described in the Examples.

Antibodies of the invention include, but are not limited to, polyclonal, monoclonal, monovalent, bispecific, heteroconjugate, multispecific, human, humanized or chimeric antibodies, single chain antibodies, single-domain antibodies, Fab fragments, F(ab') fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies (including, e.g., anti-Id antibodies to antibodies of the invention), and epitope-binding fragments of any of the above.

The antibodies may be human antigen-binding antibody fragments of the present invention and include, but are not limited to, Fab, Fab' and F(ab')₂, Fd, single-chain Fvs (scFv), single-chain antibodies, disulfide-linked Fvs (sdFv) and

single-domain antibodies comprising either a VL or VH domain. Antigen-binding antibody fragments, including single-chain antibodies, may comprise the variable region(s) alone or in combination with the entirety or a portion of the following: hinge region, CH1, CH2, and CH3 domains. Also 5 included in the invention are antigen-binding fragments comprising any combination of variable region(s) with a hinge region, CH1, CH2, and CH3 domains. The antibodies of the invention may be from any animal origin including birds and mammals. Preferably, the antibodies are from human, non- 10 human primates, rodents (e.g., mouse and rat), donkey, sheep, rabbit, goat, guinea pig, camel, horse, or chicken.

As used herein, "human" antibodies" include antibodies having the amino acid sequence of a human immunoglobulin and include antibodies isolated from human immunoglobulin 15 libraries or from animals transgenic for one or more human immunoglobulin and that do not express endogenous immunoglobulins, as described infra and, for example in, U.S. Pat. No. 5,939,598 by Kucherlapati, et al.

The antibodies of the present invention may be monospe- 20 cific, bispecific, trispecific or of greater multispecificity. Multispecific antibodies may be specific for different epitopes of Notch3 or may be specific for both Notch3 as well as for a heterologous epitope, such as a heterologous polypeptide or 93/17715; WO 92/08802; WO 91/00360; WO 92/05793; Tutt, et al., J Immunol 147:60 (1991); U.S. Pat. Nos. 4,474, 893; 4,714,681; 4,925,648; 5,573,920; 5,601,819; Kostelny, et al., J Immunol 148:1547 (1992).

Antibodies of the present invention may be described or 30 specified in terms of the epitope(s) or portion(s) of Notch3 which they recognize or specifically bind. The epitope(s) or polypeptide portion(s) may be specified as described herein, e.g., by N-terminal and C-terminal positions, by size in contiguous amino acid residues, or listed in the Tables and Fig- 35

Antibodies of the present invention may also be described or specified in terms of their cross-reactivity. Antibodies that bind Notch3 polypeptides, which have at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at 40 least 65%, at least 60%, at least 55%, and at least 50% identity (as calculated using methods known in the art and described herein) to Notch3 are also included in the present invention. Anti-Notch3 antibodies may also bind with a K_D of less than about 10^{-7} M, less than about 10^{-6} M, or less than about 10^{-5} 45 M to other proteins, such as anti-Notch3 antibodies from species other than that against which the anti-Notch3 antibody is directed.

In specific embodiments, antibodies of the present invention cross-react with monkey homologues of human Notch3 50 and the corresponding epitopes thereof. In a specific embodiment, the above-described cross-reactivity is with respect to any single specific antigenic or immunogenic polypeptide, or combination(s) of the specific antigenic and/or immunogenic polypeptides disclosed herein.

Further included in the present invention are antibodies which bind polypeptides encoded by polynucleotides which hybridize to a polynucleotide encoding Notch3 under stringent hybridization conditions. Antibodies of the present invention may also be described or specified in terms of their 60 binding affinity to a polypeptide of the invention. Preferred binding affinities include those with an equilibrium dissociation constant or K_D from 10^{-8} to 10^{-15} M, 10^{-8} to 10^{-12} M, 10^{-8} to 10^{-10} M, or 10^{-10} to 10^{-12} M. The invention also provides antibodies that competitively inhibit binding of an 65 antibody to an epitope of the invention as determined by any method known in the art for determining competitive binding,

for example, the immunoassays described herein. In preferred embodiments, the antibody competitively inhibits binding to the epitope by at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 60%, or at least 50%.

Vectors and Host Cells

In another aspect, the present invention provides isolated nucleic acid sequences encoding an antibody variant as disclosed herein, vector constructs comprising a nucleotide sequence encoding the antibodies of the present invention, host cells comprising such a vector, and recombinant techniques for the production of the antibody.

For recombinant production of the antibody variant, the nucleic acid encoding it is isolated and inserted into a replicable vector for further cloning (amplification of the DNA) or for expression. DNA encoding the antibody variant is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the antibody variant). Standard techniques for cloning and transformation may be used in the preparation of cell lines expressing the antibodies of the present invention.

Many vectors are available. The vector components genersolid support material. See, e.g., PCT publications WO 25 ally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence. Recombinant expression vectors containing a nucleotide sequence encoding the antibodies of the present invention can be prepared using well known techniques. The expression vectors include a nucleotide sequence operably linked to suitable transcriptional or translational regulatory nucleotide sequences such as those derived from mammalian, microbial, viral, or insect genes. Examples of regulatory sequences include transcriptional promoters, operators, enhancers, mRNA ribosomal binding sites, and/or other appropriate sequences which control transcription and translation initiation and termination. Nucleotide sequences are "operably linked" when the regulatory sequence functionally relates to the nucleotide sequence for the appropriate polypeptide. Thus, a promoter nucleotide sequence is operably linked to, e.g., the antibody heavy chain sequence if the promoter nucleotide sequence controls the transcription of the appropriate nucleotide sequence.

In addition, sequences encoding appropriate signal peptides that are not naturally associated with antibody heavy and/or light chain sequences can be incorporated into expression vectors. For example, a nucleotide sequence for a signal peptide (secretory leader) may be fused in-frame to the polypeptide sequence so that the antibody is secreted to the periplasmic space or into the medium. A signal peptide that is functional in the intended host cells enhances extracellular secretion of the appropriate antibody. The signal peptide may be cleaved from the polypeptide upon secretion of antibody from the cell. Examples of such secretory signals are well known and include, e.g., those described in U.S. Pat. Nos. 5,698,435; 5,698,417; and 6,204,023.

The vector may be a plasmid vector, a single or doublestranded phage vector, or a single or double-stranded RNA or DNA viral vector. Such vectors may be introduced into cells as polynucleotides by well known techniques for introducing DNA and RNA into cells. The vectors, in the case of phage and viral vectors also may be introduced into cells as packaged or encapsulated virus by well known techniques for infection and transduction. Viral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host

cells. Cell-free translation systems may also be employed to produce the protein using RNAs derived from the present DNA constructs. Such vectors may include the nucleotide sequence encoding the constant region of the antibody molecule (see, e.g., PCT Publications WO 86/05807 and WO 589/01036; and U.S. Pat. No. 5,122,464) and the variable domain of the antibody may be cloned into such a vector for expression of the entire heavy or light chain. Host Cells

The antibodies of the present invention can be expressed 10 from any suitable host cell. Examples of host cells useful in the present invention include prokaryotic, yeast, or higher eukaryotic cells and include but are not limited to microorganisms such as bacteria (e.g., E. coli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or 15 cosmid DNA expression vectors containing antibody coding sequences; yeast (e.g., Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing antibody coding sequences; insect cell systems infected with recombinant virus expression vectors (e.g., Baculovirus) con- 20 taining antibody coding sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing antibody coding sequences; or 25 mammalian cell systems (e.g., COS, CHO, BHK, 293, 3T3 cells) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K 30 promoter).

Prokaryotes useful as host cells in the present invention include gram negative or gram positive organisms such as *E. coli, B. subtilis, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, Serratia,* and *Shigella,* as well as Bacilli, 35 *Pseudomonas,* and *Streptomyces.* One preferred *E. coli* cloning host is *E. coli* 294 (ATCC 31,446), although other strains such as *E. coli* B, *E. coli* X1776 (ATCC 31,537), and *E. coli* W3110 (ATCC 27,325) are suitable. These examples are illustrative rather than limiting.

Expression vectors for use in prokaryotic host cells generally comprise one or more phenotypic selectable marker genes. A phenotypic selectable marker gene is, for example, a gene encoding a protein that confers antibiotic resistance or that supplies an autotrophic requirement. Examples of useful 45 expression vectors for prokaryotic host cells include those derived from commercially available plasmids such as the pKK223-3 vector (Pharmacia Fine Chemicals, Uppsala, Sweden), PGEM®1 vector (Promega Biotec, Madison, Wis., USA), and the pET (Novagen, Madison, Wis., USA) and 50 pRSET (Invitrogen, Carlsbad, Calif.) series of vectors (Studier, J Mol Biol 219:37 (1991); Schoepfer, Gene 124:83 (1993)). Promoter sequences commonly used for recombinant prokaryotic host cell expression vectors include T7, (Rosenberg, et al., Gene 56:125 (1987)), \u03b3-lactamase (peni- 55 cillinase), lactose promoter system (Chang, et al., Nature 275:615 (1978); Goeddel, et al., Nature 281:544 (1979)), tryptophan (trp) promoter system (Goeddel, et al., Nucl Acids Res 8:4057 (1980)), and tac promoter (Sambrook, et al., Molecular Cloning, A Laboratory Manual, 2nd ed., Cold 60 Spring Harbor Laboratory (1990)).

Yeasts or filamentous fungi useful in the present invention include those from the genus *Saccharomyces*, *Pichia*, Actinomycetes, *Kluyveromyces*, Schizosaccharomyces, *Candida*, *Trichoderma*, *Neurospora*, and filamentous fungi such 65 as *Neurospora*, *Penicillium*, *Tolypocladium*, and *Aspergillus*. Yeast vectors will often contain an origin of replication

20

sequence from a 2µ yeast plasmid, an autonomously replicating sequence (ARS), a promoter region, sequences for polyadenylation, sequences for transcription termination, and a selectable marker gene. Suitable promoter sequences for yeast vectors include, among others, promoters for metallothionein, 3-phosphoglycerate kinase (Hitzeman, et al., J Biol Chem 255:2073 (1980)) or other glycolytic enzymes (Holland, et al., Biochem 17:4900 (1978)) such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6phosphate isomerase, 3-phosphoglycerate mutase, pyruvate triosephosphate isomerase, phosphoglucose isomerase, and glucokinase. Other suitable vectors and promoters for use in yeast expression are further described in Fleer, et al., Gene 107:285 (1991). Other suitable promoters and vectors for yeast and yeast transformation protocols are well known in the art. Yeast transformation protocols are well known. One such protocol is described by Hinnen, et al., Proc Natl Acad Sci 75:1929 (1978). The Hinnen protocol selects for Trp⁺ transformants in a selective medium.

Mammalian or insect host cell culture systems may also be employed to express recombinant antibodies. In principle, any higher eukaryotic cell culture is workable, whether from vertebrate or invertebrate culture. Examples of invertebrate cells include plant and insect cells (Luckow, et al., Bio/Technology 6:47 (1988); Miller, et al., Genetics Engineering, Setlow, et al., eds. Vol. 8, pp. 277-9, Plenam Publishing (1986); Mseda, et al., Nature 315:592 (1985)). For example, Baculovirus systems may be used for production of heterologous proteins. In an insect system, Autographa californica nuclear polyhedrosis virus (AcNPV) may be used as a vector to express foreign genes. The virus grows in Spodoptera frugiperda cells. The antibody coding sequence may be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter). Other hosts that have been identified include Aedes, Drosophila melanogaster, and Bombyx mori. A variety of viral strains for transfection are publicly available, e.g., the L-1 variant of AcNPV and the Bm-5 strain of Bombyx mori NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of Spodoptera frugiperda cells. Moreover, plant cells cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco and also be utilized as hosts.

Vertebrate cells, and propagation of vertebrate cells, in culture (tissue culture) has become a routine procedure. See Tissue Culture, Kruse, et al., eds., Academic Press (1973). Examples of useful mammalian host cell lines are monkey kidney; human embryonic kidney line; baby hamster kidney cells; Chinese hamster ovary cells/–DHFR (CHO, Urlaub, et al., *Proc Natl Acad Sci USA* 77:4216 (1980)); mouse sertoli cells; human cervical carcinoma cells (HELA); canine kidney cells; human lung cells; human liver cells; mouse mammary tumor; and NSO cells.

Host cells are transformed with the above-described vectors for antibody production and cultured in conventional nutrient media modified as appropriate for inducing promoters, transcriptional and translational control sequences, selecting transformants, or amplifying the genes encoding the desired sequences. Commonly used promoter sequences and enhancer sequences are derived from polyoma virus, Adenovirus 2, Simian virus 40 (SV40), and human cytomegalovirus (CMV). DNA sequences derived from the SV40 viral genome may be used to provide other genetic elements for expression of a structural gene sequence in a mammalian host cell, e.g., SV40 origin, early and late promoter, enhancer,

splice, and polyadenylation sites. Viral early and late promoters are particularly useful because both are easily obtained from a viral genome as a fragment which may also contain a viral origin of replication. Exemplary expression vectors for use in mammalian host cells are commercially available.

The host cells used to produce the antibody variant of this invention may be cultured in a variety of media. Commercially available media such as Ham's F10 (Sigma, St Louis, Mo.), Minimal Essential Medium (MEM, Sigma, St Louis, Mo.), RPMI-1640 (Sigma, St Louis, Mo.), and Dulbecco's Modified Eagle's Medium (DMEM, Sigma, St Louis, Mo.) are suitable for culturing host cells. In addition, any of the media described in Ham, et al., Meth Enzymol 58:44 (1979), Barnes, et al., Anal Biochem 102:255 (1980), and U.S. Pat. 15 Nos. 4,767,704; 4,657,866; 4,560,655; 5,122,469; 5,712,163; or 6,048,728 may be used as culture media for the host cells. Any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as X-chlorides, 20 where X is sodium, calcium, magnesium; and phosphates), buffers (such as HEPES), nucleotides (such as adenosine and thymidine), antibiotics (such as gentamicin drug), trace elements (defined as inorganic compounds usually present at finalconcentrations in the micromolar range), and glucose or 25 an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and 30 will be apparent to the ordinarily skilled artisan. Polynucleotides Encoding Antibodies

The invention further provides polynucleotides or nucleic acids, e.g., DNA, comprising a nucleotide sequence encoding an antibody of the invention and fragments thereof. Exemplary polynucleotides include those encoding antibody chains comprising one or more of the amino acid sequences described herein. The invention also encompasses polynucleotides that hybridize under stringent or lower stringency hybridization conditions to polynucleotides that encode an 40 antibody of the present invention.

The polynucleotides may be obtained, and the nucleotide sequence of the polynucleotides determined, by any method known in the art. For example, if the nucleotide sequence of the antibody is known, a polynucleotide encoding the antibody may be assembled from chemically synthesized oligonucleotides (e.g., as described in Kutmeier, et al., *Bio/Techniques* 17:242 (1994)), which, briefly, involves the synthesis of overlapping oligonucleotides containing portions of the sequence encoding the antibody, annealing and ligating of 50 those oligonucleotides, and then amplification of the ligated oligonucleotides by PCR.

Alternatively, a polynucleotide encoding an antibody may be generated from nucleic acid from a suitable source. If a clone containing a nucleic acid encoding a particular antibody is not available, but the sequence of the antibody molecule is known, a nucleic acid encoding the immunoglobulin may be chemically synthesized or obtained from a suitable source (e.g., an antibody cDNA library, or a cDNA library generated from, or nucleic acid, preferably poly A+ RNA, 60 isolated from, any tissue or cells expressing the antibody, such as hybridoma cells selected to express an antibody of the invention) by PCR amplification using synthetic primers hybridizable to the 3' and 5' ends of the sequence or by cloning using an oligonucleotide probe specific for the particular gene 65 sequence to identify, e.g., a cDNA clone from a cDNA library that encodes the antibody. Amplified nucleic acids generated

22

by PCR may then be cloned into replicable cloning vectors using any method well known in the art.

Once the nucleotide sequence and corresponding amino acid sequence of the antibody is determined, the nucleotide sequence of the antibody may be manipulated using methods well known in the art for the manipulation of nucleotide sequences, e.g., recombinant DNA techniques, site directed mutagenesis, PCR, etc. (see, for example, the techniques described in Sambrook, et al., Molecular Cloning, A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory (1990); Ausubel, et al., eds., Current Protocols in Molecular Biology, John Wiley & Sons (1998), which are both incorporated by reference herein in their entireties), to generate antibodies having a different amino acid sequence, for example to create amino acid substitutions, deletions, and/or insertions.

In a specific embodiment, the amino acid sequence of the heavy and/or light chain variable domains may be inspected to identify the sequences of the CDRs by well known methods, e.g., by comparison to known amino acid sequences of other heavy and light chain variable regions to determine the regions of sequence hypervariability. Using routine recombinant DNA techniques, one or more of the CDRs may be inserted within framework regions, e.g., into human framework regions to humanize a non-human antibody, as described supra. The framework regions may be naturally occurring or consensus framework regions, and preferably human framework regions (see, e.g., Chothia, et al., J Mol Biol 278: 457 (1998) for a listing of human framework regions). Preferably, the polynucleotide generated by the combination of the framework regions and CDRs encodes an antibody that specifically binds a polypeptide of the invention. Preferably, as discussed supra, one or more amino acid substitutions may be made within the framework regions, and, preferably, the amino acid substitutions improve binding of the antibody to its antigen. Additionally, such methods may be used to make amino acid substitutions or deletions of one or more variable region cysteine residues participating in an intrachain disulfide bond to generate antibody molecules lacking one or more intrachain disulfide bonds. Other alterations to the polynucleotide are encompassed by the present invention and within the skill of the art.

In addition, techniques developed for the production of "chimeric antibodies" (Morrison, et al., *Proc Natl Acad Sci* 81:851 (1984); Neuberger, et al., *Nature* 312:604 (1984); Takeda, et al., *Nature* 314:452 (1985)) by splicing genes from a mouse antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity can be used. As described supra, a chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine MAb and a human immunoglobulin constant region, e.g., humanized antibodies.

Alternatively, techniques described for the production of single chain antibodies (U.S. Pat. No. 4,946,778; Bird, *Science* 242:423 (1988); Huston, et al., *Proc Natl Acad Sci USA* 85:5879 (1988); and Ward, et al., *Nature* 334:544 (1989)) can be adapted to produce single chain antibodies. Single chain antibodies are formed by linking the heavy and light chain fragments of the Fv region via an amino acid bridge, resulting in a single chain polypeptide. Techniques for the assembly of functional Fv fragments in *E. coli* may also be used (Skerra, et al., *Science* 242:1038 (1988)).

Methods of Producing Anti-Notch3 Antibodies

The antibodies of the invention can be produced by any method known in the art for the synthesis of antibodies, in particular, by chemical synthesis or preferably, by recombinant expression techniques.

Recombinant expression of an antibody of the invention, or fragment, derivative, or analog thereof, (e.g., a heavy or light chain of an antibody of the invention or a single chain antibody of the invention), requires construction of an expression vector containing a polynucleotide that encodes the antibody or a fragment of the antibody. Once a polynucleotide encoding an antibody molecule has been obtained, the vector for the production of the antibody may be produced by recombinant DNA technology. An expression vector is constructed containing antibody coding sequences and appropriate transcriptional and translational control signals. These methods include, for example, in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination.

The expression vector is transferred to a host cell by conventional techniques and the transfected cells are then cultured by conventional techniques to produce an antibody of
the invention. In one aspect of the invention, vectors encoding
both the heavy and light chains may be co-expressed in the
host cell for expression of the entire immunoglobulin molecule, as detailed below.

A variety of host-expression vector systems may be utilized to express the antibody molecules of the invention as described above. Such host-expression systems represent vehicles by which the coding sequences of interest may be produced and subsequently purified, but also represent cells 30 which may, when transformed or transfected with the appropriate nucleotide coding sequences, express an antibody molecule of the invention in situ. Bacterial cells such as E. coli, and eukaryotic cells are commonly used for the expression of a recombinant antibody molecule, especially for the expression of whole recombinant antibody molecule. For example, mammalian cells such as CHO, in conjunction with a vector such as the major intermediate early gene promoter element from human cytomegalovirus, are an effective expression system for antibodies (Foecking, et al., Gene 45:101 (1986); 40 Cockett, et al., Bio/Technology 8:2 (1990)).

In addition, a host cell strain may be chosen which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., 45 cleavage) of protein products may be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct 50 modification and processing of the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include, but are not 55 limited to, CHO, COS, 293, 3T3, or myeloma cells.

For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express the antibody molecule may be engineered. Rather than using expression vectors which contain 60 viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered 65 cells may be allowed to grow for one to two days in an enriched media, and then are switched to a selective media.

24

The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express the antibody molecule. Such engineered cell lines may be particularly useful in screening and evaluation of compounds that interact directly or indirectly with the antibody molecule.

A number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler, et al., Cell 11:223 (1977)), hypoxanthine-guanine phosphoribosyltransferase (Szybalska, et al., Proc Natl Acad Sci USA 48:202 (1992)), and adenine phosphoribosyltransferase (Lowy, et al., Cell 22:817 (1980)) genes can be employed in tk, hgprt or aprt-cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for the following genes: dhfr, which confers resistance to methotrexate (Wigler, et al., Proc Natl Acad Sci USA 77:357 (1980); O'Hare, et al., Proc Natl Acad Sci USA 78:1527 (1981)); gpt, which confers resistance to mycophenolic acid (Mulligan, et al., Proc Natl Acad Sci USA 78:2072 (1981)); neo, which confers resistance to the aminoglycoside G-418 (Wu, et al., Biotherapy 3:87 (1991)); and hygro, which confers resistance to hygromycin (Santerre, et al., Gene 30:147 (1984)). Methods commonly known in the art of recombinant DNA technology may be routinely applied to select the desired recombinant clone, and such methods are described, for example, in Ausubel, et al., eds., Current Protocols in Molecular Biology, John Wiley & Sons (1993); Kriegler, Gene Transfer and Expression, A Laboratory Manual, Stockton Press (1990); and in Chapters 12 and 13, Dracopoli, et al., eds, Current Protocols in Human Genetics, John Wiley & Sons (1994); Colberre-Garapin, et al., J Mol Biol 150:1 (1981), which are incorporated by reference herein in their

The expression levels of an antibody molecule can be increased by vector amplification (for a review, see Bebbington, et al., "The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells," DNA Cloning, Vol. 3. Academic Press (1987)). When a marker in the vector system expressing antibody is amplifiable, increase in the level of inhibitor present in culture of host cell will increase the number of copies of the marker gene. Since the amplified region is associated with the antibody gene, production of the antibody will also increase (Crouse, et al., *Mol Cell Biol* 3:257 (1983)).

The host cell may be co-transfected with two expression vectors of the invention, the first vector encoding a heavy chain derived polypeptide and the second vector encoding a light chain derived polypeptide. The two vectors may contain identical selectable markers which enable equal expression of heavy and light chain polypeptides. Alternatively, a single vector may be used which encodes, and is capable of expressing, both heavy and light chain polypeptides. In such situations, the light chain should be placed before the heavy chain to avoid an excess of toxic free heavy chain (Proudfoot, *Nature* 322:52 (1986); Kohler, *Proc Natl Acad Sci USA* 77:2197 (1980)). The coding sequences for the heavy and light chains may comprise cDNA or genomic DNA.

Once an antibody molecule of the invention has been produced by an animal, chemically synthesized, or recombinantly expressed, it may be purified by any method known in the art for purification of an immunoglobulin molecule, for example, by chromatography (e.g., ion exchange, affinity, particularly by affinity for the specific antigen after Protein A, and size-exclusion chromatography), centrifugation, differ-

ential solubility, or by any other standard technique for the purification of proteins. In addition, the antibodies of the present invention or fragments thereof can be fused to heterologous polypeptide sequences described herein or otherwise known in the art, to facilitate purification.

The present invention encompasses antibodies recombinantly fused or chemically conjugated (including both covalently and non-covalently conjugations) to a polypeptide. Fused or conjugated antibodies of the present invention may be used for ease in purification. See e.g., PCT publication 10 WO 93/21232; EP 439,095; Naramura, et al., *Immunol Lett* 39:91 (1994); U.S. Pat. No. 5,474,981; Gillies, et al., *Proc Natl Acad Sci USA* 89:1428 (1992); Fell, et al., *J Immunol* 146:2446 (1991), which are incorporated by reference in their entireties.

Moreover, the antibodies or fragments thereof of the present invention can be fused to marker sequences, such as a peptide to facilitate purification. In preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide (SEQ ID NO:38), such as the tag provided in a pQE vector 20 (QIAGEN, Inc., Chatsworth, Calif.), among others, many of which are commercially available. As described in Gentz, et al., *Proc Natl Acad Sci USA* 86:821 (1989), for instance, hexa-histidine (SEQ ID NO:38) provides for convenient purification of the fusion protein. Other peptide tags useful for 25 purification include, but are not limited to, the "HA" tag, which corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson, et al., *Cell* 37:767 (1984)) and the "flag" tag.

Antibody Purification

When using recombinant techniques, the antibody variant can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the antibody variant is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, may be removed, for 35 example, by centrifugation or ultrafiltration. Carter, et al., Bio/Technology 10:163 (1992) describe a procedure for isolating antibodies which are secreted to the periplasmic space of E. coli. Briefly, cell paste is thawed in the presence of sodium acetate (pH 3.5), EDTA, and phenylmethylsulfo- 40 nylfluoride (PMSF) over about 30 minutes. Cell debris can be removed by centrifugation. Where the antibody variant is secreted into the medium, supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon 45 or Millipore Pellicon ultrafiltration unit. A protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.

The antibody composition prepared from the cells can be 50 purified using, for example, hydroxylapatite chromatography, gel elecrophoresis, dialysis, and affinity chromatography, with affinity chromatography being the preferred purification technique. The suitability of protein A as an affinity ligand depends on the species and isotype of any immuno- 55 globulin Fc domain that is present in the antibody variant. Protein A can be used to purify antibodies that are based on human IgG1, IgG2 or IgG4 heavy chains (Lindmark, et al., J Immunol Meth 62:1 (1983)). Protein G is recommended for all mouse isotypes and for human IgG3 (Guss, et al., EMBO 60 J. 5:1567 (1986)). The matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with 65 agarose. Where the antibody variant comprises a CH3 domain, the Bakerbond ABXTM resin (J. T. Baker; Phillips26

burg, N.J.) is useful for purification. Other techniques for protein purification such as fractionation on an ion-exchange column, ethanol precipitation, Reverse Phase HPLC, chromatography on silica, chromatography on heparin SEPHAROSE® chromatography on an anion or cation exchange resin (such as a polyaspartic acid column), chromatofocusing, SDS-PAGE, and ammonium sulfate precipitation are also available depending on the antibody variant to be recovered.

Following any preliminary purification step(s), the mixture comprising the antibody variant of interest and contaminants may be subjected to low pH hydrophobic interaction chromatography using an elution buffer at a pH between about 2.5-4.5, preferably performed at low salt concentrations (e.g., from about 0-0.25 M salt).

Pharmaceutical Formulation

Therapeutic formulations of the polypeptide or antibody may be prepared for storage as lyophilized formulations or aqueous solutions by mixing the polypeptide having the desired degree of purity with optional "pharmaceutically-acceptable" carriers, excipients or stabilizers typically employed in the art (all of which are termed "excipients"), i.e., buffering agents, stabilizing agents, preservatives, isotonifiers, non-ionic detergents, antioxidants, and other miscellaneous additives. See Remington's Pharmaceutical Sciences, 16th edition, Osol, Ed. (1980). Such additives must be nontoxic to the recipients at the dosages and concentrations employed.

Buffering agents help to maintain the pH in the range which approximates physiological conditions. They are preferably present at concentration ranging from about 2 mM to about 50 mM. Suitable buffering agents for use with the present invention include both organic and inorganic acids and salts thereof such as citrate buffers (e.g., monosodium citrate-disodium citrate mixture, citric acid-trisodium citrate mixture, citric acid-monosodium citrate mixture, etc.), succinate buffers (e.g., succinic acid-monosodium succinate mixture, succinic acid-sodium hydroxide mixture, succinic acid-disodium succinate mixture, etc.), tartrate buffers (e.g., tartaric acid-sodium tartrate mixture, tartaric acid-potassium tartrate mixture, tartaric acid-sodium hydroxide mixture, etc.), fumarate buffers (e.g., fumaric acid-monosodium fumarate mixture, etc.), fumarate buffers (e.g., fumaric acid-monosodium fumarate mixture, fumaric acid-disodium fumarate mixture, monosodium fumarate-disodium fumarate mixture, etc.), gluconate buffers (e.g., gluconic acid-sodium glyconate mixture, gluconic acid-sodium hydroxide mixture, gluconic acid-potassium glyuconate mixture, etc.), oxalate buffer (e.g., oxalic acid-sodium oxalate mixture, oxalic acid-sodium hydroxide mixture, oxalic acid-potassium oxalate mixture, etc.), lactate buffers (e.g., lactic acid-sodium lactate mixture, lactic acid-sodium hydroxide mixture, lactic acid-potassium lactate mixture, etc.) and acetate buffers (e.g., acetic acidsodium acetate mixture, acetic acid-sodium hydroxide mixture, etc.). Additionally, there may be mentioned phosphate buffers, histidine buffers and trimethylamine salts such as

Preservatives may be added to retard microbial growth, and may be added in amounts ranging from 0.2%-1% (w/v). Suitable preservatives for use with the present invention include phenol, benzyl alcohol, meta-cresol, methyl paraben, propyl paraben, octadecyldimethylbenzyl ammonium chloride, benzalconium halides (e.g., chloride, bromide, iodide), hexamethonium chloride, and alkyl parabens such as methyl or propyl paraben, catechol, resorcinol, cyclohexanol, and 3-pentanol.

Isotonicifiers sometimes known as "stabilizers" may be added to ensure isotonicity of liquid compositions of the present invention and include polhydric sugar alcohols, preferably trihydric or higher sugar alcohols, such as glycerin, erythritol, arabitol, xylitol, sorbitol and mannitol.

Stabilizers refer to a broad category of excipients which can range in function from a bulking agent to an additive which solubilizes the therapeutic agent or helps to prevent denaturation or adherence to the container wall. Typical stabilizers can be polyhydric sugar alcohols (enumerated 10 above); amino acids such as arginine, lysine, glycine, glutamine, asparagine, histidine, alanine, ornithine, L-leucine, 2-phenylalanine, glutamic acid, threonine, etc., organic sugars or sugar alcohols, such as lactose, trehalose, stachyose, mannitol, sorbitol, xylitol, ribitol, myoinisitol, galactitol, 15 glycerol and the like, including cyclitols such as inositol; polyethylene glycol; amino acid polymers; sulfur containing reducing agents, such as urea, glutathione, thioctic acid, sodium thioglycolate, thioglycerol, alpha.-monothioglycerol and sodium thio sulfate; low molecular weight polypeptides 20 (i.e. <10 residues); proteins such as human serum albumin, bovine serum albumin, gelatin or immunoglobulins; hydrophylic polymers, such as polyvinylpyrrolidone monosaccharides, such as xylose, mannose, fructose, glucose; disaccharides such as lactose, maltose, sucrose and trisaccacharides 25 such as raffinose; and polysaccharides such as dextran. Stabilizers may be present in the range from 0.1 to 10,000 weights per part of weight active protein.

Non-ionic surfactants or detergents (also known as "wetting agents") may be added to help solubilize the therapeutic agent as well as to protect the therapeutic protein against agitation-induced aggregation, which also permits the formulation to be exposed to shear surface stressed without causing denaturation of the protein. Suitable non-ionic surfactants include polysorbates (20, 80, etc.), polyoxamers (184, 188 setc.), PLURONIC® polyols, polyoxyethylene sorbitan monoethers (TWEEN-20®, TWEEN-80®, etc.). Non-ionic surfactants may be present in a range of about 0.05 mg/ml to about 1.0 mg/ml, preferably about 0.07 mg/ml to about 0.2 mg/ml.

Additional miscellaneous excipients include bulking agents, (e.g., starch), chelating agents (e.g., EDTA), antioxidants (e.g., ascorbic acid, methionine, vitamin E), and cosolvents. The formulation herein may also contain more than one active compound as necessary for the particular indication 45 being treated, preferably those with complementary activities that do not adversely affect each other. For example, it may be desirable to further provide an immunosuppressive agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended. The 50 active ingredients may also be entrapped in microcapsule prepared, for example, by coascervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsule and poly-(methylmethacylate) microcapsule, respectively, in colloidal drug delivery 55 systems (for example, liposomes, albumin micropheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences, 16th edition, Osal, Ed. (1980).

The formulations to be used for in vivo administration must 60 be sterile. This is readily accomplished, for example, by filtration through sterile filtration membranes. Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semi-permeable matrices of solid hydrophobic polymers containing the antibody variant, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-

28

release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOTTM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated antibodies remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37° C. resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S—S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.

The amount of therapeutic polypeptide, antibody, or fragment thereof which will be effective in the treatment of a particular disorder or condition will depend on the nature of the disorder or condition, and can be determined by standard clinical techniques. Where possible, it is desirable to determine the dose-response curve and the pharmaceutical compositions of the invention first in vitro, and then in useful animal model systems prior to testing in humans.

In a preferred embodiment, an aqueous solution of therapeutic polypeptide, antibody or fragment thereof is administered by subcutaneous injection. Each dose may range from about 0.5 μg to about 50 μg per kilogram of body weight, or more preferably, from about 3 μg to about 30 μg per kilogram body weight.

The dosing schedule for subcutaneous administration may vary form once a month to daily depending on a number of clinical factors, including the type of disease, severity of disease, and the subject's sensitivity to the therapeutic agent. Therapeutic Uses of Anti-Notch-3 Antibodies

It is contemplated that the antibodies of the present invention may be used to treat a mammal. In one embodiment, the antibody is administered to a nonhuman mammal for the purposes of obtaining preclinical data, for example. Exemplary nonhuman mammals to be treated include nonhuman primates, dogs, cats, rodents and other mammals in which preclinical studies are performed. Such mammals may be established animal models for a disease to be treated with the antibody or may be used to study toxicity of the antibody of interest. In each of these embodiments, dose escalation studies may be performed on the mammal.

An antibody administered alone or in combination with factor(s) can be used as a therapeutic. The present invention is directed to antibody-based therapies which involve administering antibodies of the invention to an animal, a mammal, or a human, for treating a Notch3-mediated disease, disorder, or condition. The animal or subject may be a mammal in need of a particular treatment, such as a mammal having been diagnosed with a particular disorder, e.g., one relating to Notch3. Antibodies directed against Notch3 are useful against degenerative diseases and other Notch3-associated diseases including CADASIL, FHM, Alagille syndrome, neurological and degenerative disorders in mammals, including but not limited to cows, pigs, horses, chickens, cats, dogs, non-human primates etc., as well as humans. For example, by administering

a therapeutically acceptable dose of an anti-Notch3 antibody, or antibodies, of the present invention, or a cocktail of the present antibodies, or in combination with other antibodies of varying sources, disease symptoms may be ameliorated or prevented in the treated mammal, particularly humans.

Therapeutic compounds of the invention include, but are not limited to, antibodies of the invention (including fragments, analogs and derivatives thereof as described herein) and nucleic acids encoding antibodies of the invention as described below (including fragments, analogs and deriva- 10 tives thereof and anti-idiotypic antibodies as described herein). The antibodies of the invention can be used to treat, inhibit, or prevent diseases, disorders, or conditions associated with aberrant expression and/or activity of Notch3, including, but not limited to, any one or more of the diseases, 15 disorders, or conditions described herein. The treatment and/ or prevention of diseases, disorders, or conditions associated with aberrant expression and/or activity of Notch3 includes, but is not limited to, alleviating at least one symptom associated with those diseases, disorders, or conditions. Antibodies 20 of the invention may be provided in pharmaceutically acceptable compositions as known in the art or as described herein.

Anti-Notch3 antibodies of the present invention may be used therapeutically in a variety of diseases. The present invention provides a method for preventing or treating 25 Notch3-mediated diseases in a mammal. The method comprises administering a disease preventing or treating amount of anti-Notch3 antibody to the mammal. The anti-Notch3 antibody binds to Notch3 and agonizes its function. Notch3 signaling has been linked to various diseases such as 30 CADASAL, FHM, familial paroxytic ataxia, Alagille syndrome, and other degenerative diseases and neurological disorders (Joutel, et al., *Nature* 383:707 (1996); Flynn, et al., *J Pathol* 204:55 (2004)). It is speculated that anti-Notch3 antibodies will also be effective to prevent the above mentioned 35 diseases.

The amount of the antibody which will be effective in the treatment, inhibition, and prevention of a disease or disorder associated with aberrant expression and/or activity of Notch3 can be determined by standard clinical techniques. The dos- 40 age will depend on the type of disease to be treated, the severity and course of the disease, whether the antibody is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the antibody, and the discretion of the attending physician. The 45 antibody can be administered in treatment regimes consistent with the disease, e.g., a single or a few doses over one to several days to ameliorate a disease state or periodic doses over an extended time to inhibit disease progression and prevent disease recurrence. In addition, in vitro assays may 50 optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each 55 patient's circumstances. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.

For antibodies, the dosage administered to a patient is typically 0.1 mg/kg to 150 mg/kg of the patient's body 60 weight. Preferably, the dosage administered to a patient is between 0.1 mg/kg and 20 mg/kg of the patient's body weight, more preferably 1 mg/kg to 10 mg/kg of the patient's body weight. Generally, human antibodies have a longer half-life within the human body than antibodies from other species 65 due to the immune response to the foreign polypeptides. Thus, lower dosages of human antibodies and less frequent

30

administration is often possible. Further, the dosage and frequency of administration of antibodies of the invention may be reduced by enhancing uptake and tissue penetration (e.g., into the brain) of the antibodies by modifications such as, for example, lipidation. For repeated administrations over several days or longer, depending on the condition, the treatment is sustained until a desired suppression of disease symptoms occurs. However, other dosage regimens may be useful. The progress of this therapy is easily monitored by conventional techniques and assays.

The antibody variant composition will be formulated, dosed and administered in a manner consistent with good medical practice. Factors for consideration in this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the cause of the disorder, the site of delivery of the agent, the method of administration, the scheduling of administration, and other factors known to medical practitioners. The "therapeutically effective amount" of the antibody variant to be administered will be governed by such considerations, and is the minimum amount necessary to prevent, ameliorate, or treat a disease or disorder. The antibody variant need not be, but is optionally formulated with one or more agents currently used to prevent or treat the disorder in question. The effective amount of such other agents depends on the amount of antibody present in the formulation, the type of disorder or treatment, and other factors discussed above. These are generally used in the same dosages and with administration routes as used hereinbefore or about from 1 to 99% of the heretofore employed dosages.

The antibodies of the invention may be administered alone or in combination with other types of treatments.

In a preferred aspect, the antibody is substantially purified (e.g., substantially free from substances that limit its effect or produce undesired side-effects).

Various delivery systems are known and can be used to administer an antibody of the present invention, including injection, e.g., encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the compound, receptor-mediated endocytosis (see, e.g., Wu, et al., *J Biol Chem* 262:4429 (1987)), construction of a nucleic acid as part of a retroviral or other vector, etc.

The anti-Notch3 antibody can be administered to the mammal in any acceptable manner. Methods of introduction include but are not limited to parenteral, subcutaneous, intraperitoneal, intrapulmonary, intranasal, epidural, inhalation, and oral routes, and if desired for immunosuppressive treatment, intralesional administration. Parenteral infusions include intramuscular, intradermal, intravenous, intraarterial, or intraperitoneal administration. The antibodies or compositions may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local. In addition, it may be desirable to introduce the therapeutic antibodies or compositions of the invention into the central nervous system by any suitable route, including intraventricular and intrathecal injection; intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Ommaya reservoir. In addition, the antibody is suitably administered by pulse infusion, particularly with declining doses of the antibody. Preferably the dosing is given by injections, most preferably intravenous or subcutaneous injections, depending in part on whether the administration is brief or chronic.

Pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent. The antibody may also be administered into the lungs of a patient in the form of a dry powder composition (See e.g., U.S. Pat. No. 6,514,496).

31

In a specific embodiment, it may be desirable to administer the therapeutic antibodies or compositions of the invention locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion, topical application, by injection, by means of a catheter, by 10 means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers. Preferably, when administering an antibody of the invention, care must be taken to use materials to which the protein does 15 not absorb.

In another embodiment, the antibody can be delivered in a vesicle, in particular a liposome (see Langer, *Science* 249: 1527 (1990); Treat, et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein, et al., eds., 20 pp. 353-365 (1989); Lopez-Berestein, ibid., pp. 317-27; see generally ibid.).

In yet another embodiment, the antibody can be delivered in a controlled release system. In one embodiment, a pump may be used (see Langer, *Science* 249:1527 (1990); Sefton, 25 *CRC Crit. Ref Biomed Eng* 14:201 (1987); Buchwald, et al., *Surgery* 88:507 (1980); Saudek, et al., *N Engl J Med* 321:574 (1989)). In another embodiment, polymeric materials can be used (see Medical Applications of Controlled Release, Langer, et al., eds., CRC Press (1974); Controlled Drug Bioavailability, Drug Product Design and Performance, Smolen, et al., eds., Wiley (1984); Ranger, et al., *J Macromol Sci Rev Macromol Chem* 23:61 (1983); see also Levy, et al., *Science* 228:190 (1985); During, et al., *Ann Neurol* 25:351 (1989); Howard, et al., *J Neurosurg* 71:105 (1989)). In yet another sembodiment, a controlled release system can be placed in proximity of the therapeutic target.

The present invention also provides pharmaceutical compositions. Such compositions comprise a therapeutically effective amount of the antibody and a physiologically 40 acceptable carrier. In a specific embodiment, the term "physiologically acceptable" means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans. 45 The term "carrier" refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered. Such physiological carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable, or synthetic origin, such as peanut oil, soybean oil, mineral oil, 50 sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include 55 starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. The composition, if desired, can also contain minor amounts of wetting or emulsifying 60 agents, or pH buffering agents. These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. 65 Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium

32

stearate, sodium saccharine, cellulose, magnesium carbonate, etc. Examples of suitable carriers are described in "Remington's Pharmaceutical Sciences" by E. W. Martin. Such compositions will contain an effective amount of the antibody, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient. The formulation should suit the mode of administration.

In one embodiment, the composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to human beings. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration. The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

Articles of Manufacture

In another embodiment of the invention, an article of manufacture containing materials useful for the treatment of the disorders described above is provided. The article of manufacture comprises a container and a label. Suitable containers include, for example, bottles, vials, syringes, and test tubes. The containers may be formed from a variety of materials such as glass or plastic. The container holds a composition which is effective for preventing or treating the condition and may have a sterile access port (for example, the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). The active agent in the composition is the antibody. The label on, or associated with, the container indicates that the composition is used for treating the condition of choice. The article of manufacture may further comprise a second container comprising a pharmaceutically acceptable buffer, such as phosphate-buffered saline, Ringer's solution, and dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, syringes, and package inserts with instructions for use.

Antibody-Based Gene Therapy

In a another aspect of the invention, nucleic acids comprising sequences encoding antibodies or functional derivatives thereof, are administered to treat, inhibit or prevent a disease or disorder associated with aberrant expression and/or activity of Notch3, by way of gene therapy. Gene therapy refers to therapy performed by the administration to a subject of an expressed or expressible nucleic acid. In this embodiment of the invention, the nucleic acids produce their encoded protein that mediates a therapeutic effect. Any of the methods for

gene therapy available can be used according to the present invention. Exemplary methods are described below.

For general reviews of the methods of gene therapy, see Goldspiel, et al., *Clinical Pharmacy* 12:488 (1993); Wu, et al., *Biotherapy* 3:87 (1991); Tolstoshev, *Ann Rev Pharmacol* 5 *Toxicol* 32:573 (1993); Mulligan, *Science* 260:926 (1993); Morgan, et al., *Ann Rev Biochem* 62:191 (1993); May, *TIBTECH* 11:155 (1993).

In a one aspect, the compound comprises nucleic acid sequences encoding an antibody, said nucleic acid sequences 10 being part of expression vectors that express the antibody or fragments or chimeric proteins or heavy or light chains thereof in a suitable host. In particular, such nucleic acid sequences have promoters operably linked to the antibody coding region, said promoter being inducible or constitutive, 15 and, optionally, tissue-specific.

In another particular embodiment, nucleic acid molecules are used in which the antibody coding sequences and any other desired sequences are flanked by regions that promote homologous recombination at a desired site in the genome, 20 thus providing for intrachromosomal expression of the antibody encoding nucleic acids (Koller, et al., *Proc Natl Acad Sci USA* 86:8932 (1989); Zijlstra, et al., *Nature* 342:435 (1989)). In specific embodiments, the expressed antibody molecule is a single chain antibody; alternatively, the nucleic acid 25 sequences include sequences encoding both the heavy and light chains, or fragments thereof, of the antibody.

Delivery of the nucleic acids into a patient may be either direct, in which case the patient is directly exposed to the nucleic acid or nucleic acid-carrying vectors, or indirect, in 30 which case, cells are first transformed with the nucleic acids in vitro, then transplanted into the patient. These two approaches are known, respectively, as in vivo or ex vivo gene therapy.

In a specific embodiment, the nucleic acid sequences are 35 and 6,642,051). directly administered in vivo, where it is expressed to produce the encoded product. This can be accomplished by any of numerous methods known in the art, e.g., by constructing them as part of an appropriate nucleic acid expression vector and administering it so that they become intracellular, e.g., by 40 infection using defective or attenuated retrovirals or other viral vectors (see U.S. Pat. No. 4,980,286), or by direct injection of naked DNA, or by use of microparticle bombardment (e.g., a gene gun; Biolistic, Dupont), or coating with lipids or cell-surface receptors or transfecting agents, encapsulation in 45 liposomes, microparticles, or microcapsules, or by administering them in linkage to a peptide which is known to enter the nucleus, by administering it in linkage to a ligand subject to receptor-mediated endocytosis (see, e.g., Wu, et al., J Biol Chem 262:4429 (1987)) (which can be used to target cell 50 types specifically expressing the receptors), etc. In another embodiment, nucleic acid-ligand complexes can be formed in which the ligand comprises a fusogenic viral peptide to disrupt endosomes, allowing the nucleic acid to avoid lysosomal degradation. In yet another embodiment, the nucleic acid can 55 be targeted in vivo for cell specific uptake and expression, by targeting a specific receptor (see, e.g., PCT Publications WO 92/06180; WO 92/22635; WO92/20316; WO93/14188, WO 93/20221). Alternatively, the nucleic acid can be introduced intracellularly and incorporated within host cell DNA for 60 expression, by homologous recombination (Koller, et al., Proc Natl Acad Sci USA 86:8932 (1989); Zijlstra, et al., Nature 342:435 (1989)).

In a specific embodiment, viral vectors that contain nucleic acid sequences encoding an antibody of the invention are 65 used. For example, a retroviral vector can be used (see Miller, et al., *Meth Enzymol* 217:581 (1993)). These retroviral vec-

34

tors contain the components necessary for the correct packaging of the viral genome and integration into the host cell DNA. The nucleic acid sequences encoding the antibody to be used in gene therapy are cloned into one or more vectors, which facilitate the delivery of the gene into a patient. More detail about retroviral vectors can be found in Boesen, et al., *Biotherapy* 6:291 (1994), which describes the use of a retroviral vector to deliver the mdrI gene to hematopoietic stem cells in order to make the stem cells more resistant to chemotherapy. Other references illustrating the use of retroviral vectors in gene therapy are: Clowes, et al., *J Clin Invest* 93:644 (1994); Kiem, et al., *Blood* 83:1467 (1994); Salmons, et al., *Human Gene Therapy* 4:129 (1993); and Grossman, et al., *Curr Opin Gen and Dev* 3:110 (1993).

Adenoviruses may also be used in the present invention. Adenoviruses are especially attractive vehicles in the present invention for delivering antibodies to respiratory epithelia. Adenoviruses naturally infect respiratory epithelia. Other targets for adenovirus-based delivery systems are liver, the central nervous system, endothelial cells, and muscle. Adenoviruses have the advantage of being capable of infecting nondividing cells. Kozarsky, et al., Curr Opin Gen Dev 3:499 (1993) present a review of adenovirus-based gene therapy. Bout, et al., Human Gene Therapy 5:3 (1994) demonstrated the use of adenovirus vectors to transfer genes to the respiratory epithelia of rhesus monkeys. Other instances of the use of adenoviruses in gene therapy can be found in Rosenfeld, et al., Science 252:431 (1991); Rosenfeld, et al., Cell 68:143 (1992); Mastrangeli, et al., J Clin Invest 91:225 (1993); PCT Publication WO94/12649; Wang, et al., Gene Therapy 2:775 (1995). Adeno-associated virus (AAV) has also been proposed for use in gene therapy (Walsh, et al., Proc Soc Exp Biol Med 204:289 (1993); U.S. Pat. Nos. 5,436,146; 6,632,670;

Another approach to gene therapy involves transferring a gene to cells in tissue culture by such methods as electroporation, lipofection, calcium phosphate mediated transfection, or viral infection. Usually, the method of transfer includes the transfer of a selectable marker to the cells. The cells are then placed under selection to isolate those cells that have taken up and are expressing the transferred gene. Those cells are then delivered to a patient.

In this embodiment, the nucleic acid is introduced into a cell prior to administration in vivo of the resulting recombinant cell. Such introduction can be carried out by any method known in the art, including but not limited to transfection, electroporation, microinjection, infection with a viral or bacteriophage vector containing the nucleic acid sequences, cell fusion, chromosome-mediated gene transfer, microcell-mediated gene transfer, spheroplast fusion, etc. Numerous techniques are known in the art for the introduction of foreign genes into cells (see, e.g., Loeffler, et al., Meth Enzymol 217:599 (1993); Cohen, et al., Meth Enzymol 217:618 (1993); Cline, Pharmac Ther 29:69 (1985)) and may be used in accordance with the present invention, provided that the necessary developmental and physiological functions of the recipient cells are not disrupted. The technique should provide for the stable transfer of the nucleic acid to the cell, so that the nucleic acid is expressible by the cell and preferably heritable and expressible by its cell progeny.

The resulting recombinant cells can be delivered to a patient by various methods known in the art. Recombinant blood cells (e.g., hematopoietic stem or progenitor cells) are preferably administered intravenously. The amount of cells envisioned for use depends on the desired effect, patient state, etc., and can be determined by one skilled in the art.

Cells into which a nucleic acid can be introduced for purposes of gene therapy encompass any desired, available cell type, and include but are not limited to epithelial cells, endothelial cells, keratinocytes, fibroblasts, muscle cells, hepatocytes; blood cells such as T lymphocytes, B lymphocytes, 5 monocytes, macrophages, neutrophils, eosinophils, megakaryocytes, granulocytes; various stem or progenitor cells, in particular hematopoietic stem or progenitor cells, e.g., as obtained from bone marrow, umbilical cord blood, peripheral blood, fetal liver, etc.

In a one embodiment, the cell used for gene therapy is autologous to the patient. Nucleic acid sequences encoding an antibody of the present invention are introduced into the cells such that they are expressible by the cells or their progeny, and the recombinant cells are then administered in vivo for 15 therapeutic effect. In a specific embodiment, stem or progenitor cells are used. Any stem and/or progenitor cells which can be isolated and maintained in vitro can potentially be used in accordance with this embodiment of the present invention (see e.g. PCT Publication WO 94/08598; Stemple, et al., Cell 20 71:973 (1992); Rheinwald, Meth Cell Bio 21A:229 (1980); Pittelkow, et al., Mayo Clinic Proc 61:771 (1986)).

EXAMPLES

Example 1

Generation of Immunogen: Notch3 Extracellular Domain-FC Fusion Protein

Anti-Notch3 monoclonal antibodies that specifically bind to the LIN12/dimerization domain (herein after "LD") of human Notch3 were generated using a recombinant Notch3-Fc fusion protein as immunogen comprising Notch3 LD region. Specifically, the immunogen comprised amino acid residues 1378 to 1640 of Notch3 LD (See FIG. 1) and human γ1Fc fusion protein (Notch3 LD/Fc). A control antibody was generated using the Notch3 EGF repeat region from amino acid residue 43 to 1377 as immunogen.

Notch3 protein sequence was analyzed using an internetbased research software and service (Motif Search). Human liver and pancreatic RNAs (Ambion, Inc. Austin, Tex.) were used as templates to synthesize the first strand of cDNA using a standard commercially available cDNA synthesis kit. The 45 cDNAs encoding the Notch 3 LD and the EGF repeat region were PCR-amplified in the presence of Betaine (1-2M) and DMSO (5%). The PCR-synthesized Notch3-LD DNA fragment (~0.8 kb) and Notch3-EGF repeat DNA fragment (~4 kb) were cloned into expression vectors comprising a His- 50 γ1Fc in the commercially available vector pSec or in the commercially available vector pCD3.1, each bearing a different antibiotic marker. This cloning resulted in two expression plasmids, one expressing a Notch3-LD/Fc fusion protein and the other expressing a Notch3-EGF/Fc fusion protein.

To facilitate the plasmid construction and to enhance the expression of the various Notch 3 recombinant proteins, oligonucleotides corresponding to the leader peptide sequence comprising the first 135 base pairs of the Notch3 nucleic acid coding sequence were generated. These oligonucleotides 60 contained some changes in the wobble coding positions to lower the GC content. All nucleotide sequence changes were silent, i.e., no amino acid sequence changes (FIGS. 8A and 8B). After annealing the oligonucleotides together, the engineered leader peptide coding sequence was linked to the rest 65 of the coding sequence by PCR-SOE (Ho, et al., Gene 77:51 (1989); Horton, et al., Bio Techniques 8:528 (1990)) (See

36

FIG. 9). This leader peptide coding sequence was used in Notch3-LD/Fc and Notch3 expression constructs. Therefore, both of the Fc fusion proteins comprise a signal peptide linked to the N-terminus, and a human γ1Fc sequence fused to the C-terminus. The amino acid sequence of Notch3-LD, including the leader peptide, is shown in FIG. 8B and SEQ ID NO:6.

Expression of Notch3-EGF/Fc and Notch3-LD/Fc fusion proteins were verified by transient transfection of the Notch3 expression plasmids into 293T (ATCC Number CRL-11268, Manassas, Va.) and CHO cells (Invitrogen, Carlsbad, Calif.), respectively. Prior to transfection, cells were cultured in DMEM (Invitrogen, Carlsbad, Calif.) growth medium containing 10% fetal calf serum (FCS), 2 mM of glutamine, and 1× essential amino acid solution followed by seeding about $3-5\times10^5$ cells per well in 6-well plate and growing for approximately 24 hours. Three micrograms each of the Notch3 fusion protein expression plasmids were transfected into cells in each well using a LIPOFECTAMINE™ 2000 transfection system (Invitrogen, Carlsbad, Calif.) following the manufacturer's protocol. After transfection, the cells were cultured in fresh growth medium and cultured in a CO₂ incubator for approximately 40-48 hours before subjecting to Notch3 fusion protein expression analysis. Alternatively, after transfection, the cells were cultured in growth medium for 3-4 hours, then switched to DMEM medium containing 2% FCS and cultured for approximately 60-66 hours before drawing conditioned medium for secreted protein analysis.

Stable cell lines were generated for both Notch3-LD/Fc (His-Fcy/pSec vector) and Notch3-EGF/Fc (His-Fcy/pSec vector). Each plasmid was transfected into CHO cells. After transfection, the cells were cultured in DMEM growth medium overnight, then switched to growth medium with 800 μg/ml hygromycin and cultured at least two weeks until the cells not carrying Notch3 expression plasmid were elimiwhose carboxy terminal end was fused to a gamma 1 Fc 35 nated by the antibiotics. Conditioned media from the stable cell lines were subjected to Western blot analysis.

> Stable or transient transfected cells were assayed for expression and secretion of Notch3-LD/Fc or Notch3-EGF/ Fc fusion protein. Transfected cells harvested from culture 40 dishes were washed once with phosphate buffered saline (PBS) and resuspended in deionized water, mixed with an equal volume of 2× protein sample loading buffer (BioRad, Hercules, Calif.) and then heated at about 100° C. for 10 minutes. Secreted protein was analyzed using conditioned medium mixed with an equal volume of 2x protein sample loading buffer and heated at 100° C. for 10 minutes. The samples were separated using 4-15% gradient SDS-PAGE. The proteins were transferred from the gel to a PVDF membrane (BioRad, Hercules, Calif.), which was blocked in 5% non-fat dry milk in PBST (PBS with 0.05% TWEEN-20®) for at least one hour prior to transfer of protein.

> Notch3-EGF/Fc and Notch3-LD/Fc fusion proteins were detected by incubating with yFc-specific, HRP-conjugated antibody (Sigma, St Louis, Mo.) in blocking buffer for one 55 hour at room temperature. The membrane was washed three times in PBST and developed with a chemiluminescent sub-

For Notch3 domain/Fc fusion protein purification, CHO stable cell lines as described above were cultured in DMEM with 2% FCS for up to 5 days. One liter of conditioned medium collected, and subjected to protein-A bead-packed column for affinity binding. The column was washed with PBS, and the bound proteins were eluted in 50 mM citrate buffer (pH 2.8), and the pH was brought to neutral by adding 1 M Tris-HCl buffer (pH 8). Purity of the protein was assessed by protein gel analysis using 4-15% gradient SDS-PAGE. Protein concentration was assayed using Coomassie blue reagent following the manufacturer's protocol (Pierce, Rockford, Ill.). Through this procedure, milligram quantities of Notch3-LD/Fc and Notch3-EGF/Fc protein were purified for immunization and ELISA binding assays.

Example 2

Generation of Anti-Notch3 MAbs

Male A/J mice (Harlan, Houston, Tex.), 8-12 week old, were injected subcutaneously with 25 µg of Notch3-EGF/Fc or Notch3-LD/Fc in complete Freund's adjuvant (Difco Laboratories, Detroit, Mich.) in 200 µl of PBS. Two weeks 15 after the injections and three days prior to sacrifice, the mice were again injected intraperitoneally with 25 µg of the same antigen in PBS. For each fusion, single cell suspensions were prepared from spleen of an immunized mouse and used for fusion with Sp2/0 myeloma cells; 5×10^8 of Sp2/0 and $5\times10^{8-20}$ of spleen cells were fused in a medium containing 50% polyethylene glycol (M.W. 1450) (Kodak, Rochester, N.Y.) and 5% dimethylsulfoxide (Sigma, St. Louis, Mo.). The cells were then adjusted to a concentration of 1.5×10^5 spleen cells per 200 µl of the suspension in Iscove medium (Invitrogen, Carlsbad, Calif.), supplemented with 10% fetal bovine serum, 100 units/ml of penicillin, 100 µg/ml of streptomycin, 0.1 μM hypoxanthine, 0.4 μM aminopterin, and 16 μM thymidine. Two hundred microliters of the cell suspension were added to each well of about sixty 96-well plates. After around ten days, culture supernatants were withdrawn for screening their antibody-binding activity using ELISA.

The 96-well flat bottom IMMULON® II microtest plates (Dynatech, Laboratories, Chantilly, Va.) were coated using 100 μl of Notch3-EGF/Fc or Notch3-LD/Fc (0.1 μg/ml) in (PBS) containing 1x Phenol Red and 3-4 drops pHix/liter (Pierce, Rockford, Ill.) and incubated overnight at room temperature. After the coating solution was removed by flicking of the plate, 200 µl of blocking buffer containing 2% BSA in PBST containing 0.1% merthiolate was added to each well for one hour to block non-specific binding. The wells were then washed with PBST. Fifty microliters of culture supernatant from each fusion well was collected and mixed with 50 µl of blocking buffer and then added to the individual wells of the microtiter plates. After one hour of incubation, the wells were washed with PBST. The bound murine antibodies were then detected by reaction with horseradish peroxidase (HRP)conjugated, Fc-specific goat anti-mouse IgG (Jackson ImmunoResearch Laboratories, West Grove, Pa.). HRP substrate solution containing 0.1% 3,3,5,5-tetramethyl benzidine and 0.0003% hydrogen peroxide was added to the wells for color development for 30 minutes. The reaction was terminated by the addition of 50 ml of 2 M H₂SO₄/well. The OD at 450 nm ₅₅ was read with an ELISA plate reader (Molecular Devices, Sunnyvale, Calif.).

Among 185 hybridomas isolated and analyzed, one hybridoma clone from mice immunized with Notch3-LD/Fc generated a Notch3 agonist antibody 256A-13 and this antibody 60 was further characterized. An ELISA was performed using supernatant from the hybridoma clone producing MAbs 256A-13. The results showed strong binding activity to the purified Notch3 LD/FC fusion protein to which it was generated and did not bind to human Notch1-LD/Fc (LIN/dimerization domain fused to Fc region at the carboxy1 terminus) or a control human Fc protein (data not shown) (Table 1).

38

TABLE 1

	ELISA OD reading	ELISA OD readings of 256A-13 using hybridoma supernatant										
5	Target protein Hybridoma	Notch3-LD/Fc										
	supernatant	Control IgG1 MAb	256A-13									
	Mean S.D.	0.019 0.002	2.828 0.047									
10				-								

The positive hybridoma clone from this primary ELISA screening was further isolated by single colony-picking and a second ELISA assay as described above was done to verify specific binding to the chosen immunogen. The confirmed hybridoma clone was expanded in larger scale cultures. The monoclonal antibodies (MAbs) were purified from the medium of these large scale cultures using a protein A affinity column. The anti-Notch3 agonist MAbs were then characterized using cell-based binding assays, microscopy, Western blot, and FACS analysis.

Example 3

Cell-Based Binding Assays for Anti-Notch3 MAbs

The cell-based binding assays used to characterize the anti-Notch3 MAbs required cloning a full-length of human Notch3 open reading frame into a vector, in this case PcDNATM3.1/Hygro (Invitrogen, Carlsbad, Calif.). The Notch3-coding region was synthesized by RT-PCR using human liver tumor RNA (Ambion, Inc., Austin, Tex.) as a template. The final plasmid construct, Notch3/Hygro, expressed a full-length Notch3 protein as depicted in FIG. 1. A stable cell line expressing Notch3 was generated by transfection of Notch3/Hygro plasmid construct into 293T cells (ATCC No. CRL-11268) using a LIPOFECTAMINE™ 2000 kit following the same procedure as described in Example 1. After transfection, the cells were cultured in DMEM growth medium overnight, then reseeded in growth medium with 200 μg/ml hygromycin and cultured for 12-14 days. Well-isolated single colonies were picked and grown in separate wells until enough clonal cells were amplified. Stable 293T clones that were resistant to hygromycin selection and expressed high levels of Notch3 protein were identified by Western blot analysis, and by fluorescent electromicroscopy using polyclonal anti-Notch3 antibodies (R&D Systems, Minneapolis,

A partial Notch3 expression plasmid containing only the Notch LIN12/dimerization (LD) domain and the transmembrane (TM) domain was also constructed by PCR and subcloned into PcDNATM3.1 vector.

Human Sup-T1 cell line (ATCC No. CRL-1942) naturally expressing Notch3 was also confirmed by Western blot. Sup-T1 cells were grown in RPMI1640 media containing 10% fetal calf serum, 2 mM of glutamine and 1× essential amino acid solution

Cell-based antibody-binding was assessed using FMATTM (fluorescence macro-confocal high-throughput screening) 8100 HTS System (Applied Biosystems, Foster City, Calif.) following the protocol provided by the manufacturer. Cell lines naturally expressing Notch3 or stably transfected with Notch3 expression constructs were seeded in 96-well plates. Alternatively, transiently transfected 293T or CHO cells were seeded in the 96-well plate. The cells were seeded at a density of 30,000-50,000 cells per well. After 20-24 hours, anti-Notch3 MAbs and 1×PBS reaction buffer were added to the

wells and incubated for one hour at 37° C. Cy-5-conjugated anti-mouse IgG antibody was added in the wells after removal of primary antibodies.

Cell-based antibody-binding was also assessed by fluorescence-activated cell sorter (FACS) using internally generated 5 293T/Notch3-stable cell line and two cancer lines, human Sup-T1 and A2780 cell lines (UK ECACC No. Cat. No. 93112519), both naturally express Notch3 (data not shown). Cells were first incubated with anti-Notch3 MAbs in 1×PBS. After three washes, the cells were incubated with fluorescent molecule-conjugated secondary antibody. The cells were resuspended, fixed in 1×PBS with 0.1% paraformaldehyde, and analyzed by FACS (BD Sciences, Palo Alto, Calif.). The results indicated that 256A-13 binds to Notch3 receptor expressed either from recombinant plasmid constructs or as native protein in cultured cells (Table 2). Transiently transfected 293T cells containing a Notch3/Hygro plasmid were also stained with immunofluorescence as described above and observed by fluorescent microscopy.

TABLE 2

Binding activity of 256A-13 in cell-based FACS analysis shown as mean fluorescent intensity										
	Control IgG1	256A-13								
Notch3/Hyg Sup-T1	24.16 24.51	32.2 55.44								

The cell-based FMAT and FACS analyses confirmed that MAbs 256A-13 indeed binds to the Notch3 receptor expressed either from recombinant plasmid constructs or as native protein in cultured cells (Table 2 and Table 3).

TABLE 3

Summary of anti-No	ummary of anti-Notch3 MAbs binding activity in cell-b FMAT							
Antibody	Control IgG1	256A-13						
Notch3 (full-length) Notch3-LDTM	no binding no binding	weak binding strong binding						

A positive binding signal was determined based on the 45 FMATTM system signal read-out that was significantly higher than that of the IgG1 control and other negative hybridoma clones (p>0.01). The IgG1 control binding read-out was considered background. 293T cells transiently transfected with Notch3/Hygro plasmid were also stained with immunofluo- 50 rescence as described above and observed by fluorescent microscopy

The binding affinity of MAb 256A-13 was analyzed by Biacore System (Biacore Inc., Piscataway, N.J.). The antibody was directly immobilized on a chip through amine cou- 55 pling (immobilization level: 200 RU), and the Notch3-LD/Fc protein (antigen) was injected at 5 different concentrations (ranging from 37.5 to 120 nM with association time between 5-8 minutes, and dissociation time between 1 and 2 hours). The running buffer and the sample buffer are PBS contained 60 TCTCGTGG 5 mM Ca²⁺). The chip surface was regenerated with 10 mM glycine, pH2. The antibody was characterized in duplicate. Table 4 discloses the statistical mean, standard errors and Kinetic dissociation constant (KD) calculated. The antibody has a high affinity with a KD of 280 µM, and a slow off-rate. 65 of NaCl with each oligo at a concentration of 4 mM. After Both the standard errors and chi square are low with a good fit (dynamic curve not shown).

40

TABLE 4

	Char	acterization	of MAb 256A-	13 binding	affinity b	y Biacore	
	Sample	KD [pM]	ka [M-1s-1]	SE (ka)	kd [s-1]	SE (kd)	χ^2
,	256A-13	280	4.20e4	0.98	1.18e-5	1.02e-7	0.392

KD: 256A-13 and Notch3-LD/Fc dissociation constant. Ka: Rate of 256A-13 binding to Notch3-LD/Fc (or On-rate). Kd: Rate of 256A-13 dissociate from Notch3-LD/Fc (or Offrate). SE: standard error.

Example 4

Western Blot Analysis of 256A-13 Binding Activity

Western blot was performed to assess the binding activity of 256A-13 to Notch3 receptor under denaturing conditions, as well as expression levels of Notch3 and other Notchrelated proteins in human cell lines. Purified Notch3-LD/Fc fusion protein was combined with protein loading buffer. Protein samples were also prepared from the transiently or stably transfected cells described in Example 1, which were harvested from culture dishes, washed once with PBS, resuspended in total cellular protein extract buffer (Pierce, Rockford, Ill.), and heated at 100° C. for 10 minutes after adding equal volume of 2x protein sample loading buffer. All samples were separated by electrophoresis in a 4-15% gradient SDS-PAGE. The proteins were transferred from gel to PVDF membrane and 256A-13 was applied to the Western blot membrane as the primary detection antibody. An HRPconjugated secondary antibody was used for detection and the signal generated using a chemiluminescent substrate as described above. Positive control antibodies against human Fc, V5 tag, Notch3 and Notch1 were purchased from (Invit-35 rogen, R&D Systems, Santa Cruz Biotechnologies, and Orbigen).

Western blot analysis showed that MAb 256A-13 binds to Notch3-LD/Fc under denaturing condition, as well as native molecular conformation as observed in ELISA and FACS analysis.

Example 5

Assessing Functionality of 256A-13 by Luciferase Reporter Assay

A. Plasmid Constructs

The full length Notch3 expression construct described in Example 3 above was confirmed by sequencing, and is identical to the published sequence depicted in FIG. 1. The expression of Notch3 was verified by transient transfection and Western blot as described in Example 4.

To generate a luciferase reporter plasmid for Notch signaling, two complementary oligonucleotide primers containing tandem repeats of CBF1 binding motif were synthesized having the following sequences:

(SEO ID NO 12)

5'GCTCGAGCTCGTGGGAAAATACCGTGGGAAAATGAACCGTGGGAAAA

(SEO ID NO 13)

5'GCTCGAGATTTTCCCACGAGATTTTCCCACGGTTC

These two oligoprimers were annealed at 65° C. in 100 mM annealing to each other, the primers were extended by PCR. The PCR product was cloned into a commercially available

42 TABLE 5

vector. The insert was verified by sequencing, which contains four tandem repeats of CBF1 binding motif and two flanking Xho I sites. The insert was excised using Xho I and ligated downstream of the firefly luciferase reporter coding sequence.

After luciferase reporter assay and sequencing analysis, plasmid clones with eight repeats of CBF1 binding motifs were selected and designated CBF1-Luc.

B. Stable Cell Line Generation

Two stable cell lines were generated for functional assays using human embryonic kidney cell lines (HEK293). One cell line contained the Notch3-expressing plasmid and CBF1-Luc reporter plasmid integrated into the nuclear genome. This cell line was generated by cotransfecting Notch3/hygromycin and CBF1-Luc plasmids into 293T cells using LIPO-FECTAMINETM 2000 according to the manufacturer's protocol. Stable transfection cell clones were selected against 200 μ g/ml hygromycin in DMEM growth medium, and screened by luciferase reporter assay and Western blot. A cell line with a relatively high level of Notch3 receptor expression (based on Western blot) and luciferase activity was selected for use in functional assays, and designated NC85.

C. Luciferase Reporter Assay with Notch3 Overexpressing Cells Alone

NC85 cells were cultured in the presence of MAb 256-A13 for 24 to 48 hours. The media was then removed by aspiration, 30 cells were lysed in 1× Passive Lysis Buffer (E1501, Promega, Madison, Wis.) and luciferase activities were assayed using the Luciferase Assay System following manufacturer's protocol (E1501, Promega, Madison, Wis.) in TD-20/20 luminometer (Turner Designs Instrument, Sunnyvale, Calif.). As illustrated in FIG. 5, NC85 cells cultured in the presence of MAb 256-A13, the luciferase activity was increased almost 4 fold as compared to that with control antibody G3. The luciferase reporter assay demonstrated that MAb 256-A13 induced a dramatic increase in luciferase activity without ligand binding, while antagonist anti-Notch3 antibodies MAbs 256A-4 and 256A-8 did not (FIG. 5).

Example 8

Mapping the Binding Epitope of 256A-13

A. Epitope-Mapping Strategy and Rationale Using Notch3 Single Domain and Fc Fusion Protein Constructs

Notch3 LIN12/heterodimerization domains, also called Notch3 LIN12-dimerization domain (Notch3-LD) consisted 55 of three LIN12 domains, 1st LIN12 (L1,), 2nd LIN12 (L2) and 3rd LIN12 (L3) (See FIG. 10). Five Notch3 single domain/Fc fusion protein expression constructs (FIG. 7) were generated, and a western blot was performed to assess which domain was sufficient for MAb 256A-13 binding. After transient transfection, the supernatants with secreted Notch3 single domain/Fc fusion proteins were analyzed by SDS-PAGE. The results showed that MAb 256A-13 only binds to Notch3-L1, and not to any other domains. ELISA experiments also showed that MAb 256A-13 has very strong binding to Notch3-L1 and 65 weak binding to Notch3-L3, and not to other domains (Table 5).

Summary of Western blot results and ELISA Readings using MAb 256A-13 against Notch3-domain/Fc fusion protein constructs

	West	ern blot result	ELISA OD reading					
MAb	256A-13	Anti-human Fc	256A-13	Anti-human Fc				
Notch3-LD/Fc	positive band	positive band	1.882	1.557				
Notch3-L1/Fc	positive band	positive band	1.797	1.364				
Notch3-L2/Fc	no band	positive band	0.015	1.337				
Notch3-L3/Fc	no band	positive band	1.054	1.425				
Notch3-D1/Fc	no band	positive band	0.015	1.608				
Notch3-D2/Fc	no band	positive band	0.015	1.628				

A. Identification of Binding Epitope(s) by Subdomain Swap

First, the agonist Notch3 MAb, 256A-13, binds to Notch3 LIN12/dimerization domain (LD), but not to the homologous human Notch1 LIN12/dimerization domain (Table 5) Second, the anti-Notch3 MAb binds to denatured Notch3 protein in Western blot as discussed in Example 4 and 8, indicating that 256A-13 binds to a single epitope or to discrete epitopes independent of each other. Third, Notch3 and Notch1 share approximately 55% amino acid sequence homology in LIN12/dimerization domain, therefore it was concluded that a subdomain swap between Notch3 and Notch1 within this region would not disrupt the protein conformation. Notch1-LD cDNA was PCR-amplified using standard PCR methods. The first strand cDNA template was synthesized from PA-1 cell total RNA (ATCC No. CRL-1572). The human IgG kappa chain leader peptide coding sequence was PCR-amplified, used as leader peptide to link to the 5' of Notch1-LD by PCR-SOE and subcloned in His-y1Fc/pSec.

TABLE 6

ELISA OD readings	s of MAbs 25 otch3-LD/Fc	0	gG1 binding to				
	Notch1	-LD/Fc	Notch3-LD/Fc				
	Mean	S.D.	Mean	S.D.			
256A-13 IgG1 control	0.094 0.066	0.007 0.006	4.000 0.063	0 0.006			

B. Generation of Subdomain Swap Fusion Protein Constructs

Based on the ELISA analysis results presented in Section A above, the target domain of the 1st LIN12 domain, or L1 was further divided into three subdomains and individually swapped with the corresponding subdomain of Notch1-L1. The subdomain swap constructs were generated using PCR-SOE (Ho, et al., Gene 77:51 (1989); Horton, et al., BioTechniques 8:528 (1990)) as illustrated in FIGS. 9 and 10. PCR and PCR-SOE reactions were performed using PCR with 1M Betaine and 5% DMSO added to the reaction. The final PCR-SOE product was subcloned and verified by sequencing. The plasmid clone with the correct insert sequence was cleaved with Nhe I and Xho I to excise the insert, which was gelpurified and subcloned. The five Notch3/Notch1 subdomain swap constructs are illustrated in FIG. 7. To facilitate the epitope mapping, the human IgG kappa chain signaling peptide was used as leader peptide in the domain swap constructs. The amino acid sequences of the subdomain constructs are shown in FIG. 10.

C. Expression of Notch3/Notch1 Subdomain Swap Fusion

Notch3/Notch1-LD domain swap plasmids were transiently transfected in CHO cells using LipoFectamine 2000. CHO cells were seeded in DMEM growth medium with 10% 5 FCS at 0.8~1×10⁶ cells per well in 6-well plate, maintained in CO₂ incubator overnight before transfection. The cells were recovered after transfection in the growth medium for about 3 hours, then switched to DMEM with 2% FCS, and cultured for three days. The conditioned media were harvested and centrifuged at 3500 rpm for 10 minutes. The supernatant containing Notch3-LD domain swap protein secreted from CHO was collected and prepared for Western blot and ELISA binding analyses. ELISA showed that all the domain-swap fusion proteins were expressed and secreted in conditioned 15 medium (Table 4), which was further confirmed by Western blot analysis (data not shown).

The ELISA readings used anti-human Fc antibody as detection antibody showing all the proteins were expressed in conditioned medium. Human IgG/Fc was used as a control. 20 The starting point of human IgG/Fc coated in each well is 100

D. Epitope Binding Analysis using ELISA

The 96-well flat bottom IMMULON® II microtest plates (Dynatech, Laboratories, Chantilly, Va.) were coated with 25 anti-human Fc antibody (Jackson ImmunoResearch) by adding 100 μ l of the antibody (0.1 μ g/ml) in phosphate buffered saline (PBS) containing 1× Phenol Red and 3-4 drops pHix/ liter (Pierce, Rockford, Ill.), and incubated overnight at room temperature. After the coating solution was removed by flicking of the plate, 200 µl of blocking buffer containing 2% BSA in PBST and 0.1% merthiolate was added to each well for one hour to block non-specific binding. The wells were then washed with PBST. Fifty microliters of the above conditioned medium from each transfection of Notch3/Notch1 domain 35 swap construct were collected, mixed with 50 µl of blocking buffer, and added to the individual wells of the microtiter plates. After one hour of incubation, the Notch3/Notch1-LD domain swap protein was captured by the coated anti-Fc antibody, and the wells were washed with PBST. Anti-Notch3 40 MAbs and isotype-matched control MAbs were serially diluted in blocking buffer as above, and 50 µl of the diluted MAbs were added in each well to assess binding to the bound Notch3/Notch1 domain swap protein. Horseradish peroxidase (HRP)-conjugated, Fc-specific goat anti-mouse IgG was 45 used for detection. HRP substrate solution containing 0.1% 3.3.5.5-tetramethyl benzidine and 0.0003% hydrogen peroxide was added to the wells for color development for 30 minutes. The reaction was terminated by addition of 50 ml of 2 M H2SO₄/well. The OD at 450 nm was read with an ELISA 50 contains 102 amino acid residues (FIGS. 4A and 4B). reader. Subdomain swap constructs and clusters of mutations were similarly examined by ELISA analysis above.

ELISA binding experiments using MAb 256A-13 against the subdomain-swap proteins showed that the swap of the 1st subdomain in Notch3-L1 domain (L1) did not affect the bind- 55 ing, indicating that 256A-13 does not bind to this region. On the other hand, the swaps of the 2^{nd} and 3^{rd} subdomains in Notch3-L1 significantly reduced the binding. Therefore, those two subdomains contain the binding epitope(s) for MAb 256A-13. (FIG. 10). In contrast, isotype-matched nega- 60 tive control antibody, G3, does not bind to any of the domain swap fusion proteins in the ELISA assay (FIG. 10). It was concluded from the above experiments that the 1st LIN12 domain was required for MAb 256A-13 binding, and specifically within the 2^{nd} and 3^{rd} subdomain region.

To further map the specific epitope that MAb 256A-13 binds, the 2^{nd} and 3^{rd} subdomains of Notch3-L1 domain were 44

further divided into five amino acids clusters, and swapped with the corresponding amino acid residues in Notch1 (FIG. 10). ELISA binding assay showed that the swap from DRE (Notch3 sequence) to SQL (Notch1 sequence) completely abolished the ELISA binding activity, indicating that only this epitope is required for MAb 256A-13 binding within Notch3-L1 domain.

Pinpoint analysis of amino acid residues required for MAb 256A-13 binding is done by using di-Alanine peptide scanning. The Alanine peptides cover the DRE epitopte mapped by amino acid swap analysis. The peptide is synthesized as a spot cross-linked to nylon support membrane. Antibody blot binding is assessed by dot blot. MAb G3 is used as a control IgG1. The peptide sequences are presented in FIG. 11.

Example 9

Sequencing of Anti-Notch3 MAbs

Because antibody binding properties are fully-dependent on the variable regions of both heavy chain and light chain, the variable sequences of 256A-13 were subtyped and sequenced. The antibody IgG subtype was determined using an ISOSTRIP™ mouse monoclonal antibody isotyping kit (Roche Diagnostics, Indianapolis, Ind.). The results showed that 256A-13 has an IgG₁ heavy chain and a kappa light chain.

The variable region sequences of heavy chain and light chain were decoded through RT-PCR and cDNA cloning. Total RNAs from hybridoma clones 256A-13 were isolated using an RNeasy Mini kit following manufacturer's protocol (Qiagen Sciences, Valencia, Calif.). The first strand cDNA was synthesized using the RNA template and SUPER-SCRIPTASE® III reverse transcriptase kit. The variable region of light chain and heavy chain cDNAs were PCRamplified from the first strand cDNA using degenerative forward primers covering the 5'-end of mouse kappa chain coding region and a reverse primer matching the constant region at the juncture to the 3'-end of the variable region, or using degenerative forward primers covering the 5'-end of mouse heavy chain coding region and a constant region reverse primer in mouse heavy chain. The PCR product was cloned into a commercially available vector and sequenced by Lone Star Lab (Houston, Tex.). The nucleotide sequences were analyzed utilizing the DNASTAR® computer software program (DNASTAR, Inc., Madison, Wis.). Each anti-Notch3 MAb sequence was determined by sequences from multiple PCR clones derived from the same hybridoma clone.

The variable heavy chain region of Mab 256A-13 contains 121 amino acid residues and the light chain variable region

Example 10

Impact of Notch3 Agonistic Antibodies on Metalloprotease Cleavage of Notch3

Notch receptor activation involves ligand induced metalloprotease cleavage at juxtamembrane site (S2) generating an extracellular subunit. This cleavage is an essential prerequisite to S3 cleavage to release the activated Notch intracellular region. To test whether the agonizing antibodies can induce ligand-independent sequential Notch activation events, including two proteolytic cleavages, 293T cells stably expressing a recombinant Notch3 receptor (NC85 cells) were treated with either G3 or 256-A13. The soluble extracellular subunits generated by proteolytic cleavage in the culture medium were detected by an ELISA assay using an antibody

bound to a solid surface that recognizes the Notch3 cleavage product. As shown in FIG. 6, Notch3 agonistic MAb significantly increased the generation of soluble Notch3 extracellular subunits in the conditioned medium, whereas control antibody G3 did not.

Example 12

Assay for Notch3 Related Diseases

To identify other Notch3 related diseases, one can sequence the Notch3 gene from patient samples, or perform

46

immunohistochemistry to check for the under-expression of Notch3 receptor using patient tissue. In addition, one can isolate and culture cells from a patient suspected of having a Notch3 associated disease and study the impact of an agonistic antibody of the present invention on Notch3 signaling.

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 44
<210> SEQ ID NO 1
<211> LENGTH: 2321
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 1
Met Gly Pro Gly Ala Arg Gly Arg Arg Arg Arg Arg Arg Pro Met Ser 1 \phantom{\bigg|} 5 \phantom{\bigg|} 10 \phantom{\bigg|} 15
Pro Pro Pro Pro Pro Pro Pro Val Arg Ala Leu Pro Leu Leu Leu Leu 20 25 30
Leu Ala Gly Pro Gly Ala Ala Ala Pro Pro Cys Leu Asp Gly Ser Pro
Cys Ala Asn Gly Gly Arg Cys Thr Gln Leu Pro Ser Arg Glu Ala Ala 50 \, 55 \, 60 \,
Cys Leu Cys Pro Pro Gly Trp Val Gly Glu Arg Cys Gln Leu Glu Asp 65 70 75 80
Pro Cys His Ser Gly Pro Cys Ala Gly Arg Gly Val Cys Gln Ser Ser
85 90 95
Val Val Ala Gly Thr Ala Arg Phe Ser Cys Arg Cys Pro Arg Gly Phe
Arg Gly Pro Asp Cys Ser Leu Pro Asp Pro Cys Leu Ser Ser Pro Cys
Ala His Gly Ala Arg Cys Ser Val Gly Pro Asp Gly Arg Phe Leu Cys 130 135 140
Ser Cys Pro Pro Gly Tyr Gln Gly Arg Ser Cys Arg Ser Asp Val Asp 145 150 150 155
Glu Cys Arg Val Gly Glu Pro Cys Arg His Gly Gly Thr Cys Leu Asn
Thr Pro Gly Ser Phe Arg Cys Gln Cys Pro Ala Gly Tyr Thr Gly Pro
Leu Cys Glu Asn Pro Ala Val Pro Cys Ala Pro Ser Pro Cys Arg Asn
Gly Gly Thr Cys Arg Gln Ser Gly Asp Leu Thr Tyr Asp Cys Ala Cys
Leu Pro Gly Phe Glu Gly Gln Asn Cys Glu Val Asn Val Asp Asp Cys
Pro Gly His Arg Cys Leu Asn Gly Gly Thr Cys Val Asp Gly Val Asn
Thr Tyr Asn Cys Gln Cys Pro Pro Glu Trp Thr Gly Gln Phe Cys Thr
                                  265
Glu Asp Val Asp Glu Cys Gln Leu Gln Pro Asn Ala Cys His Asn Gly
```

280

Gly	Thr 290	Cys	Phe	Asn	Thr	Leu 295	Gly	Gly	His	Ser	Cys	Val	Cys	Val	Asn
Gly 305	Trp	Thr	Gly	Glu	Ser 310	СЛа	Ser	Gln	Asn	Ile 315	Asp	Asp	СЛа	Ala	Thr 320
Ala	Val	Сув	Phe	His 325	Gly	Ala	Thr	Сла	His 330	Asp	Arg	Val	Ala	Ser 335	Phe
Tyr	Сув	Ala	Cys 340	Pro	Met	Gly	Lys	Thr 345	Gly	Leu	Leu	Cys	His 350	Leu	Asp
Asp	Ala	Сув 355	Val	Ser	Asn	Pro	Сув 360	His	Glu	Asp	Ala	Ile 365	СЛа	Asp	Thr
Asn	Pro 370	Val	Asn	Gly	Arg	Ala 375	Ile	Сла	Thr	СЛа	Pro 380	Pro	Gly	Phe	Thr
Gly 385	Gly	Ala	Сув	Asp	Gln 390	Asp	Val	Asp	Glu	Сув 395	Ser	Ile	Gly	Ala	Asn 400
Pro	Cys	Glu	His	Leu 405	Gly	Arg	Cys	Val	Asn 410	Thr	Gln	Gly	Ser	Phe 415	Leu
CÀa	Gln	Cya	Gly 420	Arg	Gly	Tyr	Thr	Gly 425	Pro	Arg	CAa	Glu	Thr 430	Asp	Val
Asn	Glu	Cys 435	Leu	Ser	Gly	Pro	Cys 440	Arg	Asn	Gln	Ala	Thr 445	Cys	Leu	Asp
Arg	Ile 450	Gly	Gln	Phe	Thr	Cys 455	Ile	Cys	Met	Ala	Gly 460	Phe	Thr	Gly	Thr
Tyr 465	Cys	Glu	Val	Asp	Ile 470	Asp	Glu	Сув	Gln	Ser 475	Ser	Pro	Сув	Val	Asn 480
Gly	Gly	Val	CÀa	Lys 485	Asp	Arg	Val	Asn	Gly 490	Phe	Ser	CÀa	Thr	Cys 495	Pro
Ser	Gly	Phe	Ser 500	Gly	Ser	Thr	Cha	Gln 505	Leu	Asp	Val	Asp	Glu 510	Cha	Ala
Ser	Thr	Pro 515	Cha	Arg	Asn	Gly	Ala 520	Lys	Cha	Val	Asp	Gln 525	Pro	Asp	Gly
Tyr	Glu 530	Cys	Arg	CÀa	Ala	Glu 535	Gly	Phe	Glu	Gly	Thr 540	Leu	Cys	Asp	Arg
Asn 545	Val	Asp	Asp	CÀa	Ser 550	Pro	Asp	Pro	CAa	His 555	His	Gly	Arg	CAa	Val 560
Asp	Gly	Ile	Ala	Ser 565	Phe	Ser	СЛа	Ala	Сув 570	Ala	Pro	Gly	Tyr	Thr 575	Gly
Thr	Arg		Glu 580		Gln	Val		Glu 585		Arg	Ser		Pro 590	Cys	Arg
His	Gly	Gly 595	Lys	Сув	Leu	Asp	Leu 600	Val	Asp	Lys	Tyr	Leu 605	Сув	Arg	CÀa
Pro	Ser 610	Gly	Thr	Thr	Gly	Val 615	Asn	Cys	Glu	Val	Asn 620	Ile	Asp	Asp	Cya
Ala 625	Ser	Asn	Pro	Cys	Thr 630	Phe	Gly	Val	Cys	Arg 635	Asp	Gly	Ile	Asn	Arg 640
Tyr	Asp	Cys	Val	Cys 645	Gln	Pro	Gly	Phe	Thr 650	Gly	Pro	Leu	Cys	Asn 655	Val
Glu	Ile	Asn	Glu 660	CAa	Ala	Ser	Ser	Pro 665	Cya	Gly	Glu	Gly	Gly 670	Ser	Сув
Val	Asp	Gly 675	Glu	Asn	Gly	Phe	Arg 680	Сла	Leu	СЛа	Pro	Pro 685	Gly	Ser	Leu
Pro	Pro 690	Leu	СЛа	Leu	Pro	Pro 695	Ser	His	Pro	Сла	Ala 700	His	Glu	Pro	Cys
Ser	His	Gly	Ile	CAa	Tyr	Asp	Ala	Pro	Gly	Gly	Phe	Arg	Cys	Val	Cys

705					710					715					720
Glu	Pro	Gly	Trp	Ser 725	Gly	Pro	Arg	Cys	Ser 730	Gln	Ser	Leu	Ala	Arg 735	Asp
Ala	Cys	Glu	Ser 740	Gln	Pro	CAa	Arg	Ala 745	Gly	Gly	Thr	Cys	Ser 750	Ser	Asp
Gly	Met	Gly 755	Phe	His	CAa	Thr	Сув 760	Pro	Pro	Gly	Val	Gln 765		Arg	Gln
CÀa	Glu 770	Leu	Leu	Ser	Pro	Сув 775	Thr	Pro	Asn	Pro	Cys 780	Glu	His	Gly	Gly
Arg 785	Сув	Glu	Ser	Ala	Pro 790	Gly	Gln	Leu	Pro	Val 795	Cys	Ser	Cys	Pro	Gln 800
Gly	Trp	Gln	Gly	Pro 805	Arg	Cys	Gln	Gln	Asp 810	Val	Asp	Glu	Cys	Ala 815	Gly
Pro	Ala	Pro	Cys 820	Gly	Pro	His	Gly	Ile 825	Сув	Thr	Asn	Leu	Ala 830	Gly	Ser
Phe	Ser	835 CÀa	Thr	CÀa	His	Gly	Gly 840	Tyr	Thr	Gly	Pro	Ser 845		Asp	Gln
Asp	Ile 850	Asn	Asp	CAa	Asp	Pro 855	Asn	Pro	Cys	Leu	Asn 860	Gly	Gly	Ser	Cya
Gln 865	Asp	Gly	Val	Gly	Ser 870	Phe	Ser	Cys	Ser	Сув 875	Leu	Pro	Gly	Phe	Ala 880
Gly	Pro	Arg	Cys	Ala 885	Arg	Asp	Val	Asp	Glu 890	Cys	Leu	Ser	Asn	Pro 895	Cha
Gly	Pro	Gly	Thr 900	CAa	Thr	Asp	His	Val 905	Ala	Ser	Phe	Thr	Cys 910	Thr	Cha
Pro	Pro	Gly 915	Tyr	Gly	Gly	Phe	His 920	Cys	Glu	Gln	Asp	Leu 925		Asp	Cys
Ser	Pro 930	Ser	Ser	CÀa	Phe	Asn 935	Gly	Gly	Thr	CÀa	Val 940	Asp	Gly	Val	Asn
Ser 945	Phe	Ser	Cys	Leu	950 Cys	Arg	Pro	Gly	Tyr	Thr 955	Gly	Ala	His	Cys	Gln 960
His	Glu	Ala	Asp	Pro 965	CÀa	Leu	Ser	Arg	Pro 970	CÀa	Leu	His	Gly	Gly 975	Val
СЛа	Ser	Ala	Ala 980	His	Pro	Gly	Phe	Arg 985	CAa	Thr	CÀa	Leu	Glu 990	Ser	Phe
Thr	Gly	Pro 995	Gln	CÀa	Gln	Thr	Leu 100		l As _l	p Tr	р Су	s Se 10		rg G	ln Pro
CAa	Gln 101		ı Gly	/ Gl	/ Arg	Су: 10:		al G	ln Tl	hr G	_	la 020	Tyr	Cys :	Leu
CAa	Pro 1025		Gl _y	/ Trp	Ser	Gly 103		rg L	eu Cy	ys A	_	le 035	Arg	Ser :	Leu
Pro	Cys 1040	_	g Glu	ı Alá	a Ala	104		ln I	le G	ly V		rg 050	Leu (Glu (Gln
Leu	Сув 1059		n Ala	a Gly	/ Gly	Gl: 106		ys Va	al A	sp G		sp 065	Ser	Ser 1	His
Tyr	Cys 1070		l Cys	F Pro	Glu	1 Gly		rg Tl	nr G	ly S		is 080	CAa (Glu (Gln
Glu	Val 108		Pro	Cys	s Leu	109		ln P:	ro C	ys G		is 095	Gly (Gly '	Thr
CAa	Arg 1100		/ Туз	Met	Gly	Gl ₃		yr Me	et C	ys G		ys 110	Leu :	Pro (Gly
Tyr	Asn 1115	_	/ Asp	Ası	ı Cys	Gl: 112		ap A	sp Va	al A	_	lu 125	Cys .	Ala	Ser

-continued

Gln	Pro 1130		Gln	His	Gly	Gly 1135	Ser	Cys	Ile	Asp	Leu 1140		Ala	Arg
Tyr	Leu 1145	Cys	Ser	Сув	Pro	Pro 1150	Gly	Thr	Leu	Gly	Val 1155	Leu	Cys	Glu
Ile	Asn 1160	Glu	Asp	Asp	Cys	Gly 1165	Pro	Gly	Pro	Pro	Leu 1170	Asp	Ser	Gly
Pro	Arg 1175	Cys	Leu	His	Asn	Gly 1180	Thr	Cys	Val	Asp	Leu 1185	Val	Gly	Gly
Phe	Arg 1190	Cys	Thr	Cys	Pro	Pro 1195	Gly	Tyr	Thr	Gly	Leu 1200	Arg	Cys	Glu
Ala	Asp 1205	Ile	Asn	Glu	Сув	Arg 1210	Ser	Gly	Ala	Cys	His 1215	Ala	Ala	His
Thr	Arg 1220	Asp	Cys	Leu	Gln	Asp 1225	Pro	Gly	Gly	Gly	Phe 1230	Arg	Cys	Leu
Cys	His 1235	Ala	Gly	Phe	Ser	Gly 1240	Pro	Arg	Cys	Gln	Thr 1245	Val	Leu	Ser
Pro	Cys 1250	Glu	Ser	Gln	Pro	Cys 1255	Gln	His	Gly	Gly	Gln 1260	СЛа	Arg	Pro
Ser	Pro 1265	Gly	Pro	Gly	Gly	Gly 1270	Leu	Thr	Phe	Thr	Cys 1275	His	Cya	Ala
Gln	Pro 1280	Phe	Trp	Gly	Pro	Arg 1285	Cys	Glu	Arg	Val	Ala 1290	Arg	Ser	CAa
Arg	Glu 1295	Leu	Gln	Cys	Pro	Val 1300	Gly	Val	Pro	Cys	Gln 1305	Gln	Thr	Pro
Arg	Gly 1310	Pro	Arg	Cys	Ala	Cys 1315	Pro	Pro	Gly	Leu	Ser 1320	Gly	Pro	Ser
CAa	Arg 1325	Ser	Phe	Pro	Gly	Ser 1330	Pro	Pro	Gly	Ala	Ser 1335	Asn	Ala	Ser
Cya	Ala 1340	Ala	Ala	Pro	Cys	Leu 1345	His	Gly	Gly	Ser	Cys 1350	Arg	Pro	Ala
Pro	Leu 1355	Ala	Pro	Phe	Phe	Arg 1360	Cys	Ala	CÀa	Ala	Gln 1365	Gly	Trp	Thr
Gly	Pro 1370	Arg	Cys	Glu	Ala	Pro 1375	Ala	Ala	Ala	Pro	Glu 1380	Val	Ser	Glu
Glu	Pro 1385	Arg	CÀa	Pro	Arg	Ala 1390	Ala	Cys	Gln	Ala	Lys 1395	Arg	Gly	Asp
Gln	Arg 1400	CÀa	Asp	Arg	Glu	Cys 1405	Asn	Ser	Pro	Gly	Cys 1410	Gly	Trp	Asp
Gly	Gly 1415	Asp	CÀa	Ser	Leu	Ser 1420	Val	Gly	Asp	Pro	Trp 1425	Arg	Gln	Cys
Glu	Ala 1430	Leu	Gln	CÀa	Trp	Arg 1435	Leu	Phe	Asn	Asn	Ser 1440	Arg	CÀa	Asp
Pro	Ala 1445	Cys	Ser	Ser	Pro	Ala 1450	Cys	Leu	Tyr	Asp	Asn 1455	Phe	Asp	CAa
His	Ala 1460	Gly	Gly	Arg	Glu	Arg 1465	Thr	Cys	Asn	Pro	Val 1470	Tyr	Glu	Lys
Tyr	Cys 1475	Ala	Asp	His	Phe	Ala 1480	Asp	Gly	Arg	Cys	Asp 1485	Gln	Gly	СЛв
Asn	Thr 1490	Glu	Glu	CÀa	Gly	Trp 1495	Asp	Gly	Leu	Asp	Сув 1500	Ala	Ser	Glu
Val	Pro 1505	Ala	Leu	Leu	Ala	Arg 1510	Gly	Val	Leu	Val	Leu 1515	Thr	Val	Leu
Leu	Pro 1520	Pro	Glu	Glu	Leu	Leu 1525	Arg	Ser	Ser	Ala	Asp 1530	Phe	Leu	Gln

Arg	Leu 1535	Ser	Ala	Ile	Leu	Arg 1540		Ser	Leu	Arg	Phe 1545	Arg	Leu	Asp
Ala	His 1550	Gly	Gln	Ala	Met	Val 1555	Phe	Pro	Tyr	His	Arg 1560		Ser	Pro
Gly	Ser 1565	Glu	Pro	Arg	Ala	Arg 1570	Arg	Glu	Leu	Ala	Pro 1575	Glu	Val	Ile
Gly	Ser 1580	Val	Val	Met	Leu	Glu 1585	Ile	Asp	Asn	Arg	Leu 1590	Cys	Leu	Gln
Ser	Pro 1595	Glu	Asn	Asp	His	Cys 1600	Phe	Pro	Asp	Ala	Gln 1605	Ser	Ala	Ala
Asp	Tyr 1610	Leu	Gly	Ala	Leu	Ser 1615	Ala	Val	Glu	Arg	Leu 1620	Asp	Phe	Pro
Tyr	Pro 1625	Leu	Arg	Asp	Val	Arg 1630	Gly	Glu	Pro	Leu	Glu 1635	Pro	Pro	Glu
Pro	Ser 1640	Val	Pro	Leu	Leu	Pro 1645	Leu	Leu	Val	Ala	Gly 1650	Ala	Val	Leu
Leu	Leu 1655	Val	Ile	Leu	Val	Leu 1660	Gly	Val	Met	Val	Ala 1665	Arg	Arg	Lys
Arg	Glu 1670	His	Ser	Thr	Leu	Trp 1675	Phe	Pro	Glu	Gly	Phe 1680	Ser	Leu	His
Lys	Asp 1685	Val	Ala	Ser	Gly	His 1690	Lys	Gly	Arg	Arg	Glu 1695	Pro	Val	Gly
Gln	Asp 1700	Ala	Leu	Gly	Met	Lys 1705	Asn	Met	Ala	Lys	Gly 1710	Glu	Ser	Leu
Met	Gly 1715	Glu	Val	Ala	Thr	Asp 1720	Trp	Met	Asp	Thr	Glu 1725	Cys	Pro	Glu
Ala	Lys 1730	Arg	Leu	Lys	Val	Glu 1735	Glu	Pro	Gly	Met	Gly 1740	Ala	Glu	Glu
Ala	Val 1745	Asp	CÀa	Arg	Gln	Trp 1750	Thr	Gln	His	His	Leu 1755	Val	Ala	Ala
Asp	Ile 1760	Arg	Val	Ala	Pro	Ala 1765	Met	Ala	Leu	Thr	Pro 1770	Pro	Gln	Gly
Asp	Ala 1775	Asp	Ala	Asp	Gly	Met 1780	Asp	Val	Asn	Val	Arg 1785	Gly	Pro	Asp
Gly	Phe 1790	Thr	Pro	Leu	Met	Leu 1795	Ala	Ser	Phe	СЛа	Gly 1800	Gly	Ala	Leu
	Pro 1805		Pro	Thr		Glu 1810		Glu			Asp 1815		Ser	Ala
Ser	Ile 1820	Ile	Ser	Asp	Leu	Ile 1825	Cys	Gln	Gly	Ala	Gln 1830	Leu	Gly	Ala
Arg	Thr 1835	Asp	Arg	Thr	Gly	Glu 1840	Thr	Ala	Leu	His	Leu 1845	Ala	Ala	Arg
Tyr	Ala 1850	Arg	Ala	Asp	Ala	Ala 1855	Lys	Arg	Leu	Leu	Asp 1860	Ala	Gly	Ala
Asp	Thr 1865	Asn	Ala	Gln	Asp	His 1870	Ser	Gly	Arg	Thr	Pro 1875	Leu	His	Thr
Ala	Val 1880	Thr	Ala	Asp	Ala	Gln 1885	Gly	Val	Phe	Gln	Ile 1890	Leu	Ile	Arg
Asn	Arg 1895	Ser	Thr	Asp	Leu	Asp 1900	Ala	Arg	Met	Ala	Asp 1905	Gly	Ser	Thr
Ala	Leu 1910	Ile	Leu	Ala	Ala	Arg 1915	Leu	Ala	Val	Glu	Gly 1920	Met	Val	Glu
Glu	Leu	Ile	Ala	Ser	His	Ala	Asp	Val	Asn	Ala	Val	Asp	Glu	Leu

						33					- COI	ntin	nuec	i
_	1925					1930					1935			
Gly	Lys 1940		Ala	Leu	His	Trp 1945		Ala	Ala	Val	Asn 1950	Asn	Val	Glu
Ala	Thr 1955	Leu	Ala	Leu	Leu	Lys 1960		Gly	Ala	Asn	Lys 1965	Asp	Met	Gln
Asp	Ser 1970	Lys	Glu	Glu	Thr	Pro 1975		Phe	Leu	Ala	Ala 1980	Arg	Glu	Gly
Ser	Tyr 1985	Glu	Ala	Ala	Lys	Leu 1990	Leu	Leu	Asp	His	Phe 1995	Ala	Asn	Arg
Glu	Ile 2000	Thr	Asp	His	Leu	Asp 2005		Leu	Pro	Arg	Asp 2010		Ala	Gln
Glu	Arg 2015	Leu	His	Gln	Asp	Ile 2020		Arg	Leu	Leu	Asp 2025	Gln	Pro	Ser
Gly	Pro 2030	Arg	Ser	Pro	Pro	Gly 2035		His	Gly	Leu	Gly 2040	Pro	Leu	Leu
Cya	Pro 2045	Pro	Gly	Ala	Phe	Leu 2050		Gly	Leu	Lys	Ala 2055	Ala	Gln	Ser
Gly	Ser 2060	Lys	Lys	Ser	Arg	Arg 2065	Pro	Pro	Gly	Lys	Ala 2070	Gly	Leu	Gly
Pro	Gln 2075	Gly	Pro	Arg	Gly	Arg 2080		Lys	Lys	Leu	Thr 2085	Leu	Ala	CÀa
Pro	Gly 2090	Pro	Leu	Ala	Asp	Ser 2095		Val	Thr	Leu	Ser 2100	Pro	Val	Asp
Ser	Leu 2105	Asp	Ser	Pro	Arg	Pro 2110	Phe	Gly	Gly	Pro	Pro 2115	Ala	Ser	Pro
Gly	Gly 2120	Phe	Pro	Leu	Glu	Gly 2125	Pro	Tyr	Ala	Ala	Ala 2130		Ala	Thr
Ala	Val 2135	Ser	Leu	Ala	Gln	Leu 2140	Gly	Gly	Pro	Gly	Arg 2145	Ala	Gly	Leu
Gly	Arg 2150	Gln	Pro	Pro	Gly	Gly 2155		Val	Leu	Ser	Leu 2160	Gly	Leu	Leu
Asn	Pro 2165	Val	Ala	Val	Pro	Leu 2170	Asp	Trp	Ala	Arg	Leu 2175	Pro	Pro	Pro
Ala	Pro 2180	Pro	Gly	Pro	Ser	Phe 2185	Leu	Leu	Pro	Leu	Ala 2190	Pro	Gly	Pro
Gln	Leu 2195	Leu	Asn	Pro	Gly	Thr 2200		Val	Ser	Pro	Gln 2205	Glu	Arg	Pro
Pro	Pro 2210	Tyr	Leu	Ala	Val	Pro 2215	Gly	His	Gly	Glu	Glu 2220		Pro	Val
Ala	Gly 2225	Ala	His	Ser	Ser	Pro 2230		Lys	Ala	Arg	Phe 2235	Leu	Arg	Val
Pro	Ser 2240	Glu	His	Pro	Tyr	Leu 2245		Pro	Ser	Pro	Glu 2250	Ser	Pro	Glu
His	Trp 2255	Ala	Ser	Pro	Ser	Pro 2260	Pro	Ser	Leu	Ser	Asp 2265	Trp	Ser	Glu
Ser	Thr 2270	Pro	Ser	Pro	Ala	Thr 2275	Ala	Thr	Gly	Ala	Met 2280	Ala	Thr	Thr
Thr	Gly 2285	Ala	Leu	Pro	Ala	Gln 2290		Leu	Pro	Leu	Ser 2295	Val	Pro	Ser
Ser	Leu 2300	Ala	Gln	Ala	Gln	Thr 2305	Gln	Leu	Gly	Pro	Gln 2310	Pro	Glu	Val
Thr	Pro 2315	Lys	Arg	Gln	Val	Leu 2320	Ala							

```
<210> SEQ ID NO 2
<211> LENGTH: 121
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
    polypeptide
<400> SEQUENCE: 2
Ser Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Ala Lys Pro Gly
Thr Ser Val Lys Met Ala Cys Lys Ala Ser Gly Tyr Thr Phe Thr Thr
His Trp Met Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp
                        40
Ile Gly Thr Ile Asn Pro Ser Asn Asp Phe Thr Asp Cys Asn Gln Lys
                      55
Phe Lys Asp Lys Ala Ile Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala
Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Ile Tyr Tyr
                                 90
Cys Ala Ser Gly Leu Thr Ala Arg Ala Trp Phe Ala Tyr Trp Gly Gln
         100
                            105
Gly Thr Leu Val Thr Val Ser Ala Ala
    115
                          120
<210> SEQ ID NO 3
<211> LENGTH: 102
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
    polypeptide
<400> SEQUENCE: 3
Arg Ala Thr Ile Ser Cys Arg Ala Ser Gln Ser Val Thr Thr Ser Asn
Tyr Ser Tyr Met His Trp Phe Gln Gln Lys Pro Gly Gln Pro Pro Lys
Leu Leu Ile Lys Tyr Ala Ser Asn Leu Asp Ser Gly Val Pro Ala Arg
Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His Pro
Val Glu Glu Glu Asp Thr Ala Thr Phe Tyr Cys Gln His Ser Trp Glu
Ile Pro Tyr Thr Phe Gly Gly Gly Thr Asn Leu Glu Ile Lys Arg Ala
                                  90
Asp Ala Ala Pro Thr Val
           100
<210> SEQ ID NO 4
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
    peptide
<400> SEQUENCE: 4
Gly Tyr Thr Phe Thr Thr His Trp Met Asn Trp
     5
```

```
<210> SEQ ID NO 5
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     peptide
<400> SEQUENCE: 5
Ile Asn Pro Ser Asn Asp Phe Thr Asp Cys Asn
<210> SEQ ID NO 6
<211> LENGTH: 8
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     peptide
<400> SEQUENCE: 6
Thr Ala Arg Ala Trp Phe Ala Tyr
1
<210> SEQ ID NO 7
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
<400> SEQUENCE: 7
Arg Ala Ser Gln Ser Val Thr Thr Ser Asn Tyr Ser Tyr Met His
               5
                                    10
<210> SEQ ID NO 8
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     peptide
<400> SEQUENCE: 8
Tyr Ala Ser Asn Leu Asp Ser Gly
<210> SEQ ID NO 9
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     peptide
<400> SEQUENCE: 9
Gln His Ser Trp Glu Ile Pro Tyr Thr
               5
<210> SEQ ID NO 10
<211> LENGTH: 39
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 10
Glu Pro Arg Cys Pro Arg Ala Ala Cys Gln Ala Lys Arg Gly Asp Gln
```

```
10
Arg Cys Asp Arg Glu Cys Asn Ser Pro Gly Cys Gly Trp Asp Gly Gly
Asp Cys Ser Leu Ser Val Gly
<210> SEQ ID NO 11
<211> LENGTH: 29
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 11
Ala Lys Arg Gly Asp Gln Arg Cys Asp Arg Glu Cys Asn Ser Pro Gly
                                   10
Cys Gly Trp Asp Gly Gly Asp Cys Ser Leu Ser Val Gly
<210> SEO ID NO 12
<211> LENGTH: 55
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     primer
<400> SEQUENCE: 12
gctcgagctc gtgggaaaat accgtgggaa aatgaaccgt gggaaaatct cgtgg
                                                                      55
<210> SEQ ID NO 13
<211> LENGTH: 35
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     primer
<400> SEQUENCE: 13
gctcgagatt ttcccacgag attttcccac ggttc
                                                                       35
<210> SEQ ID NO 14
<211> LENGTH: 39
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     polypeptide
<400> SEQUENCE: 14
Glu Glu Ala Cys Glu Leu Pro Glu Cys Gln Ala Lys Arg Gly Asp Gln
                                   10
Arg Cys Asp Arg Glu Cys Asn Ser Pro Gly Cys Gly Trp Asp Gly Gly
           20
Asp Cys Ser Leu Ser Val Gly
       35
<210> SEQ ID NO 15
<211> LENGTH: 39
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     polypeptide
<400> SEQUENCE: 15
Glu Pro Arg Cys Pro Arg Ala Ala Cys Gln Glu Asp Ala Gly Asn Lys
```

```
Val Cys Ser Arg Glu Cys Asn Ser Pro Gly Cys Gly Trp Asp Gly Gly
Asp Cys Ser Leu Ser Val Gly
<210> SEQ ID NO 16
<211> LENGTH: 39
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     polypeptide
<400> SEQUENCE: 16
Glu Pro Arg Cys Pro Arg Ala Ala Cys Gln Ala Lys Arg Gly Asp Gln
Arg Cys Asp Leu Gln Cys Asn Asn His Ala Cys Gly Trp Asp Gly Gly
           20
                                25
Asp Cys Ser Leu Asn Phe Asn
       35
<210> SEQ ID NO 17
<211> LENGTH: 39
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     polypeptide
<400> SEQUENCE: 17
Glu Pro Arg Cys Pro Arg Ala Ala Cys Gln Glu Asp Ala Gly Asp Gln
Arg Cys Asp Arg Glu Cys Asn Ser Pro Gly Cys Gly Trp Asp Gly Gly
           20
                                25
Asp Cys Ser Leu Ser Val Gly
<210> SEQ ID NO 18
<211> LENGTH: 39
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     polypeptide
<400> SEQUENCE: 18
Glu Pro Arg Cys Pro Arg Ala Ala Cys Gln Ala Lys Arg Gly Asn Lys
                                   10
Val Cys Asp Arg Glu Cys Asn Ser Pro Gly Cys Gly Trp Asp Gly Gly
           20
Asp Cys Ser Leu Ser Val Gly
      35
<210> SEQ ID NO 19
<211> LENGTH: 39
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     polypeptide
<400> SEQUENCE: 19
Glu Pro Arg Cys Pro Arg Ala Ala Cys Gln Ala Lys Arg Gly Asp Gln
```

```
Arg Cys Ser Leu Gln Cys Asn Ser Pro Gly Cys Gly Trp Asp Gly Gly
Asp Cys Ser Leu Ser Val Gly
<210> SEQ ID NO 20
<211> LENGTH: 39
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     polypeptide
<400> SEQUENCE: 20
Glu Pro Arg Cys Pro Arg Ala Ala Cys Gln Ala Lys Arg Gly Asp Gln
Arg Cys Asp Arg Glu Cys Asn Asn His Ala Cys Gly Trp Asp Gly Gly
Asp Cys Ser Leu Ser Val Gly
       35
<210> SEQ ID NO 21
<211> LENGTH: 39
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     polypeptide
<400> SEQUENCE: 21
Glu Pro Arg Cys Pro Arg Ala Ala Cys Gln Ala Lys Arg Gly Asp Gln
Arg Cys Asp Arg Glu Cys Asn Ser Pro Gly Cys Gly Trp Asp Gly Gly
                                25
Asp Cys Ser Leu Asn Phe Asn
<210> SEQ ID NO 22
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     peptide
<400> SEQUENCE: 22
Ala Ala Cys Gln Ala Ala Ala Gly Asp Gln Arg Cys
<210> SEQ ID NO 23
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
    peptide
<400> SEOUENCE: 23
Ala Cys Gln Ala Lys Ala Ala Asp Gln Arg Cys Asp
               5
<210> SEQ ID NO 24
<211> LENGTH: 12
<212> TYPE: PRT
```

```
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     peptide
<400> SEQUENCE: 24
Cys Gln Ala Lys Arg Ala Ala Gln Arg Cys Asp Arg
<210> SEQ ID NO 25
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     peptide
<400> SEQUENCE: 25
Gln Ala Lys Arg Gly Ala Ala Arg Cys Asp Arg Glu
              5
<210> SEQ ID NO 26
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      peptide
<400> SEQUENCE: 26
Ala Lys Arg Gly Asp Ala Ala Cys Asp Arg Glu Cys
<210> SEQ ID NO 27
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     peptide
<400> SEQUENCE: 27
Lys Arg Gly Asp Gln Ala Ala Asp Arg Glu Cys Asn
<210> SEQ ID NO 28
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     peptide
<400> SEQUENCE: 28
Arg Gly Asp Gln Arg Ala Ala Arg Glu Cys Asn Ser
              5
<210> SEQ ID NO 29
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     peptide
<400> SEQUENCE: 29
Gly Asp Gln Arg Cys Ala Ala Glu Cys Asn Ser Pro
```

```
<210> SEQ ID NO 30
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     peptide
<400> SEQUENCE: 30
Asp Gln Arg Cys Asp Ala Ala Cys Asn Ser Pro Gly
<210> SEQ ID NO 31
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     peptide
<400> SEQUENCE: 31
Gln Arg Cys Asp Arg Ala Ala Asn Ser Pro Gly Cys
<210> SEQ ID NO 32
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     peptide
<400> SEQUENCE: 32
Arg Cys Asp Arg Glu Ala Ala Ser Pro Gly Cys Gly
<210> SEQ ID NO 33
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     peptide
<400> SEQUENCE: 33
Cys Asp Arg Glu Cys Ala Ala Pro Gly Cys Gly Trp
<210> SEQ ID NO 34
<211> LENGTH: 12
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     peptide
<400> SEQUENCE: 34
Asp Arg Glu Cys Asn Ala Ala Gly Cys Gly Trp Asp
<210> SEQ ID NO 35
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     peptide
<400> SEQUENCE: 35
```

```
Arg Glu Cys Asn Ser Ala Ala Cys Gly Trp Asp Gly
<210> SEQ ID NO 36
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     peptide
<400> SEQUENCE: 36
Glu Cys Asn Ser Pro Ala Ala Gly Trp Asp Gly Gly
              5
<210> SEQ ID NO 37
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
    peptide
<400> SEQUENCE: 37
Cys Asn Ser Pro Gly Ala Ala Trp Asp Gly Gly Asp
1 5
<210> SEQ ID NO 38
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     6xHis tag
<400> SEQUENCE: 38
His His His His His
<210> SEQ ID NO 39
<211> LENGTH: 2556
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 39
Met Pro Pro Leu Leu Ala Pro Leu Leu Cys Leu Ala Leu Leu Pro Ala
                     10
Leu Ala Ala Arg Gly Pro Arg Cys Ser Gln Pro Gly Glu Thr Cys Leu
                             25
Asn Gly Gly Lys Cys Glu Ala Ala Asn Gly Thr Glu Ala Cys Val Cys
                          40
Gly Gly Ala Phe Val Gly Pro Arg Cys Gln Asp Pro Asn Pro Cys Leu
                       55
Ser Thr Pro Cys Lys Asn Ala Gly Thr Cys His Val Val Asp Arg Arg
Gly Val Ala Asp Tyr Ala Cys Ser Cys Ala Leu Gly Phe Ser Gly Pro
                                  90
Leu Cys Leu Thr Pro Leu Asp Asn Ala Cys Leu Thr Asn Pro Cys Arg
                              105
Asn Gly Gly Thr Cys Asp Leu Leu Thr Leu Thr Glu Tyr Lys Cys Arg
                          120
Cys Pro Pro Gly Trp Ser Gly Lys Ser Cys Gln Gln Ala Asp Pro Cys
              135
                                    140
```

Ala :	Ser	Asn	Pro	Cys	Ala 150	Asn	Gly	Gly	Gln	Сув 155	Leu	Pro	Phe	Glu	Ala 160
Ser '	Tyr	Ile	Cya	His 165	СЛа	Pro	Pro	Ser	Phe 170	His	Gly	Pro	Thr	Сув 175	Arg
Gln i	Asp	Val	Asn 180	Glu	СЛа	Gly	Gln	Lys 185	Pro	Gly	Leu	Сла	Arg 190	His	Gly
Gly '	Thr	Суз 195	His	Asn	Glu	Val	Gly 200	Ser	Tyr	Arg	САа	Val 205	Сув	Arg	Ala
Thr 1	His 210	Thr	Gly	Pro	Asn	Сув 215	Glu	Arg	Pro	Tyr	Val 220	Pro	СЛа	Ser	Pro
Ser 1 225	Pro	Cys	Gln	Asn	Gly 230	Gly	Thr	Сув	Arg	Pro 235	Thr	Gly	Asp	Val	Thr 240
His (Glu	CÀa	Ala	Cys 245	Leu	Pro	Gly	Phe	Thr 250	Gly	Gln	Asn	CÀa	Glu 255	Glu
Asn :			260					265	_				270		_
Val 1	_	275				_	280	_				285		_	
	290					295		_		_	300				
Ala (-	310					315		-	-	-	320
CÀa ,				325					330					335	
Asp 1	_	-	340				-	345		_			350		_
Arg '		355			-	-	360	-			_	365		_	
	370				_	375	-				380	-			_
Ser 1 385					390					395					400
Pro:		_	-	405	_			-	410		_		_	415	-
Ser 1			420					425					430		
Leu (_	435			-		440			_	-	445	-		
	450		_			455	-				460	-			_
Ala ' 465				-	470		Ī			475	-		-		480
Gly '				485		_			490		_			495	
Ser 1			500					505		_			510		
Gln		515				_	520					525		-	_
	530		-			535		-	-		540		-	-	
Asp (Gly	Pro	Asn	Thr	Tyr 550	Thr	Cha	Val	Cya	Thr 555	Glu	Gly	Tyr	Thr	Gly 560
Thr 1	His	CÀa	Glu	Val	Asp	Ile	Asp	Glu	Cys	Asp	Pro	Asp	Pro	Cys	His

												COII	CIII	ueu	
				565					570					575	
Tyr	Gly	Ser	Cys 580	Lys	Asp	Gly	Val	Ala 585	Thr	Phe	Thr	Cys	Leu 590	CAa	Arg
Pro	Gly	Tyr 595	Thr	Gly	His	His	Cys	Glu	Thr	Asn	Ile	Asn 605	Glu	Cys	Ser
Ser	Gln 610	Pro	Cys	Arg	His	Gly 615	Gly	Thr	Cha	Gln	Asp 620	Arg	Asp	Asn	Ala
Tyr 625	Leu	Сув	Phe	Cys	Leu 630	Lys	Gly	Thr	Thr	Gly 635	Pro	Asn	Cys	Glu	Ile 640
Asn	Leu	Asp	Asp	Cys 645	Ala	Ser	Ser	Pro	Cys 650	Asp	Ser	Gly	Thr	Сув 655	Leu
Asp	Lys	Ile	Asp 660	Gly	Tyr	Glu	CAa	Ala 665	Cys	Glu	Pro	Gly	Tyr 670	Thr	Gly
Ser	Met	Cys 675	Asn	Ile	Asn	Ile	Asp	Glu	Cys	Ala	Gly	Asn 685	Pro	Cys	His
Asn	Gly 690	Gly	Thr	CÀa	Glu	Asp 695	Gly	Ile	Asn	Gly	Phe 700	Thr	CAa	Arg	Сув
Pro 705	Glu	Gly	Tyr	His	Asp 710	Pro	Thr	CAa	Leu	Ser 715	Glu	Val	Asn	Glu	Сув 720
Asn	Ser	Asn	Pro	Сув 725	Val	His	Gly	Ala	Cys 730	Arg	Asp	Ser	Leu	Asn 735	Gly
Tyr	Lys	Cys	Asp 740	CÀa	Asp	Pro	Gly	Trp 745	Ser	Gly	Thr	Asn	Сув 750	Asp	Ile
Asn	Asn	Asn 755	Glu	CÀa	Glu	Ser	Asn 760	Pro	CÀa	Val	Asn	Gly 765	Gly	Thr	Сув
Lys	Asp 770	Met	Thr	Ser	Gly	Tyr 775	Val	СЛа	Thr	CÀa	Arg 780	Glu	Gly	Phe	Ser
Gly 785	Pro	Asn	CAa	Gln	Thr 790	Asn	Ile	Asn	Glu	Сув 795	Ala	Ser	Asn	Pro	800 Cys
Leu	Asn	Gln	Gly	Thr 805	CAa	Ile	Asp	Asp	Val 810	Ala	Gly	Tyr	Lys	Суs 815	Asn
Cys	Leu	Leu	Pro 820	Tyr	Thr	Gly	Ala	Thr 825	Сув	Glu	Val	Val	Leu 830	Ala	Pro
Cys	Ala	Pro 835	Ser	Pro	CÀa	Arg	Asn 840	Gly	Gly	Glu	CÀa	Arg 845	Gln	Ser	Glu
Asp	Tyr 850	Glu	Ser	Phe	Ser	Сув 855	Val	CAa	Pro	Thr	Gly 860	Trp	Gln	Ala	Gly
Gln 865	Thr	CÀa	Glu	Val	Asp 870	Ile	Asn	Glu	CÀa	Val 875	Leu	Ser	Pro	CAa	Arg 880
His	Gly	Ala	Ser	Cys 885	Gln	Asn	Thr	His	Gly 890	Gly	Tyr	Arg	Cys	His 895	Cys
Gln	Ala	Gly	Tyr 900	Ser	Gly	Arg	Asn	Сув 905	Glu	Thr	Asp	Ile	Asp 910	Asp	Сув
Arg	Pro	Asn 915	Pro	CAa	His	Asn	Gly 920	Gly	Ser	CÀa	Thr	Asp 925	Gly	Ile	Asn
Thr	Ala 930	Phe	Cys	Asp	CAa	Leu 935	Pro	Gly	Phe	Arg	Gly 940	Thr	Phe	Cys	Glu
Glu 945	Asp	Ile	Asn	Glu	Сув 950	Ala	Ser	Asp	Pro	Сув 955	Arg	Asn	Gly	Ala	Asn 960
Cys	Thr	Asp	Cys	Val 965	Asp	Ser	Tyr	Thr	Сув 970	Thr	CAa	Pro	Ala	Gly 975	Phe
Ser	Gly	Ile	His 980	CAa	Glu	Asn	Asn	Thr 985	Pro	Asp	CAa	Thr	Glu 990	Ser	Ser

CAa	Phe	Asn (995	Gly	Gly	Thr		al 1 000	Asp	Gly	Ile		er 005	Phe '	Thr Cys
Leu	Cys 1010		Pro	Gly	Phe	Thr 1015	-	Ser	Tyr	СЛа	Gln 1020		Asp	Val
Asn	Glu 1025		Asp	Ser	Gln	Pro 1030		Leu	His	Gly	Gly 1035		Cya	Gln
Asp	Gly 1040		Gly	Ser	Tyr	Arg 1045		Thr	Cys	Pro	Gln 1050		Tyr	Thr
Gly	Pro 1055		Cys	Gln	Asn	Leu 1060		His	Trp	Cya	Asp 1065		Ser	Pro
CÀa	Lys 1070		Gly	Gly	Lys	Cys 1075		Gln	Thr	His	Thr 1080		Tyr	Arg
CÀa	Glu 1085	_	Pro	Ser	Gly	Trp 1090		Gly	Leu	Tyr	Сув 1095	Asp	Val	Pro
Ser	Val 1100		Cys	Glu	Val	Ala 1105	Ala	Gln	Arg	Gln	Gly 1110	Val	Asp	Val
Ala	Arg 1115		САв	Gln	His	Gly 1120	Gly	Leu	CÀa	Val	Asp 1125	Ala	Gly	Asn
Thr	His 1130		Cys	Arg	Cys	Gln 1135		Gly	Tyr	Thr	Gly 1140	Ser	Tyr	Сув
Glu	Asp 1145		Val	Asp	Glu	Cys 1150		Pro	Ser	Pro	Cys 1155	Gln	Asn	Gly
Ala	Thr 1160		Thr	Asp	Tyr	Leu 1165		Gly	Tyr	Ser	Cys 1170		Cys	Val
Ala	Gly 1175		His	Gly	Val	Asn 1180		Ser	Glu	Glu	Ile 1185	Asp	Glu	СЛа
Leu	Ser 1190		Pro	Cys	Gln	Asn 1195		Gly	Thr	Cys	Leu 1200	Asp	Leu	Pro
Asn	Thr 1205	_	Lys	Cys	Ser	Cys 1210		Arg	Gly	Thr	Gln 1215	Gly	Val	His
CAa	Glu 1220		Asn	Val	Asp	Asp 1225		Asn	Pro	Pro	Val 1230	Asp	Pro	Val
Ser	Arg 1235		Pro	Lys	Cys	Phe 1240		Asn	Gly	Thr	Cys 1245	Val	Asp	Gln
Val	Gly 1250		Tyr	Ser	Cys	Thr 1255		Pro	Pro	Gly	Phe 1260	Val	Gly	Glu
Arg	Cys 1265		Gly	Asp	Val	Asn 1270	Glu	Cys	Leu	Ser	Asn 1275	Pro	Cys	Asp
Ala	Arg 1280	_	Thr	Gln	Asn	Cys 1285		Gln	Arg	Val	Asn 1290	Asp	Phe	His
Cys	Glu 1295	-	Arg	Ala	Gly	His 1300	Thr	Gly	Arg	Arg	Cys 1305	Glu	Ser	Val
Ile	Asn 1310		Cys	Lys	Gly	Lys 1315	Pro	Cys	Lys	Asn	Gly 1320	Gly	Thr	Cys
Ala	Val 1325		Ser	Asn	Thr	Ala 1330	Arg	Gly	Phe	Ile	Cys 1335	Lys	Cys	Pro
Ala	Gly 1340		Glu	Gly	Ala	Thr 1345	_	Glu	Asn	Asp	Ala 1350	Arg	Thr	САв
Gly	Ser 1355		Arg	Cys	Leu	Asn 1360	Gly	Gly	Thr	Cys	Ile 1365	Ser	Gly	Pro
Arg	Ser 1370		Thr	Cys	Leu	Сув 1375	Leu	Gly	Pro	Phe	Thr 1380	Gly	Pro	Glu
Cys	Gln 1385		Pro	Ala	Ser	Ser 1390	Pro	Cys	Leu	Gly	Gly 1395	Asn	Pro	Сув

-continued

Tyr	Asn 1400	Gln	Gly	Thr	Cys	Glu 1405	Pro	Thr	Ser	Glu	Ser 1410	Pro	Phe	Tyr
Arg	Cys 1415	Leu	СЛа	Pro	Ala	Lys 1420	Phe	Asn	Gly	Leu	Leu 1425	CAa	His	Ile
Leu	Asp 1430	Tyr	Ser	Phe	Gly	Gly 1435	Gly	Ala	Gly	Arg	Asp 1440	Ile	Pro	Pro
Pro	Leu 1445	Ile	Glu	Glu	Ala	Cys 1450	Glu	Leu	Pro	Glu	Cys 1455	Gln	Glu	Asp
Ala	Gly 1460	Asn	Lys	Val	Сув	Ser 1465	Leu	Gln	Сув	Asn	Asn 1470	His	Ala	Cys
Gly	Trp 1475	Asp	Gly	Gly	Asp	Cys 1480	Ser	Leu	Asn	Phe	Asn 1485	Asp	Pro	Trp
Lys	Asn 1490	CÀa	Thr	Gln	Ser	Leu 1495	Gln	Cys	Trp	Lys	Tyr 1500	Phe	Ser	Asp
Gly	His 1505	CÀa	Asp	Ser	Gln	Cys 1510	Asn	Ser	Ala	Gly	Cys 1515	Leu	Phe	Asp
Gly	Phe 1520	Asp	Cys	Gln	Arg	Ala 1525	Glu	Gly	Gln	Cys	Asn 1530	Pro	Leu	Tyr
Asp	Gln 1535	Tyr	Cys	Lys	Asp	His 1540	Phe	Ser	Asp	Gly	His 1545	CÀa	Asp	Gln
Gly	Cys 1550	Asn	Ser	Ala	Glu	Сув 1555	Glu	Trp	Asp	Gly	Leu 1560	Asp	CÀa	Ala
Glu	His 1565	Val	Pro	Glu	Arg	Leu 1570	Ala	Ala	Gly	Thr	Leu 1575	Val	Val	Val
Val	Leu 1580	Met	Pro	Pro	Glu	Gln 1585	Leu	Arg	Asn	Ser	Ser 1590	Phe	His	Phe
Leu	Arg 1595	Glu	Leu	Ser	Arg	Val 1600	Leu	His	Thr	Asn	Val 1605	Val	Phe	ГÀа
Arg	Asp 1610	Ala	His	Gly	Gln	Gln 1615	Met	Ile	Phe	Pro	Tyr 1620	Tyr	Gly	Arg
Glu	Glu 1625	Glu	Leu	Arg	Lys	His 1630	Pro	Ile	Lys	Arg	Ala 1635	Ala	Glu	Gly
Trp	Ala 1640	Ala	Pro	Asp	Ala	Leu 1645	Leu	Gly	Gln	Val	Lys 1650	Ala	Ser	Leu
Leu	Pro 1655	Gly	Gly	Ser	Glu	Gly 1660	Gly	Arg	Arg	Arg	Arg 1665	Glu	Leu	Asp
Pro	Met 1670	Asp	Val	Arg	Gly	Ser 1675	Ile	Val	Tyr	Leu	Glu 1680	Ile	Asp	Asn
Arg	Gln 1685	CÀa	Val	Gln	Ala	Ser 1690	Ser	Gln	СЛа	Phe	Gln 1695	Ser	Ala	Thr
Asp	Val 1700	Ala	Ala	Phe	Leu	Gly 1705	Ala	Leu	Ala	Ser	Leu 1710	Gly	Ser	Leu
Asn	Ile 1715	Pro	Tyr	Lys	Ile	Glu 1720	Ala	Val	Gln	Ser	Glu 1725	Thr	Val	Glu
Pro	Pro 1730	Pro	Pro	Ala	Gln	Leu 1735	His	Phe	Met	Tyr	Val 1740	Ala	Ala	Ala
Ala	Phe 1745	Val	Leu	Leu	Phe	Phe 1750	Val	Gly	Cys	Gly	Val 1755	Leu	Leu	Ser
Arg	Lys 1760	Arg	Arg	Arg	Gln	His 1765	Gly	Gln	Leu	Trp	Phe 1770	Pro	Glu	Gly
Phe	Lys 1775	Val	Ser	Glu	Ala	Ser 1780	Lys	Lys	Lys	Arg	Arg 1785	Glu	Pro	Leu
Gly	Glu	Asp	Ser	Val	Gly	Leu	Lys	Pro	Leu	Lys	Asn	Ala	Ser	Asp

						81								
											- CO1	ntir	iuec	i.
	1790					1795					1800			
Gly	Ala 1805	Leu	Met	Asp	Asp	Asn 1810	Gln	Asn	Glu	Trp	Gly 1815	Asp	Glu	Asp
Leu	Glu 1820	Thr	Lys	Lys	Phe	Arg 1825	Phe	Glu	Glu	Pro	Val 1830	Val	Leu	Pro
Asp	Leu 1835	Asp	Asp	Gln	Thr	Asp 1840	His	Arg	Gln	Trp	Thr 1845	Gln	Gln	His
Leu	Asp 1850	Ala	Ala	Asp	Leu	Arg 1855	Met	Ser	Ala	Met	Ala 1860	Pro	Thr	Pro
Pro	Gln 1865	Gly	Glu	Val	Asp	Ala 1870	Asp	Cys	Met	Asp	Val 1875	Asn	Val	Arg
Gly	Pro 1880	Asp	Gly	Phe	Thr	Pro 1885	Leu	Met	Ile	Ala	Ser 1890	CAa	Ser	Gly
Gly	Gly 1895	Leu	Glu	Thr	Gly	Asn 1900	Ser	Glu	Glu	Glu	Glu 1905	Asp	Ala	Pro
Ala	Val 1910	Ile	Ser	Asp	Phe	Ile 1915		Gln	Gly	Ala	Ser 1920	Leu	His	Asn
Gln	Thr 1925	Asp	Arg	Thr	Gly	Glu 1930		Ala	Leu	His	Leu 1935	Ala	Ala	Arg
Tyr	Ser 1940	Arg	Ser	Asp	Ala	Ala 1945	ГÀв	Arg	Leu	Leu	Glu 1950	Ala	Ser	Ala
Asp	Ala 1955	Asn	Ile	Gln	Asp	Asn 1960	Met	Gly	Arg	Thr	Pro 1965	Leu	His	Ala
Ala	Val 1970	Ser	Ala	Asp	Ala	Gln 1975	Gly	Val	Phe	Gln	Ile 1980	Leu	Ile	Arg
Asn	Arg 1985	Ala	Thr	Asp	Leu	Asp 1990	Ala	Arg	Met	His	Asp 1995	Gly	Thr	Thr
Pro	Leu 2000	Ile	Leu	Ala	Ala	Arg 2005	Leu	Ala	Val	Glu	Gly 2010	Met	Leu	Glu
Asp	Leu 2015	Ile	Asn	Ser	His	Ala 2020	Asp	Val	Asn	Ala	Val 2025	Asp	Asp	Leu
Gly	Lys 2030	Ser	Ala	Leu	His	Trp 2035	Ala	Ala	Ala	Val	Asn 2040	Asn	Val	Asp
Ala	Ala 2045	Val	Val	Leu	Leu	Lys 2050		Gly	Ala	Asn	Lув 2055	Asp	Met	Gln
Asn	Asn 2060	Arg	Glu	Glu	Thr	Pro 2065	Leu	Phe	Leu	Ala	Ala 2070	Arg	Glu	Gly
Ser	Tyr 2075	Glu	Thr	Ala	Lys	Val 2080	Leu	Leu	Asp	His	Phe 2085	Ala	Asn	Arg
Asp	Ile 2090	Thr	Asp	His	Met	Asp 2095	Arg	Leu	Pro	Arg	Asp 2100	Ile	Ala	Gln
Glu	Arg 2105	Met	His	His	Asp	Ile 2110	Val	Arg	Leu	Leu	Asp 2115	Glu	Tyr	Asn
Leu	Val 2120	Arg	Ser	Pro	Gln	Leu 2125	His	Gly	Ala	Pro	Leu 2130	Gly	Gly	Thr
Pro	Thr 2135	Leu	Ser	Pro	Pro	Leu 2140	Cys	Ser	Pro	Asn	Gly 2145	Tyr	Leu	Gly
Ser	Leu 2150	ГÀа	Pro	Gly	Val	Gln 2155	Gly	ГЛа	Lys	Val	Arg 2160	Lys	Pro	Ser
Ser	Lys 2165	Gly	Leu	Ala	Сув	Gly 2170	Ser	Lys	Glu	Ala	Lys 2175	Asp	Leu	Lys
Ala	Arg 2180	Arg	Lys	Lys	Ser	Gln 2185	Asp	Gly	Lys	Gly	Сув 2190	Leu	Leu	Asp

Ser	Ser 2195	Gly	Met	Leu	Ser	Pro 2200		Asp	Ser	Leu	Glu 2205	Ser	Pro	His
Gly	Tyr 2210	Leu	Ser	Asp	Val	Ala 2215	Ser	Pro	Pro	Leu	Leu 2220	Pro	Ser	Pro
Phe	Gln 2225	Gln	Ser	Pro	Ser	Val 2230		Leu	Asn	His	Leu 2235	Pro	Gly	Met
Pro	Asp 2240	Thr	His	Leu	Gly	Ile 2245	Gly	His	Leu	Asn	Val 2250	Ala	Ala	Lys
Pro	Glu 2255	Met	Ala	Ala	Leu	Gly 2260		Gly	Gly	Arg	Leu 2265	Ala	Phe	Glu
Thr	Gly 2270	Pro	Pro	Arg	Leu	Ser 2275	His	Leu	Pro	Val	Ala 2280	Ser	Gly	Thr
Ser	Thr 2285	Val	Leu	Gly	Ser	Ser 2290	Ser	Gly	Gly	Ala	Leu 2295	Asn	Phe	Thr
Val	Gly 2300	Gly	Ser	Thr	Ser	Leu 2305	Asn	Gly	Gln	CÀa	Glu 2310	Trp	Leu	Ser
Arg	Leu 2315	Gln	Ser	Gly	Met	Val 2320		Asn	Gln	Tyr	Asn 2325	Pro	Leu	Arg
Gly	Ser 2330	Val	Ala	Pro	Gly	Pro 2335	Leu	Ser	Thr	Gln	Ala 2340	Pro	Ser	Leu
Gln	His 2345	Gly	Met	Val	Gly	Pro 2350	Leu	His	Ser	Ser	Leu 2355	Ala	Ala	Ser
Ala	Leu 2360	Ser	Gln	Met	Met	Ser 2365		Gln	Gly	Leu	Pro 2370	Ser	Thr	Arg
Leu	Ala 2375	Thr	Gln	Pro	His	Leu 2380		Gln	Thr	Gln	Gln 2385	Val	Gln	Pro
Gln	Asn 2390	Leu	Gln	Met	Gln	Gln 2395	Gln	Asn	Leu	Gln	Pro 2400	Ala	Asn	Ile
Gln	Gln 2405	Gln	Gln	Ser	Leu	Gln 2410	Pro	Pro	Pro	Pro	Pro 2415	Pro	Gln	Pro
His	Leu 2420	Gly	Val	Ser	Ser	Ala 2425	Ala	Ser	Gly	His	Leu 2430	Gly	Arg	Ser
Phe	Leu 2435	Ser	Gly	Glu	Pro	Ser 2440	Gln	Ala	Asp	Val	Gln 2445	Pro	Leu	Gly
Pro	Ser 2450	Ser	Leu	Ala	Val	His 2455	Thr	Ile	Leu	Pro	Gln 2460	Glu	Ser	Pro
Ala	Leu 2465		Thr			Pro 2470					Pro 2475		Val	Thr
Ala	Ala 2480	Gln	Phe	Leu	Thr	Pro 2485	Pro	Ser	Gln	His	Ser 2490	Tyr	Ser	Ser
Pro	Val 2495	Asp	Asn	Thr	Pro	Ser 2500	His	Gln	Leu	Gln	Val 2505	Pro	Glu	His
Pro	Phe 2510	Leu	Thr	Pro	Ser	Pro 2515	Glu	Ser	Pro	Asp	Gln 2520	Trp	Ser	Ser
Ser	Ser 2525	Pro	His	Ser	Asn	Val 2530	Ser	Asp	Trp	Ser	Glu 2535	Gly	Val	Ser
Ser	Pro 2540	Pro	Thr	Ser	Met	Gln 2545	Ser	Gln	Ile	Ala	Arg 2550	Ile	Pro	Glu
Ala	Phe 2555	ГÀв												

<210> SEQ ID NO 40 <211> LENGTH: 2471 <212> TYPE: PRT <213> ORGANISM: Homo sapiens

<400)> SI	EQUEI	1CE :	40											
Met 1	Pro	Ala	Leu	Arg 5	Pro	Ala	Leu	Leu	Trp	Ala	Leu	Leu	Ala	Leu 15	Trp
Leu	Cys	Cys	Ala 20	Ala	Pro	Ala	His	Ala 25	Leu	Gln	Cys	Arg	Asp 30	Gly	Tyr
Glu	Pro	Суs 35	Val	Asn	Glu	Gly	Met 40	Cys	Val	Thr	Tyr	His 45	Asn	Gly	Thr
Gly	Tyr 50	Сув	Lys	Сув	Pro	Glu 55	Gly	Phe	Leu	Gly	Glu 60	Tyr	Сув	Gln	His
Arg 65	Asp	Pro	Cha	Glu	Lys 70	Asn	Arg	Cys	Gln	Asn 75	Gly	Gly	Thr	Cha	Val 80
Ala	Gln	Ala	Met	Leu 85	Gly	Lys	Ala	Thr	Cys	Arg	Cys	Ala	Ser	Gly 95	Phe
Thr	Gly	Glu	Asp 100	Cys	Gln	Tyr	Ser	Thr 105	Ser	His	Pro	Cys	Phe 110	Val	Ser
Arg	Pro	Cys 115	Leu	Asn	Gly	Gly	Thr 120	Сув	His	Met	Leu	Ser 125	Arg	Asp	Thr
Tyr	Glu 130	Cys	Thr	CAa	Gln	Val 135	Gly	Phe	Thr	Gly	Lys 140	Glu	Cys	Gln	Trp
Thr 145	Asp	Ala	CÀa	Leu	Ser 150	His	Pro	Cys	Ala	Asn 155	Gly	Ser	Thr	CÀa	Thr 160
Thr	Val	Ala	Asn	Gln 165	Phe	Ser	Cys	Lys	Cys 170	Leu	Thr	Gly	Phe	Thr 175	Gly
Gln	ГÀв	Cys	Glu 180	Thr	Asp	Val	Asn	Glu 185	CÀa	Asp	Ile	Pro	Gly 190	His	Cys
Gln	His	Gly 195	Gly	Thr	CAa	Leu	Asn 200	Leu	Pro	Gly	Ser	Tyr 205	Gln	CÀa	Gln
CAa	Pro 210	Gln	Gly	Phe	Thr	Gly 215	Gln	Tyr	СЛа	Asp	Ser 220	Leu	Tyr	Val	Pro
Сув 225	Ala	Pro	Ser	Pro	Сув 230	Val	Asn	Gly	Gly	Thr 235	CÀa	Arg	Gln	Thr	Gly 240
Asp	Phe	Thr	Phe	Glu 245	СЛа	Asn	СЛа	Leu	Pro 250	Gly	Phe	Glu	Gly	Ser 255	Thr
CAa	Glu	Arg	Asn 260	Ile	Asp	Asp	СЛа	Pro 265	Asn	His	Arg	CAa	Gln 270	Asn	Gly
Gly	Val	Cys 275	Val	Asp	Gly	Val	Asn 280	Thr	Tyr	Asn	-	Arg 285	Cys	Pro	Pro
Gln	Trp 290	Thr	Gly	Gln	Phe	Сув 295	Thr	Glu	Asp	Val	Asp 300	Glu	Cys	Leu	Leu
Gln 305	Pro	Asn	Ala	CAa	Gln 310	Asn	Gly	Gly	Thr	Сув 315	Ala	Asn	Arg	Asn	Gly 320
Gly	Tyr	Gly	CÀa	Val 325	CÀa	Val	Asn	Gly	Trp 330	Ser	Gly	Asp	Asp	335 Cys	Ser
Glu	Asn	Ile	Asp 340	Asp	CÀa	Ala	Phe	Ala 345	Ser	CÀa	Thr	Pro	Gly 350	Ser	Thr
CAa	Ile	Asp 355	Arg	Val	Ala	Ser	Phe 360	Ser	CÀa	Met	CAa	Pro 365	Glu	Gly	Lys
Ala	Gly 370	Leu	Leu	CAa	His	Leu 375	Asp	Asp	Ala	Cys	Ile 380	Ser	Asn	Pro	Cys
His 385	Lys	Gly	Ala	Leu	390	Asp	Thr	Asn	Pro	Leu 395	Asn	Gly	Gln	Tyr	Ile 400
СЛа	Thr	Сув	Pro	Gln 405	Gly	Tyr	Lys	Gly	Ala 410	Asp	Сув	Thr	Glu	Asp 415	Val

Asp	Glu	Cys	Ala 420	Met	Ala	Asn	Ser	Asn 425	Pro	Cys	Glu	His	Ala 430	Gly	Lys
Сув	Val	Asn 435	Thr	Asp	Gly	Ala	Phe 440	His	Сув	Glu	Сла	Leu 445	Lys	Gly	Tyr
Ala	Gly 450	Pro	Arg	Сла	Glu	Met 455	Asp	Ile	Asn	Glu	Cys 460	His	Ser	Asp	Pro
Сув 465	Gln	Asn	Asp	Ala	Thr 470	CÀa	Leu	Asp	Lys	Ile 475	Gly	Gly	Phe	Thr	Сув 480
Leu	Cys	Met	Pro	Gly 485	Phe	ГÀа	Gly	Val	His 490	Сув	Glu	Leu	Glu	Ile 495	Asn
Glu	Сув	Gln	Ser 500	Asn	Pro	Cys	Val	Asn 505	Asn	Gly	Gln	Сув	Val 510	Asp	ГÀа
Val	Asn	Arg 515	Phe	Gln	Cys	Leu	Cys 520	Pro	Pro	Gly	Phe	Thr 525	Gly	Pro	Val
Cys	Gln 530	Ile	Asp	Ile	Asp	Asp 535	Cys	Ser	Ser	Thr	Pro 540	Cys	Leu	Asn	Gly
Ala 545	Lys	Cys	Ile	Asp	His 550	Pro	Asn	Gly	Tyr	Glu 555	Cys	Gln	Cys	Ala	Thr 560
Gly	Phe	Thr	Gly	Val 565	Leu	Cys	Glu	Glu	Asn 570	Ile	Asp	Asn	Cys	Asp 575	Pro
Asp	Pro	Cys	His 580	His	Gly	Gln	Cys	Gln 585	Asp	Gly	Ile	Asp	Ser 590	Tyr	Thr
CAa	Ile	595 595	Asn	Pro	Gly	Tyr	Met 600	Gly	Ala	Ile	CAa	Ser 605	Asp	Gln	Ile
Asp	Glu 610	CÀa	Tyr	Ser	Ser	Pro 615	Càa	Leu	Asn	Asp	Gly 620	Arg	CÀa	Ile	Asp
Leu 625	Val	Asn	Gly	Tyr	Gln 630	CÀa	Asn	Càa	Gln	Pro 635	Gly	Thr	Ser	Gly	Val 640
Asn	Cys	Glu	Ile	Asn 645	Phe	Asp	Asp	Cha	Ala 650	Ser	Asn	Pro	Cys	Ile 655	His
Gly	Ile	CAa	Met 660	Asp	Gly	Ile	Asn	Arg 665	Tyr	Ser	CÀa	Val	Cys 670	Ser	Pro
Gly	Phe	Thr 675	Gly	Gln	Arg	CAa	Asn 680	Ile	Aap	Ile	Asp	Glu 685	СЛа	Ala	Ser
Asn	Pro 690	Cys	Arg	Lys	Gly	Ala 695	Thr	Cys	Ile	Asn	Gly 700	Val	Asn	Gly	Phe
Arg 705	Cys	Ile	СЛа	Pro	Glu 710	Gly	Pro	His	His	Pro 715	Ser	CÀa	Tyr	Ser	Gln 720
Val	Asn	Glu	Cys	Leu 725	Ser	Asn	Pro	Cys	Ile 730	His	Gly	Asn	Cys	Thr 735	Gly
Gly	Leu	Ser	Gly 740	Tyr	ГÀа	CÀa	Leu	Сув 745	Asp	Ala	Gly	Trp	Val 750	Gly	Ile
Asn	Cya	Glu 755	Val	Asp	Lys	Asn	Glu 760	Cys	Leu	Ser	Asn	Pro 765	Cys	Gln	Asn
Gly	Gly 770	Thr	Cys	Asp	Asn	Leu 775	Val	Asn	Gly	Tyr	Arg 780	CAa	Thr	Cys	Lys
Lys 785	Gly	Phe	Lys	Gly	Tyr 790	Asn	Cys	Gln	Val	Asn 795	Ile	Asp	Glu	Cys	Ala 800
Ser	Asn	Pro	Сув	Leu 805	Asn	Gln	Gly	Thr	Cys 810	Phe	Asp	Asp	Ile	Ser 815	Gly
Tyr	Thr	Сув	His 820	Сув	Val	Leu	Pro	Tyr 825	Thr	Gly	Lys	Asn	Cys	Gln	Thr
Val	Leu	Ala	Pro	Cys	Ser	Pro	Asn	Pro	Cys	Glu	Asn	Ala	Ala	Val	Cys

													-00	ш	LII	iuec	ı
		835					840						84	45			
ГÀа	Glu 850	Ser	Pro	Asn	Phe	Glu 855	Ser	Туз	Tl	nr	CÀa	Le 86		ys	Ala	a Pro	Gly
Trp 865	Gln	Gly	Gln	Arg	Cys 870	Thr	Ile	Asp) I:	le	Asp 875	G1	u Cy	Ys	Ile	e Sei	880 Lys
Pro	Сув	Met	Asn	His 885	Gly	Leu	Cys	His		sn 90	Thr	G1	n G	ly	Sei	Ty:	Met
CAa	Glu	CAa	Pro 900	Pro	Gly	Phe	Ser	Gl ₂ 905		et	Asp	СУ	s G	lu	Glu 910) Ile
Asp	Asp	Cys 915	Leu	Ala	Asn	Pro	Сув 920	Glr	ı As	sn	Gly	Gl		er 25	Суя	Met	Asp
Gly	Val 930	Asn	Thr	Phe	Ser	Сув 935	Leu	Суя	s Le	eu	Pro	G1 94		ne	Thi	Gly	/ Asp
Lys 945	CAa	Gln	Thr	Asp	Met 950	Asn	Glu	Суя	s Le	eu	Ser 955	Gl	u P:	ro	Cys	E Lys	960
Gly	Gly	Thr	Cys	Ser 965	Asp	Tyr	Val	Asr		er 70	Tyr	Th	r C	γs	Lys	975	Gln
Ala	Gly	Phe	Asp 980	Gly	Val	His	CAa	Glu 985		sn	Asn	Il	e A	sn	Glu 990		7hr
Glu	Ser	Ser 995	Cys	Phe	Asn	Gly	Gly 100		ır (Сує	Va	1 A	_	31; 100	-	Ile A	Asn Se
Phe	Ser 1010		E Leu	ı Cys	s Pro	Va:		ly E	he	Th	ır G		Ser 102		Phe	CÀa	Leu
His	Glu 1025		e Asr	ı Glu	і Суя	Ser 103		er H	lis	Pr	o C		Leu 103!		Asn	Glu	Gly
Thr	Cys 1040		l Asp	Gl _y	/ Leu	1 Gly		hr 1	'yr	Ar	g C	_	Ser 105		Cys	Pro	Leu
Gly	Tyr 1055		Gly	/ Lys	s Asr	n Cys 106		ln T	hr	L∈	eu V		Asn 106!		Leu	Сув	Ser
Arg	Ser 1070		су Сув	. Lys	s Asr	10°		ly T	hr	СУ	rs V		Gln 108		Lys	Lys	Ala
Glu	Ser 1085		і Суя	. Leu	ı Cys	Pro 109		er (31y	Tr	p A		Gly 109!		Ala	Tyr	Cys
Asp	Val 1100) Asr	ı Val	L Ser	Cy:		sp 1	lle	Al	a A		Ser 111		Arg	Arg	Gly
Val	Leu 1115		l Glu	ı His	s Leu	1 Cys 112		ln F	lis	Se	er G	-	Val 112!		Cys	Ile	Asn
Ala	Gly 1130		n Thr	His	з Туг	Cy:		ln (Çys	Pr	:0 L		Gly 114		Tyr	Thr	Gly
Ser	Tyr 1145	_	Glu	ı Glu	ı Glr	115		sp (lu	СУ	s A		Ser 115!		Asn	Pro	Сув
Gln	His 1160	_	/ Ala	Th:	c Cys	Ser 116		ap E	he	11	e G.	_	Gly 117		Tyr	Arg	CÀa
Glu	Cys 1175		l Pro	Gl _y	/ Туг	Glr 118		ly V	/al	Αε	n C	_	Glu 118!		Tyr	Glu	Val
Asp	Glu 1190		Glr	n Asr	n Glr	119		λa (ln	Αε	n G		Gly 120		Thr	CÀa	Ile
Asp	Leu 1205		l Asr	n His	Ph∈	Ly:		ys S	Ser	СУ	s P		Pro 121!		Gly	Thr	Arg
Gly	Leu 1220		ı Cys	Glu	ı Glu	ı Ası 122		le A	/ap	Αε	sp C		Ala 1230		Arg	Gly	Pro
His	Сув 1235		ı Asr	ı Gly	/ Gly	7 Gl1 124		ys N	let	As	рΑ		Ile 124!		Gly	Gly	Tyr

											001	1011	Iucc	4
Ser	Cys 1250	Arg	Cys	Leu	Pro	Gly 1255	Phe	Ala	Gly	Glu	Arg 1260	Cys	Glu	Gly
Asp	Ile 1265	Asn	Glu	Cys	Leu	Ser 1270	Asn	Pro	CAa	Ser	Ser 1275	Glu	Gly	Ser
Leu	Asp 1280	CAa	Ile	Gln	Leu	Thr 1285	Asn	Asp	Tyr	Leu	Cys 1290	Val	CAa	Arg
Ser	Ala 1295	Phe	Thr	Gly	Arg	His 1300		Glu	Thr	Phe	Val 1305	Asp	Val	Cys
Pro	Gln 1310	Met	Pro	Сув	Leu	Asn 1315	Gly	Gly	Thr	Cys	Ala 1320	Val	Ala	Ser
Asn	Met 1325	Pro	Asp	Gly	Phe	Ile 1330		Arg	СЛа	Pro	Pro 1335	Gly	Phe	Ser
Gly	Ala 1340	Arg	CÀa	Gln	Ser	Ser 1345	Cys	Gly	Gln	Val	Lys 1350	CÀa	Arg	Lys
Gly	Glu 1355	Gln	CÀa	Val	His	Thr 1360	Ala	Ser	Gly	Pro	Arg 1365	Cys	Phe	CÀa
Pro	Ser 1370	Pro	Arg	Asp	Cys	Glu 1375	Ser	Gly	Cys	Ala	Ser 1380	Ser	Pro	CAa
Gln	His 1385	Gly	Gly	Ser	Сув	His 1390	Pro	Gln	Arg	Gln	Pro 1395	Pro	Tyr	Tyr
Ser	Cys 1400	Gln	Cys	Ala	Pro	Pro 1405	Phe	Ser	Gly	Ser	Arg 1410	Cha	Glu	Leu
Tyr	Thr 1415	Ala	Pro	Pro	Ser	Thr 1420	Pro	Pro	Ala	Thr	Cys 1425	Leu	Ser	Gln
Tyr	Cys 1430	Ala	Asp	Lys	Ala	Arg 1435	Asp	Gly	Val	Сув	Asp 1440	Glu	Ala	CAa
Asn	Ser 1445	His	Ala	Сув	Gln	Trp 1450	Asp	Gly	Gly	Asp	Cys 1455	Ser	Leu	Thr
Met	Glu 1460	Asn	Pro	Trp	Ala	Asn 1465	Сув	Ser	Ser	Pro	Leu 1470	Pro	Cys	Trp
Asp	Tyr 1475	Ile	Asn	Asn	Gln	Cys 1480	Asp	Glu	Leu	Сув	Asn 1485	Thr	Val	Glu
Cys	Leu 1490	Phe	Asp	Asn	Phe	Glu 1495	CÀa	Gln	Gly	Asn	Ser 1500	Lys	Thr	Сув
Lys	Tyr 1505	Asp	Lys	Tyr	Cys	Ala 1510	Asp	His	Phe	Lys	Asp 1515	Asn	His	Cha
Asp	Gln 1520	Gly	CÀa	Asn	Ser	Glu 1525	Glu	Cys	Gly	Trp	Asp 1530	Gly	Leu	Asp
Cys	Ala 1535	Ala	Asp	Gln	Pro	Glu 1540	Asn	Leu	Ala	Glu	Gly 1545	Thr	Leu	Val
Ile	Val 1550	Val	Leu	Met	Pro	Pro 1555	Glu	Gln	Leu	Leu	Gln 1560	Asp	Ala	Arg
Ser	Phe 1565	Leu	Arg	Ala	Leu	Gly 1570	Thr	Leu	Leu	His	Thr 1575	Asn	Leu	Arg
Ile	Lys 1580	Arg	Asp	Ser	Gln	Gly 1585	Glu	Leu	Met	Val	Tyr 1590	Pro	Tyr	Tyr
Gly	Glu 1595	Lys	Ser	Ala	Ala	Met 1600	Lys	Lys	Gln	Arg	Met 1605	Thr	Arg	Arg
Ser	Leu 1610	Pro	Gly	Glu	Gln	Glu 1615	Gln	Glu	Val	Ala	Gly 1620	Ser	Lys	Val
Phe	Leu 1625	Glu	Ile	Asp	Asn	Arg 1630	Gln	Cys	Val	Gln	Asp 1635	Ser	Asp	His
СЛа	Phe 1640	Lys	Asn	Thr	Asp	Ala 1645	Ala	Ala	Ala	Leu	Leu 1650	Ala	Ser	His

Ala	Ile 1655		Gly	Thr	Leu	Ser 1660		Pro	Leu	Val	Ser 1665		Val	Ser
Glu	Ser 1670		Thr	Pro	Glu	Arg 1675		Gln	Leu	Leu	Tyr 1680		Leu	Ala
Val	Ala 1685		Val	Ile	Ile	Leu 1690		Ile	Ile	Leu	Leu 1695	Gly	Val	Ile
Met	Ala 1700		Arg	Lys	Arg	Lys 1705		Gly	Ser	Leu	Trp 1710		Pro	Glu
Gly	Phe 1715		Leu	Arg	Arg	Asp 1720		Ser	Asn	His	Lys 1725	Arg	Arg	Glu
Pro	Val 1730	Gly	Gln	Asp	Ala	Val 1735		Leu	Lys	Asn	Leu 1740		Val	Gln
Val	Ser 1745	Glu	Ala	Asn	Leu	Ile 1750		Thr	Gly	Thr	Ser 1755	Glu	His	Trp
Val	Asp 1760	Asp	Glu	Gly	Pro	Gln 1765	Pro	Lys	Lys	Val	Lys 1770	Ala	Glu	Asp
Glu	Ala 1775	Leu	Leu	Ser	Glu	Glu 1780		Asp	Pro	Ile	Asp 1785	Arg	Arg	Pro
Trp	Thr 1790	Gln	Gln	His	Leu	Glu 1795	Ala	Ala	Asp	Ile	Arg 1800	Arg	Thr	Pro
Ser	Leu 1805	Ala	Leu	Thr	Pro	Pro 1810	Gln	Ala	Glu	Gln	Glu 1815	Val	Asp	Val
Leu	Asp 1820	Val	Asn	Val	Arg	Gly 1825	Pro	Asp	Gly	СЛв	Thr 1830	Pro	Leu	Met
Leu	Ala 1835	Ser	Leu	Arg	Gly	Gly 1840	Ser	Ser	Asp	Leu	Ser 1845	Asp	Glu	Asp
Glu	Asp 1850	Ala	Glu	Asp	Ser	Ser 1855	Ala	Asn	Ile	Ile	Thr 1860	Asp	Leu	Val
Tyr	Gln 1865	Gly	Ala	Ser	Leu	Gln 1870	Ala	Gln	Thr	Asp	Arg 1875	Thr	Gly	Glu
Met	Ala 1880	Leu	His	Leu	Ala	Ala 1885	Arg	Tyr	Ser	Arg	Ala 1890	Asp	Ala	Ala
Lys	Arg 1895	Leu	Leu	Asp	Ala	Gly 1900	Ala	Asp	Ala	Asn	Ala 1905	Gln	Asp	Asn
Met	Gly 1910	Arg	CAa	Pro	Leu	His 1915	Ala	Ala	Val	Ala	Ala 1920	Asp	Ala	Gln
Gly	Val 1925	Phe	Gln	Ile	Leu	Ile 1930	Arg	Asn	Arg	Val	Thr 1935	Asp	Leu	Asp
Ala	Arg 1940	Met	Asn	Asp	Gly	Thr 1945	Thr	Pro	Leu	Ile	Leu 1950	Ala	Ala	Arg
Leu	Ala 1955	Val	Glu	Gly	Met	Val 1960	Ala	Glu	Leu	Ile	Asn 1965	CÀa	Gln	Ala
Asp	Val 1970	Asn	Ala	Val	Asp	Asp 1975	His	Gly	Lys	Ser	Ala 1980	Leu	His	Trp
Ala	Ala 1985	Ala	Val	Asn	Asn	Val 1990	Glu	Ala	Thr	Leu	Leu 1995	Leu	Leu	Lys
Asn	Gly 2000	Ala	Asn	Arg	Asp	Met 2005	Gln	Asp	Asn	Lys	Glu 2010	Glu	Thr	Pro
Leu	Phe 2015	Leu	Ala	Ala	Arg	Glu 2020	Gly	Ser	Tyr	Glu	Ala 2025	Ala	Lys	Ile
Leu	Leu 2030	Asp	His	Phe	Ala	Asn 2035	Arg	Asp	Ile	Thr	Asp 2040	His	Met	Asp
Arg	Leu	Pro	Arg	Asp	Val	Ala	Arg	Asp	Arg	Met	His	His	Asp	Ile

_	0045					0050					0055			
	2045					2050					2055			
Val	Arg 2060	Leu	Leu	Asp	Glu	Tyr 2065	Asn	Val	Thr	Pro	Ser 2070	Pro	Pro	Gly
Thr	Val 2075	Leu	Thr	Ser	Ala	Leu 2080	Ser	Pro	Val	Ile	Сув 2085	Gly	Pro	Asn
Arg	Ser 2090	Phe	Leu	Ser	Leu	Lys 2095	His	Thr	Pro	Met	Gly 2100	Lys	Lys	Ser
Arg	Arg 2105	Pro	Ser	Ala	Lys	Ser 2110	Thr	Met	Pro	Thr	Ser 2115	Leu	Pro	Asn
Leu	Ala 2120	Lys	Glu	Ala	Lys	Asp 2125	Ala	Lys	Gly	Ser	Arg 2130	Arg	ГÀз	ГÀа
Ser	Leu 2135	Ser	Glu	ГЛа	Val	Gln 2140	Leu	Ser	Glu	Ser	Ser 2145	Val	Thr	Leu
Ser	Pro 2150	Val	Asp	Ser	Leu	Glu 2155	Ser	Pro	His	Thr	Tyr 2160	Val	Ser	Asp
Thr	Thr 2165	Ser	Ser	Pro	Met	Ile 2170	Thr	Ser	Pro	Gly	Ile 2175	Leu	Gln	Ala
Ser	Pro 2180	Asn	Pro	Met	Leu	Ala 2185	Thr	Ala	Ala	Pro	Pro 2190	Ala	Pro	Val
His	Ala 2195	Gln	His	Ala	Leu	Ser 2200	Phe	Ser	Asn	Leu	His 2205	Glu	Met	Gln
Pro	Leu 2210	Ala	His	Gly	Ala	Ser 2215	Thr	Val	Leu	Pro	Ser 2220	Val	Ser	Gln
Leu	Leu 2225	Ser	His	His	His	Ile 2230	Val	Ser	Pro	Gly	Ser 2235	Gly	Ser	Ala
Gly	Ser 2240	Leu	Ser	Arg	Leu	His 2245	Pro	Val	Pro	Val	Pro 2250	Ala	Asp	Trp
Met	Asn 2255	Arg	Met	Glu	Val	Asn 2260	Glu	Thr	Gln	Tyr	Asn 2265	Glu	Met	Phe
Gly	Met 2270	Val	Leu	Ala	Pro	Ala 2275	Glu	Gly	Thr	His	Pro 2280	Gly	Ile	Ala
Pro	Gln 2285	Ser	Arg	Pro	Pro	Glu 2290	Gly	Lys	His	Ile	Thr 2295	Thr	Pro	Arg
Glu	Pro 2300	Leu	Pro	Pro	Ile	Val 2305	Thr	Phe	Gln	Leu	Ile 2310	Pro	Lys	Gly
Ser	Ile 2315	Ala	Gln	Pro	Ala	Gly 2320	Ala	Pro	Gln	Pro	Gln 2325	Ser	Thr	Cys
Pro	Pro 2330	Ala	Val	Ala	Gly	Pro 2335	Leu	Pro	Thr	Met	Tyr 2340	Gln	Ile	Pro
Glu	Met 2345	Ala	Arg	Leu	Pro	Ser 2350	Val	Ala	Phe	Pro	Thr 2355	Ala	Met	Met
Pro	Gln 2360	Gln	Asp	Gly	Gln	Val 2365	Ala	Gln	Thr	Ile	Leu 2370	Pro	Ala	Tyr
His	Pro 2375	Phe	Pro	Ala	Ser	Val 2380	Gly	Lys	Tyr	Pro	Thr 2385	Pro	Pro	Ser
Gln	His 2390	Ser	Tyr	Ala	Ser	Ser 2395	Asn	Ala	Ala	Glu	Arg 2400		Pro	Ser
His	Ser 2405	Gly	His	Leu	Gln	Gly 2410	Glu	His	Pro	Tyr	Leu 2415	Thr	Pro	Ser
Pro	Glu 2420	Ser	Pro	Asp	Gln	Trp 2425	Ser	Ser	Ser	Ser	Pro 2430	His	Ser	Ala
Ser	Asp 2435	Trp	Ser	Asp	Val	Thr 2440		Ser	Pro	Thr	Pro 2445	Gly	Gly	Ala

-continued

Gly Gly Gln Arg Gly Pro Gly Thr His Met Ser Glu Pro Pro 2455 His Asn Asn Met Gln Val Tyr Ala <210> SEQ ID NO 41 <211> LENGTH: 2002 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 41 Met Gln Pro Pro Ser Leu Leu Leu Leu Leu Leu Leu Leu Leu Cys 10 Val Ser Val Val Arg Pro Arg Gly Leu Leu Cys Gly Ser Phe Pro Glu 20 25 30 Pro Cys Ala Asn Gly Gly Thr Cys Leu Ser Leu Ser Leu Gly Gln Gly 40 Thr Cys Gln Cys Ala Pro Gly Phe Leu Gly Glu Thr Cys Gln Phe Pro Asp Pro Cys Gln Asn Ala Gln Leu Cys Gln Asn Gly Gly Ser Cys Gln Ala Leu Leu Pro Ala Pro Leu Gly Leu Pro Ser Ser Pro Ser Pro Leu 90 Thr Pro Ser Phe Leu Cys Thr Cys Leu Pro Gly Phe Thr Gly Glu Arg 100 105 Cys Gln Ala Lys Leu Glu Asp Pro Cys Pro Pro Ser Phe Cys Ser Lys Arg Gly Arg Cys His Ile Gln Ala Ser Gly Arg Pro Gln Cys Ser Cys 135 Met Pro Gly Trp Thr Gly Glu Gln Cys Gln Leu Arg Asp Phe Cys Ser Ala Asn Pro Cys Val Asn Gly Gly Val Cys Leu Ala Thr Tyr Pro Gln Ile Gln Cys His Cys Pro Pro Gly Phe Glu Gly His Ala Cys Glu Arg Asp Val Asn Glu Cys Phe Gln Asp Pro Gly Pro Cys Pro Lys Gly Thr Ser Cys His Asn Thr Leu Gly Ser Phe Gln Cys Leu Cys Pro Val Gly Gln Glu Gly Pro Arg Cys Glu Leu Arg Ala Gly Pro Cys Pro Pro Arg 225 230235235235 Gly Cys Ser Asn Gly Gly Thr Cys Gln Leu Met Pro Glu Lys Asp Ser 250 Thr Phe His Leu Cys Leu Cys Pro Pro Gly Phe Ile Gly Pro Gly Cys 265 Glu Val Asn Pro Asp Asn Cys Val Ser His Gln Cys Gln Asn Gly Gly 280 285 Thr Cys Gln Asp Gly Leu Asp Thr Tyr Thr Cys Leu Cys Pro Glu Thr Trp Thr Gly Trp Asp Cys Ser Glu Asp Val Asp Glu Cys Glu Ala Gln 310 315 Gly Pro Pro His Cys Arg Asn Gly Gly Thr Cys Gln Asn Ser Ala Gly 325 330 Ser Phe His Cys Val Cys Val Ser Gly Trp Gly Gly Thr Ser Cys Glu 345

-continued

	_		_	_								_	~ 7		
Glu	Asn	ьеи 355	Asp	Asp	Cys	lle	360	Ala	Thr	Сув	Ala	365	GIY	Ser	Thr
Cys	Ile 370	Asp	Arg	Val	Gly	Ser 375	Phe	Ser	Cys	Leu	380 GAa	Pro	Pro	Gly	Arg
Thr 385	Gly	Leu	Leu	Cys	His 390	Leu	Glu	Asp	Met	Сув 395	Leu	Ser	Gln	Pro	Сув 400
His	Gly	Asp	Ala	Gln 405	CAa	Ser	Thr	Asn	Pro 410	Leu	Thr	Gly	Ser	Thr 415	Leu
Cys	Leu	Cha	Gln 420	Pro	Gly	Tyr	Ser	Gly 425	Pro	Thr	Cys	His	Gln 430	Asp	Leu
Asp	Glu	Cys 435	Leu	Met	Ala	Gln	Gln 440	Gly	Pro	Ser	Pro	Cys 445	Glu	His	Gly
Gly	Ser 450	Cys	Leu	Asn	Thr	Pro 455	Gly	Ser	Phe	Asn	Cys 460	Leu	Сув	Pro	Pro
Gly 465	Tyr	Thr	Gly	Ser	Arg 470	Cys	Glu	Ala	Asp	His 475	Asn	Glu	Сув	Leu	Ser 480
Gln	Pro	Сув	His	Pro 485	Gly	Ser	Thr	Сув	Leu 490	Asp	Leu	Leu	Ala	Thr 495	Phe
His	Cys	Leu	Сув 500	Pro	Pro	Gly	Leu	Glu 505	Gly	Gln	Leu	CAa	Glu 510	Val	Glu
Thr	Asn	Glu 515	Cys	Ala	Ser	Ala	Pro 520	Cys	Leu	Asn	His	Ala 525	Asp	Cys	His
Asp	Leu 530	Leu	Asn	Gly	Phe	Gln 535	Cys	Ile	Cys	Leu	Pro 540	Gly	Phe	Ser	Gly
Thr 545	Arg	Cys	Glu	Glu	Asp 550	Ile	Asp	Glu	Cys	Arg 555	Ser	Ser	Pro	Cys	Ala 560
Asn	Gly	Gly	Gln	Сув 565	Gln	Asp	Gln	Pro	Gly 570	Ala	Phe	His	Cys	Lys 575	Cys
Leu	Pro	Gly	Phe 580	Glu	Gly	Pro	Arg	Сув 585	Gln	Thr	Glu	Val	Asp 590	Glu	Cys
Leu	Ser	Asp 595	Pro	CÀa	Pro	Val	Gly 600	Ala	Ser	Cys	Leu	Asp 605	Leu	Pro	Gly
Ala	Phe 610	Phe	CÀa	Leu	CÀa	Pro 615	Ser	Gly	Phe	Thr	Gly 620	Gln	Leu	CAa	Glu
Val 625	Pro	Leu	CÀa	Ala	Pro 630	Asn	Leu	CÀa	Gln	Pro 635	Lys	Gln	Ile	CAa	Lys 640
Asp	Gln	ГÀа	Asp	Lys 645	Ala	Asn	CAa	Leu	650 Cys	Pro	Asp	Gly	Ser	Pro 655	Gly
Cys	Ala	Pro	Pro 660	Glu	Asp	Asn	CAa	Thr 665	CÀa	His	His	Gly	His 670	CAa	Gln
Arg	Ser	Ser 675	CAa	Val	CÀa	Asp	Val 680	Gly	Trp	Thr	Gly	Pro 685	Glu	CAa	Glu
Ala	Glu 690	Leu	Gly	Gly	CAa	Ile 695	Ser	Ala	Pro	CÀa	Ala 700	His	Gly	Gly	Thr
Сув 705	Tyr	Pro	Gln	Pro	Ser 710	Gly	Tyr	Asn	Cys	Thr 715	Cys	Pro	Thr	Gly	Tyr 720
Thr	Gly	Pro	Thr	Сув 725	Ser	Glu	Glu	Met	Thr 730	Ala	СЛв	His	Ser	Gly 735	Pro
Cys	Leu	Asn	Gly 740	Gly	Ser	CÀa	Asn	Pro 745	Ser	Pro	Gly	Gly	Tyr 750	Tyr	Cya
Thr	Сув	Pro 755	Pro	Ser	His	Thr	Gly 760	Pro	Gln	Cys	Gln	Thr 765	Ser	Thr	Asp
Tyr	Сув 770	Val	Ser	Ala	Pro	Сув 775	Phe	Asn	Gly	Gly	Thr 780	CÀa	Val	Asn	Arg

Pro 785	Gly	Thr	Phe	Ser	Cys 790	Leu	Cys	Ala	Met	Gly 795	Phe	Gln	Gly	Pro	Arg 800
CÀa	Glu	Gly	Lys	Leu 805	Arg	Pro	Ser	Càa	Ala 810	Asp	Ser	Pro	Cys	Arg 815	Asn
Arg	Ala	Thr	Cys 820	Gln	Asp	Ser	Pro	Gln 825	Gly	Pro	Arg	Cys	Leu 830	_	Pro
Thr	Gly	Tyr 835	Thr	Gly	Gly	Ser	Cys 840	Gln	Thr	Leu	Met	Asp 845	Leu	Cys	Ala
Gln	Lys 850	Pro	Cys	Pro	Arg	Asn 855	Ser	His	Сув	Leu	Gln 860	Thr	Gly	Pro	Ser
Phe 865	His	Cys	Leu	CAa	Leu 870	Gln	Gly	Trp	Thr	Gly 875	Pro	Leu	Сув	Asn	Leu 880
Pro	Leu	Ser	Ser	Cys 885	Gln	Lys	Ala	Ala	Leu 890	Ser	Gln	Gly	Ile	Asp 895	Val
Ser	Ser	Leu	Cys 900	His	Asn	Gly	Gly	Leu 905	Cys	Val	Asp	Ser	Gly 910		Ser
Tyr	Phe	Суз 915	His	Cys	Pro	Pro	Gly 920	Phe	Gln	Gly	Ser	Leu 925	Сув	Gln	Aap
His	Val 930	Asn	Pro	Cys	Glu	Ser 935	Arg	Pro	Cys	Gln	Asn 940	Gly	Ala	Thr	Cys
Met 945	Ala	Gln	Pro	Ser	Gly 950	Tyr	Leu	Сув	Gln	Сув 955	Ala	Pro	Gly	Tyr	Asp
Gly	Gln	Asn	Cys	Ser 965	Lys	Glu	Leu	Asp	Ala 970	Сув	Gln	Ser	Gln	Pro 975	
His	Asn	His	Gly 980	Thr	Cys	Thr	Pro	Lys 985	Pro	Gly	Gly	Phe	His 990		Ala
CÀa	Pro	Pro 995	Gly	Phe	Val	Gly	Leu 1000		g Cyı	s Glu	ı Gly	/ Asj		al A	sp Glu
CÀa	Leu 1010		Glr	Pro	Сув	His 101		ro Ti	nr G	ly Ti		La 2 020	Ala	CAa	His
Ser	Leu 1025		a Asn	ı Ala	. Phe	Ту1		/s G	ln C	ys Le		co (Gly	His	Thr
Gly	Gln 1040		Сув	Glu	ı Val	Glu 104		le A	sp P:	ro C		Ls : 050	Ser	Gln	Pro
Cys	Phe 1055		g Gly	Gly	Thr	Cys 106		lu A	la Tl	nr Ai		Ly :	Ser	Pro	Leu
	Phe 1070		е Сув	His	Cys		ь L ₃ 75		ly Pl		lu G:			Thr	Cys
Ser	His 1085		g Ala	Pro	Ser	Cys 109		Ly Pi	ne H:	is H:		/s 1 095	His	His	Gly
Gly	Leu 1100	_	. Leu	Pro	Ser	Pro		/s Pi	ro G	ly Pi		ro :	Pro	Arg	CÀa
Ala	Сув 1115		ı Ser	Gly	Tyr	Gl _y 112		Ly Pi	ro A	ap Cy		eu ' L25	Thr	Pro	Pro
Ala	Pro 1130		g Gly	Cys	Gly	Pro 113		co Se	er P:	ro Cy		eu ' L40	Tyr	Asn	Gly
Ser	Cys 1145		Glu	Thr	Thr	Gl _y 115		eu G	ly G	ly P:		Ly : L55	Phe	Arg	CÀa
Ser	Cys 1160		His	Ser	Ser	Pro		Ly Pi	ro A:	rg C		ln : L70	Lys	Pro	Gly
Ala	Lys 1175		y Cys	Glu	Gly	Arg		er G	ly As	ep Gi		La L85	Cys	Asp .	Ala
Gly	Cys	Ser	Gly	Pro	Gly	Gl	/ As	n Ti	rp A	sp G	ly G	Ly .	Asp	Cys	Ser

	1190					1195					1200			
Leu	Gly 1205	Val	Pro	Asp	Pro	Trp 1210	Lys	Gly	CÀa	Pro	Ser 1215	His	Ser	Arg
CAa	Trp 1220	Leu	Leu	Phe	Arg	Asp 1225	Gly	Gln	Cys	His	Pro 1230	Gln	CAa	Asp
Ser	Glu 1235	Glu	CAa	Leu	Phe	Asp 1240	Gly	Tyr	Asp	Cys	Glu 1245	Thr	Pro	Pro
Ala	Cys 1250	Thr	Pro	Ala	Tyr	Asp 1255	Gln	Tyr	Сла	His	Asp 1260	His	Phe	His
Asn	Gly 1265	His	CAa	Glu	Lys	Gly 1270	Cys	Asn	Thr	Ala	Glu 1275	CAa	Gly	Trp
Asp	Gly 1280	Gly	Asp	Cys	Arg	Pro 1285	Glu	Asp	Gly	Asp	Pro 1290	Glu	Trp	Gly
Pro	Ser 1295	Leu	Ala	Leu	Leu	Val 1300	Val	Leu	Ser	Pro	Pro 1305	Ala	Leu	Asp
Gln	Gln 1310	Leu	Phe	Ala	Leu	Ala 1315	Arg	Val	Leu	Ser	Leu 1320	Thr	Leu	Arg
Val	Gly 1325	Leu	Trp	Val	Arg	Lys 1330	Asp	Arg	Asp	Gly	Arg 1335	Asp	Met	Val
Tyr	Pro 1340	Tyr	Pro	Gly	Ala	Arg 1345	Ala	Glu	Glu	ГÀа	Leu 1350	Gly	Gly	Thr
Arg	Asp 1355	Pro	Thr	Tyr	Gln	Glu 1360	Arg	Ala	Ala	Pro	Gln 1365	Thr	Gln	Pro
Leu	Gly 1370	Lys	Glu	Thr	Asp	Ser 1375	Leu	Ser	Ala	Gly	Phe 1380	Val	Val	Val
Met	Gly 1385	Val	Asp	Leu	Ser	Arg 1390	CAa	Gly	Pro	Asp	His 1395	Pro	Ala	Ser
Arg	Cys 1400	Pro	Trp	Asp	Pro	Gly 1405	Leu	Leu	Leu	Arg	Phe 1410	Leu	Ala	Ala
Met	Ala 1415	Ala	Val	Gly	Ala	Leu 1420	Glu	Pro	Leu	Leu	Pro 1425	Gly	Pro	Leu
Leu	Ala 1430	Val	His	Pro	His	Ala 1435	Gly	Thr	Ala	Pro	Pro 1440	Ala	Asn	Gln
Leu	Pro 1445	Trp	Pro	Val	Leu	Cys 1450	Ser	Pro	Val	Ala	Gly 1455	Val	Ile	Leu
Leu	Ala 1460	Leu	Gly	Ala	Leu	Leu 1465	Val	Leu	Gln	Leu	Ile 1470	Arg	Arg	Arg
Arg	Arg 1475	Glu	His	Gly	Ala	Leu 1480	Trp	Leu	Pro	Pro	Gly 1485	Phe	Thr	Arg
Arg	Pro 1490	Arg	Thr	Gln	Ser	Ala 1495	Pro	His	Arg	Arg	Arg 1500	Pro	Pro	Leu
Gly	Glu 1505	Asp	Ser	Ile	Gly	Leu 1510	ГЛа	Ala	Leu	ГÀа	Pro 1515	ГЛа	Ala	Glu
Val	Asp 1520	Glu	Asp	Gly	Val	Val 1525	Met	Cya	Ser	Gly	Pro 1530	Glu	Glu	Gly
Glu	Glu 1535	Val	Gly	Gln	Ala	Glu 1540	Glu	Thr	Gly	Pro	Pro 1545	Ser	Thr	CAa
Gln	Leu 1550	Trp	Ser	Leu	Ser	Gly 1555	Gly	CÀa	Gly	Ala	Leu 1560	Pro	Gln	Ala
Ala	Met 1565	Leu	Thr	Pro	Pro	Gln 1570	Glu	Ser	Glu	Met	Glu 1575	Ala	Pro	Asp
Leu	Asp 1580	Thr	Arg	Gly	Pro	Asp 1585	Gly	Val	Thr	Pro	Leu 1590	Met	Ser	Ala

Val	Сув 1595		Gly	Glu	Val	Gln 1600		Gly	Thr	Phe	Gln 1605	_	Ala	Trp
Leu	Gly 1610		Pro	Glu	Pro	Trp 1615		Pro	Leu	Leu	Asp 1620	Gly	Gly	Ala
CAa	Pro 1625		Ala	His	Thr	Val 1630		Thr	Gly	Glu	Thr 1635		Leu	His
Leu	Ala 1640		Arg	Phe	Ser	Arg 1645		Thr	Ala	Ala	Arg 1650	Arg	Leu	Leu
Glu	Ala 1655	_	Ala	Asn	Pro	Asn 1660		Pro	Asp	Arg	Ala 1665		Arg	Thr
Pro	Leu 1670	His	Ala	Ala	Val	Ala 1675		Asp	Ala	Arg	Glu 1680	Val	CAa	Gln
Leu	Leu 1685	Leu	Arg	Ser	Arg	Gln 1690		Ala	Val	Asp	Ala 1695	Arg	Thr	Glu
Asp	Gly 1700	Thr	Thr	Pro	Leu	Met 1705	Leu	Ala	Ala	Arg	Leu 1710	Ala	Val	Glu
Asp	Leu 1715	Val	Glu	Glu	Leu	Ile 1720	Ala	Ala	Gln	Ala	Asp 1725	Val	Gly	Ala
Arg	Asp 1730	ГÀв	Trp	Gly	ГÀв	Thr 1735	Ala	Leu	His	Trp	Ala 1740	Ala	Ala	Val
Asn	Asn 1745	Ala	Arg	Ala	Ala	Arg 1750		Leu	Leu	Gln	Ala 1755	Gly	Ala	Aap
ГЛа	Asp 1760	Ala	Gln	Asp	Asn	Arg 1765		Gln	Thr	Pro	Leu 1770	Phe	Leu	Ala
Ala	Arg 1775	Glu	Gly	Ala	Val	Glu 1780		Ala	Gln	Leu	Leu 1785	Leu	Gly	Leu
Gly	Ala 1790	Ala	Arg	Glu	Leu	Arg 1795		Gln	Ala	Gly	Leu 1800	Ala	Pro	Ala
Asp	Val 1805	Ala	His	Gln	Arg	Asn 1810	His	Trp	Asp	Leu	Leu 1815	Thr	Leu	Leu
Glu	Gly 1820	Ala	Gly	Pro	Pro	Glu 1825	Ala	Arg	His	Lys	Ala 1830		Pro	Gly
Arg	Glu 1835	Ala	Gly	Pro	Phe	Pro 1840	_	Ala	Arg	Thr	Val 1845	Ser	Val	Ser
Val	Pro 1850	Pro	His	Gly	Gly	Gly 1855	Ala	Leu	Pro	Arg	Cys 1860	Arg	Thr	Leu
Ser	Ala 1865	Gly	Ala	Gly	Pro	Arg 1870	Gly	Gly	Gly	Ala	Cys 1875	Leu	Gln	Ala
Arg	Thr 1880	_	Ser	Val	Asp	Leu 1885		Ala	Arg	Gly	Gly 1890	Gly	Ala	Tyr
Ser	His 1895	CAa	Arg	Ser	Leu	Ser 1900	Gly	Val	Gly	Ala	Gly 1905	Gly	Gly	Pro
Thr	Pro 1910	Arg	Gly	Arg	Arg	Phe 1915	Ser	Ala	Gly	Met	Arg 1920	Gly	Pro	Arg
Pro	Asn 1925	Pro	Ala	Ile	Met	Arg 1930	Gly	Arg	Tyr	Gly	Val 1935	Ala	Ala	Gly
Arg	Gly 1940	_	Arg	Val	Ser	Thr 1945	_	Asp	Trp	Pro	Сув 1950	Asp	Trp	Val
Ala	Leu 1955	-	Ala	Cys	Gly	Ser 1960		Ser	Asn	Ile	Pro 1965	Ile	Pro	Pro
Pro	Cys 1970		Thr	Pro	Ser	Pro 1975	Glu	Arg	Gly	Ser	Pro 1980	Gln	Leu	Asp
Сув	Gly 1985	Pro	Pro	Ala	Leu	Gln 1990	Glu	Met	Pro	Ile	Asn 1995	Gln	Gly	Gly

```
Glu Gly Lys Lys
   2000
<210> SEQ ID NO 42
<211> LENGTH: 135
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     polynucleotide
<400> SEQUENCE: 42
                                                                      60
atgggtccag gtgcaagagg tagaaggcgt agaaggagac caatgagccc acctcctccg
ccacctccag tgagagcact gcctttgctg ttgctgctgg ctggacctgg tgcagcagct
                                                                     120
cctccttacc tagac
                                                                     135
<210> SEO ID NO 43
<211> LENGTH: 135
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 43
atggggccgg gggcccgtgg ccgccgccgc cgccgtcgcc cgatgtcgcc gccaccgcca
                                                                      60
                                                                     120
cegecaceeg tgegggeget geecetgetg etgetgetag eggggeeggg ggetgeagee
ccccttgcc tggac
                                                                     135
<210> SEQ ID NO 44
<211> LENGTH: 45
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     polypeptide
<400> SEQUENCE: 44
Met Gly Pro Gly Ala Arg Gly Arg Arg Arg Arg Arg Pro Met Ser
Pro Pro Pro Pro Pro Pro Val Arg Ala Leu Pro Leu Leu Leu
Leu Ala Gly Pro Gly Ala Ala Pro Pro Cys Leu Asp
                           40
```

What is claimed:

- 1. An isolated nucleic acid encoding a polypeptide comprising the amino acid sequence of the VH chain region of a 50 monoclonal antibody that specifically binds to Notch3 receptor, wherein the antibody specifically binds to an epitope in SEQ ID NO:10 and activates Notch3 receptor-mediated signaling through the Notch3 receptor independent of ligand binding to the Notch3 receptor.
- 2. The nucleic acid of claim 1, wherein the VH chain region comprises CDR-H1 of SEQ ID NO:4, CDR-H2 of SEQ ID NO:5, and CDR-H3 of SEQ ID NO:6.
- 3. The nucleic acid of claim 2, wherein the VH chain region
- comprises SEQ ID NO:2. 4. An isolated cell comprising the nucleic acid of claim 1.
- 5. A method for producing a polypeptide comprising the amino acid sequence of the VH chain region of a monoclonal antibody that specifically binds to Notch3 comprising culturing the cell of claim 4 under conditions appropriate for production of the polypeptide and isolating the polypeptide so produced.
- 6. An isolated nucleic acid encoding a polypeptide comprising the amino acid sequence of the VL chain region of a monoclonal antibody that specifically binds to Notch3 receptor, wherein the antibody specifically binds to an epitope in SEQ ID NO:10 and activates Notch3 receptor-mediated signaling though the Notch3 receptor independent of ligand binding to the Notch3 receptor.
- 7. The nucleic acid of claim 6, wherein the VL chain region comprises CDR-L1 of SEQ ID NO:7, CDR-L2 of SEQ ID NO:8, and CDR-L3 of SEQ ID NO:9.
- 8. The nucleic acid of claim 7, wherein the VL chain region 60 comprises SEQ ID NO:3.
 - 9. An isolated cell comprising the nucleic acid of claim 6.
- 10. A method for producing a polypeptide comprising the amino acid sequence of the VL chain region of a monoclonal antibody that specifically binds to Notch3 comprising culturing the cell of claim 9 under conditions appropriate for production of the polypeptide and isolating the polypeptide so produced.

- 11. An isolated nucleic acid encoding a monoclonal antibody that specifically binds to Notch3 receptor, wherein the antibody specifically binds to an epitope in SEQ ID NO:10, and wherein the antibody activates Notch3 receptor-mediated signaling through the Notch3 receptor independent of ligand binding to the Notch3 receptor.
- 12. The nucleic acid of claim 11, wherein the antibody comprises a VH chain region comprising CDR-H1 of SEQ ID NO:4, CDR-H2 of SEQ ID NO:5, and CDR-H3 of SEQ ID NO:6, and a VL chain region comprising CDR-L1 of SEQ ID NO:7, CDR-L2 of SEQ ID NO:8, and CDR-L3 of SEQ ID NO:9.
- 13. The nucleic acid of claim 12, wherein the VH chain region comprises SEQ ID NO:2 and the VL chain region comprises SEQ ID NO:3.

110

- 14. The nucleic acid of claim 11, wherein the antibody is a humanized form of a monoclonal antibody comprising the VH chain region of SEQ ID NO:2 and the VL chain region of SEQ ID NO:3.
- 15. An isolated nucleic acid encoding a monoclonal antibody that specifically binds to Notch3 receptor, wherein the antibody specifically binds to an epitope in SEQ ID NO:11, and wherein the antibody activates Notch3 receptor-mediated signaling through the Notch3 receptor independent of ligand binding to the Notch3 receptor.

* * * * *