(19) (10 DE 698 25 350 T2 2005.07.21

Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(12) Ubersetzung der europiischen Patentschrift
(97)EP 0 871 110 B1 1) intc.”: GO6F 9/38

(21) Deutsches Aktenzeichen: 698 25 350.7
(96) Europaisches Aktenzeichen: 98 302 633.7
(96) Europaischer Anmeldetag: 03.04.1998
(97) Erstverdffentlichung durch das EPA: 14.10.1998
(97) Veroffentlichungstag
der Patenterteilung beim EPA: 04.08.2004
(47) Veroffentlichungstag im Patentblatt: 21.07.2005

(30) Unionsprioritat: (74) Vertreter:
840080 09.04.1997 us Schoppe, Zimmermann, Stéckeler & Zinkler, 82049
Pullach
(73) Patentinhaber:
Hewlett-Packard Development Co., L.P., Houston, (84) Benannte Vertragsstaaten:
Tex., US DE, FR, GB
(72) Erfinder:
Larson, Douglas V., Santa Clara, US

(54) Bezeichnung: Verzweigungsvorhersage in Rechnersystem

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europa-
ischen Patents kann jedermann beim Europaischen Patentamt gegen das erteilte europédische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begriinden. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebihr entrichtet worden ist (Art. 99 (1) Europaisches Patentliibereinkommen).

Die Ubersetzung ist gemaR Artikel Il § 3 Abs. 1 IntPatUG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht gepruft.




DE 698 25 350 T2 2005.07.21

Beschreibung

[0001] Die vorliegende Erfindung bezieht sich auf
die Ausfihrung von Computeranweisungen in einem
Computersystem. Im Einzelnen bezieht sich die vor-
liegende Erfindung auf ein Verfahren und eine Vor-
richtung zum Erzeugen einer Verzweigungsvoraus-
sage flur eine Computerzweiganweisung durch Un-
terbrechen eines Prozessors und Beobachten einer
anstehenden Verzweigungsanweisung.

[0002] Frihe Computersysteme fihrten Computer-
anweisungen nacheinander einzeln aus und began-
nen eine Ausfihrung einer Anweisung erst, wenn die
vorherige Anweisung abgeschlossen war. Mit zuneh-
mendem Fortschritt in der Technik der Computerkon-
struktion begannen Computerkonstrukteure, ver-
schiedene Arten von Parallelitdtin Computersysteme
zu integrieren.

[0003] Eine Typus einer Parallelitat ist die Pipe-
line-Betriebsweise bzw. parallele Ausfihrung der Be-
fehlsabwicklung. Die Pipeline-Betriebsweise gliedert
die Ausfihrung einer Computeranweisung in ver-
schiedene Schritte und verarbeitet mehrere Anwei-
sungen gleichzeitig, indem sie diese Schritte Uberlap-
pen lasst. Eine weitere Art von Parallelitat ist das Su-
perskalieren. Das Superskalieren verwendet mehre-
re Ausfihrungseinheiten, um separate Anweisungen
gleichzeitig zu verarbeiten.

[0004] Parallelentwurfstechniken stellen fur Ver-
zweigungsanweisungen Probleme dar. Oft wurde,
wenn eine Verzweigungsanweisung ausgefihrt wird,
die Bedingung, die die Verzweigungsanweisung tes-
ten muss, noch nicht bestimmt. Friihe Computersys-
teme hielten die Ausfuhrung der Verzweigungsan-
weisung (und nachfolgender Anweisungen) einfach
an, bis die Bedingung bestimmt wurde. Dies beein-
trachtigt jedoch die Leistungsfahigkeit. Bei einem mit
dem Pipelinebetrieb ausgestatteten Computer muss
die Pipeline oft erst geleert werden, bevor die Bedin-
gung bestimmt werden kann, was die durch den
Pipelinebetrieb erzielten Vorteile einschrankt.

[0005] Um dieses Problem anzugehen, begannen
Computerdesigner, Mechanismen aufzunehmen, die
ein Verzweigungsverhalten voraussagen. Wenn eine
Verzweigungsanweisung angetroffen wird, wird das
Verzweigungsverhalten der Verzweigungsanweisung
vorausgesagt. Spater, wenn die Bedingung ausge-
wertet werden kann, wird auch eine Voraussage aus-
gewertet, um zu bestimmen, ob sie richtig ist. Falls
die Voraussage richtig ist, wird die Ausfiihrung fortge-
fuhrt, und die durch die parallele Ausflihrung erzielten
Vorteile werden bewahrt. Falls die Voraussage falsch
ist, missen Anweisungen, die vorlaufig ausgefihrt
wurden, aus der Pipeline beseitigt werden, und die
Anweisungen von der richtigen Verzweigung missen
ausgefuhrt werden. Der Nachteil fur eine falsche Ver-

zweigung ist Ublicherweise jedoch nicht schlimmer
als ein Anhalten der Ausfiihrung und ein Warten, bis
die Bedingung bestimmt wird.

[0006] Die durch eine Verzweigungsvoraussage er-
zielten Gewinne bei der Leistungsfahigkeit stehen
selbstverstandlich stark mit der Genauigkeit der Vor-
aussage in Beziehung. Demgemall wurden viele
Techniken entwickelt, um genaue Verzweigungsvor-
aussagen zu liefern. Eine der frihesten Techniken
bestand darin, einfach vorauszusagen, dass eine
Verzweigung immer genommen wird. Statistisch wer-
den die meisten Verzweigungen genommen, so dass
sich diese Technik als etwas erfolgreich erwies. Eine
ahnliche Technik sagt voraus, dass immer Riick-
wartsverzweigungen genommen werden und dass
Vorwartsverzweigungen niemals genommen werden.

[0007] Eine weitere Technik verwendet eine Adres-
stabelle von Adressen, zu denen sich kirzlich Ver-
zweigungsanweisungen verzweigten. Ublicherweise
besteht die Tabelle aus einem Assoziativspeicher,
der 4 bis 8 Eintrage aufweist. Falls eine Adresse in ei-
ner Verzweigungsanweisung ebenfalls in der Tabelle
erschien, so wird diese Adresse als vorausgesagter
Ausfuhrungspfad verwendet.

[0008] Ein anspruchsvollerer Lésungsansatz wurde
von James E. Smith in der US-Patentschrift Nr.
4,370,711 offenbart. Smith offenbarte einen Direktzu-
griffsspeicher (RAM), der z.B. 16 Eintrage aufwies,
von denen jeder einen Zwei-Bit-Zahlwert enthielt, der
in der Lage war, die Werte +1, 0, -1 und -2 anzuneh-
men. Ein Hash-Mechanismus wandelt die Verzwei-
gungsanweisungsadresse in eine Vier-Bit-Adresse
cum, die auf den RAM zugreift. Falls der Wert, der in
einem einer Verzweigungsanweisung zugeordneten
Eintrag gespeichert ist, +1 oder O ist, wird die Ver-
zweigung als genommen vorausgesagt. Andernfalls
lautet die Voraussage, dass die Verzweigung nicht
genommen wird. Nachdem die Verzweigungsanwei-
sung ausgefihrt wird, falls sie genommen wird, wird
der Zahlwertspeichereintrag auf eine Grenze von +1
inkrementiert. Falls sie nicht genommen wird, wird
die Zahlwertspeicheradresse auf eine Grenze von -2
dekrementiert. Das durch Smith offenbarte Voraussa-
geschema beinhaltet eine Verzweigungshistorie bei
der Formulierung der Verzweigungsvoraussage.
Falls die Verzweigung beispielsweise mehrere Male
genommen wurde, darf sie nicht zwei Mal hinterein-
ander genommen werden, um die Voraussage zu an-
dern. Viele Computersysteme verwenden eine Varia-
tion dieses Schemas, mit einer Tabelle, die eine Vor-
aussage speichert, und einer Hash-Funktion, die ei-
ner Voraussage eine Verzweigungsanweisung zu-
ordnet.

[0009] Ein weiterer Lésungsansatz wird durch Ha-
nan Potash in der US-Patentschrift Nr. 4,435,756 of-
fenbart. Potash offenbart eine Codierung einer Ver-

2114



DE 698 25 350 T2 2005.07.21

zweigungsvoraussage in jeder Verzweigungsanwei-
sung auf der Basis dessen, ob es wahrscheinlich ist,
dass die Verzweigungsbedingung als wahr oder
falsch bewertet wird. Bei einem anderen Ausfih-
rungsbeispiel offenbart Potash ein Codieren einer
Verzweigungshistorie und einer Verzweigungsvor-
aussage in einer Verzweigungsanweisung. Bei die-
sem Ausflhrungsbeispiel wird, falls sich die Voraus-
sage zwei Mal hintereinander als falsch erweist, die
Voraussage geandert, was ein Codieren einer neuen
Voraussage in die Verzweigungsanweisung und ein
Zuruckschreiben der Verzweigungsanweisung in den
Speicher erfordert. Man beachte, dass auch die Ver-
zweigungsanweisung immer dann, wenn sich die
Verzweigungshistorie andert, in den Speicher zu-
rickgeschrieben werden muss, auch wenn sich die
Voraussage nicht andert. Dies erzeugt eine grolRe
Menge von Schreibdaten, was den I/O-Durchsatz
verringert. Beispielsweise muss eine Verzweigungs-
anweisung, die zwischen zwei Verzweigungspfaden
abwechselt, jedes Mal, wenn sie ausgefiihrt wird, in
den Speicher zurtickgeschrieben werden.

[0010] In der XP000582805 von Conte T M et al.:
~.Hardware-Based Profiling, an effective technique for
profile-driven optimization", International Journal of
Parallel Programming, Vol. 2, 1. April 1996, Seiten
187-206, ist eine Kompilieren-Betreiben-Neukompi-
lieren-Sequenz mit einer Kompilieren-Benutzen-Neu-
kompilieren-Sequenz offenbart, bei der ein Pro-
gramm mit Instrumentierungsanweisungen ausge-
fuhrt wird, die eingefigt werden, um ein Verzwei-
gungsverhalten zu berwachen. Das Programm wird
ausgefihrt, und das Verzweigungsverhalten wird be-
obachtet und zusammengetragen und wird verwen-
det, wenn das Programm neu kompiliert wird. Conte
et al. schlagen eine Verbesserung dadurch vor, dass
Verzweigungsverhalten-Nachverfolgungsregister
verwendet werden, die in vielen modernen CPUs zur
Verfigung stehen. Folglich muss das Programm
nicht unter Verwendung von Instrumentierungsan-
weisungen kompiliert werden, und die ,erste" Kompi-
lierung des Programmes ist viel schneller. Sowohl der
Stand der Technik als auch die durch Conte et al. of-
fenbarte Technik erfordern, dass gesammelte Infor-
mationen Uber ein Verzweigungsverhalten als Einga-
be in eine neue Kompilierung des Programms ver-
wendet werden.

[0011] Von der Firma Hewlett-Packard hergestellte
Computersysteme verwendeten bisher zwei Arten ei-
ner Verzweigungsvoraussage; ein hardwarebasier-
tes Verzweigungsvoraussageschema, das eine Vor-
aussagetabelle verwendet, um dynamisch erzeugte
Verzweigungsvoraussagen nahe der CPU zu spei-
chern, und ein softwarebasiertes Verzweigungsvor-
aussageschema, das statische Verzweigungsvor-
aussagen in jede Verzweigungsanweisung codiert,
wenn ein Computerprogramm kompiliert wird.

[0012] Bei einer softwarebasierten Verzweigungs-
voraussage wird die Voraussage auf der Basis der
Reihenfolge der Operanden in der Vergleichsfunktion
in der Verzweigungsanweisung codiert. Man betrach-
te  beispielsweise die folgenden  Verglei-
chen-Und-Verzweigen-Anweisungen (COMB-Anwei-
sungen, COMB = compare and branch):

COMB, < R5, R3, Adresse

und

COMB, > = R3, R5, Adresse

[0013] Die in der ersten Anweisung codierte Ver-
zweigungsvoraussage ist das Gegenteil der in der
zweiten Anweisung codierten Verzweigungsvoraus-
sage, obwohl die Anweisungen logisch identisch
sind.

[0014] Um effektive Voraussagen zu erzeugen, ist
es notwendig, einen Durchlauf einer ,profilbasierten
Optimierung" (PBO-Durchlauf, PBO = profile-based
optimization) durchzufiihren, bei dem das Verzwei-
gungsverhalten beobachtet wird, wahrend eine An-
wendung in einer typischen Rechenumgebung aus-
geflhrt wird. Nachdem der PBO-Durchlauf abge-
schlossen ist, werden die Anwendungen des Benut-
zers neu kompiliert, um aktualisierte Verzweigungs-
voraussagen auf der Basis eines wahrend des
PBO-Durchlaufs beobachteten Verzweigungsverhal-
tens zu beinhalten.

[0015] Die Vorteile einer softwarebasierten Verzwei-
gungsvoraussage bestehen darin, dass die Voraus-
sage auf einem Verhalten beruhen kann, das Uber ei-
nen ausgedehnten Zeitraum beobachtet wird, nicht
nur Uber die letzte oder die letzten zwei Verzweigun-
gen. Ferner erfordert eine softwarebasierte Verzwei-
gungsvoraussage eine weniger komplexe, kosten-
guinstigere Hardware. Es ist viel einfacher, eine Hard-
ware zu entwerfen, die lediglich eine Verzweigungs-
voraussage implementiert, im Vergleich zu einer
Hardware, die auch die Genauigkeit von Voraussa-
gen bewerten und Voraussagen entsprechend aktua-
lisieren muss.

[0016] Die Nachteile einer softwarebasierten Ver-
zweigungsvoraussage bestehen darin, dass die Vor-
aussage statisch ist und sich nicht an Anderungen
bei Programmdaten oder bei der Rechenumgebung
anpasst. Nachdem die Voraussage in die Verzwei-
gungsanweisung kompiliert wird, wird sie nicht mehr
verandert. Aullerdem fihren Kunden den
PBO-Durchlauf, der benétigt wird, um eine Verzwei-
gungsvoraussage-Leistungsfahigkeit auf hohem Ni-
veau zu erzielen, nicht gerne durch.

[0017] Die Vorteile einer hardwarebasierten Ver-
zweigungsvoraussage bestehen darin, dass sie fur
den Benutzer des Computersystems vollstandig
transparent ist, sich dynamisch an Anderungen der
Rechenumgebungen, die sich auf die Verzweigung

3/14



DE 698 25 350 T2 2005.07.21

auswirken kénnen, anpasst (z.B. Anderungen von in
Datenbanken gespeicherten Informationen) und
dass sie dazu tendiert, sehr genau zu sein, wenn die
Voraussagetabelle gro3 ist oder jeder Anweisung
eine Voraussage zugeordnet werden kann, wie durch
Potash offenbart ist.

[0018] Die Nachteile einer hardwarebasierten Ver-
zweigungsvoraussage bestehen darin, dass ihre Im-
plementierung kostspielig ist und dass bis dato nicht
viele Computer konfiguriert sind, um eine Hard-
ware-Verzweigungsvoraussage zu nutzen. Um die
Effizienz zu erhéhen und die Anzahl von Logikgattern
zu verringern, speichern Voraussagetabellen Ubli-
cherweise eine begrenzte Anzahl von Verzweigungs-
anweisungen und speichern oft keine oder lediglich
einen Abschnitt der Adresse einer Verzweigungsan-
weisung. Dies kann bewirken, dass das Voraussage-
schema durch Aliasing tberwaltigt wird, wodurch be-
wirkt wird, dass eine Voraussage erzeugt wird, die
nicht auf der tatsachlichen Verzweigungsanweisung,
die gerade ausgefiihrt wird, beruht. Aliasing kann fur
Programme, die viele haufig ausgefiihrte Verzwei-
gungsanweisungen aufweisen, z.B. Datenbankpro-
gramme, ein betrachtliches Problem darstellen.

[0019] Die vorliegende Erfindung schafft ein verbes-
sertes Computersystem.

[0020] Gemal einem Aspekt der vorliegenden Er-
findung ist ein Verfahren zum Einstellen einer Ver-
zweigungsvoraussage gemafy Anspruch 1 vorgese-
hen.

[0021] GemalR einem weiteren Aspekt der vorlie-
genden Erfindung ist ein Zentralverarbeitungssystem
gemal der Spezifizierung in Anspruch 9 vorgesehen.

[0022] Das bevorzugte Ausflhrungsbeispiel kann
ein Verfahren und eine Vorrichtung zum dynami-
schen Einstellen der einer Verzweigungsanweisung
zugeordneten Verzweigungsvoraussage liefern, in-
dem die Zentralverarbeitungseinheit eines Compu-
ters periodisch unterbrochen wird und eine Voraus-
sageeinstellroutine ausgefihrt wird, die eine anste-
hende Verzweigungsanweisung beobachtet. Falls
keine Verzweigungsanweisung ansteht, endet die
Voraussageeinstellroutine, und die Ausfihrung des
unterbrochenen Anweisungsstroms wird wieder auf-
genommen. Falls eine Verzweigungsanweisung an-
steht, wird die Verzweigungsanweisung ausgewertet
und mit einer Verzweigungsvoraussage, die der Ver-
zweigungsanweisung zugeordnet ist, verglichen.
Falls die Voraussage richtig ist, wird die Ausflihrung
des unterbrochenen Anweisungsstroms wieder auf-
genommen. Falls die Voraussage falsch ist, wird die
Voraussage ausgewertet, um zu bestimmen, ob sie
geandert werden sollte. Bei einem Ausfuhrungsbei-
spiel wird ferner eine friilhere Verzweigungshistorie
der Verzweigungsanweisung verwendet, um zu be-

stimmen, ob die Verzweigungsvoraussage geandert
werden sollte. Bei einem anderen Beispiel wird die
Verzweigungsvoraussage umgeschaltet, wenn sie
falsch ist.

[0023] Unter Bezugnahme auf die beiliegenden
Zeichnungen wird nachfolgend ein Ausfuhrungsbei-
spiel der vorliegenden Erfindung lediglich beispielhaft
beschrieben. Es zeigen:

[0024] Fig. 1 ein vereinfachtes Blockdiagramm ei-
nes Computersystems;

[0025] Fig. 2 ein Blockdiagramm eines Abschnitts
einer GPU, die ein Bestandteil des in Fig. 1 gezeig-
ten Computersystems ist;

[0026] Fig. 3 ein Flussdiagramm eines bevorzugten
Ausfihrungsbeispiels einer auf einer Unterbrechung
beruhenden Voraussageeinstellroutine.

[0027] Fig. 1 ist ein vereinfachtes Blockdiagramm
eines Computersystems 10. Das Computersystem
10 umfasst eine Zentralverarbeitungseinheit (CPU)
12, einen Cache-Speicher 14 einer Ebene 1 (L1), ei-
nen Cache-Speicher 16 einer Ebene 2 (L2), einen
Hauptspeicher 18, eine Dauerspeicherplatte 20 und
eine Virtueller-Speicher-Speicherplatte 22. Bei vielen
Computersystemen sind die Dauerspeicherplatte 20
und die Virtueller-Speicher-Speicherplatte 22 auf
demselben physischen Festplattenlaufwerk verkor-
pert.

[0028] Fig.1 veranschaulicht die verschiedenen
Stellen, an denen ein Programmcode vor, wahrend
und nach der Ausfiihrung gespeichert ist. Wenn ein
Programm zum ersten Mal ausgefiihrt wird, wird der
Programmcode von der Dauerspeicherplatte 20 wie-
dergewonnen und in dem Hauptspeicher 18 gespei-
chert. Wahrend Abschnitte des Programmcodes aus-
geflhrt werden, werden diese Abschnitte in dem
L2-Cache-Speicher 16 und dem L1-Cache-Speicher
14 gespeichert. Wie in der Technik bekannt ist, ist der
L1-Cache-Speicher 14 Ublicherweise als sehr
schneller Speicher implementiert, der sich nahe an
der CPU 12 befindet. Oft liegt er auf derselben inte-
grierten Schaltung vor wie die CPU. Der L2-Ca-
che-Speicher 16 ist etwas langsamer und groRer.
Schlielich ist der Hauptspeicher 18 sehr grof3 und
langsamer als der L2-Cache-Speicher 16.

[0029] Wenn in dem Hauptspeicher 18 Programme
und Daten gespeichert werden, kann die GréRe der
Programme und Daten die physische GréRe des
Speichers 18 eventuell Giberschreiten. Wenn dies ge-
schieht, werden Speicherseiten von dem Speicher 18
auf der Virtueller-Speicher-Speicherplatte 22 gespei-
chert, wodurch in dem Speicher 18 zusatzlicher Spei-
cherplatz zur Verfiigung gestellt wird. Wenn ein Pro-
gramm auf eine Speicherseite Bezug nimmt, die auf

4/14



DE 698 25 350 T2 2005.07.21

der Platte 22 gespeichert wurde, wird die Speicher-
seite wiedergewonnen, und, falls nétig, werden ande-
re Seiten zu der Platte 22 umlagert.

[0030] Fig. 1 veranschaulicht eine typische Compu-
terarchitektur, die auf dem Gebiet des Computerein-
satzes ublich ist. Das bevorzugte Ausfuhrungsbei-
spiel wird nachfolgend unter Bezugnahme auf Fig. 1
beschrieben, Fachleute werden jedoch erkennen,
dass es bei einer Vielzahl anderer Computerarchitek-
turen implementiert werden kann, z.B. bei Computer-
systemen, die weniger oder zusatzliche Cache-Spei-
cher aufweisen, Computer mit mehreren CPUs usw.

[0031] Fig.2 ist ein Blockdiagramm eines Ab-
schnitts der CPU 12 der Fig. 1. Die CPU 12 umfasst
eine Arithmetik-Logik-Einheit (ALE) 24, einen Pro-
grammzahler (PZ) 26, ein Statusregister (STR) 27
und ein Anweisungsregister (AR) 28, einen Register-
stapel 30, einen LIFO-Stapel (LIFO = last-in first-out)
32 und eine Unterbrechungseinheit 34. Die ALE 24
fuhrt verschiedene mathematische Operationen
durch, z.B. Addieren, Subtrahieren, Multiplizieren,
Verschieben, Vergleichen und dergleichen. Die Re-
gister 30 speichern Daten, die durch die ALE 24 ver-
wendet werden. Der PZ 26 speichert eine Adresse,
die auf den Speicherplatz der aktuellen Anweisung,
die gerade ausgefiihrt wird, Bezug nimmt, das AR 28
speichert die gerade ausgefiihrte aktuelle Anwei-
sung, der LIFO-Stapel 32 liefert eine voriibergehen-
de Speicherung an die CPU 12 und die Unterbre-
chungseinheit 34 verarbeitet Unterbrechungen. Das
Statusregister 27 umfasst Statusbits, die verschiede-
ne Modi der CPU 12 steuern und bestimmen.

[0032] Die Unterbrechungseinheit 34 spricht auf
Unterbrechungen an und ist ferner in der Lage, Un-
terbrechungen zu erzeugen. Beispielsweise stellt die
ARQ-Leitung 36 extern erzeugte Hardwareunterbre-
chungen dar, z.B. einen Netzwerkadapter, der eine
Hardwareunterbrechung auf einem Bus aktiviert.
Eine Pausenanweisung 38 stellt Softwareunterbre-
chungen dar, z.B. PAUSE- oder FALLE-Anweisun-
gen, die in den Programmcode platziert werden kon-
nen. Ein Zeitgeber 42 stellt Unterbrechungen dar, die
auf der Basis eines Zeitgeberwerts erzeugt werden,
z.B. eines Echtzeittaktes, der die CPU 12 in einem
periodischen Intervall unterbricht. SchlieBlich stellt
ein Anweisungszahler 40 Unterbrechungen dar, die
nach einer bestimmten Anzahl von Anweisungen er-
zeugt werden. Die durch den Anweisungszahler 40
und den Zeitgeber 42 verwendeten Werte kdnnen
durch das Betriebssystem geandert werden.

[0033] Wenn die Unterbrechungseinheit 34 eine Un-
terbrechung verarbeitet, werden die in den Registern
30, dem PZ 26, dem STR 27 und dem AR 28 gespei-
cherten Werte auf dem LIFO-Stapel 32 gespeichert.
Dies ist in Eig. 2 gezeigt, indem jeder dieser Werte
zusammen mit der Markierung ,(Int)" in dem

LIFO-Stapel 32 gespeichert gezeigt ist. Nachdem
diese Werte auf dem LIFO-Stapel 32 gespeichert
wurden, wird eine Unterbrechungsserviceroutine
(USR), die der jeweiligen Unterbrechung, die gerade
verarbeitet wird, zugeordnet ist, ausgefiihrt. Nach-
dem die USR verarbeitet wurde, werden die Werte
von dem LIFO-Stapel 32 entfernt und erneut in ihren
urspringlichen Stellen gespeichert.

[0034] Wahrend die USR ausgefihrt wird, hat sie
Zugriff auf die auf dem LIFO-Stapel 32 gespeicherten
Werte. Dementsprechend kann die USR die Anwei-
sung, die gerade ausgefiihrt wurde, als die Unterbre-
chung auftrat, die Adresse, bei der diese Anweisung
in dem Hauptspeicher gespeichert ist, und die Inhalte
der Register zum Zeitpunkt, als die Unterbrechung
auftrat, untersuchen.

[0035] Fig. 1 und Fig. 2 zeigen eine CPU-Architek-
tur, die viel einfacher ist als moderne CPU-Architek-
turen, die auf dem Gebiet des Computereinsatzes
bekannt sind. Moderne CPUs umfassen mehrere
Ausfihrungseinheiten, Pipelines, eine Schaltungsan-
ordnung zum Unterstltzen einer au3erhalb der Rei-
henfolge erfolgenden Ausfiihrung und dergleichen.
Jedoch ist die in den Eig. 1 und Eia. 2 gezeigte Archi-
tektur ausreichend, um das bevorzugte Ausfiihrungs-
beispiel zu veranschaulichen.

[0036] Obwonhl die vorliegende Erfindung nachste-
hend unter Bezugnahme auf Fig. 1 und Eig. 2 be-
schrieben wird, werden Fachleute erkennen, dass
das beschriebene Ausfihrungsbeispiel an einer Viel-
zahl von anderen Computerarchitekturen implemen-
tiert werden kann.

[0037] Das bevorzugte Ausflihrungsbeispiel liefert
ein Verfahren und eine Vorrichtung zum dynami-
schen Einstellen von Verzweigungsvoraussagen.
Gemal seiner Verwendung in dem vorliegenden Do-
kument bezieht sich der Begriff ,Verzweigungsanwei-
sung" allgemein auf Verzweigungsanweisungen, die
sich auf der Grundlage einer Bedingung verzweigen.
Falls die Verzweigungsanweisung eine bedingungs-
lose Verzweigungsanweisung ist, die sich immer zum
selben Ort verzweigt, besteht natirlich kein Erforder-
nis, vorauszusagen, ob die Verzweigung genommen
werden wird. Dagegen verwalten viele Computersys-
teme bestimmte Aspekte einer Ausfihrung von be-
dingungslosen  Verzweigungsanweisungen (bei-
spielsweise, die Pipeline voll zu halten) in einem all-
gemeinen Verzweigungsvoraussagerahmen. Somit
wird in dem vorliegenden Dokument ein Voraussa-
gen eines Verzweigungsverhaltens bedingungsloser
Verzweigungsanweisungen betrachtet.

[0038] Fig. 3 ist ein Flussdiagramm eines bevor-
zugten Ausflhrungsbeispiels einer unterbrechungs-
basierten Voraussageeinstellroutine 44. Obwohl die
Routine 44 als USR in Software implementiert sein

5/14



DE 698 25 350 T2 2005.07.21

kann, kann dieses Ausfihrungsbeispiel auch teilwei-
se oder vollstandig in Hardware implementiert sein.

[0039] Bei Block 46 wird die Routine 44 gestartet.
Unter Bezugnahme auf Fig. 2 gibt es mehrere Ver-
fahren, die verwendet werden kdnnen, um eine Un-
terbrechung der Startroutine 44 zu erzeugen. Der
Zeitgeber 42 kann konfiguriert sein, um eine Unter-
brechung in einem periodischen Intervall zu erzeu-
gen. Alternativ dazu kann der Anweisungszahler 40
konfiguriert sein, um eine Unterbrechung nach einer
bestimmten Anzahl von Anweisungen zu erzeugen.
Sowohl das Zeitintervall als auch die Anweisungs-
zahlung koénnen auf einer willkiirlichen Basis variiert
werden, um zu gewahrleisten, dass der Prozessor an
verschiedenen Stellen in dem Programmcode unter-
brochen wird.

[0040] Ein Vorteil des Anweisungszahlers gegenu-
ber dem Zeitgeber besteht darin, dass der Anwei-
sungszahler bei manchen Computerarchitekturen
eventuell eine noch gleichmaRigere Verteilung von
Voraussageauswertungen Uber alle Verzweigungs-
anweisungen hinweg erzeugt. Bei manchen Imple-
mentierungen der PA-RISC-Architektur wird eine Un-
terbrechung auf einer Ebene, die zur Verwendung bei
der vorliegenden Erfindung geeignet ist, beispiels-
weise verzogert, bis die Anweisung, die gerade aus-
gefihrt wird, abgeschlossen ist, und dann wird die
Unterbrechung abgearbeitet. Man betrachte eine La-
deanweisung, die oft einen Cache-Fehltreffer erzeugt
und relativ lange braucht, bis sie abgeschlossen ist.
Falls ein Zeitgeber die Unterbrechung erzeugt, wird
eine Verzweigungsanweisung, die unmittelbar auf
eine Ladeanweisung folgt, haufiger ausgewertet als
eine Verzweigungsanweisung, die unmittelbar auf
eine Addieren-Anweisung folgt, da die Gesamtzeit,
die bendtigt wird, um sowohl die Verzweigungsan-
weisung als auch die Ladeanweisung auszufihren,
durch den Cache-Fehltreffer dominiert wird. Somit
besteht eine erhohte Wahrscheinlichkeit, dass wah-
rend eines Cache-Fehltreffers eine Zeitgeberunter-
brechung erfolgt und die Unterbrechung bei der
nachsten Anweisung verarbeitet wird. Der Anwei-
sungszahler weist dieses Problem nicht auf.

[0041] Wahrend relativ haufige Unterbrechungen zu
einem hoheren Niveau einer Voraussagegenauigkeit
fuhren, bringen haufige Unterbrechungen auch héhe-
re Mehrkosten mit sich. Man stellte fest, dass ein Un-
terbrechungsintervall von etwa 0,01 Sekunden oder
ein Anweisungszahlwert von etwa einer Unterbre-
chung pro 15 Millionen Anweisungen eine relativ
hohe Voraussagegenauigkeit erzeugt und dabei mi-
nimale Mehrkosten mit sich bringt.

[0042] Ein weiteres Verfahren zum Erzeugen der
Unterbrechung, die die Routine 44 einleitet, besteht
darin, verschiedene bedingungsbasierte Verzwei-
gungsanweisungen durch PAUSE-Anweisungen zu

ersetzen. Wenn die CPU 12 eine PAUSE-Anweisung
antrifft, leitet die Unterbrechungseinheit 34 die Routi-
ne 44 ein, die die PAUSE-Anweisung durch die rich-
tige Verzweigungsanweisung ersetzt, und wertet die
Verzweigungsanweisung aus, wie nachfolgend be-
schrieben wird. Unter Verwendung dieses Verfahrens
kann die Verzweigungsanweisung anfanglich durch
eine separate Unterbrechungsabarbeitungsroutine,
die Routine 44 oder ein anderes Programm durch
eine PAUSE-Anweisung ersetzt werden.

[0043] SchlieBlich kann die CPU 12 der Fig. 2 bei
einem anderen Ausfuhrungsbeispiel konfiguriert
sein, um Verzweigungsanweisungen selektiv basie-
rend auf einem Statusflag in dem Statusregister 27
als PAUSE-Anweisungen zu behandeln. Bei diesem
Ausfluhrungsbeispiel erzeugt eine Verzweigungsan-
weisung immer dann, wenn das Statusflag gesetzt
ist, eine Softwareunterbrechung, die durch die Routi-
ne 44 abgearbeitet wird. Dieses Ausflhrungsbeispiel
kann ferner in Verbindung mit entweder dem Anwei-
sungszahler 40 oder dem Zeitgeber 42 verwendet
werden, um das Statusflag nach einem bestimmten
Intervall oder einer bestimmten Anzahl von Anwei-
sungen zu setzen, wodurch an der ersten Verzwei-
gungsanweisung, die nach einem bestimmten Zeitin-
tervall oder Anweisungszahlwert angetroffen wird,
wie oben beschrieben, eine Softwareunterbrechung
erzeugt wird.

[0044] Unter erneuter Bezugnahme auf Fig. 3 be-
stimmt ein Entscheidungsblock 48, nachdem die
Routine 44 bei Block 46 gestartet wird, ob die anste-
hende Anweisung eine Verzweigungsanweisung ist.
Man beachte, dass der Block 48 nicht notwendig ist,
falls die CPU 12 konfiguriert ist, um eine Unterbre-
chung zu erzeugen, wenn eine Verzweigungsanwei-
sung ansteht, wie oben beschrieben wurde. Wenn sie
jedoch in einem Computersystem verwendet wird,
das nicht in der Lage ist, eine Unterbrechung auf der
Basis einer Verzweigungsanweisung zu erzeugen, ist
der Schritt 48 notwendig, um zu bestimmen, ob eine
bedingungsbasierte Verzweigungsanweisung durch
die Unterbrechung ,gefangen" wurde. Bei einer ubli-
chen Mischung aus Computeranweisungen machen
bedingungsbasierte Verzweigungsanweisungen
etwa 15% aller Anweisungen aus.

[0045] Falls die anstehende Anweisung keine be-
dingungsbasierte Verzweigungsanweisung ist, ver-
zweigt sich die Routine 44 zu Block 50, wird die un-
terbrechungsbasierte Voraussageeinstellroutine 44
beendet, und wird die Programmausfiihrung an dem
Punkt wieder aufgenommen, an dem der urspringli-
che Programmcode unterbrochen wurde. Falls die
anstehende Anweisung jedoch eine Verzweigungs-
anweisung ist, wertet ein Block 52 die Anweisung aus
und bestimmt, ob die Verzweigung genommen wird.
Unter Bezugnahme auf Eig. 2 kann dies erfolgen, in-
dem die auf dem LIFO-Stapel 32, oben beschrieben,

6/14



DE 698 25 350 T2 2005.07.21

gespeicherten Werte untersucht werden. Selbstver-
standlich werden Fachleute erkennen, wie eine an-
stehende Verzweigungsanweisung in einem be-
stimmten Computersystem auszuwerten ist, wenn
dieses Ausflihrungsbeispiel an eine Verwendung bei
jenem Computersystem angepasst ist.

[0046] Bei einem weiteren Ausflihrungsbeispiel be-
stimmt der Entscheidungsblock 48 zunachst, ob die
anstehende Anweisung eine Verzweigungsanwei-
sung ist. Falls sie eine Verzweigungsanweisung ist,
wird die ,Ja"-Verzweigung zu Block 52 genommen,
wie oben beschrieben ist. Falls sie keine Verzwei-
gungsanweisung ist, fihrt der Block 48 dann Anwei-
sungen aus, indem er Anweisungen emuliert, bis eine
Verzweigungsanweisung erreicht ist. Beim Verglei-
chen dieses Verfahrens mit dem oben beschriebenen
Verfahren kommt es zu Kompromissen, die beim Be-
stimmen, welches Verfahren effizienter ist, bewertet
werden mussen. Wie oben erwdhnt wurde, sind etwa
15% der Anweisungen Verzweigungsanweisungen,
so dass eine Unterbrechung im Durchschnitt ein Mal
pro sechs oder sieben Unterbrechungen eine Ver-
zweigungsanweisung fangt. Dagegen ist die Leis-
tungsfahigkeit der Emulation zwischen 20 und 100
Mal schlechter als eine direkte Anweisungsausfih-
rung, und bei einer typischen Anweisungsmischung
wird im Durchschnitt ein Mal pro funf oder sechs An-
weisungen eine Verzweigungsanweisung angetrof-
fen. Somit massen im Durchschnitt mehrere Anwei-
sungen emuliert werden, bevor eine Verzweigungs-
anweisung erreicht wird. Selbstverstandlich fuhrt
jede Unterbrechung letzten Endes zur Auswertung
einer Verzweigungsanweisung. Man beachte, dass
die Verzweigungsanweisung selbst nicht emuliert
werden muss, da sie direkt nach Beendigung der
Routine 44 ausgefihrt werden kann. Ob ein Imple-
mentierer entscheidet, Anweisungen zu emulieren,
um eine Verzweigungsanweisung zu erreichen, oder
zu unterbrechen, bis eine Verzweigungsanweisung
~.gefangen" wird, hangt von mehreren Faktoren ab,
z.B. der Effizienz der Routine 44, der Effizienz der
Emulation und dem Verhaltnis von Verzweigungsan-
weisungen zu anderen Anweisungen in der Anwei-
sungsmischung. In bestimmten Umgebungen kann
es wunschenswert sein, beide Verfahren bei demsel-
ben System anzuwenden, auf der Grundlage der Mi-
schung von Programmen, die ausgefiihrt werden,
und eine derartige Verwendung wird betrachtet.

[0047] Nachdem die Verzweigungsbedingung bei
Block 52 ausgewertet wurde, wird die Verzweigungs-
voraussage bei Block 54 ausgewertet. Bei Computer-
systemen, die Anweisungen gemafl dem Anwei-
sungssatz PA-RISC von Hewlett-Packard ausfiihren,
wird eine Verzweigungsvoraussage in einer Verzwei-
gungsanweisung auf der Basis der Reihenfolge der
Operanden codiert.

[0048] Ein Entscheidungsblock 56 entscheidet, ob

die Verzweigungsvoraussage richtig ist, indem er die
Verzweigungsvoraussage mit der tatsachlichen Ver-
zweigung, die gemalf der bei Block 52 durchgefihr-
ten Auswertung der Verzweigungsvoraussage ge-
nommen werden muss, vergleicht. Falls die Voraus-
sage richtig ist, verzweigt sich die Routine 56 zu
Block 58, der die Verzweigungshistorie aktualisiert,
und dann endet die Routine 56 bei Block 50. Falls die
Verzweigung falsch ist, aktualisiert der Block 60 die
Verzweigungshistorie und aktualisiert die Voraussa-
ge auf der Basis der Verzweigungshistorie.

[0049] Die Verzweigungshistorie wird verwendet,
um eine genauere Verzweigungsvoraussage zu lie-
fern. Sie ist jedoch bei diesem Ausflhrungsbeispiel
nicht erforderlich. Beispielsweise kann die Verzwei-
gungsvoraussage einfach geandert werden, wenn
sie falsch ist. Bendtigt wird lediglich die Voraussage
von dem Block 54 (die in der Verzweigungsanwei-
sung codiert sein kann) und die Auswertung der Ver-
zweigungsbedingung bei Block 52.

[0050] Ein einfacher Verzweigungshistorienalgorith-
mus andert eine Voraussage einfach, wenn die Vor-
aussage nach zwei aufeinander folgenden Auswer-
tungen falsch ist. Um zu veranschaulichen, wie die
Verzweigungshistorie die Verzweigungsvoraussage
erhdéhen kann, betrachte man eine Programmschlei-
fe, die 100 Mal durchlaufen wird und dann nicht
durchlaufen wird. Ohne eine Verzweigungshistorie
besteht eine Chance von 1 zu 100, dass die
Schleifendurchlaufverzweigungsanweisung bei der
letzten Iteration der Schleife ausgewertet wird, wo-
durch die Voraussage von ,Verzweigung" zu ,keine
Verzweigung" geandert wird, was keine gute Voraus-
sage fir die Verzweigungsanweisung ist. Bei einem
Verzweigungshistorienalgorithmus, wie er unmittel-
bar vorstehend beschrieben wurde, muss die
Schleifendurchlaufverzweigungsanweisung bei der
letzten Iteration der Schleife zwei Mal hintereinander
ausgewertet werden, um die Voraussage zu andern.
Die Wahrscheinlichkeit, dass dies eintritt, ist 1 zu
10.000. Somit wird die Genauigkeit der Voraussage,
die der Schleifendurchlaufverzweigungsanweisung
zugeordnet ist, durch eine Verzweigungshistorie er-
hoéht.

[0051] Um eine Verzweigungshistorie aufzuneh-
men, wenn eine Voraussage modifiziert wird, muss
die Verzweigungshistorie nattrlich gesichert werden.
Ein Codieren einer Verzweigungshistorie in der Ver-
zweigungsanweisung wurde von Hanan Potash in
der US-Patentschrift Nr. 4,435,756 offenbart. Wenn
eine Verzweigungshistorie jedoch in der Verzwei-
gungsanweisung gespeichert ist, muss die Verzwei-
gungsanweisung immer dann, wenn die Verzwei-
gung ausgewertet wird, in den Speicher zuriickge-
schrieben werden, auch wenn die Voraussage richtig
ist.

7/14



DE 698 25 350 T2 2005.07.21

[0052] Obwohl der Anweisungssatz PA-RISC von
Hewlett-Packard ein Verfahren zum Codieren einer
Verzweigungsvoraussage in einer Anweisung defi-
niert, definiert er kein Verfahren zum Codieren einer
Verzweigungshistorie innerhalb einer Verzweigungs-
anweisung. Bei einem Ausfiihrungsbeispiel werden
Verzweigungsvoraussagen in einer Historientabelle
in einem Programmspeicher gespeichert, der 32 K
Bits aufweist und adressiert wird, indem auf die
Adresse  der  Verzweigungsanweisung  eine
Hash-Funktion angewendet wird, um die Stelle in der
Tabelle zu bestimmen, die eine bestimmte Verzwei-
gungsanweisung darstellt. Bei hardwarebasierten
Verzweigungsvoraussageschemata des Standes der
Technik ist es Ublich, Historientabellen aufzuweisen,
die eine Grofle von etwa 0,5 bis 2,0 K aufweisen. Ei-
ner der Vorteile besteht darin, dass, da sie in Softwa-
re implementiert sein kann, es leicht ist, die Grolie
der Historientabelle einzustellen, um eine maximale
Leistungsfahigkeit zu erzielen.

[0053] Eine Verzweigungshistorie kann auf ver-
schiedene Weise codiert werden. Beispielsweise
kann das Bit in der Historientabelle, auf das Bezug
genommen wird, so definiert sein, dass es ein erster
Wert ist, falls die Verzweigung genommen wurde,
und dass es ein zweiter Wert ist, falls die Verzwei-
gung nicht genommen wurde. Alternativ dazu kann
das Bit, auf das Bezug genommen wurde, so definiert
sein, dass es ein erster Wert ist, falls sich die vorhe-
rige Voraussage als richtig erwies, und dass es ein
zweiter Wert ist, falls sich die vorherige Voraussage
als falsch erwies. Letzteres Codierungsschema weist
den Vorteil auf, dass es Probleme, die mit Aliasing
verbunden sind, verringert. Man betrachte zwei Ver-
zweigungsanweisungen, die auf Grund von Aliasing
demselben Eintrag in einer Verzweigungshistorienta-
belle zugeordnet sind. Da die meisten Verzweigungs-
voraussagen richtig sind, besteht eine hohe Wahr-
scheinlichkeit, dass beide Verzweigungsanweisun-
gen den Tabelleneintrag als ,vorherige Voraussage
richtig" codieren. Wenn dagegen das erstgenannte
Codierungsschema verwendet wird und eine Anwei-
sung die Voraussage ,genommen" aufweist und die
andere die Voraussage ,nicht genommen" aufweist,
ist es viel wahrscheinlicher, dass die zwei Verzwei-
gungsanweisungen einander stéren, wenn auf die
Verzweigungshistorientabelle zugegriffen wird. Fer-
ner liefert das zuletzt genannte Schema einen Vorteil
beim ersten Initialisieren der Verzweigungshistorien-
tabelle, da alle Eintrage der Tabelle auf ,vorherige
Voraussage richtig" initialisiert werden kénnen.

[0054] Ferner wird in Betracht gezogen, hoéher ent-
wickelte Verzweigungshistorienalgorithmen zu ver-
wenden. Beispielsweise kann eine Verzweigungshis-
torientabelle definiert sein, einen laufenden Durch-
schnitt eines Verzweigungsverhaltens fur eine be-
stimmte Verzweigungsanweisung zu halten und die
Voraussage auf der Basis des laufenden Durch-

schnitts zu aktualisieren. Fachleute werden erken-
nen, dass eine Vielzahl von Algorithmen verwendet
werden kénnen, um eine Verzweigungshistorie nach-
zuverfolgen und eine Verzweigungsvoraussage auf
der Basis der Verzweigungshistorie einzustellen. Da
das System in Software implementiert sein kann, ist
es fur einen Programmierer leicht, verschiedene Al-
gorithmen auszuprobieren, um zu bestimmen, wel-
cher in einer bestimmten Umgebung am besten funk-
tioniert. Ferner ist es moglich, komplexe Voraussage-
algorithmen zu verwenden, deren Implementierung
in Hardware nicht praktisch ware.

[0055] Wie zuvor erwahnt wurde, aktualisiert der
Block 58 die Historientabelle, wenn die Voraussage
richtig ist, und der Block 60 aktualisiert die Verzwei-
gungshistorientabelle und aktualisiert die Voraussa-
ge auf der Basis der aktualisierten Verzweigungshis-
torientabelle, wenn die Voraussage falsch ist. Bei der
Uberwaltigenden Mehrheit von Voraussage-/Histori-
enalgorithmen wirde man niemals eine Voraussage
andern, wenn sich die Voraussage als richtig erweist,
und es wird nicht in Betracht gezogen, dass jemand
dies beim Implementieren der vorliegenden Erfin-
dung zu tun wiinscht. Jedoch wird in Betracht gezo-
gen, auch die Voraussage in Block 58 zu andern, falls
dies durch einen bestimmten Algorithmus gefordert
wird.

[0056] Der Block 60 aktualisiert eine Verzweigungs-
historie und andert eventuell auch die Voraussage.
Falls, wie oben beschrieben wurde, die Voraussage
beispielsweise falsch ist, jedoch das vorherige Mal,
als die Verzweigungsanweisung ausgefiihrt wurde,
richtig war, wird die Voraussage eventuell nicht gean-
dert. Ein weiterer Grund, warum es vorteilhaft ist,
eine Verzweigungshistorie zu verwenden, um zu be-
stimmen, ob eine Verzweigungsvoraussage geandert
werden sollte, liegt darin, dass dies die Haufigkeit von
Verzweigungsvoraussagenanderungen tendenziell
verringert. Beim Verwenden des Anweisungssatzes
PA-RISC von Hewlett-Packard muss jedes Mal, wenn
eine Voraussage geandert wird, die Verzweigungs-
anweisung in den Speicher zuriickgeschrieben wer-
den. Somit ist es winschenswert, die Haufigkeit von
Voraussageanderungen auf das Ausmalf zu minimie-
ren, bei dem die Gesamtgenauigkeit von Voraussa-
gen nicht wesentlich beeinflusst wird.

[0057] Falls die Voraussage aktualisiert werden
muss, aktualisiert der Block 60 auch die Voraussage.
Wahrend der Anweisungssatz PA-RISC eine Voraus-
sage innerhalb einer Verzweigungsanweisung um-
fasst, wird auch erwogen, Voraussagen unter Ver-
wendung beliebiger anderer Verfahren, die in der
Technik bekannt sind, z.B. einer Voraussagetabelle,
zu codieren.

[0058] Beim Aktualisieren einer in eine Anweisung
codierten Voraussage muss der Anweisungs-Opera-

8/14



DE 698 25 350 T2 2005.07.21

tionscode aktualisiert werden, und die Anweisung
muss in den Speicher zuriickgeschrieben werden.
Unter Bezugnahme auf Fig. 1 kann eine Verzwei-
gungsanweisung in dem L1-Cache-Speicher 14, dem
L2-Cache-Speicher 16, dem Hauptspeicher 18, der
Virtueller-Speicher-Speicherplatte 22 und der Dauer-
speicherplatte 20 gespeichert werden. Obwohl ein
Programmierer eventuell nicht wiinscht, die Verzwei-
gungsanweisung in jede dieser Speichervorrichtun-
gen zuriickzuschreiben, liegt es sicherlich innerhalb
des Schutzumfangs der Erfindung, dies zu tun.

[0059] Bei einem Ausfiuhrungsbeispiel werden Ver-
zweigungsanweisungen in den L1-Cache-Speicher
14, den L2-Cache-Speicher 16 und den Hauptspei-
cher 18 zurlickgeschrieben, jedoch nicht in die Dau-
erspeicherplatte 20 oder die Virtueller-Spei-
cher-Speicherplatte 22. Ein Zurtickschreiben von Da-
ten in die Dauerspeicherplatte 20 fiihrt zu einem mi-
nimalen Anstieg der Leistungsfahigkeit und kann
eine Vielzahl von Problemen bezliglich eines Verwal-
tens eines ausfiihrbaren Codes mit sich bringen. Fer-
ner ist es Ublich, dass mehrere Benutzer Programm-
dateien gemeinsam verwenden, so dass es nicht
moglich ware, dass man jeden Benutzer eine Ver-
zweigungshistorie in gemeinsamen Dateien spei-
chern lasst. Jedoch kann es in bestimmten Situatio-
nen vorteilhaft sein, aktualisierte Verzweigungsvor-
aussagen auf die Platte 20 zuriickzuspeichern.

[0060] Obwohl ein Zurtickschreiben von Verzwei-
gungsanweisungen in die Virtueller-Speicher-Spei-
cherplatte 22 mit weniger Problemen verbunden ist,
fuhrt dies zu einem geringen Anstieg der Leistungs-
fahigkeit und bringt betrachtliche Mehrkosten mit
sich. Dagegen fihrt ein Zurlckschreiben von Ver-
zweigungsanweisungen in den L1-Cache-Speicher
14, den L2-Cache-Speicher 16 und den Hauptspei-
cher 18 zu einem betrachtlichen Anstieg der Leis-
tungsfahigkeit.

[0061] Verschiedene Computersysteme verwenden
verschiedene Techniken, um einen Speicher zu ver-
walten. Beispielsweise ist es Ublich, eine Speicher-
marke einem Block eines Speichers in einem Ca-
che-Speicher zuzuordnen, um anzugeben, ob dieser
Block einfach aus dem Cache-Speicher verworfen
werden kann, wenn er nicht mehr benétigt wird, oder
in den Hauptspeicher zuriickgeschrieben werden
muss, um eine Anderung in dem Speicherblock wi-
derzuspiegeln. Fachleute werden erkennen, wie die-
se Techniken zu verwenden sind, um die Erfindung
nach Wunsch zu implementieren. Falls beispielswei-
se gewunscht wird, gednderte Verzweigungsanwei-
sungen lediglich in den L1-Cache-Speicher 14 und
den L2-Cache-Speicher 16, jedoch nicht in den
Hauptspeicher 18 zu schreiben, kann das Dirty-Bit ei-
nes Blocks, der eine gednderte Verzweigungsanwei-
sung enthalt, auf dem L2-Cache-Speicher 16 leer ge-
lassen werden, um anzugeben, dass der Block ver-

worfen werden kann und nicht in den Hauptspeicher
18 zurlickgeschrieben werden muss. Falls, alternativ
dazu, das Dirty-Bit gesetzt wird, muss der Block (und
die geanderte Verzweigungsanweisung mit der aktu-
alisierten Voraussage) in den Hauptspeicher 18 zu-
rickgeschrieben werden, bevor der Speicherblock,
der die Verzweigungsanweisung enthalt, verschoben
wird, wodurch die aktualisierte Verzweigungsvoraus-
sage bewahrt wird, jedoch zusatzliche Rechenres-
sourcen verbraucht werden.

[0062] Es kann auch wiinschenswert sein, verschie-
dene Codetypen auf verschiedene Weise zu behan-
deln. Beispielsweise kann es wiinschenswert sein,
Verzweigungsvoraussagen in Bezug auf einen Kern-
code, jedoch nicht einen Benutzercode, einzustellen.
Desgleichen kann es sein, dass ein Programmierer
eine Verzweigungsvoraussage abschalten méchte,
wahrend er bei einem Programm eine Fehlersuche
durchfihrt, um zu verhindern, dass sich Verzwei-
gungsanweisungen wahrend der Programmausflh-
rung andern. Fachleute werden Situationen erken-
nen, in denen es wiinschenswert ist, das System zu
benutzen oder nicht zu benutzen, und werden in der
Lage sein, Programmierern und Computerbenutzern
entsprechende Schnittstellen zur Durchfiihrung be-
reitzustellen.

[0063] Nachdem der Block 60 die Verzweigungshis-
torie aktualisiert hat und moéglicherweise die Verzwei-
gungsvoraussage aktualisiert hat, verzweigt sich die
Routine 44 zu Block 50, und die Routine endet.

[0064] Wie aus dem Vorstehenden hervorgeht, kdn-
nen die beschriebenen Ausflhrungsbeispiele die fol-
genden Merkmale liefern:

ein System und eine Vorrichtung zum dynamischen
Einstellen von Verzweigungsvoraussagen durch Un-
terbrechen einer CPU und Untersuchen einer anste-
henden Verzweigungsvoraussage;

die Vorteile von Software- und Hardwaretechniken;
sie kénnen unter Verwendung von Software imple-
mentiert werden, und sie kdnnen auch in Hardware
oder Mikrocode implementiert werden. Wenn sie in
Software implementiert sind, sind sie leicht zu konfi-
gurieren. Parameter wie z.B. Unterbrechungsintervall
und HistorientabellengroRe kdnnen ohne weiteres
eingestellt, und die Anderungen der Leistungsfahig-
keit kdnnen beobachtet werden, um zu erméglichen,
dass das System auf eine optimale Leistungsfahig-
keit abgestimmt wird. In der Regel ist dies bei einer
hardwarebasierten Verzweigungsvoraussage des
Standes der Technik nicht méglich;

sie kénnen auf Systemen implementiert sein, die ent-
worfen sind, um eine statische softwarecodierte Ver-
zweigungsvoraussage zu interpretieren, wodurch
derartigen Systemen eine dynamische Verzwei-
gungsvoraussage bereitgestellt wird;

sie kdnnen groRere Historien- und Voraussagespei-
cher bereitstellen als Verzweigungsvoraussagesche-

9/14



DE 698 25 350 T2 2005.07.21

mata des Standes der Technik, da diese Speicher als
Softwaredatenstrukturen definiert sein kénnen;
obwohl sie Voraussagen Uber die Zeit dynamisch ein-
stellen kénnen, kénnen sie dies bei einer viel niedri-
geren Haufigkeit tun als Voraussageschemata des
Standes der Technik. Im Stand der Technik tendierte
eine Verzweigungsvoraussage dazu, sich entweder
bei einem Extrem oder bei einem anderen zu befin-
den. Eine softwarebasierte Verzweigungsvoraussa-
ge des Standes der Technik erzeugte einmalig Vor-
aussagen und verriegelte sie dann in die Codierung
der Anweisungen, wo die Voraussage wahrend der
Ausfuhrung nicht gedndert wurde. Dagegen wertete
eine hardwarebasierte Verzweigungsvoraussage des
Standes der Technik eine Verzweigungsvoraussage
jedes Mal, wenn eine Verzweigungsanweisung aus-
gefuhrt wurde, aus. Es ist ein betrachtlicher Umfang
an Hardware erforderlich, um diese Funktion auszu-
fuhren, ohne die Leistungsfahigkeit zu verringern.
Ferner ist, falls die Voraussage tendenziell stabil ist
(und das sind die meisten Voraussagen), wenig ge-
wonnen, indem die Voraussage jedes Mal, wenn die
Verzweigungsanweisung ausgefiihrt wird, ausgewer-
tet wird, und falls die Voraussage oft abwechselt, so
bietet auch ein stéandiges Andern der Voraussage kei-
nen betrachtlichen Anstieg der Leistungsfahigkeit;
sie kdnnen ein Gleichgewicht zwischen den beiden
Polen schaffen, die darin bestehen, eine Voraussage
niemals zu aktualisieren, und eine Aussage jedes
Mal, wenn eine Verzweigungsanweisung ausgefuhrt
wird, zu aktualisieren. Bei einem der erorterten Aus-
fuhrungsbeispiele wird die CPU lediglich einmal pro
15 Millionen Anweisungen unterbrochen. Da die Ver-
zweigungsvoraussage einer Verzweigungsanwei-
sung so selten ausgewertet wird, ist es moglich, zu-
satzliche Zeit darauf zu verwenden, die Voraussage
zu aktualisieren, ohne betrachtliche Mehrkosten zu
verursachen;

eine relativ seltene Auswertung kann auch ein Vorteil
sein, wenn eine Implementierung in Hardware vor-
liegt. Eine derartige Implementierung kénnte viel ein-
facher sein als bekannte Hardware-Verzweigungsvo-
raussagetechniken, da ein Auswerten und Aktualisie-
ren der Voraussage betrachtlich langer dauern kann,
ohne die Gesamtleistungsfahigkeit des Systems zu
beeinflussen. Da weniger Hardware fir die Verzwei-
gungsvoraussage reserviert ist, steht mehr Hardware
daflr zur Verfiigung, andere Funktionen der CPU zu
beschleunigen;

sie kdnnen eine betrachtliche Verbesserung der Leis-
tungsfahigkeit gegeniiber bekannten Verzweigungs-
voraussageschemata liefern. Simulationen ergaben
eine 4- bis 8%ige Verbesserung gegentber bekann-
ten Hardware-Voraussageschemata und eine 10- bis
15%ige Verbesserung gegenlber bekannten Softwa-
re-Voraussageschemata.

[0065] Die Offenbarungen in der US-Patentanmel-
dung Nr. 08/840,080, deren Prioritat die vorliegende
Anmeldung beansprucht, und in der Zusammenfas-

sung, die dieser Anmeldung beiliegt, sind durch Be-
zugnahme in das vorliegende Dokument aufgenom-
men.

Patentanspriiche

1. Ein Verfahren zum Einstellen einer Verzwei-
gungsvoraussage, die einer Verzweigungsanwei-
sung, die in einem Segment eines Programmcodes
enthalten ist, zugeordnet ist, wahrend der Programm-
code durch eine Zentralverarbeitungseinheit ausge-
fuhrt wird, wobei das Verfahren folgende Schritte um-
fasst: wiederkehrendes Unterbrechen der Ausfiih-
rung des Programmcodes, wenn die Ausfiihrung der
Verzweigungsanweisung durch die Zentralverarbei-
tungseinheit ansteht; Ausfihren einer Voraussage-
einstellroutine (46), die die Verzweigungsvoraussage
aktualisiert; und Wiederaufnehmen der Ausflhrung
des Programmcodes.

2. Ein Verfahren gemaf Anspruch 1, bei dem das
Unterbrechen der Ausflihrung des Programmcodes,
wenn eine Ausfihrung der Verzweigungsanweisung
durch die Zentralverarbeitungseinheit ansteht, fol-
gende Schritte umfasst: Initialisieren eines Zeitge-
bers auf ein Zeitintervall oder eines Anweisungszah-
lers auf einen Anweisungszahlwert; Warten, bis das
Zeitintervall ablauft, oder ein Zahlen von Anweisun-
gen, wahrend sie ausgefihrt werden; und Unterbre-
chen der Ausflihrung des Programmcodes, wenn das
Zeitintervall abgelaufen ist oder wenn die Anzahl aus-
geflhrter Anweisungen gleich dem Anweisungszahl-
wert ist.

3. Ein Verfahren gemaly Anspruch 2, das den
Schritt des Wartens auf die Verzweigungsanweisung,
nachdem das Zeitintervall abgelaufen ist oder nach-
dem der Anweisungszahlwert erreicht wurde, um-
fasst.

4. Ein Verfahren gemaf Anspruch 2 oder 3, bei
dem der Zeitgeber auf ein zufalliges Zeitintervall initi-
alisiert wird oder der Anweisungszahler auf einen
willktrlichen Anweisungszahlwert initialisiert wird.

5. Ein Verfahren gemaf einem der vorhergehen-
den Anspriche, bei dem das Unterbrechen der Aus-
fuhrung des Programmcodes, wenn eine Ausfiihrung
der Verzweigungsanweisung durch die Zentralverar-
beitungseinheit ansteht, folgende Schritte umfasst:
a) Ausfihren einer Pauseanweisung, die eine Aus-
fuhrung des Programmcodes unterbricht; und Erset-
zen der Pauseanweisung durch die Verzweigungsan-
weisung, oder
b) Setzen eines Flags, das bewirkt, dass die Verzwei-
gungsanweisung eine Unterbrechung erzeugt; und
Unterbrechen der Ausflihrung des Programmcodes,
wenn die erste Pauseanweisung nach dem Setzen
des Flags angetroffen wird.

10/14



DE 698 25 350 T2 2005.07.21

6. Ein Verfahren gemal einem der vorhergehen-
den Anspriche, bei dem das Ausfihren einer Vor-
aussageeinstellroutine, die die Verzweigungsvoraus-
sage aktualisiert, folgende Schritte umfasst: Auswer-
ten einer Verzweigungsbedingung der Verzwei-
gungsanweisung, um zu bestimmen, ob sich die Ver-
zweigungsanweisung verzweigen wird; Auswerten
einer der Verzweigungsanweisung zugeordneten
Verzweigungsvoraussage; Bestimmen, ob die Ver-
zweigungsvoraussage richtig oder falsch ist; und
a) Umschalten der Verzweigungsvoraussage, falls
die Verzweigungsvoraussage falsch ist, oder
b) Sichern, ob die Verzweigungsvoraussage richtig
oder falsch ist, als Verzweigungshistorie;
Aktualisieren der Verzweigungsvoraussage auf der
Grundlage sowohl der Verzweigungshistorie als auch
der Ergebnisse des Schrittes des Bestimmens, ob die
Verzweigungsvoraussage richtig oder falsch ist.

7. Ein Verfahren gemaf Anspruch 6, bei dem der
Teilschritt b) ein Umschalten der Verzweigungsvor-
aussage umfasst, falls die Voraussage falsch ist,
wenn sie zweimal hintereinander ausgewertet wird.

8. Ein Verfahren gemaf Anspruch 1, bei dem das
Ausfiuhren einer Voraussageeinstellroutine, die die
Verzweigungsvoraussage  aktualisiert, folgende
Schritte umfasst: Untersuchen einer anstehenden
Anweisung, um zu bestimmen, ob die anstehende
Anweisung die Verzweigungsanweisung ist; und
a) Wiederaufnehmen der Ausfuhrung des Pro-
grammcodes, falls die anstehende Anweisung nicht
die Verzweigungsanweisung ist, oder
b) Emulieren einer Ausfihrung von Anweisungen von
dem Programmcode, falls die anstehende Anwei-
sung nicht die Verzweigungsanweisung ist, bis die
Verzweigungsanweisung erreicht ist.

9. Eine Zentralverarbeitungseinheit, die entwor-
fen ist, um Computeranweisungen auszufiihren, und
die eine Unterbrechungseinheit (34) umfasst, die
wirksam ist, um gemaR dem Verfahren eines der an-
stehenden Anspriiche eine Verzweigungsvoraussa-
geeinstellroutine einzuleiten, die ansprechend auf
eine Unterbrechung, die eine anstehende Verzwei-
gungsanweisung auswertet und eine Verzweigungs-
voraussage, die der anstehenden Verzweigungsan-
weisung zugeordnet ist, auf der Grundlage dessen
aktualisiert, ob die Verzweigungsvoraussage richtig
ist.

10. Eine Zentralverarbeitungseinheit gemal An-
spruch 9, bei der die Unterbrechungseinheit (34) ei-
nen Zeitgeber (42), der wirksam ist, um ein Zeitinter-
vall zu messen und die Unterbrechung zu erzeugen,
wenn das Zeitintervall abgelaufen ist, und/oder einen
Anweisungszahler (40) umfasst, der auf einen An-
weisungszahlwert initialisiert werden kann und wirk-
sam ist, um die Unterbrechung zu erzeugen, nach-
dem eine Anzahl von Anweisungen, die ausgeflihrt

wurden, gleich dem Anweisungszahlwert ist.

11. Eine Zentralverarbeitungseinheit gemall An-
spruch 9 oder 10, die folgendes Merkmal aufweist:
ein Statusflag (27), das wirksam ist, um die Unterbre-
chungseinheit zu veranlassen, die Unterbrechung zu
erzeugen, wenn die Verzweigungsanweisung an-
steht.

Es folgen 3 Blatt Zeichnungen

11/14



DE 698 25 350 T2 2005.07.21

1 L1-CACHE-SPEICHER

e L2-CACHE-SPEICHER

/J HAUPTSPEICHER

Anhangende Zeichnungen

I

VIRTUELLER-
SPEICHER-
SPEICHERPLATTE

DAUER-
SPEICHER-
PLATTE

22

FIG. 1

12/14



DE 698 25 350 T2 2005.07.21

R(0)
ARITHMETIK-
R(1) LOGIK-EINHEIT
, — s~ 30
l -
! REGISTER 0 " .
R(N-2)
R(N-1) Tr
PROGRAMM- STATUS- J L
ZAHLER REGISTER
PZ STR R(N-1) (Int)
~——26 27/ R(N-2) (Int)
ANWEISUNGS-
REGISTER . 5 STAPEL
AR S
28 R(0) (int)
UNTERBRECHUNGSEINHEIT /~ 34 STR (D)
36 — 42— "
[ARQ-LEITUNG] [ ZEITGEBER | 2 (nt
ANW.ZAHLER | | PAUSE-ANW. AR (int)
40— 38—
v
12"
AN SPEICHER

FIG. 2

13/14




DE 698 25 350 T2 2005.07.21

' START
STARTE UNTERBRECHUNGSBASIERTE

VORAUSSAGEEINSTELLROUTINE a5

48

L1

IST DIESE
ANWEISUNG EINE
VERZWEIGUNGS-
ANWEISUNG?

JA
4

WERTE VERZWEIGUNGSBEDINGUNG AUS —

v
WERTE VORAUSSAGE AUS —

IST
VERZWEIGUNGS-
VORAUSSAGE
KORREKT?

60
NElN / [58

NEIN

JA

AKTUALISIERE
VERZWEIGUNGSHISTORIE AKTUALISIERE
—— VERZWEIGUNGS-
AKTUALISIERE VORAUSSAGE AUF DER HISTORIE
BASIS DER AKTUALISIERTEN

VERZWEIGUNGSHISTORIE

1 /0

BEENDE UNTERBRECHUNGSBASIERTE
VORAUSSAGEEINSTELLROUTINE

aad FIG.3

14/14



	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

