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NON - UNIFORM OPTIMAL SURVEY DESIGN survey utilizing 12 streamers . FIG . 1A shows a shot interval 
PRINCIPLES distribution from a single gun . FIG . 1B shows cable con 

figuration . 
CROSS - REFERENCE TO RELATED FIGS . 2A - 2B illustrate an embodiment of non - uniform 

APPLICATIONS 5 optimal sampling design utilizing 16 streamers . FIG . 2A 
shows a shot interval distribution . FIG . 2B shows cable 

This application is a continuation of U.S. application Ser . configuration . 
No. 15 / 641,916 , filed Jul . 5 , 2017 which claims benefit of FIG . 3 illustrates an onboard quality control ( QC ) for 

continuous records . U.S. Patent Application Ser . No. 62 / 506,859 filed May 16 , 
2017 , each of which is incorporated in its entirety by FIG . 4 illustrates implementation of non - uniform optimal 
reference . sampling shot spacing in the field . 

FIGS . 5A - 5B illustrate non - uniform optimal sampling 
FIELD OF THE INVENTION shot design statistics from a production survey . FIG . 5A 

shows a distribution of shot intervals . FIG . 5B shows a 
15 distribution of shot time intervals . The present invention relates generally to seismic imag FIGS . 6A - 6D illustrate a comparison of a non - uniform ing . More particularly , but not by way of limitation , embodi optimal sampling shot design to a conventional regular ments of the present invention include tools and methods for design on deblending quality . FIG . 6A shows data acquired designing and implementing seismic data acquisition using with conventional regular design . FIG . 6B shows corre non - uniform optimal sampling principles . 20 sponding deblending result of FIG . 6A . FIG . 6C shows data 

acquired with a non - uniform optimal sampling shot design . BACKGROUND OF THE INVENTION FIG . 6D shows corresponding deblending result of FIG . 6C . 

10 

Compressive sensing ( CS ) is an emerging field in signal DETAILED DESCRIPTION 
processing that has applications in many different disciplines 25 
including seismic surveying . Traditionally , Nyquist - Shan- Reference will now be made in detail to embodiments of 
non sampling theorem established the sufficient condition the invention , one or more examples of which are illustrated 
for a sampling rate that permits a digital signal to capture all in the accompanying drawings . Each example is provided by 
the information from a continuous - time signal of finite way of explanation of the invention , not as a limitation of the 
bandwidth . Compressive sensing provides a new paradigm 30 invention . It will be apparent to those skilled in the art that 
of sampling which requires far fewer measurements com various modifications and variations can be made in the 
pared to Nyquist - Shannon sampling criterion . Thus far , present invention without departing from the scope or spirit 
compressive sensing theory suggests that successful signal of the invention . For instance , features illustrated or 
recovery can be best achieved through random measure described as part of one embodiment can be used on another 
ments together with sparsity of the true signal . However , 35 embodiment to yield a still further embodiment . Thus , it is 

intended that the present invention cover such modifications applying random sampling to seismic surveys raises many and variations that come within the scope of the invention . concerns and uncertainties . In signal processing , compressive sensing ( CS ) asserts 
that the exact recovery of certain signals can be obtained BRIEF SUMMARY OF THE DISCLOSURE 40 from far fewer measurements than as required by Shannon's 
sampling criterion . Generally speaking , applicability of The present invention relates generally to seismic imag compressive sensing for imaging depends on sparsity of ing . More particularly , but not by way of limitation , embodi signals and incoherence of sampling waveforms . ments of the present invention include tools and methods for The present invention provides systems and methods for 

designing and implementing seismic data acquisition using 45 acquiring seismic data with relatively few measurements by non - uniform optimal sampling principles . utilizing compressive sensing principles . These principles 
One method of acquiring seismic data includes determin- include , but are not limited to , non - uniform optimal sam 

ing a non - uniform optimal sampling design that includes a pling ( NUOS ) design , seismic data reconstruction of data 
compressive sensing sampling grid ; placing a plurality of acquired using NUOS design , and blended source acquisi 
source lines or receiver lines at a non - uniform optimal line 50 tion with NUOS design . These principles have been applied 
interval ; placing a plurality of receivers or nodes at a to real - world seismic survey scenarios including marine and 
non - uniform optimal receiver interval ; towing a plurality of ocean bottom seismic ( OBS ) and land surveys to increase 
streamers attached to a vessel , wherein the plurality of data bandwidth and resolution . 
streamers is spaced apart at non - uniform optimal intervals Non - Uniform Optimal Sampling Design 
based on the compressive sensing sampling grid ; firing a 55 One of the goals of non - uniform optimal sampling design 
plurality of shots from one or more seismic sources at is to find an optimal sampling grid that favors seismic data 
non - uniform optimal shot intervals ; and acquiring seismic reconstruction . Non - uniform optimal sampling design pro 
data via the plurality of receivers or nodes . vides a mathematical framework for optimizing both source 

and receiver configuration designs . As a summary , the 
BRIEF DESCRIPTION OF THE DRAWINGS 60 following mathematical description of non - uniform optimal 

sampling design is provided . 
A more complete understanding of the present invention The forward model for seismic data reconstruction can be 

and benefits thereof may be acquired by referring to the described as 
follow description taken in conjunction with the accompa 

b = Dx , b = RS * x , x = Su , ( 1 ) nying drawings in which : 
FIGS . 1A - 1B illustrate an embodiment of non - uniform where b represents acquired seismic data on an irregular 

optimal sampling design as applied to a marine seismic observed grid and u represents reconstructed seismic data on 
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a finer regular reconstructed grid . The operator R is a Ideally with a proper non - uniform optimal sampling design , 
restriction / sampling operator , which maps data from the we can increase the unaliased bandwidth by a factor of 2-4 
reconstructed grid to the observed grid . If S is a suitably in a certain direction . 
chosen dictionary ( possibly over - complete ) , x is a sparse 
representation of u which has a small cardinality . EXAMPLE 1 

Mutual coherence is a measure of incoherency between 
sparsity basis S and sampling operator R. A high - fidelity A production streamer survey is described in this example 
data reconstruction requires the mutual coherence to be as to illustrate design and reconstruction of marine seismic data 
small as possible . Assuming D = RS * can be written in a in accordance with the present invention . A vessel equipped 
matrix form and d ; represent different columns in D , the 10 with a flip - flop source shooting every 18.75 m ( on average ) 
mutual coherence u can be defined as , was used to acquire 3D streamer survey . Total of 12 stream 

ers were towed behind the vessel . Each streamer was 5 km 
in length and 600 m in spread width . 

u ( R , S ) = maxld ; djl , i , j = 1 ( 2 ) Non - uniform optimal sampling source design was utilized 
to improve in - line sampling . Non - uniform optimal sampling 
cable design was utilized to improve cross - line sampling . 

This is equivalent to the absolute maximum off - diagonal Design considerations include , but are not limited to , mini 
element of the Gram matrix , G = D * D . mum airgun cycle time , minimum cable separation , spread 
The relationship between mutual coherence and success- 20 balancing , and the like . FIGS . 1A - 1B illustrates non - uni 

ful data reconstruction is appealing for analysis . Typically , form optimal sampling design principles as applied to a 12 
for seismic applications , this type of analysis would be cable configuration . Referring to FIG . 1A , a shot interval 
prohibitively expensive to compute . However , if S is distribution from a single gun according to an embodiment 
allowed to be a Fourier transform , then the definition of is plotted . While FIG . 1A shows shot interval ranging from 
mutual coherence in equation 2 can be simplified to 25 about 25 m to 50 m , other distance ranges may be consistent 

with NUOS design depending on a number of factors such 
as the cable configuration . FIG . 1B shows a cable configu 

M ( R ) = maxfil ( 3 ) ration according to an embodiment . As shown , the cable 
interval may have non - uniform spacing ( ranging from about 

30 25 m to about 200 m ) . FIGS . 2A - 2B illustrate non - uniform 
where f , are Fourier coefficients of diag ( R * R ) . This can be optimal sampling design principles as applied to a 16 cable 
interpreted as finding the largest non - DC Fourier component configuration . As shown in FIG . 2A , the shot interval may 
of a given sampling grid , which can be carried out efficiently range from about 10 m to about 31 m . In some embodiments , 
using the fast transform . Equation 3 can serve as a proxy for the shot interval may range from about 5 m to about 100 m . 
mutual coherence when S is some over - complete dictionary , 35 FIG . 2B shows non - uniform spacing of a 16 cable configu 

ration in accordance with an embodiment . such as curvelet and generalized windowed Fourier trans 
form ( GWT ) . Blended Source Acquisition 

In conventional seismic data acquisition , sources are Given the estimate for mutual coherence in equation 3 , the activated with adequate time intervals to ensure no interfer non - uniform optimal sampling design seeks a sampling grid 40 ence between adjacent sources . The acquisition efficiency is 
which minimizes the mutual coherence as follows , limited by equipment and operational constraints . In par 

ticular , the source side sampling is often coarse and aliased 
if long record lengths are needed to obtain energy from far 

minu ( R ) = minmaxfil ( 4 ) offsets . 
In blended source acquisition , multiple sources may be 

activated within a single conventional shotpoint time win 
The optimization problem in equation 4 can be effectively dow . Overlapping sources in time allows dramatic reduction 

solved by , for example randomized greedy algorithms such in time associated with acquisition . It can also improve 
as GRASP ( Feo and Resende , 1995 ) . In practice , the non- spatial sampling by increasing shot density . The tradeoff is 
uniform optimal sampling design can be applied to both 50 that sources are blended together and generate so - called 
source and receiver sides . “ blending noise ” . The process of separating sources and 
Seismic Data Reconstruction forming interference - free records is commonly referred to as 

“ deblending . ” 
Seismic data acquired from the non - uniform optimal For marine towed streamer and ocean bottom seismic 

sampling design can be reconstructed to a finer grid by 55 ( OBS ) , blended source acquisition can be carried out using solving an analysis - based basis pursuit denoising problem : multiple source vessels shooting simultaneously , or a single 
source vessel firing at a short time interval . Early marine 
simultaneous source experiment used an extra source vessel 

min || Sul , s.t. || Ru – b1 | 2 so . sailing behind the streamer vessel . Two sources were dis 
60 tance - separated and F - K filter was applied to separate shots . 

Later on , the concept of introducing small random time 
Here o is some approximation of noise level in the acquired delays between each pair of sources was developed . Under 
data b . While conventional interpolation techniques focus on this time - dithering scheme , interference between two 
filling in acquisition holes or increasing fold , CS - based data sources became asynchronous incoherent noise and could be 
reconstruction improves sampling and extends unaliased 65 suppressed during conventional pre - stack time migration . 
bandwidth . Seismic data must be acquired in an irregular Recent developments proposed the time - scheduling method 
fashion in order to employ CS - based data reconstruction . for OBS which required little coordination between sources . 
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Each source was assigned a set of random source initiation statistics from a production survey designed with non 
times and shots were taken following these times . uniform optimal sampling shot spacing . FIG . 5A plots a 

Both time - dithering and time - scheduling methods distribution of shot intervals that ranged from 15 m to 35 m . 
required extra manipulation of shot time and sometimes FIG . 5B plots a distribution of rendered shot time intervals 
even vessel speed , which further complicates field operation 5 that ranged from 6 s to 14 s . 
and lead to potential human errors . Blended source acqui- FIGS . 6A - 6D compare data acquired with a NUOS design 
sition can also be applied to NUOS . The NUOS scheme puts and a conventional regular design , both from the same 
no constraints on shot time and makes minimal operational survey . Fifteen seconds record length was kept to preserve 
changes compared to conventional seismic acquisition . Both far offsets and converted waves . FIG . 6A shows a receiver 
sampling density and deblending quality can benefit from a 10 gather , as part of a velocity line , with shots spaced at regular 
joint inversion of data acquired using a NUOS design . 25 m intervals . As shown , self - blending occurred after 10 s . 

For blended source acquisition , the recording system The interference pattern was somewhat incoherent even with 
should be capable of recording continuously . Data should be a regular shot spacing , thanks to natural variations in vessel 
delivered in a format of continuous records instead of speed . FIG . 6C shows the same receiver with production 
conventional shot gathers . Each continuous record or time 15 shots optimally spaced at nominal 25 m intervals . The 
segment is expected to contain receiver information and interference from self - blending came in as early as 7.5 s and 
record start and end time stamps within at least microsecond spread over a longer time interval . The incoherence of 
precision . The source positioning data together with shot blending noise was significantly enhanced by the NUOS 
times can be stored in navigation files modified from one of design . 
the standard formats ( e.g. , SPS , P1 / 90 , P1 / 11 , etc ) . To better 20 The same inversion - based deblending method was 
assist inversion - based deblending , time stamps from all applied on both datasets for a fair comparison . The method 
shots should be recorded including production , non - produc- solves an analysis - based 1 , minimization using the non 
tion and infill shots , also within at least microsecond preci- monotone ADM ( Li et al . , 2013b ) . FIGS . 6B and 6D show 
sion . the corresponding deblending results . For data with a regular 

Routine onboard QC procedures can still be employed . 25 design , we see a fair amount of blending noise leaked 
Continuous records can be examined onboard by displaying through deblending , due to insufficient incoherence to sepa 
the “ time - segment gather ” ( i.e. , data within a certain time rate signal from noise . On the other hand , a much improved 
window sorted by receivers ) . In this domain , blended shots deblending result was achieved from data with a NUOS 
are observed as coherent energy , regardless of uniform or design . The blending noise was reduced to a minimum while 
non - uniform shooting patterns . FIG . 3 illustrates a snapshot 30 primaries were intact . This result indicates that the NUOS 
of onboard QC , showing a time - segment gather over the design was preferable for the inversion - based deblending 
entire receiver patch . The opposite - trending moveouts indi- method . A similar conclusion has been observed from dual 
cate shots that were activated from two distanced sources . vessel simultaneous shooting . 
This survey employed dual - vessel simultaneous shooting Although the systems and processes described herein 
with NUOS design and led to a reduction in overall survey 35 have been described in detail , it should be understood that 
time , including time for receiver deployment , mobilization various changes , substitutions , and alterations can be made 
and demobilization . Onboard processing was kept to a without departing from the spirit and scope of the invention 
minimum to avoid damaging the integrity of the continuous as defined by the following claims . Those skilled in the art 
records . may be able to study the preferred embodiments and identify 
CS - Based Survey Design Principle 40 other ways to practice the invention that are not exactly as 

Separating blended sources can be better solved under a described herein . It is the intent of the inventors that 
CS framework . Forward solutions have been proposed by variations and equivalents of the invention are within the 
exploiting the sparsity of seismic data , such as the general- scope of the claims while the description , abstract and 
ized windowed Fourier . The non - uniform sampling scheme drawings are not to be used to limit the scope of the 
favors the inversion - based deblending by promoting the 45 invention . The invention is specifically intended to be as 
incoherence of blending noise . For seismic acquisition , a broad as the claims below and their equivalents . 
measure of incoherence ( “ mutual coherence ” ) is used to What is claimed is : 
guide the non - uniform survey design . Referring back to 1. A method of acquiring seismic data , the method com 
equations 2-4 , a proxy of mutual coherence can be effec- prising : 
tively computed using the Fourier transform . Non - uniform 50 determining a non - uniform optimal sampling design by 
optimal sampling minimizes mutual coherence to obtain an calculating a compressive sensing sampling grid that 
optimal survey design . minimizes mutual coherence ; 

determining a placement of a plurality of receiver lines at 
EXAMPLE 2 a non - uniform optimal line interval according to the 

non - uniform optimal sampling design ; 
A field trial was conducted in the early stage of develop- determining a placement of a plurality of receivers at a 

ment . FIG . 4 illustrates an aspect of the field trial . Each red non - uniform optimal receiver interval according to the 
dot represents a pre - plot shot location derived from the non - uniform optimal sampling design , and 
optimization process , and each red box represents a shot obtaining seismic data according to the non - uniform 
point in the field . Through the course of the field trial , 0.5 m 60 optimal sampling design , the seismic data captured via 
inline accuracy was achieved for 99 : 6 % shots . The field trial the plurality of receivers in response to at least one of 
removed barriers to implementing NUOS design on shots in a plurality of shots fired from one or more seismic 
production surveys . sources at non - uniform optimal shot intervals , wherein 

For blended source acquisition , we rely on the non- the plurality of receivers are operably placed at a 
uniform design in space , which by nature gives rise to 65 non - uniform optimal receiver interval . 
irregularity in time , to generate the incoherent blending 2. The method of claim 1 , wherein the mutual coherence 
pattern needed for source separation . FIGS . 5A - 5B show is determined by : 
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14. The method of claim 13 , wherein the plurality of 
u ( R , S ) = max | dd ; l , i , j = 1 streamers includes at least a first interval between any two 

adjacent streamers of the plurality of streamers , and a second 
interval between any two other adjacent streamers of the 

5 plurality of streamers , wherein the first interval and the and the mutual coherence is minimized by : second interval are different , and wherein the first interval 
and / or the second interval ranges from 25 m to 500 m . 

15. A method of acquiring seismic data , the method 
minu ( R ) = minmax | A | , comprising : 

determining a non - uniform optimal sampling design by 
calculating a compressive sensing sampling grid that 

where S is sparsity basis , R is a sampling operator , u is the minimizes mutual coherence ; 
mutual coherence , f , are Fourier coefficients of diag ( R * R ) , determining a positioning of a plurality of receiver lines 
and d ; are columns in D which is defined as D = RS * . at a non - uniform optimal line interval 

3. The method of claim 1 , wherein the seismic data is determining a positioning of a plurality of receivers at a 
obtained via land , ocean - bottom seismic , or marine survey . non - uniform optimal receiver interval ; 

4. The method of claim 1 , wherein the plurality of receiver determining a positioning of a plurality of shots from one 
lines are a plurality of streamers operable to be attached to or more seismic sources at non - uniform optimal shot 
a vessel , wherein the plurality of streamers are spaced apart intervals ; and 
at the non - uniform optimal line interval , wherein the plu- obtaining seismic data according to the non - uniform 
rality of receivers are coupled with the plurality of stream optimal sampling design , the seismic data captured via 

the plurality of receivers in response to at least one of 
5. The method of claim 4 , wherein the plurality of the plurality of shots fired from the one or more seismic 

streamers range from 6 to 50 streamers . sources at the non - uniform optimal shot intervals . 
6. The method of claim 4 , wherein the plurality of 25 16. The method of claim 15 , wherein the mutual coher 

streamers includes at least a first interval between any two ence is determined by : 
adjacent streamers of the plurality of streamers , and a second 
interval between any two other adjacent streamers of the 
plurality of streamers , wherein the first interval and the M ( R , S ) = max | d ; djl , i , j = 1 ... n , second interval are different . 

7. The method of claim 6 , wherein the first interval and / or 
the second interval ranges from 25 m to 500 m . and the mutual coherence is minimized by : 8. The method of claim 1 , wherein the plurality of 
receivers includes at least a first interval between any two 
adjacent receivers of the plurality of receivers , and a second minu ( R ) = minmax | fil , interval between any two other adjacent receivers of the 
plurality of receivers , wherein the first interval and the 
second interval are different , and wherein the first interval 
and / or the second interval ranges from 5 m to 100 m . where S is sparsity basis , R is a sampling operator , p is the 

9. The method of claim 1 , wherein the plurality of mutual coherence , and f , are Fourier coefficients of diag 
receivers are coupled with the plurality of receiver lines . 40 ( R * R ) , and d ; are columns in D which is defined as D = RS * . 

10. The method of claim 9 , the plurality of receiver lines 17. The method of claim 15 , wherein the plurality of 
includes at least a first interval between any two adjacent receivers includes at least a first interval between any two 
receiver lines of the plurality of receiver lines , and a second adjacent receivers of the plurality of receivers , and a second 
interval between any two other adjacent receiver lines of the interval between any two other adjacent receivers of the 
plurality of receiver lines , wherein the first interval and the 45 plurality of receivers , wherein the first interval and the 
second interval are different , and wherein the first interval second interval are different , and wherein the first interval 
and / or the second interval ranges from 25 m to 500 m . and / or the second interval ranges from 5 m to 100 m . 

18. The method of claim 15 , wherein the plurality of 11. The method of claim 1 , wherein the plurality of shots 
at the non - uniform optimal shot intervals are from more than receivers are coupled with the plurality of receiver lines . 
one of the one or more seismic sources shooting simulta 19. The method of claim 15 , the plurality of receiver lines 

includes at least a first interval between any two adjacent neously 
12. The method of claim 11 , wherein the non - uniform receiver lines of the plurality of receiver lines , and a second 

optimal sampling design corresponds to a land , ocean interval between any two other adjacent receiver lines of the 
bottom seismic , or marine survey . plurality of receiver lines , wherein the first interval and the 

13. The method of claim 11 , wherein the plurality of 55 second interval are different , and wherein the first interval 
receiver lines are a plurality of streamers operable to be and / or the second interval ranges from 25 m to 500 m . 
attached to a vessel , wherein the plurality of streamers are 20. The method of claim 15 , wherein the plurality of shots 
operable to be spaced apart at a non - uniform optimal at the non - uniform optimal shot intervals are fired from 
streamer interval , wherein the plurality of receivers are more than one source shooting simultaneously . 
coupled with the plurality of streamers . 
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