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1
NON-UNIFORM OPTIMAL SURVEY DESIGN
PRINCIPLES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 15/641,916, filed Jul. 5, 2017 which claims benefit of
U.S. Patent Application Ser. No. 62/506,859 filed May 16,
2017, each of which is incorporated in its entirety by
reference.

FIELD OF THE INVENTION

The present invention relates generally to seismic imag-
ing. More particularly, but not by way of limitation, embodi-
ments of the present invention include tools and methods for
designing and implementing seismic data acquisition using
non-uniform optimal sampling principles.

BACKGROUND OF THE INVENTION

Compressive sensing (CS) is an emerging field in signal
processing that has applications in many different disciplines
including seismic surveying. Traditionally, Nyquist-Shan-
non sampling theorem established the sufficient condition
for a sampling rate that permits a digital signal to capture all
the information from a continuous-time signal of finite
bandwidth. Compressive sensing provides a new paradigm
of sampling which requires far fewer measurements com-
pared to Nyquist-Shannon sampling criterion. Thus far,
compressive sensing theory suggests that successful signal
recovery can be best achieved through random measure-
ments together with sparsity of the true signal. However,
applying random sampling to seismic surveys raises many
concerns and uncertainties.

BRIEF SUMMARY OF THE DISCLOSURE

The present invention relates generally to seismic imag-
ing. More particularly, but not by way of limitation, embodi-
ments of the present invention include tools and methods for
designing and implementing seismic data acquisition using
non-uniform optimal sampling principles.

One method of acquiring seismic data includes determin-
ing a non-uniform optimal sampling design that includes a
compressive sensing sampling grid; placing a plurality of
source lines or receiver lines at a non-uniform optimal line
interval; placing a plurality of receivers or nodes at a
non-uniform optimal receiver interval; towing a plurality of
streamers attached to a vessel, wherein the plurality of
streamers is spaced apart at non-uniform optimal intervals
based on the compressive sensing sampling grid; firing a
plurality of shots from one or more seismic sources at
non-uniform optimal shot intervals; and acquiring seismic
data via the plurality of receivers or nodes.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present invention
and benefits thereof may be acquired by referring to the
follow description taken in conjunction with the accompa-
nying drawings in which:

FIGS. 1A-1B illustrate an embodiment of non-uniform
optimal sampling design as applied to a marine seismic
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survey utilizing 12 streamers. FIG. 1A shows a shot interval
distribution from a single gun. FIG. 1B shows cable con-
figuration.

FIGS. 2A-2B illustrate an embodiment of non-uniform
optimal sampling design utilizing 16 streamers. FIG. 2A
shows a shot interval distribution. FIG. 2B shows cable
configuration.

FIG. 3 illustrates an onboard quality control (QC) for
continuous records.

FIG. 4 illustrates implementation of non-uniform optimal
sampling shot spacing in the field.

FIGS. 5A-5B illustrate non-uniform optimal sampling
shot design statistics from a production survey. FIG. 5A
shows a distribution of shot intervals. FIG. 5B shows a
distribution of shot time intervals.

FIGS. 6A-6D illustrate a comparison of a non-uniform
optimal sampling shot design to a conventional regular
design on deblending quality. FIG. 6A shows data acquired
with conventional regular design. FIG. 6B shows corre-
sponding deblending result of FIG. 6 A. FIG. 6C shows data
acquired with a non-uniform optimal sampling shot design.
FIG. 6D shows corresponding deblending result of FIG. 6C.

DETAILED DESCRIPTION

Reference will now be made in detail to embodiments of
the invention, one or more examples of which are illustrated
in the accompanying drawings. Each example is provided by
way of explanation of the invention, not as a limitation of the
invention. It will be apparent to those skilled in the art that
various modifications and variations can be made in the
present invention without departing from the scope or spirit
of the invention. For instance, features illustrated or
described as part of one embodiment can be used on another
embodiment to yield a still further embodiment. Thus, it is
intended that the present invention cover such modifications
and variations that come within the scope of the invention.

In signal processing, compressive sensing (CS) asserts
that the exact recovery of certain signals can be obtained
from far fewer measurements than as required by Shannon’s
sampling criterion. Generally speaking, applicability of
compressive sensing for imaging depends on sparsity of
signals and incoherence of sampling waveforms.

The present invention provides systems and methods for
acquiring seismic data with relatively few measurements by
utilizing compressive sensing principles. These principles
include, but are not limited to, non-uniform optimal sam-
pling (NUOS) design, seismic data reconstruction of data
acquired using NUOS design, and blended source acquisi-
tion with NUOS design. These principles have been applied
to real-world seismic survey scenarios including marine and
ocean bottom seismic (OBS) and land surveys to increase
data bandwidth and resolution.

Non-Uniform Optimal Sampling Design

One of the goals of non-uniform optimal sampling design
is to find an optimal sampling grid that favors seismic data
reconstruction. Non-uniform optimal sampling design pro-
vides a mathematical framework for optimizing both source
and receiver configuration designs. As a summary, the
following mathematical description of non-uniform optimal
sampling design is provided.

The forward model for seismic data reconstruction can be
described as

b=Dx, b=RS*x, x=Su, (€8]

where b represents acquired seismic data on an irregular
observed grid and u represents reconstructed seismic data on
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a finer regular reconstructed grid. The operator R is a
restriction/sampling operator, which maps data from the
reconstructed grid to the observed grid. If S is a suitably
chosen dictionary (possibly over-complete), x is a sparse
representation of u which has a small cardinality.

Mutual coherence is a measure of incoherency between
sparsity basis S and sampling operator R. A high-fidelity
data reconstruction requires the mutual coherence to be as
small as possible. Assuming D=RS* can be written in a
matrix form and d, represent different columns in D, the
mutual coherence | can be defined as,

(R, S) =max|ddj|, i, j=1 ... n 2)
#j

This is equivalent to the absolute maximum off-diagonal
element of the Gram matrix, G=D*D.

The relationship between mutual coherence and success-
ful data reconstruction is appealing for analysis. Typically,
for seismic applications, this type of analysis would be
prohibitively expensive to compute. However, if S is
allowed to be a Fourier transform, then the definition of
mutual coherence in equation 2 can be simplified to

©)

R) = P
H(R) rrl;%XIrll

where t; are Fourier coefficients of diag(R*R). This can be
interpreted as finding the largest non-DC Fourier component
of'a given sampling grid, which can be carried out efficiently
using the fast transform. Equation 3 can serve as a proxy for
mutual coherence when S is some over-complete dictionary,
such as curvelet and generalized windowed Fourier trans-
form (GWT).

Given the estimate for mutual coherence in equation 3, the
non-uniform optimal sampling design seeks a sampling grid
which minimizes the mutual coherence as follows,

mlgn/,c(R) = minmax|#| 4)

R 0

The optimization problem in equation 4 can be effectively
solved by, for example randomized greedy algorithms such
as GRASP (Feo and Resende, 1995). In practice, the non-
uniform optimal sampling design can be applied to both
source and receiver sides.

Seismic Data Reconstruction

Seismic data acquired from the non-uniform optimal
sampling design can be reconstructed to a finer grid by
solving an analysis-based basis pursuit denoising problem:

®

min||Su||; s.t. |Ru—>bll, <o
u

Here o is some approximation of noise level in the acquired
data b. While conventional interpolation techniques focus on
filling in acquisition holes or increasing fold, CS-based data
reconstruction improves sampling and extends unaliased
bandwidth. Seismic data must be acquired in an irregular
fashion in order to employ CS-based data reconstruction.
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Ideally with a proper non-uniform optimal sampling design,
we can increase the unaliased bandwidth by a factor of 2-4
in a certain direction.

EXAMPLE 1

A production streamer survey is described in this example
to illustrate design and reconstruction of marine seismic data
in accordance with the present invention. A vessel equipped
with a flip-flop source shooting every 18.75 m (on average)
was used to acquire 3D streamer survey. Total of 12 stream-
ers were towed behind the vessel. Each streamer was 5 km
in length and 600 m in spread width.

Non-uniform optimal sampling source design was utilized
to improve in-line sampling. Non-uniform optimal sampling
cable design was utilized to improve cross-line sampling.
Design considerations include, but are not limited to, mini-
mum airgun cycle time, minimum cable separation, spread
balancing, and the like. FIGS. 1A-1B illustrates non-uni-
form optimal sampling design principles as applied to a 12
cable configuration. Referring to FIG. 1A, a shot interval
distribution from a single gun according to an embodiment
is plotted. While FIG. 1A shows shot interval ranging from
about 25 m to 50 m, other distance ranges may be consistent
with NUOS design depending on a number of factors such
as the cable configuration. FIG. 1B shows a cable configu-
ration according to an embodiment. As shown, the cable
interval may have non-uniform spacing (ranging from about
25 m to about 200 m). FIGS. 2A-2B illustrate non-uniform
optimal sampling design principles as applied to a 16 cable
configuration. As shown in FIG. 2A, the shot interval may
range from about 10 m to about 31 m. In some embodiments,
the shot interval may range from about 5 m to about 100 m.
FIG. 2B shows non-uniform spacing of a 16 cable configu-
ration in accordance with an embodiment.

Blended Source Acquisition

In conventional seismic data acquisition, sources are
activated with adequate time intervals to ensure no interfer-
ence between adjacent sources. The acquisition efficiency is
limited by equipment and operational constraints. In par-
ticular, the source side sampling is often coarse and aliased
if long record lengths are needed to obtain energy from far
offsets.

In blended source acquisition, multiple sources may be
activated within a single conventional shotpoint time win-
dow. Overlapping sources in time allows dramatic reduction
in time associated with acquisition. It can also improve
spatial sampling by increasing shot density. The tradeoff is
that sources are blended together and generate so-called
“blending noise”. The process of separating sources and
forming interference-free records is commonly referred to as
“deblending.”

For marine towed streamer and ocean bottom seismic
(OBS), blended source acquisition can be carried out using
multiple source vessels shooting simultaneously, or a single
source vessel firing at a short time interval. Early marine
simultaneous source experiment used an extra source vessel
sailing behind the streamer vessel. Two sources were dis-
tance-separated and F-K filter was applied to separate shots.
Later on, the concept of introducing small random time
delays between each pair of sources was developed. Under
this time-dithering scheme, interference between two
sources became asynchronous incoherent noise and could be
suppressed during conventional pre-stack time migration.
Recent developments proposed the time-scheduling method
for OBS which required little coordination between sources.
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Each source was assigned a set of random source initiation
times and shots were taken following these times.

Both time-dithering and time-scheduling methods
required extra manipulation of shot time and sometimes
even vessel speed, which further complicates field operation
and lead to potential human errors. Blended source acqui-
sition can also be applied to NUOS. The NUOS scheme puts
no constraints on shot time and makes minimal operational
changes compared to conventional seismic acquisition. Both
sampling density and deblending quality can benefit from a
joint inversion of data acquired using a NUOS design.

For blended source acquisition, the recording system
should be capable of recording continuously. Data should be
delivered in a format of continuous records instead of
conventional shot gathers. Each continuous record or time
segment is expected to contain receiver information and
record start and end time stamps within at least microsecond
precision. The source positioning data together with shot
times can be stored in navigation files modified from one of
the standard formats (e.g., SPS, P1/90, P1/11, etc). To better
assist inversion-based deblending, time stamps from all
shots should be recorded including production, non-produc-
tion and infill shots, also within at least microsecond preci-
sion.

Routine onboard QC procedures can still be employed.
Continuous records can be examined onboard by displaying
the “time-segment gather” (i.e., data within a certain time
window sorted by receivers). In this domain, blended shots
are observed as coherent energy, regardless of uniform or
non-uniform shooting patterns. FIG. 3 illustrates a snapshot
of onboard QC, showing a time-segment gather over the
entire receiver patch. The opposite-trending moveouts indi-
cate shots that were activated from two distanced sources.
This survey employed dual-vessel simultaneous shooting
with NUOS design and led to a reduction in overall survey
time, including time for receiver deployment, mobilization
and demobilization. Onboard processing was kept to a
minimum to avoid damaging the integrity of the continuous
records.

CS-Based Survey Design Principle

Separating blended sources can be better solved under a
CS framework. Forward solutions have been proposed by
exploiting the sparsity of seismic data, such as the general-
ized windowed Fourier. The non-uniform sampling scheme
favors the inversion-based deblending by promoting the
incoherence of blending noise. For seismic acquisition, a
measure of incoherence (“mutual coherence™) is used to
guide the non-uniform survey design. Referring back to
equations 2-4, a proxy of mutual coherence can be effec-
tively computed using the Fourier transform. Non-uniform
optimal sampling minimizes mutual coherence to obtain an
optimal survey design.

EXAMPLE 2

A field trial was conducted in the early stage of develop-
ment. FIG. 4 illustrates an aspect of the field trial. Each red
dot represents a pre-plot shot location derived from the
optimization process, and each red box represents a shot
point in the field. Through the course of the field trial, 0.5 m
inline accuracy was achieved for 99:6% shots. The field trial
removed barriers to implementing NUOS design on shots in
production surveys.

For blended source acquisition, we rely on the non-
uniform design in space, which by nature gives rise to
irregularity in time, to generate the incoherent blending
pattern needed for source separation. FIGS. 5A-5B show
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statistics from a production survey designed with non-
uniform optimal sampling shot spacing. FIG. 5A plots a
distribution of shot intervals that ranged from 15 m to 35 m.
FIG. 5B plots a distribution of rendered shot time intervals
that ranged from 6 s to 14 s.

FIGS. 6 A-6D compare data acquired with a NUOS design
and a conventional regular design, both from the same
survey. Fifteen seconds record length was kept to preserve
far offsets and converted waves. FIG. 6A shows a receiver
gather, as part of a velocity line, with shots spaced at regular
25 m intervals. As shown, self-blending occurred after 10 s.
The interference pattern was somewhat incoherent even with
a regular shot spacing, thanks to natural variations in vessel
speed. FIG. 6C shows the same receiver with production
shots optimally spaced at nominal 25 m intervals. The
interference from self-blending came in as early as 7.5 s and
spread over a longer time interval. The incoherence of
blending noise was significantly enhanced by the NUOS
design.

The same inversion-based deblending method was
applied on both datasets for a fair comparison. The method
solves an analysis-based 1, minimization using the non-
monotone ADM (Li et al., 2013b). FIGS. 6B and 6D show
the corresponding deblending results. For data with a regular
design, we see a fair amount of blending noise leaked
through deblending, due to insufficient incoherence to sepa-
rate signal from noise. On the other hand, a much improved
deblending result was achieved from data with a NUOS
design. The blending noise was reduced to a minimum while
primaries were intact. This result indicates that the NUOS
design was preferable for the inversion-based deblending
method. A similar conclusion has been observed from dual-
vessel simultaneous shooting.

Although the systems and processes described herein
have been described in detail, it should be understood that
various changes, substitutions, and alterations can be made
without departing from the spirit and scope of the invention
as defined by the following claims. Those skilled in the art
may be able to study the preferred embodiments and identify
other ways to practice the invention that are not exactly as
described herein. It is the intent of the inventors that
variations and equivalents of the invention are within the
scope of the claims while the description, abstract and
drawings are not to be used to limit the scope of the
invention. The invention is specifically intended to be as
broad as the claims below and their equivalents.

What is claimed is:

1. A method of acquiring seismic data, the method com-
prising:

determining a non-uniform optimal sampling design by

calculating a compressive sensing sampling grid that
minimizes mutual coherence;

determining a placement of a plurality of receiver lines at

a non-uniform optimal line interval according to the
non-uniform optimal sampling design;

determining a placement of a plurality of receivers at a

non-uniform optimal receiver interval according to the
non-uniform optimal sampling design; and

obtaining seismic data according to the non-uniform

optimal sampling design, the seismic data captured via
the plurality of receivers in response to at least one of
a plurality of shots fired from one or more seismic
sources at non-uniform optimal shot intervals, wherein
the plurality of receivers are operably placed at a
non-uniform optimal receiver interval.

2. The method of claim 1, wherein the mutual coherence
is determined by:
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(R, ) =max|d/d;l, i, j=1 ... n.,
i#J
and the mutual coherence is minimized by:

= minmax|#],

ingu(R
H}emﬂ() R0

where S is sparsity basis, R is a sampling operator, p is the
mutual coherence, t; are Fourier coefficients of diag(R*R),
and d, are columns in D which is defined as D=RS*.

3. The method of claim 1, wherein the seismic data is
obtained via land, ocean-bottom seismic, or marine survey.

4. The method of claim 1, wherein the plurality of receiver
lines are a plurality of streamers operable to be attached to
a vessel, wherein the plurality of streamers are spaced apart
at the non-uniform optimal line interval, wherein the plu-
rality of receivers are coupled with the plurality of stream-
ers.

5. The method of claim 4, wherein the plurality of
streamers range from 6 to 50 streamers.

6. The method of claim 4, wherein the plurality of
streamers includes at least a first interval between any two
adjacent streamers of the plurality of streamers, and a second
interval between any two other adjacent streamers of the
plurality of streamers, wherein the first interval and the
second interval are different.

7. The method of claim 6, wherein the first interval and/or
the second interval ranges from 25 m to 500 m.

8. The method of claim 1, wherein the plurality of
receivers includes at least a first interval between any two
adjacent receivers of the plurality of receivers, and a second
interval between any two other adjacent receivers of the
plurality of receivers, wherein the first interval and the
second interval are different, and wherein the first interval
and/or the second interval ranges from 5 m to 100 m.

9. The method of claim 1, wherein the plurality of
receivers are coupled with the plurality of receiver lines.

10. The method of claim 9, the plurality of receiver lines
includes at least a first interval between any two adjacent
receiver lines of the plurality of receiver lines, and a second
interval between any two other adjacent receiver lines of the
plurality of receiver lines, wherein the first interval and the
second interval are different, and wherein the first interval
and/or the second interval ranges from 25 m to 500 m.

11. The method of claim 1, wherein the plurality of shots
at the non-uniform optimal shot intervals are from more than
one of the one or more seismic sources shooting simulta-
neously.

12. The method of claim 11, wherein the non-uniform
optimal sampling design corresponds to a land, ocean-
bottom seismic, or marine survey.

13. The method of claim 11, wherein the plurality of
receiver lines are a plurality of streamers operable to be
attached to a vessel, wherein the plurality of streamers are
operable to be spaced apart at a non-uniform optimal
streamer interval, wherein the plurality of receivers are
coupled with the plurality of streamers.
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14. The method of claim 13, wherein the plurality of
streamers includes at least a first interval between any two
adjacent streamers of the plurality of streamers, and a second
interval between any two other adjacent streamers of the
plurality of streamers, wherein the first interval and the
second interval are different, and wherein the first interval
and/or the second interval ranges from 25 m to 500 m.

15. A method of acquiring seismic data, the method
comprising:

determining a non-uniform optimal sampling design by

calculating a compressive sensing sampling grid that
minimizes mutual coherence;

determining a positioning of a plurality of receiver lines

at a non-uniform optimal line interval

determining a positioning of a plurality of receivers at a

non-uniform optimal receiver interval;

determining a positioning of a plurality of shots from one

or more seismic sources at non-uniform optimal shot
intervals; and

obtaining seismic data according to the non-uniform

optimal sampling design, the seismic data captured via
the plurality of receivers in response to at least one of
the plurality of shots fired from the one or more seismic
sources at the non-uniform optimal shot intervals.

16. The method of claim 15, wherein the mutual coher-
ence is determined by:

#(R, S) =max|d/d;l, i, j=1..n,
#j
and the mutual coherence is minimized by:
T N
m’%nﬂ( ) rrzmrg%XIr‘I,

where S is sparsity basis, R is a sampling operator, p is the
mutual coherence, and T, are Fourier coefficients of diag
(R*R), and d, are columns in D which is defined as D=RS*.
17. The method of claim 15, wherein the plurality of
receivers includes at least a first interval between any two
adjacent receivers of the plurality of receivers, and a second
interval between any two other adjacent receivers of the
plurality of receivers, wherein the first interval and the
second interval are different, and wherein the first interval
and/or the second interval ranges from 5 m to 100 m.
18. The method of claim 15, wherein the plurality of
receivers are coupled with the plurality of receiver lines.
19. The method of claim 15, the plurality of receiver lines
includes at least a first interval between any two adjacent
receiver lines of the plurality of receiver lines, and a second
interval between any two other adjacent receiver lines of the
plurality of receiver lines, wherein the first interval and the
second interval are different, and wherein the first interval
and/or the second interval ranges from 25 m to 500 m.
20. The method of claim 15, wherein the plurality of shots
at the non-uniform optimal shot intervals are fired from
more than one source shooting simultaneously.
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