Abstract: The object of the invention concerns a coffee capsule (1), in particular a Nespresso™ compatible capsule that improves the yield of the product obtained through the use of a depression or concavity (6) on the side where the water and/or steam enters the capsule, using a radial variation of the flow of the water and/or steam entering along a axis parallel to the axis of the capsule.

Fig. 2
Description

Title of Invention: NESPRESSO ™ COMPATIBLE CAPSULE

Technical Field

This invention is a capsule for coffee and in particular a capsule that is compatible with Nespresso ™ (Trademark registered by Nestle).

Background Art

As is well known Nespresso ™ capsules have become a de facto standard over time, as a result of advertising and a monopoly position (and also as a result of numerous patents).

Now the tapered exterior form of this capsule, with a flat base that can break under the effect of the liquid that is injected and that can be fitted with a fracture line if needed, and with an upper wall that is smaller than the base, suitable for letting the liquid in, using an injection needle if required, is an unrestricted shape and in any event a required shape.

Disclosure of Invention

Technical Problem

Naturally the capsule in this invention is not a simple reproduction of the shape of the Nespresso capsule, but rather solves the main drawbacks that beset the existing capsules, improving them and making them more adaptable.

Indeed, the drawbacks of the Nespresso capsule have two main aspects: one substantial, and the other concerning compatibility.

Currently there have been numerous attempts to modify the original capsule, with variations in the shape, with the provision of a breaking zone, with the insertion of filters, done more so as not to appear to be a simple imitation than for other reasons, but nevertheless these imitations have still not succeeded in making improvements and obtaining a coffee yield that is an improvement over the original capsule.

It seems paradoxical that after so much time on the market there has been no success in a fundamental goal, namely improving the yield of the original capsule, even if there is widespread agreement that the product obtained with the traditional capsule is quite satisfactory.

Only the invention in this patent has posed the basic question, whether the result obtained with the traditional capsules can be improved, in terms of coffee yield, not only by using an appropriate coffee mixture but above all by using a new and inventive capsule, and it succeeds in doing this by resolving the problem that has been identified, and this has been demonstrated in trials.

Moreover, another drawback of the original capsules is that the successive variants
have not been able to find a solution, even if there have been numerous attempts, regarding the brewing of soluble and leafy products.

[10] All the capsules examined in the prior art in fact, when making a tea or a herbal tea, do not make use of all the product contained in the capsule, but leave a good part of the product in the capsule unused.

[11] What all the previous versions have in common is the presence of one or more openings in the wall where the water goes in, or the use of one or more injection needles by which the heated water and/or the steam goes through the capsule, soaking the powder, soluble or otherwise, or the leafy products, in a direction towards the outlet with a flow that is practically parallel to the main axis of the capsule, or in any event with a flow that creates some streams that effect just the powder adjacent to them.

[12] The drawback of this arrangement leads to just a part of the product in the capsule being directly affected by the stream of fluid.

[13] The part of the product in the capsule that is not directly hit by the stream of fluid, and which is not sufficiently used during the making of the drink, compromises the yield that is obtained with the prior art capsules, and which just the capsule in this patent can improve to a surprising degree and in an unexpected manner with a yield that practically uses 100% of the product contained in the capsule.

[14] To compensate for this deficiency, and above all to change the aroma and the taste, especially of the coffee, the above-mentioned numerous variants of the original capsule, without recognising the real problem, sought to provide a remedy by modifying the number and the positions of the points where the water and the steam entered the capsule, with an eventual modification of the coffee mixture contained in the capsules, or else by trying various degrees of fineness of the coffee powder.

[15] The results obtained with these above-mentioned attempts, when not downright poor, were also influenced by the position of the capsule during the brewing, and therefore sometimes from a passable production you could get a average production, all things being equal, just by using a machine with a different positioning of the capsule (for example from vertical to horizontal, or vice-versa, you could dissolve only a part of the soluble product, tea, barley, etc.).

Solution to Problem

Technical Solution

[16] Therefore another purpose of this invention is to also overcome the above-mentioned drawback, improving both the yield as well as the quality no matter what the position of the new capsule is.

[17] Since there are numerous types of coffee machines with varying configurations, each
one designed to use its own capsule, the user is obliged to buy only the specific capsules for his machine, without being able to use the capsules of a competitor, which are sometimes cheaper and also better because of the coffee mix used, and that produces an excellent brew of coffee.

Another purpose of this invention is to overcome also this above-mentioned drawback, with just a single capsule that can adapt to the numerous types of machines, while maintaining the above-mentioned prerogatives.

The above-mentioned aims are attained by capsule for making coffee and/or brews with a tubular body or a tapered body whose face where the water and/or steam goes has a concavity or a depression that stretches out and penetrates the interior of the body of the capsule, and which has a series of radial holes, and the inflow of water and/or steam that comes into said concavity, with an axis parallel to the main axis of said capsule, is deviated to pass through said series of radial holes to reach the inside of the body the capsule.

Other benefits and expedient characteristics of the capsule that is the subject of this invention are listed below.

Advantageous Effects of Invention

Advantageous Effects

Said concavity has a tubular or tapered shape with said series of radial holes on the side wall, beneficially varying the effect of the flow from parallel to the main axis of the capsule to practically radial.

Said concavity, since the volume in it includes a buffer chamber, blocks the direct flow going straight to the outlet, avoiding preferential channels going straight to the outlet and guaranteeing the full use of the content of the capsule.

Said concavity has a sort of pin or peg solidly connected to it and that protrudes with a tapered profile towards the inflow, where said pin is an element that diverts the flow in order to facilitate changing the direction of the flow coming in.

Said radial holes have sizes such that they could be called a filter with respect to the product contained in the capsule, avoiding the need to put a further filter element at the inlet.

Said holes are positioned near and/or adjacent to the inner wall of the water inflow face, with an evident benefit of diverting the radial flow towards the initial part of the capsule, namely its base, thereby affecting the capsule's entire contents.

Said concavity is fully protected by a cover making the capsule auto-protected, making any further protective packaging unnecessary.

Said cover can easily be replaced because the cover element is separate from the body of the capsule, thereby facilitating the choice of materials in the design phase and
the moulding process.

Said cover can be perforated by an injection needle so as to be used with coffee machines that have this type of injection needle.

Said cover can be broken and/or cracked by the incoming water and/or steam for machines that do not have a needle or when the user forgets to take off the cover before putting said capsule in the coffee machine.

Said cover can be broken by the pressure of the water in an area that can give way, so that it can be used in coffee machines that are not expressly designed for using capsules with a water and/or steam inlet hole that is closed.

The above-mentioned pin, moreover, because it can be sized so that its top end is below the protective closure of the concavity of the cover, facilitates it being broken by the pressure.

Said cover can be removed to reveal a plain flap or another zone that can be easily gripped by the user in order to remove it.

Said concavity is set on a raised part of the flat face where the water goes into the capsule, therefore remaining partially protruding from the body of the capsule, creating a buffer chamber for the inflow pressure with balanced pressure diffusion over the entire openings of the radial holes, thereby avoiding any concern about how this flow of water and/or steam enters the concavity, or how a hole is made in the cover or how it is broken.

Said raised part has a height extension to give the entire capsule dimensions that are compatible with the machine in which said capsule will be used.

Brief Description of Drawings

Description of Drawings

The above-mentioned beneficial characteristics, and others described below, can be better seen with reference to a non-restrictive preferred solution set out in the following diagrams, where:

Fig. 1 shows a perspective view of the capsule that is the object of the invention.

Fig. 2 shows the capsule of fig. 1 with a diametrical section.

Fig. 3 shows an alternative solution for the capsule with the concavity protruding with respect to the surface of the top base of the capsule.

Fig. 4 shows a perspective view of the capsule of fig. 3.

Fig. 5 shows the capsule of fig. 3 with a diametrical section.

Fig. 6 is an enlargement of a part of the capsule shown in fig. 5 with reference to the concavity.

Fig. 7 is an alternative solution for the positioning of the radial holes on the side surface of the concavity and the presence of a pin inside the concavity is shown.
Fig. 8 and fig. 9 are enlargements of parts of the capsule shown in fig. 5 with reference to eventual strengthening ribs and the edge profile that protrudes with respect to the tapered body.

Fig. 10, fig. 11, fig. 12 and fig. 13 are examples of radial holes or micro openings, interrupted and spaced, shown for display purposes on a flat expanse of a part of the side surface of the concavity.

Best Mode for Carrying out the Invention

Best Mode

The capsule 1 that is the object of this invention has a tubular body, and in particular, with reference to the specific case shown, a tapered body 2, with a lower base 3 where the water comes out with an edge 4 that protrudes from the tapered body 2, and an upper base wall 5, parallel and opposite to the lower surface 3, which constitutes the face where the water and/or steam goes in.

On the lower base 3, and more precisely on said edge 4, it is easy to join, either through welding, gluing or the like, a laminar layer for closing and holding the powder or leafy material for brewing that is inside the body of the capsule 1.

The wall of the upper base 5 has, preferably in the centre, an open concavity that extends towards the inside of the body of the capsule 1.

Said concavity 6, with its tubular shape, has a side wall 8 closed on a concavity base 7.

This side wall is completely inside the section of the capsule 1 and on the surface of this side wall 8 there are is series of radial holes 9 that join the inside of the body of the capsule 1 to the volume inside said concavity 6.

Said radial holes 9 can take the form of micro apertures.

In the event that the form of this concavity is tapered or funnel-shaped (as shown in the diagrams) the base of the concavity 7 makes up the smaller base.

It is clear from the diagrams that the flow of water and/or steam going in, forced inside said concavity 6 along an axis parallel to the main axis of said capsule 1, is obstructed by the presence of the smaller base 7 of this concavity 6 and is forced to divert its path passing through said series of radial holes on the side surface 8 of the concavity 6.

In the case where said radial holes 9 are micro apertures, they can also take on the role of a filter, with aperture sizes compatible with the content of the capsule 1.

Clearly both the radial holes 9 as well as the micro apertures can also extend to the outermost diametrical part of the base of the concavity 7, in any case having a diversion of the flow, as shown in the enlargement of fig. 6, or else just affect the side surface 8 of the concavity 6 as shown in fig. 7.
Said concavity 6 can have its aperture directly on the wall of said upper base 5 of the capsule 1, or it can be slightly offset on a plane towards the outside with respect to said capsule 1.

In this configuration the height of the capsule increases by an amount equal to the height h of the ring 10 that protrudes with respect to the upper base 5 of the capsule 1.

By appropriately varying the height h of said ring 10 it is easily possible to obtain capsules 1 that are suited to and compatible with various types of coffee machines.

The flow of water and/or steam put into the concavity 6, which acts as a buffer chamber, in a direction parallel to the main axis, finding said radial holes that start just below the wall of the upper base 5 or, in the case of a protruding concavity, which are also placed outside beyond the surface 5, is diverted lapping the internal part of the upper base 5, namely the bottom 11 of the capsule 1, guaranteeing the complete infusion of the powder or anything else contained in the capsule 1.

To increase this divergence a pin 12 in the centre of the concavity base 7 is used that rises up towards the opening.

A conical profile of said pin 12 helps the inflow change direction, from parallel to the main axis to radial and perpendicular to it.

By appropriately sizing said pin 12 and putting its end, preferably pointed, near and underneath any cover of the entrance to the concavity 6 (solidly joined along the perimeter of the ring 10 or directly onto the surface 5), this allows the cover to be easily broken by the pressure of the water and/or steam coming in.

Along the inner surface of the funnel-shaped body 2 there are one or more ribs 13, protruding towards the inside, which in addition to providing an effective structural seal for the funnel-shaped body 2, prevent, by interrupting them, any flows in a straight line that might form on the inner surface of the body, minimally affecting the content of the infusion.

In order to avoid the use of a containment filter for the brewed material in the part where the water and/or the steam enter, the radial holes 9 on the side wall 8 of the concavity 6 can be configured either with holes 14 of an appropriate dimension or with micro openings 15 that have a suitable aperture.

Even if the illustration of fig. 10, 11, 12 and 13 refers to a flat expanse of a side surface of a tubular concavity 6, it is obvious that the arrangement of these holes 14 and micro openings 15, or other equivalent apertures, will be compatible with the effective side wall that the concavity will have.

It is evident that with the object of the invention, which has been made to expressly improve and overcome the drawbacks of a specific capsule, you can also use a generic tubular capsule with the same benefits and undeniable improvements and advantages, avoiding any drawbacks that might be similar to those that affect the specific capsule.
in question.
Claims

[Claim 1] 1) Nespresso™ compatible capsule for making coffee and/or brews with a body in the shape of a truncated cone (2), characterised by the fact that on the side where the water and/or steam goes in there is a concavity or a depression (6) that stretches out and penetrates the interior of the body (2) of the capsule, in which depression (6) there is a series of radial holes (9) through which the inflow of water and/or steam that comes into said depression (6), with an axis parallel to the main axis of said capsule (1), is deviated to pass through the inside body (2) of the capsule (1) itself.

2) Nespresso™ compatible capsule for making coffee and/or brews with a tubular body, characterised by the fact that on the side where the water and/or steam goes in there is a concavity or a depression (6) that stretches out and penetrates the interior of the body (2) of the capsule, in which depression (6) there is a series of radial holes (9) through which the inflow of water and/or steam that comes into said depression (6), with an axis parallel to the main axis of said capsule (1), is deviated to pass through the inside body (2) of the capsule (1) itself.

3) Nespresso™ compatible capsule according to claim 1 or a capsule according to claim 2, characterised by the fact that said depression (6) has a tubular or truncated cone shape with said series of radial holes (9) on the side wall (8), varying the incidence of the flow of water and/or steam going in from parallel to the main axis of the capsule (1) to practically radial.

4) Nespresso™ compatible capsule according to claim 1 or a capsule according to claim 2, characterised by the fact that said depression (6), with the volume included in it a transition chamber defined by a side wall (8) closed on a depression base (9), blocks the flow of water and/or steam going in a straight line towards the outlet of the capsule (1) obstructed by said depression base (7), and avoiding the presence of preferential channels of the rectilinear flow towards the outlet, diverging the radial flow of the water and/or steam in order to make full, use of all the content in the body (2) of the capsule (1).

5) Nespresso™ compatible capsule according to claim 1 or a capsule according to claim 2, characterised by the fact that inside the volume of this depression (6) there is a peg, whose profile that is tapered towards the flow coming in, facilitates the divergence of the flow in the change
of direction from parallel to the main axis of the capsule (1) to radial.
6) Nespresso™ compatible capsule according to claim 1 or a capsule according to claim 2, characterised by the fact that within the volume of this depression (6) there is a pointed peg against the direction of the flow of the water and/or steam coming in, which facilitates the breaking of a protective closure on the entrance to the depression (6), with said protective closure, or cover, solidly joined to the outer edge of the depression (6).
7) Nespresso™ compatible capsule according to claim 1 or a capsule according to claim 2, characterised by the fact that said radial holes have hole sizes such that it could be called a filter with respect to the product contained in the capsule, avoiding the need to put a further filter element at the entrance.
8) Nespresso™ compatible capsule according to claim 1 or a capsule according to claim 2, characterised by the fact that said radial holes (9) are arranged adjacent to the inside wall, or bottom (11) of the side where the water enters (5), with the clear advantage of deviating the radial flow towards the bottom (11) of the capsule (1), thereby affecting all the content in it.
9) Nespresso™ compatible capsule according to claim 1 or a capsule according to claim 2, characterised by the fact that said depression (6) is protected by a cover thereby creating a self-protected capsule (1), avoiding further packaging protection.
10) Nespresso™ compatible capsule according to the previous claim, characterised by the fact that said cover can be removed with a plain flap or another zone that can be easily gripped by the user in order to remove it.
11) Nespresso™ compatible capsule according to claim 1 or a capsule according to claim 2, characterised by the fact that said depression (6) is put on a raise part of the flat side where the water enters the capsule (1), therefore partly protruding from the body of the capsule (1).
12) Nespresso™ compatible capsule according to claim 9, characterised by the fact that said cover, which renders said capsule 1 auto-protected, can be broken or cracked by the pressure of the water and/or the steam coming in.
13) Nespresso™ compatible capsule according to claim 9, characterised by the fact that said cover, which renders said capsule 1 auto-protected, can be penetrated by an injection needle in order to adapt to
coffee machines that use this type of injection needle.
INTERNATIONAL SEARCH REPORT

International application No
PCT/IB2011/055250

A. CLASSIFICATION OF SUBJECT MATTER
INV. B65D85/804
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
B65D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2006/037062 A1 (PROCTER & GAMBLE [US]); DALTON DAVID ANDREW [US]) 6 April 2006 (2006-04-06) page 6, line 19 - page 7, line 22 page 23, line 17 - line 19; figures 1,12</td>
<td>1-4,7,9,10</td>
</tr>
<tr>
<td>Y</td>
<td>WO 2009/133134 A (NESTEC) 5 November 2009 (2009-11-05) page 5, line 30 - page 10, line 3 page 20, line 18 - page 22, line 15; figures</td>
<td>11,12,13</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C. X See patent family annex.

*Special categories of cited documents:

W document defining the general state of the art which is not considered to be of particular relevance

E earlier document but published on or after the international filing date

L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

A document member of the same patent family

Date of the actual completion of the international search
29 February 2012

Date of mailing of the international search report
06/03/2012

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer
Newell, Philip

Form PCT/ISA/219 (second sheet) | April 2006
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 2010/064899 A1 (AARDENBURG KEES [CH])</td>
<td>1,2,11</td>
</tr>
<tr>
<td></td>
<td>18 March 2010 (2010-03-18)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the whole document</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-----</td>
<td></td>
</tr>
</tbody>
</table>
Box No. IV Text of the abstract (Continuation of item 5 of the first sheet)

The object of the invention concerns a coffee capsule (1), in particular a Nespresso™ compatible capsule that improves the yield of the product obtained through the use of a depression or concavity (6) on the side where the water and/or steam enters the capsule, using a radial variation of the flow of the water and/or steam entering along an axis parallel to the axis of the capsule.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JP 4411348 B2</td>
<td>10-02-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008514306 A</td>
<td>08-05-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006037062 A1</td>
<td>06-04-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2714957 A1</td>
<td>05-11-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102015488 A</td>
<td>13-04-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2280885 A1</td>
<td>09-02-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 243130 A2</td>
<td>21-03-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011519602 A</td>
<td>14-07-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011045144 A</td>
<td>24-02-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009133134 A1</td>
<td>05-11-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 46906 A1</td>
<td>15-06-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 517047 T</td>
<td>15-08-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2007217727 A1</td>
<td>30-08-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0708247 A2</td>
<td>24-05-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2644292 A1</td>
<td>30-08-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 10138955 A</td>
<td>18-03-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1826148 A1</td>
<td>29-08-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1991477 A2</td>
<td>19-11-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2344464 T3</td>
<td>27-08-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2369610 T3</td>
<td>02-12-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 110732 A1</td>
<td>03-12-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR 20080316 A2</td>
<td>31-12-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009528078 A</td>
<td>06-08-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20090003 192 A</td>
<td>09-01-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MA 30227 BI</td>
<td>02-02-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 1826148 E</td>
<td>07-06-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2008138553 A</td>
<td>10-04-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009047389 A</td>
<td>19-02-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007096196 A2</td>
<td>30-08-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 20080825 A1</td>
<td>25-11-2009</td>
</tr>
<tr>
<td>US 2010064899 A1</td>
<td>18-03-2010</td>
<td>AT 474798 T</td>
<td>15-08-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2008207022 A1</td>
<td>24-07-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2674483 A1</td>
<td>24-07-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101636333 A</td>
<td>27-01-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1944248 A1</td>
<td>16-07-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2102078 A2</td>
<td>23-09-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010515556 A</td>
<td>13-05-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010064899 A1</td>
<td>18-03-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008087099 A2</td>
<td>24-07-2008</td>
</tr>
</tbody>
</table>