

(12)

Oversættelse af
europæisk patentskriftPatent- og
Varemærkestyrelsen

(51) Int.Cl.: **B 65 B 65/00 (2006.01)** **B 65 B 1/00 (2006.01)**

(45) Oversættelsen bekendtgjort den: **2019-03-25**

(80) Dato for Den Europæiske Patentmyndigheds
bekendtgørelse om meddelelse af patentet: **2018-12-05**

(86) Europæisk ansøgning nr.: **16382020.2**

(86) Europæisk indleveringsdag: **2016-01-20**

(87) Den europæiske ansøgnings publiceringsdag: **2017-07-26**

(84) Designerede stater: **AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR**

(73) Patenthaver: **Inversiones HIKI6, S.L., C/ Cardenal Belluga, parc. 24/23 , Y 24/22, 30169 San Ginés Murcia, Spanien**

(72) Opfinder: **STAMM KRISTENSEN, Henrik, Pol. Ind. Oeste. C/ Cardenal Belluga, parc. 24/23 24/22, 30169 San Ginés (Murcia), Spanien**

(74) Fuldmægtig i Danmark: **AWA Denmark A/S, Strandgade 56, 1401 København K, Danmark**

(54) Benævnelse: **FREMGANGSMÅDE OG MODULÆR, MOBILT BLANDINGS- OG EMBALLERINGSANLÆG**

(56) Fremdragne publikationer:
EP-A1- 2 465 780
EP-A2- 1 955 760
DE-A1-102014 001 420
GB-A- 1 297 706
US-A- 5 656 491
US-A- 5 944 420

DK/EP 3196136 T3

DESCRIPTION

TECHNICAL FIELD

[0001] The object of the present invention is a method and a modular and easily transportable plant intended for dosing, mixing and packaging powdery products, granular products and other products having similar characteristics and comprising a carrying structure incorporating a plurality of modules interacting with one another to obtain a mixed and packaged product ready to be sold.

[0002] The present invention is comprised in the technical field of industrial plants for manufacturing, mixing and packaging powdery products such as those used in the agri-food industry, without this limiting the application thereof to other products having similar characteristics in other industrial manufacturing sectors.

PRIOR ART

[0003] Conventionally, in plants and machines for mixing powdery products different processing phases the product to be mixed goes through in the vertical direction, i.e., the product goes from one phase to another due to gravity, from the upper part of the plant to the lower part, are described, as is described, for example, in Spanish patent document with application number P0381423, which describes a machine for treating or mixing powdery products, granular products or doughy products.

[0004] To solve this problem, European patent document EP2465780 describes a mobile dosing, mixing and packaging plant which, as it can be a mobile plant capable of dosing, mixing and packaging powdery products, granular products or the like, can be transported in a certified maritime transport container measuring 40 feet, and where its entire structure, including all the necessary machinery, elements and tools, are distributed horizontally. Furthermore, this document describes a mobile plant the operative control of which is done remotely, assuring complete control over the product and the traceability thereof, being provided with real time connection with a control center arranged for such purpose in another location other than that of the mobile plant itself.

DISCLOSURE OF THE INVENTION

[0005] An object of the present invention is a method and a modular mobile plant which, based on concept described in patent document EP2465780, improves its functionality and modularity such that possible uses thereof and, therefore, the versatility thereof, are increased.

[0006] Therefore, on a modular, mobile mixing and packaging plant for powdery or granular products comprising a carrying structure having dimensions suitable for being introduced in a standard maritime container and internally housing a reception and manual weighing module, a material loading module, a mixing module and a packaging module, where there are incorporated automatic dosing modules for the automatic dosing prior to introducing the formula and furthermore incorporating an automatic formula loading module with an automatic bag opening system for automating the loading of raw material into the plant.

[0007] Furthermore, the mobile plant also incorporates a liquid injection module for injecting liquids into a powder mixture, maintaining a final powder state. The module is automated, such that it is possible to automatically dose the liquids into the mixture, up to ten liquids, according to what is previously required by the end user, with the ability to inject up to 50% liquid into the powder such that the powdery form is maintained after the injection with the conditions and parameters required by the final formulation, such as temperature, stirring and pre-mixture of liquids.

[0008] Finally, the plant incorporates a packaging module depending on the type of packaging the end user requires, including, in a non-limiting manner, a big bag filling module, a European type bag filling module or a module for filling any other type of enclosure (such as sachets, for example). Furthermore, the packaging module can incorporate an automatic palletizing module for any client needing end of line automation.

[0009] In all the described modules a series of basic conditions are met to assure compatibility with the plant as a whole, because all the modules must be transportable in a maritime transport container measuring 20 or 40 feet, depending on the type of module, with all the necessary machinery, auxiliary elements and tools included.

[0010] In addition, the modules must be connectable plug and play type modules, i.e., they must be able to be connected with the CPU managing the plant as a whole for immediate use, which includes that the modules must be compatible both electrically and pneumatically.

[0011] All this is as described in the different aspects indicated in the independent claims attached hereto and incorporated in this description by reference to same. Likewise, the dependent claims show particular practical embodiments of the invention, also being incorporated herein by reference to same.

[0012] Throughout the description and claims the word "comprises" and variants thereof do not seek to exclude other technical features, additives, components or steps. For the persons skilled in the art, other objects, advantages and features of the invention will depend in part on the description and in part on putting the invention into practice. The following examples and drawings are provided by way of illustration and are not intended to limit the present invention. Furthermore, the present invention covers all the possible combinations of particular and preferred embodiments herein indicated.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] A series of drawings which help to better understand the invention and which are expressly related to an embodiment of said invention presented as a non-limiting example thereof is very briefly described below.

Figure 1 shows a perspective view of the mobile mixing plant for powdery products and of its carrying structure as described in patent document EP2465780.

Figure 2 shows the plant of Figure 1 in the transport position.

Figure 3 shows a liquid injection module (views in isometric, plan, elevational, profile and internal views in Figures 3a, 3b, 3c, 3d and 3e, respectively) which is connected with the mobile mixing plant for powdery products of Figure 1

Figure 4 shows an isolated view of the big bag packaging module that is connected with the mobile mixing plant for powdery products of Figure 1

DETAILED DESCRIPTION OF AN EMBODIMENT OF THE INVENTION

[0014] As can be seen in Figure 1, the modular mobile plant object of the present invention essentially comprises a carrying structure (1) and a reception and weighing area (2), a loading area (3), a mixing area (4), a packaging area (5), a sewing and labeling area (6), a metal detection area (7), a palletizing area (8) and a cleaning area (9).

[0015] The carrying structure (1) is formed by various square tubes (11) supported at several height-adjustable support points (12), several hinges (13) and a ladder (14) with a safety railing (15). This structure will have dimensions that are not larger than the measurements of a standard container measuring 40 inches, such that the total dimensions allow the transport thereof in a standard transport container (generally a maritime container measuring 40 feet).

[0016] In a practical embodiment, the structure (1) will be built with square stainless steel tube. The ground of the structure will be formed by rolled carbon steel profiles. The profiles and crossbeams of the structure will be made of square stainless steel tube. The structure (1) will be supported by six height-adjustable support points on which there is supported a diamond plate where objects and staff move about. One side (16) will fold in three sections and will also be built with square tube and diamond plate. The aforementioned hinges will fold the aforementioned sides using a number of capstans for easy installation and positioning.

[0017] The access ladder (14) will be built with stainless steel, except for the tread of the steps, which will also be built from stainless steel anti-skid plate. A rectangle will be arranged at

the end of the ladder to provide access to the upper part of the platform. The top of the platform and access ladder have a protective railing (15) along the entire perimeter, built with square stainless steel tube.

[0018] The automatic dosing modules perform dosing prior to introducing the formula and furthermore incorporating an automatic formula loading module with an automatic bag opening system to automate the loading of raw material into the plant. These automatic dosing modules are connected in the reception and weighing module (2).

[0019] Furthermore, the mobile plant also incorporates a liquid injection module for injecting a liquid into a powder mixture (Figure 3), maintaining a final powder state powder. The module is automated, such that it is possible to automatically dose the liquids into the mixture, up to ten liquids, according to what is previously required by the end user, with the ability to inject up to 50% liquid into the powder such that the powdery form is maintained after the injection with the conditions and parameters required by the final formulation, such as temperature, stirring and pre-mixture of liquids. This liquid injection module is connected with the stirring tank (41) in the mixing module (4).

[0020] More specifically, the liquid injection module (300) serves for dosing into the mixer liquid amounts of any viscosity by means of a pump (318), preferably a lobe pump, without ruling out pumps of any other type, where the flow rate is controlled by means of a plurality of loading cells (320). The liquid injection module performs the following phases during the process:

1. i. Loading the stirring tank (305) with the liquid or liquids making up the raw material.
2. ii. Stirring the liquid or liquids by means of an anchor-type stirrer (326, 327) incorporating scrapers. The stirring tank (305) maintains or achieves optimal temperatures due to its dual chamber with resistors and temperature control by means of at least one temperature probe (324).
3. iii. For controlling the amounts to be dosed, the tank (305) has a plurality of loading cells (320) commanding the pump (318), transferring the exact amounts required for the formula into the stirring tank (41) of the mixing module (4).

[0021] The liquids are homogenized by means of the stirrer (326, 327) because when there is more than one liquid, the exact amount with the same proportion of each ingredient must be previously homogenized and then dosed in that manner. The liquid injection capacity reaches up to a percentage of 50% (it will normally be a lower percentage) with respect to the powder such that the powdery form is maintained after the injection with the conditions and parameters required by the final formulation, such as temperature, stirring and pre-mixture of liquids.

[0022] As can be seen in the following table, the liquid injection module (300) comprises the following elements in the particular embodiment non-limiting shown in Figure 3:

Reference	Units	Characteristic
301	1	Geared motor
302	2	Lifting loops
303	2	Liquid feed nozzles
304	1	Stirrer connection neck
305	1	Liquid compartment
306	3	3000 W resistors
307	2	Covers of the compartment (305)
308	1	Tubular wiring structure
309	1	Main distribution board
310	1	Rectangular structure for board (309)
311	1	Control of loading cells (320)
312	1	Oil compartment
313	1	Oil circuit
314	1	Gear pump support (315)
315	1	Gear pump of the circuit (313)
316	2	Feed hose
317	1	Bottom valve of tank (305)
318	1	Pump
319	1	Mobile structure of the pump (318)
320	3	Loading cells
321	4	Height-adjustable base
322	4	Wheels of the structure
323	1	Safety sensor
324	2	Temperature probe
325	1	Tubular frame
326	1	Rotary support of the scraper
327	8	Scraper

[0023] In a particular embodiment, the liquid compartment (305) or stirring compartment is a cylindrical type compartment with a frustoconical bottom and dual chamber prepared for introducing thermal oil distributing the heat of the resistors (306), which in this particular embodiment have a power of 3 kW each.

[0024] The compartment (305) has a hygienic gantry where there is supported an anchor scraper (326) with scrapers (327) that are made of white, food-grade plastic and that withstand

service temperatures of 60°C and peaks of up to 100°C. Furthermore, it comprises at least one cover (307) in the top part making cleaning and inspections easier, furthermore having a certain inclination as shown in Figure 3.

[0025] The outlet for the product with a bottom sanitary valve (317). The upper openings will have safety sensors (323) in the two covers (307). Each of the supports of the compartment (305) has a loading cell (320) which allows the reading of the weight of the product.

[0026] The heating system performs the function of keeping the product at the desired temperature, if necessary, by means of a dual chamber around the compartment (305) in which the thermal oil will circulate and the resistors (306) will be installed. The outside of the compartment (305) is heat-insulated.

[0027] To load the thermal oil, the equipment has a compartment also acting as an expansion vessel. The oil enters the dual chamber of the tank where it is heated by means of thermal resistors (306). The outlet for the oil is located in the lower part, where there is a gear pump (315) that continuously recirculates the thermal oil while it is hot through the oil circuit (313).

[0028] Both the temperature of the product inside the compartment (305) and the temperature of the thermal oil are controlled by temperature probes (324).

[0029] The dosing system allows effectively dosing the product contained in the compartment (305) towards the mixing tank (41) of the mixing module of the plant of Figure 1. The dosing is performed by means of a pump (318) controlled by a variable frequency drive. The inlet of the pump (318) is connected to the bottom valve (317) of the compartment (305) by means of a flexible and hygienic connection. The inlet of the pump (318) is always below the outlet of the bottom valve (317). The outlet of the pump is connected with a feed hose with a connection compatible with an inlet of the mixing tank (41) of the mixing module (4) of the plant of Figure 1.

[0030] Finally, the frame is formed by a tubular structure 325 to prevent flat surfaces and therefore the accumulation of dirt and to make cleaning of all the surfaces easier. The structure incorporates wheels 322 with the possibility of fixing and height-adjustable feet 321 to provide stability to the assembly.

[0031] Finally, the plant incorporates a packaging module depending on the type of packaging required by the end user, including, in a non-limiting manner, a big bag filling module, a European type bag filling module or a module for filling any other type of enclosure (such as sachets, for example). Furthermore, the packaging module can incorporate an automatic palletizing module for that client needing end of line automation.

[0032] In a particular embodiment, the plant of Figure 1 packaging large bags (best known as big bags) as can be seen in detail in Figure 4, which allows the packaging module (5) to be able to fill 500 kg to 1000 kg bags. Nevertheless, in some particular embodiments products can

be filled in starting from 100 kg bags, and in some embodiments, also 350 or 400 kg bags.

[0033] The arrangement of this plant is a horizontal container measuring 20 feet which, once at its destination it will be installed vertically and will be located after the mixing module (4). The big bag module (400) is made up of three blocks which are placed on top of one another vertically and all the installations are connected with quick connect adaptors without requiring *in situ* installations, because everything is ready to be assembled and with all installations for starting up in one day. The quick connections and electric power are provided from the general distribution board of the plant of Figure 1.

[0034] Therefore, once the mixing of the product in the mixing module (4) has ended, said product goes to the packaging module (5) which, in this embodiment, comprises a system for taking the powder after mixing to the big bag module (400). The capacity to be achieved is approximately 1000 kg/h, depending on the products.

[0035] Packaging is done for four or five 200 kg batches combined with one another. The module is designed to be contained and transported in a 20" open top container with all the necessary machinery, auxiliary elements and tools included.

[0036] It has been designed to be installed vertically, under cover, protected from the elements, in a ventilated site and located on even ground suitable for the described loads.

[0037] This design is established in order to be divided into three blocks of a height of about 2.3 m each (in any case, less than 2.4 m, which is the maximum height of the containers) and so that they can be handled with an electric fork lift during assembly and installation. Suitable transport and operation is thereby assured, in addition to achieving safety and traceability in the process so that staff working at the plant cannot make mistakes and making it easier to follow the manufacturing sequence as it has been projected, and implementing the necessary surveillance and control means from the central office.

[0038] The big bag module (400) comprises the following elements:

1. (a) A structure (401) capable of being introduced in a 20" container without deformations, protecting and providing support for the different machines and auxiliary equipment for carrying out the different processes.
2. (b) Reception of the mixed product in a hopper (402) and dosing for packaging.
3. (c) Dosing valve (403) installed after the hopper (402) for dosing the already mixed product.
4. (d) In-line metal detector (404) with rejection means.
5. (e) Bag filling module (405) for filling bags by batches, with labeling and weight control (406).

[0039] The production parameters to be achieved are 1 Tm/h in 4 or 5 batches per bag. The

times in the different phases are 12 minutes at most, so said cycle at most will continue to be maintained to assure the indicated capacity. For complete certification and combination with an existing plant of mixtures, in this non-limiting example the times will be (they logically may vary according to the desired installation):

- Weighing will be done independently.
- Loading.
 - Taking up bags: 1 min.
 - Filling: 10 min.
 - Connection/disconnection: 1 min.
 - Total: 12 minutes.
- Mixing:
 - Machine connection: 1 min.
 - Mixing: 10 min.
 - Disconnection: 1 min.
 - Total: 12 minutes
- Lifting the product from mixing to the feed hopper (402) which complies with cycles that allow the goal of assuring 1000 kg/h
- Bag filling:
 - Continuously connected with the previous phase, packing must be done with each batch of about 200 kg going through a rotary installation and metal detector until amounting to 4-5 batches, depending on densities.
 - This operation must be done in 1 hour.
 - Five container changes (for each batch).
 - Packaging of these five batches in one bag, going through a rotary installation and metal detector. For each bag, there is weight verification, labeling and withdrawal of the bag, placing an empty back to start a new packaging cycle (60 minutes per cycle of 1000 kg for five batches).

[0040] Generally, all the general services of the installation will be connected with those of the plant of Figure 1.

REFERENCES CITED IN THE DESCRIPTION

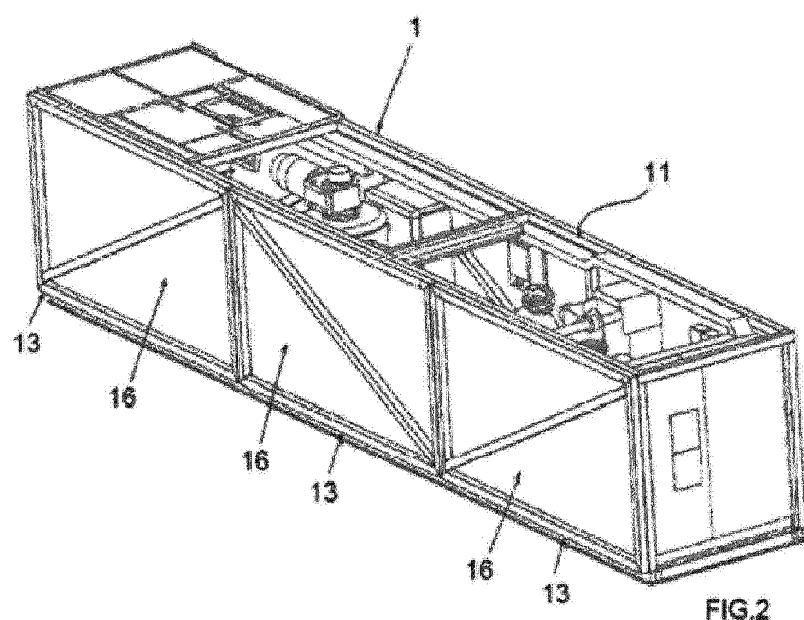
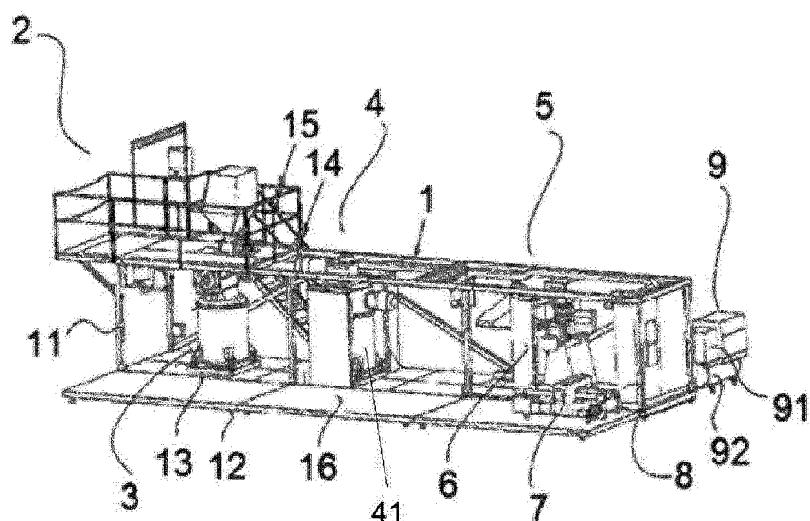
This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- ESP0381423 [0003]
- EP2465780A [0004] [0005] [0013]

P A T E N T K R A V

1. Modulært, mobilt blandings- og emballeringsanlæg til pulverformige eller granulære produkter omfattende en bærende struktur (1) med dimensioner, der er egnede til at blive indført i en standard maritim container og indvendigt rumme et modtagelses- og manuelt vejemodul (2), et materialelæsningsmodul (3), et blandemodul (4) og et emballeringsmodul (5), ~~k e n d e t e g n e t~~ ved, at det omfatter mindst ét væskeindsprøjtningsmodul (300), som kan indsættes og kan forbindes med en programmerbar logisk styreenhed, PLC, af det modulære anlæg; og hvor væskeindsprøjtningsmodulet (300) er konfigureret til dosering af væskeformige mængder af enhver viskositet i en blandetank (41) af blandemodulet (4) ved hjælp af en pumpe (318) hvis strømningshastighed er styret ved hjælp af flere vejeceller (320).
2. Anlæg ifølge krav 1, hvor væskeindsprøjtningsmodulet (300) omfatter et omrøringsrum (305), som er cylindrisk med en keglestubformet bund, og et dobbeltkammer, der er forberedt til at indføre termisk olie, som fordeler varmen af termiske modstande (306).
3. Anlæg ifølge krav 2, hvor rummet (305) har en hygiejnisisk portal, hvor en ankerskraber (326) med skrabere (327) der er fremstillet af hvid plastik, som er egnet til fødevare, og der modstår driftstemperaturer på 60°C og temperaturspidse på op til 100°C, er støttet.
4. Anlæg ifølge et hvilket som helst af kravene 2-3, hvor væskekammeret (305) omfatter et udløb for produktet med en nedrehygiejneventil (317); og hvor øvre åbninger vil have sikkerhedssensorer (323) i mindst ét låg (307), der er skråstillet i den øvre del; og hvor hver af støtterne af omrøringsrummet (305) omfatter vejecellen (320), som muliggør aflæsning af produktets vægt.
5. Anlæg ifølge et hvilket som helst af kravene 1 til 4, hvor væskeindsprøjtningsmodulet (300) omfatter et varmesystem, som udfører funktionen af at holde produktet ved den ønskede temperatur, hvis nødvendigt ved hjælp af et dobbelt kammer omkring omrøringsrummet (305), hvori en termisk olie vil cirkulere og termiske modstande (306) vil blive installeret; og hvor ydersiden af omrøringsrummet (305) er varmeisolert.
6. Anlæg ifølge krav 5, hvor udstyret har et rum, der også virker som en ekspansionsbeholder, for at læsse den termiske olie i, således at olien kommer ind i et dobbeltkammer i omrøringsrummet (305), hvor den opvarmes ved hjælp af de termiske modstande (306); og hvor udløbet til olien er placeret i den nedre del, hvor der er en tandhjuls-pumpe (315), der uafbrudt recirkulerer den termiske olie gennem oliekredsløbet (313), mens den er varm.
7. Anlæg ifølge et hvilket som helst af kravene 1 til 6, hvor temperaturen af produktet inde i rummet (305) og temperaturen af den termiske olie styres af temperatursonder (324).



8. Anlæg ifølge et hvilket som helst af kravene 1 til 7, hvor doseringen udføres ved hjælp af en pumpe (318), således at indløb deraf er forbundet med en nedre ventil (317) af omrøringsrummet (305); og hvor indløbet af pumpen (318) altid ligger under den nedre ventils (317) udløb.

5 9. Anlæg ifølge et hvilket som helst af kravene 1 til 8, hvor det omfatter et stor-
sækmodul (400), der kan indsættes og forbindes med en programmerbar logisk styreen-
hed, PLC, af det modulære anlæg og omfatter følgende: (a) en struktur (401), der er i
stand til at blive indført i en 20" beholder uden deformeringer, og der beskytter og støtter
10 de forskellige maskiner og hjælpeudstyr til udførelse af de forskellige processer b) modta-
gelse af produktet, som er blandet i en tragt (402) og dosering til emballering, (c) en do-
seringsventil (403), der er installeret efter tragten (402) til dosering af det allerede blandet
produkt, d) en metaldetektor, der er på linje, (404) med et afvisningsmiddel og (e) et
sækfyldningsmodul (405) til at fyldе poser i partier med etikettering og vægtkontrol (406).

10. Anlæg ifølge et hvilket som helst af kravene 1 til 9, hvor det også omfatter et
15 automatisk doseringsmodul, som kan indsættes og forbindes med en programmerbar lo-
gisk styreenhed, PLC, af det modulære anlæg.

11. Blandings- og emballeringsfremgangsmåde til pulverformige eller granulære
produkter i et anlæg ifølge et hvilket som helst af kravene 1 til 10 og som omfatter trinne-
ne af at modtage og manuelt veje, at læsse materiale, at blande og emballere og k e n d e
20 t e g n e t ved, at nævnte trin styres af en programmerbar logisk styreenhed, PLC, der er
fjernforbundet med en central server, som tilvejebringer slutproduktblandings- og konfigu-
rationsinstruktionerne og -ordrerne, og desuden omfatter mindst ét yderligere trin udvalgt
blandt: automatisk dosering, væskeindsprøjtning og posefyldning; hvor de nævnte yderli-
gere moduler kan indsættes og forbindes med en programmerbar logisk styreenhed, PLC,
25 af det modulære anlæg.

DRAWINGS

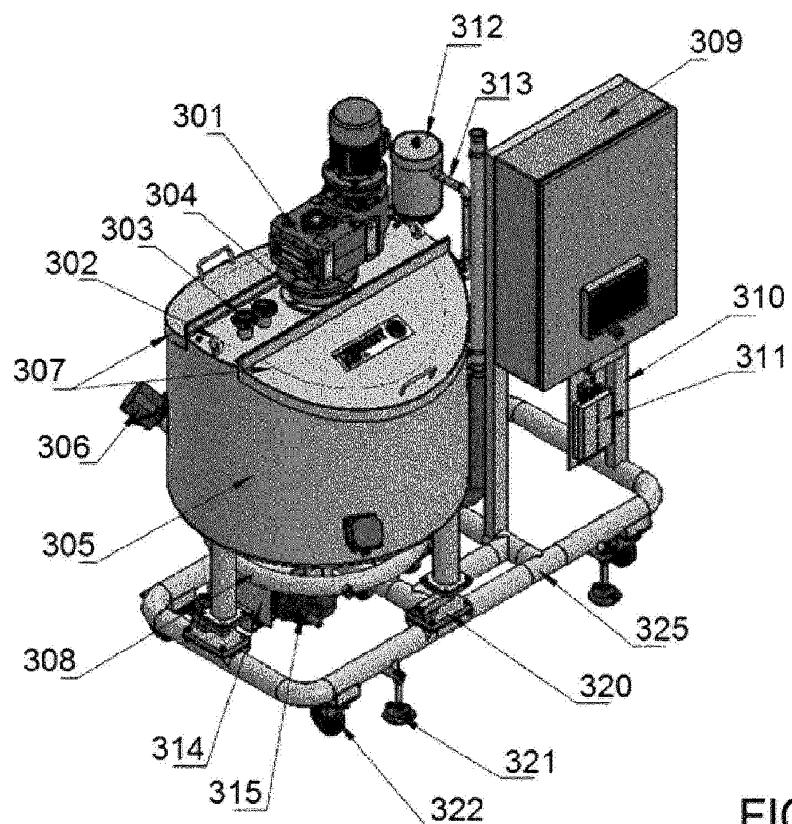


FIG.3A

FIG.3B

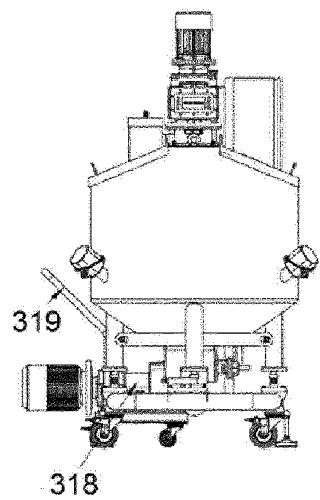
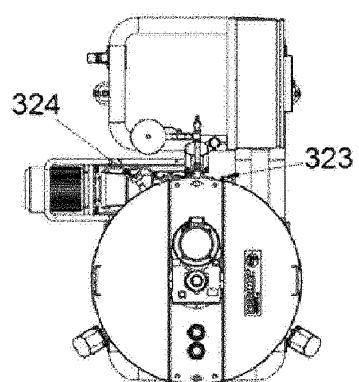



FIG.3C

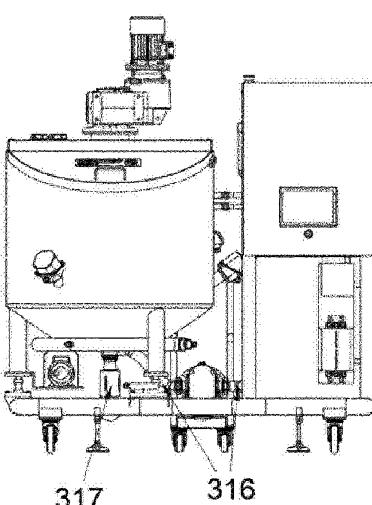


FIG.3D

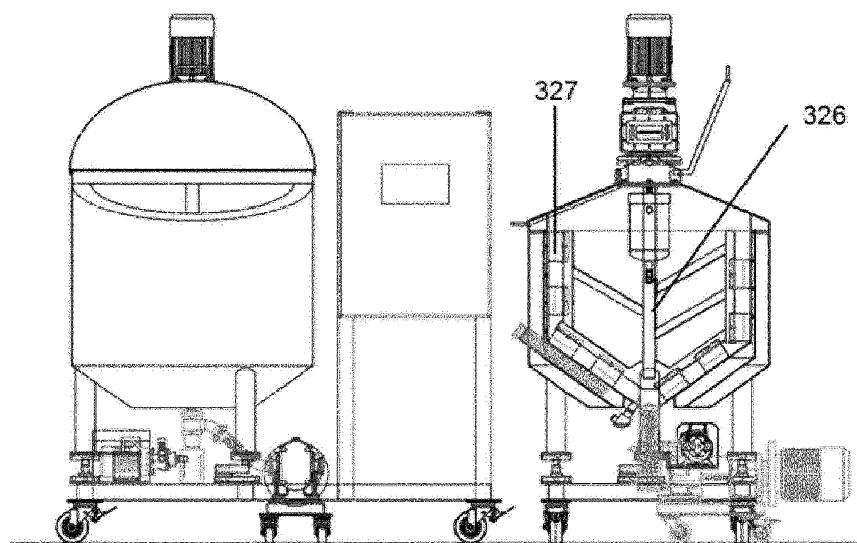


FIG.3E

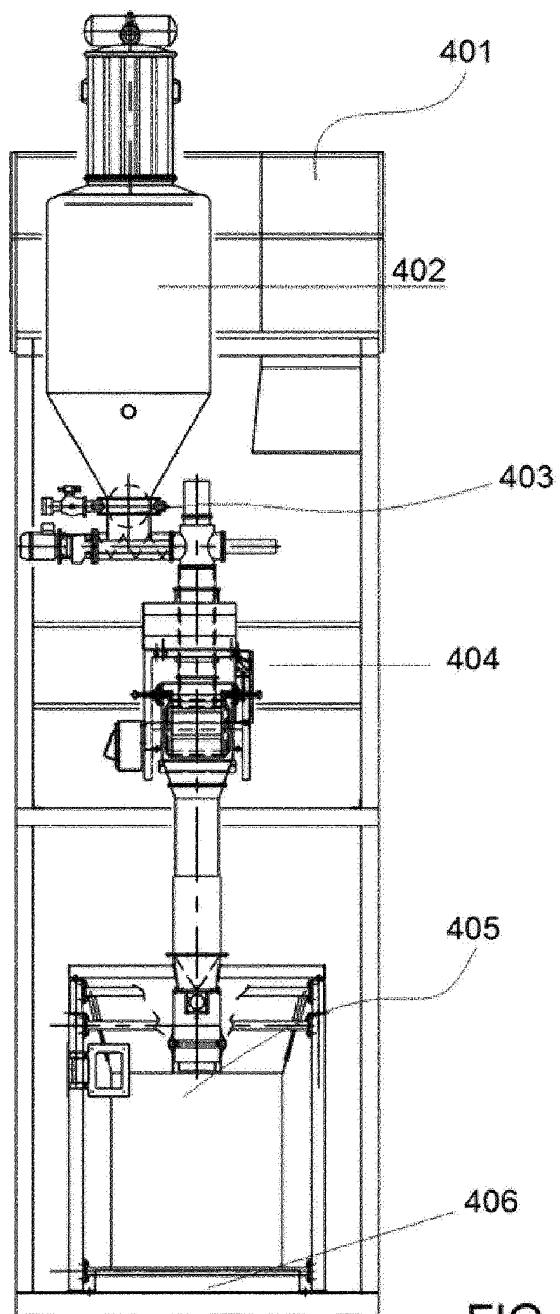


FIG.4